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Abstract
Mel Ember was co-Principal Investigator in the Mason-HRAF Joint Project on 
Eastern Africa, a multiyear project aimed at developing and analyzing advanced 
computational agent-based models of human societies across 10 countries and 
12 ecosystems. A major unsolved challenge in this kind of social science research 
is to devise a systematic way to compare, contrast, and communicate different 
models of social dynamics along relevant dimensions and characteristics, given 
the inherent complexity of most computational agent-based models. This 
article proposes a viable systematic framework for comparing models and 
illustrates its application using some of the models that Mel helped inspire and 
develop as senior project participant.
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Introduction: Motivation and Background

Model-to-model analysis is a special topic of comparative social science 
research, focusing on side-by-side comparisons of models of social systems 
and processes (Clark, Cumow, & Cole, 1975; Cioffi & Gotts, 2003; Deutsch, 
1948; Hales, Rouchier, & Edmonds, 2003; Rouchier & Bousquet, 2001; 
Rouchier, Cioffi-Revilla, Polhill, & Takadama, 2008; Rouchier, Edmonds, & 
Hales, 2003; Grimm et al., 2005, 2006; Kahn, 2007). The topic of model-to-
model (or M2M) analysis has deep and ancient roots in Western scientific 
thinking, reaching back to Aristotle’s tripartite taxonomy of political systems 
in the 4th century BC—that is, monarchies, aristocracies, and democracies, and 
their associated “degenerative” forms (tyrannies, oligarchies, and ochlocracies 
[rule by the “mob”], respectively), as shown in Table 1.1 Although contemporary 
social scientists use other taxonomic schemes for classifying and comparing 
social systems,2 parsimonious taxonomies applicable to a broad spectrum of 
models—not just empirical social systems—provide systematic frameworks 
for advancing comparative social research.3

The increasing number and variety of simulation models in computational 
social science4 motivates the need for developing a systematic framework for 
comparative analysis of social simulations. Such a diversity of models covers 
many types of social agents and dynamics, as relates to other computational social 
science models (e.g., social network models, event data models, social geospatial 
models, and other computational models). The need for a comparative framework 
for social simulations is particularly acute for spatially complex models—that is, 
large social simulations with significant geographic features—given their inter-
disciplinarity and number of participants as well as their longer life-cycle char-
acteristics (Cioffi, 2010b). Comparing simple “toy” models is difficult; comparing 
complex simulation models poses additional challenges. The comparative 
approach in computational social science is still largely undeveloped.

This fledgling interdisciplinary field, at the intersection of social science, 
computer science, and related disciplines (e.g., geography, organizational science, 
and environmental science), needs rigorous concepts and robust methodologies 
capable of yielding deeper insights in support of scientific progress.5 Comparative 
analysis of computational models in cross-cultural research can also extend 
new, valuable, theoretical, and methodological bridges between traditional social 
sciences and newer areas of computational social science (Cioffi, 2010a). This 
is an important task for promoting sustainable scientific development.

Comparing social simulations can be framed in set-theoretic terms as an 
examination of the union and intersection of models within a larger model 
universe, as illustrated in Figure 1. Each model constitutes a set consisting of 
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attributes (variables) and behaviors (dynamics) within a much larger universe 
U of social models. Accordingly, similarities and differences are identified by 
the intersection and union of moons, respectively. The most interesting cases 
for comparative analysis are where both intersections (similarities) and moons 
(differences) exist. Two extreme (degenerative) cases occur when (a) there are 
no similarities between models (disjoint sets), such that their intersection is 
empty, or (b) one model is a strict subset of the other, such that the intersection 
is just a subset of the larger model, and their union also equals the larger model. 
Here the focus is on cases where both intersections and moons exist.

Table 1. Classical Aristotelian Classification of Polities

Normal (“stable”) Monarchy Aristocracy Democracy

Degenerative (“failed”) Tyranny Oligarchy Ochlocracy

Figure 1. Different models represented as objects (shaped point-sets) that 
encapsulate attributes and behaviors, within a modeling universe, U
Note: Similarities and differences among models correspond to intersections, or “lenses,” and 
nonoverlapping components, or “moons,” respectively.

This article presents elements of a systematic framework for comparing 
social simulations, especially for models explicitly involving societies of inter-
acting agents. The framework is based on two levels of comparison. Each level 
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consists of additional categories or dimensions that provide for increasingly 
specialized comparisons among models. The two “root” levels concern generic 
and specific comparisons, based on methodological and formal features, respec-
tively, as discussed in the following sections. The two root levels are open to 
further development, an advantage at this stage of scientific infancy in the field 
of computational social simulations.

The focus in this article is on comparing two recent social simulation models—
called “HerderLand” and “RebeLand” (see Table 2)—selected from the com-
putational agent-based models developed by the Mason-HRAF Joint Project 
on Eastern Africa. (See project references in Note 2.) All four models are in the 
MASON system (Luke et al., 2005, Sullivan, Coletti, & Luke, 2010 (IN PRESS). 
Here, HerderLand and RebeLand are used for illustrative purposes, because 
they are the most published models from the Mason-HRAF project.

The focus is on comparative aspects that illustrate main similarities and 
differences between models since each model is separately and individually 
described elsewhere in technical detail.

Comparing Social Simulations
Social simulations consisting of agent-based models—or other kinds of com-
putational models (e.g., microsimulations, queuing models, or system dynamics 
models)—pose some interesting and challenging opportunities for cross-cultural 
research. Social scientists accustomed to modeling have faced some of these 
issues before. For instance, statistical regression models are often compared in 
terms of the following features:

 • Dependent and independent variables
 • Operational measures and measurement error in each variable
 • Data transformations applied to operational measures
 • Functional form of specified models
 • Regression plots and related graphics
 • Parameter estimates and their statistical significance
 • Stationary properties

Table 2. Agent-Based Models From the Mason-HRAF Joint Project on Eastern Africa

HerderLand Herders interact with each other in a relatively small local landscape
RebeLand Country-scale model with several provinces and ecosystems
AfriLand Multicountry model of an international region and ecosystems
RiftLand A version of AfriLand calibrated to the Eastern Africa region
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 • Goodness of fit
 • Mathematical properties or theoretical inferences from estimated 

models—
 • Treatment of missing cases

Similarly, know-how also exists for comparing mathematical models, such as 
game-theoretic models of social relations. For example, games representing socio-
cultural relations can be compared in terms of these and other dimensions:

 • Number of players: 2-person vs. N-person games
 • Length of play: finite vs. infinite games
 • Information regime: complete vs. incomplete information games
 • Number and types of strategies: pure vs. mixed
 • Symmetry: symmetric vs. asymmetric games
 • Embeddedness: simple vs. nested games
 • Form: normal vs. extensive

Methodological experience gained during past decades enables comparative 
analysis of different types of sociocultural models, whether rendered in statisti-
cal or in mathematical form. This cannot be said for computational models 
where cross-cultural analysis is just as desirable. Comparisons among simula-
tion models yield new insights that advance understanding by highlighting 
similarities and differences. New categories (dimensions) for comparison are 
needed, given the different nature of social computational models used in 
simulation. Which are the relevant categories for comparison? Which of them 
would be most insightful for purposes of cross-cultural research? How do 
different simulation platforms facilitate or hinder cross-cultural comparisons? 
The framework outlined in the next sections is intended to contribute answers 
to such questions. The main caveat is that a definitive framework is still pre-
mature in the area of complex agent-based simulations that comprise inter-
dependent (“coupled”) social and biophysical systems.

The comparative analysis of social simulations can be approached from two 
basically distinct but related ontological levels: generic and specific, as discussed 
in the next sections. Although the four models in Table 2 are agent-based, the 
same two levels should also apply to other types of social simulation models 
(e.g., systems dynamics).

Generic Comparison
Generic comparison of social simulations can be based on contrasting charac-
teristics common to all social simulations, independent of specific formal 
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language in which they are rendered or instantiated. A fundamental way to 
frame such a first, high-level comparative approach is to recall the defining 
features of all social simulations, in terms of the following:

1. Focal system, empirical domain, or focal region being simulated;6

2. Simulation system or computational model used;
3. The critical modeling relation linking a given focal system and a 

corresponding simulation system (model), comprising several key 
aspects, such as abstraction, validation, and data considerations; and

4. Policy relevance or applied value in terms of real-world signifi-
cance, as some social simulations are intended for pure research and 
others are used for policy analysis.

Several technical terms included in these generic comparative dimensions 
include the following.

Definition 1 (Focal system): The focal system F of a social simulation 
is the empirical reality or focal domain being modeled. This includes 
real-world components consisting of human, social, natural (i.e., bio-
physical), or man-made (engineered or artificial) entities and their 
interrelations.

Definition 2 (Simulation system): A simulation system S is the compu-
tational model abstracted (see below) from a given focal system, 
consisting of a selection of human, social, natural (i.e., biophysical), 
or man-made (engineered or artificial) entities and relevant relations 
among them.

Definition 3 (Model abstraction): Formally, abstraction is a mapping A 
from a given focal system F to an instantiated simulation system S, 
such that A: F → S. Abstraction refers to the selection or subset of 
referent real-world entities and relations that are to be formally included 
(i.e., formalized) in a given simulation system. Abstraction is a function 
of the set of questions a given simulation system is intended to answer.

Definition 4 (Model validation): Validation is the process of establishing 
an acceptable correspondence between focal system and simulation 
system in the context of modeling and simulation. A valid simulation 
model is one that has acceptable correspondence with a given refer-
ent or focal system of interest.

Comparative analysis of models along generic dimensions—focal system, 
formalization, validation, and policy relevance—yields important information 
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and insights, such as cross-cultural features that are valuable for understanding 
and developing models. The fact that these dimensions are generic—or common 
to all social simulations—does not detract from their importance. Understanding 
these high-level features is essential for a meaningful appreciation of more 
specific features that are relevant in cross-cultural contexts. In contrast, mis-
understandings are common when comparisons focus immediately on specific 
technical features without regard to high-level, general aspects. For instance, 
different social simulations can be about the same focal system (e.g., an agent-
based model and a systems dynamics model of the same Eastern Africa region), 
while other social simulations model different focal systems (e.g., Eastern Africa 
and Central Asia) using the same type of computational model (such as agent-
based models). Likewise, social simulations may be similar or different in terms 
of validation requirements (high-vs. low-fidelity; Kuznar, 2006).

Comparing Focal Systems: Empirical Domain
In terms of the four models in Table 2, the respective focal systems have 
increasing empirical scope, ranging from local (or within-country) at one end 
of the spectrum, to regional on the other (multicountry) although all four aim at 
the same, general focus area of investigation (Eastern Africa). Accordingly, the 
four models provide a micro-to-macro spectrum of socioecological dynamics 
in terms of layered multilevel complex systems.

Differences, similarities, and their dynamics in simulated cross-cultural 
patterns are fundamentally dependent on generic features of computational 
models. The HerderLand model was inspired by the Mandera Triangle in 
northeast Kenya (microscale model consisting primarily of herders and farmers). 
In contrast, the RiftLand model represents a much larger focal area consisting 
of most of the countries and main cultural groups of Eastern Africa (macroscale 
model). RiftLand includes the countries of Kenya, Uganda, Rwanda, Burundi, 
and associated borderlands with neighboring countries (in counterclockwise 
order): southern Somalia, southern Ethiopia, southeastern Sudan, eastern 
Democratic Republic of Congo (DRC), and northern Tanzania. A total of nine 
countries are represented in RiftLand (the same number as the more abstract 
AfriLand model). RebeLand, by comparison, is a meso-scale model of a 
single but politically complete country that is analytically situated between 
the two scales of HerderLand (most micro) and RiftLand (most macro). 
While HerderLand and RiftLand focus on empirically referenced regions 
(the Mandera Triangle and Eastern Africa, respectively), RebeLand and 
AfriLand represent abstract country-systems (comprising one and nine coun-
tries, respectively). Understanding generic similarities and differences is 
essential for evaluation and comparative analysis along other dimensions.
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Comparing Simulation Systems: Formal Implementation

Computational models can be equation-based or object-oriented, depending 
on the primary ontology and language in which they are expressed. Variable- 
or equation-based models are high-dimensional mathematical systems that 
generally cannot be solved in closed form; hence the need for simulation. For 
example, systems dynamics models are equation- or variable-based systems 
that contain too many variables to obtain closed-form solutions. Simulation 
makes it possible to obtain time-dependent trajectories (e.g., Hanneman, 1988; 
Lowe, 1985; Ruloff, 1978, 1981; Sterman, 2000).

In Table 2 the simulation implementation system employed across all four 
models is object-oriented from an ontological perspective; the basic building 
blocks are classes of social, natural, and human-built entities, not variables or 
equations. Variables and equations are also used in a computer program (code), 
but in object-oriented modeling (abstraction) they are “encapsulated” within 
the social or physical entities represented in each model.

Many programming languages and simulation systems exist for formalizing 
object-oriented social simulation models (Nikolai & Madey, 2009). All four 
models are implemented in the MASON system.7 Therefore, all four models 
contain social and ecological components “instantiated” (rendered) in the same 
programming language (Java) although the scope of each model (simulation 
system) differs according to focal system and scale. The MASON system has 
a number of defining features, including the following (Luke et al., 2005):

 • Source code written in 100% Java;
 • Fast, portable, and fairly small, to run on most laptop computers;
 • Completely separate model (scheduler, data fields, random number 

generator) from visualization (Graphic User Interface, GIU), which 
can be added, removed, or changed at any time;

 • Models can be check-pointed and recovered, and dynamically migrated 
across platforms;

 • Identical results are produced across platforms (Mac OS, Windows, 
Lynux);

 • Models are self-contained and can run inside other Java frameworks 
and applications;

 • 2D and 3D visualization;
 • Can produce PNG snapshots, Quicktime movies, charts, and graphs, 

and output data streams; and
 • Easy compatibility with ECJ for use in evolutionary computation.
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These and related features make MASON a powerful tool for cross-cultural 
research because the resulting models permit the representation of diverse groups 
and culture systems within a common simulation framework for data collection 
from simulation runs and comparative analysis of models and results. Comparing 
the conflict patterns and interaction dynamics of herder and farmer groups in 
the HerderLand model with those of households and government agents in the 
RebeLand model is greatly facilitated by the common MASON environment. 
The same template for representing different groups, belief systems, behavioral 
norms, and other defining components can be drawn from basic concepts and 
principles from cultural anthropology and implemented across models.

Comparing Modeling Relations: Focal-Simulation Link
Similarities and differences across models exist in terms of abstraction, valida-
tion, and data considerations as part of the overall modeling relation between 
focal system and simulation system. In terms of abstraction (see Definition 3 
above)—the first aspect of a modeling relation—RebeLand and AfriLand are 
relatively abstract and generalized, whereas HerderLand and RiftLand are 
intended to be more empirical, particularly the latter. Nonetheless, RebeLand 
and AfriLand are designed with relevant empirical features, such as landscape 
characteristics and key socioeconomic properties that resemble those of the 
real world (e.g., Zipf-like distribution of population sizes, Pareto distribution 
of wealth, and Poisson distribution for the onset of public issues).8 Since model 
abstraction is always a function of questions asked by a given simulation system 
relative to a given focal system, some models abstract more than others from 
empirical reality—in a way that is not different from statistical or mathematical 
modeling (e.g., regression models or game-theoretic models, respectively).

The degree of abstraction defines a scale that goes from low resolution 
(high-level abstraction; so-called “toy models”) to high resolution or high fidelity 
(low-level abstraction; empirical models). Accordingly, RebeLand and AfriLand 
are relatively low-fidelity models intended to answer high-level questions about 
political stability, insurgency, state failure potential, and societal effects of 
biophysical change (including climate change and variability). HerderLand and 
RiftLand are designed at a higher level of fidelity for answering more specific 
questions about environmental changes, intra- and intergroup conflict, migration 
patterns, refugee flows, and related dynamics.

Validation requirements—the second aspect of the modeling relation—vary 
across models. Since HerderLand and (particularly) RiftLand aim at a higher 
level of empirical fidelity than the other two (RebeLand and AfriLand), their 
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validation requirements are more stringent. All four models contain some 
fundamentally valid features—such as a Zipf distribution of settlement sizes 
(intentionally jittered by some noise), Pareto distribution of wealth, and Poisson 
distribution for the onset of public issues. Beyond these basic features, RiftLand 
also has an additional set of empirical features that increase validation require-
ments in terms of outputs from simulation runs. Validation is a complex process 
involving calibration of model components as well as tests of simulation runs 
that match simulated and focal data (Cioffi, 2010c). In social science such a 
process is known as external validation (Kaplan, 1964), as opposed to verifica-
tion, which refers to debugging (roughly corresponding to internal validation 
in social research). Some common validation requirements include comparison 
between the following categories of simulated and empirical data:

 • Correspondence between main qualitative behaviors
 • Distributions of onset times, intensity, and duration for significant events
 • Size distributions of groups or areas affected
 • Emergent social organization of relevant groups
 • Resource depletion and sustainability patterns
 • Long-term equilibria or lack thereof (oscillations, asymptotic behaviors)
 • Coherence between short-term (high-frequency) phenomena and 

long-term (low frequency) trends

Each of these categories of validation comprises multiple key components. 
For example, focal-simulation comparisons of distributions (for both duration 
and size dimensions) comprise other aspects, such as distribution moments 
(mean, variance, kurtosis, skewness) and probability functions (density func-
tion, cumulative density function, intensity or hazard function). Simple correla-
tions are useful, but generally inadequate due to the limited amount of information 
they convey compared to a broader array of qualitative and quantitative mea-
sures. A more in-depth discussion of validation in social simulations with specific 
reference to MASON East Africa models is provided elsewhere (Cioffi, 2010c; 
see also Cioffi, 2002 in the context of establishing universality). The precise 
set of validation requirements and strategies depends on observed characteristics 
of a focal system (and levels of measurement) and output data collected from 
runs of the simulation system.

Finally, data requirements—the third aspect of the modeling relation—should 
be determined by previously discussed features: abstraction level and validation 
requirements. A common misconception (error) in simulation in general, and 
in social simulations in particular, is to prioritize data-related issues over all 
others—including but not limited to validation requirements pertaining to each 
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specific model—as if data requirements could be identified a priori, independent 
of abstraction level and validation requirements.

Similarities and differences exist among the four Mason-HRAF East Africa 
models in Table 2 in terms of data requirements. All models require data on the 
following categories:

1. Features of the focal terrain
2. Land-cover features (biomass distribution)
3. Natural resource distribution data relevant to modeled agents (economic 

resources, hydrology)
4. Climate (mainly bimodal seasonal rainfall patterns)
5. Population data (generally household-level data)
6. Basic social ontology (agent identity, basic needs, behavior rule set)

Beyond these requirements, different models use additional data determined 
by the focal system and focal-simulation relation (abstraction).

For example, the number and location of watering holes matters greatly in 
HerderLand (and RiftLand), because they play a significant role in emergent 
conflict patterns (Hailegiorgis, Kennedy, Balan, Bassett, & Gulden, 2010; 
Kennedy et al., 2010a; see also Kuznar and Sedlmeyer, 2005, for an earlier model 
of pastoralists and conflict inspired by the Darfur region, Sudan). Boundaries 
are a constituent feature in the other three models, and empirical data for borders 
are used in RiftLand (whereas provincial and state boundary data are only notional 
in RebeLand and AfriLand). RebelLand has features that are built on empirical 
data patterns pertaining to population settlement distributions and mechanisms 
for onset and duration of public issues, placing capacity demands on the polity. 
AfriLand’s data requirements parallel those of RebeLand. RiftLand has the 
greatest data requirements, because it is the most empirically tuned model. In 
each instance, data requirements are determined by research questions being 
addressed by each model and the abstracted simulation system instantiated in 
code, not simply by a priori features of the focal system (which are infinite!). 
Selecting data requirements is a deductive exercise based on research questions, 
not an inductive process uninformed by theory.

Specific Comparison
A more specific comparative approach to social simulations is based on formal 
and technical aspects that are narrower than generic dimensions discussed 
earlier. A linguistic perspective is helpful for specific comparisons, given the 
formal nature of all computational models, including social simulations.
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Social simulations can be compared according to their semantics, syntax, 
pragmatics, and genetics. The main technical comparison is arguably by syntax, 
which specifies the formal language and programming structure and function-
ing of a social simulation. For instance, social simulations can be syntactically 
classified and compared according to two categories: variable-based models 
(e.g., system dynamics simulations, queuing models) or object-based models 
(e.g., cellular automata, agent-based simulations, agent-based networks). Some 
would argue that the variable versus object orientation is ontological, not just 
syntactic (Barker, 2005; Cioffi, 2008; Lau, 2001). Beyond this classification, 
each social simulation model contains important implementation details that 
warrant specific comparisons.

Variable-based social simulation models can be classified by mathematical 
structure as continuous, discrete, or hybrid. By contrast, object- or individual-
based models are constituted by entities (social, natural, artificial) specified by 
their attributes and behaviors (methods). In a variable-based social simulation, 
the formal structure is given by mathematical equations. By contrast, in an 
object-based social simulation (e.g., multiagent model) the formal structure is 
fully specified by code.

Social simulations that are object-based—such as all agent-based models—
can be compared using the Unified Modeling Language (UML; Ambler, 2005; 
Eriksson, Penker, Lyons, & Fado, 2004), based on a standardized notation 
consisting primarily (but not exclusively) of class diagrams, sequence diagrams, 
and state diagrams. Each provides a complementary view of the same system—as 
is with different images of the same object (natural light, thermal imaging, 
ultraviolet).

Comparing Ontologies
Definition 5 (Class diagram): A UML class diagram (Figure 2) is a 

graphic representation of the main entities (classes, objects) included 
in a social simulation, such as human, social, natural (i.e., bio-
physical), or man-made (engineered or artificial) entities and their 
interrelations.

A class diagram describes the basic ontology of a model. The class diagram 
shown in Figure 2 illustrates some of the notational conventions for represent-
ing the main entities and relations in a social system in UML. As a social entity, 
a Polity (typewriter font denotes a computational object) consists of (dia-
mond head links) a Society and a system of Government. The latter has 
three relations abstracted in this class diagram (there are also others, of course): 
(a) receiving support inputs (resources, taxes) from Society; (b) influencing 
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Society through information and other means, including government propa-
ganda; and (c) enacting policies to solve emerging Public Issues that affect 
Society. Each entity/object also “encapsulates” its own attributes and 
“methods” (rules specifying how attributes change over time). For example, 
the attributes of Government might include size (variety of institutions), capac-
ity (resources available for policies), and other institutional features. Other 
entities and relations (e.g., different identity groups and authority relations 
within Society) can also be represented in a higher resolution diagram. (Further 
examples are provided in Cioffi, 2008; Cioffi et al., 2007; Cioffi, Rogers, & 
Latek, 2010; Cioffi, De Jong, & Bassett, 2010; Taber and Timpone, 1996.)

Note that an ontology defined by a UML class diagram consists of both 
static and relational aspects. For example, the computational “class” named 
Household (a component within Society) may contain attributes such 
as size (number of individuals belonging to a household), wealth (net 
household income after expenses), cultural identity (ethnic membership of 
Household), and other relevant cultural features in the simulation model. 
Other classes instantiate parcels, government agents, and biophysical fea-
tures. Methods, on the other hand, specify how attributes change, such a house-
hold becoming richer or growing in number, or State gaining or decreasing in 
capacity (a key attribute for financing public policies to address issues in all 

Figure 2. Example of UML class diagram of a polity
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models except HerderLand). Thus, methods implement dynamics that determine 
the state of the model, whereas classes (modeled entities) and their attributes 
implement mostly static ontological features of the simulation model. The 
state of the simulation model refers to the current value of all attributes encap-
sulated within its classes as determined by associated methods.

The precise ontology of each model in the Mason-HRAF Project on Eastern 
Africa is described elsewhere and is too extensive to be covered here in great 
detail. The following summary describes the basic socionatural ontology in 
each model:

HerderLand. The main classes comprise locations, agents (herders and farm-
ers), watering holes, and biomass, all within a local area of approximately 150 
× 150 km in size, inspired by the Madera Triangle region in northeastern Kenya.

RebeLand. As a country-level model, the main classes consist of cities and 
smaller settlements, provinces or administrative districts, roads, resources, and 
social agents (in this case households, insurgents, government institutions, 
public administration, and security agents).

AfriLand. This multicountry model is comprised of nine RebeLand-like 
polities, including all the RebeLand entities (and dynamics), in addition to borders 
that can be traversed by agents.

RiftLand. Classes contained in HerderLand and AfriLand compose the entities 
in Rift-Land, in addition to other entities such as ecosystems, bodies of water, 
transportation infrastructure, and a social landscape that more closely resembles 
Eastern Africa.

From a methodological perspective, cross-cultural comparison across mod-
els is greatly facilitated by the fact that all entities and relations are rendered 
in terms of computational objects consisting exclusively of their encapsulated 
attributes and methods. Entity-to-entity comparisons (for example, as between 
different cultural groups or types of social relations) can be framed in terms 
of comparing specific (and unambiguous) code pertaining to the relevant 
classes and associations—a task that is generally difficult or impossible based 
on narratives or even detailed ethnographies.

Comparing Dynamic Processes
Beyond ontology, the next two types of UML diagrams describe dynamics 
and can be used for comparing micro- and macro-cultural processes within and 
across models.

Definition 6 (Sequence diagram): A UML sequence diagram (Figure 3) 
is a graphic representation of the schedule with which main events 
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and interactions (e.g., situational changes, information flows, decision 
making, behavioral acts, lotteries, resource transfers) occur among 
entities (agents or other classes) in a social simulation.

The sequence diagram shown in Figure 3 illustrates more specific micro-
interactions that occur among various entities within the Polity system. 
A sequence diagram is read from top to bottom, following the chronology 
(“schedule”) of events listed down the left column. Each object/entity is 
denoted by a vertical “lane” and arrows represent interactions of various 
kinds. Unlike a class diagram, which is mostly static, a sequence diagram 
represents the main dynamics occurring in the system, and the precise order 
of interaction between components. Note that the Polity is not explicitly 
denoted, because all dynamics are internal to it. For comparative purposes, 
note that a sequence diagram is equivalent to a directed graph, in the sense 
of social network analysis. Therefore, a sufficiently well-specified sequence 
diagram can be quantitatively described by a vector of network metrics at 
both node and network levels.

The key internal process of a social simulation is arguably the so-called 
“main simulation loop.”

Definition 7 (Main simulation loop): The main simulation loop of a 
social simulation is a discrete process that details what happens one 
step at a time between consecutive updates of the state of the model.

Several types of graphics can be used for describing the main simulation 
loop of a model. Flowcharts are the most common, but can be complicated. 

Figure 3. Example of a UML sequence diagram for the operation (functioning) of a 
basic polity
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UML sequence diagrams can be more informative, but sometimes are difficult 
to design when many classes of objects interact. Main simulation loops can be 
compared directly using one or more of these types of graphics (Cioffi & Gotts, 
2003). From a cross-cultural perspective, the main simulation loop of a model 
highlights cultural similarities and differences among group relations—features 
that have significant implications for social dynamics. For example, social 
features and interaction patterns such as complementary opposition, cultural 
taboos, competing authorities, ethnic traditions, and other social conditions 
can be represented by unique patterns in sequence or flowchart diagrams.

A complementary dynamic representation for comparative analysis is pro-
vided by the UML state diagram.

Definition 8 (State diagram): A UML state diagram (Figure 4) is a graphic 
representation of the set of main states and all feasible (i.e., practically 
possible) interstate transitions of the system.

The state transition diagram in Figure 4 (also called “finite-state machine” 
diagram) illustrates the set of discrete conditions (“states”) in which the simple 
Polity system can find itself while it operates. Unlike the earlier two dia-
grams, the state diagram is “systemic” or at the system-level, because it portrays 
the state of Polity as a whole, “in the aggregate,” independent of the state 
of constituent components. A well-specified state diagram can also be described 
as a directed graph or as a matrix with states as rows/columns and elements 
denoting possible transitions.

UML diagrams for comparing systems are used in addition to more con-
ventional flowchart diagrams for specifying a main simulation loop and other 
important processes within a given simulation model.

In the case of all four MASON models from the Mason-HRAF Eastern 
Africa project, these are rendered (“instantiated”) as discrete event simulation 
models, meaning that basic processes driving social and biophysical dynamics 
are rendered as time steps, not continuous processes. For example, in RebeLand 

Figure 4. Example of a UML state diagram for a basic polity
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each household assesses its own well-being in terms of a wellness function, 
and based on such an assessment decides what to do next. Possible choices 
might include continuing to earn an income or, if greatly dissatisfied, joining 
an insurgency. Each of these steps is rendered as an event. Similarly, govern-
ment agents (for instance, the State) assess their situation and decide what to 
do next. Governmental action may include producing additional security agents 
to fight insurgents. When encountering government security agents, insurgents 
might decide to flee or engage, depending on circumstantial factors. These 
dynamics are represented and compared using UML sequence and state transi-
tion diagrams such as those in Figures 3 and 4.

Comparisons of social simulations by other dimensions, such as semantics, 
pragmatics, and genetics focus specifically on issues of meaning, intended use 
(every model aims at answering some core question), and origin, respectively. 
For instance, whereas some simulations are primarily intended for pure scientific 
research, others are intended for policy purposes (pragmatics). Similarly, the 
meaning of certain terms (e.g., “agents”) may agree or differ across simulations 
being compared.

Summary
Melvin (“Mel”) Ember was co-Principal Investigator in the Mason-HRAF Joint 
Project on Eastern Africa, a multiyear project funded by the Office of Naval 
Research under the Multi-University Research Initiative (MURI) Program. The 
project aims at developing and analyzing new advanced computational agent-
based models of human societies across 10 countries and numerous ecosystems 
in Eastern Africa, including Kenya, Uganda, Tanzania, Rwanda, Burundi, south-
ern Somalia, southern Ethiopia, southeastern Sudan, eastern Democratic Repub-
lic of Congo, and northern Tanzania.

A major unsolved challenge in this kind of social science research is to devise 
a systematic way to compare, communicate, and contrast different models along 
relevant dimensions and characteristics, given the inherent complexity of most 
computational agent-based models. This article presented a viable systematic 
framework for comparing models and illustrated its application using some of 
the models that Mel helped inspire and develop as senior project participant.

The proposed framework is based on two kinds of comparisons: generic 
and specific. Generic comparisons pertain to comparative dimensions that are 
common to all social simulations, including comparisons among focal systems 
(empirical domain), types of computational models (programming language), 
process of abstraction, model validation (external validity), and data require-
ments (as determined by the former dimensions). Specific comparisons pertain 
to narrower formal issues, such as detailed ontology (main classes and 
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associations) and dynamics. The latter are represented by UML class, sequence, 
state, and flowchart diagrams to enable comparative analysis.
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Notes
1. It seems likely but unproven that much earlier, preclassical scholars of the 2nd or 

1st millennium BC had developed comparative schemes for different types of social 
systems, given the lost libraries of Alexandria, the Near East, China, and elsewhere 
in the ancient world.

2. For example, Almond, Powell, Dalton, & Kaare Strom (2006); Bartolini, (1993); 
Dahl, (1984); Deutsch et al. (1981); Ember & Ember (2010); Goldstone (2003); 
Ito (1997); Landman (2008); Lave & March (1993); Lichbach & Zuckerman 
(1997); Przeworki & Teune (1970); Ragin (1987); Saberwal (1987); Sartori (1991).

3. Lave & March’s (1993) evaluation framework—in terms of “truth, beauty, and 
justice” can also be used for comparing models. However, the intent here is more 
specialized.

4. For recent surveys of social simulation in computational social science, see, for 
example, Carley & Gasser (1999); Cioffi (2010a); Gilbert & Troitzsch (2005); 
Kuznar (2006); Taber & Timpone (1996); Takadama, Cioffi-Revilla, & Deffaunt 
(2010); Terano & Sallach (2007).

5. Comparative analysis of computational social science models is in its infancy, so 
there is a lack of consensus on a widely shared framework or comparative standard. 
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A unified framework may be premature, given the rapid pace of methodological 
developments in the area of computational modeling. This includes (but not exclu-
sively) agent-based modeling. Examples of proposed frameworks include Cioffi & 
Gotts (2003), Grimm et al. (2006), Janssen, Barton, Alessa, Bergin, & Lee (2008), 
and Ostrom (2009). The framework in this paper draws on these proposals and 
additional ideas generated by the Mason-HRAF Joint Project on Eastern Africa 
(Cioffi, 2010c; Cioffi, De Jong, and Bassett, 2010; Cioffi & Rouleau, 2009, 2010; 
Hailegiorgis et al., 2010; Kennedy et al., 2010a, 2010b) and the Mason-Smithsonian 
Joint Project on Inner Asia (Cioffi et al., 2007; Cioffi, Rogers, & Latek, 2010; 
Rogers, 2007; Rogers & Cioffi, 2009).

6. The simulation literature also uses the term “target system” (Gilbert & Troitzsch, 2005).
7. The MASON system (Luke et al., 2005) is available at <http://cs.gmu.edu/~eclab/

projects/mason>. The MASON web site contains numerous references, examples of 
MASON models, and links to other multiagent simulators, such as RePast, Ascape, 
Swarm, and NetLogo. The MASON System Project was initially funded by the 
Mason Center for Social Complexity and is a collaborative project with the Mason 
Evolutionary Computation Laboratory (ECLab). Additional funding for MASON 
has been received from the U.S. National Science Foundation, DARPA, and the 
Office of Naval Research.

8. These and other simulation features are described in the respective paper-of-record 
of each model. See also Cioffi, 2002, for a set of related comparative dimensions.
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