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Abstract. This paper describes AQ-PM, a system for partial memory learning,
which determines and memorizes representative concept examples, and then uses
them with new training examples to induce new concept descriptions. Our ap-
proach uses “extreme” examples that lie at the boundaries of current concept
descriptions. We evaluated the system by applying it to synthetic and real-world
learning problems. In the experiments, the partial memory learner notably reduced
memory requirements for storing examples at the slight expense of predictive ac-
curacy. The system also performed well when tracking concept drift.
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1 Introduction

Partial memory learners are on-line learning systems that select and store a portion of the
past training examples. They can use these examples in different ways. One approach is to
use them together with new, incoming examples for generating new concept descriptions.
Another is to use them together with the current hypothesis and the new incoming
examples to improve the current hypothesis.
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The central issues in designing a partial memory learning system are how to determine
representative examples from the input stream, how to maintain them, and how to use
them in future learning episodes. These decisions affect the system’s capabilities, such as
accuracy, memory requirements, and ability to cope with concept drift.

After briefly surveying relevant work, we present a general framework for partial
memory learning and describe an implementation of such a learner, called AQ-Partial
Memory (AQ-PM). We then present results from a lesion study that examined the effects
of partial memory learning on predictive accuracy and on memory requirements. We also
make a direct comparison to IB2 (Aha, Kibler, & Albert, 1991), since it is similar in
spirit to AQ-PM. In applying the method to the STAGGER, Concepts (Schlimmer &
Granger, 1986) and to a computer intrusion detection problem (Maloof & Michalski,
1995), experimental results showed a significant reduction in the number of examples
maintained during learning at the slight expense of predictive accuracy on unseen test
cases. AQ-PM also tracked drifting concepts comparably to STAGGER (Schlimmer &
Granger, 1986) and the FLORA systems (Widmer & Kubat, 1996).

2 A Survey of Partial Memory Learning Systems

LAIR (Watanabe & Elio, 1987; Elio & Watanabe, 1991) appears to be one of the first
partial memory systems. In some sense, it has a minimal partial memory model because
the system keeps only the first positive example. Consequently, it always learns from the
one positive example in partial memory and the new training example.

IB2 (Aha et al., 1991), an instance-based learning method, uses a scheme that, like
AQ-PM, keeps a nonconsecutive sequence of training examples from the input stream in
memory. When IB2 receives a new instance, it classifies the instance using the examples
currently held in memory. If the classification is correct, the instance is discarded. Con-
versely, if the classification is incorrect, the instance is retained. The intuition behind
this is that if an instance is correctly classified, then we gain nothing by keeping it. This
scheme tends to retain training examples that lie at the boundaries of concepts.

The FLORA2 system (Widmer & Kubat, 1996) selects a consecutive sequence of
training examples from the input stream and forgets those examples in partial memory
that are older than a threshold, which is set adaptively. This system was designed to track
drifting concepts, so during periods when the system is performing well, it increases the
size of the window and keeps more examples. If there is a change in accuracy, presumably
due to some change in the target concepts, the system reduces the size of the window and
forgets the old examples to accommodate the new examples from the new target concept.
As the system’s concept descriptions begin to converge toward the target concepts, the
size of the window increases, as does the number of training examples maintained in
partial memory.

Other examples of partial memory learning systems include HILLARY (Iba, Woogulis,
& Langley, 1988), DARLING (Salganicoff, 1993), and MetaL(B) (Widmer, 1997).
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0. Learn-Partial-Memory(Data;, fort =1...n);

1 Conceptsy = (J; PartialMemory, = {J;

2. fort=1ton do

3 Missed; = Find-Missed-Examples(Concepts;_1, Data;);

4. TrainingSet; = PartialMemory;_1 U Missed;

5. Concepts; = Learn(TrainingSet;, &optional Concepts;_1);

6 TrainingSet; = Select-Partial-Memory(TrainingSet;, Concepts;);

7 PartialMemory; = Maintain-Partial-Memory(TrainingSet;, Concepts;);
8. end; /* for */

9. end. /* Learn-Partial-Memory */

Fig. 1. Algorithm for partial memory learning.
3 A General Framework for Partial Memory Learning

Based on an analysis of these systems and on our design of AQ-PM, we developed a gen-
eral algorithm for inductive learning with partial instance memory, presented in figure 1.
The algorithm begins with a data source that supplies training examples distributed
over time, represented by Datay, where ¢ is a temporal counter. We generalize the usual
assumption that a single instance arrives at a time by placing no restrictions on the
cardinality of Datas, allowing it to consist of zero or more training examples.

Initially, the learner begins with no concepts and no training examples in partial
memory (step 1), although it may possess an arbitrary amount of background knowledge.
For the first learning step (¢ = 1), the partial memory learner behaves like a batch learning
system. Since it has no concepts and no examples in partial memory, the training set
consists of all examples in Data;. It uses this set to induce the initial concept descriptions
(step 5). Subsequently, the system must determine which of the training examples to
retain in partial memory (steps 6 and 7).

In subsequent time steps (¢ > 1), the system begins by determining which of the
new training examples it misclassifies (step 3). The system uses these examples and the
examples in partial instance memory to learn new concept descriptions (step 5).

The precise way in which a particular learner determines misclassified examples
(step 3), learns (step 5), selects examples to retain (step 6), and maintains those examples
(step 7) depends on the concept description language, the learning methods employed,
and the task at hand. Therefore, to ground further discussion, we will now describe the
AQ-PM learning system.

4 Description of the AQ-PM Learning System

AQ-PM is an on-line learning system that maintains a partial memory of past training
examples. To implement AQ-PM, we extended the AQ-15c inductive learning system
(Wnek, Kaufman, Bloedorn, & Michalski, 1995), so we will begin by describing this
system before delving into the details of AQ-PM.
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In AQ-15c¢, rule conditions are of the form ‘[’ <attribute> ‘=" <reference> ‘], where
< attribute> is an attribute used to represent domain objects, and <reference> is a list
of attribute values. Decision rules are of the form D < C, where D is an expression in
the form of a rule condition that assigns a decision to the decision variable, < is an
implication operator, and C is a conjunction of rule conditions. If all of the conditions in
the conjunction are true, then the expression D is evaluated and returned as the decision.
We can also view training instances as rules in which all conditions have references
consisting of single values.

The performance element of AQ-15¢ consists of a routine that flexibly matches in-
stances with decision rules. This involves computing the degree of match, which is the
proportion of rule conditions an instance matches. This computation yields a number
in the range [0, 1] with a value of zero meaning there is no match, and a value of one
meaning there is a complete match. The flexible matching routine returns as the decision
the label of the class with the highest degree of match.

To learn a set of decision rules, AQ-15c¢ uses the AQ algorithm (Michalski, 1969), a
covering algorithm. Briefly, AQ randomly selects a positive training example, known as
the seed. The algorithm generalizes the seed as much as possible, given the constraints
imposed by the negative examples, producing a decision rule. In the default mode of
operation, the positive training examples covered by the rule are removed from further
consideration, and this process repeats using the remaining positive examples until all
are covered.

To implement AQ-PM, we extended AQ-15¢ by incorporating the features outlined in
the partial memory algorithm in figure 1. AQ-PM finds misclassified training examples
by flexibly matching the current set of decision rules with the examples in Data; (step 3).
These “missed” examples are grouped with the examples currently held in partial mem-
ory (step 4) and passed to the learning algorithm (step 5). Like AQ-15c, AQ-PM uses
the AQ algorithm to induce a set of decision rules from training examples, meaning that
AQ-PM operates in a temporal batch mode. To form the new contents of partial memory
(step 6), AQ-PM selects examples from the current training set using syntactically mod-
ified characteristic decision rules derived from the new concept descriptions, which we
discuss further in section 4.1. Finally, AQ-PM may use a variety of maintenance policies
(step 7), like time-based forgetting, aging, and inductive support, which are activated by
setting parameters.

4.1 Selecting Examples

One of the key issues for partial memory learners is deciding which of the new training
examples to select and retain. Mechanisms that maintain these examples are also impor-
tant because some of the examples held in partial memory may no longer be useful. This
could be due to the fact that concepts changed or drifted, or that what the system ini-
tially thought was crucial about a concept is no longer important to represent explicitly,
since the current concept descriptions implicitly capture this information.

Returning to AQ-PM, we used a scheme that selects training examples that lie on
the boundaries of generalized concept descriptions. We will call these examples extreme
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Fig. 2. Visualization of the setosa and versicolor classes from the iris data set. Left:
Original training examples. Middle: Characteristic concept descriptions with overlain
training examples. Right: Derived extreme examples.

examples. Each AQ-PM decision rule is an axis-parallel hyper-rectangle in a discrete n-
dimensional space, where n is the number of attributes used to represent domain objects.
Therefore, the extreme examples could be those that lie on the surfaces, the edges, or the
corners of the hyper-rectangle covering them. For this study, we chose the middle ground
and retained those examples that lay on the edges of the hyper-rectangle, although we
have considered and implemented other schemes (Maloof, 1996).

Referring to the left graphic in figure 2, we see a portion of a discrete version of the iris
data set. We took the original data set from the UCI Machine Learning Repository (Blake,
Keogh, & Merz, 1998) and produced a discrete version using the ChiMerge algorithm
(Kerber, 1992). Shown are examples of the versicolor and setosa classes with each example
represented by four attributes: petal length (pl), petal width (pw), sepal length (sl), and
sepal width (sw).

To find extreme or boundary training examples, AQ-PM uses characteristic deci-
sion rules, which specify the common attributes of domain objects from the same class
(Michalski, 1980). These rules consist of all the domain attributes and their values for
the objects represented in the training set, and form the tightest possible hyper-rectangle
around a cluster of examples. The middle graphic in figure 2 shows the characteristic rules
induced from the training examples.

AQ-PM syntactically modifies the set of characteristic rules so they will match ex-
amples that lie on their boundaries and then uses a strict matching technique to select
the extreme examples. Although AQ-PM uses characteristic rules to select extreme ex-
amples, it can use other types of decision rules (e.g., discriminant rules) for classification.
The right graphic in figure 2 shows the examples retained by the selection algorithm,
which are those examples that lie on the edges of the hyper-rectangles expressed by the
characteristic decision rules.
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5 Experimental Results

In this section, we present a series of experimental results from a lesion study. To produce
the lesioned version of AQ-PM, we simply disabled its partial memory mechanisms,
resulting in a system equivalent to a temporal batch learner that retains all of training
examples in the input stream. We will refer to this learner as AQ-Baseline (AQ-BL).
We also included IB2 (Aha et al., 1991) for the sake of comparison. The first problem is
referred to as the “STAGGER Concepts” (Schlimmer & Granger, 1986), and the second
is a real-world problem that involves learning profiles of computing behavior for intrusion
detection (Maloof & Michalski, 1995).

For these experiments, the independent variable is the learning algorithm, and the
dependent variables are predictive accuracy and the number of training examples main-
tained. For both of these measures, we computed 95% confidence intervals, which are
also presented. Detailed results for learning time and concept complexity for these and
other problems can be found elsewhere (Maloof, 1996).

5.1 The STAGGER Concepts

The STAGGER Concepts (Schlimmer & Granger, 1986) is a synthetic problem in which
the target concept changes over time. Three attributes describe domain objects: size,
taking on values small, medium, and large; color, taking on values red, green, and blue;
and, shape, taking on values circle, triangle, and rectangle. Consequently, there are 27
possible object descriptions (i.e., events) in the representation space. The presentation
of training examples lasted for 120 time steps with the target concept changing every 40
steps. The target concept for the first 39 steps was [size = small] & [color = red]. For
the next 40 time steps, the target concept was [color = green] V [shape = circular]. And
for the final 40 time steps, the target concept was [size = medium V large].

At each time step, a single training example and 100 testing examples were generated
randomly.! For the results presented, we conducted 60 learning runs using IB2, AQ-PM,
and AQ-BL, the lesioned version of AQ-PM.

Referring to figure 3, we see the predictive accuracy results for IB2, AQ-PM, and
AQ-BL for the STAGGER Concepts. IB2 performed poorly on the first target concept
(85+2.8%) and worse on the final two (53+£2.7% and 62+4.0%, respectively). Conversely,
AQ-PM and AQ-BL achieved very high predictive accuracies for the first target concept
(99+£1.0% and 100+0.0%, respectively). However, once the target concept changed at
time step 40, AQ-BL was never able to match the partial memory learner’s predictive
accuracy because the former was burdened with examples irrelevant to the new target
concept. This experiment illustrates the importance of forgetting mechanisms. AQ-PM
was less burdened by past examples because it kept fewer examples in memory and
forgot those held in memory after a fixed period of time, an issue we discuss further in
the following paragraphs. AQ-PM’s predictive accuracy on the second target concept was
89+3.38%, while AQ-BL’s was 69+3.0%. For the third target concept, AQ-PM achieved
96+1.8% predictive accuracy, while AQ-BL achieved 71+3.82%.

! For the first time step, we generated two random examples, one for each class.
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Fig. 3. Experimental results for the STAGGER Concepts. Left: Predictive accuracy for
AQ-PM, AQ-BL, and IB2. Right: Memory requirements for AQ-PM and IB2.

The predictive accuracy results for AQ-PM are comparable to those of STAGGER
(Schlimmer & Granger, 1986) and of the FLORA systems (Widmer & Kubat, 1996) with
the following exceptions. On the first target concept, AQ-PM did not converge as quickly
as the FLORA systems but ultimately achieved similar predictive accuracy. On the sec-
ond target concept, AQ-PM’s convergence was like that of the FLORA systems, but it
performed about 10% worse on the test cases. Performance (i.e., slope and asymptote)
on the third target concept was similar.

Turning to the memory requirements for AQ-PM and IB2, shown on the right of
figure 3, we see that the number of examples each learner maintained increases because
of example selection mechanisms.? Overall, IB2 maintained fewer training examples than
AQ-PM, but this savings cannot mitigate its poor predictive accuracy. During the first
40 time steps, for instance, both learners accumulated examples. As each achieved ac-
ceptable predictive accuracies, the number of examples maintained stabilized. Once the
concept changed at time step 40, both learners increased the number of examples held in
partial memory to retain more information about the new concept. The increases in IB2’s
memory requirements occurred because it adds new examples only if they are misclassi-
fied by the examples currently held in memory. When the target concept changed, most
of the new examples were misclassified and, consequently, added to memory. Because
IB2 kept all of the examples related to the previous target concept, predictive accuracy
suffered on this and the final target concept. Although AQ-PM also increased the number
of examples held in memory, it used an explicit forgetting process to remove outdated
and irrelevant training examples after a fixed period of fifty time steps, which proved
crucial for learning these concepts.

We cannot compare AQ-PM’s memory requirements to STAGGER’s, since the latter
does not maintain past training examples, but we can indirectly compare it to one run
of FLORA2 (Widmer & Kubat, 1996). Recall that the size of the representation space
for the STAGGER problem is only 27 examples. At time step 50, FLORA2 maintained
about 24 examples, which is 89% of the representation space. At the same time step, AQ-

2 We do not show the memory requirements for AQ-BL since it simply memorized each example,
thus producing a rather uninteresting straight line.
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Fig. 4. Experimental results for the computer intrusion detection problem. Left: Predic-
tive accuracy for AQ-PM, AQ-BL, and IB2. Right: Memory requirements for AQ-PM,
AQ-BL, and IB2.

PM maintained only 10.11 examples, on average, which is only 37% of the representation
space. Over the entire learning run, FLORA2 kept an average of 15 examples, which is
56% of representation space. AQ-PM, on the other hand, maintained only 6.6 examples,
on average, which is only 24% of the space.

5.2 Computer Intrusion Detection Problem

For the computer intrusion detection problem, we must learn profiles of users’ computing
behavior and use these profiles to authenticate future behavior. We chose to learn profiles
for each user, assuming that misclassification means that a user’s profile is inadequate
or that an unauthorized person is masquerading as the user in question. Most existing
intrusion detection systems make this assumption.

The data for this experiment were derived from over 11,200 audit records collected
for 9 users over a 3 week period. We first parsed each user’s computing activity from the
output of the UNIX acctcom command into sessions by segmenting at logouts and at
periods of idle time of twenty minutes or longer. This resulted in 239 training examples.
We then selected seven numeric audit metrics: CPU time, real time, user time, characters
transferred, blocks read and written, CPU factor, and hog factor. Next, we represented
each of the seven numeric measures for a session, which is a time series, using the maxi-
mum, minimum, and average values. These 21 real and integer attributes were scaled and
discretized using the ChiMerge algorithm (Kerber, 1992). Finally, using the PROMISE
measure (Baim, 1988), we selected the 13 most relevant attributes.

We randomly selected 10% of the original data for testing, while the remaining 90%
was partitioned randomly and evenly into 10 sets (i.e., Datas, for ¢ = 1...10). For each
data set in succession, AQ-PM, AQ-BL, and IB2 induced concept descriptions that were
evaluated on the test set, recording predictive accuracy and the number of examples
maintained. We conducted 100 of these learning runs, averaging the performance metrics
over these runs.

Referring to figure 4, we can see the predictive accuracy results for AQ-PM, AQ-BL,
and IB2 for the intrusion detection problem. AQ-PM’s predictive accuracy was again
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slightly lower than AQ-BL’s. When learning stopped at time step 10, AQ-PM’s accuracy
was 88+1.6%, while AQ-BL’s was 93+1.2%, a difference of 5%. IB2 fared much better on
this problem than on the previous one. When learning ceased, IB2’s predictive accuracy
was a slightly better than AQ-PM’s: 89+1.3%, although this result was not statistically
significant (p < .05).

The right chart of figure 4 shows the memory requirements for each learner for this
problem. AQ-PM maintained notably fewer training examples than its lesioned counter-
part. When learning ceased at time step 10, AQ-BL maintained 22140.0 examples, while
AQ-PM maintained 64+1.0 training examples, which is roughly 29% of the total number
of examples. IB2 maintained even fewer examples than AQ-PM. When learning stopped,
IB2 held roughly 52+0.8 examples in partial memory, which was slightly less than the
number held by AQ-PM. Again, this difference was not statistically significant (p < .05).

6 Conclusion

Many of the current limitations of the approach stem from assumptions the system makes.
For example, the system assumes the given representation space is adequate for learning
and is currently incapable of constructive induction. Although it cannot learn contextual
cues, and we did not implement explicit mechanisms to handle noise, there has been work
on such mechanisms in contexts similar to these (Widmer & Kubat, 1996).

For future work, we are interested in combining constructive induction with techniques
for tracking concept drift. Much of the current research assumes that the representation
space in which concepts drift or contexts change is adequate for learning. Yet if an en-
vironment is nonstationary, then the representation space itself could also change. If the
learner is unable to achieve acceptable performance when concepts change, then it may
need to apply constructive induction operators in an effort to improve the representa-
tion space for learning. To this end, one may use a program that automatically invokes
constructive induction, like AQ-18 (Bloedorn & Michalski, 1998).

Partial memory learning systems select and maintain a portion of the past training
examples and use these examples for future learning episodes. In this paper, we pre-
sented a selection method that uses extreme eramples to enforce concept boundaries.
The method extends previous work by using induced concept descriptions to select a
nonconsecutive sequence of examples from the input stream. Experimental results from
a lesion study suggested that the method notably reduces memory requirements with
small decreases in predictive accuracy for the computer intrusion detection problem. For
the STAGGER problem, AQ-PM performed comparably to STAGGER and the FLORA
systems. Finally, a direct comparison to IB2 revealed that AQ-PM provided comparable
memory requirements and often higher predictive accuracy for the problems considered.
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