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ABSTRACT 

SPATIOTEMPORAL ANALYSIS OF INFORMATION DIFFUSION IN ONLINE 
SOCIAL NETWORKS 

Manqi Li, Ph.D. 

George Mason University, 2019 

Dissertation Director: Dr. Arie Croitoru 

 

Understanding the dynamics of information diffusion in social networks contributes to a 

wide range of social studies. Among social networks, online social networks have drawn 

growing interest due to their richness, availability, and popularity nowadays. Such 

networks, which are often embedded in geographical space, have enabled information to 

spread at a relatively lower cost and higher speed and reach, compared to traditional ways 

of communication. This dissertation aims at exploring the spatiotemporal patterns of 

information diffusion in discussion about real-world events in online social networks, with 

special interest in geographical characteristics and representation. Specifically, this 

dissertation presents a methodology for studying and analyzing information diffusion in 

geographic space between sources and sinks of information. By doing so it highlights the 

information diffusion mechanisms that are in play at the intersection of the cyber and 



x 
  

geographical environment, which can provide additional insights for higher-level decisions 

making. 

This dissertation also addresses the widely existing demand for traceable individual 

point information in data streams with geographical information, by designing an improved 

density-based stream clustering method. The method used not only meets the demand for 

finding cluster shapes, maintaining individual point information, and articulating point-

cluster relationships, but also serves as the basis for spatiotemporal analysis and discovery 

of patterns hidden in the data. 

 

Keywords: Information diffusion, Spatiotemporal analysis, Online social networks, 

Geographical data streams, Stream clustering 



1 
 

1 INTRODUCTION 

Communication has been at the forefront of relationship building since prehistoric times. 

The way we communicate with each other has changed significantly over time with the 

advancement in technology. Changes in communication technology over the time have 

been revolutionary: from earlier radio and TV, to the emergence of the World Wide Web 

and Web 2.0 technology, and to the currently prevailing social media. The ways we 

communicate have therefore moved from physical to a blend of physical and cyber world, 

and have transformed from the typical one-on-one interpersonal interactions to the many-

to-many interactive dialogues. 

The recent advent of online and mobile social media services has enabled 

information to spread at relatively higher efficiency and lower cost, compared to traditional 

ways such as face-to-face contact. During recent years, increasing numbers of users on 

social media sites are detected. In 2018, about 68% U.S. adults get news on social media 

platforms, which was 49% in 2012 (Gottfried and Shearer, 2016; Matsa and Shearer, 2018). 

In light of this growing popularity, social media sites keep drawing attentions from various 

fields, ranging from computer science to social science, and to business and industry. With 

the proliferation of location-aware technologies, geocoded information integrated into 

social media has become increasingly available. As a typical form of Big Data, social 

media inherits its high volume, variety, velocity, and veracity (or the Four V’s of Big Data 
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(Gartner, 2018; Schroeck et al., 2012)), which offered unprecedented opportunities for 

perceiving social dynamics in today’s blend of physical and cyber world, yet posed new 

challenges to the field of geosocial studies. 

This chapter begins by introducing the background knowledge of this dissertation 

(Section 1.1). Then it reviews existing studies on information diffusion regarding its 

applications, the embedded geographical information, and drives of this process (Section 

1.2). Based on the review, research problems on this topic are stated in Section 1.3 and 

research questions and objectives are raised in Section 1.4. Next, the scope and 

organization of this dissertation are presented in Section 1.5. In closing this chapter, a 

framework is designed for answering the research questions and fulfilling the research 

objectives (Section 1.6). 

1.1 Background 

1.1.1 Social Media and Twitter 

The early Web generally refers to a set of static websites connected by hyperlinks, 

providing non-interactive contents (Crooks et al., 2014). Then as the Internet became more 

interactive, Web 2.0  (O’Reilly, 2007) gradually came to the fore. With Web 2.0 technology, 

users are able to view the web contents like in the early Web era; at the same time they are 

allowed to contribute information to the sites and to communicate with each other. In 

Goodchild (2007), Web 2.0 was described as a bi-directional collaboration between the 

internet contents and the users, with a highlight on user-generated content. 

In response to the emphasis of users’ participation and user-generated content in 

Web 2.0, social media was born. Social media is a collective of internet-based applications 
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built on Web 2.0 technology, and it allows the creation and exchange of user generated 

content (Kaplan and Haenlein, 2010). It has changed the way news is generated and spread, 

and has given rise to a better connected global society (Lerman, 2007). Prior to social media 

age, users communicate by mail, email, message boards, and telecommunication; then this 

process was simplified to a click of a button. Besides cultivating a new social behavior of 

its users, social media also prompted the traditional news media to progress by enabling 

them to get eyewitness information and to connect with broader audiences. 

A framework presented in Kietzmann et al. (2011) defines social media via seven 

functional building blocks: identity, conversations, sharing, presence, relationships, 

reputation, and groups. Within the scope of this framework, different social media 

platforms focus on a subset of these blocks. Twitter, for instance, focuses on short messages 

sharing (Figure 1.1), since users receive, generate, and share information in Twitter. 

Sometimes these messages are users’ real-time status updates; sometimes they are about 

broadcasting news received from other users. Thus, Twitter is primarily about conversation 

and sharing. And with the growth of mobile phone usage, location-aware information 

posted on Twitter largely strengthened the functional building block of presence. 
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Figure 1.1. Twitter through the lens of the social media building blocks adopted from 

Kietzmann et al. (2011). 

 

Twitter, as a social media platform, has become a popular venue for online 

communication and news sharing in the past decade (Suh et al., 2010). In February 2019, 

Twitter claimed 321 million monthly users (Shaban, 2019). Cox (2016) suggests that 

Twitter presents far more news items to users than Facebook. In general, users use social 

media platforms for different purposes, and hence they may behave in different ways on 

these platforms. One of the greatest differences is in the use of each platform for news 

broadcasting. Twitter, for example, is unique due to a much stronger emphasis on real-time 

information. Nearly six-in-ten Twitter news users (59%) use the site to keep up with a news 

event as it is happening, which is almost double the rate among Facebook news users 

(Mitchell et al. 2015). Another difference is in the mix of news topics seen on each 

platform. Twitter users overall see a greater mix of topics, compared to Facebook (Shearer, 

2015). 
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Social media has grown into a promising data source for various purposes such as 

research, policy-making, and commercial use. But widely acknowledged, that all social 

media data potentially have biases in who are represented (Malik et al., 2015). Furthermore, 

despite the large volume of social media data, only a small percentage is geotagged: 2% 

for Twitter and 25% on Instagram for example (Flatow et al., 2015). The capability of 

representing the population at large has been doubted when learning knowledge and 

drawing conclusions from these geotagged data. However, the situation of lacking 

geotagged information in social media did not stop researchers from making use of this 

type of data. While geotags offer the most precise location information, we can use other 

salient information (e.g., hashtags, check-ins, and user’s profile) in a social media record 

to infer its location. Various efforts have been made for this purpose. For example, Palpanas 

and Paraskevopoulos (2015) analyzed the content similarities of non-geotagged tweets and 

geotagged tweets, and figured out where the tweets without geotags are posted. In addition 

to social media content, user’s timeline information is also useful for identifying location 

information (Li et al., 2018a). 

1.1.2 Information Diffusion 

Information diffusion is defined as “the process by which a piece of information 

(knowledge) spreads and reaches individuals through interactions” (Zafarani et al., 2014). 

The term diffusion refers to a universal process of social change, and the diffusion of 

information is ubiquitous in our everyday life. Therefore, studying information diffusion 

is an effective way for understanding the dynamics of human communication and 

interactions among them. For this purpose, studying the mechanism and drives of 



6 
 

information diffusion is essential, for instance how quickly information spreads, how 

effective the diffusion has influenced the population, and the drives and causes of the 

diffusion process. 

Normally, an information diffusion process is characterized in two dimensions: its 

structure and its temporal development. Sometimes a third dimension—spatial dynamics—

arises when geographic change is considered. Specifically, its structure refers to the 

environment (e.g., network or a physical location) where information diffusion takes place, 

which may be static or dynamic. Temporal development captures the evolution of the 

diffusion over time. Spatial dynamics are normally accounted for by locational change of 

the information. A large family of existing work on Twitter primarily focus on the first two 

dimensions: the cyber space where information diffusion occurs, and changes caused by 

users’ status (activate or inactive) as well as the topology of the user networks (Anderson 

et al., 2015; Hale, 2014; Kim et al., 2018), but the third dimension has not been as widely 

and thoroughly explored. This is where this dissertation dedicates to. 

1.1.3 Space and Place 

Concepts as space and place lie at the core of geographical discipline (Tuan, 2001). Adams 

(2011) stated that space is a rather abstract idea, which “evokes abstraction, inhumanness, 

meaninglessness, and emptiness;” on the contrary, place is often deemed as the essence of 

meaning, experience, stability, and coherence. Space offers place position and orientation, 

while place gives space character and structure. 

In the 1970s, geographer Edward Relph addressed that the employment of various 

media and communication technologies, have encouraged the emergence of ‘anti-spatial’ 
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and ‘placelessness,’ indicating a weakening nexus between human individuals and their 

activities and the social spaces and places they are located in. The geographical constraint 

was enfeebled since the development of mobility and technology within media has freed 

people from face-to-face contact when it comes to information transmission: all 

information is accessible everywhere and anywhere (Relph, 1876). Resonance of such 

point of view was found in succeeding work (e.g., Graham & Marvin, 1995; Mitchell, 

1996). However, some scientists think otherwise. For example, Soja (1985) addressed the 

important role space plays by stating that “social life is materially constituted in its 

spatiality.” Harvey (1984) insisted that the introduction of concepts of space into any social 

theory should have powerful influence on that theory’s core propositions. 

Debates about the role space, place, and distance in communications have been 

triggered and carried on since decades ago. As suggested by Ek (2006), concepts like 

‘placelessness’ should be handled with care. Graham (1998) thoroughly explained the 

conceptual foundation and theory of the roles space and place played in information 

technologies from both sides of the debate. And evidently, he held the viewpoint opposite 

to what was stated by Relph (Relph, 1876). He suggested the concept of co-evolution: 

instead of the substitution and transcendence perspectives of technology towards space and 

place, new technologies co-evolved with the production of space, place, and human 

territory. Furthermore, Graham addressed that novel telecommunication forms actually 

represented and articulated real space and place, encouraging and generating physical 

mobility, contact, and interaction in today’s highly mobile social world. The social 
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networking app Meetup1, for example, successfully integrated the online groups formation 

and offline meetings within a particular metropolitan area. The fast-growing social activity 

flash mob is another example of organizing via telecommunications and social media, and 

grounding the activities by a group of people in real world (CNN, 2009). 

1.1.4 The Roles of Geography in Information Diffusion 

A widely accepted definition of place is spatial location that has its meaning via human 

experience (Tuan, 2001). It is quite intuitive that traditionally, humans experience refers to 

their activities in physical space, and these activities establish meaningful places with 

unique themes. Nowadays the advancements of new technologies have made humans 

experience manifold, which characterize geographical information in novel ways. Jenkins 

et al. (2016) proposed that the emergence of user-generated content such as social media 

largely contributed to the process of forming a place and shaping its characteristics, with 

users’ collective sense of place. They also discovered the spatial alignment between social 

media hotspots and corresponding physical locations. Similar work was done by Mok et 

al. (2010). The authors systematically explored the role of distance in social networks pre-

and post-Internet, and found different sensitivity levels of personal relationships to 

distance. Specifically, email communication was generally insensitive to distance, but 

tended to decrease slowly over distance; while frequencies of face-to-face and phone call 

contact dropped significantly over distance. These results support the statement that 

geography still matters, and as important, in the age of the Internet. 

                                                
1 https://www.meetup.com/ 
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In geography, Tobler’s First Law (Tobler, 1970) addresses the effect of physical 

distance, while in societal studies homophily describes similar phenomenon in social space 

(McPherson et al., 2001). Geographic and hemophilic similarities are essentially 

connected, as one of the greatest drives of homophily is physical proximity (Hannigan et 

al., 2013). Based on the experiments conducted in their spatial social network community 

detection research, Hannigan et al. (2013) introduced an axiom that “as the geographic 

space of interaction for a social network shrinks, it is more likely that those left within the 

community are more connected.” In other words, the expansion of space weakens the 

connections between people located in it. This proposition agrees with that was suggested 

in Wellman (2001), where human interactions at different levels of geographical scales 

were thoroughly discussed. In addition, homophily can also be shaped by geographical 

characteristics other than physical distance; for example people residing in similar climate 

would likely adopt similar living habits, behavior, and fondness (Falconer, 1781). 

A large family of work on online social networks have highlighted the cyber 

environment, where users’ communities are formed and activities such as news spreading 

take place (Hale, 2014; Kim et al., 2018). Meanwhile, the growing awareness of the value 

of geo-references in social media has inspired the emergence of research stressing the 

geographical environment, since a variety of users activities are deeply embedded in it 

(Ferrara et al., 2013; Java et al., 2007; Kulshrestha et al., 2012; Pruthi et al., 2015). 

Therefore, geography is important for understanding information diffusion. While this type 

of information used to be unavailable at large scale; nowadays, it is much more easily 

accessible owning to the widely use of electronic devices. According to comScore (2017), 
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81% of all social media time is spent on mobile devices in 2016, while five years ago in 

2011, it was only half of the percentage (42%). Social media services are extensively 

adopted on mobile devices, providing rich contents with geographical information. 

1.2 Related Work 

1.2.1 Information Diffusion 

Information diffusion is a vast research domain and has attracted interests from various 

disciplines, such as physics (Zhang et al., 2016), biology (Chen et al., 2018a), business 

(Agarwal et al., 2019), and public policy (Zhu et al., 2018). Among them its applications 

in social sciences is of my interest. Questions raised in societal studies are usually as 

follows: (1) how and why information is diffusing now and in the future; (2) what kind of 

information is popular and diffuse the most; and (3) which participants in the population 

play important roles in the diffusion process. 

Organized thematically, applications in group (1) include: inferring and predicting 

the structure of information cascades (e.g., Galuba et al., 2010; Molaei et al., 2019), 

information diffusion models selection and evaluation (e.g., Saito et al. 2010; Zhang et al. 

2013),  and community detection (e.g., Adamic and Glance, 2005; Ramezani et al., 2018); 

applications in group (2) include: topic analysis and trending topic detection (e.g., Chae et 

al. 2012; Ferrara et al. 2013), maximizing the spread of information/influence (e.g., 

Gomez-Rodriguez et al., 2012; Wang et al., 2018; Yerasani et al., 2019), and minimizing 

the spread of misinformation (e.g., Budak et al., 2011; Tan et al., 2019); and applications 

in group (3) include: seed selection for further diffusion (e.g., Kim et al., 2014; Li et al., 

2018), and social media marketing (e.g., Woo and Chen 2016; Zhao and Li 2019). 
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1.2.2 Geographical Information in Twitter 

The geographical characteristics of Twitter networks have been a major interest to 

researchers. The geographical distribution in the Twittersphere was investigated in Java et 

al. (2007). Agarwal et al. (2018) investigated the geographical distribution of sentiment in 

Twitter. Kulshrestha et al. (2012) stressed the substantial impact of geography on user 

interactions in the Twitter social network. To discover the information diffusion process, 

De Choudhury et al. (2010) examined several data sampling methods on a set of node 

attributes including location. Results revealed that a sample that incorporated users’ 

location could improve their model by a significant margin. Ferrara et al. (2013) 

characterized the relationship between trends and geography via a network depicting the 

conversations flow on Twitter. They identified two main classes of trending topics, both in 

unique patterns geographically: those that surface locally, coinciding with three different 

geographic clusters; and those that emerge globally from several metropolitan areas. The 

emergence of these geography-characterized classes suggests that the nature of information 

diffusion through Twitter is deeply embedded in geographical locations. 

Among all geographical characteristics, geographical scale has drawn wide 

attention. Hannigan et al. (2013) illuminated that the expansion of space weakens the 

connections among people located in it. This proposition agrees with that was suggested in 

Wellman (2001), where human interactions at different levels of geographical scales were 

comprehensively discussed. Also, Takhteyev et al. (2012) concluded that distance matters 

in Twitter activities, at both short and long ranges. Pruthi et al. (2015) discovered the 

different influence of distance between an event’s location and Twitter users’ location in 
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regional and global events. Another important geographical attribute is location, because 

events are strongly localized at place, and so are the participants involved in them. As 

explained earlier, novel online communication forms articulated geolocation (Graham, 

1998); and it is endorsed by a more recent work, where the user-generated cyber-social 

events are found useful for representing the urban landscape in physical terms (Crooks et 

al., 2016). In addition, Jenkins et al. (2016) discovered the spatial alignment between social 

media hotspots and corresponding physical locations. Therefore, it is advised that a variety 

of geographical attributes need to be inspected when studying Twitter activities with 

geographical descriptions. 

1.2.3 Drives of Information Diffusion 

Understanding what stimulates the diffusion of information is meaningful, especially for 

the purpose of targeting specific groups of people, controlling diffusion directions, and 

expanding/shrinking diffusion scales. In existing research, information diffusion caused by 

social influence and homophily has been widely studied considering their combined and 

respective effects. 

Social influence, defined as a social phenomenon that individuals can exert and 

receive, and that induces similar behaviors or decisions to their connections, is considered 

a significant drive of information diffusion (Guille et al., 2013). When social influence 

becomes high, some pieces of information might become extremely popular, spread to 

longer distance in a short time, and become more influential and generate new trends. 

Homophily, the tendency of individuals to connect to similar ones, is another drive of 
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information diffusion (McPherson et al., 2001). Such similarity can be age, gender, interest, 

and location. 

Bakshy et al. (2011) suggested that despite the wide availability of data, identifying 

influence remains a challenge. Observational data shows that individuals tend to engage in 

similar activities as their peers; however it is often impossible to determine whether a 

correlation between two individuals’ behaviors exists because they are indeed similar or 

because one person’s behavior has influenced the other (La Fond and Neville, 2010; 

Simons-Morton and Farhat, 2010). Aral et al. (2009) aimed to distinguish influence- and 

homophily-driven behavior adoption in dynamic networks. They found that previous 

studies tended to overestimate peer influence, and that homophily explained more than 

50% of the behavior contagion. Mislove et al. (2010) investigated users’ attributes in an 

online social network, and concluded that homophily played an important role in 

community formation. Hannigan et al. (2013) claimed that geographic and hemophilic 

similarities are essentially connected, as one of the greatest drives of homophily is physical 

proximity. Therefore, when exploring the role of geographical characteristics in 

information diffusion, it is beneficial to distinguish them from other influential factors. 

However, it is challenging to separate them since social relations are deeply embedded in 

the physical world. 

1.3 Problems Statement 

As is clear from the above review, information diffusion in online social networks has been 

extensively researched for varied purposes; yet challenges and research gaps still exist. 
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This section focuses on stressing the difficulties and gaps of the interested study area, and 

further leads to the research questions and objectives of this dissertation (Section 1.4). 

1.3.1 Complexities Added by Geographical Information 

In online social networks, information diffusion happens through cyber space interactions 

among users, and also has a physical space presence as users have to be somewhere. When 

approaching the spreading process solely in networks or in physical space, each step can 

be easily understood and represented: a series of hops in a network or locational moves in 

physical space. However, when interpreting the information diffusion process in the nested 

cyber and physical dimensions, undoubtedly complexities will be added. As social media 

contents are becoming increasingly geo-located, additional context (i.e., physical 

environment) is presented, as well as the emerging demands for understating the 

corresponding analysis and processing, such as locations and their variations over time 

(Croitoru et al., 2014). 

The first complexity is the expression form of geographical information: 

coordinates, distance, or descriptive toponym such as city/country names. Besides the 

selection of proper spatial expressions, these forms of spatial information require different 

methods for incorporating geographical information into the analytical method; for 

example as a variable, a parameter, or a constraint. This difficulty is mostly due to the 

complex nature of social media data. Second is the practical meaning of the results 

generated from the added spatial information: if the geographically specified or constrained 

generalizations have any realistic meaning and significance, and how to explain such 

meaning and significance; for example aggregated users behavior caused by ground-based 
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events. Third is the distance and scale issue in geographical space: how to interpret 

information diffusion at varied geographical distance and scales distinctively is inevitably 

a challenge. Fourth is the interweaving of geographical influence and other influential 

factors on information diffusion. In the context of this research, it is important to recognize 

the distinctions and relations between geographical influence and other influential factors. 

However, it is challenging to isolate the geographically associated factors, since the 

networks are deeply embedded in the physical world. 

1.3.2 Gaps of Studies on Georeferenced Information Diffusion 

Though geographical influence on Twitter activities is already well-acknowledged, further 

exploration of geographical influence on information diffusion is still needed. Previous 

studies on information diffusion considering geography mainly focused on the changes of 

reached location and coverage area (Kwon et al., 2015; Pruthi et al., 2015; Puri et al., 2018). 

However, interactions within the Twitter users at different locations at a specific time is 

unknown. This issue is identified as information flow. In limited number of studies 

involving information flow in Twitter, it is usually utilized for visualization (Croitoru et 

al., 2015; Lotan, 2011; Mishori et al., 2014); while mining meaningful patterns in it is often 

overlooked, especially in the geographical space. Understanding information flow pattern 

in Twitter is important because it depicts the internal mechanism of information diffusion, 

surfacing the essential patterns veiled in the mass data, and facilitating decisions and 

further applications in an accurate, responsive, and flexible manner. 
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1.3.3 Big Data Challenges 

The last challenge lies in the rapid expansion of information we access today. Different 

from the time when word-of-mouth and face-to-face communications are the major ways 

for information exchange, nowadays we live in the Information Era and are exposed to vast 

new information daily. Big Data, as presented through social media, has generated 

opportunities to perceive social dynamics in novel ways. Mining key values in Big Data, 

such as the new-found challenges in finding and using the hybrid mix of spatial and social 

contents in social media (Croitoru et al., 2017), is commonly referred to as the needle-in-

the-haystack problem (Kaisler et al., 2013), indicating the difficulty of achieving the 

desired results. 

The Big Data challenge has drawn substantial attentions in various fields such as 

computer science, social science, IT industry, and the analytics industry. As a typical form 

of Big Data, social media inherits its high volume, variety, velocity, and veracity (or the 

Four V’s of Big Data (Gartner, 2018; Schroeck et al., 2012)); and commonly provides data 

in the form of streams. These characteristics of social media have offered unprecedented 

opportunities for perceiving social dynamics in today’s blend of physical and cyber world, 

yet posed new challenges to the field of social studies. First, the increasing amount of data 

has raised an immediate challenge to traditional analytical environments and methods. 

Second, various forms of social media such as images, texts and videos, require extra work 

to unify the unstructured data for downstream usage (Croitoru et al., 2013). Third, velocity, 

the speed at which data is produced and processed, has urged the invention of new 

algorithms and methods to properly handle streaming data produced from social media 
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platforms (Bello-Orgaz et al., 2016). And fourth, veracity emphasizes the inherent 

uncertainty of social media data (Schroeck et al., 2012), and the capability of distinguishing 

useful pieces from misinformation is crucial (Tan et al., 2019). 

Narrowing down the four V’s of Big Data to the context of this dissertation, major 

challenges exist in (1) large volume—data organization and management, and information 

visualization, (2) high variety—standardizing different representation forms of variables, 

(3) high velocity—evolving social media data streams, and (4) high veracity—noise 

cleaning and irrelevant and false information removal. In response to these challenges, a 

framework relieving these difficulties is needed. 

1.4 Research Questions and Objectives 

With the growing popularity of online social media services such as Twitter and Facebook, 

it becomes more and more important to understand how users communicate on these 

platforms. Targeting this issue, this dissertation focuses on mining the spatiotemporal 

patterns of information diffusion in online social networks. More specifically, it proposes 

the following research questions: 

• What are the spatial distribution and temporal change of information diffusion in 

online social networks? 

• Does geography matter in an information diffusion process in online social 

networks? 

• How to interpret the discovered patterns and transform our observations to real-

world knowledge for informed decision-making? 
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Solving these intriguing problems is challenging yet will facilitate our 

understanding of the diffusion process of information, regarding its structure and 

organization, its spatial pattern, and its evolvement over time. To find solutions for these 

research questions, this dissertation will firstly develop a suitable method for organizing 

the available social media data and obtaining pre-processed products required for the 

ensuing spatiotemporal analysis; second, explore the spatiotemporal patterns of 

information diffusion formed by communications in online social networks, and third, seek 

the social and geographical drives of the information diffusion process. The first objective 

is fulfilled by developing a density-based stream clustering method based on a previously 

established algorithm (Chapter 2). The second objective is approached from the structural, 

geographical, and temporal analysis of the information diffusion process in the nested 

network topology and geographical space (Chapter 3). The third objective is accomplished 

through further investigations adding real-world facts and perceptions (Chapter 3). 

Successful analysis will augment our understanding of information diffusion in cyber and 

physical spaces. 

1.5 Dissertation Scope and Organization 

This dissertation presents two lines of research topics: one focuses on streaming clustering 

and the other concerns big data mining. In the first research, an adaptive stream clustering 

method for large data streams with location information is developed. It has not only filled 

the gap of consistently acquiring real-time point-cluster relations during the clustering 

process, but also improved existing algorithm implementations by alleviating memory 

constraint, resolving data point overlap, and recovering false noise. All these advancements 
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contribute to various application domains with demands alike. In the second research, built 

on the stream clustering results, spatiotemporal patterns of information diffusion in social 

networks formed by online communication are discovered, regarding its network structure, 

volume, direction, location, and temporal evolvement. The second research novels in its 

core mechanism of information source-to-sink flow analysis based on multi-temporal 

similarity measure, and contributes to how cyber population react to public health issue via 

case studies on epidemics. 

Discovering the spatiotemporal pattern of information diffusion in online social 

networks contributes to social system studies, communication, economic and human 

geography, and public relations and marketing. Sociologists, economists, and social media 

marketers might find interests in this dissertation. This research also introduces methods 

for big data organization and clustering, data mining, network analysis, and spatiotemporal 

analysis. Scientists in the fields of data mining, network, and spatial analysis may also find 

useful information. Moreover, since the chosen case studies pertain to emerging infectious 

diseases of international concern, this work offers insights into how online discussion 

develops on this topic and how cyber users perceive and propagates such information. 

Therefore, international scientific community and policymakers in public health, 

international relations, and political science may find this work useful for guiding better 

policy recommendations and preparations for future epidemics. 

This dissertation is composed of four chapters. Chapter 1 introduces the 

background (Section 1.1), reviews related work (Section 1.2), explains problems and 

difficulties in existing work (Section 1.3), and states the research questions and objectives 
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of this dissertation (Section 1.4). The last section (Section 1.6) in Chapter 1 describes the 

methodology of this dissertation research, summarizing the next two chapters where the 

two main components of this dissertation are presented: Chapter 2 presents the first 

research on stream clustering method; and in Chapter 3, spatiotemporal analysis of 

information diffusion is performed. Chapter 4 provides a conclusion summarizing both 

studies with suggested future work. 

1.6 Overall Framework 

Taking advantage of the richness and availability of online social networks, I construct the 

framework for fulfilling the research objectives based on this type of data, and specifically 

Twitter is selected as the data source. Next the core subject in this research, “information” 

needs to be defined. Given the wide-ranging topics in Twitter and their high dynamics over 

time, it is difficult to include them exhaustively. Thus, a filtration of topics in the 

information is necessary. Among all topics in Twitter I chose to study public health related 

topics. Additionally, since geographical aspects in the information diffusion process are 

major interests, information associated with locations is desired. Under this requirement, 

event-associated information fits well because usually they are location explicit. Once data 

type is chosen, a series of analysis can be performed. An overall framework summarizing 

the methodology adopted in this dissertation is shown in Figure 1.2. 

To obtain useful Twitter data, first raw tweet records were harvested through the 

Twitter API, and organized in a MongoDB database (https://www.mongodb.com/). Then 

applying a series of filtering criteria and preprocessing steps, I obtained a set of useful 

tweets. In this study, aggregating individual records into meaningful clusters is essential 



21 
 

because of the large amount of social media data records, and analysis at the aggregated 

level can reveal the most important pattern while excluding unnecessary information. Thus, 

on the dataset of useful tweets, clusters were generated from the developed clustering 

method—GeoDenStrem—using the locations of individual records, and then shaped 

information flows among their containing individual records. GeoDenStream is the basis 

for obtaining meaningful clusters using the given Twitter data, and for supporting the 

subsequent spatiotemporal analysis of information diffusion. Its development process is 

deliberated in Chapter 2 through its conceptual design (Section 2.3), implementation 

(Section 2.4), verification (Section 2.5), and application (Section 2.6). 

Another important method of this dissertation is the spatiotemporal analysis built 

on the stream clustering results in Chapter 3. It is approached from two levels: one 

highlights the source and sink clusters, and the other emphasizes information flow. Here I 

define the clusters with higher outgoing flows than incoming flows as information source, 

otherwise as information sink. The source-to-sink information flow provides quantitative 

and geographical descriptions of information diffusion (Section 3.4). Further discussion is 

performed upon the analyses of information source and sink, as well as information flow 

from the structural (Section 3.5.2), spatial (Section 3.5.3), and temporal aspects (Section 

3.5.4). In addition, spatiotemporal scales are discussed based on the key parameters setting 

in the GeoDenStream clustering process (Section 3.5.1). 
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Figure 1.2. Overall framework of this dissertation; section numbers are included to direct 

where each topic is described. 
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2 GEODENSTREAM: AN IMPROVED DENSTREAM CLUSTERING 
METHOD FOR ACQUIRING INDIVIDUAL DATA POINT INFORMATION 

WITHIN GEOGRAPHICAL DATA STREAMS 

Abstract 

Data streams with location information are prevalent nowadays due to their close alignment 

with real-world events and phenomena. To satisfy the demands for organizing and 

analyzing individual data records within such data streams, clustering has been widely 

accepted as an effective and efficient tool. Existing implementations of DenStream, a 

popular density-based stream clustering method, have major drawbacks that the point-

cluster relationship is untraceable, and individual point information in the clusters is not 

recorded. To fix these weaknesses, this chapter proposes an improved DenStream method, 

named GeoDenStream, aiming at finding cluster shapes, maintaining information of 

individual points in the clusters, supporting spatiotemporal analysis based on the explicit 

point-cluster relationships, and facilitating the discovery of patterns hidden in the data. 

Specifically, the design of GeoDenStream is elaborated, its performance is verified by two 

synthetic datasets, and its practicability is tested on two case studies, where spatiotemporal 

analysis is accomplished using the clustering results. Results show that the inherent 

difficulties in implementing DenStream are greatly alleviated by GeoDenStream.  
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2.1 Introduction 

In recent years, data streams have become an integral part of the rapidly evolving modern 

information landscape. Various application domains, such as health (Althouse et al., 2015), 

transportation (Liu et al., 2011), finance (Liu et al., 2010), communication (Naaman et al., 

2010), energy (Vikhorev et al., 2013), climate and weather (Freeman et al., 2017), and 

environmental monitoring (Funk et al., 2015), produce real-time data streams, and rely 

heavily on the availability of near-continuous data flows for higher level reasoning and 

decision making (Valle et al., 2009). In many of these domains, data streams are closely 

associated with human activity in geographical spaces. Examples of such activity-driven 

streams range from a user’s (entity) check-ins and check-outs at access-controlled facilities 

(Kromwijk et al., 2010), to users’ GPS-enabled movement tracking streams (Moreira-

Matias et al., 2016) and geotagged content sharing in social media (Stefanidis et al., 2013). 

The tight coupling between space, time, and activity in such streams can potentially provide 

a rich source of information about human behavior and activity patterns. This potential and 

emerging need to analyze such streams, which has fostered a growing interest within the 

data mining community (Atluri et al., 2017), serves as the primary motivation for the work 

presented here. 

Generally, it is possible to conceptualize a data stream ! as consisting of a sequence 

of " (" →�) time-stamped records $%, '% , $(, '( , … , $*, '* , where each record $+ is 

comprised of a set of , attributes -+%, -+(	, … , -+/ , and '+ is a time stamp indicating when 

the record was created or received (Aggarwal et al., 2003). While the record attribute vector 

can contain any type of attribute information, this chapter explores the analysis of streams 
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in which at least one of the record attributes contains geographical information (e.g. 

geographical coordinates or a toponym). In the remainder of this chapter I use the term 

geographical data stream to denote such a stream. Notably, geographical data streams are 

spatiotemporal in nature as they combine spatial and temporal information in a single 

stream record. Additionally, it is important to note that a data stream can, in general, be 

dedicated to capturing data about one of two types of constructs: entities and events 

(Krempl et al., 2014). Here, the term entity relates to a discrete thing that endures over time, 

e.g. a building, a vehicle, or a person, while the term event relates to an occurrence in space 

and time, e.g. the detection of smoke at a particular sensor location or the detection of 

congestion along a highway. In practice, a key difference between entity data streams and 

event data streams is that the former must include a unique entity identifier (e.g., a vehicle 

ID), while the latter may not. When dealing with entities it is also important to recognize 

that entity stream data can be analyzed at different levels of granularity, from the discrete 

entity (a person moving in geographical space) level to groups of entities (e.g., a group of 

people moving together). 

Given a geographical data stream, it is often of interest to analyze them in order to 

derive higher level information that would support reasoning and decision making. Such 

analysis can include a wide range of operations, from basic data analytics, to clustering, 

pattern and entity mining, event detection, and process modelling (Krempl et al., 2014). 

Among these, clustering has emerged as one of the most commonly used analysis 

operations (von Luxburg, 2007; Xu and Tian, 2015). As a result, various stream data 

clustering algorithms have been proposed based on a range of data models and similarity 
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(or distance) measures (Gaber et al., 2005), which can be broadly organized into 5 primary 

classes, namely Growing Neural Gas (GNG) methods, hierarchical methods, partitioning 

methods, density-based methods, and grid-based methods (Ghesmoune et al., 2016). 

Selecting an algorithm from one of these classes is not always straightforward due 

to the underlying difficulty in defining a universal notion of a cluster that can be applied in 

any context. Furthermore, the algorithms in each class may rely on a different set of 

assumptions, criteria, and underlying model. Consequently, the selection of the clustering 

process often tends to be domain specific and exploratory in nature (Estivill-Castro, 2002). 

When clustering geographical data (and data streams) density- or grid-based methods, such 

as DenStream (Cao et al., 2006), StreamOptics (Tasoulis et al., 2007), or FlockStream 

(Forestiero et al., 2009), are often selected (Xu and Tian, 2015). This selection can be 

attributed, at least in part, to two primary reasons. First, the concept of density naturally 

lend itself to spatial and spatiotemporal domain since in these domains the notion of a 

cluster is often associated with the “high concentration” of data points. Second, density-

based clustering methods offer several distinct characteristics that are advantageous when 

dealing with activity-based data. Specifically, density-based methods (i) do not require a 

priori information about the number of clusters, (ii) can handle clusters with arbitrary 

shapes, and (iii) detect and handle outliers (Amini et al., 2014). 

Another important issue that should be addressed when selecting a clustering 

method is the way in which cluster information is maintained and reported. In some 

clustering methods the focus of the process is to detect whether one or more clusters exist, 

and when clusters are detected to report and preserve only key summary descriptors about 
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each cluster. An example of this approach can be found in the algorithm presented by 

O’Callaghan et al. (2002), in which only the centers of clusters are maintained over time 

as stream data is processed. Similarly, in the framework presented by Aggarwal et al. (2003) 

only information about the center and radius of each micro cluster, along with unique 

cluster IDs are maintained over time. A key advantage of maintaining only summary 

descriptors is that it enables managing the clustering process efficiently since each cluster, 

which can potentially include a large number of stream records, is described only by a 

limited set of data-driven parameters (e.g. center coordinates and a radius). Such an 

approach, however, is not suitable for streams that observe discrete entities over time, such 

as moving vehicles, travelling individuals, or the geotagged postings of a social media user, 

since the clustering process does not maintain the entity-level composition of each cluster 

over time. The challenge I address in this chapter is therefore how to adapt the commonly 

used offline-online phase density-based clustering to support entity stream mining. 

In view of these considerations, this chapter proposes a method for enhancing 

existing density-based stream clustering methods in order to support entity stream mining 

in geographical space. For this purpose I build on DenStream, a density-based clustering 

method presented by Cao et al. (2006). The selection of DenStream in this chapter is based 

on three key considerations. The first consideration relates to the conceptual framework 

behind it:  DenStream is based on the conceptual framework for clustering evolving data 

streams proposed by Aggarwal et al (2003), which involves the creation of micro and macro 

clusters in a two-step (online and offline) processing approach that is employed in many 

stream clustering methods. The second consideration relates to the historical development 
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of density-based stream clustering methods: Since its introduction in 2006, DenStream has 

served as the foundation for the development of various other density-based algorithms. A 

third consideration relates to the availability of the DenStream Algorithm. Consequently, I 

argue that because of these considerations the enhancements of DenStream I propose could, 

in principle, be more easily adapted to enhance other density-based stream clustering 

methods to support traceable spatiotemporal clustering. 

The remainder of this chapter is organized as follows. Section 2.2 provides an 

overview of the DenStream algorithm and describes in more detail its key limitations in 

the context of entity stream mining in geographical space. Building on DenStream, its 

limitations, and the considerations noted above, Section 2.3 introduces GeoDenStream, a 

density-based stream clustering algorithm that supports entity stream mining in 

geographical space. Its implementation is stated in Section 2.4. In 2.5, two synthetic 

datasets were tested on GeoDenStream to verify its performance. To showcase the utility 

of GeoDenStream, Section 2.6 summarizes the clustering analysis of two real-world 

Twitter datasets. Finally, a discussion and summary of these results is provided in Section 

2.7. 

2.2 An Overview of DenStream 

2.2.1 Conceptual Framework 

In order to conceptualize the DenStream algorithm in the context of entity stream data in 

geographical space consider a data stream in which each record is comprised of a data 

“point”, i.e. a geographic location (for example, in the form of geographic coordinates), a 

time stamp, and a set of related attributes that describe an entity. The DenStream clustering 
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method applies the core-micro-cluster approach to detect arbitrary-shaped clusters (Cao et 

al., 2006). In this approach, a core-micro-cluster is constructed by points that are 

sufficiently dense according to a density threshold, and such cluster evolve over time as 

data is received. In addition, core-micro-cluster are assigned a weight that decreases 

exponentially with time. Based on their weights, core-micro-clusters with higher weights 

(i.e., potential-clusters) are acquired for building clusters, and core-micro-clusters with 

lower weights (i.e., outlier-clusters) are removed from the final clustering results. 

There are four phases in the original DenStream clustering method, as show in 

Figure 2.1: an Initializing phase in which the potential-cluster and outlier-cluster lists are 

constructed; an Online phase in which newly arrived data points are either merged into a 

potential-cluster or form a new outlier-cluster; a Pruning phase in which potential- and 

outlier-clusters with lower weights are removed from the corresponding list; and finally, 

an Offline phase in which DBSCAN clustering (Ester et al., 1996) is used for generating 

offline-clusters based on the potential-cluster list. In this process, a set of parameters are 

used, including initial_points and min_points in the Initializing phase; epsilon, lambda, 

beta, and mu in the Online phase; tp in Pruning phase; and offline in the Offline phase. A 

more detailed description of these parameters is provided in Table 2.1. 
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Figure 2.1. Processing flow of DenStream clustering method for geographical 

data stream. 
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Table 2.1. Parameters in the original DenStream clustering method. 

Phase Parameter Description Value range 

Initializing 

initial_points Number of points for initializing 
potential- and outlier-cluster list 1~maximum integer 

min_points 
Minimum points for constructing 
a cluster when initializing with 
DBSCAN 

1~maximum integer 

Online 

epsilon Maximum radius for a core-
micro-cluster 

Float number larger than 
0 

lambda Decay factor for weight 0~1 

beta Weight threshold for outlier-
clusters 0~1 

mu Weight threshold for core-micro-
clusters 0~maximum float value 

Pruning tp Time interval for pruning Any rational time interval 

Offline offline Multiplier of epsilon for 
meaningful clusters in DBSCAN 

2~maximum spatial range 
of the input data stream 

 

2.2.2 Limitations 

While the original DenStream algorithm can be used to cluster event streams, it does not 

explicitly support entity stream mining. The key reason for this limitation is that the 

algorithm focuses on deriving the location and approximate shape of core-micro-clusters 

to represent the clustering results rather than keeping track of the relationships between 

entities and clusters across the clustering iterations. As a result, three major issues need to 

be considered: 

(1) Memory requirement: DenStream can handle stream data with limited memory 

by applying periodic pruning in which clustering result at each iteration are represented by 

summary cluster information (e.g., center and radius). However, when it is necessary to 
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track points (entities) across iterations, limiting memory usage needs to be considered once 

again. A mechanism for maintaining track of across clustering (and pruning) iterations is 

therefore needed. 

(2) Point data overlap: generally, it is possible that the footprints of some 

neighboring potential-clusters will overlap during the clustering process. DenStream 

handles such overlaps when a cluster is pruned by assigning any data points within the 

overlapping area to a cluster that is not pruned (Cao et al., 2006). However, this strategy 

does not support entity stream clustering. To illustrate this, consider the scenario depicted 

in Figure 2.2, in which the evolution of two neighboring potential-clusters, MC_A and 

MC_B, is shown between time stamp T1 and a later time stamp Tn. In this scenario I 

assume that the Offline phase is not activated between T1 and Tn. In Figure 2.2 (a) at time 

T1, an attempt is made to merge the point P1[T1, x, y] to the nearest potential-cluster based 

on Euclidian distance to the cluster centers, which will result in the merging of P1 to MC_A 

as shown in Figure 2.2 (b). Let us further assume that over time MC_A and MC_B evolve 

as new data is received, resulting in the clusters (and their corresponding centers) shown 

in Figure 2.2 (c) at time Tn. Consider now a newly received data point P2 [Tn, x, y] with 

the same coordinates with P1. This point will be merged into cluster MC_B instead based 

on the shortest distance criterion. Therefore, although P1 and P2 share the same location, 

they belong to different potential-clusters after the Online-Offline cycle. This would result 

in an ambiguity in entity stream clustering since data points related to the same entity would 

belong to different clusters at the same time. 
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Figure 2.2. Overlap issue in DenStream clustering method. 

 

(3) False noise: periodic pruning operation in DenStream can substantially relieve 

the memory requirement by classifying low-weighted core-micro-clusters as noise and 

removing them from the potential- and outlier-cluster lists. However, such pruning may 

result in false noise points, as shown in Figure 2.3. Specifically, in Figure 2.3 (a), few points 

are in the vicinity of point P1 at time T1, and so P1 is treated as an outlier-cluster. Then 

pruning is activated at time T1+tp, resulting in the removal P1. Later, at time Tn (Tn >> 

T1+tp, and time lapse between T1 and Tn is still within the time window of an Online-

Offline cycle), as points begin to appear around P1 a new potential-cluster is formed. P1 

could have been merged into this new potential-cluster since Offline phase has not yet 
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started, but it was already removed earlier, resulting as a “false noise”. Although the 

removal of such false noise is not likely to affect the shapes of clusters generated in the 

Offline phase, it may affect the results of analysis within clusters with respect to its entities. 

 

 

Figure 2.3. False noise caused by periodic pruning. 

 

Despite their significance for entity-based clustering, the limitations noted above 

have not been explicitly addressed in various enhancements to DenStream that were 

recently introduced. Such enhancements, as summarized in Table 2.2 focused primarily on 

improving distance calculation (e.g. HDenStream), parameter selection (e.g., SOStream), 

and high dimensional data support (e.g., HDDStream, PreDeConStream, and FlockStream). 
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Table 2.2. Improved DenStream clustering methods. 

Method Improvements Results 

C-DenStream Adds constraints for certain points Arbitrary shape of clusters 

rDenStream Adds a retrospect phase for false noise Arbitrary shape of clusters 

SDStream Extends sliding window for more recent data Arbitrary shape of clusters 

HDenStream Supports distance calculation of categorical 
data Arbitrary shape of clusters 

SOStream Supports automatic calculation of parameters Clustering parameters and 
arbitrary shape of clusters 

HDDStream Supports high dimensional data Arbitrary shape of clusters 

PreDeConStream Supports high dimensional data Arbitrary shape of clusters 

FlockStream Merges online and offline phase Arbitrary shape of clusters 

 

C-DenStream mainly focuses on adding user-specified constraints for assigning 

points to clusters, and its online-offline process aligns with that in the original DenStream 

(Ruiz et al., 2009). rDenStream adds a retrospect phase to handle false noise, which is 

similar to the Post-processing phase in GeoDenStream (Liu et al., 2009). Nevertheless, it 

lacks consideration of memory limitation and points’ overlap. SDStream uses a sliding 

window to process the most recent data and to summarize old data (Ren and Ma, 2009). 

HDenStream adds a distance calculation method for categorical variables, in order to 

support categorical and continuous data (Lin and Lin, 2009). SOStream generates 

parameters required by DenStream based on the Self Organizing Maps method, which has 

proved to be time-consuming (Isaksson et al., 2012). HDDStream (Ntoutsi et al., 2012) and 

PreDeConStream (Hassani et al., 2012) extend the basic DenStream to support high 
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dimensional data. FlockStream employs a bio-inspired model to enhance the efficiency of 

merging points into clusters, and combines the Online and Offline phases (Forestiero et al., 

2009). However, extra work is needed since this method does not offer any noise removal 

strategy. 

2.3 GeoDenStream 

Motivated by the limitations of DenStream with respect to entity stream clustering, 

GeoDenStream focuses mainly on generating clusters while maintaining point entity 

information across clustering iterations. This is achieved through a novel framework shown 

in Figure 2.4. GeoDenStream follows a process similar to the original DenStream 

algorithm, from Initializing phase, to Online phase, Pruning phase, Offline phase, and 

finally to Post-processing phase. However, these phases are enhanced to better address the 

memory requirement, data overlap, and false noise limitations noted earlier. These 

enhancements are described in the following subsections. While in this description an 

entity is considered as a cluster of geotagged stream records, other record granularity levels 

can be applied in GeoDenStream using the same approach presented here. 
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Figure 2.4. Framework of GeoDenStream for analyzing geographical data streams. 

 

2.3.1 Indexing Stream Points 

In order to consistently track the index of each point in GeoDenStream, the index of each 

point is created based on its arrival sequence. This sequence-based indexing method, which 

is conducted during each clustering cycle, links between each data point and its 

corresponding data record (global index), between core-micro-clusters and its containing 

points (clustered-index), and between the pruned noise and the points it refers to (pruned 

index). In order to reduce the memory required to store the index a long integer data type 

is used, and index structures are reset every clustering cycle. 
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As shown in Figure 2.5, a global index list storing all point indices is constructed 

once the Initializing phase begins. It then passes its records to clustered-index lists and 

pruned-index lists as the Initializing phase continues. Every potential-cluster and outlier-

cluster maintains a clustered-index list which stores the indices of points included in it. 

Periodically, core-micro-clusters of lower weights are pruned; for such pruned clusters, the 

indices of the points comprising them are saved in a pruned-index list. Based on the 

clustered-index list of each core-micro-cluster, cluster information such as cluster ID is 

assigned to its containing points in the Post-processing phase. The pruned-index list is used 

for false noise recovery, by checking the pre-recognized noise points contained in this list 

in the Offline and Post-processing phases. 
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Figure 2.5. Sequence-based indexing strategy. 

 

2.3.2 Overlapping Points Reassignment and False Noise Recovery 

In the Offline phase, the generated potential-clusters are re-clustered using DBSCAN. As 

noted earlier, clusters’ evolving process could lead to the situation when points with the 

same coordinates belong to different potential-clusters. Additionally, as the pruning 

operation is applied periodically, some pruned points may be falsely labelled as noise. 

Figure 2.6 depicts the Offline phase with reassignment of overlapping points and recovery 

of false noise. In order to handle overlapping points, all potential-clusters are checked using 
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the clustered-index list created in the Initializing phase. If points in different potential-

clusters have identical coordinates, their distances to the related potential-clusters will be 

computed and compared, and then all points with identical coordinates will be reassigned 

to the nearest potential-cluster. 

 

 

Figure 2.6. Reassign overlapped points and recover false noise. 

 

False noise may exist in both outlier-clusters and pruned clusters, thus the 

corresponding clustered-index list and pruned-index list constructed in the Online phase 

are used for retrieving any such noise. A two-step recovery strategy is designed for iterating 
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the points contained in these lists. The first step works in the Offline phase, in which an 

attempt is made to merge each noise point into its nearest potential-cluster. Such merging 

is done based on distance: if the cluster radius remains below epsilon after adding the point 

to a potential cluster it is relabeled and added to this cluster, otherwise it is considered as 

noise. 

The second step performs the same trail in the Post-processing phase after 

DBSCAN. This time, the remained noise points attempt to merge to their nearest offline-

clusters formed by DBSCAN, by using the density threshold in DBSCAN. A successful 

merge would recover the corresponding false noise. The right panel in Figure 2.6 shows 

the first step as an example, since the second step follows the same process, only that 

potential-cluster is replaced by offline-cluster. Through the overlap reassignment and false 

noise recovery operations, the clusters after Post-processing will have correct and complete 

information of individual points. 

2.3.3 Pruning with Real Time 

The tp parameter in the original DenStream algorithm determines the time interval between 

pruning operations. A typical setting of this parameter is based on a “record count” 

threshold. This approach is suitable only under certain circumstances, for example when 

the records in a stream are received at regular time intervals. In practice, however, data 

streams may not always have a constant sampling rate, a situation that may lead to 

imbalanced pruning. An example of such a situation is shown in Figure 2.7, which depicts 

a data stream with a variable sampling rate that spans over several days. If pruning occurs 

every 10 points and the Online-Offline cycle is daily, then on the second day pruning will 
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not be invoked and all points will be used for clustering, ignoring the fact that the number 

of records during that day has declined. A more suitable approach for such a day would be 

to have fewer and smaller clusters since the amount of data records has decreased. In order 

to handle such situations GeoDenStream considers the time stamp of each record – and 

consequently the time difference between records – in order to invoke pruning using a time 

difference threshold. As a result, pruning is applied even when the number of records is 

decreased, causing less relevant records (i.e. temporally distant points) to be removed, and 

resulting in clustering results that better represent the actual data. In terms of 

implementation, the time interval for pruning in GeoDenStream can be constant or dynamic, 

set empirically or based on prior knowledge of the global information of the geographical 

data stream. 

 

 

Figure 2.7. Time period and point count in pruning. 
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2.4 Implementation 

The implementation of GeoDenStream was carried out based on the open source MOA 

project (Bifet et al., 2010), a widely used stream data mining framework (Kranen et al., 

2012). Improvements in the basic four phases were achieved, and the Post-processing 

phase was established as an extensible Application Programming Interface (API). To link 

GeoDenStream with real geographical data stream, a prototype application supporting 

comma separated value (CSV) file is developed. There are four sets of parameters 

configurable in the proposed method: 

(1) Stream configuration parameters, which include the geographical data stream 

in CSV format, the column index of timestamp, and the column indices of X and Y 

coordinates. Besides, column indices of an additional pair of X and Y coordinates can be 

incorporated as well. If this additional pair presents, the two pairs of coordinates are linked 

via behaviors with practical meaning, such as origin-destination of taxi trips, and source-

sink of retweeting in Twitter. 

(2) Time configuration parameters, which includes the starting time of the 

geographical data stream and the time interval information (i.e., type, value, and count) for 

Offline operation. The type of time interval can be year, month, week, day, hour, minute 

or second. The time interval value and count must be positive integers, and the count of 

interval determines the ending time for clustering. 

(3) Clustering configuration parameters, including the ones in basic DenStream: 

initial_points, min_points, epsilon, lambda, beta, mu, and offline, and additional ones such 

as pruning type and pruning value. The pruning type parameter can be configured as Count 
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(pruning based on point sequence), Time (pruning based on a consistent time interval in 

seconds), and Dynamic (pruning based on evolving time intervals in seconds). 

(4) Output configuration parameters, which include the directory for saving the 

clustering result files, the starting index of time interval for these output file names, an 

indicator of whether to export potential clusters, and another indicator of whether to apply 

GeoDenStream. 

GeoDenStream is implemented in Java, and hosted at 

https://github.com/manqili/GeoDenStream. The code is compiled as a JAR package that is 

executable in Windows, Linux, and Mac OS platforms. An XML (extensible markup 

language) based document is designed for reusing this prototype. A sample configuration 

document is displayed in Figure 2.8. 
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Figure 2.8. Configuration document of the prototype system. 

 

2.5 Verification Using Synthetic Data 

In order to verify that GeoDenStream produces results as expected, two types of synthetic 

datasets were created following the instructions in Hahsler et al. (2015), and implemented 

as inputs to GeoDenStream (datasets available at 

https://github.com/manqili/GeoDenStream). DSD_BarsAndGaussians and 

DSD_Benchmark were utilized to synthesize one static and one dynamic dataset, 
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respectively. DSD_BarsAndGaussians generated four clusters with varied densities that 

were composed of 5,500 points and 1% noise; two in uniformly distributed rectangular 

shapes and the other two were Gaissians clusters (Figure 2.9 (a)). DSD_Benchmark 

simulated two evolving clusters in a data stream with 5,000 points and 5% noise; one 

cluster moving from top left to bottom right and the other from bottom left to top right 

(Figure 2.10 (a)). 

2.5.1 Visual Inspection 

For both datasets, parameters in GeoDenStream were adjusted multiple times, in order to 

gain the best clustering results consistent with the reference. GeoDenStream for the static 

dataset was implemented with epsilon equal to 0.3 and offline equal to 3.0. Other 

parameters are specified in Figure 2.9. Figure 2.9 (b) demonstrates the distribution of the 

clusters identified by GeoDenStream, compared with the reference in Figure 2.9 (a). 

Visually we are suggested that the four clusters are successfully recognized, with well-

defined boundaries and effectively removed noise, though some discrepancies still exist in 

the overlapped area of the two Gaissians clusters. 
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Figure 2.9. The static dataset (a) and clustering results using GeoDenStream (b) with 

parameters shown in the upper right corner. 

 

Another combination of parameters was used for the evolving dataset and is listed 

in Figure 2.10. For this data stream, all points were divided into sequential subsets of 10 

and imported to GeoDenStream step by step. Figure 2.10 (b) displays the cluster 

distributions determined by GeoDenStream, along with ‘ground-truth’ in Figure 2.10 (a), 

at selected time ticks. Except for the 6th time step, all clustering results showed high level 

of compliance with reference, and noise was cleaned effectively. Considering that the two 

clusters intersect at the 6th time step, it is almost impossible to separate them without 

manual interference. And hence evaluation of clustering results at this time step is skipped. 
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Figure 2.10. The evolving dataset (a) and clustering results using GeoDenStream (b) with 

parameters shown in the upper right corner. 
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2.5.2 Evaluation Metrics 

Besides visual inspection, a series of metrics are provided to evaluate the performance of 

the proposed clustering method mathematically. These evaluation metrics include: adjusted 

Rand index and Silhouette Coefficient for overall assessment; and precision, recall, and F1 

score for evaluating single clusters. Overall assessment tests if the clustering method 

defines separations similar to the reference, and if members belong to the same cluster are 

more similar than those in different clusters. The adjusted Rand index is suitable for the 

first purpose since it is a popular similarity measure that compares two sets of assignments 

(Vinh et al., 2010). Silhouette Coefficient fits for the second purpose, by measuring the 

mean distance between a point and all other points in the same class, as well as points in 

the next nearest cluster. A higher Silhouette Coefficient score indicates better defined 

clusters (Rousseeuw, 1987). Precision looks for how many selected points are relevant, 

recall checks how many relevant points are selected, and F1 score is the harmonic mean of 

them (Powers, 2011). 

There were four clusters identified from the static data by GeoDenStream, same as 

that in the reference records. Evaluation measures of this dataset are summarized in Table 

2.3. The high values of adjusted Rand index imply favorable clustering results comparing 

to the ‘ground truth,’ and the comparability of Silhouette Coefficients of GeoDenStream 

clustering results and of reference shows the agreement on cluster structures of the two 

assignments. 

Precision, recall, and F1 score were mainly used for assessing the method’s ability 

to handle noise. The relatively high recall and low precision values of cluster 0 suggest that 
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most of the real noise was detected by the method, however a higher percentage of non-

noise points were also included. Referring to Figure 2.9 (a), I observed that due to the 

random locations these noise points are placed, some of them are close enough to the 

clusters to be exempt from noise. Also, the overlapped area of the two Guassian clusters 

indicates the difficulties of setting distance-based parameters, and further results in 

problems in noise judgement. Thus, it is suggested that the performance of noise detection 

does not solely depend on the GeoDenStream method. 

 

Table 2.3. Evaluation measures of GeoDenStream using the static dataset; cluster ID = 0 

means noise. 

Adjusted Rand Index 0.960    

Silhouette Coefficient (reference) 0.831 (0.819)    
 Predicted     

R
ef

er
en

ce
 

Cluster 
ID 0 1 2 3 4 Total Precision Recall F1 

score 
0 42 8 2 3 3 58 0.247 0.724 0.368 

1 30 1954 17 1 0 2002 0.985 0.976 0.981 

2 45 21 586 0 1 653 0.969 0.897 0.932 

3 0 0 0 2099 0 2099 0.998 1 0.999 

4 53 0 0 0 635 688 0.994 0.923 0.957 

 Total 170 1983 605 2103 639 5500 0.981 0.967 0.972 
 

Evaluation measures of the evolving data were calculated at each time tick (Table 

2.4). As stated in section 2.5.1, the 6th time step was skipped for analysis. For all the other 
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clustering results, measures for overall assessment illustrate the strong agreement between 

GeoDenStream clustering results and the reference. F1 score for the noise class proves the 

superior capability of handling noise in this dataset. 

 

Table 2.4. Evaluation measures of GeoDenStream using the evolving dataset. 

Time Adjusted Rand Index Silhouette Coefficient (reference) F1-score of noise 
1 0.987 0.839 (0.826) 0.968 
2 0.987 0.819 (0.806) 0.966 
3 0.996 0.814 (0.810) 0.987 
4 0.986 0.762 (0.753) 0.965 
5 0.976 0.600 (0.595) 0.981 
6 0.251 0.785 (0.034) 0.96 
7 0.991 0.638 (0.638) 0.979 
8 0.974 0.758 (0.741) 0.935 
9 0.978 0.818 (0.803) 0.935 
10 0.986 0.831 (0.819) 0.965 

 

2.6 Case Studies 

Two case studies were conducted in order to examine the utility of GeoDenStream for 

clustering spatiotemporal data from social media streams. In both cases studies Twitter, a 

popular social media platform, served as the data source. In particular, two Twitter data 

streams were collected: a first set including 649,663 tweets about the Boston Marathon 

bombing in 2013; and a second set including 984,967 tweets was about the Zika virus 

epidemics in 2015. Both datasets were collected using a worldwide keyword-based search 

using Twitter’s streaming API. Table 2.5 provides a summary of these two datasets. It 

should be noted that in both case studies both precisely (GPS based) and imprecisely 
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(toponym based) geolocated tweets were used. This is particularly important in the context 

of this work as imprecisely geolocated tweets often result in multiple tweets with identical 

spatial coordinates, thus allowing us to evaluate GeoDenStream’s ability to handle 

overlapping points. In addition, it is worth noting that the two datasets span over different 

temporal intervals, thus enabling us to demonstrate how the algorithm can be applied at 

different time granularities (i.e. hours versus days). 

 

Table 2.5. A summary of the used Twitter datasets. 

 Boston Bombing Zika 

Spatial Extent Worldwide 

Geo-reference information X, Y coordinates of tweets and their retweets 

Geo-referenced tweet count 649,663 984,967 

First Timestamp (UTC) 2013-04-15 19:49:06 2015-12-12 00:00:00 

Last Timestamp (UTC) 2013-04-16 19:49:06 2016-03-05 00:00:00 

Duration of Time 24 hours 84 days 

 

2.6.1 The Analysis Process 

The analysis of the two datasets was performed in two steps, namely GeoDenStream 

clustering (step 1) and spatiotemporal analysis (step 2), as shown in Figure 2.11. In the 

clustering step each dataset was first analyzed to detect whether each record (tweet) is an 

original message or a retweet. When a retweet was detected the tweet ID of the original 

message (if exists in the dataset) was also stored in order to enable analyzing a 

corresponding retweet network in step 2. While the objective of step 1 is to demonstrate 
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the capability of GeoDenStream to generate spatiotemporal clusters, the objective of step 

2 is to demonstrate the utility of the information that is captured during the clustering for 

subsequent analysis based on the derived clusters. 

In order to perform the clustering in step 1 each data set was used to simulate a real-

world data stream. Specifically, each dataset was ordered temporally using the timestamp 

of each record, and then each ordered dataset was progressively fed into the GeoDenStream 

clustering algorithm. During the clustering process information about the record-wise 

composition of each cluster was captured. This information is used later in step 2 in order 

to explore the retweet network structure both within and between spatiotemporal clusters. 

Analysis in step 2 consisted of two types of analyses: an examination of the 

properties of the retweet network within a cluster at each analysis time step, and an 

examination of the properties of the retweet network between clusters at each analysis time 

step. Within each cluster several commonly used network- and node-level properties were 

calculated: the number of nodes and edges, the overall network density, the size of the 

largest network component as a percentage of the whole network, and the average 

closeness and eigenvector centralities. In addition, a worldwide retweet network between 

different clusters was constructed and visualized on the map at each time step. All analyses 

were performed using Java(TM) version 1.8.0_102 on system with 4GB and an Intel(R) 

Core(TM) i5-5250U CPU, running Windows 10. 
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Figure 2.11. Spatiotemporal analysis based on GenDenStream results. 

 

2.6.2 Results 

2.6.2.1 Clustering with Overlapping Points 

The derivation of the spatiotemporal clusters was carried out using GeoDenStream in each 

case study. In the 2013 Boston Bombing case study, the Offline and Post-processing phases 

were conducted hourly, resulting in 24 sets of clustering results. In the 2015 Zika case 

study the Offline and Post-processing phase were conducted daily, resulted in 84 sets of 

clustering results. The resulting cluster and point counts for each time interval in the Boston 

Bombing and the Zika case studies are presented in Figure 2.12 (a) and (b) respectively. 

Figure 2.13 shows examples of the clustering results from GeoDenStream using the time 

interval in each case study that corresponds to the highest number of clusters (11th hour for 

the Boston Bombing dataset and 53rd day for the Zika dataset). 
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Figure 2.12. Cluster and point count of (a) Boston Bombing, and (b) Zika. 

 

(a)

(b)
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Figure 2.13. Sample results of the GeoDenStream clustering results for the time interval 

with the highest number of clusters: (a) Boston Bombing in the 11th hour and (b) Zika on 

the 53rd day; each color represents a cluster. 

 

In order to further examine these results with respect to GeoDenStream’s ability to 

handle instances of overlapping points and false noise, the clustering results of such points 

were examined by applying both the original DenStream algorithm (Cao et al., 2006) and 
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the proposed GeoDenStream algorithm. An example of the clustering results obtained from 

both algorithms in the Zika case study is shown in Figure 2.14. The red arrow in Figure 

2.14 (a) points at two overlapping points, which were assigned to two different clusters (in 

this case clusters 17 and 31) by DenStream, disregarding their location overlap. In 

GeoDenStream, however, these two points were reassigned to the same cluster after the 

Offline phase (as described in Section 2.3.2). 

 

 

Figure 2.14. Point overlap issues with basic DenStream (a) and GeoDenStream (b) using 

the 3rd day of Zika dataset. Numbers next to points indicate cluster numbers, the red 

arrow in (a) indicates the location of overlapping points in the data. 
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An example of GeoDenStream’s ability to handle false noise in the Offline and Post-

processing phases compared to the classic DenStream algorithm in the Zika dataset is 

shown in Figure 2.15. In particular, Figure 2.15 (a) shows the results obtained from 

DenStream. The red arrows in this figure point at three noise points, among which the one 

in Norway is a true noise point and the other two are false noise points. While in DenStream 

these three points are all regarded as noise, in the GeoDenStream algorithm the false noise 

points are merged into their respective nearest cluster, through additional two steps in the 

Offline and Post-processing phases, as shown in Figure 2.15 (b). 
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Figure 2.15. False noise issues with basic DenStream (a) and GeoDenStream (b) using 

the 1st day of Zika dataset. 

 

2.6.2.2 Memory Usage in GeoDenStream 

In order to evaluate the benefit of indexing (Section 2.3.1), in the GeoDenStream 

implementation memory usage was monitored during the clustering of the two case study 

datasets. In particular, two processes were run: a clustering process without the proposed 

indexing, and another with it. Figure 2.16 depicts the results of these two processes for 

both the Boston Bombing and the Zika virus datasets. As this figure shows, in the Boston 
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Bombing dataset the amount of memory used with indexing was always smaller than the 

case without indexing in every time interval. On average, hourly memory usage without 

indexing was 272.81 MB while with indexing it was about 158.44 MB, a reduction of 41.9% 

of the hourly memory usage. Similar results were obtained in the Zika dataset: while the 

average daily memory usage without indexing was 134.5MB, it reduced to about 68 MB 

with indexing, a reduction of 49.4% of the average daily memory usage. These reductions 

show GeoDenStream’s ability to substantially lessen its memory usage compared to 

DenStream. 
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Figure 2.16. Memory usage with and without indexing stream points using (a) Boston 

Bombing dataset and (b) Zika dataset. 

 

2.6.2.3 Network Analysis within a Cluster 

In addition to the clustering results from GeoDenStream, it may be of interest in some 

application domains to analyze the relationships between clusters. For example, when 

analyzing geotagged social media streams, it is often useful to consider both where clusters 
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of users are located as well as how users communicate both within and across clusters. 

Such geosocial analysis is important as it can provide important insights into the exchange 

and flow of information over space and time, which may ultimately affect human behavior. 

In order to demonstrate how such analysis can be applied using GeoDenStream for 

the analysis of the two case study datasets, a representative cluster was selected in each 

case study, and an analysis of the retweet network within each cluster was carried out. 

Specifically, in each case study the cluster with the highest volume of accumulated retweets 

was selected, resulting in one cluster located in Boston and its surrounding areas (for the 

Boston bombing case) and one cluster covering Venezuela and its neighboring countries 

(for the Zika virus case). Then, for each cluster, a set of network-level (node and edge 

counts, density, and the proportion of the largest component of the network) and node-level 

(closeness and eigenvector centralities) measures were calculated over the analysis period 

of each case study. These measures were selected as they are often used to analyze and 

characterize social networks (Boccaletti et al., 2014). 

An overview of the results of this analysis is shown in Figure 2.17. The line plots 

in the upper half of this figure show the network-level measures. The boxplots in the lower 

half of Figure 2.17 show the distribution of the node-level centrality measures at each time 

step, and how this data distribution varies over time. As can be seen from this figure, 

GeoDenStream’s ability to consistently maintain information about clusters throughout the 

clustering process enables the network analyses to successfully capture the temporal 

dynamics of the network over time. 
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Figure 2.17. Network Properties of representative clusters of (a) Boston Bombing and (b) 

Zika. 

 

2.6.2.4 Network Analysis between Clusters 

Following the network analysis within a cluster, analysis of the network components 

between clusters was carried out. Here, information flow between users in different clusters 

was analyzed and visualized on a world map to show the overall global information flow. 

Figure 2.18 shows an example of the results of such analysis, in which information flows 

between clusters are shown as arcs in the counter-clockwise direction from the users 

authoring tweets to users retweeting them, and within-cluster flows are represented by self 

arcs. The color of the arcs defined in the color bar indicates the communication flow 

frequency, and cluster IDs are labeled as numbers on the map. For visual clarity, Figure 



64 
 

2.18 shows only the top 30 arcs from the 75th percentile of all arcs in the network in terms 

of their retweeting (or information flow) volume. 

The utility of these flow maps is in providing insights about how information 

propagates globally. Specifically, they reveal the locations of clusters that serve as 

information sources or sinks. For example, this analysis reveals the frequent information 

exchange between the United States and the West Europe in the case of the Boston 

Bombing (Figures 2.18 (a) and (b)), and shows Venezuela and Brazil as major information 

source to the United States and West Europe in the case of the Zika virus (Figures 2.18 (c) 

and (d)). Such analysis can also assist in identifying key changes in the flow of information 

between regions. For instance, in the case of the Zika virus Venezuela and Brazil acted as 

the major information source to other clusters on the first day but later acted as self sources 

and sinks on day 42 (Figure 2.18 (c) and (d)). 
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Figure 2.18. Retweet flow maps in the Boston Bombing case study (top row) and the 

Zika virus case study (bottom row); cluster IDs are labeled as numbers, flow frequency is 

indicated by the color bar, and flow direction is represented by the counter-clockwise 

arcs. 

 

2.7 Discussion 

GeoDenStream is a novel tool for clustering spatiotemporal data streams. Building on 

DenStream, this tool is particularly suitable for analyzing entity-based geographical data 

streams such as social media data due to three unique characteristics: its ability to track and 
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maintain information about the identity and composition of clusters over time and space, 

its ability to handle spatially overlapping data points, and its improved ability to handle 

noise. These capabilities are achieved primarily through the integration of an indexing 

scheme into the clustering process, which also substantially reduces the memory 

requirement of the clustering process. In order to demonstrate and evaluate the utility of 

this tool both synthetic and real-world stream data was used. Given its performance and 

characteristics, I envision that it could be broadly used to identify, track, and infer entity-

driven activity from various data streams, such as geotagged social media, location-aware 

mobile devices, urban monitoring networks, and vehicle tracking. 

Currently, there exist several well-established open source software libraries that 

offer an implementation of DenStream: the MOA Java package (Bifet et al., 2010), the 

streamMOA R package (Hahsler et al., 2015), and the OutlierDenStream Python package 

(2018). Their basic characteristics are provided in Table 2.6. MOA package supports 

Initializing, Online, Pruning, and Offline phases. Because information of individual points 

in micro-clusters or points pruned is not recorded, it’s impossible to identify noise points 

or to access points contained in a cluster with MOA. streamMOA is an R wrapper of MOA 

package. The process of conducting Initializing, Online, and Pruning phases are consistent 

with that in MOA package, with one difference that the Offline phase is based on 

Reachability or Hierarchical clustering method that are defined in the stream package in R 

(Hahsler et al., 2017). In the Offline phase, all points including noise are assigned with a 

cluster ID, which brings about inaccuracy of the clustering results. In OutlierDenStream 

package, the process of Initializing, Online, and Pruning phases is similar to that in MOA 
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package. An advance of OutlierDenStream is that real time can be used as timestamps. 

However, it does not have Offline phase, and its clustering results are only presented as 

potential-clusters and outlier-clusters without aggregation. 

 

Table 2.6. Popular implementations of DenStream clustering method. 

Package Language Pros Cons 

MOA Java 
Support Initializing, 
Online, Pruning, and 
Offline phases. 

Does not provide 
access to relations 
between points and 
clusters. 

streamMOA R 
Support Initializing, 
Online, Pruning, and 
Offline phases. 

Relations between 
points and clusters are 
built without noise 
removal. 

OutlierDenStream Python 

Support Initializing, 
Online, and Pruning 
phases; real time can be 
used for pruning. 

Does not support 
Offline phase, so there 
is no access to relations 
between points and 
clusters. 

 

Table 2.7 summarizes how GeoDenStream compares to these packages in terms of 

cluster processing, the point pruning strategy employed, memory usage, and the handling 

of overlapping points and noise. As can be seen from this comparison, GeoDenStream 

offers some unique capabilities that are not available in these commonly used libraries. 

Moreover, GeoDenStream enables obtaining and tracking the mapping between data 

records and clusters throughout the clustering process. 
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Table 2.7. Comparison of different DenStream clustering methods. 

Functionality MOA streamMOA OutlierDenStream GeoDenStream 

 
Phase 

Initializing √ √ √ √ 

Online √ √ √ √ 

Pruning √ √ √ √ 

Offline √ √  √ 

Post-processing    √ 

Pruning 
strategy 

Point count √ √ √ √ 

Constant time   √ √ 

Dynamic time    √ 

Memory usage reduction √  √ √ 

Data overlap handling    √ 

Noise removal √  √ √ 

False noise recovery    √ 
Data records & clusters 
mapping    √ 

 

Following the work presented in this chapter, there are several possible avenues for 

further expanding and improving GeoDenStream. In particular, I envision that future work 

will focus on three primary areas: improved indexing, context-aware clustering, and 

parallel acceleration. In terms of indexing, improvements to the indexing scheme that is 

used for exploring neighborhood relationships (e.g., CPM (Mouratidis et al., 2005)) could 

be integrated into GeoDenStream to support more efficient nearest-neighbor searches for 

new stream data points. In terms of context-aware clustering, improvements to 

GeoDenStream’s processing phases could be made in order to introduce non-geographic 
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attributes (e.g., social media messaging topic similarity or social affinity) that can be 

particularly important to the formation of meaningful clusters. As for parallel acceleration, 

the computational efficiency of spatial clustering can be enhanced by parallel CPU and 

GPU computing (Chen et al., 2018b; Skála and Kolingerová, 2011), which is 

extraordinarily meaningful when the data size grows large, since millions or even billions 

of data points are common in the context of Big Data. 
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3 SPATIOTEMPORAL ANALYSIS OF INFORMATION DIFFUSION IN 
EVENT DISCUSSION OVER TWITTER 

Abstract 

Understanding the dynamics of information diffusion in social networks contributes to a 

wide range of social studies. Among all kinds of social networks, Twitter is of my particular 

interest due to its richness, availability, and popularity. This research aims at exploring the 

spatiotemporal patterns of information diffusion in discussions about real-world events 

over Twitter. It applies information source-to-sink flow analysis based on the multi-

temporal similarity measure, and contributes to our understanding of how a cyber 

population reacts to public health-related issues via case studies on epidemics. Results 

suggest that (1) geographic and temporal scales are worth exploring, due to their influence 

on the clustering results and on the information diffusion patterns discovered; (2) the 

information flow analysis along with similarity measures were able to capture the 

information diffusion patterns, regarding direction, volume, locations of its source and 

sink, as well as its temporal evolvement; and (3) several influential factors on information 

diffusion were uncovered, including participants’ distribution and activeness, geographical 

scale, geographical location, geography-driven homophily, and time of events progress. 
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3.1 Introduction 

People are acting as sensors as they participate in the cyber activities and interact with each 

other as well as the cyber environment. The emergence of various social media services 

and platforms, such as Twitter, Facebook, and Flickr, has fostered increasing contributions 

from the individuals to the generation and dissemination of public information. Though 

having a large volume, high volume, variety, velocity, and veracity, the contributions from 

these human sensors in social media are considered valuable yet limited to individual 

perception (Croitoru et al., 2014). 

Twitter, a popular social media platform that claimed 321 million monthly users in 

February 2019 (Shaban, 2019), has fostered increasing participation in short message 

sharing. Thus, one of the highlighted usage of Twitter is information propagation, for 

which retweeting is the key mechanism (Suh et al., 2010). Retweeting is the behavior of 

sharing a tweet written by another user with one’s own followers. A retweet can be 

generated in one of two ways. First, one can retweet with one-click on the ‘Retweet’ icon. 

Second, one can also add comments before retweeting, making it a “Quote Tweet.” 

Retweeting has been extensively studied. For instance, Boyd et al. (2010) investigated 

retweet activity about what, why, and how people retweet. Zarrella (2009) proposed that 

the characteristics between retweets and normal tweets vary fundamentally. 

Retweetabilility has been a focal topic since it is closely related to the efficiency of 

information sharing (Lotan et al., 2011), users’ popularity and influence (Bakshy et al., 

2011; Cha et al., 2010), community identification (Croitoru et al., 2015), and event 

detection (Atefeh and Khreich, 2015). Targeting on a certain event, the retweeting activities 
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among Twitter users characterize the diffusion of relevant information, which helps to 

understand the dynamics of this event from the lens of the general public. 

Nowadays, there is a growing awareness of the value of geo-referenced contents in 

Twitter, which has inspired the emergence of research stressing the geographic 

environment, since a variety of Twitter activities are deeply embedded in it (Ferrara et al., 

2013; Java et al., 2007; Kulshrestha et al., 2012; Pruthi et al., 2015). Previous studies about 

Twitter with explicit geo-references span a wide range of research interests, including the 

geographic distribution in the Twittersphere (Java et al., 2007), the substantial impact of 

geography on user connections (Kulshrestha et al. 2012), relation between trending topics 

and geography (Ferrara et al., 2013), spatiotemporal extent of local and global events 

(Pruthi et al., 2015), and geographic distribution of sentiment (Agarwal et al., 2018). 

Though geographic influence on Twitter activities has been well-investigated, 

explorations of geographical influence on information diffusion over Twitter is still in 

demand. Previous studies on information diffusion considering geography mainly focused 

on the changes of reached location and coverage area (Kwon et al., 2015; Pruthi et al., 

2015; Puri et al., 2018). However, interactions within the participants at different locations 

at a specific time is unknown. I identify this issue as information flow, linking the source 

(i.e., from where information is generated) and sink (i.e., to where information is spread) 

of a diffusion process. In limited number of studies involving information flow in Twitter, 

it was usually utilized for visualization (Croitoru et al., 2015; Lotan, 2011; Mishori et al., 

2014); while mining meaningful patterns behind it is overlooked, especially in the 

geographical environment. 



73 
 

To fill the gap of characterizing information diffusion over Twitter in the blended 

cyber and geographic space, this chapter targets the source-to-sink information flow trends, 

as well as the information source and sink formed by the flow. In this way, interpretation 

of the direction, volume, spatial distribution, and temporal evolvement of information 

diffusion can be generalized. This work contributes to depicting the internal mechanism of 

information diffusion, surfacing the essence veiled in the mass data, and facilitating 

decisions and further applications in an accurate, responsive, and flexible manner. The 

remainder of this chapter is organized as follows: Section 3.2 describes two case studies 

used in this chapter; Section 3.3 presents the designed methods; upon the results presented 

in Section 3.4, discussions are performed in Section 3.5; Section 3.6 concludes this part of 

work. 

3.2 Case Studies 

In this study, the targeted information is substantiated as discussions associated with real-

world events in Twitter, and is propagated by the retweeting behavior. Two public health 

emergencies of international concern are chosen as case studies: one is about Zika virus 

disease, and the other concerns Ebola virus disease. The most recent outbreak of Zika was 

first reported in 2015, starting from Brazil, and then spread to other South American areas 

(Kindhauser et al., 2016). Since October 2015, a growing number of countries experienced 

Zika virus outbreaks, roughly covering the whole South America and lower regions of 

North America (WHO, 2016). As for Ebola, the West African Ebola virus epidemic during 

2013-2016 was the most widespread and complex outbreak since its discovery in 1976. It 

was first officially declared an outbreak in March 2014, peaked in October, and then started 
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to decline gradually in response to substantial international assistance. It has extended from 

countries in West Africa to Italy, Mali, Nigeria, Senegal, Spain, the United Kingdom, and 

the United States (WHO, 2018). I chose to study these two epidemics because of the 

worldwide concern they have raised when prevalent, as well as the continued attention 

from the public regarding outbreak responses such as understanding the role of social 

media in an outbreak of disease (Jacobsen et al., 2016; Stefanidis et al., 2017) and  reducing 

the spread and severity of future diseases (Hoffman and Silverberg, 2018). 

Twitter data capturing the participation of the global community in these events are 

harvested by the GeoSocial Gauge system (Croitoru et al., 2013). This system fetches the 

event-related tweets through the Twitter application program interface (API) using a 

worldwide keyword-based search. Keywords used for collecting the two datasets are “zika, 

chikungunya, zikv” and “ebola”, respectively. Meanwhile, the associated metadata are also 

captured. In the metadata, the combination of timestamp, location, author, and content 

corresponds to the key elements in the information diffusion process: when, where, who, 

and what. A document-oriented NoSQL database, MongoDB is used for the Twitter data 

storage and management. 

A total of about 6.2 million and 52 million tweets covering the whole world in a 

duration of 84 and 120 days were collected for Zika and Ebola events, respectively. Table 

3.1 summarizes the data basics of the two datasets. In the Zika dataset, 3,220,485 (51.53%) 

of the tweets contain location information. Within these georeferenced tweets, 1,350, 281 

(21.61%) are retweeted from other users. And in these georeferenced retweets, 984,967 

(15.76%) of them provide traceable location information of their sources in the whole 
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dataset. The subsequent analyses are performed upon this set of data. Same subset was 

acquired for the Ebola case, which consists of 5,150,085 georeferenced retweets with 

georeferenced source, 9.85% of the whole Ebola dataset. All subsequent analyses are based 

on a daily interval. 

Coordinates of the georeferenced tweets are from three types of sources, listed from 

the most to least reliable: coordinates provided by the user (e.g., GPS, cell tower 

triangulation, etc.), coordinates inferred by Twitter from IP address, and coordinates from 

the location toponym in a user’s profile. Ideally, the first type would be the most desirable; 

however by querying the database storing Zika and Ebola datasets, I found that among all 

georeferenced records from any type of sources (i.e., 984,967 and 5,150,085 tweets in Zika 

and Ebola datasets, respectively), there are only 12,115 (1.23%) and 167,893 (3.26%) 

containing the exact coordinate information. Considering this practical situation, 

coordinates from Twitter (20,783 (2.11%) and 33,990 (0.66%)) and from location toponym 

(952,069 (96.66%) and 4,948,202 (96.08%)) are also considered as valid coordinate 

information in these two case studies. 
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Table 3.1. Summary of data basics; subsequent analysis is based on the underlined 

datasets. 

 Zika Ebola 
Whole 6,249,626 100% 52,298,510 100% 

Georeferenced tweets 3,220,485 51.53% 19,182,533 36.68% 
Georeferenced retweets 1,350,281 21.61% 9,409,318 17.99% 

Georeferenced retweets with 
georeferenced source 

984,967 15.76% 5,150,085 9.85% 

Coordinates from GPS 12,115 0.2% 167,893 0.3% 
Spatial extent Worldwide 

Temporal resolution Daily 
Starting date 2015-12-12 2014-08-21 
Ending date 2016-03-05 2014-12-18 

Time duration 84 days 120 days 
 

3.3 Methods 

This study consists of three main parts: stream clustering, information flow construction, 

and spatiotemporal analysis. An overall workflow is summarized in Figure 3.1. For a 

dataset, first the raw Twitter records are harvested and organized in a MongoDB database. 

Then applying a series of filtering criteria and preprocessing steps, I obtain a set of useful 

records—the underlined subset of retweets in Table 3.1. Tracing each retweet’s source 

among the georeferenced tweets, I obtain its location information and assign it to the 

corresponding retweet. Hence in this subset, each retweet contains two pairs of coordinates, 

one pair of itself and the other of its source tweet. 

For analyzing data with large volume and high velocity, aggregating individuals 

into meaningful groups is essential due to practicability. Therefore, on the subset, retweets 
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are clustered by a stream clustering method using their location information on daily basis, 

and then the cluster membership of their source tweets is also identified using their location 

information. Thus, the resulting clusters contain data points representing both retweets and 

source tweets, and thus have spatiotemporal features induced from them. For example the 

location of a spatiotemporal cluster is defined as the center of the smallest convex shape 

enclosing all its containing data points. At the cluster level, I aggregate the tweet-to-retweet 

occurrences, which construct information flow among the clusters. 

 

 

Figure 3.1. Workflow of spatiotemporal analysis with color coded scale (red), structural 

(orange), spatial (blue), and temporal (green) aspects of information diffusion. 
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The construction of information flow among the spatiotemporal clusters are divided 

into two branches. One highlights source and sink clusters, corresponding to the upper 

middle box in Figure 3.1, and the other emphasizes information flow, referring to the lower 

middle box. Here I define the clusters with higher outgoing flows than incoming flows as 

information source, otherwise as information sink. Then the spatial distribution of the 

source and sink clusters can be visualized on the world map. Also, I identify the clusters 

with the largest outflow-inflow differences and consider them as major source and major 

sink. For all clusters shaped at a time step, the diffusion networks formed by the 

interactions among their containing retweets are constructed, showing the structural 

features of the information diffusion of these clusters. 

The source-to-sink information flow provides quantitative and geographical 

description of the information diffusion. At each time step, a matrix showing the flow 

frequencies of each pair of the clusters is built based on the stream clustering results. Using 

this matrix, information flow can be presented either in network topology using a heatmap, 

or in geographical space as a flow map. Heatmap of information flow matrix visually 

emphasizes flow frequencies among the clusters in the diffusion network, and flow map 

demonstrates the volume and direction of the flow, and the location of its origin and 

destination. Besides, based on the information flow matrices at all time steps, a similarity 

measure is employed to inspect the change of information flow trends in time-series. 

Further discussion is performed upon the parameter adjustment in stream clustering, 

information source and sink, and information flow from the scale, structural, spatial, and 

temporal aspects, with each element color coded in Figure 3.1. 
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3.3.1 Stream Clustering 

Considering the arbitrary spatial distribution of the retweets in both events, GeoDenStream 

is used to identify the retweets that are close in space and time. Using this method, retweets 

in the dataset are treated as points distributed in the geographic space, and hence clusters 

are formed as aggregated points of high density surrounded by those of low density. A 

major drawback of this clustering method is its heavy reliance on pre-defined parameters, 

which influence and even determine to a great extent the clustering results. Therefore in 

this study, great efforts were made on parameter adjustment. 

Two key parameters are targeted: a spatial parameter epsilon and a temporal 

parameter time for pruning (tp), considering their significant and integrated effect on the 

clustering results such as cluster size. Epsilon refers to the size of the clustering 

neighborhood, and points within this radius form into one cluster. Tp is the time interval 

for pruning potential- and outlier-clusters. Since the retweets in the datasets scatter all over 

the world, with latitude and longitude as geographic reference, the epsilon parameter is 

tested from 1 to 10 degrees. As for tp, various pruning strategies are applied. First following 

the default strategy which is by a percentage of�point count, I attempt 0.01%, 0.1%, 1% of 

the total point count in a dataset as the tp values. Second, for each tweet I collect all its 

retweets’ timestamps within 24 hours, found the minimum, median, and 75% quantile of 

the time lags, and average these statistics by day. Then two pruning strategies can be built 

upon these values: one directly uses these daily average values dynamically as time 

evolves; and the other uses the global average of these statistics in the whole timeframe 

(i.e., 84 days of Zika dataset and 120 days of Ebola dataset). The first strategy is considered 
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point-based, and the last two strategies are time-based. Using combinations of epsilon and 

tp, different clustering results are obtained at each time step. To evaluate these results, 

cluster counts and their visualization on maps are employed. 

3.3.2 Information Flow 

At each time step, clusters are formed and hence the retweeting activities among these 

clusters can be identified. Here I only consider the one-hop connection, meaning for each 

flow, I find its immediate origin and destination disregarding the whole sequence. In 

practice, this is achieved by detecting the ID of the source tweet embedded in a retweet 

record. Based on the counts of the retweeting links within each cluster and across different 

clusters, quantitative measures including information flow matrices and their similarities 

are applied to support further interpretation of the information flow. 

Information flow matrices are a set of squared matrices, with each recording the 

daily information flow frequencies within and across clusters. At one time step, assume I 

have n clusters, then an n by n matrix showing directed flow frequencies is constructed, as 

shown in Table 3.2. In Table 3.2, the diagonal values represent numbers of retweets 

generated and propagated in the same cluster; and the off-diagonal values count the 

retweeting links among different clusters. 
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Table 3.2. A matrix showing the frequencies of directed retweeting links. Fi,j denotes the 

number of retweets in Cluster i and originated from Cluster j. 

 
Source 

Cluster 1 …… Cluster j …… Cluster n 

Sink 

Cluster 1 F1,1  F1,j  F1,n 

……      

Cluster i Fi,1  Fi,j  Fi,n 

……      

Cluster n Fn,1  Fn,j  Fn,n 

 

A comparison of the volume and direction of the information flow at different time 

steps is achieved by a similarity measure (i.e. cosine similarity) that is performed on pairs 

of flow matrices. Cosine similarity between two vectors (or two documents in the vector 

space) calculates the cosine of the angle between them. This metric can be interpreted as a 

normalized comparison between two documents, since it only considers the angle between 

them without regard to magnitude (Han et al., 2011). To calculate the cosine similarity 

between two information flow matrices, a prior step is to reshape the two matrices to one-

column vectors of the same dimension. For the converted vectors A and B, equation 

cos θ = 	 5•7
||5||	||7||	 is applied, where • indicates the vector dot product and ||A|| is the length 

of vector A. 
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Appling the above equation, I acquire two types of cosine similarity—consecutive 

cosine similarity and pairwise cosine similarity. Consecutive cosine similarity is the cos(θ) 

value of matrices of two adjacent days, which shapes a one-dimensional curve along the 

timeline. It reveals days with drastic change regarding information flow patterns. Pairwise 

cosine similarity calculates the cos(θ) of each pair of matrices within the timeframe, which 

forms a two-dimensional symmetric matrix with each cell containing the similarity 

measure of its corresponding cluster pair. 

3.3.3 Network Properties 

In Twitter, information traverses from its originators to receivers, and further diffuses to 

more audiences. With the development of this process, networks are naturally structured. 

Hence to understand the pattern of information diffusion, a grasp of the embedded 

networks’ properties, such as general connectivity and power of spreading information to 

others, is necessary. Therefore, basic network attributes including node and edge counts, 

network density; and node-associated attributes including degree centrality, closeness 

centrality, and eigenvector centrality are investigated. 

Network density is the ratio of the number of edges in the network over total 

number of possible edges between all pairs of nodes. It indicates how well a network is 

connected. Centrality metrics focus on the individual nodes in a network. The more a node 

connects to others, the greater its centrality is in the network. Degree centrality is defined 

as the number of edges that a node has. Closeness centrality is the average length of the 

shortest path between the node and all other nodes in the network. It is “a measure of how 

long it will take information to spread from a given node to others in the network” (Yin et 
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al., 2006). Eigenvector centrality is closely related to the influence measure of a node in a 

network, which is a potential drive of information diffusion. It is based on the principle 

that the influence of a node depends on the influence of its neighbors (Borgatti, 2005). 

3.4 Results 

3.4.1 Results for the Zika Outbreak 

3.4.1.1 Clustering Results 

Applying GeoDenStream, a set of potential values for epsilon and tp parameters were 

tested and an optimized combination was determined. Using the selected combination (i.e., 

epsilon = 3 and tp = Median), clusters were generated at each time step, and their spatial 

distributions on the 53rd day, the day with most clusters, are demonstrated on a world map 

(Figure 3.2 (a)). This map supports the selection of epsilon, since it is able to differentiate 

groups of points in large countries, and aggregate cross-country points covering reasonable 

sized area, regardless of the shape. By inspecting cluster maps in time sequence, I assured 

that the cluster IDs of points at the same location are consistent through time. This is crucial 

for any valid analyses built on this clustering result. 

For each cluster, its inflow and outflow frequencies were summed up respectively, 

and their differences were calculated, based on which clusters were divided into two types: 

source clusters and sink clusters. In a source cluster, outflow exceeds inflow; and in a sink 

cluster, its major flow comes from the outside. Figure 3.2 (b) shows the spatial distribution 

of the source and sink clusters. It suggests that in the discussion about Zika, Twitter users 

tend to retweet others’ information rather than initiating it, except for scattered regions in 

US, South America, Western Europe, West Africa, Middle East, and Asia. 
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Figure 3.2. Spatial distribution of (a) clusters resulted from GeoDenStream and (b) source 

(in red) and sink (in blue) clusters overlapped with the world map on the 53rd day in Zika 

case, when epsilon = 3 and tp = Median. 

 

Figure 3.3 shows the trend of cluster development over time, along with 

corresponding tweet counts on each day. Clusters’ formation starts from a small number 



85 
 

around 35, then climbs up to about 90 around the mid-stage, then stays around 90 for the 

rest of the time. Despite several drops in the cluster count curve, its shape generally keeps 

an upward tendency then levels off. As for tweet count, it stays low and stable for about 35 

days, then starts to increases slowly; after a few sharp ups and downs for about 25 days, it 

gradually declines. 

 

 

Figure 3.3. Cluster counts and tweet counts when epsilon = 3 and tp = Median in Zika 

case. 

 

3.4.1.2 Information Flow Results 

Based on the information flow frequencies within each cluster and across different clusters, 

a series of flow matrices were generated along the time axis. These matrices were 
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represented by heatmaps showing the numerical values of flow frequency, and by flow 

maps displaying the spatial distribution of the flows regarding origin, destination, direction, 

and volume. Flow matrix of the first day is picked as an example to demonstrate its heatmap 

and flow map (Figure 3.4). 

In Figure 3.4 (a) the flow frequencies are normalized to the range of [0, 1] for time-

series comparison. The normalization is performed by using the equation 9+*:;< =
=>?@AB	(=)

@EF = ?@AB(=), where 9+ denotes a record of frequency, 9+*:;< is its normalized value, and 

9 = {9%, 9(, …, 9*}. Each cell in Figure 3.4 (a) shows the normalized frequency of the 

flow from its source in the column and sink in the row. Cells in darker blue reflect higher 

flow frequencies. From the heatmap it is inferred that large volume of flows mostly occurs 

within the same clusters; tweets in some clusters such as cluster 30 get more diffused than 

others, and cluster 33 and 34 have higher tendency of retweeting other clusters. The flow 

map in Figure 3.4 (b) mirrors the heatmap, adding geographic information including cluster 

location and direction of each flow. In Figure 3.4 (b), for the best visual experience, only 

the highest 75% and no more than 30 flow arcs are displayed. The arcs connecting different 

clusters are drawn in the counter-clockwise direction from the source cluster to sink cluster, 

and flow within a cluster is represented by the self-directed arc. Cluster IDs are labeled as 

numbers on the map, and the color bar indicates flow frequency. Production of all flow 

maps in this chapter follows the same rules. 
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Figure 3.4. Information flow matrix of the first day of captured Zika discussion 

represented by (a) heatmap and (b) flow map, where arcs are drawn in a counter-

clockwise direction between different clusters, and self arcs represent flow within a 

cluster. 
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3.4.1.3 Similarity Results 

Based on the daily information flow matrices, two types of cosine similarity—consecutive 

cosine similarity and pairwise cosine similarity—were applied to gauge the change of flow 

patterns. Consecutive cosine similarity reflects the change of information flow patterns 

between every pair of adjacent days. In Figure 3.5, the consecutive cosine similarity curve 

fluctuates greatly for about the first third of the time, then becomes stable for about 40 days 

before it goes up and down again. 

 

 

Figure 3.5. Zika consecutive cosine similarity with epsilon = 3 and tp = Median. 
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For every pair of days in the studied timeframe, its pairwise cosine similarity value 

is placed in a symmetric matrix with rows and columns representing the days. Similar to a 

flow frequency heatmap, the matrix storing the pairwise cosine similarity values is also 

visualized by a heatmap, shown in Figure 3.6 (a). In the heatmap in Figure 3.6 (a), value 

in a cell Si,j denotes the cosine similarity between the flow matrices of the ith and jth days. 

Then a dendrogram, a tree diagram that illustrates the arrangement of the days produced 

by hierarchical clustering (Everitt and Skrondal, 2010), is created based on the heatmap. 

Figure 3.6 (b) shows this grouping result of the heatmap, and a tree structure recording the 

whole grouping process is displayed in Figure 3.6 (c). From the dendrogram I try to identify 

a certain number of clusters. This is achieved by ‘cutting’ the tree structure at an 

appropriate level, and in practice we typically target a huge jump in distance that produces 

desired group number. For practical concern, I decided to have six groups, and the resulting 

groups of days are identified by different colors of the tree branches below the cut in Figure 

3.6 (c). 
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Figure 3.6. Zika pairwise cosine similarity represented by (a) heatmap, (b) dendrogram, 

and (c) tree structure of hierarchical clustering. 
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3.4.2 Results for the Ebola Outbreak 

3.4.2.1 Clustering Results 

Applying the same combination of epsilon and tp (i.e., epsilon = 3 and tp = Median), 

clusters were produced for the Ebola case as well. Figure 3.7 (a) demonstrates a world map 

showing the spatial distribution of the clusters on the day with most clusters (55th day), 

where clusters are distinguishable in reasonable sizes, regardless of their shape. As for the 

distribution of source and sink clusters in Figure 3.7 (b), I learnt that similar to what’s 

found in Zika case, participants in Ebola discussion are also more likely to retweet others’ 

information than to originate it, except for some scattered regions over the world, for 

example clusters in the US, Western Europe, and West Africa. 
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Figure 3.7. Spatial distribution of (a) clusters resulted from GeoDenStream and (b) source 

(in red) and sink (in blue) clusters overlapped with the world map on the 55th day in 

Ebola case, when epsilon = 3 and tp = Median. 

 

Figure 3.8 shows the daily cluster counts and tweet counts of Ebola case. It 

indicates that different from the former case, clusters start to form quickly from the 

beginning, then keeps fluctuating around 100 with several spikes. Tweet count stays low 



93 
 

before its first sharp rise on the 41st day, then it grows abruptly to the peak, followed by a 

few sharp ups and downs. Starting from the 66th day, it declines steadily and levels off. 

 

 

Figure 3.8. Cluster counts and tweet counts when epsilon = 3 and tp = Median in Ebola 

case. 

 

3.4.2.2 Information Flow Results 

In the captured Ebola discussion, the first day is picked to illustrate its information flow 

pattern. Using the flow frequencies recorded in the flow matrix, heatmap and flow map 

were produced and shown in Figure 3.9. In Figure 3.9 (a), each cell shows the normalized 

frequency of the flow. Darker blue colored cells are mostly found on the primary diagonal 

line, meaning frequent communication often occurs within the same clusters; and some 
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clusters such as cluster 94 to 97 interact frequently with each other. Tweets in clusters like 

cluster 94 and 95 got more retweeted than others, and some clusters are more likely to 

retweet information from other clusters. Geographic representation of the information flow 

matrix of the first day is shown in Figure 3.9 (b). On the map, the volume, location, and 

direction of information flow are clearly visualized, offering a comprehensive explanation 

of the information flow patterns in the geographical space. The most obvious patterns I 

detected from this flow map include the active internal retweeing within clusters in West 

Africa, frequent interaction between clusters in the US and Western Europe, and a major 

information source cluster in South Asia. 
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Figure 3.9. Information flow matrix of the first day of captured Ebola discussion 

represented by (a) heatmap and (b) flow map, where arcs are drawn in a counter-

clockwise direction between different clusters, and self arcs represent flow within a 

cluster. 
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3.4.2.3 Similarity Results 

Consecutive cosine similarity is calculated for all pairs of adjacent days in Ebola case and 

is plotted in Figure 3.10. Compared with the consecutive cosine similarity of Zika shown 

in Figure 3.5, this measure of Ebola is generally higher. Another difference lies in the early 

stage, where consecutive cosine similarity values in Ebola fluctuate modestly at the 

beginning, while being unstable in Zika. A common pattern of the two cases is that the 

head and tail of the curves are not as stable as the middle part. Pairwise cosine similarity 

of the Ebola case is demonstrated as a heatmap in Figure 3.11 (a), a dendrogroam of the 

heatmap in Figure 3.11 (b), and the structure of hierarchical clustering in Figure 3.11 (c). 

Same as what was done in Zika, I cut the tree in Figure 3.11 (c) and obtained seven groups 

of days, colored differently at the branches below the cut. 
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Figure 3.10. Ebola consecutive cosine similarity with epsilon = 3 and tp = Median. 
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Figure 3.11. Ebola pairwise cosine similarity represented by (a) heatmap, (b) 

dendrogram, and (c) structure of hierarchical clustering. 

 

3.5 Discussion 

In this chapter two widespread epidemics—Zika and Ebola—were chosen for studying the 

information diffusion patterns within their respective discussion over Twitter via 

retweeting. These two epidemics occurred in different areas of the world at varied time, 
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yet both draw global attention. For each event, I separated its related retweets into different 

clusters and captured the information flow among them at each time step, and calculated 

the similarity of the flow patterns at different time steps. By further analyzing these results, 

I expect valuable findings regarding the process of information diffusion in the formed 

retweeting networks as well as in the geographic environment. The analyses of information 

diffusion are approached from four perspectives: spatiotemporal scale, structural features, 

spatial pattern, and temporal evolvement. 

3.5.1 Spatiotemporal Scales for Clustering 

At the global extent, the influence of spatiotemporal scales on community formation and 

information transmission among them is complicated. In this study, I gauge geographic 

scale through the parameter epsilon in the stream clustering method, by inspecting cluster 

counts and consecutive cosine similarity with different epsilon settings. Meanwhile, I 

tackle temporal scale through the parameter tp in stream clustering and temporal resolution 

in data organization. 

3.5.1.1 Parameter Setting in the Stream Clustering Method 

With large data sets, it is challenging to choose optimal values for the parameters 

beforehand in the employed stream clustering method. And in practice, we usually find it 

difficult to integrate real-world meanings into the parameter settings. For example, the 

parameter epsilon is a similarity measure of spatial distance, so a meaningful epsilon 

strongly depends on the distance metric (e.g., degree or meters) and spatial extent (e.g., a 

local community or a continent) in the data. In the temporal dimension, the parameter time 
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for pruning (tp) requires appropriate assignment considering the temporal scale of data, 

and targeting at optimal clustering results. 

Combinations of epsilon and tp were tested for both case studies, and curves 

showing the resulted cluster counts with the parameter combinations are shown in Figure 

3.12. For all plots in Figure 3.12-A and 3.12-B, epsilon is set to values from {1, 2, 3, …, 

10}, meaning the neighborhood radius of developing a cluster is examined from 1 to 10 

degrees. From (a) to (c) in Figure 3.12-A and 3.12-B, tp values are set based on the count 

of points, regardless of time. Tp used in (d)–(f) are chosen based on the global average of 

the statistics (i.e., minimum, median, and 75% quantile) of time lags between a tweet and 

its retweets within 24 hours. And tp values in (g)–(i) are dynamic along the time axis, 

calculated as the daily average of the same statistics. 
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Figure 3.12-A. Zika cluster counts with epsilon = {1, 2, …, 10} and (a) tp = 0.01% of 

total counts; (b) tp = 0.1% of total counts ; (c) tp = 1% of total counts; (d) tp = globally 

averaged minimum time lags between a tweet and its retweets within 24 hours (60 

minutes); (e) tp = globally averaged median time lags between a tweet and its retweets 

within 24 hours (90 minutes); (f) tp = globally averaged 75% quantile of time lags 

between a tweet and its retweets within 24 hours (140 minutes); (g) tp = daily averaged 

minimum time lags between a tweet and its retweets within 24 hours; (h) tp = daily 

averaged median time lags between a tweet and its retweets within 24 hours; (i) tp = daily 

averaged 75% quantile of time lags between a tweet and its retweets within 24 hours. 
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Figure 3.12-B. Ebola cluster counts with epsilon = {1, 2, …, 10} and (a) tp = 0.01% of 

total counts; (b) tp = 0.1% of total counts; (c) tp = 1% of total counts; (d) tp = globally 

averaged minimum time lags between a tweet and its retweets within 24 hours (55 

minutes); (e) tp = globally averaged median time lags between a tweet and its retweets 

within 24 hours (75 minutes); (f) tp = globally averaged 75% quantile of time lags 

between a tweet and its retweets within 24 hours (115 minutes); (g) tp = daily averaged 

minimum time lags between a tweet and its retweets within 24 hours; (h) tp = daily 

averaged median time lags between a tweet and its retweets within 24 hours; (i) tp = daily 

averaged 75% quantile of time lags between a tweet and its retweets within 24 hours. 

 

In Figure 3.12-A or 3.12-B, we could find that the patterns of the 10 curves in all 

plots are identical, with largest cluster numbers when epsilon equals 1, and smallest when 

epsilon is 10. Observing across each row, when epsilon is fixed and tp is set differently by 

the same strategy—based on count ((a)–(c) or based on time (d)–(i)), the curves differ 

slightly except for (a)–(c), where cluster count seems to be more sensitive to the selection 

of tp. And the smaller the epsilon, the more sensitive cluster count is to tp. 

Table 3.3 offers a closer look at the cluster counts and their increasing rates with 

different tp strategies for every epsilon value, using Zika dataset as an example. It suggests 

that in most cases, the number of clusters increases with the inclusion of more points for 

pruning (tp), with higher increasing rates than the other two time-based tp strategies. The 

two time-based tp adjustment strategies showed similar and relatively low sensitivities of 

cluster counts to tp. In practice, it is usually unrealistic to have global information in the 
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whole timeframe for calculating the statistics in the second strategy. Therefore, I consider 

Median in the third strategy as an appropriate setting for tp. 
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Table 3.3. Averaged cluster counts and increasing rates with epsilon and tp in Zika case. 

epsilon Average Cluster Count Increasing Rate 
 Count 96 Count 960 Count 9600 Count 96~960 Count 960~9600 

1 180 207 268 15.00% 29.47% 
2 78 88 109 12.82% 23.86% 

3 55 56 64 1.82% 14.29% 
4 38 41 47 7.89% 14.63% 
5 28 29 35 3.57% 20.69% 
6 19 20 23 5.26% 15.00% 
7 16 18 20 12.50% 11.11% 
8 16 16 19 0.00% 18.75% 
9 13 14 16 7.69% 14.29% 

10 12 12 12 0.00% 0.00% 
 Minute 60 Minute 90 Minute 140 Minute 60~90 Minute 90~140 

1 243 247 253 1.65% 2.43% 
2 126 129 130 2.38% 0.78% 
3 81 82 78 1.23% -4.88% 
4 56 53 56 -5.36% 5.66% 
5 44 44 45 0.00% 2.27% 
6 30 30 30 0.00% 0.00% 
7 24 26 25 8.33% -3.85% 
8 21 21 21 0.00% 0.00% 
9 19 19 19 0.00% 0.00% 

10 17 18 18 5.88% 0.00% 
 Min. Med. 75% Qu. Min.~Med. Med.~75% Qu. 

1 244 250 256 2.46% 2.40% 
2 127 128 131 0.79% 2.34% 
3 81 81 83 0.00% 2.47% 
4 53 52 52 -1.89% 0.00% 
5 43 44 44 2.33% 0.00% 
6 30 31 30 3.33% -3.23% 
7 26 26 26 0.00% 0.00% 
8 20 21 21 5.00% 0.00% 
9 19 19 19 0.00% 0.00% 

10 18 18 18 0.00% 0.00% 
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Epsilon is mainly decided by the desired cluster number and size in this study. 

Having too many small clusters is not necessary, and too few is insufficient for reasonable 

and meaningful analyses. Besides the cluster counts shown in Figure 3.12-A, with 

additional assistance of map visualization of the clusters (e.g., Figure 3.2 and 3.7) that 

offers intuitionistic vision of cluster shape and size, I consider the value of 3 suitable for 

epsilon. 

Besides tp, temporal resolution is another facet of temporal scale. To be specific, 

in this study data are organized on daily basis, while finer or coarse temporal resolutions 

could be applied as well. For example, dividing the data streams hourly or weekly. With 

finer resolution, more details could be captured, yet at the cost of time and computational 

efficiency. Coarser resolution would erase some details and balance some changes, but 

would possibly surface the most essential and obvious patterns and phenomenon. Overall, 

the selection of temporal resolution is essentially empirical depending on the feasibility 

and our practical demand, and the core principle is to keep enough details without losing 

an integral understanding. 

3.5.1.2 Consecutive Cosine Similarity with Varied Spatiotemporal Scales 

In the phase of stream clustering, consecutive cosine similarity reflecting the change of 

information flow patterns between every two adjacent days was produced with different 

epsilon and tp combinations (Figure 3.13). In all plots in Figure 3.13-A and 3.13-B, a 

common pattern was found that the head and tail of the curves are not as stable as the 

middle part, meaning that the information flow pattern stays stable at the mid stage while 

shifts in the beginning and towards the end of the studied time period. 
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Referring to Figure 3.13, first I focus on the information flow pattern in response 

to different tp settings, reflected by the change of consecutive cosine similarity with the 

point-based and time-based pruning strategies. This metric seems to show different patterns 

in the two case studies. In Ebola (Figure 3.13-B), the greater overlap and smaller distinction 

of curves in (a)–(c) than in (d)–(i) imply that consecutive cosine similarity is less sensitive 

to epsilon when using point count as the pruning strategy, comparing to the two time-based 

pruning strategies. However, this pattern seems not as obvious in Zika, especially in the 

second half of time (Figure 3.13-A). In addition, the greater distinction of the curves in 

early stage (about the first 40 days of Zika and the first 55 days of Ebola) in each plot imply 

that the flow patterns change greatly in the early time period, then after some time, the 

patterns of discussion become more stable. Despite the agreement on the overall trend of 

the curves, a few outliers (i.e., drastic drops) in the plots suggest the integrated role that 

epsilon and tp plays in information exchange among the clusters. More specifically, more 

and sharper drops are found in (a)–(c) than in (d)–(i), suggesting that the point-based 

pruning strategy incurs greater flow pattern’s change in general. This aligns with the higher 

fluctuation of cluster counts in Figure 3.12 (a)–(c), which indicates larger difference of the 

daily clustering results. The detection of outliers also assists the selection of epsilon and tp 

values: a proper combination should minimize the outliers in the curves. 

Next I emphasize the information flow pattern in response to geographic scale, 

which is indicated by the change of consecutive cosine similarity with epsilon. The non-

overlapping curves with different epsilon values in every plot reveal the influence of 

geographic scale on this similarity measure, which reflects daily flow pattern’s change. 
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Globally at different geographic scales, the cosine similarities between adjacent days range 

differently; overall this similarity grows with the decrease of epsilon (Figure 3.13). When 

epsilon declines, large clusters are divided into smaller ones, and hence some of the within-

cluster flows become across-cluster flows, which will cause the change of information flow 

patterns at the global level. Such change incurs more details, which sometimes is 

advantageous, but our overall comprehension could be veiled by the added information. 

Therefore, geographic scale is influential on the cluster-level information flow, and should 

be handled carefully. 
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Figure 3.13-A. Zika consecutive cosine similarity with epsilon = {1, 2, …, 10} and (a) tp 

= 0.01% of total counts; (b) tp = 0.1% of total counts; (c) tp = 1% of total counts; (d) tp = 

globally averaged minimum time lags between a tweet and its retweets within 24 hours 

(60 minutes); (e) tp = globally averaged median time lags between a tweet and its 

retweets within 24 hours (90 minutes); (f) tp = globally averaged 75% quantile of time 

lags between a tweet and its retweets within 24 hours (140 minutes); (g) tp = daily 

averaged minimum time lags between a tweet and its retweets within 24 hours; (h) tp = 

daily averaged median time lags between a tweet and its retweets within 24 hours; (i) tp = 

daily averaged 75% quantile of time lags between a tweet and its retweets within 24 

hours. 
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Figure 3.13-B. Ebola consecutive cosine similarity with epsilon = {1, 2, …, 10} and (a) 

tp = 0.01% of total counts; (b) tp = 0.1% of total counts; (c) tp = 1% of total counts; (d) tp 

= globally averaged minimum time lags between a tweet and its retweets within 24 hours 

(55 minutes); (e) tp = globally averaged median time lags between a tweet and its 

retweets within 24 hours (75 minutes); (f) tp = globally averaged 75% quantile of time 

lags between a tweet and its retweets within 24 hours (115 minutes); (g) tp = daily 

averaged minimum time lags between a tweet and its retweets within 24 hours; (h) tp = 

daily averaged median time lags between a tweet and its retweets within 24 hours; (i) tp = 

daily averaged 75% quantile of time lags between a tweet and its retweets within 24 

hours. 

 

3.5.2 Structure of Information Diffusion 

Understanding the structure of the diffusion network is important for studying information 

flow pattern, since it lays the foundation for information diffusion activities rooted in the 

network. Therefore, to explore the structure of the network generated from retweeting, 

selected network attributes are calculated for each day and plotted in Figure 3.14. Attributes 

in the upper two rows are measures of the network structure from different perspectives. 

The lower three rows illustrate centrality measures associated with individual nodes in the 

network, indicating the averaged nodes’ characteristics. 
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Figure 3.14. Daily network properties of (a) Zika and (b) Ebola. 
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The network properties graphs reveal some interesting trends. The evolving trends 

of network density suggest that in the early stage, there are not so many participants 

involved in the discussion as shown by node count, yet are well connected because of their 

common interest in the topic. Then with the growing popularity of the topic, more and more 

Twitter users joined the discussion, but their loose connection lead to the decline of 

network density. After a while, due to the loss of attention from the general public, the ones 

stayed in the discussion are actually concerned about the event, and their active 

communication with each other have prompted the increase of network density. In the later 

stage of Ebola, since the discussion has subsided for a while, participants in this phase are 

actually interested in the topic and well connected with each other, which caused the 

growth of density in this period. However, in the later phase of Zika, this topic has 

gradually receded but still drawn wide attention, indicated by the large amount of nodes, 

therefore network density is still low during this period due to their loose connection. If a 

longer time period was captured in the Zika case, I would expect a similar uprising 

tendency of density in its later stage. However, this guess needs to be further examined 

because of the general impression that the impact of Zika include countries with better 

internet connection (e.g., the US, Brazil, etc.), and the discussion is among the general 

public; while on the other hand discussion of Ebola remains mostly within “experts”. 

The trend of degree centrality is very similar to that of node and edge counts. 

Degree centrality represents the averaged measure of indegree and outdegree, showing a 

node’s connectivity with other nodes. Suggested by the curves, degree centrality rises as 
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the number of participants increases. At the same time, the fluctuation of degree centrality 

indicates the participation of new users and the exit of existing users. 

Closeness centrality explains the shortest path for a node to diffuse a message to all 

other nodes in a network. The shorter the path, the higher the closeness centrality. 

Therefore in some cases, more participants could decentralize the network and reduce the 

average of this measure. Because of the larger population of participants in Ebola 

discussion than in Zika, closeness centrality of Ebola network is much smaller. The trend 

of closeness centrality of Zika is coherent with density, because denser network is usually 

better connected, causing higher closeness centrality. This overall trend is also found in 

Ebola, except that since large population of participants joined the network on the 57th and 

65th days, connections in the network changed rapidly and possibly compelling information 

disseminators emerged, resulting in abrupt increase of closeness centrality on these days. 

Same as closeness centrality, eigenvector centrality is also coincident with density 

regarding overall trends. Eigenvector centrality reflects the influence of the nodes on 

information diffusion. As more participants join in the discussion, the voice of major 

information spreaders is counteracted by the large volume of mass communication with 

lower eigenvector centrality, and hence its averaged value would drop. In later phase when 

general audiences have left, the influence of the ones that remain would be promoted, so 

the averaged eigenvector centrality of the network would increase. In sum, the network 

properties I chose are able to help describe the information diffusion patterns. 

Nodes in the network could be anchored in the geographical environment, and the 

edges formed by information flow connecting these nodes could also be visualized 
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geographically. Aiming at an overall geographical perception of the information diffusion 

network of the two case studies, the flow frequencies are accumulated at the cluster level 

and drawn on world maps in Figure 3.15. For the sake of computational efficiency, the first 

30 days were counted. 

Maps in Figure 3.15 reveal that in the discussion about Zika, the largest cluster-

level accumulated information flow happens within the clusters located in Venezuela and 

Brazil: both at high risk of Zika virus disease. The largest accumulated information flow 

of Ebola also occurs within clusters, located in the UK and West Africa, with West Africa 

being the origin and highly infected area of Ebola virus. Also, discussion within the cluster 

in the northeastern US possesses large volume. As for dominant across-cluster flow, I 

detected evident difference between the two case studies: Zika is widely discussed among 

clusters in North and South America, and Ebola is popular among North America, Western 

Europe, and West Africa. The places with extensive discussions align well with the high-

risk countries of the respective disease in real-world situations. 
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Figure 3.15. Accumulated information flow for the first 30 days of (a) Zika and (b) 

Ebola. 
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3.5.3 Spatial Patterns of Information Diffusion 

3.5.3.1 Spatial Distribution of Major Source and Sink 

From the spatial distribution of source and sink clusters shown in Figure 3.2 (b) and Figure 

3.7 (b), it can be inferred that for both events, most of the participants tend to retweet 

others’ information rather than initiating it. Further information could be obtained from 

Figure 3.16: among all sink clusters, the top four with the largest inflow-outflow 

differences in both cases are all located at the mid-east part of the US; and among all source 

clusters, the top four with the largest outflow-inflow differences cover areas in the US, part 

of Western Europe, and central Brazil in both events. A special major source cluster in 

Ebola is located in West Africa. 
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Figure 3.16. Top four source clusters (in red) and sink clusters (in blue) on world map of 

(a) Zika and (b) Ebola. 
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From the studied events, we can generalize that participants in the US are the most 

active ones regarding both generating information and spreading it. It is not surprising since 

according to PeerReach (2013), the US heads the list of monthly active tweeting users by 

a wide margin, followed by Japan, Indonesia, UK, and Brazil. The large population of 

active tweeting users ensures the vigorous publishing and retweeting activities over Twitter 

in the US. Running down this country list, I found that for the studied cases, users in the 

UK and Brazil are also active in creating tweets; however users in Japan seem not as 

interested, and users in Indonesia are more concerned about producing information about 

the Zika outbreak. From the spatial distribution of major source and sink clusters, I infer 

that users’ spatial distribution and their activeness in Twitter play important roles in the 

information diffusion process. 

Besides Twitter users’ distribution and activeness, another important drive of 

information diffusion is the actual location where the outbreaks take place. A similar 

conclusion was drawn in Kwon et al. (2015), where it was stated that “transnational 

information diffusion can be influenced by spatial proximity between the origin nation and 

other parts of the world.” More interestingly, in my study, the event location usually shows 

higher significance in the early stage, because in early phase people closer to the event are 

more likely to show instant interest. This statement is supported by the large flow volume 

from the very beginning in Brazil where Zika prevails, and in West Africa where Ebola 

breaks out (Figure 3.19 (a) and (e)). When the information spreads more widely at later 

time, it draws the attention from people at greater spatial extent, thus at this time event 

location is not as influential as before. The locations of major source and sink clusters 
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outside the event location such as US and Western Europe support this finding (Figure 

3.16). 

The influence of geolocation also explains why in both cases Japan seems not as 

involved as other countries on the list provided by PeerReach (2013) (Figure 3.2 (b) and 

Figure 3.7 (b)): its long distance to the event locations despite its highly active tweeting 

users; and why Indonesian users are more active in Zika discussion (Figure 3.2 (b) and 

Figure 3.7 (b)): its location near the equator, where the tropical climate intensifies the threat 

from the mosquito-borne Zika virus to this region. This is perceived as geography-driven 

homophily that similar geographic situation of Indonesia and high-risk areas of Zika such 

as Brazil has invoked similar level of retweeting activeness. 

3.5.3.2 Information Flow Distribution of Major Source and Sink 

To discover the spatial distribution of information flow of major source and sink clusters, 

four clusters were selected as examples, including the major source cluster located in Brazil 

in Zika event (Source D in Figure 3.16 (a)) and the major source cluster located in West 

Africa in Ebola event (Source C in Figure 3.16 (b)), and one major sink cluster in the US 

in both events (Sink A in Figure 3.16 (a) and (b)). The daily outflow maps of the two major 

source clusters, and daily inflow maps of the two major sink clusters were generated; and 

among them one day that best represents the overall pattern is picked for visualization in 

Figure 3.17. 
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Figure 3.17. Flow maps of the major source cluster in Brazil in Zika case (a) and West 

Africa in Ebola case (b), and one major sink cluster in the US in Zika case (c) and in 

Ebola case (d). 

 

By inspecting the daily outflow/inflow maps of the four clusters, I spotted the areas 

of clusters that most frequently interacted with them. In the Zika discussion, information 

originated in Brazil mainly diffused to its neighboring clusters in Brazil, the US, and 

Western Europe (Figure 3.17 (a) as an example); and the major sink in the US primarily 

received information from American west, Brazil, Venezuela, and Western Europe for 

most of the time (Figure 3.17 (c) as an example), and from dispersed areas all over the 
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world in later stage. In the Ebola discussion, information produced in the major source 

cluster in West Africa mostly reached to the US and Western Europe (Figure 3.17 (b) as 

an example); and the information spread to the chosen major sink in the US was 

predominantly from other areas in the US, as well as Western Europe and West Africa 

(Figure 3.17 (d) as an example). In addition, I noticed that Twitter users in the US and 

Western Europe actively participated in the discussion of both events, via generating and 

retweeting the relevant information. And the locations where events actually took place—

South America in Zika and West Africa in Ebola—are important birthlands of the 

respective information. 

From the information flow maps produced earlier (Figure 3.4 (b), 3.9 (b), 3.15, and 

3.17 as examples), I found that retweeting widely exists within and across clusters, and 

further summarized three key findings about information flow. First large information flow 

occurs among active tweeting areas; a typical situation is the communication among major 

sources; for instance, the frequent flow between northeastern US and the Western Europe 

in both events. Second is the large flow between event location and other places especially 

active tweeting areas. In this case the event location normally acts as the information 

source; for example, flow from Brazil and directed to the US and Western Europe in Zika, 

and flow from West Africa to the US and Western Europe in Ebola. Third, Tobler’s First 

Law of geography which stresses the effect of physical proximity (Tobler, 1970), in this 

case translated to the tendency of retweeting from physically close users, does not always 

hold true. Users in one cluster not only retweet others in the same cluster and in their 
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adjacent clusters, but also maintain active across-cluster and across-sea communications. 

Instead, geography-driven homophily has a greater impact. 

3.5.4 Temporal Evolvement of Information Diffusion 

3.5.4.1 Temporal Evolvement of Information Flow Patterns 

The change of information flow patterns over time is inferred from the two types of cosine 

similarity measures. From the consecutive cosine similarity curves in Figure 3.5 and 3.10, 

a few drastic changes could be detected. For each event, the day with the most significant 

change (i.e., differs the most with one day before and after) of consecutive cosine similarity 

(i.e., the 70th day in Zika and the 50th day in Ebola) was chosen, and the information flow 

maps of one day before and two days after it were scrutinized. They correspond to the 

69th~72nd days (February 18th~21st, 2016; Thursday to Sunday) in Zika, and 49th~52nd days 

(October 8th~11th, 2014; Wednesday to Saturday) in Ebola. Information flow maps of these 

days are displayed in Figure 3.18, providing a geospatial perspective of the patterns change. 

In Zika case, the dive of consecutive cosine similarity value on the 70th day means 

that the information flow matrix of the 69th and 70th days are similar, and so are the 71st 

and 72nd days; however, the 70th and 71st days have different patterns. This is supported by 

the change of geographical distributions of the information flow in Figure 3.18 (a)–(d), 

where an obvious distinction between (a)–(b) and (c)–(d) is the shift of the most frequent 

outflow from northeastern US to southwestern US. Similarity, the most evident 

discrepancy between (e)–(f) and (g)–(h) lies in the emergence of clusters in South America, 

which incurred the shift of frequent information exchanges from between US and Western 

Europe to within South America and with the US. Therefore, it is suggested that the 
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consecutive cosine similarity is able to detect drastic changes of the information flow 

patterns regarding the shift of active participating clusters and their interactions. 
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Figure 3.18. Information flow maps of the 69th~72nd days in Zika ((a)–(d)), and 49th~52nd 

days in Ebola ((e)–(h)). 
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Next from the dendrograms of pairwise cosine similarity in Figure 3.6 (b) and 3.11 

(b), I extracted the grouping results of the 71st day in Zika and 51st day in Ebola. The 71st 

day in Zika is grouped with a few other days, all in the later stage of the event. It indicates 

that the 71st day, corresponding to Saturday, February 20th 2016, is a transitioning point of 

information flow pattern. However in Ebola case, the 51st day corresponding to Friday, 

October 10th 2014 is the only member of a group, which implies that the 51st day is unique, 

different from any other days regarding information flow pattern. Therefore, in real-time 

abnormal pattern detection, the adjacent similarity to its previous day contributes to the 

discovery of the transition to a new pattern; and the pairwise similarity measure to all its 

previous days helps unearthing the advent of a unique pattern. 

From the dendrograms of pairwise cosine similarity in Figure 3.6 (b) and 3.11 (b), 

I found that in both events, continuous days are not always grouped together, indicating 

the constant temporal change of information flow patterns; and discrete days might share 

similar patterns. Also, I compared the hierarchical clustering results of pairwise cosine 

similarity shown in Figure 3.6 (c) and 3.11 (c) with the development of daily network 

properties in Figure 3.14, considering the general trends in segmented phases. A major 

finding is the mismatch of the grouped days and the days with similar network properties. 

Therefore, it is suggested that similar network property does not necessarily mean similar 

information flow pattern, especially when geolocation is considered. 

3.5.4.2 Temporal Evolvement of Flow Volume of Top Source and Sink 

Daily flow frequencies of the chosen source and sink clusters in Section 3.5.3.2 are 

summarized and displayed in Figure 3.19. Regarding daily cluster count, the evolvement 
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of the chosen clusters follows the trend of the overall pattern shown in Figure 3.3 and 3.8. 

For each chosen cluster, the volume of its inflow and outflow show consistency with time; 

yet outflow generally surpasses inflow in a major source cluster, and inflow usually 

exceeds outflow in a major sink cluster. When there are not many participants in the 

discussion, the difference between inflow and outflow frequencies is relatively small. 

I also found that the major source clusters in Figure 3.19 (a) and (e) are normally 

formed earlier than the major sink clusters in (c) and (g); and the temporal evolvement of 

the major sink clusters keeps strict consensus with daily point count (Figure 3.3 and 3.8). 

This is possibly because the formation of sink clusters heavily relies on the number of 

participants in the discussion, while the construction of source clusters depends on not only 

the number of users involved in the discussion, but also the developing process of the event. 

Source clusters are easily shaped surrounding the event location in early stage and some of 

them have become major source over time, supported by Figure 3.15 and 3.16. At earlier 

time the information sent from these source clusters are distributed all over the world, 

which would hinder the build of major sink clusters. At later time with the accumulation 

of participants, major sink clusters then emerge. In the period of rapid expansion, flow 

frequencies in both source and sink clusters rise concurrently, and accumulately sink 

clusters grow more than source clusters. 
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Figure 3.19. Frequency and percentage of frequency of the major source cluster in Brazil 

in Zika case ((a)–(b)) and West Africa in Ebola case ((e)–(f)), where ‘Source 

Accumulated’ means the accumulated difference between outflow and inflow 

frequencies; and frequency and percentage of frequency of one major sink cluster in the 

US in Zika case ((c)–(d)) and in Ebola case ((g)–(h)), where ‘Sink Accumulated’ means 

the accumulated difference between inflow and outflow frequencies. 
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3.5.4.3 Temporal Emergence and Disappearance of Source and Sink 

As time goes by, new clusters arise and some earlier emerged ones disappear at later time. 

Figure 3.20-A and 3.20-B illustrate the dynamics of clusters’ emergence and disappearance 

with time in the two event discussions, respectively. Figure 3.20 (a)–(d) are rather self-

explanatory, while in (e)–(f), it should be noted that in the label of Y-axis, “changed” refers 

to any type of change, including new clusters emerging and old clusters disappearing, 

compared with the previous day. Both figures show very similar patterns and suggest 

coherent findings. These findings include (1) generally, there are more source clusters that 

emerge and disappear, comparing to sink clusters on the same day (Figure 3.20-A (a)–(b) 

and Figure 3.20-B (a)–(b)); (2) the emergence and disappearance of both types of clusters 

are comparable overall ((c)–(d)); (3) generally source clusters change more significantly 

than sink clusters especially in later stage ((e)–(f)); and (4) it is more volatile in early days 

as for clusters change ((a)–(f)). 

Unlike the trend of daily point count that shows clear peaks in Figure 3.3 and 3.8, 

which indicates the participants’ join and leaving with the evolvement of events’ 

popularity, the emergence and disappearance of clusters fluctuate with time yet without 

obvious peaks. The first finding above implies the higher volatility of source clusters; while 

sink clusters that tend to receive and retweet information are normally more stable. 

Besides the second finding above, I also observed greater fluctuation of source 

clusters in later stage, when the change of sink cluster keeps steady. It suggests that with 

the fade of interest in the event, participants that have left the discussion would lead to the 

failure of some source clusters. On the other hand, sink clusters that receive information 
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still have a buffer period, which keeps the change less radical. This is also supported by 

the third finding above. 

 

 

Figure 3.20-A. Daily change of source and sink clusters in Zika case. 
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Figure 3.20-B. Daily change of source and sink clusters in Ebola case. 

 

3.6 Conclusions 

In this chapter, spatiotemporal analysis was performed on the information diffusion of two 

epidemics mentioned in Twitter. Stream clustering, information flow analysis, similarity 

measure, and network analysis were employed. From the obtained results and subsequent 

discussion, the usefulness of the designed methodology is assured for gaining insights on 

information diffusion in event discussions over Twitter. 
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First, the stream clustering method successfully detected clusters that are close in 

time and space, which laid solid foundation for the following analyses. Based on the 

adjustment of the spatial and temporal parameters in stream clustering, scale effect on the 

clustering results is reflected. I argue that the “right scale” to represent the event is largely 

empirical, depending on the feasibility and our practical demand, such as desired cluster 

size, stable change of cluster number, minimum abnormality in the similarity measure, and 

frequency of our inquiry. 

Second, network properties, information flow matrices along with their similarity 

measure, and information flow maps were able to capture the information flow patterns 

from the structural, quantitative, geographical, and temporal perspectives. Third, from 

these perspectives of analyses, major social, geographical, and temporal characteristics 

relevant to an information diffusion process were uncovered. They are: Twitter users’ 

distribution and activeness—closely related to the formation of information sink, which 

indicates the actual action (i.e. retweeting) for the propagation; geographical scale—

directly affects the clusters’ size, shape, and containing data points, and further influences 

the information flow among these clusters; geographical location of the event—shows its 

influential power especially in the early stage of the discussion, and in the long run it is 

usually a major information source, providing information to the other places of the world; 

and time of event progress—in different time periods the flow patterns differ. Future 

research include testing different temporal resolutions (e.g., weekly) on the same dataset, 

and applying the designed methodology to different types of events to test its flexibility 

and robustness. 
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4 CONCLUSIONS 

The emerging field of social media is bursting with new findings that suggest novel social 

experience. One facet that has drawn my attention is the re-articulation of geographic 

information (e.g., space, place, and distance) in communication (Graham, 1998). Therefore, 

this dissertation centers around the communication mechanism in online social networks. 

It explores the information diffusion process in Twitter’s retweet network in the nested 

cyber and physical environments, in order to help understand the communication pattern 

of event-associated information in social media platforms. 

The increasing availability of Big Data has provided unprecedented opportunities 

to research on human dynamics and social phenomena (Shaw et al., 2016). However, the 

use of social media big data in this dissertation has posed challenges, especially in data 

management and processing. Therefore, facing these challenges, GenDenStream, a stream 

clustering method was firstly developed. Then based on the clustering results, 

spatiotemporal analysis was performed on the information diffusion process of public 

emergencies of international concern widely discussed in Twitter. 

Twitter messages were collected for the whole world using Zika and Ebola related 

keywords suggested by professionals in Public Health. The information diffusion networks 

through retweeting were examined at the aggregated cluster level. The obtained results and 

discussion assured the usefulness of the designed methodology for gaining insights on 

information diffusion in online social networks, and important findings and achievements 

were gained using the framework: 
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• The developed GeoDenStream clustering method successfully detected 

communities that are close in time and space, which has laid solid foundation for 

the following spatiotemporal analyses. In general, it is particularly suitable for 

analyzing geotagged social media data streams due to three unique characteristics: 

its ability to track and maintain information about the identity and composition of 

clusters over time and space, its ability to handle spatially overlapping data points, 

and its improved ability to handle noise. 

• Analytical methods including network properties, information flow matrices along 

with their similarity measure, and information flow maps were able to capture the 

information flow patterns from the structural, quantitative, geographical, and 

temporal perspectives. Major social, geographical, and temporal characteristics 

relevant to an information diffusion process were uncovered, including 

participants’ distribution and activeness, geographic scale, geographic location, 

geography-driven homophily, and time of events progress. This supports the 

statement that geography matters in the information diffusion process in online 

social networks. 

4.1 Scientific Contributions 

By examining the capability of the designed framework and analytical methods, this 

dissertation research is novel and valuable. Its scientific contributions lie in the 

advancement of GeoDenStream, the analytical framework for studying information 

diffusion in online social networks, as well as the discovered information diffusion patterns 
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along with their potential drives. All guide further research regarding data mining in real-

time data streams. 

Though the demands for mining key values in Big Data, such as finding and using 

the hybrid mix of spatial and social contents in social media, have been of great interest 

and extensively discussed among scientists in various research areas (Croitoru et al., 2017), 

the common form of its representation, near-continuous data streams (Valle et al., 2009), 

has brought about tremendous barrier in its handling and analyzing process. Among all 

efficient operations of this type of data such as basic data analytics, clustering has emerged 

as one of the most commonly used operations (Krempl et al., 2014; Xu and Tian, 2015). 

However, the foci of existing clustering methods, such as detecting whether one or more 

clusters exist and preserving only summary descriptors (e.g., center and radius) of the 

clusters, are not suitable for our requirement of traceable individual point information and 

cluster-point relationship in the social media data streams. In view of this requirement, 

which commonly exists in analyzing geotagged social media data streams, I argue that the 

proposed GeoDenStream has filled this gap. 

In addition to the geotagged social media data streams that are used in this 

dissertation research, GeoDenStream can be conveniently applied to various application 

domains as long as the data streams contain geographic information. This is primarily due 

to the three unique characteristics of GeoDenStream: its ability to track and maintain 

information about the identity and composition of clusters over time and space, its ability 

to handle spatially overlapping data points, and its improved ability to handle noise. 

Potential application domains include but not limited to health, transportation, finance, 
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energy, climate and weather, and environmental monitoring. Moreover, its capability of 

handling Big Data is endorsed by the enhanced functionalities and obtained clustering 

results. The four V’s of Big Data are thoroughly responded by (1) stream clustering and 

memory usage optimization—large volume and high velocity, (2) management of Twitter 

metadata such as standardizing coordinates information—high variety, and (3) noise 

cleaning—high veracity. 

Online social networks allow internet users to produce, consume, and propagate 

information at very large scale, and thus have been proved very powerful in information 

diffusion and influential on society (Guille et al., 2013). In light of this, exploring 

information diffusion in online social networks is important for understanding the social 

dynamics and for facilitating higher level reasoning and decision making. This is exactly 

where the framework of spatiotemporal analysis of information diffusion in this research 

contributes to. 

Analytical methods employed in this research, such as the similarity measure, flow 

mapping, and network analysis, were effective in revealing the spatiotemporal patterns of 

information diffusion. For instance, cosine similarity enabled the comparison of flow 

patterns (i.e. flow volume, and source and sink) at different time steps, and further 

supported the monitoring of flow patterns change over time and the detection of drastic 

changes. Flow maps visually illustrated the flow pattern in the geographical layout. 

Network analysis uncovered the dynamic change of the retweet network properties, which 

to some extent reflected the composition of participants and their interacting pattern in the 

Twitter discussions. 
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In addition to Twitter, data from other social media platforms such as Facebook and 

Youtube can also utilize this framework for the purpose of exploring online communication 

that is grounded in physical space. Furthermore, as for research purposes, this framework 

is particularly useful for detecting drastic change in an event or the occurrence of an 

abnormal event in general discussion, for identifying major sender and receivers in an 

information diffusion process for targeted information push, and for spotting moments and 

periods for effective information propagation. 

Potential drives I identified especially the geographical characteristics inspire my 

curiosity of the external motivation of information diffusion. This is particularly 

meaningful because in order to manage and make use of information diffusion, it is 

important to understand what drives this process (Hoang and Mothe, 2018; Suh et al., 2010). 

Therefore, for higher level reasoning and informed decision making, the important role of 

the extracted social, geographical, and temporal characteristics in post-internet 

communication should be reinforced (Kamath et al., 2012). The attributes I detected, such 

as the geography-related ones—distribution of Twitter users, geolocation of the event, and 

geography-driven homophily—can serve as the starting point and guidance for further 

investigation. 

As an interdisciplinary research connecting spatiotemporal data mining to social 

process in the context of online social networks, this dissertation will contribute to varied 

study fields such as communication, public health, and marketing. The targeted audiences 

identified in section 1.5 will find this work useful. In addition to the academic field, 

companies will also benefit from this work. For example, spotting moments and periods 
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for effective information propagation is applicable to social media marketing; and 

understanding the related geographical variables to information diffusion gives a spatial 

view to news and social media practitioners. Further, in the situations when information 

diffusion is unwanted, for example misinformation, a grasp of this process from all-sided 

dimensions will help the management and authority parties with effective measures. 

4.2 Limitations and Future Work 

Despite the novelty and scientific value this dissertation offers, it is still limited in the sole 

social media data type (i.e., Twitter), the sole research domain it has examined (i.e., public 

health), and the uncertain relationship between the detected potential drives and an 

information diffusion process: do they actually drive the diffusion of information, or are 

they just correlated? In response to these limitations, future research includes expanding 

the framework beyond Twitter to other types of social media services such as Facebook, 

applying the designed framework to different application domains, and further examining 

the role of these potential drives in information diffusion. 

More specifically, I propose two examples to illustrate potential application areas. 

One pertains to the recent abrupt measles outbreaks in the United States. The Center for 

Disease Control and Prevention (CDC) of US have confirmed 387 individual cases of 

measles in the first quarter of 2019, already surpassed cases reported of every year except 

2014 since measles was eliminated in 2000 (CDC, 2019). A grasp of the online 

communication pattern of this disease will help us identify highly infected areas, so as to 

prepare for better and faster countermeasure. Also, it helps to predict the population and 

area at high risk, so that whom and where vaccination is mostly needed can be targeted 
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more accurately. The second example focuses on abnormal events. Learning the diffusion 

process of an abnormal event helps to prevent its reoccurrence in other places, and to better 

react to its aftermath such as a consequential riot. 

In addition to the conceptual discussion of potential drives of the information 

diffusion through inferences from obtained results and real-world sourced information, 

quantitative assessment of the potential drives with regards to their influence on 

information diffusion needs to be further explored. This will facilitate the transformation 

of our observations to real-world knowledge for informed decision-making. It can be 

achieved by building regression models that are able to detect useful predicting variables 

(e.g., Hoang and Mothe, 2018). Variables indicating potential drives can be derived from 

the tweet records (e.g., time), retweeting network (e.g., network properties of a tweet), and 

the geographical environment (e.g., country). 

Furthermore, an important element in online communication that is overlooked in 

this research is the content of the information, since my focus is to disclose “how” rather 

than “what” information diffuses in online social networks. Though this being said, the 

author is not oblivious of the ample potential of new-found knowledge when content 

analysis is incorporated to information diffusion. In fact, peer work focusing on this aspect 

has been done in recent years. For example, researchers have examined the relationship of 

emotions and information diffusion in social media (Stieglitz and Dang-Xuan, 2013), 

studied the identification of influential users and relevant content in information diffusion 

(Silva et al., 2013), and analyzed the spread of low-credibility content by social bots (Shao 

et al., 2018). Building on the framework and findings of this dissertation research, and by 
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taking into account content analysis, new knowledge such as the spatiotemporal 

characteristics of the text content and the relationship between content and the possibility 

of being spread, can be achieved. This new dimension will undoubtedly enrich the 

spatiotemporal portrait of information diffusion in online social networks. 
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