Performance-aware Coarse-Grained Reconfigurable Logic Accelerator for Deep Learning
Applications

A Thesis submitted in partial fulfillment of the requirements for the degree of Master of
Science at George Mason University

by

Katherine Mercado Rejas
Bachelor’s in Electronics and Communication Engineering
Polytechnic University of Madrid, 2018

Director: Sai Manoj Pudukotai Dinakarrao, Assistant Professor
George Mason University

Summer Semester 2022
George Mason University
Fairfax, VA

Copyright 2018 Katherine Mercado Rejas
All Rights Reserved

i

DEDICATION

This is dedicated to my grandmother, Consuelo.

il

ACKNOWLEDGEMENTS

I would like to thank my relatives and supporters who have made this happen. Dr. Carlos
Carreras for his assistantship with his writing skills and notes. Dr. Sai Manoj for his
guidance and wisdom during the whole process of my thesis and the other members of
my committee who were of invaluable help. Finally, thanks go out to the staff from the
department who provided me with assistance during my whole master’s degree. Special
thanks to Dr. Dimitrios Ioannou, who supported me with advising during my first year.

v

TABLE OF CONTENTS

Page

LISt OF TADIES ..ottt et e et e e e tbe e e e e e eeeeasaeeennens vi
LISt OF FIZUIES ...ttt ettt ettt vii
LSt Of EQUALIONS ...eouiiieiieeieeeie ettt ettt ettt et e te e e beeesteeseaenseensseennnas viii
LSt Of ADDIEVIALIONSeiiuiiiiiiiiiieiie ettt st 1X
ADSITACT ...ttt ettt e et e et e e et e e e et e e e taeeeenbeaeabaeearaaeentreeennreeas X
INETOAUCTION ...ttt ettt e et e et e e e e e e saseeeenbeeesnseeeensseeennseees 1
GPU PlatfOrmS.ouieiiiiiieceee ettt ettt sb e 2
FPGA PlatfOrmSooouiiiiiiiiieie ettt ettt e 3
ReEVIEW Of LIETATUIEeiiiiiiiiiiiiii e 7
Proposed approximate computing-based high-speed reconfigurable accelerator............. 10
SyStEmM ATCHITECTUIEeouviiiiiiiiiiieieeee ettt 11
Processing Element ATChIteCtUIEcoouiivuiiiiiiiiieiieeeecee et 11
Taylor Series Algorithm for Log and Antilog operations.............ccceeveeeviierieeneeenenne. 13
Application Mapping on the Proposed Accelerator...........ccceeeveeviieniienienciienieeeeenen. 15
Applicability to Other Workloadscooouiiiiiiiiiii e 16
Results and diSCUSSIONcecuviiiiiiiiciee ettt e e e e e e e e 18
STMUIATION SETUP ...ttt ettt ettt e et e st e e bt e enaeeenneeeeee 18
Evaluation of processing €lementcccoeviiiiiiiiiieiieeiieeie ettt 18
Comparative PerfOrmMANCEc.eeeeriiieriireeiieeeiiie e e eiteeetee et eeeeeeeesaeeesnneessnneeenns 18
CONCIUSION ...ttt ettt et e et e e bt e st e et e embeesaeeeeneeens 22
RETOTENCES ... oottt et e e e e et e e e e eaaaeeeaaeeesaseeeensseeennnes 23

LIST OF TABLES

Table Page
Table 1 CNN models performance on FPGA platformcoocoooiiiiiiiniiniieeeieee 4
Table 2. Codewords and OPETAtiONS..........cueeruieriieriieriieeiie et ereeeieeeteeeeeeeeeeereesaeeesaeeens 11
Table 3. Comparison of arithmetic UNItS...........cceeruieriiiiiiiiieie e 20
Table 4. Comparison of arithmetic blOCKS...........ccccuieiiiiiiiiiiiie e 21
Table 5. FPGA-based accelerator COMPAariSON..........c..eeevuiieeuieeriiieeeiieeeiieeeieeeeieee e 21

vi

LIST OF FIGURES

Figure Page
Figure 1 GPU throughput in floating point operations per second and power
COTSUITIPEION. 1.ttt eiie et et et ee et te e bt e seeeaseeesbeeaseeenseeenseanseeenseaanseeenseenseesaseanseeenseeenseennns 3

Figure 2 Proposed accelerator architecture showing 9 cores in a mesh-style network. ... 10
Figure 3 Processing element architecture showing the main four arithmetic blocks and

(7o 1 1<) SRR 13
Figure 4 Sum of terms for a convolutional operation.c.ccceceeieiiiiiniiinieniniencnnns 16

vii

LIST OF EQUATIONS

Equation Page
Equation I MUultipliCationcc.eieiiiiieeiie ettt e e e e 12
EQUation 2 DIVISIONceiuiiiiiiiiiieeiie ettt ettt ettt et e et eeeateebeesnaeeseeennaeenneas 12
Equation 3 Logarithm fUnCtion...........coociiiiiiiiiiiiieieeeeeeee e 14
Equation 4 Multiply logarithm functioncccoeeiieiiiiiiiiiiiie e 14

viii

LIST OF ABBREVIATIONS

Deep Neural NetWorkoccuiiiiiiiiiiii et s DNN
Convolutional Neural NetWork..........ccccuiiiiiiiiiiiiiiie e CNN
Processing EICMENT.......c..coouiiiiiiiiiiiiiieeec ettt ettt e PE
Coarse-Grained Reconfigurable Architecture.............cccoeeiieniieiiiniieniiieieceeeeee, CGRA
Graphical ProCeSSING UNITcocciiiiiiieiieeiieeie ettt ee e e seteeseeeebeeseseenseeenseaens GPU
General Purpose Graphical processing Unit...........coocveeerieeeriiieeniiieeeriee e GPGPU
Central ProCeSSING UNIT ...c..eoviiiiriieiieiieie ettt et s CPU
Application-Specific Integration CirCUit.........c.eeiueeerieriiieiiieie et ASIC
ATtificial INteIIIZENCE ... eeeiiiiiieii et Al
Compute Unified Device ArchiteCturec.ccoceeuiiriinienienieeeneeeeeee e CUDA
Open Computing LangUaAZEcocueieiiiieiiiieiieiie ettt OpenCL
LOOK UP TaDLE ...ttt ettt e et e e e LUT
Programmable LogIC DEVICES........cciiiiiiiiiieiie et PLD

iX

ABSTRACT

PERFORMANCE-AWARE COARSE-GRAINED RECONFIGURABLE LOGIC
ACCELERATOR FOR DEEP LEARNING APPLICATIONS

Katherine Mercado Rejas, M.S.
George Mason University, 2022

Thesis Director: Dr. Sai Manoj Pudukotai Dinakarrao

Deep neural networks (DNNs) are widely deployed in various cognitive applications
including computer vision, speech recognition, and image processing. The surpassing
accuracy and performance of deep neural networks come at the cost of high
computational complexity. Therefore, software implementations of DNNs and
convolutional neural networks (CNNs) are often hindered by computational and
communication bottlenecks. As a panacea, numerous hardware accelerators are
introduced in recent times to accelerate DNNs and CNNs. Despite effectiveness, the
existing hardware accelerators are often confronted by the involved computational
complexity and the need for special hardware units to implement each of the DNN/CNN
operations. To address such challenges, a reconfigurable DNN/CNN accelerator is
proposed in this work. The proposed architecture comprises nine processing elements

(PEs) that can perform both convolution and arithmetic operations through run-time

reconfiguration and with minimal overhead. To reduce the computational complexity, we
employ Mitchell’s algorithm, which is supported through low-overhead coarse-grained
reconfigurability in this work. To facilitate efficient data flow across the PEs, we pre-
compute the dataflow paths and configure the dataflow during the runtime. The proposed

design is realized on a field-programmable gate array (FPGA) platform for evaluation.

INTRODUCTION

Deep learning algorithms including Deep neural networks (DNNs) and
convolutional neural networks (CNNs) have been widely adopted in a plethora of
applications in recent times. These techniques exploit the internal correlation between
the data samples in each of the internal hidden layers to perform the tasks such as
classification or prediction with high accuracy. Therefore, it excels at complex image
classification, natural language processing, computer vision, and speed recognition
problems among others.

As a result of these characteristics, deep learning techniques require high-end
infrastructure due to the large number of parameters that will need to be trained within an
acceptable amount of time, compared to traditional machine learning algorithms. Besides,
operations can be computed faster in hardware that has been customized for that
particular application. Therefore, hardware acceleration refers to customizable hardware
for applications that demand high parallelism and reduced overhead.

Implementing ML and other learning methodologies on traditional CPUs is facing
a formidable challenge in terms of inference latency, memory accesses, and energy
efficiency due to the lack of temporal data locality and logic-memory communication
Graphics processing units (GPUs) and custom-designed accelerators (ASICs) [1] are

designed for enhanced hardware performance. However, the performance and efficiency

of such architectural paradigms are limited due to power consumption, costs, and
reconfigurability.

GPU platforms

Graphical processing units and central processing units progress towards
becoming fundamental hardware to deploy DNNs. However, despite the versatility that
the latter offers for large-scale data applications, the performance may produce an
unsatisfactory result. This stems from the fact that the CPUs cores may wait to be stuck
on memory for intensive memory applications, hence degrading its parallel computing
performance.

On the other hand, the advantage of GPUs over CPUs greatly benefits a large
number of computations. Because thread parallelism hides latency, it offers a high
bandwidth for substantial chunks of memory as well as high throughput. To achieve high-
performance GPUs due to the emergence of deep learning applications, some platforms
such as CUDA or OpenCL have been available to create modern GPU accelerators for
general purpose computations (GPGPU). Moreover, it can be found some deep learning
GPU-based libraries that assist these implementations such as cuDNN [2] and Cuda-
convnet [3]. Due to the superior parallel processing performance and their floating-point
characteristics, GPUs have undergone significant development in recent years. Figure 1
illustrates the performance of Nvidia GPUs in the number of floating-point operations per

second, GFLOPs and power consumption, and TPD from 2006 to 2018.

16000 1

14000 1

12000 |

10000 1

GFLOPS (FP32)

6000

4000 4

8000

GTE690
Tesla K10
Tesla K20
GTX 680
GTxas0 OTP90 GTEE70

GTX 660 Ti

GTXse0 GTXSE0TI Grfieeo
GI9450 GTXAS0T GTGSO
: aTgss0 GY
a0 Giglao
oo HMEE oMo
GT 330
2010 2012
Year

51830
R

Quadro RTX 6000

Quadra GV100
RTX 2080 Ti FE
Testav100
GTX Titan V
Tesls P40 RTX 2080 Ti
Radeon RX Vega 64 Liquid
GTX TRan Xp |
Quadro RTX 5000

L J
uah‘#ﬂ“’wﬁ’.‘\r,\’na
GTX 1080 T
RTX 2080 FE
Tesii100 RTX 2080
Radeon RX Vega 56
Griioso GTX 1070Ti ”‘1‘ Y4

7

RTX 2070 FE

Xeon Phi 7290F ATRR070

omx Tieh X M8xwein

GTX 980 Ti GTX3070

el pa
Xeon Platinum 8180
cn®oso
r.vxi'.n T i9-7980%E
qoleep
egra
7 oK GT gp3o
tel iris P phics 650
Intel UMD Graphics 630
2016 2018

Figure 1 GPU throughput in floating point operations per second and power consumption.

However, GPUs require high power consumption and cost and, as a

alternative hardware solutions are needed to alleviate power consumption

improving computing performance. An alternative solution is FPGA platforms.

FPGA platforms

300

200

TOP (watts)

100

result,

while

Field programmable gate array (FPGA)-based implementations are adopted

recently for the deployment of numerous applications including DNNs and CNNs due to

their programmability, reconfigurability, and flexibility. Logic density on the state-of-the-

art FPGAs allows good performance for these intensive computations. Another major

advantage is FPGA's support for fine-grained and bit-level operations when compared to

GPUs and ASICs makes this platform draw attention to low latency applications.

Numerous FPGA-based DL accelerators are proposed in the literature [4].

A significant difference in utilization between FPGAs and GPUs is that the

former is normally used for DNN inference while the latter is for DNN training. This is

because the memory bandwidth found in FPGAs is much lower than the memory
bandwidth found in GPUs [5]. To overcome this major disadvantage, there are three
different algorithm optimizations that address this issue. Firstly, algorithm operation,
such as the fast Fourier transform, helps to reduce the number of arithmetic operations
during the inference performance. Secondly, the data-path optimization consists of
applying the wunrolling technique to the convolutional layers for parallelism. Lastly,
model compression consists of eliminating the redundant parameters in error-tolerant
applications such as pruning technique. Figure 2 illustrates the performance of a few

CNN models on FPGA devices.

Table 1 CNN models performance on FPGA platform

CNN Model FPGA Device Optimization Accuracy # of Param Computation Precision Frequency Throughput Power
Method (Top-5) (M) (GOP) (MHz) (GOP/s) w)
VGG-19 [139] Arrial0 90.1% 138 308 float32 370 866 41.7
GX1150
VGG-16 [114] Zynq 72045 SVD 87.96% 50.2 30.5 fixed16 150 137 9.6
VGG-16 [134] Arrial0 Dynamic 88.1% 138 30.8 fixed8 150 645
GX1150
BNN: XNOR-Net Stratix5 Binary 66.8% 87.1 233 fixed1 150 1,964 26.2
[137] GSD8
Ternary ResNet Stratix10 Ternary, pruning 79.7% 61 14 float32 500 12,000 141.2

[115]

FPGA platforms though can enable reconfigurability and programmability, still
incurs large resource utilization and latency when deployed for DL applications. To
partially address this, the existing works have exploited the resilience of DNNs and
CNNs despite utilizing low-precision data. In addition, approximate computing has been
enabled to address the latency challenges [6].

In the literature, approximate arithmetic units such as dividers [7], adders [8], and

multipliers [9] have been developed to implement DNN and CNN operations. The

majority of these architectures are pre-configured for application-specific designs,
confining their applicability to a specific architecture. Thus, the required resources and
computational complexity can be reduced. However, the challenges of reconfiguration
overheads and the computational complexity to perform MAC operations still remain
unanswered.

In contrast, the reconfigurability of the FPGA architectures, arithmetics behind
the approximations, and MAC computations are exploited to propose the coarse-grained
reconfigurable high-speed approximate accelerator for DL applications. For this purpose,
a 3x3 tile structure of processing elements (PEs) is designed, and reconfigurable through
programming words to perform a wide variety of operations including add, subtract,
multiply, divide, logarithm, and anti-logarithm. Mitchell algorithm [10] is employed to
reduce the complexity of the resource-intensive multiply operations and enhance the
involved computational latency. The high-speed reconfigurability and interconnectivity
of FPGAs make the proposed design of PEs energy-efficient and reconfigurable with
minimal overheads.

The proposed architecture is also designed to facilitate programmability,
reconfigurability, and applicability to other applications with minimal overheads. The
novel contributions of this work can be outlined in a three-fold manner as follows:

e Mitchell algorithm-inspired reconfigurable PEs are designed to perform
the MAC operations for DNNs and CNNs. The proposed design employs
8-bit operands to further minimize the computational overheads without

impacting the performance of DNN/CNN implementation.

e A coarse-grained reconfigurable DNN/CNN accelerator on the FPGA
platform 1s proposed to minimize the reconfiguration overheads and
enable adaptability to a wide range of applications.

e A weight-stationary approach is employed for seamless dataflow across
the PE cores in the proposed architecture. Look-up-Table-based log and
antilog blocks are designed to support Mitchell's algorithm-based
approximate multipliers with low latency.

The proposed coarse-grained reconfigurable architecture is evaluated on Versal
VCK190 FPGA platform for DNN and CNN networks. The proposed accelerator is at
least 1.25x faster than previous work [11] with 8-bit precision and 1.87x faster than [12],
[13] with 16 and 32-bits respectively. Moreover, it shows improvement in both area and

energy.

REVIEW OF LITERATURE

Deep learning techniques including DNNs and CNNs compose millions of MAC
operations. These operations can be performed in a parallel manner. As such, FPGA
platforms are one of the best-suited platforms for DL acceleration by exploiting their
inherent parallelism. Numerous works have proposed FPGA-based accelerators for DL
applications [11], [12], [13]. The great challenge for a hardware accelerator design is to
find the best trade-off between power, performance, and reconfigurability.

Reconfigurability brings forth advantages, as having more functionality
employing fewer resources, helps cost savings. Moreover, it may extend the useful life of
hardware by updating its purpose and achieving faster development. Coarse-grained
reconfigurable architecture is a common type of reconfigurable architecture based on
functional units such as PEs, in a mesh-style network. This type of architecture may
perform complex operations while providing low power consumption, less configuration,
and routing overhead.

A key point of taking advantage of PEs 1s to avoid the combination of
configurable logic blocks (CLBs) compared to pure FPGA-based hardware accelerators,
ensuring a decrease in both areas and routing overhead, such as the DReAm [14] and

MORA [15] architectures.

The present memory bottleneck found in FPGA-based hardware accelerators is
localized in data movement, which could result in more energy consumption than the
computation. One goal of this paper is to alleviate such concerns by implementing
weight-stationary dataflow to maximize access to computation results from the different
PEs and thus, minimize energy consumption. CGRA-based architectures such as MORA
[15], employ pipelined computational dataflow organized in two levels while eliminating
the need for a centralized routing controller. Contrary to DreAm [14], which possesses a
global unit for this purpose. Other works also, [16], [17], exploit the hierarchical dataflow
concept for on-chip and inter-PE communication respectively, for both convolutional
data and MAC operations. Another FPGA-based accelerator such as [18], proposed an
adaptable reconfigurable datapath that allows depending on the operand, parallel or
sequential dataflow for multiply operations.

FPGAs require a considerable amount of data reconfiguration for their
programmable routing network. This is translated into a larger configuration time when
multiple hardware configurations are involved in a single architecture. In order to
overcome this, multiple-bit arithmetic processing elements, such as those working with 8
or 16 bits, as our proposed architecture, may be used where high efficiency is achieved
for DNN/CNN computations while reducing power and area. Arithmetic hardware
accelerator units are developed to carry neural network computations such as [11], [12],
[13], multipliers and dividers are the most frequent types of independent arithmetic units.
Few designs execute both operations where the lack of support for division may generate

a large overhead in the design [19], [20]. The proposed architecture integrates flexibility

benefits that an FPGAs platform provides, as well as characteristics of a reconfigurable
coarse-grained based processing element architecture for multiple hardware

configurations.

PROPOSED APPROXIMATE COMPUTING-BASED HIGH-SPEED
RECONFIGURABLE ACCELERATOR

The proposed high-speed reconfigurable approximate computing-based hardware
accelerator architecture is presented in Figure 2. The proposed architecture comprises 9
processing elements (PEs), termed cores. Each of the PEs is designed to perform
multiplications based on Mitchell's algorithm [10], discussed later. For the purpose of
reconfigurability, the CGRA PEs are controlled using the codewords, defined through
control bits (4-bits in our design). Depending on the control bits, the datapath and the PEs
are configured. The reconfiguration time is reduced through the control words of the
CGRA paradigm; therefore, it allows the usage of configuration memory more

efficiently. The details of individual blocks are discussed below.

AS8 ., —~—~C
B s/, PE-1 — PE-2 —| PE-3

4,
4 [| [

Code Word

PE-4 — PE-5 — PE-6

PE-7 — PE-8 |- PE-9

Figure 2 Proposed accelerator architecture showing 9 cores in a mesh-style network.

10

System Architecture

The overall structure of the proposed architecture is presented in Figure 2. It
comprises nine PEs arranged in a tiled manner. In the highest level of description, this
architecture considers two operands 4 and B of 8-bit precision along with a code word of
4-bits, referred to as Mode signal. The output of this PE is 8-bits. The codewords and the
corresponding operation are represented in Table 2. In the current design, each operand is
represented in a fixed-point format using 4-bits for the integer and 4-bits for the fractional
part. The rationale to choose the fixed-point representation is its wide adoption for neural
network applications, as it helps to reduce the logic usage and the power consumption on

FPGAs platforms.

Table 2. Codewords and operations

Logarithm Block 2’s C. Block Adder Block Antilog Block
Adder 0001
Subtraction 0010 0010
Multiply 0100 0100 0100
Division 1000 1000 1000 1000

Processing Element Architecture

One of the common and computationally intensive operations in the DL
applications as well as the generic application workloads is the multiply operation. The
complexity further increases for fixed-point and floating-point data types. To address this

challenge, we design our PE focusing on multiply operations. However, designing only

11

multiplier makes the design inefficient, as other operations such as additions and
subtractions are critical in DL and generic workloads.

Considering the reconfigurability of the underlying FPGAs, we design the PE to
support multiplications as well as other arithmetic operations in this project. For this
purpose, we design the multiplier based on Mitchell's algorithm [10] as described below.

As per Mitchell's algorithm, a multiply operation is defined as follows:

Equation 1 Multiplication
AB = 1010g(A)+log(B)

Equation 2 Division

é = 10log(4)-log(B)

Where A and B are the operands. Based on equation 1 and equation 2, the PE
architecture is designed as shown in Figure 3. Thus, the PE encompasses an adder, two's
complement, log, and antilog blocks. Depending on the codeword, the individual units of
the PE are enabled or disabled. For instance, to perform the multiplication operation, the
log, adder, and antilog blocks will be enabled. Similarly, the codeword enables the log,
adder, two's complement, and antilog blocks to perform the division operation. The
proposed architecture thus is capable of performing the add, subtract, log, antilog,
multiply, and divide operations in a seamless manner. This is facilitated through the
reconfigurability of the underlying FPGA architecture. To perform the reconfigurability

through the codewords in a CGRA manner, we design a finite estate machine (FSM). The

12

FSM is responsible to decode the codewords and enable the data flow in a dynamic
manner. As shown in Table 2, depending on the codeword, the corresponding
computational blocks in the PE will be enabled or disabled. Logarithm and antilogarithm
functions are the complex functions to be designed through standard CMOS designs. For

this purpose, we employ the Taylor’s Series approximation and design the hardware

accordingly.

A B
S

Code Word —2<»/ Log

Block

A
Code Word 2 Adder < Z's Complement | SR
Block Block

Code Word -2+ Antilog

Block
Register

Figure 3 Processing element architecture showing the main four arithmetic blocks and register.

Tavlor Series Algorithm for Log and Antilog operations

A Taylor Series is the expansion of a function into an infinite sum of terms. These
terms are computed to get an approximate value for both logarithm and antilogarithm.
The relationship between logarithm and antilogarithm to obtain a multiplication or a
division is such that, the antilogarithm of the addition or subtraction of logarithms of 4
and B is the multiplication or the division of 4 and B respectively as shown in equation 1

and equation 2.

13

The logarithm function is achieved by the approximation of the Taylor Series for
the natural logarithm and change of base property. The function log(x) is the
approximation of the natural logarithm with a being the point where the function should

be centered and n representing the number of terms as shown in equation 3.

Equation 3 Logarithm function

_1\n+1
s, E T - o

n10

log (x) =

Equation 4 Multiply logarithm function

X (—1)n+1 2 (—1)n+1
antilog(x) = Z%(x —a)" + Z %(X —a)"

To compute the antilogarithm for instance, for the multiply, the approximation
between the logarithm and the exponential functions is made in equation 4. As observed
from equation 3, direct implementation of logarithm and antilogarithm operations
through CMOS design is inefficient due to the involved complexity. As such, we design a
look-up-table (LUT)-based log and antilog units in this work. As FPGAs realize the
design through LUTs, the design of logarithm and antilogarithm blocks are realized using
the LUTs. This enables faster lookup, reduced computational complexity, and

compatibility with the underlying FPGA architectures.

14

Application Mapping on the Proposed Accelerator

Convolutional layers are the building blocks for CNN, where convolution
calculations are employed for feature extraction. An element-wise product is performed
between an input tensor and a kernel array. After this, all terms are summed to obtain the
value in that specific position of the output feature map [4]. The correspondent
codewords for CNN computation active the PEs and the behavior involves further steps
as shown in Figure 4.

Once the PEs have completed nine multiplications and have passed through the
registers; these values are redirected back to the PEs to perform addition operations by
utilizing and taking advantage of the same resources. Eight values are moved to the first
four PEs, every two terms for each addition are designated with the same color label as
illustrated in Figure 4. The result of these four additions is again redirected to the next
PEs, activating the following two in the next cycle. In the third cycle, the two PEs results
become the two next terms for the following addition. Finally, our last result can be sum
to the result of the ninth PE which was unutilized in the first cycle.

This illustration demonstrates that the multiply calculation among the PEs will be
executed in parallel independently of the number of inputs involved. After that, the time
computation increases according to the number of additions that may be performed in
each clock cycle. With different operations, when a PE is inactive, its output value is
registered to be dispatched for immediate use while the remaining modules may start

orchestrating other operations according to their codewords.

15

Cycle 1 Cycle 2

o

0
m
ay

E

L) O

Cycle 3 Cycle 4

HyEipn
0] O

u
0
O ECE W

[] idle Core B Terms fourth addition/Result addition
[E Terms first addition/Result addition [Terms fifth addition/Result addition
I Terms second addition/Result addition I Ninthterm

[Terms third addition/Result addition [Next addition block

Figure 4 Sum of terms for a convolutional operation.

OO
OmO

Applicability to Other Workloads

As aforementioned, one of the advantages of the proposed reconfigurable
architecture is its applicability to a wide range of applications in addition to the DL
acceleration. In order to employ this architecture for non-ML applications, the
aforementioned application mapping needs to be reprogrammed. In other words, by
redefining the associated data flow with each of the code words one can apply the
proposed architecture to non-ML applications. For instance, instead of convolution
operation, general matrix multiplication (GEMM) is a common operation encountered in
a plethora of applications and workloads. To perform GEMM operation on the proposed
architecture, the operand mapping and sum dataflow have to be redefined compared to
the convolution operation. This can be performed in a non-complex manner through the

programmability of the FPGAs. GEMM reuses the data during computation, therefore,

16

data movement and storage are drastically reduced, which leads to improved

architectures.

17

RESULTS AND DISCUSSION

Simulation setup

The proposed architecture with nine processing element (PE) cores is
implemented on Xilinx Versal VCK190 FPGA. The PEs are described using the very
high-speed integrated circuit hardware description language (VHDL) and simulated using
Modelsim Intel software. Further, it is synthesized as an IP block and verified in Xilinx
Vivado 2021.1. The evaluation is performed in terms of the FPGA resources consumed
for the deployment of the proposed architecture.

Evaluation of processing element

The data computation has been pipelined to reach the maximum possible
frequency of operation. Furthermore, the scope of the data of both logarithm and
antilogarithm computations is limited in the state machine to refine the code and reduce
cycles. Area overhead has been decreased by reducing the precision of the data under
performance constraints. Table 5 summarizes the proposed architecture results. Delay and
resources have been obtained from Vivado synthesis. Power consumption is that of all the
processing elements and their communication network.

Comparative performance

We compare the speed and the area of the arithmetic units from our proposed

architecture with distinct arithmetic units as shown in Table 3. Many architectures found

18

in the literature are focused on a specific arithmetic computation [8], [9], [20], [21].
Moreover, there are works [22] that integrate adder and multiplier units in a single
architecture. Recently, some interest has emerged in approximate multiplier and divider
integrated architectures such as the tunable accuracy SIMDive architecture [23] using
single instruction and multiple data, since this operation has great importance in some
deep learning applications. As such, for a fair comparison, we configure the proposed
architecture either as an adder, multiplier, or divider and compare it with the
corresponding state-of-the-art works.

As can be seen from Table 3, the area increases for more complex computations
such as multiplications and divisions. The proposed architecture shows area improvement
in adder, multiplier and divider computation when compared to individual units [7], [8],
[9], [19], [20], [21]. For instance, the best arithmetic unit implemented in [21] has more
significant LUTs than the area of the proposed PE unit.

However, the proposed architecture has a wider benefit over existing architectures
with multiple heterogeneous arithmetic blocks, as shown in Table 4. Observing a generic
multiplier and adder architecture such as [22], the number of slices has to be multiplied
by four. The architecture has been deployed using Virtex5, therefore, the number of
LUTS increases until achieving a total of 4484 LUTs against 1023 found in the proposed
architecture. Similar to the next case, for multiplier and subtractor units.

In Table 5 we compare our proposed architecture with previous FPGA-based

accelerators of 8, 16 and 32 bits of precision.

19

Previous works such as [12], reduce the amount of off-chip data transfer by the
optimization of its dataflow with an increment in BRAM usage, an improvement over the
previous architecture [13]. This is demonstrated with a better power efficiency when
compared to [11]. However, there is still power required for the off-chip memory. In our
solution, we optimize power efficiency with optimized weight-stationary datapath, which
decreases, even more, energy consumption.

Moreover, the proposed architecture is 1.24 times faster than [11] and 1.87 times
faster than [12], [13]. Implementation has been optimized in power design and routing
design, achieving lower use of resources for both LUTs and DSPs when compared to

[11], [12], [13].

Table 3. Comparison of arithmetic units

Reference Speed (Mhz) Area (LUT)
Adder [8] 275 557
Adder [19] 71.017 932
Proposed Adder 187 243
Multiplier [20] 19.8 6971 Slices
Multiplier [9] 142.8 63400
Proposed Multiplier 187 780
Divider [7] 38 1060
Divider [21] 67.150 2472 Slices
Proposed Divider 187 815

20

Table 4. Comparison of arithmetic blocks

Reference Speed (Mhz) Area (LUT)
Adder + Multiplier 415 1121 Slices
[22]
Proposed Adder + 187 1023
Multiplier
Multiplier + 407 664 Slices
Subtractor [22]
Proposed Multiplier 187 883

+ Subtractor

Table 5. FPGA-based accelerator comparison

[11] [12] [13] Proposed
FPGA Startix-V Arria-10 Zynq Versal
Frequency (Mhz) 150 100 100 187
Precision 8-16bits 16-bits 32-bits 8bits
LUTs 161K 155K 118K 127K
DSPs 1518 784 824 196
Power (W) 21.1 9.4 9.4 8.7

21

CONCLUSION

In this work, a novel reconfigurable accelerator architecture aimed at CNN
computations is presented. Its programmability allows it to perform addition, subtraction,
multiplication, and division operations individually through a given mode. Its processing
elements or cores are displayed following a coarse-grained reconfigurable architecture
employing a weight-stationary approach as datapath. Each core can perform low
precision operations of 8 bits word-length. Performance is evaluated with Versal
VCK190. Compared with different arithmetic units aimed at CNN computations, the
architecture shows improvement in the area, 1.22x lower resource utilization compared to
the standard DNN/CNN accelerators. Further, it shows enhanced performance, is 1.24

times faster and 1.87 times faster than previous works.

22

REFERENCES

[1] Xin F., Youni J., Xuejiao Y., Ming D., Xin L. (2019). Integration. The VLSI Journal,
Elsevier.

[2] Sharan C. (2014). CUDNN: Efficient Primitives for Deep Learning, arXiv:
1410.0759.

[3] Alex K. Cudaconvet2. Online. http://code.google.com/archive/p/cuda-convnet?/.

[4] Sathwika B., Abhijit D., Amlan G., Anand H., Hagar H., Sai M. (2022). 4 Survey on
Machine Learning Accelerators and Evolutionary Hardware Platforms. IEEE
Design Test 39, 3, 91-116.

[5] Feng, Xin and Jiang, Youni and Yang, Xuejiao and Du, Ming and Li, Xin. (2019).
Reconfigurable FPGA Architectures: Computer vision algorithms and hardware
implementations: A survey. Journal of Integration. 69, 309-320.

[6] Praveenjumar B., P. Eswaran. (2020). Reconfigurable FPGA Architectures: A survey
and Applications. Journal of The Institution of Engineers.

[7] Gustavo S., Jean-Pierre D. (2009). High Speed Fixed Point Dividers for FPGAs. 448-
452.

[8] Kapil Ram G., Neelam C., Sujeet M., Sandeep D. (2018). A Parallel Pipelined Adder
Suitable for FPGA Implementation. 1-4.

[9] CRS Hanuman., J. Kamala. (2018). Hardware implementation of 24-bit Vedic
Multiplier in 32-bit floating-point divider. 60-64

[10] Jhon M. (1962). Computer Multiplication and Division Using Binary Logarithms.
IRE Transactions on Electronic Computers 4.

[11] Yufei M., Yu C., Sarma V., Jae-sun S. (2017). Optimizing Loop Operation and
Dataflow in FPGA Acceleration of Deep Convolutional Neural Networks. 45-54.

23

[12] Qingchen X., Yun L., Ligiang L., Shengen Y., Yu-Wing T. (2017). Exploring
Heterogeneous Algorithms for Accelerating Deep Convolutional Neural Networks
on FPGAs. 1-6.

[13] Manoj A., Han C., Michael F., Peter M. (2016). Fused-layer CNN Accelerators. 1-2.

[14] Jurgen B., Thilo P., Christian H., Manfred G. (2001). Design and Implementation of
a Coarse-Grained Dynamically Reconfigurable Hardware Architecture. 41-46.

[15] Marco L., Stefani P., Martin M., Pasquale C. (2005). A New Reconfigurable Coarse-
Grain Architecture for Multimedia Applications. 119-126.

[16] Maurice P., Arnaud AA S., Bart M., Henk C. (2013). Memory-Centric Accelerator
Design for Convolutional Neural Networks. IEEE 31 International Conference
on Computer Design (ICCD).

[17] Yu-Hsin C., Tushar K., Joel S. E., Vivienne S. (2016). Eyeriss: An Energy-Efficient
Reconfigurable Accelerator for Deep Convolutional Neural Networks. IEEE
Journal of solid-state circuits 5,.127-138.

[18] Marco L., Stefani P., Martin M., Pasquale C. (2005). Low-cost Fully Reconfigurable
Data-path for FPGA-based Multimedia Processor. IEEE, International
Conference on Field Programmable Logic and Applications.

[19] Somsubhra G., Prarthana B., Arka D. (2013). FPGA Based Implementation of a
Double Precision IEEE Floating-Point Adder. 271-275.

[20] Salty B., Sandip N. (2016). VHDL Implementation of Self-Timed 32-bit Floating
Point Multiplier with Carry Look Ahead Adder. IEEE Journal of solid-state
circuits 5,.127-138.

[21] Peter M. (2015). High Throughput Floating-Point Dividers Implemented in FPGA.
291-294.

[22] Lamiaa S., Abdel H., Khaled S., Hassan E., Mohamed E. (2020). Design of Generic
Floating-Point Multiplier and Adder/Subtractor Units. 615-618.

[23] Zahra E., Salim H., Akash K. (2022). SIMDive: Approximate SIMD Soft Multiplier-
Divider for FPGAs with Tunable Accuracy. 151-156.

24

BIOGRAPHY

Katherine Mercado Rejas received her Bachelor of Electronics and Communications
engineering from the Polytechnic University of Madrid in 2018. She is employed as an
intern in Volvo Trucks North America and she is doing her master’s degree in Electrical
Engineering at George Mason University.

25

