" READNGS oy
| ;;f ! h¢
MACHINE i
[EARNING

DaVince Tools
This PDF file was created by an unregistered copy of the shareware program DaVince Tools. For more information about DaVince Tools and how to register your software (which will remove this notice), visit http://www.davince.com

DaVince Tools
This PDF file was created by an unregistered copy of the shareware program DaVince Tools. For more information about DaVince Tools and how to register your software (which will remove this notice), visit http://www.davince.com

A Theory and Methodology of
Inductive Learning

Ryszard S. Michalski
Department of Computer Science,
Urbana, IL 61801, U.S.A.

University of Hlinois,

Recommended Bruce Buchanan

ABSTRACT

A theary of inductive learning is presénted that charactérizes it as & heuristic search through a space

of symbolic descriptions. genecraved By an application of certain iference niles to the ininal
observational statentents {the teacher-provided examples of some concepts, or facts abour a class of
objécts or a phenomenon). The ference rules include géneralization audes, which perfarm generaliz-
ing transformations on descriptions; and conventiona! truth-preserving deductive rules {specialization:
and reformulation rules). The application of the inférence rules lo descriprions is constrained by
problem background krowledge, and guided by criteria evalnating the ‘qualisy’ of generated inductive.
GSSEREOHS.

Based on this theory, @ géneral miethodology for learning stnictural descriprions from examples,
called sTAR, Is described and iflustrated by a problem from the area of concepiual data analysis.

“ . . scientific knowledge through demonstration'
is impossible unfess a man knows the primary
immediate premises., ., *...we must get

to know the primary premises by induction;

for the method by which even sense-

perception implants the universal is induetive . . .7
{circa 330 B.C))

Anstotle, Posterior Analvtics. Book 11, Th. 19,

1. Imiroduction

The ability of people 1o make accurate generalizations from few stattered faets
or to discover patterns in seemingly chaotic collections of observations is a

e, what we now call ‘deduction’.

Origially puhlished in Awifislal fofiligenee, 20 (1883 11

fascinating research topic of long-standing interest. The understanding of th's
ability is now also of growing practical importance, as it halds the key to an
improvement of methods by which computers can acquire knowledge, A need
for stich an improvement is evidenced by the fact that knowledge acquisition is
presently the most Limiting ‘bottleneck’ in the development of modern know-
ledge-intensive artificial intelligence systems.

‘The above ability is achieved by a process called inductive learning Le.
inductive inference from facts provided by a teacher or the environment. The
study and medeling of this form of learning is one of the central topics of
machine learning. This paper outlines a theory of inductive leaming and then
presents a methodology for acquiring general concepts from examples.

Before goig further into this topic, let us first discoss the potential for
applications of mductive learhing systems. One such application is an
automated construction of knowledge bases for expert systems. The present
approach to constructing knowledge bases involves a tedious process of for-
malizing experts’ knowledge and encoding it in some knowledge representation
system, such as production rules [75,17] or & semantic network [7.24]. In-
ductive leaming programs could provide both an improvement of the current
techniques and a basis. for developing aiternative knowledge acquisition
methods.

In appropriately selected small domains, inductive programs are already able
to determine decision rules by induction from examples of expert decistons.
This process greatly simplifies the transfer of knowledge from an expert into a
machine. The feasibility of such inductive knewledge acquisition has been
demonstrated in the expert system pLanT/ds, for the diagnosis of soybean
diseases. In this system, the diagnostic rules were developed in two ways: by
formalizing experts’ diagnostic processes and by induction from examples. In
an experment where both types of diagnostic rules were tested on a few
hundred disease cases, the inductively derived rules outperformed the expes-
derived oneg [31]. Another example is an inductive acquisition of decision rules
for a chess end-game [53, 61, 63].

A less direct, but potentially promising tse of inductive learmng is for the
refinement of knowledge bases imifially developed by human experts. Here,
inductive learning programs could be used to detect and rectify inconsistencies,
to remove redundancies, to cover gaps, and to simplify expert-derived decision
rules. By applying an inductive inference program to the data consisting of
original rules and examples of correct and incorrect results of these rules’
application to new sitvations, the rules could be incrementally improved with
little or no human assistance.

Another important application of inductive programs i In vanous exper-
mental sciences, such as biwology, chemistry, psychology, medicine, and

0L

gopdurexy SurareJy, PeLissB[Yal wWody Juiies] sAlonpu]

genetics. Here they could assist a user in detecting interesting concepruzl
patterns or in revealing siructure in collections of observations: The widely
used traditional matheématical and statistical data analysis iechnigues; such as
Tegression analysis. nimerical taxenomy, or facter analysis, are not sufficient
powerful for this task. Methods for conceptual date analysis are ngeded. whose
results are not merely mathematical formulas but logic-style descriptions
characterizing data in terms of high-level. human-oriented concepts and rels-
tionships. An eatly example of such an application is the Meta-Dendral
program [9] which infers cleavage rules for mass-spectromerer simulation (see
its analysic in/120]).

There are two basic modes in which inductive programs tan be ut:lized; as
interactive tpols for dequisinon of knewledge from specific tacts or examplss.
or a% parts of machine-learning systems. In the first mode, a user supplies
learning examples and exercises strong control over the way the program is
used (e.g.. [51.70]).

In the second mode. an inductive program is a component of an integrated
learning system whose other components generale the needed learming
examples [10]. Such examples—positive and negative—constitute the feedback
from the system’s attempts to performy a desired rask. An example of the
second mode 13 the learning system Lex for symbelic mtegration [57]. where 4
‘generalizer’ module performis inductive infersnce on instances pravided by 2
‘eritic” module:

From the viewpaint of apphications. such as aiding the construction of expert
systems or conceptual analysis of éxperimental data, the most relevant is
conceptual inducrive learning. We use this term 10 designate a type of inductive
learming whese fipal products are svmbolic descriptions expressed v bigh-teve!
human-oriented terms and forme (more details are given in Secrron S0 Ths
descriptions typically apply to real world objects or phenomens, rathier thar
abstract mathematical coricepts or computations. This paper 15 concemed
specifically with concepiual indpctive leatiing.

The most frequently studied type of such leaming is coricepr learning from
examples (called also concepr acquisition). whose task is 1o induce peneral
descriptions of concepts from specific instances of these concepts. The earhy
studies of this subject go back to the fifties. e.g., those bv Hovland [33], Bruner.
Goodnow: and Austin [8]. Newell. Shaw and Simen[60], Amarel [1].
Feigenbaum |21}, Kochen[38]. Banerji[2]. Hunt[34]. Simon and
Kotovsky [76], Hunt, Marin and Stone [35], Hajek, Havel and Chytil [26] and
Borigard [6]. Among more recent contributions there are those, for instance. by

Winston [87], Waterman [86] Michalski [45], Hayes-Roth [28]. Simon and Lea

[77]..Stoffel [§3], Vere [83). Larsan [40], Larsors and Mickalski [41]. Mitcheli [5€].
Quinlan [7(f] and Moraga [58]. An umportant varant of coneept leamning from

examples is the incremental concept refinement, where the input information
includes, in addition 1o thée training examples, previously learned hypotheses,
or human-provided initial hypotheses tha: may be partially incorrect or incom-
plete (¢.g.. [52]). The paper by Dierterich and Michalski [20] discusses varions
evaluation criteria and several methods for concept leaming from examples.

Another type of tonceptual inductive learning is concept leamning from
observation (or descriprive generalizarion). concerned with establishing new
comcepts or theories characterizmg given facts. This area includes such: topics as
automated theory formation (e.g., [9, 42, 43]). discovery of relationships in data
te.g.. [27. 66. 39]), or an automatic construction of taxonomies (e.g., |50, 54]).
Difierences beiween concept learning from examples znd concept ledrning
from observation are discussed in more detail in the dex séction,

Conceprual snductive learning has a stropg cognitive sgience favor. Tis
emphasis. o7 inducing human-oriented. rether than maching-oriented descrip-
tions, and @S primary interest in nonmatheniatical domaing distinguishes it
from othér tvpes of inductive learning. such as grammatical inference and
program svothesis. In grammatical inference, the task is to determme a formal
grammar that can generate a @ven set of symbal surings (eig., (80, 4, 89, 23]). In
Program svmhes;s the objective 15 1o/ construct 4 comipliter program from /O
pairs or compuiational traces, or t0 transform & program ffom ode form w0
another by applying correctness-preserving transformation rales (.g.. ["4 11.
5, 13, 36, 79. 64]). The final resul of such learning is & computer program, in an
assumed programming language. destined for machine rather than human
‘consumption’. For example. the method of “model inference’ by Shapiro [73)
constructs @ PROLOG program characterizing a given set of mathematical facts.

Recent vears have winessed the development of a number of task-oriented
inducnive learning systems that have demonsirated an impressive performance
in their specific domain of application. Majar weaknesses. however, persist in
much ol the research in this area. Most svstems lack generality and esten-
sibility. The theoretical principles upon which they are built are rarely well
explained Lack of common terminology and #n adequate formal theorv makes
it difficult w compare different learning methods.

In the following sections we formulate logical foundations of inductve
learning, define various types of such learming, present inference rules for
generalizing concept descriptions, and finally describe a general methodology,
called sTam. for learning structural descriptions from exariples. To improve: the
readability of this chapter. below is presented a table of used symbols.
Appendix A gives the details of the description languzge used (the annotated
predicate calculus),

1.1. Symbois and notation

— DEgaton,
& conjunction (fogical preduct)

Buruaray aagonpuy jo Adoropoygeiy pur L1060y, ¥V TEZ

T

disjunction (logical sum),

implication,

logical equivalence,

term rewriting,

exception (symmetric difference), _

a set of facts (formally, a predicate that is true for all the facts),

a hypothesis (an inductive assertion),

specialization,

generalization,

i'efotmnlation,

existential quantifier over 1,

numerical quantifier aver v, (I is a set of integers),

universal quantifisr over o,

a concept description,
K; a predicate asserting a concept name (a class} of objects,

:1> the implication linking a concept description with a coneept name,
¢ anevent (a description of an object),
E, a predicate that is true oaly for the training events of the concept,
X an attribute (zero or one argument descriptor),

a lexicographic evaluation functional,

the domain of descriptor p.

: -"—-.-7\'*{;'”:’:71(13—‘U'<

L
—

<= w

& 88

ke

DOM(p)
2. Types of Inductive Learning

:2;1. Inductive paradigm

As mentioned before, inductive learning is a process of acquiring knowledge by
drawing inductive inferences from teacher- or environment-provided facts.
Such a process invelves operations of generalizing, t'ransférming,_ correating
and refining knowiedge representations. Although it is one of the most com-
mon forms of learning, it has one fundamental weakness: except for special
cases, the acquired knowledge cannot, in principle, be completely validated,
This predicament, observed early on by Scottish philesopher David Hume
(18h century), is due to the fact that inductively acquired assertipns are
hypotheses with a potentially infinite number of consequences, while only a
finite number of confirming tests can be performed.

Traditional mquiries: into inductive inference have therefore dealt with
questions of what are the best eriteria for guiding the selection of inductive
assertions, and how can these assertions be confirmed. These are difficult
problems, permeating all scientific activities, The search for answers has turned
inductive inference into a battlefield of philosophers and logicians. There was
even doubt whether it would ever be possible 1o formalize inductive inference
and perform it on a machine. For example, philosopher Karl Popper [68]
believed that inductive inference requires am irrational element. Bertrand

Py b e e

Russell in “History of Western Philosphy™ [71] stated: “. ..so far no method
has been found which would make it possible to invent hypotheses by rule™,
George Polya [67] in his pioneering and now classic treatise on plausible
inference (of which inductive inference is a special case) observed: “A person
has a background, a machine has not; indeed, you can build a machine to draw
demonstrative conclusions for you, but T think you can never build a machine
that will draw plausible inferences”,

The above pessimistic prospects are now being revised. With the develop-
ment of modern computers and subsequent advances in artificial intelligzence
research, it is now possible fo provide a machine with a significant amount of
background information. Also, the problem of antomating inductive inference
can be simplified by concentrating on the subject of hypothesis generation,
while ascribing to humans the question of how to adequately validate them.
Some successful inductive inference systems have already been built and a
body of knowledae is emerging about the nature of this inference. The rest of
this section will analyze the logical basis for inductive inference. and then
Section 5 will present various generalization rules, which can be viewed as
inductive inference rules.

In contrast to deduction, the starting premises of induction are specific facts
rather than general axioms, The goal of inference is to formulate plausible
general assertions that explain the given facts and are able to predict new facts.
In other words, inductive inference attempts to derive a compléte and correct
description of a given phenomenon from specific ‘observations of that
phenomenon or of parts of it. As we mentioned earlier, of the two aspects of
incductive inference—the generation of plausible hypotheses and their valida-
tion (the establishment of their truth status)}—only the first is of primary
interest to induetive learning research. The problem of hypothesis validation, a
subject of various philosophical inguiries (.. [12]) is considered 10 be of
lesser impaortance, because it is assumed that the -gcne-rate'd hypotheses ars
judged by human experts, and tested by known methods of deductive inference
and statistics, '

To understand the role of inductive inference in learning, Jet-us consider
several different ways in which a system can acquire a description of a class of
objects (situations. decisions, etc.),

(1) By receiving the description from a teacher and incorporating it within the
system’s existing knowledge structures (&.g., {25]). This way is called leatning by
being told’.

(2) By inferring the description from characteristics of a superset of the object
class. This way is called leaming by deductive inference’.

(3) By modifying the description already possessed about a similar ¢lass of
objects (e.g., [88}). This way is called ‘learning by analogy’.

(4) By generalizin_g_ teacher-provided examples and counter-examples of
objects from this class. This way is called leaming from examples’.

éL

SR|duwexs] SuIUle.], PoyISse[oasy Wody SUrLiesT eAInpuUy

(3) By esiperimenting, discovering regularities, formulating useful concepts
and structuring observations about the objects. This way is called Searning
from observation” (or Jearning by discovery’).

Although all of these ways, except for the first one, involve some amount of
inductive inference, in the last two, i.e,, in learning from examples and in
learning from observation, this inference is the central aperation. These two
forms are therefore considered to be the major forms of inductive learning. In
order to explain them, let us formulate a general paradigm for inductive
inference.

Given:

(a) observational statements {facts), F, that represent specific knowledge
about some objects, situations, processes, eic.,

(b} a tentative inductive assertion (which may be null),

(¢) background knowledge that defines the assumptions and constraints
imposed on the obsetvational statements and generated candidate inductive
assertions, and any relevant problem domain knowledge. The last includes the
preference criterion characterizing the desirable properties of the sought in-
ductive assertion. .

Find: _ .
An inductive asseriion (hypothesis), H, that tautologically or weakly implies
the observational statements, and satisfies the background knowledge.

A hypothesis H tautologically implies facts F if F is a logical consequence of
H, te., if the expression H=> F i true under all interpretations (‘=" denotes
Yogical implication). This is expressed as follows.

H PF (read: H specializes to F) (0
or
FkEH {read: Fgeneralizes to H).)

Symbols p and k are called the speciafizarion and generalization symbols,
respectively. If HO F is valid, and H is true, then by the law of detachment
(modus ponens) F must he true. Deriving F from H (deductive inference), s,
therefore, truth-preserving. In contrast, deriving H from F (inductive in-
ference) is not truth-preserving, but falsity-preserving, i.e., if some facts falsify
F then they also must falsify H. (More explanation on this topic is given in
Section 5.)

The condition that F weakly implies F means that facts F are not certain but
only plausible or partial consequences of H. By allowing weak implication, this
paradigm includes methods for generating ‘soft” hypotheses, which hold only
probabilistically, and partial hypotheses, which account for some butnot all of
the facts (e.g., hypatheses representing 'dominant patterns’ or characterizing
inconsistent data). In the following we will limit our attention to hypotheses
that tautologically miply facts.

For any given sei of facts, a potentially infinite number of hypotheses can be
generated that imply these facts, Background knowledge is therefore necessary
to provide the consiraints and a preference criterion for reducing the infinite
choice to one hypothesis or a few most preferable ones.

A typical way of defining such a criterion is to specify the preferable
properties of the hypothesis—for example; to require that the hypothesis is the
shortest or the mosl economical description consistent with all the facts (as,
e.g., iri [46]). Such a ‘biased choice’ criterion is necessary when the description
language is complete, i.e., able to express any possible hypothesis. An alter-
native is to use a ‘biased language' criterion [57], restricting the description
language in which hypotheses are expressed (i.e.. using an incomplete descrip-
tion language). Although in many methods the background knowledge is not
explicitly stated, the authors make implicit assumptions serving the same
purpose. More details on the criteria for selecting hypothesss are given in
Section 4.7.

2.2, Concept acquisition vs. descriptive generalization

As mentioned in the intreduction, one ¢an distinguish between two major typss
of inductive learning: learning from examples (corcept acquisition) and leaming
from observation (descriptive generalization). In concept acquisition, the obser-
vational statements are characterizations of some pbjects (situations, processes,
etc.) preclassified by a teacher into one or more classes (concepts). The induced
hypothesis can be viewed as a concept recognition ruke, such that if an object
satisfies this rule, then it represents the given concept. For example, a recog-
nition rute for the concept ‘philosopher” might be: *A person who pursies wisdom
and gains the knowledge of underlying reality by inteflectual means and moral
self-discipline is a philosophes’.

In descriptive generalization the goal is to determine a general description (a
law, a theory) characterizing a collection of observations. For example, observ-
ing that philosophers Aristotle; Plato and Socrates were Greek, but that
Spencer was British, one might conclude: “Most philosophers were Greek’.

Thus; in conirast to concept acquisition that produces descriptions for
classifying objects into classes on the basis of the objects’ properties, descrip-
tive generalization produces descriptions specifying properties of objects
belonging to a certain class. Here are some example problems belonging to the

above two categories:

Concept acquisition
(a) Learning characteristic descripions of a class of objects, which specify

one or more common properties of all known objects in the class. A logical

product of all such properties defines the class in the context of an unlimited
number of other object classes (e.g.. [6, 87, 83, 85, 15, 29, 56, 82, 49. 20]).

(b) Learning discriminant descriptions of a class of objects that singly dis-
tinguish the given class from a limited number of other classes (e.g.. [35, 6, 46-49,
70)).

Fuuaeary sArjonpu] jo LS0[OPOYISIN PUR LI0SYTL Y BTG

gL

il

(c) Inferring sequence extrapolation rules (e.g., [76, 19]) are able to predict
the next element (a symbol, a number, an object, efc.) in a given sequence.

Descriptive generalization

(a) Formulating atheory characterizing a collection of entities (2.g., chemical
compounds, as in [9], or numbers, as in [42, 43]). _ _

(b) Discovering patterns in observational data (e.g., [26, 81, 27, 39, 66, 90]).

(¢) Determining a taxonomic description (a classification) of a collection of
objects {e.g., [49, 54]).

This paper is concerned primarily with problems of cancept acquisition. In
this case, theset of observational statements F can be viewed as a collaction of
implications:

Friey > K}, i=l, 3

where ¢, (a training event) denotes a description of the kth example of concept
(class) asserted by predicate K; (for short, class K;) and I is a set indexing
classes K. It is assumed here that any given event represents only one concept.
Symbol ::> is used here, and will be used henceforth, to denote the im-
plication linking a concepr description with a predicate asseriing the concept
name (in order to distinguish this implication from the implication between
arbitrary descriptions). The inductive assertion, H, ¢an be characterized as a set
of toncept recognition rules:

H:{D:::>K)}. (€7, 4)
where D; is a concept description of class K, ie., an expression of conditions
such that when the_y are satisfied by an object, then this object is considered an
instance of class K.

According to the definition of inductive assertion, we must have

HPF. (5}
By substituting (3) and (4) for F and H, respectively, in (5), and making

appropriate transformations, one can derive the following conditions to be
satisfied in order that (5) holds

VieI(E> D) (6)

and

Vije I{D:>~E), if j#i, (7)

where E, i € I, is a description satisfied by all training events of class K, and
only by such events (the legical disjunction of training events).
Expression (6) is called the completeness condition. and (7) the ‘consistency

condition. These two conditions are the requirements that must be satisfied for
an inductive assertion to be acceptable as a concept recognition rafe. The
completeness condition states that every training event of some class must
satisfy the description D; of the same class (since the opposite does not
have to hold, D; is equivalent to or more general than E;). The ¢onsistency
condition states that if an event satisfies a description of some class, then it
cannot be a member of a training set of any other class. In learning a concept
from examples and counterexamples, the latter constitute the ‘other class,

The completeness and consistency conditions provide the logical foundation
of algorithms for concept learning from examples. We will see in Section 4 that
to derive D satisfying the completeness condition one can adopt some in-
ference rules of formal logic.

2.3. Characteristic vs. discriminant descriptions

The completeness and consistency conditions allow us to clearly explain the
distinction betwéen the previously mentioned characteristic and diseriminant
descriptions. A characteristic. description of & class of objects (also known as
conjunctive generalization) is an expression that satisfies the completeness
condition or is the logical product of such expressions. Tt is typically a
conjunction of some simple properties common ta all objects in the class. From
the applications viewpoint, the most interesting are maximal characreristic
descripions (maximal conjunctive generalizations or MCG) that are the most
specific (i.e.. longest) logical products characterizing all objects in the given
class, using terms of the given language. Such descriptions are intended to
discriminate the given class from ail other possible classes (for illustration see
Section 7).

A discriminant description is an expression that satisfies the compieteness
amnd consistency condiﬁon,_ or is the logical disjunction of such expressions. 1
specifies a single way or various alternative ways to distinguish the given class
from a fxed number of other classes. The most interesting are minimal
discriminant descriptions that are the shortest (i.e., with the mimimum number
of descriptors) expressions distinguishing all objects in the given class from
objects of the other classes. Such descriptions are intended to specify the
mininum information sufficient to identify the given eclass among a fixed
number of other classes (for illustration see Section 7).

2.4. Single- vs. mulitiple-concept learning

t is instructive to distinguish between learning a single concept, and learming a
collection of concepts. In single-concept learning, one can distinguish two cases:
(1) when observational statements are just examples of the coneept to be
learned (learning from ‘positive’ instances only), and (2) when they are exam-
ples and counter-examples of the concept (learning from ‘positive’ and ‘nega-
tive' instances),

vL

so|dwexy SUILIBL], PayIsse(deag woxy Juriige aATIONPU

In the first case, because of the lack of counter-examples, the consistency
condition (7) is not applicable, and there is no natural limit to which descnption
D, (hére, i = 1) can be generalized, One way to impose-such a limit is to specify
resinictions on the form and properties of the sought description. For example,
one may require that it be the longest (most specific) conjunctive statement
satisfying the completness condition (e.g-, [83, 29]). Another way is to require
that the description not exceed a given degree of generality, measured, for
example, by the ratio of the number of all distinct events which could
potentially satisfy the description to the number of training instances [82].

1 the second case, when the teacher also provides counter-examples of the
given concept, the learning process is considerably stmplified. These counter-
examples can be viewed as representing a *different clasg”. and the consistency
condition (7} provides an obvious lunit on the extent to which the hypothesis
can be generalized. The most useful counter-examples are the so-calied “near
misses’ that only slightly differ from positive examples [87. 88]. Such examples
place stronger constraints on the generalization procsss than randomiy
generated examples. \

In multiple-concept learning one can also distinguish two cases: (1) when
descriptions D of different classes are required to be mutually disjoint, i.e,, na
event can satisfy more than one description, and (2) when they are overlapping.
In an overlapping generalization an event may satisfy more than one dgserip-
tion. In some situations this is desirable. For example, if' a patient has two
diseases, his symptoms should satisfy the descriptions of both diseases, and in
ythis case the tﬁgnsistency condition is not applicable.

An overlapping generalization can be interpreted in such a way that it always
indicates only one decision class. In this special case, the concept recognition
rules, D, ::>K, are applied in a linear order, and the first rule satisfied
generates the decision. In this case, if a concept description D for class K,

contains a conjunctively linked condition .4, and precedes the rule for class K

that containg condition ~ A, then the condition ~.A is superflous and can be
removed. As a result, the linearly ordered recognition rules can be significantly
simplified. For example, the set of linearly ordered rules

Dy :>K,, Dsi 5K, Dy 3K

is logically equivalent to the set of (unordered) rules

D.\l i K_{., “'D;&D‘g: :>K2-, ""’Dg&““ Dg&Dg: :>-K5.

There are also other ways for deriving a single decision from overlapping rules
(e.g.. [17]). The above forms of multiple<concept learning have been im-
plemented in inductive programs aovawsl [46] and acn [52].

3. Description Language

3.1, Bias toward comprehensihility

in concept acquisifion. the main intérest is in derivation of symbolic descrip-
tions that are human-oriented, i.e., that are easy to understand and easy to use
for creating mental models of the information they convey. A tentative
criterion for judging inductive assertions from such a viewpoint is provided by
the tollowing comprehensibility postulate.

The results of computer induction should be symbolic descrip-
tions of given entities, ‘semantically and structurally similar to
those a human expert might produce observing the same entiges.
Components of these descriptions should be comprehensible as
single ‘chunks’ of information, directly interpretable in natural
language, and should relate quantitative and qualitative concepts
in an integrated fashion.

As a practical guide, one can assume that the components of descriptions
(single sentences, rules, labels on nodes in a hierarchy. etc.) should be expres-
sions that contain only a few (say, less than five) conditions in a conjunction,
few single coaditions in a disjunction; at most one level of bracketing, at most
one implication, no more than two quantifiers, and no recursion (the exact
numbeérs may be disputed,” but the principle is clear). Sentences are kept within
such Himits by substituting names for appropriate subcomponents. Any opera-
tors used in descriptions should have 2 simple intuitive interpretation. Concep-
tually related sentences are organized into a simple data structure, preferably a
shallow hierarchy or a linear list, such as a frame {53, 42].

The rationale behind this postulate is to ensure thar descriptions generated
by inductive inferemce bear similarity to human knowledge
representations {31], and therefore, are asy to comprehend. This requirement
is very important for many applications. For example, in developing knowiedge
bases for expert systems, it is important that human experts can easily and
reliably verify the Inductive assertions and relate them to their own domain
knowledge. Satisfving the comprehensibility postulate will also facilitate
debugging or improving the inductive programs themselves. When the com-
plexity of problems undertaken by computer induction becomes very great, the
comprehensibility of the generated descriptions will likely be a crucial criterton.
This research orientation fits well within the role of artificial inteliigence
envisaged by Michie [44] to study and develop methods for man-machine
conceptual interface and knowledge refinement.

"The numbers mentioned Seem to apply o the Thajority of human descriptive sentencss.

Buruase] sanonpuy jo LB0[0POYISIAL PUB AI0YT VYV §'ZE

GL

3.2. Language of assertions

One of the difficulties with inductive inference is its open-endedness. This
means that when one makes an inductive assertion about some aspect of reality
there is no natural limit to the level of detail in whick this reality may be
described. or to the richness of forms in which this assertion can be expressed.
Consequently, when conducting research in this area, it is necessary to circum-
scribe very carefully the goals and the problem to be solved. This includes
defining the language and the scope of allowed forms in which ‘assertions wili
be expressed, as well as the modes of inference which will be used. The
description language should be chosen so that crucial features are easily
representable, while peripheral or irrelevant information are ignored.

An instructive criterion for classifying inductive tearning methods is there-

" fore the type of language used to express inductive assertions. Many aathors
use a restricted form of predicate calculus or closely related notation (e.g., [65.
22, 59, 85, 3, 50,90, 72]). Some other formalisms include decision trees [35, 70].
production rules (e.g., [86, 30]). semantic nets (e.g., [25]), and frames [42]. In
earlier work (e.g., [45-48]) this author used 2 multiple-valued logic propositional
calculus with typed variables, called VL (the variable-valsed logi¢ system one).
Later.cn an extension of the predicate calculus, called VL, was developed that
‘was especially oriented o facilitate inductive inference [49).

Here we will use a somewhat modified and extended version of the fatter
language. to be called the annorated predicate calculus (APC). The APC adds
1o predicate calculus additional forms and new concepts that increzse its
expressive power and facilitate inductive inference. The major differences

Jpetween the annotated predicate calculus and the conventional predicate:

caleulus can be summarized'as follows.

(1) Each predicate, variable and function {referred to collectively as a
descriptor) is assigned an annorafion that containg relevant problem-orieated
information. The apnotation may contain the definition of the concept
represented by a descriptor, a characterization of its relationship to other
concepts, a specification of the set over which the coneept represented by a
descriptor, a characterization of its relationship o other concepts, a
specification of the set over which the descriptor ranges (when it is 4 variable 6r
a func{ion) and a characterization of the structure of this set, etc. ($ee Section
4).

(2) In addition to predicates, the APC alse includes compound predicares.
Arguments of such predicates can be compotind terms, composed of two or
more ordinary terms.

(3) Predicates that express relations =. %, =, >, < and < between lerms or
between compound terms are expressed explicitly as relational Statements, also
called selectors.

{4} In addition to the universal and existential quantifiers, there is alsa a

numerical quantifier that expresses quantitative information about the objects
satisfying an expression.

The concept of annotation is explained more fully in the next section. Other
aspects of the language are described in Appendix A. (The reader interested in
a thorough understanding of this work is encouraged to read Appendix A at
this point,)

4. Problem Background Knowledge

4.1, Basic components

As mentioned eariier, given a set of observational statements, one may
construct a potentially infinite number of inductive assertions that imply these
statemenis. It is therefore necessary 1o use some additional information,
problem background knowledge, to constrain the space of possible inductive
assertions and locate the most desirable one(s). In this section we shall look at
various compounents of the problem background knowledge employed in the
inductive learning methodology called star, described in Section 6. These
components include the following.
- Information about descriptors (e, predicates, variables, and functions} used
in observational statements. This information is provided by an annotarion
assigned to each descriptor (Section 4.3},
- Assumptions about the form of observational and inductive assertions.
- A preference criterion that specifies the desirable properties of inductive
assertions sought.
- A variety of inférence rules, heuristics, and speciatized procedures, general
and problem-dependent, that allow 2 fearning system to generate logical
consequences of given assertions and hew descriptors.

Before we examine these components in greater detail, fet us first consider
the problem of how the choice of descriptors in the observational statements
affects the generated inductive assertions.

4.2. Relevance of the initial descriptors

A fundamental problem underlying any machine inductive learning task is that
of what information is provided to the machine and what information rhe
machine is expected to produce or learn. As specified in the inductive
paradigm, the major component of the input to a leatning system is a set of
observational statements. The descriptors used in those statements are observ-
able characteristics and available measurements of objects under consideration.
These descriptors are selected as relevant to the tearning task by a teacher
specifying the problem. 5

Determining these descriptors is a major part of any inductive learning
problem. If they capture the essential properties of the objects, the role of the
learning process is simply to arrange these descriptors into an expression

8.

sejdwexy Surredy, PayIsse[aalq woy Surures saronpuj

constituting an appropriate inductive asssrtion. If the selected deseriptors are
completely irrelevant to the leaming task (as the color, weight, or shape of men
in chess is irrelevant to deciding the right move), no learning system will be
abile to construct @ meaningful inductive assertion.

There is a range of intermediate possibilities between the above wo
extremes. Consequently, learning methods can be characterized on the basis of
the degree to which the initial deseriptors are relevant to the learning problem.

Three cases can be distinguished.

(1) Complete relevance. In this case all descriptors in the observational
statements are assumed to be directly refevant to the Jearning task. The task of
the learning system is to formulate an inductive assertion that isa mathematical
or logical expression of some assumed general form that properly relates these
descriptors (2.¢., a regression palynomial).

(2) Partial rélevance. Observational statements may contain & large number
of irrelevant or redundant descriptors. Some oi the descriptors, however. are
relevant, The task of the learning system is to select the most relevant onés and
construct from them an appropriate inductive assertion.

(3) Indirect relevance. Observational statements may contain no directly
relevant descriptors. However, among the initial ‘descriptors there are some
that can be used to construct derived descriptors that are directly relevant. The
fask of the learning system s to construct those derived’ descriptors and
formulate an appropriate inductive assertion. A simple form of this case occurs.
e.g., when a relevant deseriptor is the volume of an object. but the observational
sstatements contain onfy the information about the object’s dimensions (and
various irrelevant facts).

The above three cases represent problem statements that put progressively
less demand on the relevance of the initial descriptors (i.e., that require. less
work from the person defining the problem) and more demand on the learning
system. Early work on adaptive control systems and concept formation
represents case (I). More recent research has dealt with case (2), which is
addressed in selective inductive leaming. A method of such learning must
possess efficient mechanisms for determining combinations of descriptors that
are relevant and sufficient for the leamning task. Formal logic provides such
mechanisms, and therefore it has become the major undertying formalism for
selective methods.

An example of a selective learning methed is the ope implemented ia
program aoii [32] that inductively determined soybean disease diagnostic rules
for the gystem pLaNT/ds, mentioned in the introduction. ‘A different type of
selective method was implemented in program ms [70] that determines a
decision tree for classifying a large number of events. A comparison between
these two programs is deseribed by O'Rorke [63].

Case (3) represents the task of constructive inductive learning. Here, a
method must be capable of formulating new descriptors (i.e., new concepts,
new variables, etc.), of evaluating their relevance to the learaing task, and of

using them to construct inductive assertions. There has been relatively little
done in this area. The ‘auntomated mathematician' program am [42] can be
classified as a domain-specific system of this category. Seme constructive
learning capabilities have been incorporated in system BACON that automatic-
ally formulates mathematical exprassions encapsulating chemical and other
laws [39], The general-purpose INDUCE program for learning structural descrip-
tions from examples has implemented ‘several general purpose constructive
oeneralization rechniques [40, 49]. Section 5 and 6 give more details on this
subjéct.

4.3. Annotation of descriptors

An-annotation of a descriptor (1., of a predicaie, a variable or a function) is.a

stofe of background information about this descriptor tailored to the learning
problem under ¢onsideration. Ie may include:
- a specification of the domain and the type of the descriptor (see below),
- a specification of operators applicable to it)
- a specification of the constraints and the relationships between the deseriptor
and other descripters,
- for numerical deseriptors, the mean, the variance. or the complete probability
distribution of values for the problem under consideration,
_a characterization of objects to which the descriptor is applicable (ie.. a
characterization of its possible arguments),
- a specification of a descriptor class containing the given descriptor that is the
parent node in a generalization hierarchy of deseriptors (for example; for
descriptors ‘length’, ‘width’ and ‘height’. the parent node would be the ‘dimen-
sions’),
- synonyms that can be used ta denote the descriptor,
- a definition of a descriptor (when it is derived from some other descriptors).
-if a descriptor denotes a class of objects, typical examples of this class can be
specified.

Let us consider some of the above compenents of the annotation in greater
detatl.

4.4, The domain and type of a descriptor

Given a specific problem, it is usually possible to specify the set of values each
deseriptor could potentially adopt in characterizing any object in the popu-
lation under consideration. Such a set is called the domain (or the value set) of
the descriptor. The domain is used to constrain the extent to which a descriptor
can be generalized. For example, the information that the temperature of a
living human being may very, say, only between 34°C and 44°C prevents the
system from considering inductive assertions in which the descriptor “body
temperature’ would assume values beyond these limits.

Furwree] oAoTpY] Jo ABojopoyreN pus A100YLY 20T

L

Other important information for conducting the generalization process is

concerned with the structure of the domain, that is, with the relationship
existing among the elements of the domain. For numerical descriptors, such

relationships are specified by the roeasurement scale. Depending on the struc-
ture of the descriptor domain, we distinguish among three basic types of
descriptors.

(1) Nominal (categorical) descriptors. The value set of such descriptors con-
sists of independent symbols or names, i.e.. no structure is assumed to relate
the values in the domain. For example, ‘blood-type(person)’ and
‘name(person)’ are unary nominal deseriptors. Predicares; i.e., descriptors with
the value set {True, False}, and n-ary functions whose ranges are unordered
sets, are also nominal descriptors. An example of a two-argument nominal
descriptor is ‘license-plate-number(car, owner)’, which denotes a function
assigning to a specific car of the given owner a license plate number.

(2) Linear descripiors. The value set of linear deseriptors is & totally ordered
set. For example, a person's military rank or the temperature, weicht or
number of items in a set is such a descriptor. Variables measured on ardinal,
interval, rato, and absolute scales are special cases of a linear descriptor.
Functions that map 2 set into 2 totally ordered set are also linsar descriptoss,
e.g.. ‘distance(P,. B).

(3) Structured descripiors. The value set of such descriptors has a tree or
oriented graph structure thai reflects the generalization relation between the
values, i.e., is a generalization hierarchy. A parent node in such a structure
represents a more general concept than the concepts represented by s

* children nodes. For example, in the value set of descriptor ‘place’, ‘U.S.A°

would be a parent node of the nodes ‘Indiana’, ‘Ilinois’, ‘Towa!, etc. The
domain of structured descriptors is defined by a set of inference rules specified
in the problem background knowledge (see, e.g., descriptor 'shape(B.)’, in
Section 6). _

Structured descriptors can be further subdivided into ordered and unordered
structured descriptors. Sometimes, deseriptors themselves can 4lso be organized
into a generalization hierarchy. For example, descriptors’ length, width, and
depth be]ong- to a elass of ‘dimensions’. Information about the type of a
descriptor is useful. as it determines the operations applicable to a descriptor.

4.5. Constraints on the description space

For a given induction problem there may exist a variety of constraints on the
space of the acceptable concept descriptions, due to the specific properties and
relationships among descriptors. Here are a few examples of such relationships.
- Irnterdependence among talues. In many practical problems some variables
specify a state of an objéct, and some other variables characterize the state.
Depending on the values of the state-specifying variables, the variatles charac-

terizing a state mav be aeeded or not. For example, if a descriptor
‘state(plant’s leaf)’ takes on value ‘diseased’, then a descriptor ‘leaf dis-
coloration” will be used to characterize the change of the leaf's color. When the
descriptar “state{plant’s leaf}” takes on value ‘normal’, then obviously the “leaf
'discoloration’ descriptor is irrélevant. Such information can be represented by
an mmplication:
[state(plant’s teaf) = normal| = [discoloration(plant’s leaf) = NAJ,

where NA is a special value meaning ‘not applicable”.

- Froperties of descriptors. Descriptors that are relations between objects may
have certain general properties—thiey can be refiexive, symmetric, transitive,
ete. ‘All such properties are defined as assertions in the annotated predicare
calculus (see Appendix A). For example, the transitivity of rélation
‘above(P|,P;)' can be defined as

VP, P Py, (above(P;, Py)) & above(Ps, P5)= above(Py,).

- Interrelationships among descriptors. In some problems there may exist refa-
tionships between descriptors that constrain their values. For example, the
length of an objeer is assumed always to be greater than or equal 1o its width:

VP, length(P)= width(P),
Also, descriptors may be related by known equations. For example. the area of
4 rectangle is the arithmetic product of its length and width:

VP, ([shape(P)= rectangle] = [area(P) = length(P)- width(P)]}.

(The infix operator

is used to simplify notation of the term mult-
ply(length(P), width(P}).)

4.6, The form of observational and inductive asseréions

The basic form of assertions in the star methodolagy is a ¢-expression, defined
as a conjunctive statément:

{quantifier form)(conjunction of relational statements) , &)

where {(quantifier form) stands for zéro or more quantifiers. and (relational
statements) are predicates in a special form, as defined in Appendix A. The
following is an example of a C-eXPression:

H.PQ.. Pi_, PZ_: Ps([t@ﬂtaiﬂ-S{Pu, PI)’ .P-z, P3” [ﬂﬂ[Op(Pl & Pz, Pg)]
Nength¢P =3, . S]I[w.e.ight(f’_i-} = weight(P)]

[color(P) = red v blue] [shape(P; & Pxée Py = box])

that can be paraphrased in English as follows.

8L

sajdurexy SuTUTeL], pagIsseeeld woay Suruiser| aArjonpu]

An object Py contains parts Py, P; and Pz and only these parts.
Paris P, & P, are on top of part P, length of P, is between 3 and
8, the color of P, is red or blue, the weight of P, is greater than
that of P, and the shape of all three parts is box.

An important special case of a c-expression is an a-expression (an atomic
expression), in which there is no ‘internal disjunction” (see Appendix A).

Note that due to the use of internal disjunction a c-expression represents a
more general concept than a universally quantified conjunction of predicates,
used in typical production rules.

Progressively more complex forms of expressions are described below.

- A case expression is 2 logical product of implications;

[L=a]=>Exp:, i=12..-

where a; are single elements or disjoint subsets of elements from the domain of
descriptor L. and Exp; are c-expressions.

A case expression describes a class of objects by splitting it into separate
cases, each represented by a different value of a certain descriptor.
- An implicative expression (i-expression)

C&(C> G,)

whete C, €, and C, are c-expressions,
* This form of descrption is yery useful when the occurrence of some
properties (defined in &) depends on the oceurrence of some other properties
{defined in). Typical production rules used i expert systems are a special
case of (9),, where: C is omitted and no intemal logical operators are nsed.
When (Ci=> () is omitted, then the conditional expression becomes a ¢-
expression.
- A disjuncrive expression (d-expression) defined as a disjunction of implicative
expressions,
- An exception-based expression (e-expression},

In some situations it is simpler to formulate a somewhat overgeneralized
statement and indicate exceptions than to formulate a précise statement, The
following form is used for such purposes;

Dy D,
where D; and D, are d-expressions. This expression is eguivalent fo
(~Dr= D)) & (Dy=> ~Dy).

Observational assertions are formulated as a set of rules

{a-expression : 1> K} (10

Inductive assertions are expressed as a set of rules
{EXP : :> c-expression}, (i)

where EXP is:a c-expression or any of the more complex expressions described
above. It is also assumed that the left side and the righs side of (11) satisfy the
principle of comprehensibility described in Section 2.

4.7. The preference criferion

In spite of the constraints imposed by the above components of the background
knowledge, the number of inductive assertions consistent with ‘observational
statements may siill be unlimited. The problem then anses of choosing the
most desirablé inductive assertion(s). In making such a choice one must take
into consideration the aspects of the particular inductive learning problem, and
therefore the definition of a “preference criterion’ for selecting a hypothesis is a
part of the problem background knowledge. Typically, the inductive assertions
are chosen on the basis of some simplicity criterion (e.g-, [37, 69]).

In the comtext of scientific discovery, philosopher Karl Popper [68] has
advocated constructing hypotheses that are both simpie and easy o refute. By
generating such hypotheses and conducting experimente aimed at refuting
them, he argues, one has the best chance of vltimately formulating the true
hypothesis. In order to use this criterion for autémated inductive inference it is
necessary to defire it formally. This, however. is not easy because there does
not seem to exist any universal measure of hypothesis simplicity and refu-
tabiliry. '

Among more specific measures for evaluating the ‘quality’ of inductive
assertions one may [ist:

- An averall simplicity for human comprehension, measured, for example, by
the number of desériptors and number of operators used in an inductive
assertion. '

-The degree of ‘fit” between the inductive and observationdl assertions
(measured, for example, by the degree of generalization, defined as the amount
of uncertainty that any given description satisfving the inductive assertion
corresponds to some observational statement [49]),

- The cost of measuring values of deseriptors used in the inductive assertion.

- The computational cost of evaluating the inductive assertion.

- The memory required for storing the inductive assertion,

- The amount of information needed for encoding the assertion using a priori
defined operators [16]:

The importance given to-each such measure depends on the ultimate purpose
of constructing the inductive assertions. For that reason, the star methodology
allows a user to build a g_lobal preference criterion as a function of: such
measures, tailored to a specific inductive problem. Since some of the above

] satgonpu] jo £20[opoyIeIN pue KloayL, ¥

SEE

Auaiuags

6L

o

measures are computationally costly, simpler measurés are used. called efe-
meniary criferia. Among such criteria are the number of c-expressions in the
assertion, the total number of relational statements, the ratio of possible but
unseen evenls implied by an assertion to the total number of trzining events (4
simple measure of generalization [S0]) and the total number of differen:
descriptors, The global preference criterion is formulated by selecting from the
above list those elementary criteria that are most relevant to the problem, and
then arranging them into a lexicographic evaluation functional (LEF). A LEFE is
defined as a sequence of criterion-tolerance pairs

LEF: (-6'11_ T'[). (F_'_‘.:? '.I';;) - [121
where ¢ is an elementary criterion selected from the availahle ‘menu’, and Ty i
a tolerance threshold for criterion ¢ (n € (0. . 100%]).

Given a set of mductive assertions, the LEF determines the most preferable
ene(s) in the following way.

In the first step, all assertions are évaluated from the viewpoint of criterion
¢y, and those which score best. or within the range defined by the: thréshold .
from the best. are retained. Next, the 'retained assertions are evaluated from
the viewpoint of criterion ¢» and reduced stmilarly as above, using tolerance =
This process continues until either the subset of retained assertions contains
only one assertion (the ‘best” ane) or the sequence of criterion-tolérance pairs
is exhausted. In the latter case, the retained set contains assertions that are
equivalent from the viewpoint of the LEF.

An important and somewhat surprising property of such an approach is that
by properly defining the preference criterion, the same learning system can
generate either characteristic or discriminant descriptions of object classes (sec
Section 7). '

5. Generalization Rules

5.1. Definitions and an overview

Constructing in inductive assertion Ffrom ‘abservational statements can he
conceptually characterized as & heugistic state-space search {62], where
- states are symbolic descriptions; the initial state is fhe set of observational
statements;
- operglors are inference rules. specifically. generalization. specialization and
reformulation rules. as defined below:
-the goal state is an inductive assertion thar implies the observational srate-
ments, satisfies the prablem background knowledge and maximizes the given
preference criterion.

A generalization rule is a transformation of a description into a more general
description, one that tautologieally implies the initial description. A specializa-

‘tion rule makes an opposite transformation: given a description, it generates a

logical consequence of it. A reformulation rule transforms a description into
another, logically equivalent description. A reformulation rule can be viewed
as a special case of a generalization and a specialization rule.,

Specialization and reformutation rules are the conventional truth-preserving
inference Tules used in deductive logic. In contrast to them, the generalization
rules are not truth-preserving but failsity preserving. This meéans that if an event
falsifies some description, then it also falsifies 1 more general description. This
is immediately seen by observing that H=> F is equivalent ta — F=> ~ H (the
law of contraposition}. To illustrate this point, suppose that a statement ‘some
water birds in this lake are swans' has been generalized to ‘all water burds in
this lake are swans™ If there are no water birds in the lake (hat are swans, then
this fact faisifies not only the first statement bul aiso the second. Falsifying the
second statement. however. does not imply the falsification of the first,

In concept acquisition, as explained in Section 2. transforming a rule
E::>K into a more general rule D ::> K means thai description E must
imply description D:

E3D (13)
(recall expression (6)). Thus, to obtain a generalization rule for concepr
acquisition, one may use a tautological implication of formal logic, The premise

and consequence of such an implication must, however, be interpretable as 3

description of a class of objects. For example, the known law of simplification

P& QP (14)
can be rurned into a generalization rule:
P&Q . :>K kK P::>K. (15)

If P stands for ‘round objects’, O for ‘brown objects’ and K for ‘bails’ , then
rule (15) states that the expression ‘round and brown objects are balls’ can be
generalized to ‘round objects are balls”. Thus. in concept acquisition, the
generalization operation has a simple set-theoretical interpretation; a deserip-
tion 18 more general if It is satisfed by a larger number of abjects. (Such an
interpretation does not apply, however, to deseriptive generalization, ag shown
below.)

In order to obtain a rule for descriptive generalization. implication (14) is
reversed. and £ and Q are interpreted as praperties of objects of some class K

P(K) k P(K) & Q(K), (16)

If P(K} stands for ‘balls are round' and Q(K) for ‘balls are brown', theén

08

AL PayIssedasg woyy Buruaes| sarjonpuy

LT

sopdwexy 3

according 1o rule (18), the statement ‘balls are reund and brown’ 15 a general-
ization of the statement 'balls are round’ (because: from the former one can
deduce the latter). We can see that the notion ‘the number of objects satisfying
a description’ is not applicable here. Generalizing means here adding (hypo-
thesizing) properties that are ascribed 1o a class of objects.

After this informal imtroduction we shall now present various sypes of
generalization rules, concentrating primarily on the rules for concept acquisi-

tion. These rules will be expressed using the notation of the annotated,

predicate caleulus (see Appendix A). The reverse of these rules are specializa-
tion rules or reformulation rules in special cases. With regard to other speci-
alization and reformulation rules we shall refer the reader to a standard book
on predicate calculus (£.g.. [B4]). Some reformulation rules of the annotated
predicate caleulus that do not ocour in ordinary predicate calculus are given in
Appendix A.

‘We will restrict our attention to generalization rules that transform one or
more statements into a single more general statement:

{D;::> K}y E D> K. 17

Such a rule states that if an event (a symbolic description of an object or
situation) satifies any description D, i €1, then it zlso satisfies deseription D
(the reverse may not be true). A basic property of the generalization trans-
formation is that the resuliing description has ‘unknown’ truth-status, j.e.. is a
hypothesis that must be tested on new data. A generalization rule does not
guarantes that the obtained description is useful or plausible.

We distingnish between two types of generalization rules: selective and
constructive. 1f every descriptor used in the generated concept desm"iption D is
among descriptors oceurring in the initial concepr descriptions D, i=1,2...,
then the rule is selective, otherwise it is comstructive.

§.2. Selective generalization rules

In the rules presented below, CTX. CTX, and CTX; stand for some arbitrary
expressions (context descriptions) that are augmented by additional com-
ponents to formulate a concept description.

- The dropping condition rule is a generalized version of the previously des-
crited rule (15)

CTX&S8::>K k CIX::> K, (18)

where §is an arbitrary predicate or logical expression.

This rule states that a concept description can be generalized by simply
removing a conjunctively linked expression. This is one of the most commonly
used rules for generalizing information,

The adding alternative rule
CTX;::> K | CTX, v CTX;::> K. (19

A coneept description can be generalized by adding, through the use of
logical disjunction, an alternative to it. An especially oseful form of this'rule is
when the alternative is added by extending the scope of permissible values of
one specific descriptor. Such. an operation can be expressed very simply by
istng the internal disjunction operator of the annotated predicate calculus, For
example, suppose that a concept description is generalized by allowing objects
1o be not only red but algo blue. This can be expressed as follows.

CTX & [color = red] :

:> K F CTX &[color =red v blue] : i> K (20)

(forms in brackets are selectors; the expressions on the right of =" are called
references (see Appendix AJ).

Because of the importance of this special case, it will be presenied as a
separate general rule.
- The extending reference rule

CIX&[L=Rq]::> K £ CTX&[L=R,]: > K, (21)

where R C R, CDOM(L) and DOM(L) denotes the domain of. L.

In this rule, L is a term, and Ry and R (references) are internal disjunctions
of values of L. References R, and R;can be interpreted as sets of values that
descriptor L can take in order to satisfy the concept description.

The rule states that a concept descriprion can be generalized by enlarging the
reference of a deseriptor {R; 2 R;). The elements added to R; must, however,
he from the domain of L. _

If R, is extended to be the whaole domain, i.8,, R, = DOM(L), then the selector
[L =DOM(L)] is always true, and therefore can be removed, In this case, the
extending reference rule becomes the dropping condition rule, They take into
consideration the type of the descriptor L (defined by the structure of DOM(L)).
They are presented as separate rules below.

-The closing interval rule

CIX&[L=a)]::>K T - ..
CTX &[L=b]: 5K]<CI'X&[L a..bl: =K, (22)

whére L is a linear descriptor, and @ and b are some specific values of
descriptor . The two premises are assumed to be connected by the logical
conjunction (this conventien holds for the remaining rules, as well).

The rule states that if two descriptions of the same class (the premises of the

Supuzea] AGONPU] Jo ATO[OPOYRI PUT L0L YV 68

18

rule) differ in the values of only one Hnear descriptor, then the deseriptions can
be replaced by a single description in which the reference of the descriptor is
the interval linking these two valugs,

To illustrate this rule, consider as objects two states of a machine, and K as a
class of normal states. The role says that if a machine is in the normal state for
rwo different temperatures, say, @ and b, then a hypothesis is made that all
states in which the temperature falls into the interval [a, b] are also normal.
Thus; this rule is not only a logically valid generalization rule. but EXPresses
also some aspect of plausibility,

- The climbing generalization tree rile

CIX&[L=a]: > K
CIX&[L=b]::>K _
fone-or more : K CIX&[L=5]::>K, {23)
statements)

CIX&[L=i]::>K

where L 15 a structured descriptor, and' s represents the lowest parent node
whose descendants include nodes a, B «.. and [in the generalization tree
domain of L,

The rule is applicable only to descriptions involving sunctured deseriptors,
and is used in various forms by, e.g., Winston [88], Hedrick [30]. Lenat [42].
Michalski [49], Michalski, Stepp and Diday [54], Mitchell [S6. 57). The following

£xample illustrates the rule

IP.CTX &

3P, CTX & [shape(P)=trangle}; :>K i
‘([shape(P)=polygon] : : >x

3P, CTX & [shape(P) = pentagon): : > K

Paraphrasing this rule in English: if an object of ciass K is triangular and
another object of this class is pentagonal, then the mule generates a statement
that objects of class K are polygonal.

-The tuming constants into variables rule is best known for the case of
descriptive generalization

Fla]
‘_(one _or.me.ure F[b] Yo Flu]. (24)
statements) :
£

where F[v] stands for some description {formula) dependent on variable v, and
a, D, ... are constants.

some description F[v] holds for ¢'s being a constant 4 or constant b. ete.,
then the rule generalizes these observations into a statement that £ [0] holds
for every value of ». This is the most often used rule in methods of inductive
inference employing predicate calculus,
A corresponding rule for concept acquisition is

Fla]& Fbj&---: 1> K 3 Flo] > K. (25)

Toillustrate this version, assume that a, b, eto. are parts of an object of class
K that have a property F. Rule (25) generalizes these facts into an asser-
tion that if any part of an object has property F, then the object belongs to
class K. '

- The twrning conjunction inte distunction ride

Fi&F,: >K k FvF.:>K. (26)

where F; and 7 are arbitrary descriptions.

A coucept description can be generalized by replacing the conjunction
operator by the disjunction operator.
- The extending the quantification domain rule, in the simplest case. changes the
universal quantifier into the existential quantifier

Yo, Flx] > K E3IuFlo]::>K. 27)

This rule can be viewed as 2 generalization of the previous rule (26). Using
the concept of mumerical quantifier (see Appendix A) this rule can be expres-
sed in an even more general way:

v, Flv)::> K = 3L Flv]::> K, (28)

where [, ', are the quantification domains (sets of integers) satisfying relation
Ii C L.

For example, the statement ‘if an object has two parts (I, = {2}) with
property F. then it belongs to class K~ can be generalized by rule (28) to a
statement ‘if an object has two or more parts (L= {2, 3, .. -}) with property F,
then it belongs to class K.

-The induciive resolution rule:

(a) ‘As applied to concept acquisition. The deductive inference rule, called
the resolution principle, widelv used in automatic theorem proving, can be
adopted as a rule of generalization for concept acguisition. In propoesitional
form, the resolutior principle can be expressed as

(P2F)&(~P>FE)k Fiv F, (29)

z8

se[duexy Sururs.y, Poyisseiesd WOl Juluge] saronpuy]

where P is a predicate and Fy and F; are arbitrary formulas. By interpreting
hoth sides of (29) as concept descriptions, and making appropriate trans-
formations, we obtain

P&F-::}Kl(. _
' v Fai: : 30
~P&F > K Bivfy=K (30)

To illustrate this Tule, assume that K is.the set of sitnations when John goes
to a movie. Suppose that it has been observed that he goes to a movie when he
has company (P) and the movie has high rating (F,), or when he dogs not have
company (~P), but has plenty of time (F;). Rule (30) generalizes these two
abservations to a statement ‘John goes to a movie either when the movie has
high rating or he has plenty of time’.

(b) As applied to descriptive generalization. By applying the logical
equivalence (QF P)&>(~ PR~ Q) (the law of contraposition) to expression
(20), then reversing the obtained rule and substituting the negative literals by
the positive, we obtain

P&F v~P&F Kk F&F;. (31)

This version has been formulated by Morgan [39].

Both versions, (a) and (b), can be gencralized by applying the full-fledged
resolution principle that uses predicates wuh argements, and the unification
algorithm to unify these arguments (e.g., [141).

L The exterision against rule
CTX; &[L=R|]: > K I< -
CIXo&[L=R;}::>~K [£# R 2> K, (32)

where sets R; and R, are assumied to be disfoint.

Given a description of an cbject belonging to class K (a positive example).
and a description of an object not belonging to this class (a negative example),
the rule produces the most general statement consistent with these two
descriptions. It is an assertion that classifies an object as belonging 1o class K if
descriptor L does not take any value from the set Rj, thus ignoring’ context
descriptions CTX; and CTX5. This rule is the basic rule for learning dis-
criminant descriptions from examples used in the previously mentioned in-
ductive program aacu [52]. Various modifications of this rule can be obtained
by erlacing reference R, in the output assertion by some superset of it (that
does net intersect with Ry).

5.3. Constructive generalization rules

Constrigtive generalization rules generate inductive assertions that use des-
criptors not present in the original observational statements.. This means that

the rules perform a transformation of the original representation space. The
foltowing is a general constructive rule that makes such a transformation by
applying the knowledge of a relationship between different concepts. It is
assurped that this relationship is known to the learning system as background
knowledge, as a previously learned eoncept, or that it is computed according to
nger-defined procedures.

CIX&F :>K ”
e £ [CTX& Bk (33)
The rule states that if a concept description contains a part F, (2 concept, a
subdescription, efc.) that is known to imply some other concept &, then a more
general description is obtainged by replacing F; by F:. For exampie, suppose a
leamning system is told that if an object is black, wide, and long, then it belongs
to class K (eig., is a blackboard), This can be expressed in the annotated
predicate calculus:

3P, [color(P) = black] [width(P) & length(P) = large] : > K.
Suppose the learner already knows that
VP, ([width{p) & length(P) = large] = [area(P) = large]} .
Then rule (33) produces a generalization
3P, [color{P) = black][area(£) = large] : :=> K.

As another example, suppose the system is given a description of an object
classified as an arch. This description states that a horizontal bar is on top of
two equal ebjects placed apart, B, and B,, having certain colar, weight, shape,
eic. Suppose now that characterizations of B, and B, in this description satisfy
a previously learned concept of a block. Then rule (33) generates an assertion
that an arch is'a bar on top of two placed-apart blocks. This rule is the basis for
an interactive concept learning system developed by Sammut [72].

Specific constructive generalization rules can be obtained from (53) by
evoking procedures computing new deseriptors in expression Fs as functions of
initial or previously derived descriptors (contained in F,). Here are some
examples of rules for generating new descriptors.

- Counting argurments rules.

(a) The CQ rule (count quantified vanables). If a concept description is in

the form

Ty, Mans =i o, Floe oo oo, 0],

BU'IT.IJBQ’I ALIONPUT JO KEOIUPOI{Q.OW pue &IOGl{m v 22%

8

then the rule generares descriptors ‘#»_COND' representing the number of
y's that satisfy some condition COND. This condition expresses selected
properties of v;'s specified in the concept description. Since many such CONDs
can usually be formulated, the rule allows the system to generaté a large
number of such descripiors,

For example, if the COND is ‘[attributey(;) = R]", then the generated
descriptor will be ‘#_attribute, R’ counting the number of u's that satisfy this
condition. If the atiribute, is, for instance, length, and R is (2..4], then the
derived descriptor is ‘#v.length. 2., 4" (i.e, it measures the number of vi's
whose length is between 2 and 4, inclusively).

(b) The CA-rule (count arguments of a predicate). If a descriptor in a
description is a relation with several arpuments, REL(vy #s,...), the rule
generates deseriptors “#y_COND’, measuring the number of arguments in
REL that satisfy some condition COND. Similar to the above, ‘many sich
descriptors can be generated. each with different COND.

The annotation of a descriptor provides information about its properties.
Such a property may be that a descriptor is, for example, a transitive relation.
such as relations-‘above’, ‘inside’, ‘lefi-of', and ‘hefore’. For example, if the
relation is “contains(A, B:, Bj,...Y, stating that object A contains objects B,,
By, ... and COND is ‘large and ted", then the derived descriptor ‘#B_large_
red_A_contains’ measures the nuniber of B’s contained in A that are larse
and red.

- The generating chain properties rule. If the arguments of different occurrences
of a transitive relation in a concept description form a chain, that is. form a

*sequence of comsecutive objects ordered by this relation, the rule generates

descriptors charactenizing some specific objects in the chain, Such objects may
be

LST-object-—the ‘least object, ie.. the object at the beginning of the chain
(e.g., the boitom object in the case of the relation ‘above’),

MST-object—the abject at the end of the chain (e.g., the top object),

MID-abject—the objects in the middle of the chain,

Nth-object—the object ar the Nth position in the chain (starting from
LST-object).

After identifying these objects, the rule investigates all known properties of
them (as specified in the observational statements) in order to determine
potentially relevant new descriptots. The rule aléo generates a descriptor
characterizing the chain itseif, namely, REL-chain-length—the length of the
chain defined by relation REL.

For example, if the REL is ON-TQP. then descriptor ON-TOP-chain-length
would specify the height of a stack of objects. When a new description. is
generated and adopted, an annotation for it is also generated and Giled out. as
in Lenat [42]. This role can be extended to & partial order relation. In such a
case it becames the “ind extrema of a partial erder’ rule.

The detecting descripior interdependence rule. Suppose that given is a set of
objects exemplifying some concept, and that atiribute descriptions are used to
characterize these objects. Such deseriptions specify only attribute values of the
objects; they do not characterize the ob jects’ structure, Suppose that the values
a linear descriptor x takes on in all descriptions: (events) are ordered in
iricreasing order. I the corresponding values of another linear descriptor v
‘exhibit an increasing or decreasing order, then a two-place descriptor M{x, y)
15 created, signifying that x and y have a monoronic relationship. This descriptor
has value T when y values are increasing and value | when they are
decreasing.

The idea of the above M-descriptor ¢an be extended in two directions, The

first is lo create M-descriptors dependent on some condition COND that must
be satisfied by the events under consideration:

M{x. ¥)_COND.
For example, descriptor
M (length, weight)_red

states that length and weight have 2 monotonic relationship for red objects.

The second diréction of extension is 1o reiax the requirement for the
monotonie relationship, i.e., not to require that the order of y values is sirictly
increasing (or decreasing), but only approximately increasing (or decreasing).
For example, the coefficient of statistical correlation between x and y can be
measured. and when its absolute value is above a certain threshoid, a descrip-
tor R(x, y) is created. The domiain of this R-descriptor ¢an also be {1, |},
indicating (he positive or negative correlation, respectively, or it can have
values representing several subranges of the correlation coefficient. Similarly,
as in the case of M-descriptors, R-descriptors can be extended to R-COND
descriptors.

The M- or Rldescﬁptors- can be used to generate new descriptors. For
example, if [M(x. y)= 1], then a new descriptor z = x/y can be generated. If »
assumes a constant or a nearly canstant value, then an important relationship
has been discovered. Similarly, if [M(x, y)= | I then a new descriptor z=x - y
can be gencrated. These two techniques for generating new descriptors have
been successfully used in the sacon system for discovering matheématical
expressions representing physical or chemical laws [39].

The above ideas can be extended to structural descriptions. Such descriptions
involve not oaly global properties of objects, but also properties of objects’
parts and the relationships among the pars. Suppose that in a structural
description of an object, existentially quantified variables By B e - P, denote
its parts, If x(F) and y(P) and y(P) are linear descriptors of P, (e.g.,

3

sojdwsxy Jutuyeay, PRYISBB[I3a wo.g Juruasary saljonpu

i

namersical artributes characterizing, parts P, i = 1. 2. ...). the above described
techniques for senerating M- and R-descriptors can be appiied.

6. The srar Methodology

6.1. The contept of a star

The methodology presented here for learning structural deseriptions from
examples receives irs name from the major concept employed in it, that of a
star. In the most general sense, a star of an event e (a description of a single
object or situation) wunder censtraine F. is a set of all possible alternative
nonrédundant deéscriptions of event ¢ that do not violate constraints £ A
somewhat more restrictive definition of a star will be used here. Let 2 be an
example of a concept to be learned and F be a set of some counterexamples of this
concept. A star of the eveni e against the event set F, denoted Gle|F), isdefined as
the set of all maximally general c-expressions that cover '(i._e,, are satisfied by)
event ¢ and that do not cover apy of the negative gvents in F.

The c-expressions in & $tar may contain derived descriptors, Le., descrniptors
nol present in the observational statgments. In such a case, testing whether
event e satisfies a given description requires that appropriate transformations
be applied to the event. Such a process can be viewsd as proving that the even:
implies the description, and therefore methods of automatic theorem proving

could be used.

In practical problems, a star of an event may contain a very large number of
descriptions. Consequently, such a theoretical star is replaced by a reduced star
RG(e|F,) that contains no more than 2 fixed number, #1. of descriptions,
These m descriptions are selected as the s most preferable descriptions among
the rémaining ones according to the preference criterion defined in the prob-
lem background knowledge. Variable m is a parameter of the learning pro-
gram, defined sither by the aser or by the program itself, as a function of the
variable computational resources.

Papers [50. 54] give an illustration and an algorithm for generating a reduced
star with c-expressions restricted 1o anribute expressions (i.e., expressigns
involving only object attributes), Section 6.3 presents an algerithm for generating
a reduced star consisting of regularc-expressions. The concept of a star is useful
because it reduces the problem of finding a complate description of a concept fo
subproblems of finding consistent descriptions of single positive examples of the
concept.

Since any single example of a concept can always be characterized by a
conjunctive expression (a logical product of some predicates), elements of a
star can always be represented by conjunctive descriptions. One should also
notice that if the concept to be learned is describable by a c-expression, then
this description cieasly will be among the elements of a (nonreduced) star of uny

single positive example of the concept. Consequently, if there exists a positive
example not covered by any description of such a star, then the complete
concept description must be disjunctive. i.e., must include more than one
C-RXPression.

6.2. Outline of the general algorithm
It is assumed that every abservational statement is in the form

a-expression : ;> K, 34
where a-expression is an atamic expression describing an object (recall Section
4.6} and K is the concept exemplified by this object.

It is also assumed that inductive assertions are in the form of a single
c-expression or the disjunction of c-expressions. For simplicity we will restrict
our attention to ouly single-concept leaiming. In the case of multiple-concept
learning, the aleorithm is repeated for each concept with modifications
depending an the assumed interdependence among the concept descriptions
{Section 2.3),

Let POS and NEG denote sets of events representing positive and negative
examples of a concept, respectively. A general and simplified version of the
star algorithm can be described as follows.

Step 1. Select randomly an gvent ¢ from POS.

Step 2. Generate a reduced star, RG{e|NEG, m), of the event e against the
set of negative examples NEG, with no more than m elements. In the process
of star generation apply generalization rules (both selective and constructive),
task-specific rules, and heunstics for generating new descriptors supplied by
problem background knowledge, and definitions of previously learnad
concepts.

Step 3. In the obrained star. find a description D with the highest preference

according to the assumed preference criterion LEF.

Step 4. If description D covers set POS completely, then go to Step 6.

Step 5. Otherwise, reduce the set POS to cantain only events not covered by D,
and repeat the whole process fram Step 1.

Step 6. The disjunction of all generated descriptions D is a complete and
consistent concept description. As a final step, apply various reformulation

rules (defined in the problem background knowledge) and “contracting’ rules

{(A.8) and (A.9)) in order to obtain a possikly simpler expression.

This algorithm is a simplified version of the peneral covering algorithm A7
[47. 48]. The mamn difference is that algorithm A9 selects the imtial events (if
possible) from events not covered by any of the descriptions of generated stars,

rather than not covered by only the selected descriptions D). This way the

algorithm is able 1o determine a bound on the maximum number of separate

] 2ajoUpuU] JO AFOJOPOUISIA PUB ALY YV T'TT

‘Bunuage

a8

descriptiens in a disjunction needed to define the concept. Such a process miay.
however. be computationally very costly.

The above algorithm describes only single-step learning. 1f after generatin ga
concept description, a newly presented training event contradicts it, specializa-
tion or generalization rules are applied to generate a new, consistent concept
description. A method for such incremental learning is described by Michalski
and Larson [32].

The central step in the above algorithm is the generation of a reduced star,
This can be done using a variety of methods. Thus, the above sTar algorithm
can be viewed as a general schema for implementing various leaming methods
and strategies. The next section describes one specific method of star genera-
tion.

6.3. Star generation: the npuce method

This method generates a reduced star RG(¢[NEG, m) by starting with a sel'of
single selectors, which are either extracted from the event far which the star is
generated or inferred from the event by applying constrictive generalization
rules or inference rules provided by background knowledge. These selectors
are then specialized by adding other selectors until ¢onsistency is achieved (2.
until each expression does not intersect with set NEG), Next, the obtained
consistenl expressions are peneralized %o that each achieves the maximum
coverage of the remaining positive training examples. The best m sg-abtained

Lonsistent and generalized e-expressions (if some are also complete, then they

are alternative solutions) constitute the songht redneed star RG(e|NEG. m).
Specifically. the steps of the procedure are as follows.

(1) In the first step individual selectors of event e are put on the list called
ps. This list is called a pardal star; because its elements MIAY COVEr SOme svents
in NEG. These initial elements of ps (single selectors from ¢) can be viewed as
2enerzlizations of event ¢ obtained by applying in all possible ways the
dropping condition generalization ruls (each application drops all selectors

except one). Elements of the partial star ps are then ordered from the most o

the least preferred according to a preference criterion
LEF, = {(-negeov, m), (poscov, 7)), (35)

where negeov and poscov are numbers of positive and negative examples.
respectively, covered by an expression in the star, and T1. T2 are tolerances
(recall Section 4.7). The LEF; minimizes the negeov (by maximizing the
—negcov) and maximizes poscov. '

(2) The list »s is then expanded by adding new selectors obtained by
applying the following inference rules to the event e:

(a) the constrictive generalization rules (Section 5.3),

(b) the problem-specific heuristics defined in the background knowledge,

(c) the definitions of the previously learned concepts {to determine whether

parts of e satisfy some already known concepts).

(3) Each new selector is inserted in the appropriate place in list ps, according
to preference criterion LEF,. The size of ps is kepl within the limit defined by
parameter m by removing from ps all but the m most preferred selectors.

(4) Descriptions in ps are tested for consistency and completeness. ‘A des-
cription is comsistent if negeov = (1 (i.e., if it covers no events in NEG), and is
complete if poscov is equal to the total number of positive examples. Con-
sistent and complete deseriptions are removed from ps and pui on the list called
soryrions. IF the size of the list soruTions is greater than a parameter #5oL,
then the algorithm stops. Parameter #sor determines the number of desired
alternative concept descriptions. Incomplete bur consistent deseriptions are
removed from the list rs and put on the list called coNsisTENT. If the size of the
CONSiSTENT list Is greater than a parameter #cons, then control is transferred to
Step &,

(5) Each expression in rs is specialized in various ways by appending to it a
single selector [rom the original list ps. Appended selectors must be of lower
preference than the last selector in the conjunctive expression (initially, the
expression has only one selector). Parameter %srancy specifies the percentage
of the selectors ranked lower (by the preference criterion) than the last selector
in the current conjunction. If Y%srancH = 100%, all lower preference sslectors
are singly appended—that is, the number of new expressions generated from

this conjunction will be equal to the total number of selectors having lower

preference than the last selector in the conjunction. All new obtained expres-

sions are ranked by LEF, and only the m best are retained. This ‘expression

growing’ process is illustrated in Fig. L
Steps 4 and 5 are repeated until the consieeEnT list contains the number of

expressions specified by parameter scows, or until the lime atlocated for this

process is exhausted,

(6) Each expression on the consistenT list is seneralized by applying the
extension against, closing the interval. and climbing generalization tree
generalization rules. An efficient way te implement such a process is to
transform the original structural description space into an attribute descriptien
space. Aftributes (i.e., descriptions with zero arguments) defining this space are
created from the descriptors in the given expression on the consisten fist in 4
manaer such as that described in [20]. The gengralizanon of the obtained attribute
descriptions is accomplished by the attribute star generation procedure, analo-
gous to the one described by Michalski. Stepp and Diday |34]. Details of this
process of wansforming structural descriptions into attribute descriptions are
described by Larson [40]. The reason for such a transformation is that structural
descriptions are represented as labeled graphs, while attribute descriptions are
represented ag binary strings. It is computationaily much more economical to
handle binary strings than labeled graphs. '

98

sodwexy Suruleay, PoyIsse[pasd wogy Fulutes saronpur

W - a distegarded rule

® _ v active muls

8 - 2 terminal node dengting & consistent c-expression
1 @ - & terminzl nede dempting 4 consistent and complete

cexpression (a selurion)

Fig. 1. Hiistration of thie process of génerating & reduced staz ‘RG{e/NEG, #t), The nodes i the Arst
colimn are selectors extracted from the event e or derived from ¢ by applving inference rules.
Each arc reprssents an opexation of adding 2 new slectdr to the turrem c-eKpression.

(7) The obtained peneralizations are ranked according te the global pref-

erence criterion LEF defined in the background kmowiedge. A typical LEF {5

to maximize the number of events covered in POS set and to minimize the
complexity of the expression (measured, for exampie. by the number of selectors
it contains). The »r best expressions so determined constitute the reduced star
RG(e]NEG, m).

A gomewhat restieted version of the abovedescribed mouce method and
star algorithm has been implemented in various versions of the INDUCE
learning program [40, 18, 49, 32].

7. An Example

To illustrate the inductive learning methodology just presented, let us consider
a simple problem in the area of conceptual data analysis. Suppose we are given
examples of ‘cancerous’ and ‘normal’ cells, denoted DNC and DNN, respec-
tively, in Fig. 2. and the task of the analysis is

Fis 2

LIReT 9arjonpu] Jo AFO[OPOYIRIA PUR AI0AYL, ¥ E'TZ

Futniesy

L8

(1) to determine properties differentiating the two classes of cells {i.e.. to
find discriminant descriptions of each class),

(2) to determine important common properties: of the «cancercus and the
normal cells (i.e., to find a characteristic description of each class).

An assumption is made that the properties to be discovered may invelve
both guantitative information about the cells and thair components. and
qualitative information, which inciudes nominal vartables and relationships
existing among the components,

The solution to the problem posed (or similar problems) can be obtained by
a successive repetition of the “focus attention— hypothesize - test” eycle des-
cribed below;

The ‘focus attention’ phase 5 concerned with defining the scope of the
prablem under consideration. This incindes selecting descriptors appeating to
be relevant, specifying underlying assumptions, and formulating the relevant
problem knowledge. This first phase is performed by a researcher: it involves
his/her technical knowledge and informal intuitions. The third, the ‘test’ phase,
examines the hypotheses and tests them on new data, This phase may require
collecting new samples, performing laboratory experiments, and/or critically
analyzing the hypotheses. This phase is likely to involve knowledge and
abilities that £0 beyend currenily feasible computer systems.

It is the second. the ‘hypothesize’ phase, in which an inductive learninz
system may play a useful role: the role of an assistant for conducting a search
for the most plausible and/or most interesting hypotheses. This search may be a
formidable combinaterial task for a researcher, if the data sample 18 large and

«if each item of the data (in this case, a cell) is described by many variables,
and/or relations.

Individual steps are as follows.

(1) The user determines the set of imitial descriptors and provides an
annotation for each descriptor. We will assumie that the annotation specifigs the

! type, the domain, and any special properties of each descriptor (e.g., the
transitivity of a relation). In the case of structured desceriptors, the annotation
also specifies the structure of the domain. The specification of the annotation
constitutes the first part of the prablem background knowledge.
Suppose that for our simple exampie problem,. the foliowing descriptors are
selected.
Global descriprors (descriptors characterizing a whole cell):
=cire: the mumber of segments in the circumference of the cell,
type: linear,
domain: {1..10);
(I1) - pplasm: the type of protoplasm in the cell (marked by encircled capital
letters in Fig. 2),
type: nominal,
domain: {A. B, C. Dy:

() Local descriptors (those characterizing cell bodies and their relation-
ships:
-shape(B,): the shape of body B,
type: structurad,
domain: a tree structure with a set of leaves {triangle, circle, ellipse,
heptagon, square, boat, spring}, '
nonleaf nodes are defined by rules:

[shape = circle v ellipse]=> |shape = oval]

[shape = wdangle v square v heptagon|= [shape = palygon] ,
[shape = oval v polygon]= [shape = regnlar] ,

[shape = spring v boat]=> [shape = irregular] ;

-texture(B;): the texture of hody B,
type: nominal,
domain: {blank, shaded, crossed, wavy, solid-black, solid-grey, stripes}:
-weight(B,): the weight of body B,
typer linear,
domain: {1, 2,.. ., 5};
-orient(B;): the orientation of B,
type: linear-cyclic (the last element is followed by the first),
domain: {N, NE, E, SE, $, SW. W, NW},
condition of applicability: if [shape(B;) = boat];
-¢contains (c By, .B_z, - «.)—C contains By, Bz, . td
type: nominal,
domain: {True, Falsal,
properties: transitive relation:
-hasrails(B, Ly, L, ...): a body B has tails L, L, ...
type: nominal,
domain: {True, False},
condition of applicability: if [shape(B) = hoat],

Note that the descriptors ‘contains’ and ‘hastails’ are predicates with variable

number of arguments. Descriptar “contains’ is characterized as a transitive
relation. Descriptors ‘hastails’ and ‘orient” are applicable only under a ceftain
condition:

(2) The user formulates observational statements, which describe cells in
terms of selected descriptors and specify the class to which each cell belongs.
For example, the following is an observational statement for the DNC cell 1.

3. CELLy, B, By, ., ., B, [contains(CELL,, B, By, .. . Bs)]
[eirc(CELL,) =] [pplasin(CELL,) = 4] shape(B,) = cliipse] &
[texture(B,) = stripes] [weight(B;) = 4] [orient(B;) = NW] &
[contains(B,, Bs)][texturs(B;) = blank] [weight(B,) = - &
[shape(B;) = circle] [texture(B;) = shaded) [weight(B,)= 5]

s :>{elass = DNCJ.
(3) Ta specify the second part of the problem background knowledge the

'saldumxg duIurely, peuIsse[dedg WOy Sutuaes| sAronpuy

88

user indicates which general rules of constructive induction (Section 5.3) are
applicable, and also formulates any p_r_ohlém—speciﬁc rules. . .

The tonstructive rules will generate various new derived descriptors. For
example, the counting rule CQ will generate. among oth'er:_;, a déscriptor: .
- #B-Black-boat: the number of bodies whose shape is ‘boat’ and texture is

solid-black’, i.2., assuming COND

[shape(B) = boat] [texture(B) = soiid'-black].

(For simplicity of notation, the name of this descriptor, as well as other

descriptors below, has been abbreviated, so it does not follow strictly the
naming convention described in Section 5.3.) The counting rule CA will

generate such descriptors as
- total-B: the total number of bodies in a cell (ne COND is used);
-indep-B: the number of independent bodies in a cell, assuming the COND
‘badies not contained in another body':
- s#contained-in-B: the number of smaller bodies contained in the body B:
- #tails-boat-B: the number of tails in 2 body B. whose shape is “boat’.
As advice to the system; the user may formulate arbitrary arithmetic expres-
sions for generating possibly relevant descriptors. For example, the user may
suggest a descriptor:

weight(CELL) = 3, weight(B;),

where By i =1, 2,... denote bodies in a cell.

The background knowledge may also contain special concepts—evea or odd
number, the definitions of thé aréa and perimeter of a circle or rectangle, ete.

(4) Finaily. as the last part of the background knowledge, the user specifies
the type of description sought and the hypothesis preference criterion. Let us
assume that both maximal characteristic descriptions and minimal discriminant
descriptions are sought. We thereiore choose as the preference criterion for
constructing characteristic deseriptions: “maximize the length of generated
complete c-expressions’, aad for censtructing discriminant descriptions:
‘minimize the length of consistent and complete c-expressions’.

For illustration, we shall present here samples of discriminant descriptions
and selected components of a characteristic description of the DNC ‘cells’,
obtained by the wouce program’.

Discrintirians descriptions of DNC ¢ells. Each of these descriptions is sufficient
to discriminate all DNC cells from DNN célls. A concept description for class
DNC c¢an thus be any one of these descriptions or the disjunction of two or
maore of these descriptions.

3(1)8 {texture(B) = shaded] [weight{B) = 3].

%t may be instnictive to the reader 1o try at this point to formulate his/her own descriptions.
¥ ¥y PO P

‘Every DNC c¢ell, as opposed to DNN, has exactly ene body with ‘shaded’
texture and weight at least 3." (Paraphrasing in English.)

Ffetre = even] .

“The nuthber of segments in the circumiference of every DNC cell i¢ even’. (The
concept of ‘even’ was determined by ‘climbing the gensralization treé' rule.)

3(=1)B [shape(B) = boat] [oriens(B) = N v NE] .

‘Every DNC cell has at least one ‘boat” shape body with orientation N or NE’,
(= 1)B[#tails-boat-B = 1] .

*Every DNC cell has at least one body with number of tails equal to 1.
3(1)B[shape(B) = circle] [#contains-B = i].

‘Every DNC cell has a cirele coataining a single object.’ (A related and
somewhat redundant description is that every cell contains a circle that has
anather solid black circle inside it.)

Underscored descriptors are derived descriptors obtaingd through con-
structive generalization rules.

Characreristic descriptions of DNC cells. Byery deseription below is 4 charac-
terization ©f some pattern comman to all DNC cells. Seme of thess patterns
taken separately may cover 6ne or more DNN cells (unlike the discriminant
descriptions). In contrast to discriminant descriptions, the length of each
description has been maximized rather than minimized.

Y(1)B [weight(B) = 5]

‘In every DNC cell there 15 one and only one body with weight 5." (Paraphras-
ing in English)

3.(2)B, B, [contains(B,, B,)] [shape(B,)shape(B;) = circle]
[texture(B,) = blank][weight(B,) = odd]
[texture(B;) = solid_black]| [weight(B,) = even]
[#oonizined_in_B, =1]. '

In every cell there are two bodies of circle shape, one contained in another, of
which the outside circle is hlank, and has ‘odd” weight, the inside circle is solid
black and has "even’ weight. The numbér of bodies in the outside circle is only
one”. (This ts also a discriminant description but ig nof minimal.)

Suruaes| sAnInpu] jo Adojopouiep pue L0ayLy 2'3Z

68

3(1)B [shapeiB) = circle] [texture(B) = shaded] [weight(5) = 3}.

‘Every cell contains a circle with ‘shaded’ texture, whose weight is at least 3.
(This is alse a non-minimal discriminant description.)

3(>1)B [shape(B) = boat] [orteat(B) = N v NE][#tails-boat{ B)= 1].

‘Every cell has at least one body of ‘boat’ shape with N or NE oriantation,
which has one tail." (This is also a nor-minimal discriminant desecription.)

3(2)B [shape(B) = circle] [texture(B) = solid_black]
or alternatively

[#B_ci_rcle_so!i'd_biack =2i.

‘Each cell has exactly two bodies thai are solid biack circles.’
[pplasm= A v D]

‘The protoplasm of every cell is of type A or D

The above example is too simple for really unexpected patterns to be
discovered. But it illustrates well the potential of the lzarning program as a tool

for searching for patierns in complex data, especially when the relevant

Propertics involve both numerical and structeral information about the objecis
under consideration. An application of this program to a more complex
problem {49] did generate unexpected patterns.

8. Conclusion

A theory of inductive learning has been presented that views such learning as a
heuristic ‘search. through a space of symbolic descriptions. generated by an
application of certain inference rules to the initial observational statements
(teacher-generated examples of some concepts or environment-provided facts),
The process of generating the goal description—the most preferred inductive
assertion—relies on the universally intertwined and complementary operations
of specializing or generalizing the currently held assertion in order i accom-
modate new facis. The domain background knowledge has been shown to be a
necessary. component of inductive learning, which provides constraints, gui-
dance and 2 criterion for selecting-ﬂ]e_ most preferred inductive assertion,
Such characterization of inductive learning is conceptually simple, and con-
stitutes a theoretical framewark for describing and compaﬁng learning
methods, as well as developing new methods. The star methodology for

earning structural descriptions from examples, described in the second part of
the chapter, represents a general approach to concept acquisition which can be
implemented in a variety of ways and applied to different problem domains.
There are many impartant topics of inductive leaming that have not been
covered here. Among them' are learning from incompiete or uncertain in-
formation, multistage learning, fearning from descriptions containing errors,
learning with a multitude of forms of given observational statements, as well as
multimodel-based inductive assertibns, and learning general rules with e£xcep-
tions. The problem of discovering new concepts, descriptors and, generally,
variousmany-level transformations of the tnitial description space (the problem of

‘constructive inductive learning) has been covered only very superficially.

These and related topics have been given little attention so far in the field of

machine learning. There is no/doubt, however. that as the understanding of the:
fundamental problems in the field matures. these challenging topics will be

given increasing atténtion.

Appendix A. Annotated Predicate Calculos (APC)

This appendix piesents definitions of the basic components of the annotated
predicate caleulus and some rules for equivalence-preserving rransformations
of APC expressions (rules that are nonexistent in the ordinary caleulus) follow.

A1, Elementary and compound terms

Terms can be elementary or compound. An elementary term (an e-term) is the
same as a term in predicate calenlus, ie., a constant, a variable, or a function
symbol followed by = list of argumsnts thal are e-terms. A compound ferrn
(c-term) is a composite of elementary térms or is an e-term in which one or
more arguments are such composites. The composite of e-terms is defined as
the internal conjunction (&) ov internal disjunction {v) of e-terms. (The
meaning of these operators is explained later.) The following are examples of
compound terms:

RED v BLUE (A1)

height(BOX, & BOX,), (a2)
where RED, BLUE, BOX,, BOX, are constants, Expression (A.1) and the
form in parentheses in (A.2) are composites. Note that expressions (A.I) and
(A.2) are not logical expressions that have a truth status (i.e., that can be true ar
false); they are to be used only as arguments of predicates. A compound term in
which arguments are composites can be transformed (expanded) into a compaosite
of elementary terms. Let f be an r-argument function whose n — 1 arguments are
represented by list 4, and let 5 and ; be elementary terms. The rules for

06

sepdurexy Suiurel), payisss[oody W0y Suluies’] aArjanpuy

performing such a transformation, expressed as term-rewriting rules, are

1ty v s, A, A) v Fltas AN
fit, & 1, A) > flt, A) & fle, A).

(A.3)
(A.4)

It list A itself contains composites, then it Is asswrmed that the internal
disjunction is expanded first, followed by the internal conjunction (i.e., the

conjunction binds stronger than the disjunction). Thus, term (A.2) can be
transformed into a composite

height(BOX;) & height(BOXy) , (AS)

A.2. Elementary and compound predicates

Predicates also can be elementary or compound. An elementary predicate is the
same as a predicate in the predicate calculus, i.e., a predicate symbao] followed

by a list of arguments that are e-terms, In a compound predicate one or moreg

arguments is a compound term. For example, the following are compound
predicates

Went(Mary & Mother(Stan), Movie v Theatre),

Inside(Key, Drawer(Desk; v Deskz)). (A7)

The meaning of a compound predicate is defined by rules for transforming it
into an expression made of elementary predicates and ardinary ‘external logic
operators of conjunction (&) and disjunction (v). We denote the internal and
external operators identically, because they can be easily distinguished by the
context (note that there is no distinction between them in natural language). If
ail operator connects predicates, then it is an external-operator; if it connects
terms, then il ig an internal aperator,

Let #, and 7, bé e-terms and P an ni-ary predicate whose last 7 — 1 arguments
are represented by a list A. We have the [ollowing reformulation rules (ie.
equivalence preserving transformations of descriptions)

Plt; v 12, AJEP(1, A) v Py, A), (AB)

Pty &ty AV P A& P, A). (A9)

If an argument of a predicate is a compound term that is not a composite of
elementary terms, then it is transformed first into & compostie by rules (A.3)
and (A.4). If A contains a composite of terms, then the disjuaction is expanded
first before conjunction (similarly as in expanding compound terms).

(A.6)

Rules (A.3), (A4), (AB) and (A9) can be used as bidirectional trans-
formation rules. By applying them forward (from left to right), a compound
predicate can be expanded into an expression containing only clementary
predicates, and by applying them backward, an expression with elementary
predicates can be contracted into a compound predicate.

For example, by applying forward rule {A.8) and then (A.9), one can expand
the compound predicate (A.6) into

Went{Mary, movie) & Went(Mother(Stan), movie) v
Went(Mary, theatre) & Went(Mother(Stan), theatre) . (A.10)

Comparing logically equivalent expressions (A.6) and (A.10), one can notice
that (A.6)1s considerably shorter than (A.18), and in contrast te (A-10), represents
explicitly the fact that Mary & Mother(Stan) went to the same place. Also, the
structure of (A.6) is more similar io the structure of the corresponding natural
language expression.

A.3. Relational statements

A simple and often used way of describing objects or situations is to state the
values of selected attributes applied to these ubjects or situations. Although
such information can be represemted by predicates, this is not the most
readable or natural way. The APC uses for this purpose a statement

elerm; = a, (A.11)
stating that e-term; evaluates to a constant @ Such a statement is called an afomic
relational statement (or an atomic selector). Expression (A.11)isa special case of a
relational statement (also called selector). defined as

Term; rel Term;, (A.12)
where Term; and Term; are elementary or compound terms, and rel stands for
one of the relational symbols: =, =, >, <, =,

If Term, and Term, are both elementary. then (A.12) states that the value of
the function represented by Term, is in relation rel to the value of function
represented by Termy. For example. the expression

distance(Boston, Tampa) = distance(Washington, Dallas) (A.13)
states that the distance between Boston and Tamipa is the same as the distance
betwsen Washington and Dallas. Tf Term; is a constant, then il evaluates to
itself.

Suruasery eaanpu] Jo AFojopoyley PuB KI09QL Y BTG

16

%

Expression (A.12) can be represented by a predicate

rel{Term,, Term,), (A.14}
If Term; or Term, is compound, or if both are, then the meaning of (A.12) is
defined by expanding it into a form containing only relational statements with
elementary terms. The expansion is performed by transferming (A.12) inte
(A.14), applying transformarion rules (8.3), (A4). (AB) and (A.9), and then
converting the elementary predicates into relational statements.
For example, a relational statement

color(Py v P,)=Red v Blie (A_15)
can be expanded into an expression
{color(P;) = Red v Blue) v (Color(‘Pg_J = Red v Blue) (A.16)
and finally to an expression consisting of only atomic selectors;
(color(Pi) = Red v color(P,)= Blue) v
(A.17)

(color(P2} = Red v color(Py) = Blue) .

The two selectors in the disjunction (A.16) are examples of a referential
selector, defined as a form
Termyrel Terms | (A18)
where Termy (called referee) is a nonconstant elementary term and Termy
(called reference) is a constant or the disjunction of constants from the domain
of Term,. If relation rel is *=" and Term; is the disjunction of some consiants,
then the referential sélector (A18) states that the function represented by
Term; evaluates to one of the constants in Term;. The referential selector is
very useful for representing concept deseriptions.
If the reference of a referential selector contains a sequence of consecutive
constants from the domain of a linear descriptor, then the range operator *. 'is
used to simplify the expression. For example;

D osize(P)=2v 3 v 4
can be written

size(P)=2..4,

The negation of a selector.

~(Term, = Tern,), (A.19)
can be equivalently written
Term, # Term,, (A.20)

An arbitrary predicate P, ¢, . . -J-can be wrilten in the form of a referential
selector

P(_fl, NN _) =True .

Therefore, for the uniformity of terminology, a predicate will be considered a
special form of a selector.

To facilitate the interpretation and readability of individial selectors in
expressions, they are usually surrounded with square brackets and their con-
Junction is expressad by concatenating the bracketed forms (see Section 7).

APC expressions are created from selsctors (relational statements) in the
Same way as predicte calculus expressions are created from predicates, i.e., by
using logic connectives (~, &, v .= <») and quantifiers. One additional useful
connective is the exception operation | '), defined as

S-S F(=52~5), (A.21)
where S, and S, are APC expressions. (S, S reads; S, except when
$z). It is easy to see that the exception operator is equivalent to the Sym-
metrical difference. In addition to ordinary q_uanriﬁ’ers there is.also a simmerical
guantifier, expressed in the form

3(1)e, S[). (A.22)
where I, the index seér, denotes a set of integers, and Sfv] is an APC eXpression
having v as a free variable.

Sentence (A.22) evaluates as true if the number of values of p for which
expression S{u] is true is an element of the set 7. For example, formula

32 ..8), S[u] (A.23)
states that there are two to eight values of v for which the expression S]] is
true. The following equivalences hold

du, STv| is equivalent to 3{z=1)s, Slv]

Z8

ssdwrexy Surupsay, PeyissR[oaLd w0y Sututeey sarenpuy

and

V. Sfu] isequivalent to 3{k)v, S[vl,

where k is the number of possible values of variable .
To state that there are k and only k distinct values for vaxiables vy, 13,. .-, 84

for which expression S(vy, b, ...

) 1s true we write:

W, S(Uiy_ - Uk). = (A:ﬁ-’l]

At Uzemz e x
For example, the expressian

3P, P, Py [contains(Py, Py, & F)] & [color{ P, & P;) = red)
. 2 [two_red_parts(Ps)]

states that predicate two_red_parts(P} hoids if Py has two and only two distines
parts in it that are red.

Section 7 presents an example of the usage of the APC for formulating

ovservational statements and concept descriptions.

In

ACKNOWLEDGMENT

the development of the ideas presented here the author benefited from discussions with Tom

Bietterich and Robert Stepp. Proofreading and comments of Jaime Carbonell; Biil Hoff; and Tom
pitchell were helpfal i shaping up the final version of the paper

The aiithor gratefully acknowledees the partial supporn of the research by the MNational Science
Foundation under grants MCS 72-06614 and MCS 8205166

|

@

Amarel, F., An approach to zutomatic theery formation, in: von Foerster, H., Bd., Hinois
Symposturn on Principles of Self-Organization (1969).
Ranerji, R.B., The descriprion list of concepts, Comm; ACM 5.(1962) 426431,

. Banerji. R.B., Amificial feelligence: A Theoretical Pérspective (Narth-Holland, Amsierdam,

1980).
Rierman, A.W. and Feldman, J.. Survey of results in grammatical inference, in: Fronfers of
Patirn Recognifion {Academic Press, New Yok, 1972) 32-34.

terman, A.W., The inferemce of vegular LISP programs from examples, IEEE Trans. Systars -

‘Man Cyvbernet. 8(8) (1978) 585600,

‘Bongard, M.M., Pattern Recognition (Spartan Books, Washmgton, DC, 1570) [in Russiasn].
Brachman. BT, On the epistomulo'gical status of semantic nerworks, Rept. No. 3807, Al
Deparimient, Bolt, Beranek and Newman, 1978,

. Rruner, 1.5, Goodnow, I. and Austin, G.. A Smdy of Thinking (Wiley, New York, 1936},
. Buchanan, G.B. and Feigénbaum, E.A.,

“Diendral and Meta-Dendral, their applications
dimiension, Artificial Inselligence: 11 {1978) 524

.,

11
12

13

16,
17
18,

19.

20.

8

3

8

Buchanan, B.G.. Mitchell, T-M.: Smith, R.G. and Johnson, (CR. Jri, Models of leaming
systems, Tech, Rept. STAN-CS-79-697. Computer Scente Department, Stanford University,
1979

Burstail, B.M. anid Darlington, J.. A transformation sysiem for davaloping recursive programs,
T ACN 24(1) (1977) 44-67.

Cammap, R, The aim of inductive logic. in: Nagel, E., Suppes. P. and Tarski, A, Eds., Logic,
Methodology and Philosophy of Science (Stanford University Press. Stanford, 1962) 30328

Case I. and Smith, C.. Comparison.of identification criteria for mechanized induetive inference,

“Tach. Répt. No. 154, State University of New Yaork at Buffalo, 1979,
. Chang, C_and Lee, R.C.. Symbolic Logic and Mechanical Theorem Provng (Academic Press,

New York, 1973),

. Cohen, BL., A powerful ind efficient structiral patternt recognition system. Antficial In=

telligence 9(3) (1977) 233-255,

Coulon, D. and Kayser, ., Leatning criterion and inductive behavior, Panem Recognition
1013 (1978) 15-25.

Davis. R. and Lenar, D, Khowledge-based Sysiems in Artificial Intelligénce (MeGraw-Hill,
Maw Yark, 1982).

Dietterich, T., Description of mductive program INDLICE 1.1, Intemal Rept., Departimeat of
Computer Science, University of Tllinois st Urbana-Champaign. 1978,

Dietterich, T., A methodology of knowledge layers for inducing descriptions of sequentially
ordered events, Rept. No. 8(-1024. Department of Computer Science; University of Ulinois a1
Urbana-Champaign, 1980 _

Dietterich, T. and Michalski, R.S., Inductive leaming of swructural descriptions: svaluation
criteria and fomparative review of selected methods, Anificial Inteliigence 16(3) (1981) 257~
204,

, Fejgenbaumy, E:A.. The simulation of verbal leaming behavior, in: Feigenbaum, E.A. and

Feldman, L., Eds., Computers and Thoughs (McGraw-Hill, New York, 1

Fikes, R.E., Hart, B.E. and Nilsson; NJ,, Leamning and executing generalization robot plans,
Ariificial Intelligenee 3 (1972) 251283,

Gaines, B.R., Marvansk’s grammatical inferences, IEEE Trans. Compur, 28 (1979) 62-04.

. Graschnig, J., Development of tramum exploration models for prospectar consultant systém,

Anificial Intelligence Center, 8RI Intern.. 1980,
Hass, M. and Hendrix, G.G.. An appreach 1o applying and acquinng knowledge. Proc. First Amer.
Assoc. for Al Confersnce (1950) 235239,

. Hajek, P., Havel, 1. and Chytil, M., The GUHA method of autcmatic hypothesis deter-

mination, Comprting 1, {1965) 293-308.

Hijek, P, and Havranek, T., Mechariizing Hypothiesis Formasdion, Mathematical Foundations for
@ Gereral Theory (Springer, Berlin, 1978),

Hayes-Rath, F.. A structaral spproach 1o pattern leaming and the acquisition of classificatory
power, Proc. First Internat. Joinr Conference on Pattern Recognition, Washiogton, DC, October
H-November 1 (1973) 343355,

Hayes-Roth, £ and McDemmott. J., Ao interferente miatehing teshnique [or inducing ab-
stractions, Comm. ACM 21(5) (19'78) 401-411.

. Heddck, ClL., A computer program to leirn production systems nsing a semantic nst, PhD.

Thesis, Department of Computer Scientce, Camegie-Mellon University, Pittsburgh, PA, 1974,

. Hintzman; DL, The Psvchology: of Leaming and Memory (Freeman, San Franciseo, CA,

1978)

. Hoff, B., Michalski, R.8. and Stepp, B, INDUCE 2—z program for learning structural

descriprions from examples. Intelligenr Systems Group Rept. No. 831, Department of
Computer Science, University of Tllinois at Urbana-Champaign, 1983,

. Hovland, C.I, A ‘commumnication analysis’ of concept learning, Psychol. Rer. (1952) 461-472.
. Blumt, E.B., Concept Leaming: An Inforniation Proczssing Problem (Wiley, New York, 1962),

FuruaseT aayonpuy Jo ASO[0POYJeIN PUB AI0BYL V EFY

£6

35, Hum, E.B., Marin, J. and Stone, P.T,, Experimients in Induciion (Academic Press, New York.
1966),

36. Jouannaud, LP. and Kodratofl, Y, An automatic construction ‘of LISP programs by trans-
formations of funetions synihiesized from their impt—output hehavior, Internge f Polizy Aral,
Inform. Systems 4(4) (1980) 331-358. B

37, Kemeni, T.G.. The nse of simplicity in mduction, Psychol. Rev. 62(3) (1953) 391-308,

38. Kochen, M., Experimental study of hypothesis-formation by <computer; in: Cherry. €., Ed.
Information Theory. 4th London Svmposium (Batterworth, Londoa, 1961}

39. Langley, P., Neches, R.. Neves, 1. and ‘Anzai, Y., A domgin-independent framework for
leamning proeedures. Duermar, | Pelicy Aral. Inform, Systems 4(2) (1580) 153198,

40, Larson, I, Inductive infersnce in the variable-valued predicate Togic system Vig: methodology
and computer implementation, Ph.D3. Thesis, Rept. No. 869, Department of Computer Science,
Unitvetsity of Ilfinois. Urbana, Tllinois, (677 '

41. Larson, J. and Michalski, R.S.. Inductive inference of VL decision rules. Prac, Workshop on
Patern-Lirected Inferepce Sysrerns, Honolulu, Hawaii;, May 23-27, 1977, SIGART Newsletter
63 (1977). _

41 Lenat, D, AM: zn arificial intelligence. approach 1o discovery in mathematics as ‘heurssiie
search, Computer Science Department, Rept. STAN-CS.76-570, Stanford University, Stanford.
CA, 1976;

43. Lenat, D. and Harnis, G., Designing a rule §ystem that searches for Sienrific discovery. ia;
Waterrnan D.A. and Hayes-Roth, F., Eds., FPattern-Diregted Inference Systems (Academic Press,
New York, 1978) 25-51.

44, Michie, D, New face of artificial intellizence, Infarmatics 3 (1977) 5=1L.

45. Michalskl, R.S., A variablevalued logic system as applied 1o picture. deseriprion and reong-
nition, in; Nake F. and Roseafeld, A., Eds., Graphic Langunges (North-Holland, Amsterdam
1972) 20-47. '

46. Michalski, R.S,, AQVAL/l—compater implementation of variable-vaiued fogic system and
its application to pattemn recognition, Proc, Forse Internat. Joinr Conf. on Pattern Recognition,
Washington, DC, October 3-November | (1973).

47. Michalski, R.S.; Variable-valued losic and its applications to pattern recognition and machine
learning, id: Rine, D., Ed. Muliple-Valusd Logic ahd Compurer Seience (North-Holland,
Amsterdam, 1975), '

48, Michalski, R.S,, Synthesis of optimal and quasi-optimal variable-vatued logie formulas, Prac
1975 Intern. Symposivn on Muliiple-Valied Logic, Bloomingron. IN, May 13-16, (1975) 76-57

49_ Michalski; R.8.. Pattem recognition &s ule-guidéd ndiictive inference, IEEE Trans. Paitern
Anal. Machine Intgiligence (1980).

50. Michalski, B.5. Knowledge acquisition through conceprual clustering: athicoretical framework
and an algerithm for partitioning data into conjunctive concepts, Diernar L Policy Anal.
Inform. Systems 4(3) (1980) 218244,

31. Michalski. R.S. and Chilausky, RL., Learning by being told and learning from examples.
Internnt, T Policy Anal Inform, Svstems (2} (1980) 125-160.

32, Michalski. R.S. and Lasson, 1.B., Selection of most representative (raining examples: and
incremental generation of Vi hypathesss: the underlying rrae!hodology and the deseription of
programs ESEL and AG11, Rept: No. 78867, Drepartment of Compiiter Science. University of
Mlineis at Urbana-Champaig, 1978,

53. Michaiski, R.S. and P. Megn. An experiment on indiétive learning inchess end pames. in:

Elcock, E-W. and Michie D., Eds.. Mackine Representation. of Knowledge, Machine inzelligence 8
(Ellis Horwand, 1977) 175-192.

34. Michalski, R.5, Stepp, R. and Diday, £, A recent advance in data analysis: elustering objects
nt0 classes characterized by conjunctive concepts, in: Kanal, L. and Rosenfeld, A.. Eds.. Progress
in Pattern Recognition, Vol. 1 iNerth-Hoelland, Amsterdam, 1981).

35. Minsky, M., A framewerk for representing knowledge, MIT Al Merma 306, 1974,

56. Mitchell, T.M., Version spaces: an Approach o' concept lsaming, PhD. Thesis. Stanford

Univarsity, Stanford, CA 1978,

- Mitchell, TM., Generalization as search, Anificial Intelligence 18 (2) (19823 203-326.
- Moraga. C., A didactic £xpetiment it pattemn recognition, Rept. AILD-PR-8161, Department

of Informaties. Dartmund Umiversity, 1281
Morgan, C.G., Automated hypothasis generation using exténded induetive resolution. Advance
Papers dth Intemar, Joint Conf. on Artificial Fndelligence, Thilist. GuA, Vol. 1 (1975) 352-3385,

- Newell, A., Shaw, JC and Simon. HLA. A variety of intelligent learning n the general

problem soiver, Rand Corp. Tech. Repl { 1959 1791,

L. Niblet,-T ~and Shapiro, A, Automatic induetion of classification rules for a'chess endgame,

MIP-R-129, Maching Intelliszoce Research Unit, University of Edinburgh, 1981,

= Nilsson, N.T.. Principies of Anificial Inselligence (Tioga. Palo Alto; CA, 1980). _
. O'Rorke, P, A comparative study of inductive leaming Systems AQLI and D3, Intelligent

Systems Group Rept. No, §1-14, Depariment of Compursr Science, University of Ilfinois at
Urbana:Champaign, 1981,

. Pentorossi, A.. An alsorithm for reducing memory reqRitements in reclrsive Programs using

annotations, Internat, Workshap on Program Canstruction, Bonas, Septembsr 517, 1980,

63. Plotkin, G.DD,, A farther note on inductive generalization, in: Beltzer, B, and Michue; ., Eds.,

Machine Inrelligence 6 (Elevier, New York, 1971).

5. Pokomy, D, Knowledge acquisition by the GUHA method. fnernar. J. Policy Anal, Inform.

67.

68,
69,
70.

Svarents 4(4) (1980) 374-399,

Polya. G.. Mathematics and plausible reatoning, vol T induction and analogy in mathematics,
Vel IL: patterns of plausible. inference, (Primeeton University Press, Princeton, NJ, 1954).
Popper. KR., The Logic of Scientific Discovery {Basic: Books, New York, 1959

Post, HR.. Simplicity of seientific theories, Brizish .J. Philos.: Sei. 11{41) (1960),

Quinlan, 1R, Distovering rules By induction from large callections of esamples, in: Miche,
D.. Ed.. Expere Systems in the Microglectronic Age (Edinbursh University Press, Edinburgh,
1979,

. Russell, B. History of Western FPhilosophy {Allen and Unwin, London, 1046) 565.

Sammut, C.. Learning concepts by performing experiments. PRD. Thesis, Depattment of
Computer Science, University of South Wales, Australia, 1981

. Shapiro, E.Y., Inductive inferences of theories from facs, Resgarch Rept. 192, Department of

Computer Seience, Yale University, Naw Haven, COF, 198].

. Shaw, D.E., Swartout, W.R, and Green, €.C.. Inferring LISP programs from examples, Prog. dth

Internat. Joint Conf. on Artificial Tntelligerice, Thilisi, GA. Vol. 1 {1973) 351-335,

75. Shortliffe. E.H., Compnier-based Medical Consultations: MYCIN (American Elsevier, New

York, 1976).

. Simon, H.A, and Kotovsky, Humag acquisition for sequential partems, Psychol, Rey 10(6)

{1963) 334346,

77. Simon, H. A and Lea, G., Problem solving and rule induction: a unified view in: Gregg, LW,

Ed., Knowledge and Cognition: Erlbaum, Potamac, MDD, 1974).

- Simon, HA_ Models of Discovery (Reide], Dordrecht. 1677),
. Smith, D.R..-A survey of the synthesis of LISP grograms from examples, Internar. Workshop

on Program Construction. Bonas, September 812, 1980,

. Solomenoff, R.J., A formal theory of induetive inference. Inform, and Connol 7, (1964) 1-22.

24254

- Soloway, EM. and Riseémian, EM., Levals of pattern description in’ l2arming, Fapers. 5th

Intesnay. Joint Conf. on Artificial Intelligence, Cambridge, MA (15977} BO1-811. _

Stepp. R., The investigation of the UNICLASS inductive program AQ7UNT and user's guade;
Rept.. No. 949, Department of Computer Sgience, University of Tllinois at Urbana-Champaign,
1978,

- Stoffel. J.C The theory of prile evénts: data analysis for sample vectors with infierently

discrete variables, Information Processing 74 (North-Holland, Amsterdam, 1974) 702706

¥6

Boduexy FUILTRA], PaUISSBIIaag WoLy Supuagery sarjoupuy

84. Suppes; P., Introduction ro Lagic {Van Nostrand, Princeron, N1, 1957).

85, Vere, 5.A., Induction-of concepts 1 the predicate caiculus; Aduvance Papers dth Internar. Joinr
Conf: on Artificial Intelligence, Thilisi, GA, Vol. T (1875) 351-356.

R, Watermiar, DA., Generalization learning technigues for sutomating the: learning of heuristics,
Artificial Intelligence 1{1/2) (1970) 121-17¢.

&7. Winston, PiH., Learning struetural descriptions from examples, Tech, Rept: Al TR-231, MIT
Al Lab, Cambmidge, MA, 1970.

2%, Winston, P.H., Anificial Intelligence (Addison-Wesley, Reading, Ma, 1977}

89, Yau X.C. and Fu, _I{.S_,, Syntactic shape recopgnition using attributed ;grammars, Proc: Sth
Annual ELA Symposium en Awtomatic Tmiagery Pattern Recognition, 1978.

90. Zagoriks, N.G., Methods for revealing regularities in data, Iz Nawka (1981} [in Russian I

Received August 1980; revised version received July 1952

Surgawer sagonpuy jo ASojopoyjel] pus L1094y, V 223G

g6

