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ABSTRACT 

 
 
 

AN ADENOCARCINOMA CASE STUDY OF THE BAFL PROTOCOL: 
BIOLOGICAL PROBE FILTERING FOR ROBUST MICROARRAY ANALYSIS 

 
Kevin Thompson, PhD 
 
George Mason University, 2008 
 
Dissertation Director: Dr. Jennifer Weller 
 
 
 
Microarrays are high throughput data measurement technologies; those that assay gene 

expression levels allowing investigators to simultaneously estimate the level of thousands of 

cellular transcripts present in a sample at the time of collection.  Many sources of variation have 

plagued Microarray analysis, leading to apparent inconsistencies between experimental results 

derived from independent platforms. A rigorous, robust set of methods for identifying all of the 

currently known sources of variability and consistently applying them across large data sets has 

been implemented in the Biologically applied Filter Level, BaFL, protocol. This protocol 

eliminates all probes for which the underlying sequence characteristics are missing, because of 

which the probe characteristics, including the identification of the measured transcript region, are 

impossible to derive.  The remaining probes are processed through the biophysical software to 

determine their Gibb’s free energy, as a measure of the solution stability.  This measure 

eliminates any overly stable probes, which would be less assessable to measure the desired 

transcript region.  The filtering process also enforces a range of acceptable signal intensity 

measurements, the result of scanner characteristics.  Measurements outside the linear range 



violate the linear correlation relationship between transcript concentration and signal intensity.  

Probes identified as covering single nucleotide polymorphisms are identified and removed. The 

Ensembl database is queried to identify probes which measure single specific gene transcript 

regions, all other probes were excluded.    The final step is to enforce a rule that a minimum of 

four probes are retained, so that any given statistical estimator of concentration has an adequate 

basis.  Samples are subject to many technical steps, so tests for outliers are implemented that 

included comparisons of representative probe intensities and probe numbers, against the 

population mean.  Samples exceeding ±2 standard deviations of the average probe numbers and 

probe intensities are removed.    ProbeSet constituents at this stage may not be identical across all 

samples, with differences arising from the linear range filter step.  By performing an intersection 

operation of the remaining probes across all samples, still enforcing a minimum of four probes 

per ProbeSet, a final, common ProbeSet dataset is derived, which is used as the basis of all further 

comparisons and analyses. 

 

The suggested data models demonstrated improved performance across three classification 

algorithms, and remarkable latent structure can be seen across the data models.  When Bonferonni 

correction is applied and the intersecting genes identified a final candidate gene list of 30 

ProbeSets results.  By including on/off genes in the list, an additional ProbeSet is identified.  

These 31 candidate genes demonstrate notable connectivity in their GO and KEGG associations.  

Literature review of the genes establishes that these associations arise from properties specific to 

angiogenesis and tumorogenesis.  A multiclass dataset of non small cell lung cancer samples was 

constructed and information gain calculated from the k-means clustering efficiency.  A candidate 

list of 18 genes is shown to possess an information gain greater than or equal to 0.8.  The 

literature review of these 18 genes provides evidence that abnormal cytokinesis may underlie 

  



tumorogenesis for both cancer sub-types.  The squamous cell carcinomas, in particular, appear to 

suffering from the production of radical oxidative species. 

 

Currently most Microarray analyses implement one of a small number of published probe 

cleansing algorithms.  Occasional efforts to accommodate one of the confounding factors of the 

probe-transcript interaction have been made, but no method is as inclusive as that presented in 

this work.  Further, no work exists that demonstrates the improved efficacy of removing a factor 

on subsequent performance with the existing algorithms.  Great effort has been taken here to 

show that analysis of the resulting datasets leads to greatly improved consistency in inter-

experimental comparisons, using two independent lung adenocarcinoma datasets, in comparison 

to the pre-eminent probe cleansing methodologies, RMA and dCHIP.

  



Chapter 1:  An Introduction to Microarrays 

 

Gene expression Microarray technology is a high throughput capture detection assay that 

produces a fairly complete representation of a sample’s genome-wide transcript complement [1, 

2].  The assay has been predominately utilized for gene expression experiments, but 

modifications in probe design allow the use of this platform for single nucleotide polymorphism 

and comparative genome hybridization experiments [3-5].   The array concept is a capture 

detection assay as developed from Northern and Southern blots [5, 6], and this detection method 

has spawned analogous methods such as the immunological assays known as ELISAs (enzyme 

linked immunosorbent assays) [7]. Unfortunately, for most platforms, rigorous experimental 

design has been sacrificed in order to rapidly achieve high throughput genome-wide analysis, but 

we have developed a number of assessment strategies for the individual probes that allow us to 

ascertain the reliability of individual measurements.   

 

Our focus here is upon gene expression analysis, and particularly those performed using the 

Affymetrix platform [8], which has the benefits of sampling transcripts multiple times, and 

having probes short enough to be sensitive to individual differences in sequence [8, 9].  For gene 

expression Microarray analysis, mRNA transcripts are extracted from a collection of cells, which 

can represent anything from a pure culture to a cryogenically preserved and laser-dissected tissue 

sample.  These mRNA samples can be sheared, transformed or otherwise amplified into cDNA or 

cRNA ‘targets’, and at some part of the protocol they are labeled, most often with a fluorescent 

dye [5].  

 1



Probes are the complementary strands intended to hybridize to these targets, and are designed 

against sequence databases of the genes of interest; chemical synthesis may occur on the array 

surface (as for Affymetrix arrays) or occur first and then be subsequently attached at specific 

positions [5]. There is no fixed limitation on probe length, and indeed the probes on an array may 

differ slightly in length, if a melting temperature has been the defining parameter in the design 

process [10]. Arrays are typically divided into short oligo and long oligo categories, and cDNA 

arrays.  Commercial vendors currently offer oligonucleotide-based arrays, ranging from 24-mers 

[11] and 25-mers [8] to 70-mers [12], while cDNA arrays (usually, in fact, the PCR product of 

cDNA inserts) were prevalent in the 1990s and early 2000’s [2, 13-15].  

 

The difficulties inherent in interpreting cDNA data have led to a considerable drop in the number 

of publications that use this style of array but they typically had much longer probes, usually 

100+ nucleotides [15].  Each probe design strategy has its own individual merit with respect to a 

particular experimental goal [14, 16], but the short oligonucleotide platforms are the most flexible 

[10] and, as costs have decreased, have become the most prevalent in published scientific 

literature.   

 

Target mixtures are applied to the array surface and, after sufficient hybridization time and 

removal of non-specifically bound material, the elicitation/capture of the signal molecule occurs 

[10]. For fluorescent dyes this requires laser excitation of the dye in an imager or scanner with 

sufficient resolution to separate the spots [5, 14]. From these pixel-by-pixel scanner 

measurements an overall fluorescence per spot provides a qualitative representation of each 

gene’s relative abundance [14].  A common assumption is that the intensity of the spot correlates 

to the concentration of the original mRNA, directly and consistently across all spots. However, as 
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previously stated, rigorous reagent design, in a large number of experiments, has been scarce, 

especially in comparison to the family of immunological assay technologies.   

 

ELISAs use a similar biomolecule-based capture detection assay; however, ELISAs are made 

quantitative by the nature and number of controls that are standard practice for the assays.  As 

quantitative assays ELISAs are performed with background controls, a dilution series standard, 

sample replicates, and in addition, scanner limits are used to set boundaries on the measurements 

when interpreting the results [7].  The majority of these features is absent or unrecognized in 

commercial Microarray platforms and their associated analysis pipelines, although each has been 

the subject of one or more studies by individual investigators and shown to have considerable 

impact on the outcome [17-20].  

 

The work reported here attempts to find a computational remedy for each of the weak design 

points, in order to derive a more reliable representation of the transcript concentration. The 

procedures developed are demonstrated in detail for the Affymetrix platform, but they are 

extendable to any platform.  The next sections present background material about the probe-target 

reaction, the various measurement platforms, and gene expression experiments. Once the 

apparent weak points have been identified, the important question is the extent to which they 

change and whether they improve the interpretation of the data, which we approach in a number 

of ways described in detail below. The final section lists the specific aims of the research 

described in this dissertation.   
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Microarrays:  Hybridization and Signal 

 

DNA Microarray assays are based upon the principal of complementary nucleotides binding in 

solution to form a stable anti-parallel duplex [10, 21].  Hydrogen bonds dictate the kinetics of the 

nucleotide pairings, and base-stacking interactions govern the stability of the resultant product 

[22-24].  The factors affecting the rate and extent of these endothermic reactions have been 

extensively studied, including the ionic conditions, temperature and solvent characteristics under 

which the single strands will form hybrids [22, 24-27].  However an important and not well 

understood distinction in a Microarray experiment is that the probes are fixed to a surface and 

may not freely diffuse [10, 14]; in addition the reactions are not composed of single sets of 

reactants but a highly multiplex set of unimolecular and bimolecular reactions within and 

between probes and targets.   

 

That is, since a heterogeneous mixture of transcript targets exists, duplex reactions compete to 

form stable compounds, some containing a variety of mismatches that dissociate slowly [28], and 

therefore, to optimize the measurement of the best matches, the mixture of reactions must be 

allowed to reach a state of equilibrium [3, 10].  The formation of sub-optimal duplexes is termed 

cross-hybridization, and those targets with high enough sequence similarity to compete for stable 

products are ‘false positive’ signals under the usual guidelines of interpretation [17, 20].  The 

combination of desired and undesired hybridizations generates a fluorescent signal, recorded as a 

spot of high intensity that is extracted by the instrument’s scanning software.  The amount and 

position of dye incorporated into the target will clearly also affect the intensity of the signal and 

must be accounted for in quantitative interpretations [5].  
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Factors influencing Signal Interpretation 

 

Hybridization Factors 

Microarray experiments result in an image output recording the extent of millions of uncatalyzed 

chemical reactions; these reactions are influenced by reactant concentrations, solvent conditions, 

time, and temperature [10].  In addition to these basic reaction parameters the reagents themselves 

have properties which affect the reaction, as discussed below: 

     

1) Probe Concentration.  Probes are affixed to their designated grid positions in high 

concentrations, in order to drive the reaction towards product formation [14]. This is 

necessary since the sample’s target concentration is unknown and often times low.  In 

addition to concentration, individual probe attributes such as length and base 

composition and order affect the stability of the product [10].  Probe length limits the 

concentration of probes which can be affixed since individual probes must not 

interact with one another and there must be sufficient space for target diffusion 

between the probe molecules [29]. Longer products, those over ~70 nucleotides in 

length, approach a common melting temperature and have little sequence 

dependence, while shorter duplexes demonstrate more variability in temperatures and 

are influenced by base composition and order as well as length [10, 22, 25, 26].  Self 

complementary pairings lead to the formation of secondary structure in both the 

probes and targets, which compete for maximal product duplex formation [30].  

Probe secondary structure formation becomes increasingly likely as the probe length 

increases.  The stability of a duplex is more sensitive to mismatches when the duplex 

is shorter, which can be treated as either a confounding factor or a desirable feature, 
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depending on the sophistication of the controls and analysis methods [10]. One aspect 

our group has given particular attention to is the detection of SNPs in the 25-base 

Affymetrix probe arrays.    

         

2) Target Concentration.  Target concentrations will vary as the gene transcript amounts 

vary, and the variation extends to the presence of particular exons as well as genes 

expressed across samples [31-33]. Given the scenario of low transcript (target) 

concentration, some experimental conditions can be altered to drive the reaction 

towards duplex formation (increase the rate at which it approaches equilibrium) [14, 

15]. The duplex form of the nucleic acids is affected by too high heat, so 

amplification of the target mass is the preferred method.  The challenge is to keep the 

relative concentrations of individual targets within the mixture identical in the 

process, which generally utilizes some type of polymerase chain reaction, either as an 

intermediate or end step [14]. Additionally, ‘hybridization accelerators’ such as 

polyethylene glycol (PEG) and dextran sulfate are employed to create a diphasic 

reagent solution, with the target reagents effectively concentrated in the aqueous 

phase [34]. This allows the overall volume to be increased sufficiently to cover the 

relatively wide array surface without diluting the target component. Similarly to the 

nature of probe sequences, the composition of target sequences may allow the 

formation of internal secondary structures; in the event that such regions block the 

probe binding site this will affect the probe’s ability to associate with the 

complementary target region [5, 10, 35].  Target sequences are minimally 1000 

nucleotides long (depending on the effectiveness of the molecular biology 

preparatory processes) and, unless shearing or fragmentation is performed, the 
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likelihood that no such structural regions form is vanishingly small. Because of the 

highly folded structures that result there can also be tertiary structures present, 

compounding the likelihood that the availability of intended sites for probe binding 

will be sterically hindered, and greatly decreasing the diffusion constant of the 

molecule in solution (slowing the rate of duplex formation further) [29].  Shearing of 

targets strands is thus recommended, with the goal of ending with target lengths that 

are approximately equivalent to probe lengths [5, 10, 35].  

   

3) Temperature.  As noted above, the probe length and base composition affect the 

melting temperature (Tm) of any duplex, where the melting temperature is defined as 

the temperature at which 50% of the duplex structures are dissociated [22, 25, 26, 

36].  Experimental conditions are designed as a best fit for the average of the 

hundreds of thousands of individual reactions occurring on the array.  Solvent 

components can be altered to change the dielectric constant of the solution, altering 

the energetics of the product’s hydrogen bonds [34, 37]. 

   

4)  Equilibration Time.  As noted above, the competition among highly similar targets 

for the same complementary probe sequence requires that adequate hybridization 

time be allocated, in order for the reaction to achieve equilibrium. Short hairpin 

structures are less energetically favorable than long duplexes, but since unimolecular 

reactions occur in a much shorter period of time than bimolecular reactions, 

unimolecular reactions can kinetically trap probe or target in non-optimal forms[5, 

10] . The various kinetic properties of the tens of thousands of probes realistically 

prevent a significant proportion of probe-target interactions from achieving chemical 
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equilibrium, an underlying assumption for interpreting a Microarray experiment [5, 

10].  Achieving equilibrium is a mandate of DNA Microarray experiments in order to 

ensure a reliable, reproducible, measurement of transcript concentration [5, 10].     

 

Dye-related Factors 

After the chip has been incubated with the labeled target/solvent mixture, the unbound reagents 

are washed away, and the chip is assayed for the remaining presence of the label, which in most 

cases is a fluorescent dye [13, 14, 16, 38, 39].   The dye absorbs specific wavelength frequencies 

and emits photons at a second frequency which are captured and amplified by a CCD camera or 

similar device [40-42]. The readout for the measurement is an image, either from a scanner or 

actual imager, with varying intensities in ‘fluorescent units’ at specific locations [14, 15]. 

Extraction of the intensity at the position known to coincide with a probe is used to infer the type 

and amount of target present in the duplex.  Hence, reliable assessment of a Microarray 

experiment is dependent on knowing whether the reaction has reached equilibration and how 

many fluorescent units are emitted per incorporated dye and the number of such dye molecules 

per target. Dyes may be incorporated at internal positions with modified nucleotides, or may be 

incorporated onto the 5’ end of the target strand through catalytic hydrolysis of the phosphate tail 

[5].  In either case the enzymes used have preferential incorporation rates with different dyes [40-

42]. A common multi-label strategy is co-hybridization, in which a control and experimental 

sample are labeled with distinct dyes, mixed and hybridized to the same array, with emission 

filters being used to separate the signals [14, 15]. These two-dye experiments need to include the 

distinctive properties of the chosen dyes in the experimental design, so as to avoid quenching and 

dye quantum yield bias in the final comparisons [38, 39].  Affymetrix protocols do not use co-
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hybridization and multiple dye strategies, so the procedures developed in this research do not 

handle this class of problems. 

 

Gene Structure Factors  

A probe covers only a small fraction of the possible target sequence, and the investigator should 

be, but often is not, wary of drawing conclusions about the expression of the ‘gene’ that, in fact, 

are true only for a particular isoform of the gene. Current chip designs are attempting to account 

better for exon coverage and alternative transcript events across sample comparisons by 

increasing the number of probes and diversifying their placement [9].  Isoform-sensitive analysis 

does depend on an underlying gene model [43, 44]. While the results of the research presented 

here are sensitive to probe position and gene models, the resolution of competing models requires 

wet-lab methods not available to us, so the results shown present likely alternatives rather than 

absolute outcomes.  

 

 

Commonly Recognized Confounding Factors 

The underlying goal of Microarray technologies is to detect and quantify biological compounds.  

Any such molecular assay faces the sensitivity challenge of augmenting the signal of very rare 

events, setting conditions that optimize the specificity of interactions, minimizing background 

contributions, and respecting device limitations, ideally by including external and internal 

calibration standards.  To date, standard platforms for Microarray analysis have not focused on 

robust and standardized wholesale technical solutions to these problems, but instead have focused 

on one particular technical aspect in which to specialize (and segment from the competition) and 

then relied on statistical methods embodied in algorithmic analysis pipelines for signal 
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interpretation to cover the remaining aspects [45-49].  Thus, some Microarray platforms 

implement multiple probes per target assessment in order to improve the specificity of transcript 

recognition [8, 12]. In this respect, standard ELISAs are more akin to the single-probe-per-gene 

Microarrays, since ELISAs assay one specific epitope of a protein which is then taken to be 

representative of the protein in its entirety.  However, ELISAs have been modified to compare 

abnormalities in protein sub-units [50], similar to Microarray exons studies, and the lessons of the 

suite of controls developed for such assays should be considered by the Microarray standards 

groups as a conceptual guideline for improved platforms. 

 

Background Contributions   

Background contributions to the signal are usually derived at the same time that individual spots 

are identified and extracted, and algorithms for incorporating the values are often incorporated 

into the image analysis packages that are optimized for the output of a particular scanner [51].  

Common adjustments include subtracting the immediately adjacent fluorescence surrounding 

individual spots [52] and/or a global adjustment of selected background regions to blocks of spots 

[52].  Such adjustments assume that any intensity is meaningful: they do not identify the minimal 

signal that is meaningful as a target response. The best remedy for the uncertainty in the noise 

level would be the incorporation of a quantifiable nucleic standard(s) on every array, or a 

calibration standard [7]. Background is contributed from both specific and non-specific sources, 

and can be truly random (noise, such as from scattered light in the scanner) or systematic (error, 

such as the effect of SNPs in the sample population) in its contributions to the signal. These 

effects are dissected in more detail below. 

1) Specificity.  Probe specificity can be estimated for each set of complementary and 

near-complementary sequences under the prevailing reaction conditions using 
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classical reaction equations, modified with nearest neighbor parameters and surface 

attachment parameters [25]. However, any target genome not exactly similar to the 

reference genome used in probe design is likely to diverge in unknown ways from the 

sequence set expected [31]. Thus the precise interpretation of the values is an open 

ended issue.  Common problems that relate to managing specificity include: 

a. Cross hybridization.  Targets with near perfect sequence similarity to probes 

have the potential to form sub-optimal but still stable duplexes that compete 

with perfectly matched targets [29, 53].  The problem is exacerbated with 

longer oligo probes because the greater stability of longer duplexes can 

overcome a larger number of mismatches, but it is clear that sequence 

composition effects can render this a problem even for quite short probes 

[10]. The heading of cross-hybridization is understood to mean sequences 

from other sites in the genome than the particular gene that the probe was 

designed to target, and not variant alleles or alternate transcripts of the 

intended gene. A complication when the probes are directly attached to the 

array surface (absence of a spacer) is to determine which of the nucleotides 

nearest the surface can actually bind the target. Evidence from Affymetrix 

arrays suggests that the first 6 nucleotides are inaccessible to molecules in 

the solution phase [10]. This is relevant to the cross-hybridization problem 

because it results in a shorter string of nucleotides that must be matched, and 

so a likelier cross-hybridization event.          

b. SNPs.  Alternate alleles are within-gene sequence variants, and their 

significance to a DNA Microarray assay is that the intended probe may 
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demonstrate sub-optimal stability with the desired target [18, 54, 55]. One 

such class is that of single nucleotide polymorphisms.  For short 

oligonucleotide probes (i.e. 25-mers) a single-base mismatch is supposed to 

be sufficiently destabilizing that signal decreases markedly [9]. This is by no 

means consistently observed, since there is a very large context dependence 

[18, 55, 56].  In the equilibrium equations of duplex formation, the duplex 

dissociation rate is slower than the single strand association rate, but 

mismatches dissociate more rapidly than perfect matches; again, the 

difference in rate constants is dependent on the type and context of the 

sequence variant [28, 29].  

c. Transcript Models.  A second class of alternate alleles has to do with 

transcript splicing. Gene models are routinely redefined as more evidence is 

published [43], while probe designs are based upon a static definition of the 

gene model at the manufacturing time.  This means that probe annotation 

must be continually updated by the investigator in order to understand which 

probes should be deprecated and which should be selectively combined, 

depending on the desired analysis. Unexpected outcomes are common, 

including such observations as probes mapping to introns that thereby are 

expected to have no signal, some of which have high responses, leading to 

some doubt about the accuracy of the gene model [57].   

d. Inaccessible Probes.  As discussed above, any single-stranded nucleic acid 

can form stable self complementary structures, due to intramolecular 

hydrogen bonding and base stacking [22, 25, 54].  Such structures can 
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prevent the hybridization of probes to intended (or unintended) target 

reagents, which will prevent the formation of a measurable duplex product 

and lead to a false negative result.  There may also be increased susceptibility 

to cross-hybridization if the remaining single stranded target region is long 

enough to form stable duplexes under the hybridization conditions. Similarly, 

intramolecular structure in the target may prevent its binding to the intended 

probe [30]. 

e. Sample homogeneity.  Sample preparations are derived from cell populations 

in which there is little homogeneity of type and stage [13, 58].  Transcript 

levels are bound to change according to the cell cycle, environmental 

conditions, and cellular type [13, 58].  There exist methods of cellular 

isolation, such as laser dissection and FACS (fluorescently activated cell 

sorting), or the use of synchronized cultures, that minimize the variation of 

cell types and localized disease effects, although there will still be variation 

in the localized environment conditions, cell cycle (unless synchronized), 

stage of disease progression or response to toxicity effects [58].  Thus, no 

matter how precisely one is able to target probe specificity to a gene, allele or 

isoforms, the sensitivity of the experiment relates to the makeup of the 

sample mixture as a whole.  

2) Sensitivity and Scanner Limitations.  Scanner limitations were mentioned above with 

respect to the lower bound of detection, but are important to the upper bound as well. 

The devices that capture photons saturate well below the limit of response of the 

Microarray itself [59]. There have been attempts to adjust for this effect by lowering 
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the energy of the excitation stage, but this raises the lower limit of detection to 

unacceptable levels [39]. Using two excitation gains successively gives poor results 

because of photo-bleaching of the dye and the non-linear relation between the gain 

settings [38]. The effect of saturation is that the scanner makes a stochastic 

estimation of the relative amount of fluorescence – although a numerical value is 

supplied the true value should be ‘very big’ [59]. Scanner manufacturers provide 

instrument specifications that supply the required sensitivity limits but no pipelines 

make use of these values. Corrections for individual scanners could be found by the 

use of either internal or external standards [38], but no ‘standard’ calibration reagents 

are available, and indeed almost no one is aware of the problem. Most analysis 

pipelines do enforce at least lower and sometime upper bounds on acceptable 

measurement values, but these are typically arise from purely statistical assessments 

of variance.  The better strategy is to remove all data from the stochastic response 

regions, as in done with ELISAs, and then look at the statistical variation of properly 

quantified spots.   

 

Microarray Platforms 

 

Published reviews that describe Microarray experiments generally designate two categories:  

oligonucleotide or cDNA probes [14, 15].  The difference in these array designs is the length of 

the probe sequence and this difference arises from the production methods.  The longer, cDNA, 

probes are derived from either the excised inserts from clones or (usually) PCR products of those 

inserts [15].  These probes range from 100 to 1000 nucleotides long and, because of their size 

(length and tertiary structure), have limited spotting concentration and spot density [5]. Robotic 
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platforms are used to deposit them at their designated spots.  The use of such cloned inserts offers 

investigators immediate access to reagents and thus ease in modifying chip designs and thereby 

flexibility in their research.  The investment in the robotics is prohibitively expensive to 

individual laboratories and therefore often research parks and academic centers start core 

laboratories to provide these services for their community of investigators [60].  The established 

protocols of these core laboratories present the issue of reproducibility of cDNA Microarray 

experiments, since quality control and laboratory protocol implementations can vary per core 

facility [61]. In general our lab does not analyze cDNA array data due to the lack of complete 

probe characterization and quality control steps in the manufacturing steps. 

 

Parallel to the development of cDNA Microarrays has been the private sector’s development of 

mass-produced, short (25-70) oligonucleotide Microarray platforms [8, 11, 12].  The major 

companies producing these Microarrays include: Agilent [12], NimbleGen [11], and Affymetrix 

[8]. The latter two use in situ, or on the surface, production of probes by photolithographic 

methods [5, 10, 62]. The computer-chip derived production methods of these Microarrays allows 

for extremely high density spotting of probes, and indeed the spotting density has followed 

Moore’s Law [63].   Where Moore’s Law has predicted the increase in computational memory 

over time, the increases in memory are directly proportional to the spotting density of electrical 

circuits.  The differences in manufacturing designs are in the production approaches.  NimbleGen 

and Affymetrix both make use of UV irradiation of reactive subunits at the surface, while Agilent 

uses piezo-electric delivery of either reactive subunits or pre-manufactured and purified 

oligonucleotides [8, 11, 12].  There are inherent chemistry limitations to the photolithographic 

methods, which limits the probe length to a maximal 25 nucleotides, after which the failure 

sequences begin to accumulate [5].  Affymetrix directly builds the probe on the Microarray chip 
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surface, while NimbleGen makes use of a polymer tether to build the probes upon [8, 11].  In any 

design there must be not only resolution between spots but sufficient distance between probes 

within a spot that they do not interact with one another (essentially a distance defined by the cone 

that the tethered probe can sweep out [5]. This lesson was learned the hard way by the 

commercial providers and is often violated by institutional core laboratories, which tend to use 

very high concentrations of probe solution despite a number of reports indicating more linear 

responses result from lower concentrations.        

 

 

Affymetrix U95 Platform 

Since the remainder of the research reported here utilized data obtained from experiments that 

measured transcript levels on the Affymetrix U95 Microarray chip, details of the chip design are 

included here.  The probe design protocol is to perfectly align 25 nucleotide sequences against 

known transcript regions of the experimental species and identify those that are unique to a single 

location in the genome [9].  Gene models are matched with 11-16 of such probes, spanning an 

approximate transcript region of 600 nucleotides at the 3’ terminus of the gene [9].  This regional 

bias reflects the most common method for purifying eukaryotic mRNA, which uses the polyA tail 

as a capture feature and the basis for the cDNA transformation step.  Probes are distributed across 

this region, but not in a very consistent fashion, since the sequence uniqueness requirement did 

not allow homogeneous spacing to occur. While such composite or multiple-probe sets may 

measure the same transcript, it is also possible that different isoforms will be assayed [9].  

 

The Affymetrix company provides a reference Web-available resource 

(http://www.affymetrix.com/analysis/index.affx) for acquiring information about the probe design 
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and chip layout [64].  In particular, a master ‘.CDF’ file provides the cell definition, or array 

design layout, while each sample has a corresponding .CEL file, or intensity output per spot file 

[9].  The CDF file contains the essential information about the chip’s probesets:  x and y spotting 

locations for each probe, the index position of each probe, and each probe’s perfect match or 

mismatch identity.  The .CEL files are arranged by the x and y spotting locations and contain the 

pixel size, signal intensity and standard deviation of the fluorescence across the pixels in the spot, 

as extracted by Affymetrix’s scanner software.   

 

Each probe has a Doppelgänger, a probe incorporating a deliberate mismatch, intended to provide 

a non-specific hybridization observation [9].  Probes are designed to either have perfectly 

matched the entire sequence or have substituted a mismatch nucleotide at the 13th position in the 

probe sequence (homomeric transversions: A ! T and G ! C). Originally the analysis software 

from Affymetrix subtracted the MM signal from the corresponding PM signal [9].  The same 

confounding issues for the perfect match sequences affect the mismatch sequences, although the 

issue for these sequences is that cross hybridization and SNPs can now attenuate the background 

correction and thereby potentially nullify the perfect match signal [65].  The confounding factors 

have made the research community skeptical of the use of mismatch (PM-MM) subtractions and 

by Affmetrix’s own admission, these mismatch sequences are rarely used [66].  There are 409, 

600 probes on this U95Av2 array. In addition to the MM probes there exists an additional 3,935 

manufacturing quality control probes, all of which lack rudimentary information such as id and/or 

sequence.  These probes apparently are used as controls in the manufacturing process but to the 

data analyst represent black boxes into the Affymetrix software implementation of spot 

assessment. 
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In summary, each probe demonstrates its own binding affinities, and, since on Affymetrix arrays 

there is no replication of individual probes, variation per hybridization reaction cannot be 

assessed. Replication is represented solely in the probeset’s (transcript level) distribution of signal 

intensities, and this distribution of the probe intensities then is represented with any of a number 

of statistical estimators [52].  The aggregation of these probesets into a scalar value representing 

the transcript concentration can be performed by mean analysis, trimmed mean analysis, median 

analysis, etc., and there exists considerable debate about the appropriate methodology and 

whether the mismatch probe information should be used, and how [45, 46, 48].  However, one 

must acknowledge the dubious nature of a simple interpretation of these ‘measurements’ for 

transcript levels when they are only pixel summarizations of fluorescence of sequence subsets of 

the transcript, where no replication of spots occurs.    

 

Data Analysis and the Impact of the Data Cleansing Methods on 

Interpretation 

 

The end result of a half-million individual Microarray reactions is the fluorescent intensity of a 

grid of spots, which the scanner (or imager) records as a Microarray image.  Software and 

algorithms continue to be developed to accommodate adjustments for local and global 

background spotting intensities and to extract intensities and merge them into scalar gene values 

[52].  This interpretation of the signal represents a semi-quantitative measurement of the 

transcript region’s concentration [7].  The investigator is then left to make decisions as to how to 

aggregate individual probes into probesets, including whether to combine probesets that measure 

the same transcript and/or the same gene [9].  An unexplored aspect of these experiments is 

 18



whether analyses based upon individual probes is more or less informative than the aggregated 

probesets.   

 

Confounding factors have been documented as to their effect upon the aggregated probeset’s 

measurement, and algorithms such as dCHIP, RMA, gcRMA, FARM, etc. have been developed 

to identify the less variant probes within a given experiment [45, 46, 48].  The assumption 

underlying most of these algorithms is that cross-sample variance is indicative of biologically 

confounding factors rather than technical factors.  A paradox of this assumption is that these 

biological factors may be of real biological interest and removing the outliers results in loss of an 

important experimental result; that is, what if the molecular phenotype of importance is that 

variation of a set of genes increases as a result of an increase in the presence of a particular gene, 

rather than that the expression of the affected set all increases (or decreases) homogeneously [67].   

 

The methods reported below were developed to contend with observed short-comings of 

Microarray results, including the inability to generate cross platform concordance of Microarray 

experiments, the inability of resultant experimental gene subsets to demonstrate similar 

performance on independent datasets, and the discordance in resultant gene subsets when 

different methodologies are applied [35, 44, 57, 68].  In the first part of the research presented 

here we have been able to show that these experimental discrepancies are readily explained by 

specific sources of biological and laboratory variation.   

 

The research goal of any Microarray experiment is to identify an informative but still 

‘manageable’ subset of genes, from the thousands of observed genes, whose response correlates 

significantly with the experimental factor(s) and which can additionally be investigated for 
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robustness in the predicted expression differences between two given tissue states [69].  These 

tissue states can be disease conditions, time points in a response curve, drug or toxin treatment 

groups, etc.  Generating such a subset of genes, generally several dozen to several hundred in a 

list, falls within a type of classical statistical issue now well-understood for Microarray data.  

That is, any such data set has a large feature (N) to sample (P) bias, where N >> P, in the initial 

measurement set [70].  In fact, this characteristic violates most statistical analysis method’s 

assumptions about the data [70].  A common test is the identification of unexpressed genes and 

genes whose expression does not change, such that these genes can be excluded [70, 71].  From 

here, investigators typically employ additional metrics to facilitate further down selection of the 

data’s features, by identifying those genes with the largest fold-change, noise-to-signal ratio, or 

some other dimensionality reduction rule in order to identify significant changes [52, 69-73].   

 

A great deal of effort has been extended to refine these identification methods, either in the 

algorithms themselves or in the statistical power, by exploring false discovering rates, etc [57, 74, 

75].  A major presumption about these approaches is that a significant change of any gene’s 

expression levels is found by identifying a large change, whether absolute or as a ratio, compared 

to a starting level. This does not match what is known about the expression of particular classes 

of genes, such as those regulating transcription, where very small changes may lead to large 

effects on other genes [76].  A similar assumption is that the biological tolerance of steady state 

variance is the same for all genes [67].  The steady state reflects an average of the sample 

mixtures, but tolerance of expression variation will be different for different genes in different 

cell types, and in samples having different components [58].   
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The process of determining a candidate gene list is often multi-step, with a (relatively) simple 

statistical method being used to obtain an initial down-selected list, in which significant 

expression change is identified, followed by a more sophisticated technique, in order to suggest a 

final subset of genes in which correlation to the factor or phenotype of interest is robust [52, 69-

71, 77-83].  The assessment of these subsets can be done using supervised or unsupervised 

methods [69].  Clustering is the most common form of the unsupervised methods, where the goal 

is to achieve homogeneous clusters [84].  Supervised learning methods develop models from 

training data and assess the quality of prediction of the test data [77, 85].  Performance metrics 

are necessary for choosing among the learning algorithms: the most common metric is the area 

under the receiver operating curve, which incorporates the sensitivity and specificity of the 

classification results [86].  Other metrics include precision-recall, cost-sensitive analysis, etc. [87, 

88].  

 

Specific Aims  

 

A number of confounding factors to Microarray experiments are well described in the scientific 

literature [17, 18, 22, 26, 59]: to these factors is attributed the relative irreproducibility of 

Microarray analysis results [35, 44, 57, 68].  While a number of investigators have reported the 

effect of removing individual classes of contributions on the robustness of the results, to our 

knowledge no investigation has removed the complete set of factors which we have established in 

our cleansing pipeline.  Of the sophisticated probe cleansing algorithms that have been developed 

and are commonly used, all proceed by identifying and eliminating probes with large variance, 

without exploring the underlying cause of that variance [45, 46, 48, 49, 89]. This black box 

method leads to both inclusion of probes having dubious properties and exclusion of probes that 
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carry a great deal of biologically important information. The intent of the research presented in 

this dissertation is to establish a white box probe-based analysis of Microarray experiment results 

as a rational, scientifically grounded, alternative to current probe cleansing algorithms; to 

compare the outcome of using that method with accepted blackbox methods, and to analyze the 

outcomes for biological insights into a particular class of human cancers. Specifically, the goals 

were to:   

   

1) Design and implement a probe based data cleansing pipeline, in which the 

contributions of individual factors are interpreted. 

   

a) Demonstrate that the confounding factors that are removed during the probe 

cleansing process behave inconsistently across independent data sets, as well 

as by comparison to their probeset ‘mates’.  The remaining probesets are 

demonstrated to have very consistent response patterns across different 

datasets.  

 

b) Provide evidence that remaining probeset behavior discrepancies are 

indicative of currently unrecognized transcript variation events, such as the 

presence of SNPs or alternate isoforms.   

 

2) The resulting datasets have very consistent expression profiles over many 

probesets, samples and experiments, and because of this it can be shown that 

the resulting candidate gene lists are less sensitive to the choice of learning 

methods.  Supervised learning of two independent datasets has been 
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implemented in order to demonstrate that our method results in data that 

behaves more consistently upon down selection.  Area under the receiver 

operating curve will be reported for three separate classification algorithms: 

random forest (RF), k-nearest neighbors (kNN), and linear discriminate 

analysis (LDA).  For comparison, similar datasets have been subjected to the 

commonly accepted RMA and dCHIP probe cleansing algorithms.   

 

3) The ultimate goal of any Microarray experiment is to generate a subset of 

genes that either gives insight into a biological mechanism important to the 

sample state or that gives a high rate of success in predicting the state of a 

sample. Here we have predicted a set of genes of interest for a two class 

experiment, normal tissues versus adenocarcinoma lung cancer tissues.  This 

set of genes demonstrates impressive latent structure with and across datasets, 

as well as supervised classification performance for random forests, kNN and 

LDA.  Comparisons of these genes have been made using the intensity values 

by the commonly used methods RMA and dCHIP, in place of ours.  Finally, 

the relevance to the biological state of the sample of particular members of 

the gene list was investigated by literature review 

 

      

4) Given the world wide incidence rates of non small cell lung cancer and that 

incidences of NSCLC are increasing in individuals who have never smoked 

[90], a multiclass NSCLC dataset was constructed from the Bhattacharjee 

data.  This dataset included the adenocarcinoma, squamous cell carcinoma 
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and normal samples, as cleansed by the methodology presented in Chapter 2.  

K-means clustering was used to calculate the information gain of the cleansed 

ProbeSets.  The gain criterion demonstrates an efficient methodology to 

down select to a manageable  candidate gene list.  This candidate gene lists 

demonstrates accurate prediction rates for the three disease groups, for kNN 

and LDA classification algorithms.  More importantly what is known about 

the biology of these genes suggests intriguing differences in cell cycle control 

mechanisms in the different groups.  In particular, the findings suggest the 

occurrence of aberrant cytokinesis, which may underlie or be resultant in 

DNA damage elucidating the p53 dependent pathway in the squamous cell 

carcinoma samples. 

  

Summary 

 

Microarray experiments assess the concentration of a samples’ transcript levels at a given point in 

time.  These measurements are the result of a semi-quantitative interpretation of the amount of 

fluorescence at a given probe spot.  The probes at these spots are present in sufficient 

concentration to drive the expected duplex product formation, but the variation in the response 

cannot be assessed since most commercial platforms do not provide spot replicates.  The 

measurements of fluorescent intensity are interpreted to represent the concentrations of specific 

regions of a transcript and for those platforms like Affymetrix that provide multiple 

measurements over a transcript this redundancy is meant to be equivalent to the spot replicate 

feature.  These platforms have sacrificed measurement replication, ignored scanner limitations, 

have problematic background correction design and pay inadequate attention to known factors 
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affecting probe-target duplex formation.  Several such factors include the presence of SNPs in the 

transcript region of interest, cross-hybridization abilities of similar transcript regions having high 

sequence similarity, and secondary and tertiary structures yielding inaccessible probes and target 

transcript regions.  An additional level of confusion arises from the presence of alternate alleles, 

whether as uncharacterized SNPs, larger indels and copy number variations, or alternate transcript 

forms.   In order for the results of Microarray experiments to have scientific merit, a significant 

effort must be made to identify the potential source of deficiencies in probe sensitivities due to 

any and all of these causes, preferably explicitly, in order to provide more reliable and thereby 

more reproducible measurements.  
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Chapter 2:  The BaFL Pipeline 

 

Microarray technologies are high through-put platforms that measure some molecular fraction of 

a sample [1-4]. Gene expression Microarrays assay the concentration of cellular transcripts at the 

time samples were harvested [1].  Depending on the probe design, the technologies allow one to 

quantify some fraction of the active genes’ transcript levels over the conditions of interest. 

Accurate assessment of the transcriptional activity depends on how correctly one interprets the 

source of a signal [5-8].   

 

For example, a number of investigators have pointed out the cross-hybridization problem: many 

of the probes in any given design do not uniquely bind to a single part of the genome, making 

interpretation of any measurement arising from such a probe problematic [9, 10]. Elsewhere we 

have pointed out that probes binding where SNPs are known to occur can result in an altered 

extent of binding, depending on the alleles present, sometimes with large consequences for the 

interpretation of the amount of a transcript [11].  We and others have shown that internally stable 

structures in either the probe or the target that limit the accessibility of each to the other can 

materially affect the extent of signal [12, 13]. The fluorescent response from the scanner or 

imager is not consistent over the entire response range of the Microarray itself, so limits must be 

imposed on the signal range from which the values are analyzed (outside the linear range of the 

scanner bins must be used instead of fluorescent unit values) [14-16].   
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It has long been known that the variation due to sample handling may be far greater than the 

variation due to the primary experimental variable [17], but in the absence of internal controls and 

general calibration standards we must resort to experiment-specific calibrations  [18]. The total 

fluorescence per array has been previously suggested as one test of  batch consistency [19], 

alternately represented as the average signal per probe or ProbeSet, although those investigators 

did not incorporate the scanner limitation. This metric reflects the labeling efficiency per 

molecule, but is not sensitive to sample degradation or large differences in the number of genes 

expressed, so we extended the metric to include the total number of responsive probes in the 

linear range [15, 16]. As indicated by the references given for each factor, individual investigators 

have shown that each of these effects can have a significant impact on the outcome of an analysis, 

yet, to the best of our knowledge, no one has put all of them together into a simple-to-use pipeline 

and then tested the final effect on analysis and comparison of experiments.  

 

The significance of the factors varies across datasets by sample characteristics that are 

independent of the experimental factor ( i.e. still biological variation but not correlated to the 

factor of interest and not subject to controls) and this type of biological variation has created 

distinct dilemmas for the Microarray field: 1) cross experiment, particularly across platforms, 

analysis has been deemed impractical and 2) resultant gene lists are not reproducible in 

classification accuracy across datasets, across classification algorithms, and in their construction 

[7, 8, 20, 21].  We will demonstrate that the commonly applied statistical algorithms interpret 

signal intensities differently for each dataset, which changes individual ProbeSet’s significance 

within each dataset.  We will also demonstrate that by identifying and removing these types of 

biological variation the behavior of the ProbeSets becomes more consistent with the experimental 

factor across datasets, thereby minimizing the identified dilemmas in the Microarray field.  
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Hereafter the pipeline which we present is referred to as BaFL, or Biologically applied Filter 

Levels. 

 

Black Box Strategies  

A large number of purely statistical approaches have been applied (e.g. dCHIP, RMA, gcRMA) 

[5, 22-24] to remove variation (sample or technical) unrelated to the factor of interest, but these 

function as black-box techniques that do not enlighten the investigator about the extent that each 

factor influences the experimental results.  These methods tend to augment the data’s sensitivities 

to classification algorithms; the outcome has been that the processed data performs well within 

but not between experiments, using the same or different classifications methods [8]. The 

implication is that these approaches over-train for the factors that apply in one experiment and 

that those factors are not consistent in the next experiment. This would be expected if some of the 

result is due to variables with systematic effects on a subset of particular probes, such as the 

occurrence of different SNP-responsive probes that will give distinct patterns in different study 

populations [9, 10, 12, 25-30].  In order to demonstrate that the data inconsistencies are 

sample/population or platform dependent, an investigator needs to be able to delve into the 

aggregated signal and identify discordant probes and the likely cause of their behavior, and then 

perform follow-up assays as needed, such as genotyping samples. A black box method does not 

allow the investigator to understand which particular type of secondary assay must be performed.  

 

Our approach is to identify and remove all problematic probes in a progressive manner, 

categorizing them as they are removed.  Post- BaFL filtering the final set of data from all samples 

gives a considerably more homogeneous response; in addition the investigator is provided 

categorizations of the excluded sets that allow examination of each subcategory, and subsets of 
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probes can thus be reincorporated into the analysis, as the investigator deems appropriate. The 

impact of each variable is study dependent, but, since our interest is to identify diagnostic 

signatures, there is a requirement for gene patterns that are robust to individual sampling and 

technical variation, allowing high accuracy in sample classification, whether binary or multistate 

[31-35]. 

 

An advantage of the multi-probe per transcript platforms is that multiple measurements are 

available per gene-sample, increasing confidence in the measurement [36]. To retain this feature 

is important, so, after BaFL filters out probes subject to confounding factors, our analysis pipeline 

currently requires that a minimum of 4 probes, per ProbeSet, per array, must be present.  An 

optional constraint is that this must be exactly the same 4 probes per array. Variation due to the 

technical complexity of the assay is completely lab dependent [6, 8, 20] and cannot be quantified 

in the same way as the factors listed above, so simple statistical tests are used. Two simple tests 

of overall similarity are: the total amount of response, assessed by measuring the total amount of 

label present, and the total number of genes contributing to that response, assessed from the total 

number of probes giving signal. This can be determined at both the probe and ProbeSet level. In 

these tests, care must be taken only to use signals that can be directly compared, so the 

manufacturer’s specification for the linear range of the scanner is used to set lower and higher 

bounds for interpretable signal [16, 37]. It is possible that these criteria exclude samples 

unnecessarily, but in the absence of calibration standards and consistent controls we consider this 

to be a reasonable, conservative approach [18].  

 

 The remaining probes can be collected either as a linked set of values or aggregated into a single 

transcript- or gene-level value (similar to ‘ProbeSet’ values computed by other algorithms). 
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Higher-level analyses are performed on a set characteristic or on the aggregated, transcript-level 

(ProbeSet) values. The consistency of probe behavior within the remaining set and over the 

remaining samples can again be assessed. Where differences remain, the investigator has the 

option of weighting the probes accordingly or classifying the ProbeSet and then handling the 

separate classes; we have chosen the latter course.    

 

The collection of methods discussed in detail below constitutes a ‘white box’ approach to data 

cleansing. They have been instantiated in a software pipeline, with a database backend, that 

includes the following steps:  upper and lower limits on intensities that reflect scanner limitations, 

elimination of probes with cross-hybridization potential in the target genome along with those 

whose target sequence no longer appears, elimination of probes sensitive to regions of transcripts 

with known SNP variations, and elimination of probes with low binding accessibility scores.  

However, this only removes known sources of variation and therefore there may still be probes 

affected by uncharacterized transcript phenomena [20].  The BaFL pipeline in conjunction with 

the ProbeFATE database system allows investigators to identify potential regions of interest, for 

further analysis.    

 

Materials and Methods 

 

Hardware and Software 

A relational database and associated tools system, called ProbeFATE, was used for data storage, 

organization and simple transformations, which then became the basis for querying for data used 

in specific analyses. The information system originated as part of the doctoral thesis of Dr. 

Deshmukh [13], in collaboration with Drs. Carr and Weller and is described in detail elsewhere 
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(Carr, ms in review).  This ProbeFATE system was developed for PostgresSQL 8.0.3 [38] and 

installed onto an AMD AnthonTm 64 bit dual core processor running SUSE LINUX Tm 10.0 as the 

operating system.  Python 2.4.1 [39] scripts were developed with the psycopg2 2.0.2 [40] module 

to automate the cleansing process and modify the existing system.  Through this module data 

could be extracted and manipulated and analyzed in the R 2.3.1 language environment [41], via 

the python rpy 1.0 module [42].  Additional software and modules included Oligoarrayaux 2.3 

[43] for the calculation of probe thermodynamics and the python MySQLdb 1.2.0 [44] module to 

enable querying of the public domain Ensembl mysql database [45].    

 

Datasets 

Two independent datasets were used in testing the effects of the filtering algorithms. Both were 

studies of adenocarcinoma patients in which the assays were performed using the Affymetrix 

AG-U95Av2 GeneChipTM, so consistency of probe placement along the transcripts in the samples 

is assured. Using this platform, samples are assayed by 409,600 probes across 12,625 defined 

genes [46]. The largest, or ‘Bhattacharjee’, dataset (www.genome.wi.mit.edu/MPR/lung) contains 

measurements taken from 203 snap-frozen lung biopsy tissue samples.    The tissues, as described 

by Bhattacharjee, et al [47], consist of 17 normal and 237 diseased samples, including 51 

adenocarcinoma replicates, with disease category assigned after histopathological examination. 

The diseased samples are sub-classified into 5 states: 190 adenocarcinomas, 21 squamous cell 

lung carcinomas, 20 pulmonary carcinomas, and 6 small-cell lung carcinomas (SCLC) [48]. From 

this study we used 125 of the 190 adenocarcinoma array results and 13 of the 17 normal results; 

the selection criteria are described below.  The second, ‘Stearman’, dataset 

(http:/www.ncbi.nlm.nih.gov/geo/; accession number GSE2514) consists of 39 tissue samples, all 

replicated, from 5 male and 5 female patients (four samples were taken from each patient: 2 
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normal looking that are adjacent to the tumor and 2 adenocarcinoma samples); one of the normal 

samples is missing, presumably for high tumor content.  These sample biopsies were harvested 

using microdissection techniques and then snap-frozen [49].   

The most demanding test of a diagnostic assay is whether it is effective in predicting the 

outcomes of an experiment not included in the development of the diagnostic set.   A third, 

experimentally comparable, dataset was selected from GEO (http://www.ncbi.nlm.nih.gov/geo/): 

it was published as a meta-analysis of 5 Stage-I non-small cell lung cancers (NSCLC), accession 

number GSE6253 [33], which will be called the ‘Lu’ data.  Four of these datasets were from 

published studies of lung cancer, including the original Bhattacharjee dataset.  The fifth dataset, 

also from the AffymetrixTm HG_U95Av2 platform, consisted of samples from Washington 

University- St. Louis and included 36 adenocarcinoma and squamous lung cancer patients, all of 

which were described as being in stage I of cancer progression.  This fifth dataset was loaded into 

the ProbeFATE database system and our probe cleansing and sample cleansing methods were 

applied as an automated pipeline.  The final BaFL cleansed dataset included 10 adenocarcinoma 

and 15 squamous samples, and 5,311 ProbeSets having at least 4 BaFL-validated probes in 

common.  This dataset will serve for an a priori probe selection experiment, based upon the BaFL 

cleansing of the Bhattacharjee adenocarcinoma and squamous cell carcinoma data.   

 

BaFL Pipeline Components 

Probe Filtering 

 

The BaFL pipeline can be divided into two filtering categories, the first, ‘probe sequence’, 

category uses only the nucleotide sequence for determining filters, and the second category uses a 

signal measurement assessment as a filter.  The probe sequence filters eliminate probes which 
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have specific attributes which can be detrimental to the interpretation of the signal intensity 

including cross-hybridization, loss of target sequence, SNP presence, and structural accessibility.  

These filters affect all samples similarly.  Conversely, the measurement reliability filter affects 

each sample individually.   

I. Unidentifiable Target. The CDF base table for the U95Av2 arrays (Affymetrix 

NetAffx; http://www.affymetrix.com/products/arrays/specific/hgu95.affx) was queried 

all 409,600 probes for which the probe sequence annotation was known.  There 

remained 11,432 probes, representing 174 genes, which we eliminated from further 

consideration. Affymetrix reports the origin/source of these sequences as unknown 

(personal communication, Affymetrix Technical Support to H. Deshmukh) [13]. 

II. Cross-Hybridization and Loss of Target Sequence. Probe cross hybridization is the 

major confounding factor affecting the interpretation of probe responses [9, 10, 20, 21, 

25, 50]. We have chosen to follow the Ensembl definitions of cross hybridizations, 

where 23/25 nucleotides must be in alignment, and we have queried ENSEMBL 

Biomart 

(http://www.ensembl.org/biomart/martview/3ee2b94e6eb250f709ffdf9474635fdf) to 

acquire the list used to perform this filtering step. This process identifies probes that 

align to a single human genome region, and eliminates those which align to more than 

one region of the human genome and also those that don’t align at all.  We note that 

this comparison is available only for perfect match (PM) probes and therefore if 

Mismatch (MM) probes are included in the analysis an equivalent list must be acquired 

and applied, or the level of filtering is not the same in the two categories of probes. 

Without such a step, incorporation of any mismatch probes (MM) information, as 

background for PM probes for example, results in a discrepancy in the reliability of the 
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two measurements being compared.  Most investigators no longer use MM values in 

analysis methods, nor did we do so here. 

III. Structural Accessibility. Probe sequences were input to the OligoArrayAux software 

and the free energies for the most stable intramolecular species were calculated and 

retrieved [43].  Parameters included: temperature range 41 – 43°C, 1.0 M Na+, and 0.0 

M Mg2+.  The average free energy across the range was included as probe sequence 

annotation data in ProbeFATE. This information can be used to remove probes with 

selected levels of duplex stability. Although there is not a generally accepted cut-off 

value, we chose a cut-off value of -3.6 kcal/mol as indicative of the presence of an 

internally stable structure that competes significantly with target binding. In some cases 

numerical instability (unstable duplex, in effect leading to division by 0 for the free 

energy calculation) was observed in the output, and such probes were also eliminated.  

IV. Presence of SNPs. Probes identified by AffyMAPSDetector as having a corresponding 

transcript with one or more identified SNPs in the probe-target complementary region 

(from dbSNP) were excluded [11].  Although the presence of the SNP within a sample 

may be of particular interest to a researcher, without the individual allele call for each 

sample these SNPs become a confounding source of variance.  For example, the probe 

may bind strongly to the mismatch instead of, or as well as, the perfect match, and thus 

the PM value will not reflect the transcript concentration.  The current implementation 

does not extend the SNP filter to the corresponding MM only probes.  

V. Measurement Reliability. The individual CEL base tables (i.e. the raw data) may be 

queried to determine which of the probe signal intensity values fall within a defined 

range. The defined range represents what is known about the limits of the scanner’s 

ability to provide signal that can be accurately interpreted: above background and 
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below saturation.  The investigator must be aware that signal greater than the higher 

limit is not the result of an extrapolation in a less responsive but still proportional range 

(one would see flattening of the curve), but rather a random guess at a ‘big’ number 

(one sees greater scatter in the values) [15].  Although the true range is instrument-

specific, in the absence of internal calibration controls that let us evaluate this limit we 

used the range of 200-20,000 fluorescent units suggested by Kachalo, et al [15].  An 

investigator may assign other limits, suggested by experience or available controls, as 

appropriate. This query can be performed on the reduced probe set, subsequent to the 

above 4 steps, or it can be performed on the entire dataset and only those probes 

passing both sets of requirements can be stored for additional analysis. 

VI. Statistical Rigor. In these experiments our criterion was that, in a given sample, a 

particular probeset must have a minimum of four probes remaining, after the steps 

described above, before a transcript-level value would be calculated (in these 

experiments the transcript value was the simple mean of the set of remaining probes). 

Probes in smaller sets were removed.  A plethora of procedural choices exists from this 

point forward.  An investigator may choose to simply enforce the minimal acceptable 

number of probes per ProbeSet and ignore whether the same set is present in each 

sample, or enforce the complete identity of probes in all samples, depending on the 

research question. In the results reported here, we enforced commonality of probes.  

Clearly, the greater the restrictions on number and commonality the smaller the final 

dataset will be.   

 

In steps I-IV, the probe sequence filters are inherent probe characteristics rather than 

measurement characteristics and apply equally to all arrays in an experiment done on a particular 
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platform: only the CDF and probe sequence files are required in order to flag problematic probes. 

Thus the order of the first four steps is irrelevant and can be set to optimize the computational 

efficiency. Using our data the cross hybridization filter (II), implemented here only for the PM 

probes, reduces the dataset most drastically, so if it is applied first the succeeding steps will be 

accomplished more quickly.  Once steps (I)-(IV) have been completed the results are applicable 

to any future experiments using the same chip design and sequence files.  The last two steps 

described above, (V) and (VI), are experiment/measurement dependent, and it is here that an 

investigator’s choices will affect what appears in the final gene list.  Scanner response limits can 

be re-set in the code, to reflect the behavior of individual instruments 

 

Batch and Sample Filtering 

 

Technical steps will cause the amount of target, the labeling of that target and the effective length 

of the target to vary independently of the biological factors. Similarly, biological factors, such as 

secondary infections in cancer patients that lead to dramatic gene expression differences 

compared to uninfected cancer patients, may obscure the effect of interest. Technical differences 

tend to be seen in ‘batch’ effects, i.e. in groups of samples processed in parallel, while biological 

effects must be screened by comparing an array to the set of all arrays in its class (which may 

include multiple batches) [19].  The Bhattacharjee data set was explicitly batch annotated [47], 

while for the Stearman dataset the scan date was used as a proxy for batch annotation: there were 

4 dates but in 2-day pairs one month apart, so our assumption is that this reflects only two 

technical batches.  In the following discussion, both individual probe and aggregated ProbeSet 

values were used to compare individual array to batch and sample class trends, as follows:  

I. Probes-per-Sample  
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a. A filter based on how many probes contribute to the overall intensity, compared 

to the group mean, using only those probes that survived the above pipeline. 

Arrays for which this mean exceeded ±2 standard deviations of the group (or 

class) mean were excluded from further analysis. 

b. A filter based on the mean signal per probe, relative to the dataset mean. Arrays 

for which this value exceeded ±2 standard deviations of the dataset mean were 

excluded from further analysis. 

II. ProbeSets-per-Sample  

a. This filter determines how many ProbeSets contribute to the overall sample 

intensity, compared to the group mean, using only those probes that survived the 

above pipeline. Arrays where this mean exceeded -1.5 standard deviations of the 

dataset mean were excluded from further analysis.  Samples possessing the 

lowest surviving ProbeSets were removed more aggressively, since these samples 

will most limit the population of ProbeSets in the final dataset. 

b. The second filter determines the mean signal per ProbeSet, relative to the dataset 

mean. Arrays in which this value exceeded ±2 standard deviations of the group 

(or class) mean were excluded from further analysis. 

 

The above two filters were performed in parallel, not sequentially, so there is no order of 

operations dependence: failing either test was sufficient to eliminate the sample from the pool.  

Probeset aggregations had the statistical rigor of 4 probes per probeset enforced per individual 

sample described in the previous section.  The filter in IIa is less rigorous than the others, in part 

because of a desire to retain more samples for the final comparison, accepting that later pruning 

might be required. 
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In an independent QC test of the arrays, we performed a parallel analysis of the datasets with the 

R-Bioconductor affy package [19] using mock .CEL files, where probes had been aggregated 

by batch. The results of this widely accepted algorithm were compared with ours for both batch 

and sample analysis effects: that is, with and without the ‘white box’ probe cleansing approach. 

At each stage of the above-described probe filtering process graphics of the output were 

generated in order to monitor batch-specific behavior. 

 

Set of probes and ProbeSet Behavior 

 

One goal of this research is to assess the effects that this type of probe and measurement filtering 

has on the reliability of the set-of-probe patterns across experiments.  Data for the first goal was 

collected using the x and y values to find probes present in all samples, and from there we 

enforced the requirement that there be at least four probes in a probeset.  Set-of-probe profiles 

(mean and variance per class) are then shown graphically.  Next the values in the set are 

aggregated by taking the average for each sample, which is called a ProbeSet value, despite 

possible confusion with the Affymetrix ProbeSet [36].  Subsequent down selection used 

component probe and overall ProbeSets’ behaviors, across and between samples, as selection 

criteria. Within each experiment and for each probe in a set, Welch’s t- test analysis (" = 0.05)  

[51] was performed: the variance and sample means in each class were compared and used to 

define three set-of-probe categories. In the first category, all of the probes in the probe-set 

demonstrate means which are not significantly different between the sample classes: this class 

was designated ‘Uninformative’.  The associated ProbeSets are also ‘Uninformative’, since the 

aggregated values must also fail to demonstrate a statistical significance in difference of class 
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means.  The remaining sets possess some number of probes that do show a significant difference 

in the class means and thus they are considered to be informative.  One group contains sets of 

probes in which every probe demonstrates a significant difference in class means.  This 

maximally and consistently informative sub-group is labeled ‘Differentially Expressed’ (DE), and 

here the associated ProbeSet must also show differential expression.  The consistency in 

individual probe and aggregated set behavior is because there is strong concordance in the pattern 

of differential expression in the probes belonging to the set.  The remaining group of informative 

probes is labeled as the ‘Signal’ category.  In this group, one or more probes have a significant 

difference in expression from the class mean, that is, does contain a signal, but others in the set do 

not. Because of this, the associated ProbeSet mean may or may not show a statistical difference 

from the class mean, depending on the respective values of the component probes.  

 

The underlying goal of the BaFL pipeline is to eliminate probes which may produce variant 

results because of underlying transcript variation or probe design issues.  The resulting 

measurements should be more reliable and thereby a better interpretation of the mRNA transcript 

concentration.  However, there still exists uncharacterized transcript events which may undermine 

the signal intensity interpretation [20].  Analysis for differential expression at the probe level 

allows the investigator the opportunity to identify probes which demonstrate inconsistent 

measurements with the remaining probe within the ProbeSet.  Three hundred and twenty-five 

ProbeSets were identified to further classify whether uncharacterized transcript events may be 

occurring.  These ProbeSets were considered “Signal’ since one or more probes, but not every 

probe, demonstrated a significant difference in class means.  However, after aggregation, the 

ProbeSet values did demonstrate significant differences in the class means.  These ProbeSets 

appear to represent transcript regions of most importance to the disease state, given the aggregate 
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is differentially expressed.  A python script determined the pattern of expression, µ1 > µ2 or vice 

versa, and adjusted all probes in the down-regulated class by an increment of 1/50 of each probe 

mean.  This perturbation was decided upon by trial and error.  This was sufficient to create 

pattern inversions in cases of similar expression probes and exaggerate existing pattern 

inversions, without inverting those probes having differential expression.  The ProbeSets which 

possessed probes demonstrating the pattern inversion after the minor perturbation were 

reassigned to one of four categories:  unique or singular exception, statistical exception, specific 

transcript region event, and multiple transcript region events. 

 

A Priori Prediction 

Candidate ProbeSets were selected from the intersection of the BaFL-validated ProbeSets in the 

adenocarcinoma stage I and squamous (unknown stage progression) samples in the Bhattacharjee 

dataset [47].  This set includes 4,257 ProbeSets (from a comparison of 125 adenocarcinoma and 

17 squamous samples). Classification results (using kNN, LDA, and randomForest [2, 52-57]), 

using DE ProbeSets trained on the Bhattacharjee dataset, demonstrated that there is a significant 

impact of the stage of disease on the expression profiles (data not shown).  Therefore, the training 

set was subdivided, to create a stage I adenocarcinoma group (72), which was intersected with the 

17 squamous samples (from multiple stages but not labeled so subdivision was not possible). This 

yielded 5174 ProbeSets, of which ~4000 were classified as DE, for the (Ad x Sq) comparison.  

Restriction to the Stage I samples eliminated 16 samples in addition to the batch 3 samples; only 

3 of those 16 samples had been originally included in the full adenocarcinoma training set. The 

intersection of the above BaFL (AdI x SqI) output with the Lu dataset resulted in ~ 400 DE 

ProbeSets.   The constituent probe intensities were recovered, by their x and y location identifiers, 
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for the 24 samples in the Lu, et al. raw data files [33] (filtered as described above), and the probe 

and ProbeSet presence were then predicted. 

 

 

Results 

 

The results reported here are divided into three sections: (1) providing evidence for the BaFl 

cleansing process, including details on the number of probes removed for each probe sequence 

filter, evidence of sample batch processing variability, and exemplar ProbeSets affected by such 

confounding factors.  (2) the stages and effects of the BaFL probe cleansing pipeline, including 

graphic representation of each filtering step and the final profile consistency across the two 

datasets.  (3) the research enrichment the BaFL pipeline facilitates, including elucidating potential 

transcript regions of interest and a priori predictions of independent datasets.  For the established 

algorithms we have used the validated samples from the datasets as input, and validated 

ProbeSets from the author’s lists to compare their classification performance to each other and to 

the results of our method.  The classification performance of the author’s original gene lists is 

used to see whether the sample cleansing protocol alone has a significant effect. We show that 

while previous efforts have identified informative genes, the methods are over-tuned to technical 

properties (lab specific) or non-primary factor biological properties (such as SNPs), rather than 

the desired biological response to the principle factor (here, disease state specific).  
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Probe Filtering Output 

The probe sequence-specific filters remove unidentifiable targets, cross-hybridization sources, 

and probes no longer matching targets, probes having limited duplex accessibility or stability, and 

those probes for which the presence of SNPs is known. These filters are consistent across all 

arrays; the independently excluded probe numbers for each filter are presented in Table 2.1.  Also 

presented in Table 2.1 is the total number of excluded probes when the filters are run 

independently.  As discussed above, the ordering of these filters is inconsequential to the final 

outcome, although some probes may be removed for more than one reason, so the class in which 

they fall will depend on the order in which the steps are run.  The final x and y information for the 

probe sequences belonging to the intersection of the cleansed ProbeSets is provided in the 

Supplementary Data, as IntersectionXY.csv.  We expect that the linear range limits are the 

parameters most likely to be changed by other investigators, depending on the type of platform 

and individual instrument behavior.  We have some preliminary evidence that the proper setting 

of the lower limit can be inferred from the measurement data (shown in the Supplementary Data), 

but upper limits are more difficult to estimate, and in the absence of calibration standards 

investigators must continue to rely on the instrument specifications.   
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Table 2.1:  Probe Numbers per filter.  The number of probes removed per filter step, when run 
independently (starting value is 409,600).  Values in parenthesis refer to filter effects upon the (201,920) 
PM only probes.   Note that the same probe can be removed for multiple reasons; therefore a simple 
summarization of probe filter steps does not add up to the number of probes lost over all of the filters in a 
straight forward manner.  For example, if one also considers the probes which were removed for missing 
sequence information, the Biophysical Filter removes 2.47% of all probes having sequence information, 
and 2.44% of PM only probes having sequence information. 
 

Filter Probes removed % Probes Lost 

Unidentified Target Filter 11,432 (2,836) 2.79% (1.40%) 

SNP Filter 7,286 (7,286) 1.78% (3.61%) 

Cross-hybridization Filter 246,994 (39,314) 60.30% (19.47%) 

Biophysical Filter 21,159 (7,747) 5.17% (3.84%) 

 
 
 
Visualization is often helpful in guiding the user to a possible cause for technical problems. In 

Figure 2.1 we show a virtual array image, generated with the R package affy [19], for the 

Bhattacharjee dataset. This highlights a consistent low-intensity artifact, observed within a small 

region of the arrays in batch 10 (red circle), affecting ~ 5,600 probes (2#r2; radius = 30). To 

generate the data for this figure, a mock .CEL file for each batch was generated by averaging the 

intensity of all the probes at a (x, y) location for the samples within an individual batch. Since our 

methodology constrains the final dataset to consist of cleansed probes common across all samples 

of interest regardless of the batch, these probes won’t be included in the final set of acceptable 

probes and may lead to the loss of the related ProbeSet as well, if sufficient component probes are 

removed. Because these probes behave well in all of the other batches, the statistical methods 

retained the probes but interpreted the related signal for the samples in batch 10 as being 

significantly lower in expression relative to the other samples, regardless of the disease class.  
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Figure 2.1:  Batch images.  Image representation of aggregated probe intensities per batch preparation.  The 
red circle depicts a localized feature, most distinct in Batch 10.  Left 4 images: raw analysis of samples 
meeting our filtering criteria.  Right 4 images: the same samples with their cleansed probes averaged by 
batch preparation and only common probes allowed.  Probes affected by technical variation are eliminated 
globally across all batches, including the ~5,600 from Batch 10. 
 
 
 
Filter Effects 

Since some of the filters lead to a considerable loss of the usable measurement pool, an obvious 

question is the importance of any or all of the filters. Previously published work has shown the 

effect that SNPs can have [11]. The largest subset of data is lost from the cross-hybridization 

filter. It is unclear whether these potential probe-target duplexes form, and how much variation 

can be expected across a sample population. To investigate this factor, an inversion of the cross-

hybridization selection query was performed, which produces a set of probes all of which may 

cross-hybridize. If these probes are then subjected to all of the other filters we can isolate the 

impact of this factor. Examples of the results are presented in Figure 2.2, showing how variable 
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the effect can be. Both the type of pattern and the level of impact differ across individual samples 

in unpredictable ways: it is not possible to predict particular effects de novo, indicating that the 

filter is important and should remain in the method. 
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Figure 2.2:  Confounding effects.  The top 2 rows show the result of selecting cross- hybridizing probes 
only (other factors still excluded). The bottom 2 rows present ProbeSets in their entirety: at each position 
the confounding factor is indicated by the symbol (X = cross-hybridization and S = SNP). The binding 
patterns of these probes (rows 1 and 2) vary considerably between experiments and sample classes. For 
37298_at, in the fourth row, we observe that while in this case the cross-hybridization effect is not very 
strong, especially if averaged into a ProbeSet, 4 of the 5 SNP afflicted probes will produce significant 
differences in the averages between the experiments regardless of sample class. Probe index 8 for 37298_at 
(fourth row) failed to meet the linear range criterion in some of the samples (the solid line at 200 f.u.): it 
also shows cross-hybridization but is omitted from the top row because the other filter also applies.  The 
values for a probe across the sample in the class were averaged to achieve the value shown. Parallel sets of 
probes, for the two independent experiments, are shown side by side.  
 
 
 
Array-Batch Results 

Arrays that are outliers due to sample processing problems were identified by comparing 

individual arrays to the batch-mean values within each experiment. Technical problems are 

assumed to manifest themselves by increased variance at the measurement level, the tests are 
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described above. In Figure 2.3, the top row presents the average probe intensities per probe 

remaining in the cleansed array file (after removing values that fall outside the linear range). In 

Figure 2.3, the bottom row shows the number of such probes remaining per array, with mean and 

standard deviation lines provided for comparison. The arrays were grouped in the plots according 

to their batch membership and are so labeled (‘X’ denotes batch 10; there is no batch 2 nor 9).  

Batch 3 as a whole is skewed to the lower end in both tests, so the entire set of arrays was 

removed from subsequent analyses.  Since the probe sequence based filters remove exactly the 

same probes in all cases, the difference as to which specific probes are removed between the 

criteria is thus a result of the linear range filter.  We believe that Batch 3 suffers from sample 

degradation since the arrays demonstrate both lower average probe intensity and fewer overall 

probes. In terms of the sample classes, the Normal samples (in red) were processed across several 

batches and do not show markedly different overall responses than the disease samples in the 

same batches.     
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Figure 2.3:  Statistical analysis of batches.  Graphical depiction of array/batch characteristics in a test of 
average probe signal (top) and of average number of responding probes (bottom) relative to the mean. The 
numeral shown indicates to which batch the sample belongs (10 is X), the color indicates disease class 
(blue=Adenocarcinoma, red=Normal, purple=Small Cell Carcinoma, green=Pulmonary, and orange = 
Squamous), The heavy line in the middle is the mean intensity; lighter dotted lines are 1 and 2 standard 
deviation boundaries. The red circle emphasizes the divergent behavior of batch 3 in both tests. There are 
no batches 2 or 9. 
 
 
 
The affy package [19] results, when graphed, also indicate that there is a significant difference 

in Batch 3 properties; therefore this outcome is not an artifact of our probe cleansing 

methodology. To run this analysis, mock CEL files were created, using the mean probe intensity 

across the arrays in a batch; this process was followed for the original array files for all arrays, for 

the original data with outlying samples removed, and for the array files in which deprecated 

probes and sample arrays were removed.  Boxplots and histogram densities for the outcomes at 
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various data processing stages are shown in Figure 2.4. The difference in batch 3 is seen in both 

the boxplot and histogram densities for the original data, as depicted in the graphs on the left.  

The middle graphs present the effect of removing all of the arrays in batch 3, but applying no 

additional sample cleansing steps to the data (used as input into the RMA and dCHIP algorithms 

[23, 58]).  The data distributions still demonstrate a substantial skew.  The right-most graphs 

depict our probe cleansed and sample cleansed data, in log2 space.  Note that the linear range cut-

off enforces a truncation of the data distributions, which is most visible in the boxplots.  The 

improved normality of the data distribution observed in the last density plot is a result of the 

combination of probe and sample cleansing; no scaling was applied to the data.  Removal of 

batch 3 accounted for 38 samples. 
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Figure 2.4:  Data processing comparisons.  Boxplots (top row) and histogram densities (bottom row) of the 
Bhattacharjee data: summary of batch intensities.  The left most pair depicts the completely unfiltered data 
set, including batch 3: note the obvious offset in batch 3 and the strong skew to the resulting distributions.  
The middle pair is sample cleansed data, without any of the sequence-based probe filtering, as is used for 
input to the RMA and dCHIP algorithms: here the skew remains significant but no batches are outliers.  
The right column shows the output after both probe and sample cleansing methods are applied: note that the 
distribution is more normal but the tails have been truncated. Also note that the total density scale on the 
last plot is 10-fold less because so many fewer probes are included (even noise adds up).      
 
 
 
In addition to the batch analysis presented in Figure 2.4, the affy package provides analyses that 

are graphed as M versus A and RNA degradation plots.  The M versus A plots further support the 

evidence of a batch 3 effect and are provided in the Supplementary Material, in the Cleansing 

folder.  Conversely, the RNA digestion plot provides no evidence of what seems to be a 

degradation occurring in batch 3, but given the lack of correspondence between the index and 
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position of the probe on the transcript, and the many ProbeSets that violate the [0-15] set criterion 

for assignment of virtual position we do not consider this to be a serious lack of concordance.  It 

is possible that the result is due to a dye incorporation bias [59-61], or a cDNA conversion or 

PCR amplification problem not assessable by this technique [36].    

 

ProbeSet Assessment Results 

Sample filtering excluded those samples which exceeded ±2 standard deviations of either the 

average probe intensities or the number of contributing probes, at the probe level.  The average 

intensity per ProbeSet and the contributing number of ProbeSets per array were calculated and 

graphed; the output is similar to what was shown in Figure 2.3 and these plots are provided in the 

Supplementary Data, in the Filters folder.  The ProbeSet number filter was the more stringent of 

the two filtering steps, even with the exclusion boundary set to -1.5 standard deviations of the 

mean ProbeSet number instead of 2.  This selection was made purposely less stringent in order to 

enrich the overall ProbeSet intersection prior to down-selection.  The final sample numbers 

remaining for the Bhattacharjee experiment were: 125 Adenocarcinoma, 13 Normal, 17 

Squamous, 18 Pulmonary Carcinoma, and 5 Small Cell Carcinoma.   The remaining sample 

numbers in the Stearman experiment were: 17 Adenocarcinoma and 14 Normal.  

 

Consistency of Probe Response 

The last refinement in the cleansing process is to identify the intersection of common probes over 

the samples: the x and y locations were used to identify matched probes across all of the 

remaining samples. Next, sets containing at least 4 probes were collected, and from these the 

ProbeSet mean intensities were calculated as the simple mean of the values of the probes 

remaining in the set, for each sample. Graphical displays of the average probe intensity over the 
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samples in the class, as well as the average ProbeSet intensity over the samples in the class, show 

that there is remarkable consistency of the probe response profiles between experiments, some 

examples of which are shown in Figure 2.5. ProbeSet responses across samples in a class were 

further categorized based on the outcomes of Welsh’s T-tests [51], which were performed, per 

probe, in log2 space with an alpha of 0.05. Each set was assigned to one of three categories, 

described above as U, DE and S.  Figure 5 shows examples of some of the results, giving side by 

side comparisons.  As can be seen, in the U class no significant differences in the class means 

were found, while in the DE category the sets show significant differences (up or down) in the 

class means. The S category may result in a ProbeSet mean value in either U or DE, depending on 

the number and contribution to the total intensity of the individual probes in the set.  The S 

category of ProbeSets thus identifies specific transcript regions or probe–target interactions that 

need additional analysis to be understood.   Provided in the Supplementary Materials is the folder 

ProbeLevel: within the folder are files consisting of 100 randomly selected ProbeSets per 

classification category along with a random probe QQplot that demonstrates the T-test’s validity 

in discriminating significant differences in this type of data.         
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Figure 2.5:  BaFL consistency.  Demonstration of cross-dataset profile consistency for the three 
classification categories, as well as a random sampling from the cleansed ProbeSets.  Uninformative, Signal 
and Differentially Expressed (U, S, DE).  Left column:  Bhattacharjee experimental results. Right column:  
Stearman experimental results.  Intensities are not on the same scale since the labeling was done 
independently; it is the patterns and relative intensities that are conserved. 
 
 
 
Potential Uncharacterized Transcript Events 

ProbeSets which were identified as ‘Signal’, and for which the aggregated intensity demonstrated 

significant differential expression were identified.  There were 325 ProbeSets identified 

demonstrating the behavior, and any uncharacterized transcript events related to the individual 

probe inconsistency would be relevant to the disease state.  The probes were perturbed by 1/50th 

of the probe mean to enhance the potential for a pattern inversion and subsequently the ProbeSets 

were reassigned to one of four categories:   unique or singular exception, statistical exception, 
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specific transcript region event, and multiple transcript region events.  ProbeSets containing no 

pattern inversions were deemed to have a statistical issue, meaning that while the pattern was 

retained the difference in means failed to be significant and this was assumed more likely to be 

related to the technical variation across the samples. ProbeSets containing single pattern 

inversions were separated into a distinct category since no other probe confirmed a transcript 

isoforms event.  These ProbeSets need further individual assessment since neighboring probes 

may have been removed via the filtering process that would provide more support for such 

events.  ProbeSets with more than one probe demonstrating the pattern inversion were subdivided 

into a single region event or multiple region events, based upon whether the probes in question 

possessed overlapping alignments.  Examples of each category are presented in Figure 2.6.   
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Figure 2.6:  Probe-Transcript regions of interest.  Examples from the 325 ‘Signal’ ProbeSets, which 
aggregated as ‘DE’.  The red boxplots are the adenocarcinoma samples (T) and the normals are in blue (N); 
average p values are provided below the x-axis label.  Probes of interest are indicated with the green brace.  
Clockwise from upper left:  37047_s_at the 3rd probe in the probe-set failed to demonstrate significant 
difference in means, nor the pseudo-pattern inversion, suggesting that the difference is a matter of statistical 
importance.   The second probe of 32052_at demonstrates stronger evidence of a transcript event; however 
an absence of neighboring probes complicates the analysis.  The first 2 probes and second to last probe in 
37028_at demonstrate 2 distinct regions worthy of additional analysis.  The example probe 1985_s_at 
demonstrates the aforementioned 3 (center) probes as a single transcript region displaying transcript 
isoform phenomena. 
 
 
 
A Priori Prediction 

The Bhattacharjee data [47] cleansed via the BaFL pipeline was able to predict the sources of 

variability in the third Lu dataset [33]; this demonstrates that this is a more robust approach to 

probe cleansing, rather than either dChip or RMA, which offer no such ability.  Presented in 

Table 2.2 are the true positive and false positive prediction rates for the prediction that a probe 
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remains in the significant pool according to the Bhattacharjee data [47], as observed by the actual 

cleansing of the Lu dataset [33].    

 
 
Table 2.2:  Apriori predictions.  True positive and false negative rates for presence of predicted ProbeSets 
in the observed BaFL cleansed Lu ProbeSet stage I dataset. 
 

Bhattacharjee BaFL cleansed 
predictors TP rate FP rate 

Adenocarcinomas 99.11% 28.30% 
Stage I Adenocarcinomas 98.64% 25.20% 
Squamous 74.96% 1.28% 
Stage I-Squamous Model 91.64% 13.24% 

 
 
 
Table 2.3 presents similar results as Table 2.2, but now examined at the ProbeSet level.  This 

ProbeSet analysis did not include the requirement that identical probes be in the set for every 

sample, so a follow-on constituent probe analysis was performed.  In 25% of the ProbeSets all 

probes were identical between the Bhattacharjee prediction set and the Lu observation set, while 

in 20% of the cases the selected Lu ProbeSets contained a complete subset of those in the 

Bhattacharjee ProbeSets.  Conversely, 31% of the probes in the Bhattacharjee predicted 

ProbeSets were a complete subset of the probes in the observed Lu ProbeSets, and finally, for 

22% of the cases, both ProbeSets had at least one unique probe that did not map to the other set.  
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Table 2.3:  ProbeSet behavior predictions.  Confusion matrices for classification of the informative nature, 
comparing the classification of the predicted Lu probes and the observed BaFL cleansed Lu probes.  TP is 
true positive, FP is false positive.  The first 3 confusion matrices show the result when t-test classification 
is done at the probe level, while the bottom matrix is the equivalent comparison performed at the ProbeSet 
level. ProbeSet level analysis was done for the predictive ProbeSets that are present in the cleansed Lu 
output (True positive prediction rate for the presence of a ProbeSets was 91.64% and the False positive 
error rate was 13.24% as shown in Table 2.2). 

Level Confusion Matrix Class TP Rate FP Rate 
3904 51 Noise 

Probe Level 
77 564 not Noise 

98.71% 12.01% 

540 79 Signal 
Probe Level 

55 3922 not Signal 
87.24% 1.38% 

18 4 DE 
Probe Level 

2 4572 not DE 
81.82% 0.04% 

 
Signal 

ProbeSet Level 4444 13 
DE 

99.71% 6.47% 

 
 
 
While the characteristic call may have a high level of sensitivity and specificity, as presented 

above, the influence of a probe within a ProbeSet might either change the overall ProbeSet mean 

expression and even the direction of relative expression (µ1 > µ2 ! µ1 < µ2), or make so minor 

a contribution as to be irrelevant. To test the importance of such contributions, ProbeSet averages 

were calculated for the probes predicted to be present in the Lu data, as derived from the BaFL 

cleansed Bhattacharjee Stage I adenocarcinoma-squamous model.  Similarly, the BaFL cleansed 

ProbeSets were aggregated for the BaFL cleansed Lu dataset.  Figure 2.7 shows the results of an 

analysis, for the common ProbeSets, using fold change to summarize disease to normal 

relationships, for the two sample types in the Lu dataset.  The data generated by the BAFL 

method demonstrates that the aggregation of the predictive individual probes closely mirrors that 

of the BaFL cleansed probes for the Lu dataset.  The consistency lies not only in selecting good 

ProbeSets, but in handling the constituent probes correctly as well.  
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Figure 2.7:   Fold change concordance.  A comparison of the fold change for our predicted versus cleansed 
ProbeSets, with a near perfect slope and y intercept.  
 
 
 
Discussion 

 

The BaFL filtering process enriches the performance of the standard AffymetrixTm Microarray 

experiment beyond that of a single ProbeSet measurement.  The BaFL approach allows an 

investigator to delve into the standard Microarray black box and assess individual probe 

performance.  The ability to evaluate probe performance can facilitate the investigator’s 

identification of transcript regions of interest, which may prove to be correlated to the phenotype 

of the disease state.  Additionally, the BaFL approach allows the investigator to identify entire 

ProbeSets for which one tissue state demonstrates negligible transcript concentrations in contrast 

to the second tissue state. Finally, modified CDF files can be constructed to facilitate the 
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cleansing process.  This is demonstrated by an a priori extraction of reliable probe and ProbeSets 

from the third stage 1 dataset, shown below.   

 

Inside the Black Box 

The traditional blackbox approach to Microarray data analysis uses a statistical comparison of 

probes across samples in classes of the experiment at hand, discards (in some cases) or weights 

component probes according to some ‘fitness to a model’ scheme, and then aggregates the 

measurements to give a single ProbeSet value. Thereafter the ProbeSet value is the only factor 

used as input to machine learning and statistical algorithm development [22-24, 58]. For 

diagnostic purposes, if the predictive results of these methods are acceptable then the goal has 

been achieved. However, biological investigators are often motivated by the desire to understand 

the mechanisms that cause a gene to appear on such a list [7, 8, 20, 21, 50]. Being able to target 

specific mechanisms may allow an investigator to select a ‘discarded’ probe for further study: 

here we are thinking particularly of those probes that are discarded because they respond to SNPs 

in the coding region, which may in fact be extremely important to the phenotype, if the 

investigator can apply a follow-up test to qualify the samples. Despite our attempt to identify all 

such factors, it is clear that we have not done so, since we end up with three response classes and 

not two in the last analysis stage. We propose that, by doing Welch’s T-test at the probe level 

during the aggregation process, an estimate of the presence of such factors is produced, and the 

resulting probeset value can be annotated, i.e. affixed with a numerical or categorical denotation 

(such as our ‘U’, ‘DE’ and ‘S’ labels), based upon the agreement of T-tests results.  

Uninformative probesets thus are comprised only of probes showing no difference in the means 

between classes (for a given allowed variation) while the DE probesets are comprised only of 

probes all of which show a difference in means between classes, as depicted in 2.8.  These 
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probesets can be reliably trusted to demonstrate the same t-test results for the aggregate as the 

component probes.  In the remaining ProbeSets the component probes do not show a consistent 

response pattern: in the few we have looked at in detail the reason seems to be the probable 

presence of alternate transcripts, but we do not suggest that this will always be the case.  

 
 

 

 

Figure 2.8:  Analysis schematic.  Schematic depiction of down selection for the white box analysis and the 
standard black box analysis. 
 
 
 
This type of categorical grouping of the ProbeSets facilitates targeted down selection of the 

dataset, or alternatively a rescue of specific probes if additional assays can be performed.  Also, 

in comparison to the typical blackbox approach, this type of down selection is more stringent, 

since the criteria for reaching concordance are more exacting.  Table 2.4 provides the results of 

such down selection for the two datasets.   
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Table 2.4:  ProbeSet behavior of probe level analysis.  Number of ProbeSets in each response type, for each 
experiment, and in common, following use of the BaFL protocol..  Note that the ‘informative’ category is 
based upon the probe behavior within a ProbeSet, but for the Signal class the two groups may not agree as 
to which probes in the set differ, a not unexpected outcome if transcript isoforms vary by individual     
 

  Bhattacharjee Stearman Intersect 

Cleansed ProbeSets 4,253 6,506 4,200 

Uninformative 2,810 1,233 1,225 

Informative 1,443 5,273 1,219 
Signal 1,288 4,536 937 
DE 155 737 79 

 
 
 
Transcript Regions Identified by Signal Probesets 

Individually, there were 75 ProbeSets failing the statistical power test, 104 ProbeSets having 

single probes in which a measurement issue, 18 ProbeSets conforming to the single transcript 

region event criterion, and 128 ProbeSets suggesting distinct transcript region events.  More 

importantly, all 325 probes required additional analysis in order to understand the nature of the 

information in the signal, and the BaFL approach allows the investigator to assess and prioritize 

the ProbeSets to evaluate.  In addition to identifying the rule under which particular classes of 

probes were excluded, our method provides a category for sets containing probes with variable 

behavior (some of which might have been excluded by the two statistical methods, depending on 

cutoffs of variability chosen). To highlight why this is important we provide two specific 

examples. For the two ProbeSets (1985_s_at and 39073_at) mapping to the NME1 gene, both 

were categorized as Signal sets, where not every probe within the accepted probe-set is 

differentially expressed, while a third ProbeSet that maps to the same gene (1521_at) is classified 
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as purely DE (differentially expressed).  The NME1, non-metastatic protein 1, gene is interesting 

since it has been associated with metastatic progression in many forms of cancer [62-69].  Closer 

inspection of the component probes in the two Signal ProbeSets shows that probes specific to a 

particular region of the transcript are the probes giving discrepant signals.  The probe aligning to 

the 46,593,573rd (start position) nucleotide within the gene gives similar expression between the 

two tissues states, but as the probes traverse the region, the direction of differential expression 

(adenocarcinoma > normal) inverts and, finally, the direction of difference is restored with the 

probe that aligns to the 586th nucleotide.  The alignments of these 5 probes are demonstrated in 

Figure 2.9.  These alignments indicate an 18 nucleotide stretch of the transcript that correlates 

with the discrepancy, which could be evaluated for structural variations in the transcript.     

 
 

 

Figure 2.9:  Examplar transcript region of interest for NME1.  The 5 probe alignments against the 
transcript, for two NME1 ProbeSets (indices not shown but starting position given).  The expression 
patterns are depicted (disease: normal change) with $,!,"symbols. With the exception of the final 
1985_s_at probe, those shown have different responses compared to the remaining probes in the three 
NME1 ProbeSets.  The overlapping region (12-18 nucleotides beginning at transcript nucleotide 580) is 
color coded into 3 sections of 6 nucleotides each.  The 6 nucleotides shown in light blue could contain a 
splice junction or SNP that is not present in the 3rd probe of 1985_s_at which aligns at the 46,593,586th 
transcript nucleotide.  Similarly, the six red nucleotides could represent similar transcript phenomenon, 
however the presence for which may be sterically masked by the plating properties for the same third 
1985_s_at probe, which retains the up-regulated expression levels.  The final six nucleotides (light green) 
have the potential to form a hairpin loop downstream of the red region, thereby disrupting binding of the 
target in the final probe. 
 
 
 
 
 

 62



A Priori Prediction 

We demonstrated that a priori probe prediction is a feasible approach based upon the cleansing 

results provided by the BaFL pipeline.  The probe prediction implemented in this study included 

the incorporation of the linear range filter.  The linear range filter is the only filter which affects 

samples differently based upon the biological and laboratory variation.  Therefore it is paramount 

that the cross experiment probe extraction is performed upon similar disease studies and similar 

tissues.  This is apparent with the squamous cell cancer data models which generated the lowest 

probe true positive rates (probes predicted to be thereafter cleansing and actually were).  While 

the false positive rates for ProbeSet prediction for the adenocarcinoma models seem high, we can 

partially explain some of the false positives by considering that ~5600 probes were removed due 

to the batch 10 localized bare spot effect, presented in Figure 2.1.  These probes would likely not 

have been removed via the BaFL pipeline for this third dataset.  Their presence would therefore 

be accounted for in the false positive rate (10%, data not shown) observed at the probe level.  

Removal of these probes may have additionally eliminated what would otherwise have been 

reliable ProbeSets since the affected ProbeSets may not have met the requirement of 4 constituent 

probes for the Bhattacharjee dataset.  This effect again would be observed via the 25.2% ProbeSet 

presence false positive rate as indicated in Table 2.7. 

 

Modified CDFs for Computational Efficiency 

Since the probe characteristics are universal to an array design, one can easily construct a 

modified CDF, which decreases the total number of probes that must be considered in an analysis 

to those that are usable, and thus improves the computational requirements for an analysis. We 

expect that different investigators will have preferred CDFs: for example, the cross-hybridization 
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filter acts as a PM only filter and if a mismatch adjustment is wanted then the investigator will 

perform a preliminary analysis and incorporate this information into a modified CDF.  

 

Sample Cleansing 

Sample comparisons are usually performed prior to any data assessment, which can lead to 

erroneous conclusions about which are the true outliers.  We have presented a protocol that 

proceeds via measurement characteristics to perform batch analyses for technical problems, and 

follows up with probeset characteristics thereafter to manage biological outliers.  The selection of 

stringency is up to the needs of the investigator: when we relaxed the sample filtering process for 

the Bhattacharjee adenocarcinoma versus normal samples, an additional 28 samples and 

approximately 400 probesets were included, but the classification accuracy for the three 

algorithms suffered (data not shown).  

 

Platform Enabled Analysis Flexibility  

Although not the primary focus of this report, the analysis platform we have used provides great 

flexibility in selecting particular types of probes for detailed analysis. To produce the top half of 

Figure 2.2 we selected only cross-hybridizing probes, to highlight how different the response 

pattern they give is to the highly cleansed probes; to perform this analysis required that we alter a 

single query.  Another experiment identified which genes were considered present in the 

adenocarcinoma state (minimum of 4 cleansed probes) and not present in the normal state (i.e. a 

plus/minus analysis rather than relative expression analysis).  This analysis identified osteopontin: 

further investigation has shown that it has been implicated in lung cancer development and 

patient survival [70-75].     
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Conclusion 

  

We have presented a comprehensive protocol for preparing data for gene expression Microarray 

analysis, using a suite of probe and measurement based filters, and have shown that by so doing 

more reliable probe-target measurements result, whose trends are consistent across independent 

experiments.  While individual components of our protocol have been published elsewhere, to our 

knowledge the methods have not been integrated together and the overall effect assessed.  

Understanding contributions to a response allows researchers to have more confidence when 

making cross experiment data comparisons, which will facilitate our understanding of gene 

behavior within a cell.  We do expect that this type of analysis will only be improved with the 

addition of more sophisticated noise reduction methods applied to data prepared in this manner.  

Finally, probe based analysis is greatly simplified if carried out with a database system such as 

ProbeFATE, which uses the probe as the atomic unit and has been optimized for manipulations 

and aggregations that build specific subsets based on user-coupled criteria. 
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Chapter 3: Down Selection 

 

The focus of this chapter is to compare the performance of the BaFL method’s interpretation of 

signal intensity measurements, in the form of aggregated values called ProbeSets, against the 

analogous ProbeSet interpretations of two statistically based algorithms, RMA and dCHIP [1, 2].  

The test used in the comparison is the performance of each method in cross-dataset classification 

experiments.  RMA and dCHIP (here, the R implementations thereof) are two commonly used 

methods that, like BaFL, reach down to the probe level values in order to determine which 

members of a set of probes are to be included in an aggregated ProbeSet, although they differ 

from each other as to how the remaining members of the set should be weighted in that 

aggregation [1, 2]. One challenge in doing this comparison is that RMA and dCHIP are, at the 

measurement level, black boxes, in that the user does not know, and cannot retrieve, those probes 

that are left out (or included), nor is the reason for elimination explained That is, although the 

algorithms are fully accessible, they were not designed to assess or report on probes at the 

individual level but only as aggregates. On the other hand, for the BaFL method we can precisely 

assign the reason for eliminating a probe, extract information as to whether additional reasons for 

eliminating a probe exist, and show what would happen were it to be included; for the other 

methods we can only compare the ProbeSet differences and effects on subsequent analysis 

outcomes. In this chapter we perform parallel analyses and compare the outcomes, and trace back 

the root of the discovered differences to the extent that the algorithms permit. In addition, a 

comparison is made to the ‘significant genes’ lists of the original authors [3, 4], bearing in 
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mind that they are most aware of the experiment and the conditions prevailing when the 

measurements were collected. 

 

Materials and Methods 

 

Data 

In the following comparisons, only those samples that were judged acceptable, using the sample 

cleansing and batch comparison methods described previously (see Chapter 2) were used in any 

analysis. This means that the base dataset used in the comparisons is consistent across 

experiments (138 Bhattacharjee samples (125 disease, 13 normal) and 31 Stearman (17 disease 

and 14 normal) samples, see Supplementary Materials for the file names and files.  Each of the 

three algorithms was used to generate ProbeSet values in these samples (signal intensities were 

transformed to log2 space).  While the RMA and dCHIP algorithms yield the full set of 12,625 

ProbeSet values, the BaFL protocol retained 4,253 Bhattacharjee ProbeSets and 6,506 Stearman 

ProbeSets, with 4,200 of these being concordant ProbeSets.  That is, in addition to the ProbeSet 

values themselves, the primary difference in the input matrices tested for differential expression is 

the number of ProbeSets considered. This affects the number of candidate genes in subsequent 

lists that are available for model construction in the final classification analysis.  Two types of 

comparisons of the three probe cleansing methodologies are made, following a typical analysis 

framework:  down selection and validation of a candidate list.  The first analysis is based on the 

down selection to significant features as provided by Welch’s t-test [5], and the validation of 

candidate gene lists is considered with respect to those of the original investigators proposals [3, 

4].  
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Data Analysis Overview 

1. Each of three probe-cleansing methods (RMA, dCHIP, BaFL) is used to generate 

ProbeSet values, on the same sample sets from each experiment (2-state case). 

2. Down selection was performed for each cleansing methods’ interpretation of the data.  

Down selection yields the identification of differentially expressed genes, starting with 

the ProbeSet values produced by each method, based on the outcome of a Welch’s t-test 

of those values across the sample sets [5]. Three such down selection lists are generated: 

one list of DE genes from each experiment and a third that is the intersection of those two 

lists.  The values of the genes in the lists (Stearman DE, Bhattacharjee DE, and 

Intersection of DE) then are used as input to three types of classifiers; kNN [6, 7], LDA 

[8, 9] and RF [10-12], and the resulting models are assessed, based on the AUC curves 

[13, 14], for their cross-experiment sample class prediction ability relative to the base 

model (ALL), the complete set of genes’ values. 

3. A second type of comparison uses the two candidate gene lists proposed by the 

Bhattacharjee, et al. authors [3] and the candidate gene list proposed by the Stearman, et 

al. authors [4], sub-selected in each case for those genes passed by the BaFL pipeline (but 

not necessarily identified as DE).  A fourth candidate gene list comprised of the BaFL-

passed and intersecting t-test identified DE genes for both BaFL datasets, and is the same 

final list which was used in step 2.  The four lists used the ProbeSet values originally 

suggested by each cleansing method, (not the values that resulted from the methods of the 

original papers, since the underlying sample sets have been modified) and then proceeds 

as in step 2 for a comparison of classification strengths based on the three types of 

models. 

These steps are discussed in more detail in the following sections. 
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Probe Cleansing Methods 

The BaFL protocol (Chapter 2) was applied to the datasets and the mean of the cleansed probe 

values was computed to obtain a scalar for the remaining ProbeSets in each sample; as before we 

required that there be 4 or more probes in a ProbeSet that were common to all samples in the 

class; here we look at a two-class problem. RMA and dCHIP implementations in R-affy [15, 

16] were used to generate ProbeSet values for the same set of samples. Li and Wong proposed 

dCHIP as the implementation of a model based expression index (MBEI) [2, 17].  The heart of 

their algorithm utilizes a weighted average of mismatch differences: 

  

!" Jy jjii /)(~ #$ ,     (1) 

with i representing the samples, J representing the number of probes for a probeset yij and j# the 

probe level mismatch difference.  The weighting scheme favors probes with the largest PM/MM 

difference.  The workhorse for this algorithm is the probe sensitivity index ( j# ), which identifies 

probes with large standard error and negativity (MM > PM) [2, 17]; the likely sources of this 

effect are cross hybridization and laboratory handling.   However, these sources are going to be 

inconsistent across experiments. Their publication makes the claim that the probe sensitivity 

index should be independent of the tissue type [17].  One can readily give a counter-example to 

the assumption of this statement: given a probe that has two potential transcript isoforms to which 

it can hybridize and 3 tissues, if tissue A has little expression for both transcripts, tissue B has 

expression of only one transcript and tissue C expresses both transcripts well, then the probe 

sensitivity index will reduce the contribution of the probe consistently only for tissue C.   RMA 

implements an additive model and considers only the PM data, after performing a background 
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transformation and quantile normalization of the data by array [18].  The additive model is as 

follows: 

 

ijjiijY %&' ((" ,    (2) 

 

where i is the samples and j is the ProbeSets.  This model averages the (PM only) probes per 

sample, accepting some random error in the model ( ij% ), and assumes that the probes have been 

designed such that the accumulated probe affinities, "j = 0 [18].  The algorithm implements the 

median polish [16] to detect outlier probes, which violate the probe affinity assumption of the 

model.  In both of these algorithms, some ProbeSet value is determined for every set on the array. 

In contrast, the BaFL cleansing protocol eliminates probes and through enforcing a minimum set 

size (for statistical rigor) and consistency of set members across samples, may result in the 

removal of entire ProbeSets. This often results in the absence of a large fraction of the original 

data set: in the case of the Bhattacharjee dataset 66% of the original ProbeSets are removed.  It 

must be acknowledged that the disparity in the number of genes in the input set makes a 

straightforward comparison of the output lists of the three methods problematic, but it is possible 

to highlight some sources of error that the statistical methods do not identify and exclude. The 

output data files are included in the Supplementary Materials, in the Data folder 

 

Down-Selection 

A Microarray experiment typically has 10,000 features to explore, at the gene level, of which 

around half are expected to be expressed; generally only a small proportion of the genes will be 

differentially expressed. Many of the statistical methods used to determine whether differences 
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are significant assume such a data structure [7]. This still leaves several hundred values to 

compare per sample. For classification purposes a much smaller diagnostic set is desired, so 

analysts typically employ a down-selection method to their dataset [12, 19-29].  The rationale for 

such an approach is two fold:  it should improve the statistical power of subsequent analysis, by 

minimizing the N>>P issue and it will enrich the impact of the final candidates, by eliminating 

weak classifiers within the candidate list [11, 12, 20, 21, 27].  Weak classifiers are features within 

a solution subset which are not critical to the subset’s classification performance [12, 30, 31].  

Common approaches to down selection in Microarray analysis pipelines have included:  

significance analysis of Microarray (SAM), t-tests, fold changes, expression differences, signal to 

noise ratios,  etc. [12, 21, 23, 26, 27, 32].  For the following analyses we employed Welch’s t-test 

on the ProbeSet values, rather than the individual probes across the ProbeSet since this is the only 

comparison possible with the RMA and dCHIP methods (see Chapter 2 for details).  Welch’s t-

test first requires performing the F test for equality of variance, as given by: 
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Welch’s t-test is formulated as: 
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where s1 = s2 given equal variance, which must be tested for.  The variable X  represents the 

sample population mean, and n is the sample size [5].  The t-test is usually considered to be a 

weak diagnostic and efforts to control the family wise error rate through Bonferroni corrections or 
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to control the false discovery rate are employed to improve the down selection process [33].  

However, in the following experiments we did not implement such correction efforts, or other 

algorithmic optimizations, in order to see the full range of possible solutions and to see where 

overlap of genes occurs even if the significance assigned by the different methods is quite 

different. The Bonferroni correction has been applied to the datasets in Chapter 5.  The results of 

the t-test categorized the ProbeSets into two classes: uninformative and differentially expressed.  

The datasets are available in the Supplementary Materials, in the Data folder.  Additionally, 

within the Data folder is a README file, which details the naming convention and the flags 

which identify ProbeSets and their classifications, including the Bonferroni correction 

classifications.      

 

Published Candidate Gene Lists 

In the original report of the Bhattacharjee experiment, two ProbeSet lists were developed, based 

upon the signal intensity reproducibility across 45 adenocarcinoma replicated samples, where 

reproducibility was assessed based on whether these ProbeSets had Pearson correlation scores 

above the 0.8 and 0.85 thresholds [3]. These lists consisted of 675 and 363 ProbeSets, 

respectively, for the correlations 0.8 and 0.85.  The cleansing methods used by the original 

authors were quite complex, and neither the ProbeSet values nor the exact gene lists could, in 

fact, be perfectly replicated using the published descriptions [3, 34]. We decided to take those 

genes from their lists that survived the BaFL pipeline, that is, that had been cleansed of the 

known extraneous factors leading to variability, and see if the genes remaining had strengths for 

classification that our own down-selection method missed. That is, the point was to determine 

whether the original selection methods had merits that our own procedures lack.  Of the original 

ProbeSets lists, 267 and 136 (for 0.8 and 0.85 thresholds respectively) survived the BaFL 
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cleansing process and were assessed for their classification ability.    The original report of the 

Stearman experiment reported a list of 409 genes, which demonstrated concordance in log2 

difference (tumor minus normal) between the murine and human model [4].  Surviving the BaFL 

cleansing process from this list were 178 ProbeSets.  The concordances between the original three 

lists are relatively small, containing 58 and 34 ProbeSets, respectively, for the 0.8 (Bhattacharjee 

x Stearman) and 0.85 (Bhatacharjee  x Stearman) lists, so the size of the concordant lists against 

BaFL is not unreasonable.  We compared the classification abilities of these three lists to that of 

the 325 ProbeSets whose aggregate was classified as differentially expressed for both the BaFL 

cleansed Bhattacharjee and Stearman data.  ProbeSet values were again generated by each of the 

three data cleansing pipelines as part of the comparison. Complete ProbeSet lists are given in the 

Supplementary Materials, in the Data folder. 

 

Classification 

The classification performance of supervised learning methods was assessed, using the various 

candidate gene lists as training sets.  The area under the receiver operating curve (AUC) was the 

performance metric for all the classification experiments [13, 14].  For each algorithm, the base 

model included all of the original surviving ProbeSets, either the 12,625 (for RMA and dCHIP) 

or the intersecting 4,200 (from BaFL).  A requirement of the classification experiments is that the 

same ProbeSets need to be present in both datasets.  This only affects the BaFL data because 

RMA and dCHIP give complete gene value matrices [2, 18]. Therefore, for the BaFL ProbeSet 

lists, subsets that consisted of candidate gene list intersections were used.  The values in the 

resulting ProbeSet lists were then used, in turn, to train three different classification algorithms: k 

nearest neighbors (kNN) [7, 23, 35], linear discriminant analysis (LDA) [8, 9, 20] and random 

forest (RF) [10-12]. The R implementations of these algorithms were used [16]. The parameters 
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for kNN were (k=3, l=2, with the Euclidean distance), and default settings in R were used for RF 

and LDA [16]. We chose to use three different methods in order to explore whether the 

classification performance was specific to the classification algorithm, and these three were 

selected specifically because they are the most commonly cited in Microarray analysis papers and 

because their performance requires minimal parameter tuning [6, 11, 12, 20, 21, 23, 27, 28, 34, 

35].  Linear discriminant analysis attempts to find the linear combination of features which best 

separates the data into their distinct classes, by weighting the features based upon their ability to 

separate the classes [8, 9, 20].   Conversely, kNN and RF classify samples based upon the 

characteristics of closely neighboring samples [6, 36].  The entire ensemble of features is utilized 

for the kNN algorithm while RF stochastically builds forests of classification tress based upon the 

strongest classifying features [10, 11].  After training with values from one experiment, the 

models were used in tests against the other experiment and the performance was assessed: that is, 

the Bhattacharjee gene lists were used for training and then the models were used to predict the 

Stearman sample classes, and vice versa, for each of the types of gene lists described above [6, 

36, 37]. This led to 9 comparisons in which the Bhattacharjee data were used as the training set 

(RMA, dCHIP and BaFL cleansing post t-test, against 3 types of models) and 9 comparisons in 

which the Stearman data were used as the training set. 

 

The same classification algorithms were invoked for the comparison of the author’s lists to the 

purely BaFL-derived list of 325 DE ProbeSets.  This set of experiments is designed to be similar 

to that of the validation of a final candidate list.  Here, we compared the 325 BaFL intersecting 

DE ProbeSets, to the BaFL-allowed ProbeSets in the author’s published lists.  Validation of a 

candidate list necessitates perturbing the designed models over iterative analysis to approach a 

reliable performance metric [6, 36, 37].  Perturbation of our models was done through random 
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sample selection, with replacement, for 100 iterations to approach a reliable AUC performance 

metric [6, 13, 14, 38]. Random sampling in such a manner permutes the data in a fashion that 

leads to some artificial replication and may omit some samples [12, 30, 31]. 

 

Results 

 
The results are given for each of the probe cleansing methodologies as independent analyses of 

Microarray experiments.  There are two major sections:  the model’s performance before and 

after down selection, and the validation of a candidate list.  Here the candidate list is the 325 

intersecting differentially expressed ProbeSets as interpreted by the BaFL process and this list 

will be compared to the author’s pre-existing published candidate lists.  Independent validation is 

used throughout to demonstrate that the BaFL probe cleansing algorithm facilitates cross 

experiment analysis. 

 
 
Down Selection 

Table 3.1 summarizes the number of DE ProbeSets per probe cleansing algorithm that was the 

result of the t-test for significant differential expression. The number of DE genes predicted for 

the Bhattacharjee dataset by the BaFL pipeline approaches the expected number (4,200 * .05 = 

210) [5, 33].  This is not true for the Stearman data, likely due to the greatly diminished size of 

the sample.   
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Table 3.1:  Down selection numbers.  Number of ProbeSets giving values in the down selected gene lists 
that result from applying Welch’s T-test to the output of each probe cleansing method, per dataset, with the 
Base Model giving the original size of each dataset. Each of the down-selected lists is then used as input 
into the 3 types of models.  All of these data are provided in the Supplementary Material Data Folder. 
 

 RMA dCHIP BaFL  
Base Model 12,625 12,625 4,200 

Stearman DE 5,291 5,208 3,344 
Bhattacharjee DE 6,595 6,429 480 
Cross-Experiment 
Intersection !DE 3,761 3,407 325 

 
 
 

Figure 3.1 presents the p-value kernel densities resulting from each of the probe cleansing 

methods, for the Bhattacharjee data and normally distributed random sampling. The top left graph 

estimates the probability distribution (default Gaussian smoothing) for all the p-values for the 3 

methods, with respect to the random population.  The top right graph presents the quantiles for 

the three methods, with respect to the random population.  While we observe that the RMA and 

dCHIP kernels appear to be more normal, they also demonstrate a large, exaggerated skew and 

the quantiles deviate from the expected.  The skewed tail represents the population of null p-

values, as shown in the lower left graph, with the accompanying quantiles presented in the lower 

right graph.  This disproportion of the RMA and dCHIP t-test hypothesis testing results is 

associated with the skewed batch intensity distributions we presented in Chapter 2.  In stark 

contrast, the BaFL p-value density demonstrates a skew for the upper quantiles and becomes 

more pronounced for the null p-values [39].  These graphs explain the observed weakness of the 

t-test for RMA and dCHIP and are intriguing for the BaFL hypothesis tests, since there seems to 

have been an increase in the power of the t-test.  Is this increase due to the BaFL cleansing 

process or as a result of the bias in the dataset?      
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Figure 3.1:  P value distributions.  P value density distributions and quantiles for the Bhattacharjee data as 
calculated by the Welch’s t–test for each of the probe cleansing methodologies, on comparison to normally 
distributed random sampling.  The top left graph presents the Gaussian kernel estimation for the entire p 
value distribution, with the corresponding quantiles presented on the top right.  The bottom demonstrates 
kernel density distributions and quantiles for the null p values (greater than 0.05). 
 
 
Models and Class Predictions 

Figure 3.2 shows the sample class predictions when the training set values came from the 

Stearman experiment. The input ProbeSet lists are labeled according to the description of their 

generation, and include four categories. The test set was the Bhattacharjee experiment (just doing 

two sample classes), for each of the three classification algorithms: kNN, Random Forest, and 

LDA.  The last column summarizes each selection level of the data, across the three classification 

algorithms.  For the top row of graphs in Figure 3.2, the number of input ProbeSets in each of the 
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four assays is given in the second column of Table 3.1. That is, the first input gene list, ALL, is 

the complete set of 12,625 ProbeSet values generated by RMA for the Stearman samples. The 

second input gene list includes those 5,291 ProbeSets identified as being differentially expressed 

in the Stearman sample, the third input gene list includes those 6,595 ProbeSets identified as 

differentially expressed in the Bhattacharjee dataset and the fourth candidate gene list has the 

3,761 genes identified as being in the intersection of the second two lists. The second row of 

graphs uses the ProbeSet values generated by dCHIP, which are different from those given by 

RMA, and this leads to somewhat different candidate gene lists (see Figure 3.7 in the Discussion 

for more details) but follows the same pattern of assays, with the numbers given in Column 3 of 

Table 3.1. The third row of graphs requires more description because the ‘complete’ matrix of 

ProbeSet values generated by the BaFL pipeline does not include all of the possible ProbeSets, 

unlike those of RMA and dCHIP, and therefore care must be taken that the same genes are 

present in both the training and test data sets – in this case the number of input ProbeSets is given 

in the fourth column of Table 3.1.  
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Figure 3.2:  Down selection models- Stearman preditct Bhattacharjee.  Classification results summarized, 
for kNN, RF and LDA classifier models, where training used the Stearman experiment-derived gene list as 
the initial input, and testing was done on the Bhattacharjee data. The last column summarizes the 
performance at each selection level across the three algorithms.  Each graph shows the training set number 
(training sets described below) on the y-axis and the cumulative AUC value on the x-axis. Each row of 
graphs shows outcomes based on starting with a particular cleansing method (RMA, dCHIP and BAFL) 
followed by t-test classification for DE genes lists. The 4 sets of input genes result from additional selection 
criteria and are denoted by the different shades of blue circles in each figure. The 4 sets: set 1 was ALL, or 
no additional selection, the complete set of ProbeSets, 12,625 for the RMA and dCHIP algorithms and 
4200 for BAFL data, set 2 was Stearman DE, the DE genes from the Stearman (RMA 5291, dCHIP 5208, 
BAFL 3344) experiment, set 3 was Bhattacharjee DE, the DE genes from the Bhattacharjee experiment 
(RMA 6595, dCHIP 6429, BAFL 480) and set 4 was the intersection of DE, the intersection of the DE 
genes in the two experiments (RMA 5085, dCHIP 4125, BAFL 325).   
 
 
 
Figure 3.3 is the reverse experiment, using the cross-sections for the Bhattacharjee dataset-

derived down selected ProbeSet lists and values generated by RMA, dCHIP and BaFL to train the 

models, with subsequent testing of the models’ performance on the Stearman data.   
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Figure 3.3:  Down selection models- Bhattacharjee predict Stearman.  Clustering results summarized, for 
kNN, RF and LDA classifier models, where training used the Bhattacharjee gene lists and testing was then 
done on the Stearman data. Each graph shows the training set number on the y-axis and the cumulative 
AUC value on the x-axis. The last column summarizes the performance at each selection level across the 
three algorithms.  Each row of graphs shows outcomes for a cleansing method (RMA, dCHIP and BAFL) 
followed by t-test classification for DE results. The 4 sets of data resulting from additional selection criteria 
are denoted by the same colors and are the same as described in the legend to Figure 3.2.  
 
 
 
Author’s List (Validation) 

The 325 DE ProbeSets were compared against the BaFL-passed genes in the author’s published 

lists.  The validation models incorporated minor perturbations, through random sampling of both 

the training and testing sets, over 100 iterations to achieve a reasonable measurement of the 

model’s classification performance [6, 12, 36, 37].   Figure 3.4 presents the results of training the 

models using the Stearman dataset and testing on the Bhattacharjee data, and the three data 
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cleansing methods were used to generate the ProbeSet values.  The same 3 classifications 

algorithms were employed as described above.   

 
 

 
 

Figure 3.4:  Candidate lists- Stearman predict Bhattacharjee.  The genes from the original authors’ papers 
proposed significant ProbeSet lists, further limited by those that met the BaFL cleansing criteria but not the 
Welch’s t-test significance criterion, with ProbeSet values provided by one of the three data cleansing 
methods: these values were used as input to the three classifier models.  Each graph shows the number of 
the ProbeSet value-generation method on the y-axis (described below) and the cumulative AUC value on 
the x-axis. Each row of graphs shows outcomes for a particular initial candidate ProbeSet list. Each column 
of graphs shows the results for a particular classifier, indicated in the graph. The red line highlights the 0.9 
cumulative AUC. In this case the node indicates average AUC and the bars show the standard deviation for 
100 random sampling iterations, with replacement.   The final column summarizes each cleansing model’s 
list interpretation, across the 3 classification algorithms.  The final row of graphs summarizes the individual 
algorithms, per cleansing methodology, across all four 4 candidate lists and follows the same color scheme.   
 
 
 
Figure 3.5 is the reverse experiment, where the gene list derived from the Bhattacharjee 

experiment was used for training the classification model, which was then tested on the Stearman 
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data.  Classification is continued with the same models, using ProbeSet values from the probe 

cleansing methods, comparing the 325 DE BaFL ProbeSets to the authors’ lists.   

 

 
 

Figure 3.5:  Candidate lists- Bhattacharjee predict Stearman.  The genes from the original authors’ papers 
proposed significant ProbeSet lists, further limited by those that met the BaFL cleansing criteria but not the 
Welch’s t-test significance criterion, with ProbeSet values provided by one of the three data cleansing 
methods: these values were used as input to the three classifier models. Here training of the model used the 
(modified) Bhattacharjee ProbeSet list and testing was done using the Stearman data.  Each graph shows 
the number of the ProbeSet value-generation method on the y-axis (described below) and the cumulative 
AUC value on the x-axis. Each row of graphs shows outcomes for a particular initial candidate ProbeSet 
list. Each column of graphs shows the results for a particular classifier, indicated in the graph. The red line 
highlights the 0.9 cumulative AUC. In this case the node indicates average AUC and the bars show the 
standard deviation for 100 random sampling with replacement repetitions.  The final column summarizes 
each cleansing model’s list interpretation, across the 3 classification algorithms.  The final row of graphs 
summarizes the individual algorithms, per cleansing methodology, across all four 4 candidate lists and 
follows the same color scheme.    
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Discussion 

 

A striking result from this series of experiments is the significant improvement in the power of 

the t-test for the Bhattacharjee dataset, when the ProbeSets to be considered and the value of 

those ProbeSets are produced using the BaFL pipeline [39, 40].  This increase in power was not 

observed for any of the cleansing methodologies with the smaller Stearman dataset, which, is 

much smaller, although it is completely replicated.  From Figure 3.1 it can be seen that there is a 

significant improvement in the uniformity of the p value kernel distributions of the BaFL-

generated ProbeSet values tested for significant differential expression for the Bhattacharjee 

dataset, compared to those of RMA or dCHIP, particularly for the null p values [39].  Since both 

datasets show similar variance after BaFL processing (see Chapter 2), and the Bhattacharjee 

dataset is both more heterogeneous (disease stage) and less precise (less replication) than the 

Stearman dataset, the lack of power comes down to the difference in sample size of the 

experiments [5].      

 

Models and Class Predictions 

The impact of the lack of power becomes apparent in the performance of the down-selected RMA 

and dCHIP-based classification models, where the resulting datasets have little improvement or 

even a loss of performance when the t-test down-selection is used (compare the ALL set to the 

other three Sets in the top two rows of graphs in Figures 3.2 and 3.3). A meaningful outcome 

would show a gain in information when going from 12,000 to ~6,000 genes, where the method 

has allowed the genes with an impact on the phenotype to be retrieved [6, 41]. This did not occur 

when starting with the RMA and dCHIP cleansing methods, in spite of trying three types of 

classification models in the search. In fact, there is a consistent increase in the variation across the 
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classification models coinciding with down selection, as demonstrated in the last column.  This 

phenomenon mirrors what has been observed generally with Microarray data, the poor prediction 

performance of proposed gene lists given different data and classification approaches [37, 42, 43].  

Gains are much more consistent, if not large, when the BaFL-cleansed t-test down-selected data 

are used (the third row of graphs in Figures 3.2 and 3.3). 

 

Additionally, of the three models employed, Random Forest consistently did a poor job for the 

RMA and dCHIP ProbeSets which were generated as the DE ProbeSets for the training model; 

however, this was not observed with BaFL-generated values.  This suggests that during the 

stochastic development of the decision trees the selection of important features is often specific to 

the dataset and not the disease condition.  When the ProbeSet response is variable, its importance 

to different models can either diminish, weakening its role as a classifier, or the regulation pattern 

can be inverted, generating conflicting classifications.   The RMA and dCHIP interpretations of 

the datasets present 1.8% and 3.6% (respectively) of the intersecting DE ProbeSets with 

conflicting regulation patterns between the two datasets, as shown in red in Figure 3.6.   Linear 

discriminant analysis, which weights all the features and hence allows variable genes to be more 

or less important, did not show the same sensitivity as Random Forest.  
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Figure 3.6:   Concordance summary.  The number of DE members of the ProbeSet lists that are shared in 
the designated categories between the Bhattacharjee and Stearmen experiment results. Numbers in non-
overlapping regions are the total list sizes and the numbers in parentheses below are the number of 
ProbeSets unique to that category. Numbers in overlap regions reflect shared ProbeSet list members.   The 
red-circled numbers show the percentage of these DE ProbeSets which have contradictory regulation 
patterns (µ1 > µ2) between datasets for each cleansing methodology.  The light blue circle shows the same 
for the intersecting DE ProbeSets. 
 
 
 
While performance improvements are not always larger than that obtained with the complete data 

set (except for the kNN model), for all three classification approaches we demonstrate some 

improvement using the BaFL-pipeline generated values and any of the candidate gene lists. We 

do see a large performance gain associated with the removal of uninformative ProbeSets for the 

LDA model. The fact that there is no loss, and in some cases a gain, in performance with a ten-
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fold decrease in the number of candidate genes is important for diagnostic applications [6, 41]. It 

is also useful that there is no great dependence on a particular model for doing the classification. 

Most notably, we see very good cross-experiment performance, even with quite limited candidate 

gene lists, a rare achievement with Microarray data. 

 

Author’s List (Validation) 

Of the 72 AUC scores recorded for classification performance, the values generated by the BaFL 

pipeline when used for candidate gene lists achieved 5 of 6 best overall scores (87-97%) over the 

three classification algorithms, although not all of these are significant given the variance in the 

results. The 6th case, and the exception, was the kNN results when Bhattacharjee DE candidate 

genes, using the RMA generated values, were used to predict Stearman data (93.88%).  In 

addition the BaFL-defined DE ProbeSets achieve the highest AUC for almost every individual 

analysis of the BaFL intersecting DE and Stearman list, again the sole exception is the kNN 

implementation of Bhattacharjee predicting Stearman.    If you average the performance across 

the lists per cleansing routine, values obtained using the BaFL method achieved the highest 

performance 5 of 6 times (bottom row of Figures 3.4 and 3.5).  Equal or improved performance 

across experiments, with less variability and smaller candidate gene lists, and low sensitivity to 

the model, are diagnostic goals that the BaFL method appears to be well positioned to achieve. 

We note that a possible cause for the relatively poorer BaFL performance for Bhattacharjee 

predict Stearman implementation of kNN, may be the result of random replicate removal out of 

the small Stearman dataset, coupled with the absence of scaling across arrays in the BaFL 

pipeline, as compared to RMA and dCHIP pipelines, which do incorporate scaling steps.  We 

support this statement by noting that the degradation of performance was not observed in the 
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whole model analysis without permutation, where BaFL achieved an average AUC of 91.2% ± 

3.4% across the 4 lists. 

 

The analysis of the results we obtained using subsets of the author’s candidate lists leads to a 

number of observations.  First, the gene list based on the more stringent correlation coefficient in 

the Bhattacharjee experiment (0.85 corr) consistently underperforms with respect to the results 

for the less stringent correlation coefficient.  These two Bhattacharjee lists share the fewest 

common DE classified genes between datasets.  According to the original article, these ProbeSets 

were selected as having the highest Pearson correlation values with respect to phenotype across 

45 adenocarcinoma sample replicates [3].  This should result in more consistent expression value 

changes, but as summarized in Figure 3.7, there is more disparity in the cross-experiment fold 

changes calculated for RMA and dCHIP including the ProbeSets which are not differentially 

expressed.  Figure 3.7 presents the comparison of fold changes (disease/normal) of each ProbeSet 

identified by the 4 filtered candidate lists, with the DE ProbeSets identified by arrows.  The 

columns are the 4 candidate lists: Bhattacharjee Correlation80, Bhattacharjee Correlation85, 

Stearman markers, and our 325 DE ProbeSets, respectively.  The rows are the three cleansing 

approaches:  RMA, dCHIP, and BaFL, respectively.  Uninformative ProbeSets appear as grey 

circles near 1 and linear regression of the data using QR decomposition [16] is drawn for 

orientation.   
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Figure 3.7:  Candidate lists fold change differences.  Comparing ProbeSet fold changes for candidate list 
ProbeSets between the two experiments. For each class of samples in each experiment, ProbeSet values are 
calculated by one of the three data-cleansing methods and the mean is found, after which the 
Normal:Disease class fold change is calculated. The y-axes are the mean fold-change for the Stearman 
experiment and the x-axes are the mean fold-changes for the Bhattacharjee experiment. The line gives the 
QR regression slope for the points. A perfect 45 degree slope would indicate that the fold-changes are on 
average the same across the experiments, although individual ProbeSets might change, while a shift in the 
slope means that there is a consistent bias in the direction that fold changes are seen for one experiment 
relative to the other, given a particular method for generating values. Those ProbeSets that show a negative 
fold-change in both experiments are shown with a medium blue down arrow, those for which both show a 
positive fold change are shown with a dark blue up arrow, and those that have differences in the direction 
of fold change are shown as grey circles. Also observable is an exaggerated funneling patterns for DE 
ProbeSets in the RMA and dCHIP interpretations of Stearman markers and the Intersecting BaFL DE 
ProbeSets, intimating that the more significant the expression pattern the more divergent the actual level of 
fold-change becomes across datasets. 
 
 
 
Another curious feature is a funnel shape that is most evident in the top graph (RMA). The effect 

is more pronounced in the larger, down-regulated group of ProbeSets and reflects the fact that the 

larger the change the more likely the two experiments are to disagree as to the extent of that 

change, but that the effect is symmetrical: one set is not more likely to consistently have a larger 
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change, apparently the greater variance in the Bhattacharjee data is fairly randomly distributed in 

these sets of genes. In the fourth column the BaFL intersection with the other three candidate 

gene lists is used as the new candidate gene list. There is a decreasing number of uninformative 

ProbeSets from RMA to dCHIP to BaFL, which of course has none. The symmetrical funnel 

shapes of the two clusters of ProbeSets with up- or down-regulation are apparent in all three 

graphs, some of which can be attributed to biological variation.  However, this variability appears 

to be least significant for the BaFL interpretation.   

 

The fact that a large fraction of the genes in the Bhattacharjee candidate gene lists are not 

differentially expressed derives from the candidate selection approach employed [3].  The 

selection of consistently expressed ProbeSets for the adenocarcinoma phenotype would not imply 

that the every ProbeSet is a strong classifier and the only clear trend for these lists is that the 

larger, less significance-selected list performs better.  For a candidate list defined in this way no 

cleansing methodology appears to yield a better outcome (Figures 3.4 & 3.5).  In contrast, the 

Stearman markers have a markedly larger group of DE ProbeSets, which most likely reflects the 

fact that the significance of those genes was assigned for two reasons: both differential expression 

(in a single experiment) and comparative genomics (correlation to a mouse model) [4].  Table 3.2 

gives the total ProbeSets and the fraction in the two DE categories for each of the candidate lists 

and ProbeSet value generation methods. It is clear that the greatest concordance comes about 

when members of gene lists are selected for meeting criteria across multiple experiments (both 

Stearman and BaFL used two, albeit in different ways).  When the Stearman marker subset was 

used as the candidate gene list the RMA and dCHIP-generated values led to better overall 

concordance in the DE prediction (Table 3.2 row 4) which may reflect expression characteristics 

of this set of genes (reliable and stable expression) [4].  For these doubly-selected gene lists we 
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do observe that the BaFL interpretation outperforms dCHIP and RMA, particularly if centering 

and scaling the BaFL data further improves the classification accuracy, as we expect. 

   
 
Table 3.2:  Candidate list concordance numbers.  Numbers of ProbeSets in candidate gene lists, starting 
with the original list (column 2) with the filter of passing the BaFL filtering criteria (column3), and the 
percentage of those (column 3) ProbeSets which show concordant differential expression classification 
between datasets per cleansing methodology (last three columns). 
    

RMA dCHIP BaFL 

  
List 

Total 
BaFL 

retention
% DE 

Concordance 
% DE 

Concordance 
% DE 

Concordance 
Bhatt 
80% 675 267 54.68% 56.55% 31.46% 

Bhatt 
85% 366 136 58.09% 59.56% 36.76% 

Stearman 409 178 92.13% 80.90% 44.94% 
BaFL ! 

DE 325 325 92.62% 95.69% 100.00% 
 
 
 
Conclusion  

 

Although clustering and weighting schemes differ, in general the information content of a gene 

with respect to phenotype is believed to be larger when it is significantly differentially expressed 

and always in the same direction (i.e. up or down) across experiments. This many not be true for 

multigenic interactions, or where an effect is due to a larger range of expression rather than a 

particular level or direction of change, but most methods rely on the first assumption. It is true 

that genes that are expressed but do not change are not at all informative. If the measure of 

importance is linked to differential expression then the method that most consistently shows the 

same genes changing under the experimental conditions, in the same direction and to the same 

extent, will be a preferred method. The BaFL pipeline values have been shown in this chapter to 

deliver this result. We note here that in this chapter we used the aggregated ProbeSet values, even 
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though in Chapter 2 we showed that these disguise what are really two classes of change, S and 

DE. This was done because there is no way to replicate that level of discrimination with the RMA 

and dCHIP pipelines, and the goal in this chapter was to compare the effects of using the 

pipelines. We suggest that it is how the data is integrated that is causing some of the 

reproducibility issues with Microarray data, not the data itself, at least for within-platform 

reproducibility.  As shown in Figures 3.4-5, there is an observable decrease in classification 

performance that occurs when using the more rigorously pruned (and shorter) gene list, which is 

counterintuitive if the greater rigor really led to greater quality.  It seems likely that the greater 

rigor is really selecting for lab-specific and experiment-specific factors, rather than sample state 

relevant factors.  Demonstrating that the BaFL pipeline is a more effective cleansing approach 

than RMA and dCHIP is a difficult task when the underlying cause of differences cannot be 

exactly isolated, and when the sources of data are clinical samples with incomplete and variable 

levels of replication. Direct comparisons recapitulate a result seen by others, namely that RMA 

and dCHIP are not consistent with one another within a dataset, nor able to perform well across 

experiments, while BaFL shares about the same overlap with each. Nevertheless, in this chapter 

we have provided evidence that BaFL-pipeline ProbeSet values followed by a simple t-test for 

differential expression yields a more effective candidate gene list for training a model for 

classifying the results of additional experiments that do the competing methods. The advantages 

for disease diagnostic purposes are the much smaller size of the candidate gene list and the 

relative lack of sensitivity to the specific type of model. As with any clinical experiment a larger 

sample size leads to more robust results, and a meta-experiment, with at least two independent 

experiments, is most effective. It was also of note that the most stable differentially expressed 

genes are not necessarily the most informative for the disease phenotype. 
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Chapter 4:  Data Mining 

 

Adenocarcinoma is a non small cell (NSCLC) lung cancer sub-type, and the most frequent type of 

lung cancer found in the world today [1, 2].  Adenocarcinomas are peripherally located in the 

lungs and develop from clara cells, alveoli, and mucin producing cells [1].  While, tobacco 

smoking has been well established as an initiating condition for lung cancer, with 80-90% of lung 

cancer cases arising in tobacco smokers, adenocarcinoma in particular is most common among 

women, non-smokers, and the young [1].  Given that the incidence rate of adenocarcinoma is 

increasing and affecting non-traditional patients, understanding the disease is of immediate 

concern  [1, 2].   

 

Using the methods described in the previous chapters, we have created two 2-class datasets, one 

from a subset of the Bhattacharjee dataset and the other from the original Stearman (human 

subset) experiments [3, 4].  In this chapter we begin with the down-selected ProbeSet list, 

presented in Chapter 3, consisting of those 325 differentially expressed ProbeSets common to 

both datasets.  The values that the BaFL pipeline yields for these ProbeSets lead to datasets with 

considerable latent structure; we will demonstrate that this latent structure is superior to that of 

RMA and dCHIP supplied values using two widely-accepted dimensionality reduction methods: 

Principal Components Analysis [5, 6], which is linear , and a Laplacian method which is non-

linear [7]. In validating the results of these analyses, we use sample correlation to explore the 

gene/ProbeSet clusters.     
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Although a list of 325 candidate genes is not large by the standards of Microarray experiments, 

and may reflect real biological contributions to a complex phenotype, to produce a practically 

useful diagnostic test one would like the smallest possible list of genes that have strong effects. 

There are many ways to additionally down-select features, one of which was used by the 

investigators of the Stearman experiment, comparative genomics [4].  Here we chose to use a 

more traditional statistical approach, in which feature selection from the 325 ProbeSets was 

accomplished by incorporating the Bonferroni correction [8, 9].  The Bonferroni is a stringent 

correction to accommodate the multiple hypothesis tests.  The underlying assumption of the 

Bonferroni correction is that all null hypotheses are true (the mean expressions are equal) [8, 9].  

Thereby, only the ProbeSets with extreme differences in the mean ProbeSet intensity will survive 

the correction.  There has been considerable debate as to whether the extreme rigor of the 

Bonferroni method is appropriate for expression Microarray experiments, and one of the 

questions is how much potentially valuable information we lose by applying this technique [8].  

As before the performance of the candidate gene list in classifying samples is assessed using 

kNN, LDA and RF classifiers [10-13]  to build models that are then judged by AUC scores [14, 

15]. 

 

Materials and Methods 

As previously described, the ‘Bhattacharjee’, dataset [3], consists of 17 normal and 237 diseased 

samples, including 51 adenocarcinoma replicates, with disease category assigned after 

histopathological examination.  From this study we used 125 of the 190 adenocarcinoma array 

results and 13 of the 17 normal results; the selection criteria are described below.  The second, 

‘Stearman’, dataset (http:/www.ncbi.nlm.nih.gov/geo/; accession number GSE2514) consists of 

39 tissue samples, all replicated, from 5 male and 5 female patients (four samples were taken 
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from each patient: 2 normal looking that are adjacent to the tumor and 2 adenocarcinoma 

samples); one of the normal samples is missing, presumably for high tumor content [4].  These 

sample biopsies were harvested using microdissection techniques and then snap-frozen [4].  The 

final BaFL interpretation of the sample included 17 tumor samples and 14 normal (i.e. adjacent) 

samples.  These two datasets had a common group of 325 ProbeSets that were identified as 

significantly differentially expressed between the diseased and normal states, based upon Welch’s 

t-test of BaFL-provided values, applied at the ProbeSet (aggregate) level, described in detail in 

Chapter 3 [9].  The latent structure of these 325 ProbeSets is presented as a final piece of 

evidence showing why these ProbeSets should serve as the foundation for the feature selection, 

and particularly why the BaFL interpretation of these ProbeSets’ signal intensities is preferred.   

 

Feature Selection 

Using the BaFL-provided values for these genes, the Bonferroni correction was applied to each 

dataset; correction cutoffs were less than 1.18e-05 for the Bhattacharjee data and 7.68e-06 for the 

Stearman data. 

 

tpQ /" ,     (4.1) 

 

where { , 1}  if p is less than the correction.  The number of total tests is represented by t, and p 

represents the p-value of Welch’s t-test [8, 9].  This resulted in 79 Bonferroni corrected ProbeSets 

out of the 480 Bhattacharjee DE ProbeSets and 352 Bonferroni corrected ProbeSets from the 

3,162 Stearman DE ProbeSets; the intersection set was 30 ProbeSets.  The Bonferroni correction 

was applied also to both original BaFL-interpreted 4,253 Bhattacharjee ProbeSets and 6,506 

BaFL interpreted Stearman ProbeSets.  The resulting intersection of ‘most significant’ ProbeSets 

Q
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was determined to consist of 30 ProbeSets, and represents a subset of the original 325 

differentially expressed ProbeSets.  An additional ProbeSet, 34342_s_at (SPP1), was added 

because it was determined to be ‘on’ in the Bhattacharjee adenocarcinoma samples and ‘off’ for 

the Bhattacharjee normal patients, resulting in a final candidate list of 31 ProbeSets.   

 

Survival Curves 

Survival curves for the osteopontin (SPP1) gene used each of the three value-generating methods 

(log-transformed the BaFL values), for the Bhattacharjee experimental data, were generated with 

the R maxstat package [16, 17]. The SPP1 ProbeSet intensities were associated with the 

supplementary clinical data [3], and are provided in the Supplementary Materials Data folder.  

Survival curves plot the survival probability of a patient within a cohort over time [18].  

 

Classifiers and AUC Performance Metrics 

The AUC classification performance of these 31 ProbeSets was assessed exactly as described in 

Chapter 3, using the linear discriminant analysis (LDA), Random Forest (RF), and k Nearest 

Neighbors (kNN) classification algorithms [10-13].  These classification experiments used 

random sampling with replacement of both the training and test datasets for 100 permutations 

[10].  Having selected these ProbeSets as described above, the values obtained from RMA, 

dCHIP and BaFL were used as input to the classifiers and in the results below the outcomes are 

compared to those obtained in Chapter 3.  
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Results 

 

The results sections is divided into thirds, with the latent structure presented first as final 

supporting evidence as to the quality of the BaFL-DE-intersection 325 ProbeSets.  The next 

section presents the analysis supporting the inclusion of SPP1, osteopontin, in the candidate list; 

briefly, the ProbeSet was identified by the BaFL pipeline as being ‘on’ for the adenocarcinoma 

and ‘off’ for the normal samples. Only two such on/off genes were identified in these data sets.  

The final section shows the performance results of the candidate gene lists in independent 

validation across the two datasets, where the BaFL interpretation is benchmarked against the 

RMA and dCHIP interpretation for the same list of 31 candidate ProbeSets. 

  

Latent Structure 

Principal component analysis (PCA) of the latent structure of 325 candidate genes was performed 

to project the genes into 2 dimensional space, based upon the correlation between samples.  The 

RMA and dCHIP algorithms center and scale their data to better approximate a normal 

distribution, while the BaFL produced data is log transformed to achieve a similar approximation.  

For all analysis the data was centered through the R functional parameter (center=T), although 

scaling was not done (scale =F).   Presented in Figure 4.1 is the PCA latent structure for the 

Bhattacharjee dataset for the three sets of values.     
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Figure 4.1:  Non-traditional PCA analysis of Bhattacharjee data.  PCA analysis of the Bhattacharjee data 
for ProbeSets based upon sample correlation, using singular value decomposition of the data matrix (R 
prcomp function) [17].  Latent structure can be observed in all three graphs.  Top to bottom:  RMA, dCHIP, 
and BaFL produced values used as input to the data matrix. 
 
 
 
PCA is a linear method, but not all gene relationships are linear [5-7]. The results of using a 

Laplacian, non-linear reduction, method are presented for the Bhattacharjee data (Figure 4.2), 

applied according to [7].  In this approach single value decomposition (SVD) of the correlation 

matrix is performed [17] and normalized to the first column (ProbeSet) [7].   The first 2 Laplacian 

dimensions are then projected into 2 dimensional space.  Again, the BaFL produced data was 

transformed with the simple log first. 
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Figure 4.2:  Non-traditional Laplacian dimension reduction.  Results of the Laplacian dimension reduction 
method for the Bhattacharjee data, showing ProbeSet correlation by sample class. The direction of change 
of the ProbeSet is indicated both by color and arrow.  Latent structure is observed in all three groups.  Top 
to bottom the graphs are from data matrices that started with values derived from the  RMA, dCHIP, and 
log-transformed BaFL values.  
 
 
 
The structure observed via the Laplacian dimension reduction method was assessed across both 

datasets to see if the structure was consistent in both.  There was significant preservation of the 

structure in the case of the BaFL interpreted data, but in the RMA and dCHIP data sets the 

structure was lost, as presented in Figure 4.3.  Statistical discordance indicates those ProbeSets 

which were found to be significantly expressed in only one of the datasets and applies only to the 

RMA and dCHIP produced values for these 325 ProbeSets.  Pattern discordance, on the other 

hand, indicates ProbeSets which demonstrated differential expression in both dataset, but the 

direction of change was different per dataset.  While there does appear to be some latent structure 
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for the RMA and dCHIP interpretations, the separation is not complete as it is for the BaFL 

results.  Since, the latent structure that is presented by the BaFL interpretation could be an artifact 

of normalizing the SVD matrix to the first ProbeSet, permutations were performed upon the 

ProbeSet ordering.  Permuting the gene order did not affect the latent structure that is observed, 

although minor variations of the structure were found.  These results are presented in the 

Appendix E.    

 
 

 
Figure 4.3:  Cross dataset latent Laplacian structure.  Results of the Laplacian dimension reduction method 
on both the Bhattacharjee and Stearman data for ProbeSets, based upon sample correlations.  These graphs 
compare the 1st Laplacian dimension of both datasets, Stearman on the y axis and Bhattacharjee on the x 
axis. The direction of change is indicated by the color and direction of the arrow; there are four colors to 
account for incongruencies in the direction of change between the datasets, as noted in the text.  Latent 
Structure is apparent in the third graph of the BaFL interpreted data.  From top to bottom:  RMA, dCHIP, 
and BaFL produced values were used in the original data matrices. 
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In the above ProbeSet group it is clear that the structure depends greatly on the associated value, 

since for a large majority of the ProbeSets the direction of change is the same regardless of the 

method for generating the value. However, the selection of the ProbeSets was based on BaFL 

values: it is possible that an intersection of RMA/dCHIP DE ProbeSets would have equally 

meaningful structure.  To assess this, a list of predicted DE ProbeSets shared by RMA and dCHIP 

in both experiments was derived. As a final step, that list was filtered for those retained (not 

necessarily DE) in the BaFL protocol. The resulting list has 940 ProbeSets. The Laplacian 

dimension reduction method was again employed using values supplied by each of the three 

methods; results are presented in the Appendix F.  Similarly these 940 ProbeSets demonstrated 

the same consistent latent structure for the log transformed data, while The RMA and dCHIP 

produced data lacked any structure.  Additionally, these 940 ProbeSets possessed a marked 

increase in the number of pattern discondant ProbeSets for the RMA and dCHIP data.   

 

We note that for one ProbeSet the BaFL interpretation of the Bhattacharjee and Stearman results 

disagreed as to the direction of differential expression.  This ProbeSet, 34532_at / CUGBP2, is 

the overall pattern is reflected across all of the individual probes as well, and is not the result of a 

single highly variant probe in the set (data not shown).  

 

The ‘On’ and ’Off’ Category of ProbeSets 

Because the BaFL-based pipeline requires that a minimum of 4 probes be present before a 

ProbeSet is considered it will miss any genes that are always present in one sample class and 

never present in the other. For the goal of finding the smallest number of ProbeSets with the 

greatest difference between classes (the ideal diagnostic) this is a flaw, if such ProbeSets exist. In 

fact, we have identified only two such Probesets in these experiments. Osteopontin (34342_s_at) 
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was one of them: it is counted as present in the adenocarcinoma samples and not detectable in the 

normal samples.  The source of the discrepancy is the linear range filter: the 7 probes with 

reliable values in the diseased sample fall below that threshold in the normal samples. This 

ProbeSet alone can classify the Bhattacharjeedata with a 98.9% AUC, as even if you allow 

aggregation of probe values below 200 fluorescent units, only three of the normal samples have 

ProbeSet values greater than 200 f.u. Figure 4.4 presents boxplots of the BaFL-based ProbeSet 

means of the osteopontin log-transformed expression values for each of the five tissue classes in 

the Bhattacharee experiment. This figure mirrors that of Hu’s 2005 plasma protein study on lung 

cancer [19].  The aggregated ProbeSet values used only the 7 probes which survived the cleansing 

for the adenocarcinoma samples, although it should be noted that in the squamous carcinoma and 

small cell cancer samples additional probes were retained.   
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Figure 4.4:  Signal intensity boxplots for Osteopontin.  Boxplots of the log expression distributions, based 
on aggregation of BaFL values, for ProbeSet 34342_s_at (SPP1). The Bhattacharjee data are shown.  The 
y-axis is the log-transformed BaFL value (natural log) of the expression values of all samples in the class, 
and the x-axis indicates the sample class (the number of samples is very small in all class but the 
adnocarcinoma). This figure is very similar to results shown in the 2005 plasma protein level study of 
osteopontin in various lung cancers [19]. 
 
 
 
The similarity to the plasma protein levels reported by Hu, et al. is not matched by similarity to 

the survival rates, or significance with regard to stage progression, reported by Donati, et al., 

shown in Figure 7 [20].  The R maxstat package was used to generate the following survival 

rate figures [16].   
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Figure 4.5:  Kaplan-Meyer survival curves for Osteopontin.  ProbeSet 34342_s_at (SPP1) survival rates 
with respect to stage progression.  The significance of the osteopontin expression levels is presented in the 
sub label along the x-axis: RMA came the closest to a p-value of 0.05.  The cutoffs in the legends represent 
the log expression threshold which divides the sub-populations.  Note that in the far right graph dCHIP 
signal interpretation of the data an individual stage I patient has switched patient groups, having an 
expression level above the 7.24 cut-off.  
 
 
 
After examining the differences in survival statistics and taking into account the relatively 

elevated expression level of osteopontin in the three previously mentioned normal samples, we 

further divided the data. Support for this decision can be found in the maximum tumor pathology 

as reported by Bhattacharjee, et al. in the supplementary data to that article [3].  A mean cut-off 

of 75% tumor pathology was established; the consequent associations between osteopontin 

expression level, tumor pathology, and stage are presented in Figures 4.6 and 4.7.   Figure 4.6 is 

the level of osteopontin expression compared to patient survival for patients with greater than 
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75% tumor pathology for both stages I and II-IV, again using all three methods for generating the 

expression level.   

 
 

 
 

Figure 4.6:  High grade tumor survival rates.  ProbeSet 34342_s_at (SPP1) and patient survival rates with 
respect to greater than 75% tumor pathology and stage progression.  All three probe cleansing 
methodologies show that the level of osteopontin has significant correlation with survival across all stages.   
 
 
 
Figure 4.7 shows the outcomes for the other set of patients, those with a low grade (less than or 

equal to 75%) tumor pathology and the impact of elevated osteopontin and the progression of 

cancer.  A dramatic effect is observed for stage I cancer patients with high osteopontin levels, 

with levels provided by the BaFL methodology.  Neither RMA or dCHIP provided levels show 

this important linkage between cancer progression and elevated osteopontin levels.     

 104



 
 

Figure 4.7:  Low grade tumor survival curves.  ProbeSet 34342_s_at (SPP1) and patient survival rates with 
respect to less than or equal to 75% tumor pathology and stage progression.  The three value-generating 
methods no longer agree. With the BaFL panel it can be seen that, given low tumor stage histology call but 
an elevated osteopontin level, there is a significant impact on survival, more so than for late stage cancer 
patients.   The RMA data shows a minor impact, while the dCHIP data show no such effect; the principal 
difference between RMA and dCHIP is that one sample that was identified as switching groupings in 
Figure 4.5.   
 
 
 
Bonferroni Feature Selection Characteristics 

The 30 ProbeSets which were present in the intersection of the Bonferroni corrected t-test results 

are presented in Table 4.1.  In addition to these 30 ProbeSets the osteopontin (SPP1) ProbeSet, 

34342_s_at, was included to arrive at the final candidate gene list.  This ProbeSet was re-

incorporated for the Bhattacharjee normal samples, for the 7 probes retained across all 

adenocarcinoma samples.  This ProbeSet was not eliminated in the BaFL cleansing of the 
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Stearman data, since 4 probes were retained by the Stearman normal samples.  By comparison 13 

probes were retained by the Stearman adenocarcinoma samples.    

 
 
Table 4.1:  Final candidate list.  The candidate list of 31 genes from the Bhattacharjee and Stearman 
datasets, as down selected using the Bonferroni correction.  This list includes the osteopontin ProbeSet.  
Note that ProbeSet 34320_at does not align to a specific gene, under the Ensembl genome build used in 
these studies, although it does align to one transcript region.   
 

ProbeSet Hugo Id 
37398_at PECAM1 

40282_s_at CFD 
40841_at TACC1 
36627_at SPARCL1 
37027_at AHNAK 
39066_at MFAP4 
39145_at MYL9 
32562_at ENG 
31856_at LRRC32 
33904_at CLDN3 
33137_at LTBP4 
38995_at CLDN5 
1597_at GAS6 

38704_at MACF1 
895_at MIF 

37658_at GAS6 
36569_at CLEC3B 
39631_at EMP2 
32052_at KRT121P 
39760_at QKI 

770_at GPX3 
34320_at  
33756_at AOC3 
37009_at CAT 
40202_at KLF9 
36155_at SPOCK2 
32847_at MYLK 
38044_at FAM107A 
41338_at AES 
35152_at RAMP3 

34342_s_at* SPP1* 
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The candidate gene list values were used as input for cross dataset validation of the classification 

performance for the three algorithms described in Chapter 3:  LDA, kNN, and RF.  As described 

there, the validation was carried out over 100 random permutations of both the training and test 

datasets [10, 21].  The classification performance of the BaFL interpreted genes is benchmarked 

against the RMA and dCHIP values input for the same classifiers. Model performance was 

assessed by the AUC for the classification success [10, 14, 15]; results are presented in Figure 

4.8. 

 
 

 
Figure 4.8:  Candidate list validation.  Classification performance for the candidate list of 31 ProbeSets.  
These ProbeSets were elucidated using the Bonferroni correction of the t-test results and are the set of 
genes lying in the intersection between the two datasets along with the osteopontin Probeset.  The BaFL 
based values for these ProbeSets demonstrates the best performance for all three classification algorithms 
and both reciprocal training and test scenarios.   
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Discussion 

 

In this chapter we have presented latent structure associated with the genes in our candidate 

ProbeSet list when BaFL-provided values are used, based upon correlation of the disease samples 

(Figures 4.1-3).  This is the reverse of the normal strategy, in which an analyst uses gene 

correlations to explore the structure between samples. There is an improvement in the 

Bhattacharjee data model when the BaFL pipeline is implemented to supply the Probeset values 

as compared to the RMA and dCHIP methods.   

 

The impact of osteopontin expression levels (Figure 4.4-7) is a well known feature in the 

progression of lung cancer, as is the difference among lung cancer sub-types [19, 20, 22, 23].  

However, a novel result of the analysis is the demonstration that the significance of the 

expression levels is not stage specific (Figures 4.6-7), but rather pathology specific, for BaFL-

supplied values.  This change in perspective suggests why our data fails to demonstrate the same 

survival rates as the Donati study which suggested long term survival of stage I patients with 

elevated levels of opsteopontin [20].  An attempt to contact this group to obtain supplementary 

data in order to determine whether their stage I sub-population had a significant proportion of low 

grade tumor patients has been unsuccessful.  Osteopontin is under development as a potential 

biomarker, and efforts have been made to improve the performance of the biomarker by coupling 

it with other biomarker results [ref].   Our results suggest that an additional element leading to 

success would be to incorporate the tumor grade clinical data into the test. 

 

In earlier chapters the multiple-test problem was ignored (leading to the candidate list of 325 

ProbeSets described above). The Bonferroni correction was implemented for its low tolerance for 
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rejecting the null hypothesis [8], and applied to the two datasets as interpreted by the BaFL 

pipeline.  This correction enabled us to elucidate a small subset of undeniably differentially 

expressed genes as pertinent to lung cancer.  The candidate list of genes when based on BaFL 

pipeline values yields reasonable classification performance across 3 independent algorithms 

when an appropriately sized dataset is used (Figure 4.8).  The size of the data set is important: 

when the Stearman dataset was used for training purposes all three models struggled, with the 

BaFL data performing the best in all cases  Statnikov, et al. used the Bhattacharjee multiclass data 

in their pipeline for the cancer diagnosis and biomarker discovery, in which whey reported the 

maximum prior probability of a dominant diagnostic category of 68.5%  [24].  Their analysis 

used the data in a training approach for 10 fold leave one out cross validation and reported perfect 

prediction for the training model [24].  Additional analysis utilizing the full Bhattacharjee 

multiclass dataset yielded binary classification accuracies of 52-56% for random forest and 

support vector machines with and without gene down selection.  While multiclass classificaiton, 

with and without gene down selection yielded 77-82% for random forest and 89% for support 

vector machines [25]. 

 

 The relevance of these 31 genes is supported by the GO connections identified by the pathway 

and literature search, PaLS, software (http://pals.bioinfo.cnio.es/), which connect 23 of the 30 

genes (one ProbeSet aligns to no defined gene).  KEGG pathway connections link 6 of these 

genes, including opsteopontin, through focal adhesion and extra-cellular matrix receptor 

intreraction [26].  Other extra cellular matrix genes include MFAP4, SPARCL1, ENG, RAMP3, 

and LRRC32.  SPARCL1 and SPOCK or SPARC like have been investigated for their role in 

lung cancer [23].  These genes along with SPP1, MIF, and PECAM1 have strong immunological 

associations and thereby may be essential for angiogenesis and tumorogenesis [19, 20, 27].  The 
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discovery of MACF1, a microtubule-actin crosslinking factor 1, may have associations with 

TACC through its anchoring to the golgi apparatus and its molecular mobility [28].  There are 3 

TACC human genes, which appear to be important for cellular division and organization [28, 29], 

with orthologues reported in Mus. musculus, Drosophila melangaster, and Xenopus laevis.  

Proper localization of TACC during cytokinesis appears to be dependent upon phosphorylation 

by aurora kinases [29, 30]  and may posses a  critical function in cell cycle control [31].  GAS6, 

growth arrest 6, is a gamma-carboxyglutamic acid (Gla)-containing protein and contrary to its 

name is thought to be involved in the stimulation of cell proliferation.  Additionally, 3 genes are 

metabolic enzymes involved in tryptophan or tyrosine metabolism, as presented in Figure 10 [26].   
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Figure 4.9:  GO connectivity of candiadate genes.  PaLS software pathway [26] associations of GO terms 
for the 31 candidate gene that were produced using the BaFl methodology.   
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Figure 4.10:  KEGG connectivity of candidate genes.  PaLS software pathway [26] associations of KEGG 
terms for the 31 candidate gene that we present here. 
 
 
 
Conclusion 

 

We identified 31 genes that yield good cross experiment classification performance between the 

Bhattacharjee and Stearman datasets.  These genes were derived as the intersection of the 30 

Bonferroni t-test corrected differentially expressed genes between the two datasets, with the 

addition of osteopontin.  Of these, 30 are a subset of the 325 dataset concordant differentially 

expressed genes which demonstrate strong separation of regulation patterns in the latent structure 
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under linear and non-linear dimension reduction techniques.  The 1st Laplacian dimensions 

demonstrate persistence of this structure across the two datasets.  In addition to these 30 genes, 

osteopontin was incorporated as we have demonstrated its significance to tumor progression, 

which agrees with the literature results for this gene.  These 31 genes not only demonstrate 

significant classification abilities, but they also demonstrate a significant association in the GO 

terminologies which describe them.   
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Chapter 5:  Data Mining the Multiclass Dataset 

 

Lung cancer is the most prominent form of cancer worldwide, representing 12.3% of all cancer 

diagnoses [1].  It is a devastating disease, for 90% of those diagnosed with lung cancer will 

eventually succumb to it, representing 17.8% of cancer deaths worldwide.  Smoking tobacco is 

strongly correlated to the development of lung cancer, with 80-90% of all diagnoses being 

attributed to smokers, although only 11% of cigarette smokers will develop lung cancer [1].  

There exist four histologically distinct lung cancer variants: 3 are of non small cell lung cancer 

(NSCLC), and the other is small cell lung cancer (SMLC) [1].  NSMLC is the predominant form 

of lung cancer, encompassing 80% of all lung cancer cases [2].  Adenocarcinoma has surpassed 

squamous cell carcinoma in prevalence; both are subtypes of NSCLC, the most frequent subtype 

of lung cancer [1, 2].  Alarmingly, adenocarcinoma is most common in women, non-smokers, and 

the young [1, 2].  Adenocarcinomas are peripherally located in the lungs and develop from clara 

cells, alveoli, and mucin producing cells.  Squamous carcinomas arise in the central airways and 

are the direct result of smoking, as there are no squamous epithelial cells in normal lungs.  

Surgical intervention for patients without mediastinal involvement still results in only a 30-50% 

chance of disease-free survival, with long-term survival greatly reduced for patients with 

mediastinal involvement [1]. 

 

We have separated the samples from the Bhattacharjee dataset into several subsets, in order to 

produce a NSCLC multiclass dataset consisting of adenocarcinomas, squamous cell carcinomas, 

and normal (actually adjacent) biopsies.  There exist 155 samples which survived the BaFL 
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sample cleansing process and these encompass 4,248 ProbeSets.  Borrowing from machine 

learning practices, a gain ratio was calculated from k-means clustering analysis of individual 

ProbeSets to perform down selection to the most significant features [3, 4].  This gain ratio was 

also calculated at the individual probe level and then averaged across the probes belonging to an 

accepted set, to give a ProbeSet response.  We demonstrate that both approaches improve the 

model’s performance in a supervised classification analysis, implemented using either the kNN 

classifier based on Euclidean space [3, 5, 6], or Fisher’s linear discriminant analysis (LDA) [7, 8].  

In this case the emphasis is not on comparing analysis methods, but rather focuses on discovery 

of intriguing biological phenomenon revealed by using the BaFL pipeline to select the most 

unambiguous signal.  Eighteen significant ProbeSets were selected, possessing a gain criterion 

greater than 0.8, and this set of genes suggest that an important mechanism underlying 

tumorogenesis is abnormal cytokinesis.  The biological significance of these genes are validated 

by a literature survey in the discussion section.   

 

Materials and Methods 

 

A subset of samples were selected from the BaFL cleansed Bhattacharjee dataset to construct a 

multiclass dataset containing NSCLC tumor biopsies and adjacent/normal biopsies.  This dataset 

contained the 125 adenocarcinomas and 13 normals, which comprised the two state disease model 

previously considered, and an additional 17 squamous samples.  The BaFL cleansing pipeline 

was applied across all samples, with the result that 24,022 probes were found to be common to 

the three states; these lie in 4,248 ProbeSets (with at least 4 acceptable probes each). 
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Information gain ratios (equations 2 and 3) were calculated per probe and ProbeSet, based upon 

their performance as implemented in the k-means clustering algorithm, for three distinct clusters.  

The average gain ratio for all of the probes in a ProbeSet was determined. However for this 

analysis, the gain ratio calculated for the average ProbeSet intensity was evaluated to eliminate 

less informative ProbeSets.  It is proposed here that the differences observed between the 

aggregate ProbeSet and the average probe performance can by utilized in a way similar to the 

suggestion for using the ‘Signal’ ProbeSets in Chapter 3, to discern transcript regions relevant to 

the phenotype.  Prior to calculating the gain ratio, normalization transformation was performed on 

the data (probe and ProbeSet).  Let xi,j represent the data as 4,258 ProbeSets by 155 samples and 

was scaled as  

 

iix *)/  - (x x ji, ji, " .     (5.1) 

 

Where x  is the mean signal intensity across the samples and sigma the variance across samples.  

Hartigan-Wong Clustering was done for 50 random centers (nstarts=50) [9], which appeared to 

be sufficient to minimize the Euclidean sum of squares.  This clustering approach is the default 

and according to the R documentation it typically demonstrates the best performance [9].  The 

two best solutions were then chosen, and their gain ratios were calculated, given their distinct 

cluster centers.  These solutions were selected as optimal for the adenocarcinoma clustering, 

having the smallest Euclidean sum of squares and sub-optimal for either the squamous or normal 

clustering.  The decision to use both best solutions was an effort to compensate for the ‘no free 

lunch theory’ [10], in that if the clustering was appropriate for both adenocarcinoma and normal 

samples, the clustering underperforms for the squamous samples.  Fifty clustering attempts were 

typically sufficient to find both ‘best’ centers, and the gain ratios for the two centers were 
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averaged to give a final approximation of the gain ratio; where the randomness of initial selection 

prevented the discovery of both solutions the single solution gain ratio was used.  The gain ratio 

was calculated as such: 
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Here Ti represents the number of classification calls in each cluster [4].  As individual ProbeSet’s 

inherent clustering ability increases, the information gain ratio approach 1.0 [3, 4, 10].  Down-

selection to the most informative ProbeSet features was set by a gain ratio threshold criterion.  

For this dataset gain ratio limits of 0.7, 0.8, 0.9 yield ProbeSet lists of length 43, 18 and 8, 

respectively.  Average probe gains greater than or equal to 0.5, 0.6, and 0.7 yield ProbeSets lists 

of length 95, 29 and 9. 

 

Performance of the gain criterion down selected ProbeSets was monitored with supervised kNN 

and LDA classification performances.  Training and testing was done under 100 X 2 validations 

with random splitting of samples in training and test sets, with sampling done with replacement 

[3, 11, 12].  Sampling with replacement in such a scenario allows for the stochastic elimination 

and pseudo-replication of samples, although replication may have not been consistent to the same 

training/test set.  Majority voting was implemented for the kNN algorithm, with the analysis of 3 

nearest neighbors.  The area under the receiver operating curve (AUC) was weighted for each of 
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the pairwise 2-class classification models, and the accumulated AUC represents the multiclass 

performance [3, 10, 13, 14].  The weighting scheme was as follows: 

 

AUC = % auc * (1- (Ci/T))/n-1,     (4) 

 

where C is the class numbers, T is the sample numbers, and n is the number of classes.  The 

weighting scheme was chosen over the average AUC, to compensate for the large class bias.  

Classifying the adenocarcinoma samples with little classification ability for the smaller classes 

yielded an inflated model AUC.  

 

Results 

 

Eighteen genes are implicated for differentiating NSCLC when the gain criterion threshold is set 

at 0.8.  These ProbeSets are provided in Table 4.1, along with their HUGO identification, 

chromosome location, the calculated gain ration and the GO processes.  Investigation of the 

gene’s GO processes includes cell proliferation, mitotic cell cycle control, cell motility and 

adhesion, inflammatory response, signal transduction, and cell programmed death.   

 

 

 

 

 

 

 

 

 



Table 5.1:  NSCLC candidate genes.  The list of 18 genes from the Bhattacharjee NSCLC dataset, as down selected using the gain criteria.  *The probes 
from probeset_id, 576_at, measure the chromosome 7 transcript region 150,342,056-150,342,499, which has overlapping opposed sense genes for 
ATG9B (ATG9 autophagy related 9 homolog B) and NOS3 (nitric oxide synthase 3 -endothelial cell)  

:  NSCLC candidate genes

Probeset_idProbeset_id        Gene_idGene_id ChromosomeChromosome GainGain GO process GO process 

.  The list of 18 genes from the Bhattacharjee NSCLC dataset, as down selected using the gain criteria.  *The probes 
from probeset_id, 576_at, measure the chromosome 7 transcript region 150,342,056-150,342,499, which has overlapping opposed sense genes for 
ATG9B (ATG9 autophagy related 9 homolog B) and NOS3 (nitric oxide synthase 3 -endothelial cell)  

40841_at    TACC1 8 1.018 Cell cycle, cell division 

34294_at    KIFC3 16 0.992 Golgi organization and biogenesis, microtubule-based movement, visual perception 

39631_at    EMP2 16 0.988 cell proliferation 

576_at*    ATG9B 7 0.957 autophagic vacuole formation, autophagy 

576_at*    NOS3 7 0.957

angiogenesis, cell motility, learning, lipopolysaccharide-mediated signaling pathway, lung 
development, negative regulation of calcium ion transport, negative regulation of hydrolase activity, 

negative regulation of potassium ion transport, negative regulation of smooth muscle cell proliferation, 
nitric oxide biosynthetic process, ovulation from ovarian follicle, oxidation reduction, regulation of 

sodium ion transport, signal transduction 

37004_at    SFTPB 2 0.954
lipid metabolic process, organ morphogenesis, regulation of liquid surface tension, respiratory gaseous 

exchange, sphingolipid metabolic process 
39016_r_at KRT6A   12 0.935 cell differentiation, ectoderm development, positive regulation of cell proliferation 

39066_at    MFAP4 17 0.920 cell adhesion, signal transduction 

1718_at    ARPC2 2 0.894 cell motility, regulation of actin filament polymerization 

33756_at    AOC3 17 0.883 amine metabolic process, cell adhesion, inflammatory response, oxidation reduction 

32052_at    KRT121P 11 0.861 keratin 121 pseudogene 

33323_r_at SFN  1 0.858 

DNA damage response, signal transduction resulting in induction of apoptosis, apoptotic program, cell 
proliferation, keratinocyte differentiation, negative regulation of caspase activity, negative regulation of 
protein kinase activity, regulation of cyclin-dependent protein kinase activity, release of cytochrome c 

from mitochondria, signal transduction, skin development 

37009_at    CAT 11 0.855
UV protection, hydrogen peroxide catabolic process, negative regulation of apoptosis, oxidation 

reduction, protein tetramerization, response to reactive oxygen species 

36495_at    FBP1 9 0.842 carbohydrate metabolic process, fructose metabolic process, gluconeogenesis 

34301_r_at    KRT17 17 0.841 biological_process, epidermis development 

32680_at    TNIK 3 0.832 JNK cascade, protein amino acid phosphorylation, protein kinase cascade, response to stress 

41639_at    NCAPH 2 0.832 cell division, mitosis, mitotic cell cycle, mitotic chromosome condensation 

654_at    MXI1 10 0.825
cytoplasmic sequestering of transcription factor, negative regulation of cell proliferation, regulation of 

transcription, regulation of transcription, DNA-dependent 
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Baseline comparison of the weighted AUC (equation 4) to the 4,248 ProbeSets are made in 

Figure 5.1.  The feature subsets of lengths 43, 18, and 8 were selected for possessing gain criteria 

greater than:  0.7, 0.8, and 0.9, respectively.   The classification performance for these candidate 

ProbeSet was assessed for the kNN and LDA classification algorithms [5-8].  The ProbeSets 

selected by their gain criterion demonstrate classification performance improvement against the 

whole model’s classification ability, and more significantly so for the kNN algorithm.  While the 

most ProbeSets identified by the most stringent threshold (greater than 0.9 information gain) 

demonstrate a distinct loss of classification ability.   In general, the linear discriminant analysis 

demonstrates a marked improvement over the kNN classification algorithm, and not as significant 

an improvement by down selection.   
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Figure 5.1:  NSCLC ProbeSet gain selection model performances.  Down selection of ProbeSets by the 
ProbeSet gain criterion, as presented by the weighted AUC metric.  Gain criterion was calculated for the k-
means clustering performance of the average ProbeSet intensity.   Left graphic is kNN implemented with 
k=3 and majority voting and right graphic is LDA.  
 
 
 
Down selection by the gain criterion calculated as the average probe clustering performance 

across the ProbeSet yields similar classification performance for the LDA algorithm, and marked 

improvement in the kNN classification algorithm.  Results of the down selection through the 

average probe gain criterion are presented in Figure 5.2.  However, this is questionable approach 

since the ProbeSet aggregate may possess minimal gain relevance.  It is our belief that the 

ProbeSets which are identified by both the ProbeSet and average probe gain criteria act as strong 

classifiers, while the less informative ProbeSets which were identified by their average probe 

information gain act as weak to noise classifiers. 
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Figure 5.2:  NSCLC average probe gain selection model performances.  Down selection of ProbeSets by 
the average probe gain criterion, as presented by the weighted AUC metric.  Gain criterion was calculated 
for the k-means clustering performance of the average ProbeSet intensity.   Left graphic is kNN 
implemented with k=3 and majority voting and right graphic is LDA.    
 
 
 
A more suitable approach is to identify the ProbeSets meeting an average probe gain criteria, 

which is still less then the aggregated ProbeSet’s information gain.  We identified 13 such 

ProbeSets, whose average Probe information gain was greater or equal to 0.6 and the aggregated 

ProbeSet gain exceeded this threshold.  The classification performance of these ProbeSets is 

presented in Figure 5.3, again in comparison to the whole data model.   
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Figure 5.3:  NSCLC refined average probe gain selection model performances.  Classification performance 
of kNN (top) and Fisher’s linear discriminant analysis (bottom), as demonstrate by the weighted AUC per 
individual disease class.  Left column of graphs presents the performance of the full 4,248 ProbeSets and 
right column of graphs present s the performance of the 13 ProbeSets with and average gain >= 0.6 with the 
aggregate gain greater than average gain.    
 
 
 
Discussion 

 

Significant improvement in sample classification is demonstrated, with all three down selected 

ProbeSets lists, for both classifiers.  The linear discriminant analysis of the full model 

demonstrates exceptionally good classification properties, much moreso than that of the kNN 

algorithm.  However the performance of the LDA algorithm is still improved through the 

information gain down selection criterion.  While the results from using most stringent gain 

criterion, 0.9, indicate some over-training of the model, since both classifiers demonstrate 
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decrease performance in the weighted AUC metric.  This list of candidate genes demonstrate a 

decrease true positive classification rate for the squamous samples, with coordinating increases in 

false positive rates for the adenocarcinoma and normal samples (data not shown).   

 

Although ProbeSets selected by their average probe gain criteria demonstrate enhanced 

performance for the kNN algorithm and similar performance for the LDA algorithm, it likely not 

a suitable approach.  We observed little overlap (6) between the 29 ProbeSets selected by their 

average probe gain (>=0.6) and the 18 ProbeSets selected by their ProbeSe5t gain criteria 

(>=0.8).  This translates to only 1/5th of th ProbeSets having an enhanced information gain for the 

aggregated ProbeSet, and in fact 2/3rd of them demonstrate diminished information gain for the 

aggregated ProbeSet.  Therefore, we believe that the enhanced classification performance for the 

average probe information gain selected lists is likely the result of the ‘good’ classifiers being 

more significant in the feature subspace.   

 

However the average probe gain suggests probes to investigate for transcript measurement 

anomalies.  For example, the same list of 9 ProbeSets included 6 ProbeSets containing distinct 

probes demonstrating poor clustering performance, and these have been show to skew the gain 

distributions and presumably the aggregate’s clustering performance.  For example, the KRT17 

ProbeSet has 2 probes (index 6 and 10) with low probe performances, 0.033 and 0.06 gain ratios 

respectively.   Selection by the average probe gain per ProbeSet appears to have a high false 

positive rate; furthermore these ProbeSets appear to have limited connection to the ProbeSets 

selected by the ProbeSet gain criterion.  As a counterexample, ProbeSet 33108_i_at, SOX2, 

includes five probes all of whose gain values range from 0.73 to 0.99, yet the ProbeSet aggregate 

gain ratio value is a dismal 0.18.  This ProbeSet is up-regulated in the squamous samples, by the 
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statistical criterion, but it appears to be unable to classify the adenocarcinomas because the 

Euclidean Sum of Squares is two fold larger than for the (smaller N) squamous and normal 

clusters.  The ProbeSets KRT17, EMP2 and MFAP4 which were selected by both criteria, 

demonstrate that one method by which to avoid such false positives: that is, select an average 

probe gain threshold criteria of ProbeSets whose aggregate gain improves on the average probe 

gain.  Thirteen of 29 ProbeSets demonstrating an average probe gain had an aggregate gain ratio 

that improved on the average probe gain ratio.  In contrast to the average probe gain list of 29 

genes, half of this list (6 of 13) demonstrates enhanced ProbeSet information gain; having a 

ProbeSet gain ratio greater than 0.8.  The 7 additional genes for demonstrate a close relationship 

to the underlying biology.  

 

Such effective down selection, at the ProbeSet level, may be a reasonable endpoint if the goal is 

to produce an effective and simple diagnostic test. However, this is a limited approach if the goal 

is to understand the biological mechanisms of disease.  Based upon the classification 

performances, presented in Figure 5.1, 18 Genes were identified were selected as a candidate list 

(Table 5.1) to explore the biological function with respect to NSCLC.     

 

Literature Validation of Biological Process 

We observed significant down regulation of TACC1 in both forms of NSCLC, which is supported 

by the literature [15-17].  There are 3 TACC human genes, which appear to be important for 

cellular division and organization [18], with orthologues reported in Mus. musculus, Drosophila 

melangaster, and Xenopus laevis [18].  Proper localization of TACC during cytokinesis appears 

to be dependent upon phosphorylation by aurora kinases [15, 19]  and may posses a  critical 

function in cell cycle control [17].  Appropriate cell division is a prerequisite in the propagation 
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of cells, and abnormal cytokinesis can lead to spontaneous abortions, congenital malformations, 

polyploidy and cancer predisposition [15, 19].   

 

Similarly, EMP2 was significantly down regulated in the NSCLC samples.  EMP2 has been 

demonstrated to down-regulate caveolin-1 production [20], with up-regulated caveolin-1, CAV1, 

inducing filopodia and facilitating metastasis in lung adenocarcinoma [21].    Caveolin-1 is 

essential for the formation of caveoli formation, the plasma membrane invaginations which alter 

the morphology of the plasma membrane [20].  The invaginations are essential for cholesterol 

transport, localization of signal transduction, coordination with microtubules for membrane 

trafficking, and regulation of NOS3, while oncogenic implications have been the subject of 

conflicting reports for different cancer types [20, 22-24].  The caveolae structures constantly 

recycle between the cell-to-cell contact points along the cell membrane, endosomes, and Golgi 

network, while during mitosis they localize along the contractile ring [23, 25].   

 

Additionally, the DNA-damaging ROS H2O2 is a mitotic signal messenger [26], which catalase 

rapidly degrades [27].  Catalase (CAT) was demonstrated to accelerate the degradation of p53 

proteins, thereby preventing ceramide induced apoptosis [27], while IGF-1 was demonstrated to 

restore catalase activation through inhibition of PI-3-Akt inhibition at CAV1 localized 

microdomains [28].  We observed significant upregulation of CAT in the normal samples.   

 

Similarly, stratifin is induced by DNA-damage via p53 activation and regulates G2 cell cycle 

arrest through positive feedback upon p53 [29, 30].    Conversely, it has been reported the stratifin 

is activated by IGF1 in a manner independent of p53 activation [31].  Methylated sequesence of 

stratifin has been reported in several cancers [30] and improper regulation may explain cancers 
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lacking p53 mutations [30].  While, we observed significant up-regulation of stratifin in the 

Bhattacharjee squamous samples, the adenocarcinoma samples demonstrated minimal presence of 

p53 mRNA.  It is our belief that these gene levels suggest that a flawed cytokinesis process is 

occurring in these samples.  Further support of this are the presence of ARPC2 and TNIK, both of 

which regulate the actin cytoskeleton [32-34].   

 

These results may also indicate that the squamous samples are more proficient at attaining 

appropriate G2 sequesence, although in the prolonged G2 state they may be incurring an 

accumulation of ROS, causing DNA-damage.  Additional support for the occurrence of DNA-

damage is the association of condensing-1 with PARP (poly ADP-ribose polymerase), supporting 

the role of condensing-1 in DNA repair [35].  Similarly, TTF-1 has been shown to interact with 

PARP2 to regulate the expression of surfactant protein B [36].   

 

Surfactant protein B (SPB) and keratin 6A both were significantly up-regulated in the squamous 

samples and slightly up-regulated in the adenocarcinoma samples.  Surfactant protein B is a 79 

amino acid hydrophobic peptide which is expressed in alveolar type epithelial cells and clara cells 

of the lung [37-41].  This peptide is essential in maintaining normal lung functions and surface 

membrane structure, by reducing the surface tension [37].  The up-regulation of this peptide may 

be a compensation for the toxic exposure of lung tissue to cigarette smoke: the link to TTF1 is 

tantalizing.  TTF1’s DNA binding activity of SPB is well documented [36, 38, 39].  Interference 

of TTF1 binding has been reported to be caused by ceramide [39], PARP-2 [36], and proteosome 

dysfunction [38].  Coupled histological staining for TTF1, KRT6A, and p63 has recently been 

evaluated for NSCLC classification [42]; additionally, p63 and KRT6A have been associated 

with more aggressive tumors [43]. 
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Table 5.2:  Genes identified through refined average probe gain.  The list of 8 genes from the Bhattacharjee 
NSCLC dataset, as down selected using the refined average probe gain criteria. 
 

probeset_id Gene_id chromosome gain avg probe gain 
1794_at CCND3 6 0.687 0.605 

31775_at SFTPD 10 0.743 0.652 
32052_at KRT121P 11 0.861 0.697 

33109_f_at SOX2 3 0.800 0.628 
36617_at ID1 20 0.701 0.694 
36629_at TSC22D3 X 0.610 0.607 
37926_at KLF5 13 0.683 0.631 
40786_at PPP2R5C 14 0.685 0.678 

 
 
 
 
The 8 ProbeSets identified by the refined selection of ProbeSets with sufficient average probe 

gain to pass the double selection criterion complement the underlying biological story developed 

above.  ID1 is a member of the basic helix-loop-helix transcription factors which regulate a range 

of cellular functions, including cell cycle progression/proliferation [44, 45].  ID1 regulation has 

been linked to several pathways, including matrix metalloproteinases [45] and bone 

morphogenetic proteins [46].  It has been demonstrated that CAV1 binds ID1 through the HLH 

domain and this interaction was essential for the activation of AkT activation, promoting cancer 

cell invasion in prostate cancer [45].   Additionally, ID1 has been demonstrated to be essential for 

the expression of cyclin D1, a facilitator of cell phase transitions [44].  While the cyclin D3 

ProbeSet (1794_at) demonstrated a gradient transition of expression levels between normals, 

squamous, and adenocarcinoma samples, the highest mean expression was in squamous cell 

carcinomas.  Cyclin D3 plays a pivotol role in the phase transition between G1 to S stages [47].  

The adenocarcinoma samples similarly expressed significant down regulation of the ID1 mRNA 

transcript, suggesting that these samples are residing in the growth stages.   
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Kruppel-like factor 5 (KLF5) has also been implicated in carcinogenesis pathways.  In particular, 

it activates in response to DNA damage to induce apoptosis or DNA repair, through the p53 

dependent pathways [48].  Increased KLF5 expression accelerates G2/M phase transitions by 

activating cyclin B1 [49].  Similarly, PPP2R5C also participates in p53 activation after the 

induction of DNA damage, acting as a mitotic checkpoint to suppress cancer growth [50, 51].  

DNA damage activates ATM (ataxia telangiectasia mutated), which phosphorylates p53 at Ser15.  

The phosphorylation promotes the p53 and PPP2R5C interaction, thereby causing the 

dephosphorylation of p53-Thr55 and cell cycle arrest [50, 51].  Both KLF5 and PPP2R5C have 

elevated levels of mRNA transcript in the squamous cells, which supports the hypothesis that the 

squamous carcinomas have undergone DNA damage.  Finally the TSC22D3, or GILZ, ProbeSet 

demonstrates significant up-regulation in the normal samples.  This gene regulates a number of 

cell functions, including cell proliferation, and has been identified has a tumor suppressor gene.  

 
 
Conclusion 

 

Cancer is a complex disease that can affect nearly every pattern of expression of a cells genes, 

depending on the stage. This obscures important mechanisms that discriminate the types of 

disease and perhaps possible points of control. We have shown that by application of the BaFL 

cleansing routine, followed by straightforward machine learning methods for down-selection 

criteria and clustering parameters, even very simple classification methods reveal a distinct 

picture of tumorogenesis for the Bhattacharjee NSCLC samples.  While the complexity of the 

disease cannot be overstated, this picture is much simpler and amenable to straightforward assays 

for confirmation. For example, a significant proportion of the identified genes have been 

documented to have alternative transcripting events, oncogenic genomic amplification, 
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methylation regulatory control, and multiple cellular functions, for which well documented 

methods exist.  We believe that the BaFL cleansing process has provided the basis for an 

intriguing elucidation of distinct differences in disease mechanism for two histologically distinct 

NSCLC lung tissue tumor types.   
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Appendix A 

#  This is the main driver function in the CleansingPrep_6_23.py file which prepares the 
ProbeFATE system for the BaFL filter cleansing 
 
# tables parameter is a list of files to import or create 
# example files are in the Supplementary Materials: 

1) MissingQuantitation.csv quantitation types which I add to the system  
2) Known.csv calculates or uses previously calculated deltaG (OligoArrayAux ) values 

for probes with known sequences, flag meth[0] differentiates  
3) SampleMask.csv a file which describes the data (abbrev. sample sd, orig sample id, 

the associated .cel file, disease class, and the file source for this information 
4) SNP_by_pos.csv a file created w/ Sunita.py, which parses the information from 

AffyMAPSDetector output 
5) probe_mapping.csv file is created through ENSEMBL mappings or probes, flag[1] 

indicates whether the latest ENSEMBL build is used otherwise the build needs to be 
provided 

 
def prepareCleansing(db, usr, pswd, fpath, logfile, tables, meth): 
 # tables = [added_qts, sample_info, snp_info, xhybrid_info] 
 #  add new qts 
 i=0 
 CreateNew_QTs(db, usr, pswd, tables[0], logfile) 
 i+=1 
 # map known chip sequence info 
 if lower(meth[0])=='copy': 
  Copy_deltaG(db, usr, pswd, tables[1], logfile) 
  i+=1 
 elif lower(meth[0][:4])=='calc': 
  Calc_deltaG(db, usr, pswd, fpath, logfile) 
 else: 
  print 'Method:', meth[0], 'does not exist.' 
  return -1 
 
 # set sample mask 
 Sample_mask(db, usr, pswd, logfile, tables[i]) 
 i+=1 
 # map SNP info 
 SNP_mask(db, usr, pswd, tables[i], logfile) 
 i+=1 
 # map xhybridization info 
 if lower(meth[1])=='new': 
  new_Xhybrid(db, usr, pswd, tables[i], logfile) 
 else: 
  version_Xhybrid(db, usr, pswd, tables[i], logfile, meth[1]) 
 Mod_wk_registry(db, usr, pswd) 
 print '\nXHYBRID INFO MAPPED\n' 
 print '\n\tALMOST READY TO PROBE CLEANSE\n' 

 131



Appendix B 

 

# BaFL probe cleansing from the DataCleansing_6_26.py file 
 
def RunCleanse(usr, pswd, db, logfile, lwr=200, uppr=20000, rgr=4): 
 Driver(usr, pswd, db, logfile, lwr=200, uppr=20000) 
 DriverSNP(usr, pswd, db, logfile) 
 DriverXH(usr, pswd, db, logfile) 
 DriverBioPhy(usr, pswd, db, logfile) 
 DriverFNL(usr, pswd, db, logfile, rgr) 
   
def exec_mapping(usr, pswd, db, tables, msk, msk_tab, fp, lwr, uppr): 
 cur, conn= make_connect(usr, pswd, db) 
 exp=get_exp(usr, pswd, db) 
 notes='known probe sequence info within linear range' 
        map=get_masking(tables, msk, msk_tab) 
        chip_info = " as select 
known_seq_biophysical.probeset_id,known_seq_biophysical.probe_index,kno
wn_seq_biophysical.pm_mm_other, known_seq_biophysical.probeseq," 
 k=0 
 #print 'Map length ', len(map), map[k] 
 pid_tbles=[] 
 for i in tables: 
  tmp=msk[map[k]]+'_pid' 
  trl= "CREATE table 
"+tmp+chip_info+i+".x,"+i+".y,"+i+".signalrawintensity from 
"+i+",known_seq_biophysical where known_seq_biophysical.x = "+i+".x and 
known_seq_biophysical.y = "+i+".y and (signalrawintensity >= "+ 
str(lwr) +" and signalrawintensity <= "+ str(uppr) +" and pm_mm_other 
>=0)" 
  print trl 
  cur.execute(trl) 
  conn.commit() 
  #print trl, '\n\n' 
  fp.write('\tTable '), fp.write(tmp), fp.write(' 
created.\n') 
  pid_tbles.append(tmp)  
  cur, conn=UpdateWorkReg(cur, conn, tmp, exp, 
'linear_range', usr, i, 'known_seq_biophysical', notes) 
  k+=1 
 onto='select * from '+tmp 
 cur.execute(onto) 
 desc=cur.description 
 conn.close() 
 fp=UpdateOntology2(usr, pswd, db, desc, exp, 'linear_range', 
'_pid', notes, str(lwr)+', '+str(uppr), fp) 
 fp.close() 
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def Driver(usr, pswd, db, logfile, lwr=200, uppr=20000): 
 # first step when combines chip and cel info 
 cur, conn= make_connect(usr, pswd, db) 
 tables=get_tables(cur) 
 msk, msk_tab, Lmsk, state=get_mask2(cur) 
 #print len(msk), len(tables), len(msk_tab) 
 t = datetime.datetime.now() 
 EpochSeconds=time.mktime(t.timetuple()) 
 now = datetime.datetime.fromtimestamp(EpochSeconds) 
 fp=open(logfile, 'a') 
 fp.write('\tTABLE CREATIONS LOGFILE\n\n') 
 fp.write(now.ctime()) 
 fp.write('\nChip to .cel file mappings, -Missing Seq, +Linear 
Range:\n') 
 conn.close() 
 exec_mapping(usr, pswd, db, tables, msk, msk_tab, fp, lwr, uppr) 
     
def snp_filter(usr, pswd, db, msk, msk_tab, fp): 
 cur, conn= make_connect(usr, pswd, db) 
 exp=get_exp(usr, pswd, db) 
 notes='linear range samples w/o SNPs' 
 k=0 
 #print 'Map length ', len(map), map[k] 
 pid_tbles=[] 
 #fp=open(logfile,'a') 
 for i in msk: 
  trl= 'CREATE table ' +msk[k]+ '_snp as select ' 
  trl=trl+ msk[k] +'_pid.x, '+ msk[k] +'_pid.y from '+ 
msk[k]+ '_pid except select snp_list.x, snp_list.y from snp_list' 
  cur.execute(trl) 
  conn.commit() 
  #print trl, '\n\n' 
  fp.write('\tTable '), fp.write(msk[k]+ '_snp '), fp.write(' 
created.\n') 
  pid_tbles.append(msk[k]+ '_snp') 
  cur, conn=UpdateWorkReg(cur, conn, msk[k]+'_snp', exp, 
'snp_filter', usr, msk[k]+'_pid', 'snp_list', notes) 
  k+=1 
 onto='select * from '+msk[k-1]+'_snp' 
 cur.execute(onto) 
 desc=cur.description 
 conn.close() 
 fp=UpdateOntology2(usr, pswd, db, desc, exp, 'snp_filter', 
'_snp', notes, '', fp) 
 fp.close() 
  
def DriverSNP(usr, pswd, db, logfile): 
 # first step when combines chip and cel info 
 cur, conn= make_connect(usr, pswd, db) 
 msk, msk_tab, Lmsk, state=get_mask2(cur) 
 #print len(msk), len(tables), len(msk_tab) 
 t = datetime.datetime.now() 
 EpochSeconds=time.mktime(t.timetuple()) 
 now = datetime.datetime.fromtimestamp(EpochSeconds) 
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 fp=open(logfile, 'a') 
 fp.write('\n') 
 fp.write('SNP filter:\n') 
 conn.close() 
 snp_filter(usr, pswd, db, msk, msk_tab, fp)  
  
def XH_filter(usr, pswd, db, msk, msk_tab, fp): 
 cur, conn= make_connect(usr, pswd, db) 
 exp=get_exp(usr, pswd, db) 
 notes='probes w/o xhybrid' 
 k=0 
 #print 'Map length ', len(map), map[k] 
 pid_tbles=[] 
 #fp=open(logfile,'a') 
 for i in msk: 
  trl= 'CREATE table tmp as select count(*), probeset_id,  
xhybrid_list.x, xhybrid_list.y from xhybrid_list inner join ' 
  trl=trl+ msk[k] +'_snp on ( '+ msk[k] +'_snp.x = 
xhybrid_list.x and ' +msk[k]+ '_snp.y = xhybrid_list.y) ' 
  trl=trl+ 'group by probeset_id, xhybrid_list.x, 
xhybrid_list.y having count(*) = 1 order by probeset_id,  
xhybrid_list.x, xhybrid_list.y' 
  cur.execute(trl) 
  conn.commit() 
  trl= 'create table ' +msk[k]+'_XH as select xhybrid_list.* 
from xhybrid_list inner join tmp on (tmp.x = xhybrid_list.x and tmp.y = 
xhybrid_list.y) order by probeset_id,  xhybrid_list.x, xhybrid_list.y' 
  cur.execute(trl) 
  conn.commit() 
  fp.write('\tTable '), fp.write(msk[k]+ '_XH '), fp.write(' 
created.\n') 
  pid_tbles.append(msk[k]+ '_XH') 
  trl='drop table tmp' 
  cur.execute(trl) 
  conn.commit() 
  cur, conn=UpdateWorkReg(cur, conn, msk[k]+'_XH', exp, 
'xhybrid_filter', usr, msk[k]+'_snp', 'xhybrid_list', notes) 
  k+=1 
 onto='select * from '+msk[k-1]+'_XH' 
 cur.execute(onto) 
 desc=cur.description 
 conn.close() 
 fp=UpdateOntology2(usr, pswd, db, desc, exp, 'xhybrid_filter', 
'_XH', notes, '', fp) 
 fp.close() 
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def DriverXH(usr, pswd, db, logfile): 
 # first step when combines chip and cel info 
 cur, conn= make_connect(usr, pswd, db) 
 msk, msk_tab, Lmsk, state=get_mask2(cur) 
 #print len(msk), len(tables), len(msk_tab) 
 t = datetime.datetime.now() 
 EpochSeconds=time.mktime(t.timetuple()) 
 now = datetime.datetime.fromtimestamp(EpochSeconds) 
 fp=open(logfile, 'a') 
 fp.write('\n') 
 fp.write('Xhybrid filter:\n') 
 conn.close() 
 XH_filter(usr, pswd, db, msk, msk_tab, fp)  
  
def BioPhy_filter(usr, pswd, db, msk, msk_tab, fp): 
 cur, conn= make_connect(usr, pswd, db) 
 exp=get_exp(usr, pswd, db) 
 notes='probes w/o structural issues' 
 k=0 
 #print 'Map length ', len(map), map[k] 
 pid_tbles=[] 
 #fp=open(logfile,'a') 
 for i in msk: 
  trl= 'create table tmp as select known_seq_biophysical.* 
from known_seq_biophysical inner join '  
  trl=trl+ msk[k]+ '_XH on ( '+msk[k]+'_XH.x =  
known_seq_biophysical.x and '+msk[k]+'_XH.y =  known_seq_biophysical.y) 
where dgss>-3.6 and dgss<10000000000  order by 
known_seq_biophysical.probeset_id,  known_seq_biophysical.probe_index, 
'+msk[k]+'_XH.x, '+msk[k]+'_XH.y'   
  cur.execute(trl) 
  conn.commit() 
  trl= 'create table ' +msk[k]+'_BioP as select 
known_seq_biophysical.probeset_id, known_seq_biophysical.probe_index, 
known_seq_biophysical.x, known_seq_biophysical.y, 
known_seq_biophysical.pm_mm_other, known_seq_biophysical.dgss, 
known_seq_biophysical.probeseq, ' 
  trl=trl+msk[k]+'_XH.chromosome, ' 
  trl=trl+msk[k]+'_XH.commence, ' 
  trl=trl+msk[k]+'_XH.finish, ' 
  trl=trl+msk[k]+'_XH.strand, ' 
  trl=trl+msk[k]+'_pid.signalrawintensity from 
known_seq_biophysical inner join tmp on (tmp.x = 
known_seq_biophysical.x and tmp.y = known_seq_biophysical.y) inner join 
' 
  trl=trl+msk[k]+'_XH on (tmp.x = '+msk[k]+'_XH.x and tmp.y = 
' 
  trl=trl+msk[k]+'_XH.y) inner join '+msk[k]+'_pid on (tmp.x 
= ' 
  trl=trl+msk[k]+'_pid.x and tmp.y = '+msk[k]+'_pid.y) order 
by known_seq_biophysical.probeset_id, 
known_seq_biophysical.probe_index' 
  cur.execute(trl) 
  conn.commit() 
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  fp.write('\tTable '), fp.write(msk[k]+ '_BioP '), 
fp.write(' created.\n') 
  pid_tbles.append(msk[k]+ '_BioP') 
  trl='drop table tmp' 
  cur.execute(trl) 
  conn.commit() 
  cur, conn=UpdateWorkReg(cur, conn, msk[k]+'_BioP', exp, 
'biophysical_filter', usr, msk[k]+'_XH', 'known_seq_biophysical', 
notes) 
  k+=1 
 onto='select * from '+msk[k-1]+'_BioP' 
 cur.execute(onto) 
 desc=cur.description 
 conn.close() 
 fp=UpdateOntology2(usr, pswd, db, desc, exp, 
'biophysical_filter', '_BioP', notes, '', fp) 
 fp.close() 
  
def DriverBioPhy(usr, pswd, db, logfile): 
 # first step when combines chip and cel info 
 cur, conn= make_connect(usr, pswd, db) 
 msk, msk_tab, Lmsk, state=get_mask2(cur) 
 #print len(msk), len(tables), len(msk_tab) 
 t = datetime.datetime.now() 
 EpochSeconds=time.mktime(t.timetuple()) 
 now = datetime.datetime.fromtimestamp(EpochSeconds) 
 fp=open(logfile, 'a') 
 fp.write('\n') 
 fp.write('Biophysical filters:\n') 
 conn.close() 
 BioPhy_filter(usr, pswd, db, msk, msk_tab, fp) 
  
def Fnl_filter(usr, pswd, db, msk, msk_tab, fp, rgr): 
 cur, conn= make_connect(usr, pswd, db) 
 exp=get_exp(usr, pswd, db) 
 notes='probesets w/ statistical rigor' 
 k=0 
 #print 'Map length ', len(map), map[k] 
 pid_tbles=[] 
 #fp=open(logfile,'a') 
 for i in msk: 
  trl= 'create table tmp as select count(*), probeset_id from 
'  
  trl=trl+ msk[k]+ '_BioP group by probeset_id having 
count(*) >='+str(rgr) 
  cur.execute(trl) 
  conn.commit() 
  trl= 'create table ' +msk[k]+'_SR'+str(rgr)+' as select '  
  trl=trl+msk[k]+'_BioP.* from '+msk[k]+'_BioP inner join tmp 
on (tmp.probeset_id = ' +msk[k]+'_BioP.probeset_id) order by '+ 
msk[k]+'_BioP.probeset_id, '+msk[k]+'_BioP.probe_index' 
  cur.execute(trl) 
  conn.commit() 
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  fp.write('\tTable '), fp.write(msk[k]+'_SR'+str(rgr)), 
fp.write(' created.\n') 
  pid_tbles.append(msk[k]+'_SR'+str(rgr)) 
  trl='drop table tmp' 
  cur.execute(trl) 
  conn.commit() 
  cur, conn=UpdateWorkReg(cur, conn, msk[k]+'_SR'+str(rgr), 
exp, 'statistical_filter', usr, msk[k]+'_BioP', 'biophysical_filter', 
notes) 
  k+=1 
 onto='select * from '+msk[k-1]+'_SR'+str(rgr) 
 cur.execute(onto) 
 desc=cur.description 
 conn.close() 
 fp=UpdateOntology2(usr, pswd, db, desc, exp, 
'statistical_filter', '_SR'+str(rgr), notes, str(rgr), fp) 
 fp.close() 
  
def DriverFNL(usr, pswd, db, logfile, rgr): 
 # first step when combines chip and cel info 
 cur, conn= make_connect(usr, pswd, db) 
 msk, msk_tab, Lmsk, state=get_mask2(cur) 
 #print len(msk), len(tables), len(msk_tab) 
 t = datetime.datetime.now() 
 EpochSeconds=time.mktime(t.timetuple()) 
 now = datetime.datetime.fromtimestamp(EpochSeconds) 
 fp=open(logfile, 'a') 
 fp.write('\n') 
 fp.write('Statistical Rigor filters:\n') 
 conn.close() 
 Fnl_filter(usr, pswd, db, msk, msk_tab, fp, rgr) 
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Appendix C 

 

#  Sample analysis from Cleansin_Graphics_7_23.py after visual batch inspection (Graphic, 
Graphic_nobatch, or Graphic_MSR (raw data) functions in same file) 
 
def Driver(usr, pswd, db, gfiles, logfile):    
 Cel_Probe_Filter(usr, pswd, db, gfiles[0], logfile) 
 Cel_Probeset_Filter(usr, pswd, db, gfiles[1], logfile) 
 
def Cel_Probe_Filter(usr, pswd, db, gfile, logfile): 
 cur, conn= make_connect(usr, pswd, db) 
 msk, Lmsk, state=get_inc_mask(cur) 
 cc=zeros(len(Lmsk)) 
 states=get_unique_states(cur) 
 for i in range(len(state)): 
  cc[i]=states.index(state[i]) 
 r.pdf(gfile, height=11, width=8) 
 r.par(mfrow=r.c(2,1)) 
 fp=open(logfile,'a') 
 for i in range(len(states)): 
  ptr=nonzero(equal(i,cc)) 
  mu, prbs = zeros(len(ptr), Float), zeros(len(ptr), Float) 
  x=range(len(ptr)) 
  nbr=len(ptr) 
  k=0 
  for j in ptr: 
   tmp='select signalrawintensity from '+ msk[j]+'_sr4' 
   cur.execute(tmp) 
   rows=cur.fetchall() 
   prbs[k]=len(rows) 
   mu[k]=(sum(rows)[0])/prbs[k] 
   k+=1 
  # plot intensities 
  r.plot(x, mu, main='Intensity Filter ('+states[i]+')', 
xlab='Array Number', ylab='Average Cel Intensity',  pch=21, col='blue', 
ylim=r.c(r.mean(mu)-(2.5*r.sd(mu)), r.mean(mu)+(2.5*r.sd(mu)))) 
  # 2 std dev 
  r.lines(x, r.rep(r.mean(mu)-(2*r.sd(mu)), nbr), 
col=r.rgb(227/256.,26/256.,28/256.), lty=3, lwd=1) 
  r.lines(x, r.rep(r.mean(mu)+(2*r.sd(mu)), nbr), 
col=r.rgb(227/256.,26/256.,28/256.), lty=3, lwd=1) 
  # 1 std dev 
  r.lines(x, r.rep(r.mean(mu)-r.sd(mu), nbr), 
col='turquoise', lty=4, lwd=1) 
  r.lines(x, r.rep(r.mean(mu)+r.sd(mu), nbr), 
col='turquoise', lty=4, lwd=1) 
  # mean 
  r.lines(x, r.rep(r.mean(mu), nbr), lty=2, lwd=2) 
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  #determine outliers 
  lowrs1=nonzero(less_equal(mu, ceil(r.mean(mu)-
(2*r.sd(mu))))) 
  upprs1=nonzero(greater_equal(mu, 
floor(r.mean(mu)+(2*r.sd(mu))))) 
  lowrs2=nonzero(less_equal(prbs, ceil(r.mean(prbs)-
(2*r.sd(prbs))))) 
  upprs2=nonzero(greater_equal(prbs, 
floor(r.mean(prbs)+(2*r.sd(prbs))))) 
 
  for j in lowrs1: 
   cmn=nonzero(equal(j,lowrs2)) 
   if len(cmn)==1: 
    r.points(x[j],mu[j], pch='X') 
    tmp="update sample_mask set exclude = true, 
description = 'array probe intensities and numbers below 2 stdevs"+"' 
where mask_id = '"+msk[ptr[j]]+"'" 
    fp.write('\n'+msk[ptr[j]]+' excluded:\tprobe 
intensities and numbers below 2 stdevs') 
   else: 
    cmn=nonzero(equal(j,upprs2)) 
    if len(cmn)==1: 
     r.points(x[j],mu[j], pch='X') 
     tmp="update sample_mask set exclude = 
true, description = 'array probe intensities below 2 stdevs and numbers 
above stdevs"+"' where mask_id = '"+msk[ptr[j]]+"'" 
     fp.write('\n'+msk[ptr[j]]+' 
excluded:\tprobe intensities below 2 stdevs and numbers above 2 
stdevs') 
    else: 
     r.points(x[j],mu[j], pch='X') 
     tmp="update sample_mask set exclude = 
true, description = 'avg array probe intensities below 2 stdevs"+"' 
where mask_id = '"+msk[ptr[j]]+"'" 
     fp.write('\n'+msk[ptr[j]]+' 
excluded:\tprobe intensities below 2 stdevs') 
   cur.execute(tmp) 
   conn.commit() 
   
  for j in upprs1: 
   cmn=nonzero(equal(j,upprs2)) 
   if len(cmn)==1: 
    r.points(x[j],mu[j], pch='X') 
    tmp="update sample_mask set exclude = true, 
description = 'array probe intensities and numbers above 2 stdevs"+"' 
where mask_id = '"+msk[ptr[j]]+"'" 
    fp.write('\n'+msk[ptr[j]]+' excluded:\tprobe 
intensities and numbers above 2 stdevs') 
   else: 
    cmn=nonzero(equal(j,lowrs2)) 
    if len(cmn)==1: 
     r.points(x[j],mu[j], pch='X') 
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     tmp="update sample_mask set exclude = 
true, description = 'array probe intensities above 2 stdevs and numbers 
below stdevs"+"' where mask_id = '"+msk[ptr[j]]+"'" 
     fp.write('\n'+msk[ptr[j]]+' 
excluded:\tprobe intensities above 2 stdevs and numbers below 2 
stdevs') 
    else: 
     r.points(x[j],mu[j], pch='X') 
     tmp="update sample_mask set exclude = 
true, description = 'avg probe numbers below 2 stdevs"+"' where mask_id 
= '"+msk[ptr[j]]+"'" 
     fp.write('\n'+msk[ptr[j]]+' 
excluded:\tprobe numbers below 2 stdevs') 
   cur.execute(tmp) 
   conn.commit() 
 
  # plot contributing probes 
  r.plot(x, prbs, main='Contributing Probe Filter 
('+states[i]+')', xlab='Array Number', ylab='Probe Numbers', 
ylim=r.c(r.mean(prbs)-(2.5*r.sd(prbs)), r.mean(prbs)+(2.5*r.sd(prbs))), 
pch=21, col='blue') 
   
  r.lines(x, r.rep(r.mean(prbs), nbr), lty=2, lwd=2) 
   
  r.lines(x, r.rep(r.mean(prbs)-(2*r.sd(prbs)), nbr), 
col=r.rgb(227/256.,26/256.,28/256.), lty=3, lwd=1) 
  r.lines(x, r.rep(r.mean(prbs)+(2*r.sd(prbs)), nbr), 
col=r.rgb(227/256.,26/256.,28/256.), lty=3, lwd=1) 
   
  r.lines(x, r.rep(r.mean(prbs)-r.sd(prbs), nbr), 
col='turquoise', lty=4, lwd=1)  
  r.lines(x, r.rep(r.mean(prbs)+r.sd(prbs), nbr), 
col='turquoise', lty=4, lwd=1) 
 
  for j in lowrs2: 
   r.points(x[j],prbs[j], pch='X') 
   cmn=nonzero(equal(j,lowrs1)) 
   if len(cmn)<1: 
    cmn=nonzero(equal(j,upprs1)) 
    if len(cmn)<1: 
     tmp="update sample_mask set exclude = 
true, description = 'avg array probe numbers below 2 stdevs"+"' where 
mask_id = '"+msk[ptr[j]]+"'" 
     cur.execute(tmp) 
     conn.commit() 
     fp.write('\n'+msk[ptr[j]]+' 
excluded:\tprobe numbers below 2 stdevs') 
   
  for j in upprs2: 
   r.points(x[j],prbs[j], pch='X') 
   cmn=nonzero(equal(j,lowrs1)) 
   if len(cmn)<1: 
    cmn=nonzero(equal(j,upprs1)) 
    if len(cmn)<1: 
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     tmp="update sample_mask set exclude = 
true, description = 'avg array probe numbers above 2 stdevs"+"' where 
mask_id = '"+msk[ptr[j]]+"'" 
     cur.execute(tmp) 
     conn.commit() 
     fp.write('\n'+msk[ptr[j]]+' 
excluded:\tprobe numbers above 2 stdevs') 
 
 conn.close() 
 r.dev_off() 
 fp.close() 
 
 
 
def Cel_Probeset_Filter(usr, pswd, db, gfile, logfile): 
 cur, conn= make_connect(usr, pswd, db) 
 msk, Lmsk, state=get_inc_mask(cur) 
 cc=zeros(len(Lmsk)) 
 states=get_unique_states(cur) 
 for i in range(len(state)): 
  cc[i]=states.index(state[i]) 
 r.pdf(gfile, height=11, width=8) 
 r.par(mfrow=r.c(2,1)) 
 fp=open(logfile,'a') 
 for i in range(len(states)): 
  ptr=nonzero(equal(i,cc)) 
  mu, prbs = zeros(len(ptr), Float), zeros(len(ptr), Float) 
  x=range(len(ptr)) 
  nbr=len(ptr) 
  k=0 
  for j in ptr: 
   # probesets do have a minumum of 4 probes 
   tmp='select distinct(probeset_id) from '+ 
msk[j]+'_sr4' 
   cur.execute(tmp) 
   rows=cur.fetchall() 
   prbs[k]=len(rows) 
   ps_sgnl=zeros(len(rows), Float) 
   k2=0 
   for l in rows: 
    tmp= 'select signalrawintensity from '+ 
msk[j]+"_sr4 where probeset_id = '" +l[0]+ "'" 
    cur.execute(tmp) 
    sri=cur.fetchall() 
    ps_sgnl[k2]=(sum(sri)[0])/len(sri) 
    k2+=1 
   mu[k]=r.mean(ps_sgnl)   
   k+=1 
   
  r.plot(x, mu, main='Probeset Intensity Filter 
('+states[i]+')', xlab='Array Number', ylab='Average Cel Probeset 
Intensity',  pch=21, col='blue', ylim=r.c(r.mean(mu)-(2.5*r.sd(mu)), 
r.mean(mu)+(2.5*r.sd(mu)))) 
   

 141



  # 2 std dev 
  r.lines(x, r.rep(r.mean(mu)-(2*r.sd(mu)), nbr), 
col=r.rgb(227/256.,26/256.,28/256.), lty=3, lwd=1) 
  r.lines(x, r.rep(r.mean(mu)+(2*r.sd(mu)), nbr), 
col=r.rgb(227/256.,26/256.,28/256.), lty=3, lwd=1) 
  # 1 std dev 
  r.lines(x, r.rep(r.mean(mu)-r.sd(mu), nbr), 
col='turquoise', lty=4, lwd=1) 
  r.lines(x, r.rep(r.mean(mu)+r.sd(mu), nbr), 
col='turquoise', lty=4, lwd=1) 
  # mean 
  r.lines(x, r.rep(r.mean(mu), nbr), lty=2, lwd=2) 
   
  #determine outliers 
  lowrs1=nonzero(less_equal(mu, ceil(r.mean(mu)-
(2*r.sd(mu))))) 
  upprs1=nonzero(greater_equal(mu, 
floor(r.mean(mu)+(2*r.sd(mu))))) 
  lowrs2=nonzero(less_equal(prbs, ceil(r.mean(prbs)-
(1.5*r.sd(prbs))))) 
 
  for j in lowrs1: 
   cmn=nonzero(equal(j,lowrs2)) 
   if len(cmn)==1: 
    r.points(x[j],mu[j], pch='X') 
    tmp="update sample_mask set exclude = true, 
description = 'array probeset intensities and numbers below 2(1.5) 
stdevs"+"' where mask_id = '"+msk[ptr[j]]+"'" 
    fp.write('\n'+msk[ptr[j]]+' excluded:\tprobeset 
intensities and numbers below 2(1.5) stdevs') 
   else: 
    r.points(x[j],mu[j], pch='X') 
    tmp="update sample_mask set exclude = true, 
description = 'avg array probeset intensities below 2 stdevs"+"' where 
mask_id = '"+msk[ptr[j]]+"'" 
    fp.write('\n'+msk[ptr[j]]+' excluded:\tprobeset 
intensities below 2 stdevs') 
   cur.execute(tmp) 
   conn.commit() 
   
  for j in upprs1: 
   cmn=nonzero(equal(j,lowrs2)) 
   if len(cmn)==1: 
    r.points(x[j],mu[j], pch='X') 
    tmp="update sample_mask set exclude = true, 
description = 'array probeset intensities above 2 stdevs and probesets 
below 1.5 stdevs"+"' where mask_id = '"+msk[ptr[j]]+"'" 
    fp.write('\n'+msk[ptr[j]]+' excluded:\tprobeset 
intensities above 2 stdevs and probesets below 1.5 stdevs') 
   else: 
    r.points(x[j],mu[j], pch='X') 
    tmp="update sample_mask set exclude = true, 
description = 'avg probeset intensities above 2 stdevs"+"' where 
mask_id = '"+msk[ptr[j]]+"'" 
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    fp.write('\n'+msk[ptr[j]]+' excluded:\tprobeset 
numbers below 1.5 stdevs') 
   cur.execute(tmp) 
   conn.commit() 
 
  # plot contributing probes 
  r.plot(x, prbs, main='Contributing Probeset Filter 
('+states[i]+')', xlab='Array Number', ylab='Probe Numbers', 
ylim=r.c(r.mean(prbs)-(2.5*r.sd(prbs)), r.mean(prbs)+(2.5*r.sd(prbs))), 
pch=21, col='blue') 
   
  # mean 
  r.lines(x, r.rep(r.mean(prbs), nbr), lty=2, lwd=2) 
   
  #  2 std dev 
  r.lines(x, r.rep(r.mean(prbs)-(2*r.sd(prbs)), nbr), 
col=r.rgb(227/256.,26/256.,28/256.), lty=3, lwd=1) 
  r.lines(x, r.rep(r.mean(prbs)+(2*r.sd(prbs)), nbr), 
col=r.rgb(227/256.,26/256.,28/256.), lty=3, lwd=1) 
   
  # 1 std dev 
  r.lines(x, r.rep(r.mean(prbs)-r.sd(prbs), nbr), 
col='turquoise', lty=4, lwd=1)  
  r.lines(x, r.rep(r.mean(prbs)+r.sd(prbs), nbr), 
col='turquoise', lty=4, lwd=1) 
 
  for j in lowrs2: 
   r.points(x[j],prbs[j], pch='X') 
   cmn=nonzero(equal(j,lowrs1)) 
   if len(cmn)<1: 
    tmp="update sample_mask set exclude = true, 
description = 'array probeset numbers below 1.5 stdevs"+"' where 
mask_id = '"+msk[ptr[j]]+"'" 
    cur.execute(tmp) 
    conn.commit() 
    fp.write('\n'+msk[ptr[j]]+' excluded:\tprobeset 
numbers below 1.5 stdevs') 
 
 conn.close() 
 r.dev_off() 
 fp.close() 
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Appendix D 

 

# Aggregate BaFL cleansed samples from the Aggregation.py file 
 
# Individuals within the same disease class, if the sample size is large the population is 
randomized and divided into sub-populations before intersecting the entire population, for 
computational efficiency. 
  
def StateIntersect(usr, pswd, db, logfile, rgr=4): 
 cur, conn= make_connect(usr, pswd, db) 
 states=get_unique_states(cur) 
 exp=get_exp(usr, pswd, db) 
 notes='intersection of ' 
 fp=open(logfile, 'a') 
 for i in states: 
  k=i 
  pt=find(i,' ') 
  if pt>0: 
   k=i[:pt]+i[pt+1:]   
  msk, Lmsk, state, cel=get_inc_state(cur, i) 
  if len(msk)>50: 
   div=2 
   while len(msk)/div>30: 
    div+=1 
   cur, conn =splitIntersect(cur, conn, k, msk, div) 
  else: 
   tmp= 'create table Intersect_'+k+' as select ' 
+msk[0]+'_sr'+str(rgr)+'.probeset_id, ' 
+msk[0]+'_sr'+str(rgr)+'.pm_mm_other, '+msk[0]+'_sr'+str(rgr)+'.x, 
'+msk[0]+'_sr'+str(rgr)+'.y, '+msk[0]+'_sr'+str(rgr)+'.probe_index, ' 
   tmp= tmp+ msk[0]+'_sr'+str(rgr)+'.signalrawintensity 
as '+msk[0] 
   for j in range(1, len(msk)): 
    tmp= tmp+ ', 
'+msk[j]+'_sr'+str(rgr)+'.signalrawintensity as '+msk[j] 
   tmp= tmp +' from ' +msk[0]+'_sr'+str(rgr)+' inner 
join '+msk[1]+'_sr'+str(rgr)+' on ('+msk[0]+'_sr'+str(rgr)+'.x = 
'+msk[1]+'_sr'+str(rgr)+'.x and '+msk[0]+'_sr'+str(rgr)+'.y = 
'+msk[1]+'_sr'+str(rgr)+'.y ) ' 
   for j in range(2, len(msk)): 
    tmp=tmp+ 'inner join '+msk[j]+'_sr'+str(rgr)+' 
on (' +msk[j]+'_sr'+str(rgr)+'.x = '+msk[j-1]+'_sr'+str(rgr)+'.x and 
'+msk[j]+'_sr'+str(rgr)+'.y = '+msk[j-1]+'_sr'+str(rgr)+'.y ) ' 
   tmp=tmp +' order by 
'+msk[0]+'_sr'+str(rgr)+'.probeset_id, 
'+msk[0]+'_sr'+str(rgr)+'.probe_index' 
   cur.execute(tmp) 
   conn.commit() 
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  cur, conn=UpdateWorkReg(cur, conn, 'Intersect_'+k, exp, 
'Intersect_'+k, usr, k+'_sr'+str(rgr), 'statistical_filter', notes+i) 
 
 desc=['probeset_id','pm_mm_other','x','y','probe_index','SRIs'] 
  fp.write('\nCreated Table:\tIntersect_'+k+'\n') 
  fp=UpdateOntology3(usr, pswd, db, desc, exp, 
'Intersect_'+k, 'Intersect_'+k, notes+i, 'statistical rigor not 
enforced', fp) 
 conn.close() 
 fp.close() 
 
 
 
# Intersect all two class datasets 
   
def ModelIntersect(usr, pswd, db, logfile, gt=4): 
 cur, conn= make_connect(usr, pswd, db) 
 states=get_unique_states(cur) 
 vals=['probe_index', 'x', 'y', 'pm_mm_other']  
 exp=get_exp(usr, pswd, db) 
 notes='intersection of ' 
 fp=open(logfile, 'a') 
 for i in range(len(states)-1): 
  class1=states[i] 
  pt=find(class1,' ') 
  if pt>0: 
   class1=states[i][:pt]+states[i][pt+1:] 
  msk1, Lmsk1, state1, cel1=get_inc_state(cur, states[i]) 
  tmp1='create table temp1 as select 
intersect_'+class1+'.probeset_id' 
  for k in vals: 
   tmp1=tmp1+ ', intersect_'+class1+'.'+k 
  for k in msk1: 
   tmp1=tmp1+ ', intersect_'+class1+'.'+k+' as '+k 
  for j in range(i+1, len(states)): 
   tmp=tmp1 
   class2=states[j] 
   pt=find(class2,' ') 
   if pt>0: 
    class2=states[j][:pt]+states[j][pt+1:]   
   msk2, Lmsk2, state2, cel2=get_inc_state(cur, 
states[j]) 
   for k in msk2: 
    tmp=tmp+ ', intersect_'+class2+'.'+k+' as '+k 
   tmp=tmp+' where intersect_'+class1+'.x = 
intersect_'+class2+'.x and intersect_'+class1+'.y = 
intersect_'+class2+'.y ' 
   tmp=tmp+ 'order by intersect_'+class1+'.probeset_id, 
intersect_'+class1+'.probe_index' 
   cur.execute(tmp) 
   conn.commit() 
   #print '\n\n', tmp, '\n\n' 
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   tmp= 'create table temp2 as select count(*), 
probeset_id from temp1 group by probeset_id having count(*) >= 
'+str(gt) 
   cur.execute(tmp) 
   conn.commit() 
   tmp='create table '+class1+'_'+class2+'_'+str(gt)+' 
as select temp1.* from temp1, temp2 where 
temp1.probeset_id=temp2.probeset_id order by temp1.probeset_id, 
temp1.probe_index' 
   cur.execute(tmp) 
   conn.commit() 
   tmp='drop table temp1' 
   cur.execute(tmp) 
   conn.commit() 
   tmp='drop table temp2' 
   cur.execute(tmp) 
   conn.commit() 
   cur, conn=UpdateWorkReg(cur, conn, 
class1+'_'+class2+'_'+str(gt), exp, class1+'_'+class2+'_'+str(gt), usr, 
'Intersect_'+class1+', Intersect_'+class2, 'Intersect_'+class1+', 
Intersect_'+class2, notes+class1+' and '+class2) 
   desc=vals[:] 
   desc.append('SRIs') 
   fp.write('\nCreated 
Table:\t'+class1+'_'+class2+'_'+str(gt)+'\n') 
   fp=UpdateOntology3(usr, pswd, db, desc, exp, 
class1+'_'+class2+'_'+str(gt), class1+'_'+class2+'_'+str(gt), 
notes+class1+' and '+class2, 'statistical rigor of '+str(gt)+' 
enforced', fp)  
 conn.close() 
 fp.close() 
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Appendix E 

 

# The result of permuting the gene order does not disrupt the latent structure observed across the 

Bhaattacharjee BaFL dataset and the Stearman BaFL dataset, for the intersecting 325 ProbeSets 

assessed to be differentially expressed (" = 0.05). 
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Appendix F 

 

#  The 940 ProbeSets which were retained through the BaFL pipeline and an agreement by RMA 

and dCHIP to be differentially expressed (" = 0.05).  The latent structure is still observed with the 

BaFL interpretation of the ProbeSets. 
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