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ABSTRACT 

ESSAYS ON STRATEGIC BEHAVIOR AND EQUILIBRIUM SELECTION IN TWO-

SIDED MATCHING MARKETS 

Ahrash Dianat, Ph.D. 

George Mason University, 2015 

Dissertation Director: Dr. Marco Castillo 

 

This dissertation combines game theory with controlled laboratory experimentation to 

better understand the performance of two-sided matching markets.  These markets are 

often organized as centralized clearinghouses, in which participants submit rank-order 

lists of their preferences to a central authority and then a particular algorithm determines 

the final outcome (i.e., who is paired with whom).  We address two main questions.  

First, do market participants strategically misrepresent their preferences in these 

environments?  Second, in markets with multiple equilibria, which equilibrium is more 

likely to be implemented? 

 



CHAPTER 1

1 Introduction

We investigate how information about other agents’ preferences affects strategic be-

havior in a dynamic version of the Gale-Shapley deferred acceptance algorithm.1 The

DA algorithm not only has important empirical applications, but it also offers an

ideal environment to test how information affects behavior in markets.2 Indeed, the

incentives in the mechanism are such that one side of the market should ignore infor-

mation about other agents’ preferences while the other side of the market should use

this information to their advantage.

In the algorithm, “proposers” have a dominant strategy of truth-telling and there-

fore this information is of no value. “Responders”, on the other hand, often have room

for strategic preference misrepresentation. In fact, information about other agents’

preferences is a necessary condition for responders to calculate and coordinate on

their optimal strategies. There is also an inherent tension between the interests of

the two sides of the market: the best stable matching for the proposers is the worst

stable matching for the responders, and vice versa.3 The ability of responders to

behave strategically by making use of the information available to them determines

which particular stable matching arises. One should then predict that final outcomes

will be more favorable to responders in the complete information environment.

1Henceforth, DA algorithm.
2For a seminal paper relating to school choice, see Abdulkadiroğlu and Sönmez (2003). For an

application to entry-level labor markets, see Roth and Peranson (1999).
3A matching is said to be stable if no agent prefers remaining unmatched to her current allocation

and no pair of agents mutually prefer each other to their current allocations.
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To that end, we test how information affects the behavior of each side of the market

and whether this is congruent with theoretical predictions. To do this, we implement a

laboratory experiment in which information about other subjects’ preferences is either

fully available, partially available, or not available at all. In our baseline, subjects take

part in an extensive form version of the DA mechanism under a variety of preference

profiles and with complete information about others’ preferences. Our treatments

manipulate the information available to agents. In the extreme case, each subject

only observes their own preference list; they are unaware of both the preferences of

others as well as the underlying distribution from which those preferences are drawn.

In the intermediate cases, in addition to their own preferences, subjects are either able

to observe the preferences of all agents on their side of the market or of all agents on

the opposing side of the market.

We find that the information structure has implications for the selection of fi-

nal outcomes, but does not affect their stability. In particular, the average distance

to the responders’ preferred stable outcome is smallest in the complete information

treatment. However, this result cannot be attributed to responders taking advan-

tange of their profitable strategic opportunities. In fact, responders generally behave

straightforwardly in all information treatments and accept the best offer that is avail-

able to them at any given time. The strategic preference misrepresentation that does

occur involves subjects “truncating” their preferences and rejecting offers from very

low-ranked match partners. Proposers, on the other hand, generally fail to play their

dominant strategy in the complete information treatment and instead skip down their

preference lists when making offers. This “skipping” behavior is sophisticated in the

sense that proposers take into account how they are ranked by the other side of the

market, forgoing offers to preferred match partners who are unlikely to accept. In

line with this theory, the welfare loss from proposers’ skipping behavior is modest.
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Our results highlight the important role that behavioral biases can play in these

environments. Understanding empirical regularities in participants’ behavior is par-

ticularly crucial given that the interests of the two sides of the market are opposed

on the question of equilibrium selection. Consider the National Resident Matching

Program (NRMP), the entry-level job market for American physicians. The NRMP

is organized as a centralized clearinghouse based on an algorithm that is very simi-

lar to the student-proposing DA algorithm. If medical students regularly engage in

“skipping” behavior (e.g., by applying only to mid-ranked and low-ranked residency

programs), then the aggregate effect is to push the final outcome further away from

the student-optimal stable matching. This is an important consideration for policy-

makers, who may have reasons to favor the welfare of one side of the market over

another when designing matching mechanisms.

There is a large body of experimental work on two-sided matching (e.g. Chen and

Sönmez, 2006; Ding and Schotter; Featherstone and Mayefsky, 2014; Featherstone and

Niederle, 2014; Harrison and McCabe, 1989; Haruvy and Ünver, 2007; Pais and Pintér,

2008). However, this literature has almost exclusively studied the properties of static

matching mechanisms, in which the strategy choice faced by laboratory subjects is

which preference ordering to submit to the mechanism. We break from that tradition

and employ a dynamic design where subjects are instead required to walk through the

steps of the DA algorithm. Our work is inspired by and can be viewed as a natural

extension of Echenique, Wilson, and Yariv (2014), who also study the performance of

the DA mechanism using a dynamic implementation. In their experiment, they also

report “skipping” behavior by proposers and straightforward play by responders.

However, our main contribution stems from our novel experimental design. By

introducing treatments that alter the information available to subjects in a system-

atic way, our experimental design allows us to more carefully tease apart the driving
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forces behind subjects’ behavior. In particular, we can analyze the merits of com-

peting behavioral theories by observing their predictive power in environments where

they should apply (i.e., when the relevant information is provided to subjects) and

observing their lack of predictive power in environments where they should not apply

(i.e., when the relevant information is not provided to subjects).

For motivation, consider the following hypothetical game discussed by Roth and

Sotomayor (1992):

1. Actions in the market are organized in stages. Each stage is divided into two

periods. Within each period, each man and woman must make decisions without

knowing the decisions of other men and women in that period.

2. At the first period of the first stage, each man may make at most one proposal

to any woman he chooses. (He is also free to make no proposals.) Proposals

can only be made by men.

3. In the second period of the first stage, each woman who has received any pro-

posals is free to reject any or all of them immediately. A woman may also keep

at most one man “engaged” by not rejecting his proposal.

4. In the first period of any stage, any man who was rejected in the preceding stage

may make at most one proposal to any woman he has not previously proposed

to (and been rejected by). In the second period, each woman may reject any or

all of these proposals, including that of any man who has proposed in an earlier

stage and been kept engaged. A woman may keep at most one man engaged by

not rejecting his proposal.

5. If, at the beginning of any stage, no man makes a proposal, then the market

ends, and each man is matched to the woman he is engaged to. Men who are not
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engaged to any woman, and women who are not engaged to any man, remain

single.

Running the algorithm in real time (as described) has drawbacks but also confers

several important advantages. Echenique et al. (2014) highlight many of these points

but we also include them here for the sake of completeness.

The main drawback of our design is the lack of ecological validity.4 In field settings

such as school choice and the National Resident Matching Program (NRMP), the

DA algorithm is implemented as a static mechanism. Requiring subjects to play

the preference revelation game in the lab thus allows researchers to more credibly

use experimental results to inform policy-making and institutional design in the real

world. Another drawback concerns not having access to subjects’ strategy choices.

Modeling the DA mechanism as an extensive form game necessarily obscures our

understanding of the subjects’ strategies since behavior off the path of play is never

observed.

However, our methodological choice also comes with several important advantages.

First, in a static mechanism, it is unlikely that laboratory subjects can fully under-

stand how the profile of stated preferences maps to the final matching computed by

the algorithm. One of the advantages of our design involves transparency. Requiring

that subjects walk through the steps of the procedure for themselves and make deci-

sions along the way allows for a more concrete understanding of the strategic aspects

of the game and the trade-offs associated with different strategy choices.5 Another

4However, a dynamic version of the deferred acceptance procedure was used for some time in the
entry-level job market for clinical psychologists. For details on the operation and evolution of that
market, see Roth and Xing (1997).

5The ability of subjects to understand the connection between their actions and their payoffs
can have profound implications for strategic behavior in the lab. The experimental literature on
auctions confirms the importance of transparency in mechanism design settings by showing how
subject behavior can systematically vary in theoretically equivalent institutions (Kagel, Harstad,
and Levin, 1987).
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argument for our design is based on the desire to reduce experimenter demand effects.

Since the subjects’ preferences are induced and they are literally handed preference

lists by the experimenter before each round, merely asking the subjects to then pro-

vide preference lists as an input to a mechanism runs the risk of “giving the game

away” or nudging them toward a certain behavior. In particular, subjects might in-

fer that the experiment is testing whether or not they will report their preferences

truthfully.

The argument for using laboratory experiments to test the performance of match-

ing markets is compelling. In the field, individuals’ true preferences are not observable

and thus it is unclear to what extent agents are behaving strategically. As a conse-

quence, while we can conjecture that the observed final outcomes are stable, it is

unclear which particular stable matching is being implemented in markets with a

multiplicity of stable outcomes. In addition, it is difficult in field settings to know

precisely what information is common knowledge among market participants. The

laboratory setting allows us to control for these features and to arrive at more robust

conclusions.

2 Theoretical Background

Apart from being widely used in real-life allocation problems, the DA algorithm has

many appealing theoretical properties. It was originally conceived as a constructive

proof of the existence of a stable matching for any one-to-one matching market (Gale

and Shapley, 1962). However, since then the non-cooperative game induced by the

rules of the DA algorithm has received independent interest. The background pro-

vided here relates to the static implementation of the DA algorithm.6 Throughout

6Echenique et al. (2014) show that the inclusion of two simple restrictions on strategies (sta-
tionarity and the congruence axiom) is sufficient to make the static and dynamic DA mechanisms
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this analysis, we use the original convention from the classic “marriage” market of

Gale and Shapley (1962).

We divide the market into two finite, disjoint setsM andW : M = {m1,m2, ...,mn}

is the set of men and W = {w1, w2, ..., wr} is the set of women. Each agent has pref-

erences over the agents on the other side of the market (as well as remaining single.

The preferences of man m will be represented by an ordered list of preferences P (m)

on the set W ∪{m}. Similarly, the preferences of woman w will be represented by an

ordered list of preferences P (w) on the set M ∪ {w}. For instance, the preferences of

man m might be

P (m) = w2, w1,m,w3, ..., wr,

indicating that his first choice is to be matched with w2, his second choice is to be

matched with w1, and his third choice is to remain single. This preference list can

also be expressed more concisely as follows:

P (m) = w2, w1

where only the “acceptable” matches are listed (those individuals who are above the

reservation option of remaining unmatched). Let P denote the set of all preferences,

one for each man and one for each woman. A matching µ is a one-to-one correspon-

dence from the set M ∪W onto itself of order two (that is, µ2(x) = x) such that if

µ(m) 6= m then µ(m) ∈ W and if µ(w) 6= w then µ(w) ∈ M . The intuition behind

the order two requirement (µ2(x) = x) is that if man m is matched to woman w, then

woman w is also matched to man m. Note that the definition also forces agents who

strategically equivalent.
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are not single (matched to themselves) to be matched with a member of the opposite

set.

An individual m is said to block a matching µ if he prefers remaining single rather

than being matched to µ(m). A pair of agents (m,w) is said to block a matching

µ if they are not matched to one another at µ but they prefer each other to their

assignments at µ. A matching µ is said to be stable if it is not blocked by any

individual or any pair of agents. A stable matching µ is called an M-optimal stable

matching (denoted µM) if every man likes it at least as well as any other stable

matching. A W-optimal stable matching can be defined analogously (denoted µW ).

In the lattice of stable matchings, the M-optimal stable matching is thus the “best”

stable matching for the men and the W-optimal stable matching is the “best” stable

matching for the women. Gale and Shapley (1962) proved the following result:

• Theorem 1: A stable matching exists for every marriage market. Furthermore,

when all men and women have strict preferences, there always exist an M-

optimal stable matching and a W-optimal stable matching.

To examine the strategic issues involved, we analyze the revelation game in which

each man m with preferences P (m) is faced with the strategy choice of what prefer-

ence ordering Q(m) to state, and likewise for the women. Denote the set of stated

preference lists, one for each man and one for each woman, by Q. The mechanism

then computes a matching µ = h(Q), where h is the function that maps any set Q of

stated preferences into a matching. A mechanism h that for any stated preferences

Q produces a matching h(Q) that is stable with respect to the submitted preferences

is called a stable mechanism. If h(Q) produces the M-optimal stable matching with

respect to Q, then h is called the M-optimal stable mechanism. Roth (1982) proved

an important negative result:
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• Theorem 2: When there are at least two agents on each side of the mar-

ket, no stable matching mechanism exists which always makes stating the true

preferences a dominant strategy for every agent.

However, Roth (1982) also showed that it is often possible to arrange the market such

that only one side faces difficult strategic questions.

• Theorem 3: The M-optimal stable mechanism makes it a dominant strategy

for each man to state his true preferences.

Combining these results suggests that, under the M-optimal stable mechanism, it is

the women who will sometimes have a profitable deviation by misrepresenting their

true preferences. In particular, the women will generally have an incentive to follow

a “truncation” strategy in which they submit a preference list that ranks the men

in the same order as their true preference list but that leaves off all individuals be-

low a certain threshold (even though being matched to those individuals would still

be preferable to remaining unmatched). One focal Nash equilibrium of this match-

ing game involves the men truthfully reporting their preferences and each woman w

truncating her true preference list by leaving off all individuals below µW (w), her

W-optimal stable match partner. In this way, the final outcome of the mechanism

will actually be the W-optimal stable matching. More generally, Roth (1984) proved

that any stable matching with respect to agents’ true preferences can be achieved by

a set of strategies that forms a Nash equilibrium in the revelation game induced by

the M-optimal stable mechanism.

The behaviors discussed above have natural analogues in our dynamic design. In

the static DA algorithm, both proposers and responders are regarded as “truthful”

if they submit their actual preference lists to the centralized mechanism. In the dy-

namic implementation, the equivalent of this truth-telling strategy involves different
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heuristics for the two sides of the market.7 A truthful proposer would make offers by

straightforwardly moving down his preference list (from his first choice, to his second

choice, to his third choice, and so on). Alternatively, since any potential match part-

ner is above the reservation value of remaining unmatched in our experiment ($0), a

truthful responder would simply accept the best offer among all the available offers at

any given point in time. Truncation would then be observed whenever an unmatched

responder rejects an offer (thereby pretending that the offer is below their reservation

value).

Our formulation is, of course, merely one approach among the full spectrum of

incomplete information models that could be considered. You could imagine a match-

ing environment where one side of the market is not even fully aware of their own

preferences. For instance, a firm interviewing a potential employee may only have a

signal of the applicant’s quality based on the interview. The true quality would only

be revealed ex-post once the employee begins work. This situation is analogous to the

decision problem a bidder faces in a common value auction. Incomplete information

about others’ preferences could also be modeled more explicitly by allowing the dis-

tribution of preferences to be common knowledge and solving for the Bayesian-Nash

equilibrium of the resulting non-cooperative matching game. This approach has been

analyzed by Roth (1989). He shows that, although results concerning dominant and

dominated strategies do generalize to the incomplete information model, the results

concerning Nash equilibria do not. In a seminal paper, Roth and Rothblum (1999)

discuss the issue of what practical advice can be given to market participants in a DA

setting in the field. They show that the scope of profitable preference misrepresen-

tation is greatly reduced in situations involving strategic uncertainty or incomplete

7Echenique et al. (2014) refer to truthful behavior in the dynamic DA mechanism as
“straightforward” behavior.
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information. In particular, any non-truncation strategy is stochastically dominated

by a truncation strategy under quite general conditions on responders’ beliefs. This

insight has obvious consequences for predicting the behavior of responders in our

experimental design.

A final point needs to be addressed: namely, what precisely constitutes stability

in incomplete information matching environments?8 The convention to be used in

this paper is that of ex-post stability. After the dynamics of the process have played

out, a final matching arises. This matching will be considered stable if, conditional on

revealing all information about others’ preferences, the matching meets the definition

of complete information stability. That is, having preferences become common knowl-

edge should not allow for the formation of a blocking pair. Given the information

needed for subjects to compute Nash equilibrium behavior, the choice of modeling

technique for incomplete information has substantive behavioral implications.

3 Experimental Design

Experimental subjects were drawn from the population of undergraduate students at

George Mason University. A total of 176 students participated in the experiment.

There were 16 subjects in each experimental session. Upon arriving at the lab, the

subjects were randomly and equally divided into two disjoint groups: foods and

colors.9 There were thus 8 foods and 8 colors in each session. After the subjects

signed the consent form, experimental instructions were handed out and subjects

were given 10-15 minutes to privately read the instructions.10 Once that time had

8For instance, Liu, Mailath, Postlewaite, and Samuelson (2014) have recently introduced a char-
acterization of stability for incomplete information matching markets that is similar in spirit to the
game-theoretic notion of rationalizability.

9These neutral labels were borrowed from the methodologically similar work of Echenique et al.
(2014).

10The experimental instructions for all four treatments are included at the end of the paper.
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elapsed, the experimenter re-entered the room to highlight the key elements of the

instructions and answer any questions.

The subjects were then given a short quiz to test their understanding of the ex-

periment. The quiz was incentivized: if a subject answered all questions correctly,

$3 was added to their final payment.11 The experimenter and a lab assistant then

went around the room and graded each subject’s quiz in private. The subjects were

informed of whether they received the $3 bonus (by answering all the questions cor-

rectly) or not. The experimenter then publicly went over the solutions to the quiz

questions in order to guarantee that everyone knew the correct answers prior to the

start of the experiment. A short post-experiment survey was administered at the

end of the session, with a $2 bonus if subjects took the time to fill it out. All sub-

jects completed the survey. The survey included basic demographic and educational

questions in addition to questions intended to elicit feedback about the experiment

itself.

Before the start of each round, the subjects were given a sheet of paper with the

relevant payoff information. Appendix A contains an example of the payoff informa-

tion that food APPLE would observe in all of the different treatments for the same

market. When the payoffs are presented in a matrix, the first number in each cell

corresponds to the monetary payoff of the “row” player (the food) and the second

number in each cell corresponds to the monetary payoff of the “column” player (the

color). In the incomplete information and incomplete-proposer treatments, subjects

were told that just because they would earn $x from a particular match does not

imply that their match partner would earn the same amount: in fact, the partner

could earn either less than $x, exactly $x, or more than $x.

11Prior to handing out the instructions, subjects were informed of both the quiz as well as the
incentive to answer questions correctly.
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At the end of the experiment, one of the rounds was randomly chosen and subjects

were paid according to their final match partners in that round. Each session lasted

approximately two and one half hours and each subject automatically received $7

as a show-up payment. Including the show-up payment, subject earnings ranged

from between $15 to $36. The experiment was programmed and conducted with the

software z-Tree (Fischbacher, 2007).

In the actual experiment, subjects went through the steps of the hypothetical game

discussed earlier (Roth and Sotomayor, 1992). The foods were the “proposers” and

the colors were the “responders” in the matching game. At the start of each market,

all the foods and colors were unmatched. The market was organized in stages where

foods and colors took turns in making decisions. In each stage, unmatched foods

were required to make one offer to a color they had not previously made an offer

to. Colors then viewed all the offers they had received in that stage and they were

allowed to tenatively accept at most one of those offers (including any tentatively

accepted offer they were still holding). The game ends when there are no foods left

to make offers. This can happen because (1) all foods are matched or because (2) the

only unmatched foods have already been rejected by all of the colors. The tentative

matches that are in place when the game ends become the final matches for that

market. Sample screens from the experimental interface are shown in Appendix B.

Each experimental session consisted of between 5-9 markets.12 Each round was a

separate matching market in which subjects played the extensive form version of the

DA mechanism outlined earlier. Both the roles of the subjects (food vs. color) and

their particular identities (say, food APPLE or color BLACK) were fixed through-

out the experiment. However, subjects did not play the same matching market more

12Since the DA mechanism is implemented synchronously, there is substantial variation in the
amount of time it takes for an experimental market to converge to a final outcome.
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than once. Nine different preference profiles were used throughout the experiment.

Two of these correspond to markets with a unique stable outcome characterized by

positive assortative matching. In the seven other markets, there are either two or five

economy-wide stable matchings. The economy-wide stable matchings are not disjoint:

in all markets, each individual has either one, two, or three stable match partners.

Appendix C provides more details about the characteristics of the markets that

were tested. Many of the markets obtain a multiplicity of stable outcomes through

minor variations. In addition, proposers’ stable match partners are often clustered

near the top of their preference lists. These features are appealing in the sense that

they effectively stack the deck against stability: seemingly inconsequential “skipping”

behavior by proposers can have a pronounced effect and eliminate the possibility of

observing stable outcomes. In several of the markets, responders also have a stable

match partner near the bottom of their preference lists. In a similar spirit, seemingly

harmless truncation by responders can in fact prevent certain stable outcomes from

emerging.

To illustrate, consider a hypothetical matching game with four firms (f1, f2, f3, f4)

and four workers (w1, w2, w3, w4) and the following preferences:

P (f1) = w∗1, w
∗
2, w3, w4

P (f2) = w∗2, w
∗
1, w3, w4

P (f3) = w∗3, w
∗
4, w1, w2

P (f4) = w∗4, w
∗
3, w1, w2

P (w1) = f ∗2 , f3, f4, f
∗
1

P (w2) = f ∗1 , f3, f4, f
∗
2

P (w3) = f ∗4 , f1, f2, f
∗
3

P (w4) = f ∗3 , f1, f2, f
∗
4

An agent’s achievable match partners are denoted by asterisks. In this example, any

skipping behavior by a firm is costly since it prevents the firm-optimal stable matching

from being realized. In addition, minimal truncation behavior (i.e., rejecting the offer

14



Table 1: A total of 11 experimental sessions were conducted. For each session, the
information structure, the number of subjects, the number of markets that subjects
played, and the order in which the markets were presented to subjects is shown above.

Session No. Subjects No. Markets Order of Markets
Complete Information 1 16 7 H,A,I,F,B,G,D
Complete Information 2 16 7 A,B,C,D,F,G,E
Complete Information 3 16 8 A,B,C,D,E,F,G,H

Incomplete Information 1 16 7 A,B,C,D,E,F,G
Incomplete Information 2 16 9 A,B,C,D,E,F,G,H,I

Inc. Information-Proposer 1 16 5 A,B,C,F,H
Inc. Information-Proposer 2 16 7 A,B,C,D,E,F,H
Inc. Information-Proposer 3 16 8 A,B,C,D,E,F,G,H

Inc. Information-Responder 1 16 8 A,B,C,D,E,F,G,H
Inc. Information-Responder 2 16 8 A,B,C,D,E,F,G,H
Inc. Information-Responder 3 16 8 A,B,C,D,E,F,G,H

from the fourth-ranked firm) will bring about the worker-optimal stable matching.

Table 1 provides a summary of the details of each experimental session.

For the theoretical results pertaining to the complete information environment,

only the ordinal preferences of the subjects play a role. However, the need to pay ex-

perimental subjects forces us to impose a particular cardinal structure on preferences.

In our experiment, the payoff differential between a subject’s nth and (n+1)st choice

match partners is fixed at $3. We also use the convention that remaining unmatched

results in a payoff of $0. Since other experimental work has shown that altering

the cardinal preference structure can substantially affect strategic behavior and final

market outcomes, we opted to keep the cardinal representation fixed throughout all

the markets that were tested (Echenique et al., 2014).

The baseline treatment is a replication of the environment found in Echenique

et al. (2014): subjects participate in the dynamic DA mechanism with complete
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Table 2: The experimental treatments are shown below.

Treatment Description
Complete The preferences of all agents are common knowledge (each agent can see 16

preference lists).
Incomplete The preferences of all agents are private information (each agent can only see

their own preference list).
Incomplete-
Proposer

Proposers can see the preferences of all agents on their side of the market (8
preference lists). Responders have complete information (16 preference lists).

Incomplete-
Responder

Proposers can see their own preferences as well as the preferences of all agents
on the opposite side of the market (9 preference lists). Responders have com-
plete information (16 preference lists).

Table 3: The experimental hypotheses are shown for all information treatments.

Session Proposer Behavior Responder Behavior Stability Selection
Complete Information truth-telling truncation Y responder-optimal

Incomplete Information truth-telling truth-telling Y proposer-optimal
Incomplete-Proposer truth-telling truncation Y responder-optimal

Incomplete-Responder truth-telling truncation Y responder-optimal

information. Our manipulation involves the information structure. We employ a

between-subjects design in which each subject participates in only one of four infor-

mation environments. More details on the information structures that subjects face

is given in Table 2. The experimental instructions are also provided at the end of the

paper.

4 Hypotheses

We list our experimental hypotheses below. They are also summarized in Table 3. In

all cases, the null hypothesis corresponds to strictly rational behavior (i.e., the null

hypothesis predicts that subjects will play their optimal equilibrium strategies in the

treatments where they have the necessary information to do so).

• Hypothesis 1: The level of information will not affect proposer behavior. Pro-
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posers will play their dominant strategy of truth-telling in all four information

structures.

• Hypothesis 2: Responders will truncate their preference lists when they have

complete information about the preferences of other agents. In the incomplete

information treatment, responders will behave truthfully and not strategically

reject offers.

• Corollary 1: In terms of final outcomes, stability will be unaffected by the

level of information that is available to subjects.

• Corollary 2: In terms of final outcomes, the selection of stable outcomes will be

affected by the level of information that is available to subjects. The proposer-

optimal stable matching will emerge in the incomplete information treatment.

In all other treatments, final outcomes will be “closer” to the responder-optimal

stable matching.

5 Results

Aggregate Outcomes

We begin by analyzing aggregate outcomes. First, stability is not the norm in our

experimental markets: 46% (38/82) of the markets culminated in an economy-wide

stable matching. Fifty-five percent (12/22) of final outcomes are stable in the com-

plete information treatment, 50% (8/16) in the incomplete information treatment,

25% (5/20) in the incomplete-proposer treatment, and 54% (13/24) in the incomplete-

responder treatment. The distribution of stable outcomes is not significantly different

by treatment (χ2(3) = 4.9359, p-value = 0.177).
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In order to assess the empirical relevance of stability in our experiments, we need

to deal with two issues. First, we would like to know the severity of the observed

deviations from stability in our data. To that end, we define a metric for the space of

all matchings. This allows us to measure the distance between an observed outcome

in our experimental data and a particular stable outcome. This measure is also used

to assess the existence of treatment effects at the aggregate level. Let M denote the

set of all matchings and let W denote the set of all workers. Consider an arbitrary

matching µ ∈ M and an arbitrary worker w ∈ W . Define F (µ(w)) as the position

of µ(w) in the ordinal preference list of worker w. If w is matched to her most

preferred firm at µ, then F (µ(w)) = 1. If w is matched to her least preferred firm at

µ, then F (µ(w)) = 4. For simplicity, if w is unmatched we let F (µ(w)) = F (w) = 5.

Thus, |F (µ(w))− F (µ′(w))| is the absolute distance in ranking between µ(w) and

µ′(w) according to the preferences of worker w. We can then define the distance

from µ to µ′ as the sum of this measure for all the workers in the market. More

formally, the distance d :M×M−→ <+ between two matchings µ and µ′ is defined

as d(µ, µ′) =
∑

w∈W |F (µ(w))− F (µ′(w))|. Intuitively, we are defining the distance

between two outcomes as the sum of the absolute distance between each worker’s

match partners at those outcomes (according to the worker’s ordinal preferences).

Second, we need to establish the power of our experimental design to detect sta-

bility. For this purpose, we simulate the distance to stability for all experimental

markets under the assumption of independent and uniformly random behavior by

agents. We repeat this exercise 10,000 times. Appendix D shows the distribution

of our metric corresponding to this procedure, alongside the distribution from our

experimental data.

Table 4 reports the average distances to the nearest stable outcome and to the

W-optimal stable outcome across the four treatments. From this, it is clear that (1)
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Table 4: Average distance measures across treatments.

Treatment Avg. Dist. to Stability Avg. Dist. to W-optimal # of Markets
Complete Info. 5.3 6.9 22

Incomplete Info. 5.9 13.6 16
Incomplete-Proposer 12.1 14.1 20

Incomplete-Responder 5.2 9.0 24

outcomes are farthest from stability in the incomplete-proposer treatment and that (2)

outcomes are closest to the W-optimal stable matching in the complete information

and incomplete-responder treatments.

Figure 1 shows the distribution of the distance to the nearest stable outcome by

treatment. We conduct a Kruskal Wallis test to assess the presence of treatment ef-

fects in distance to stability. We find that the distance to the nearest stable outcome

is statistically different between the four treatments at conventional levels (χ2(3) =

7.560, p-value = 0.0560). To further test for the robustness of this result, we re-

move the incomplete information treatment from our analysis. We do so because

the remaining three treatments have an important similarity: responders have access

to the same level of information about other agents’ preferences (complete informa-

tion). This should then give the best chance for the success of the null hypothesis.

Restricting attention to these three treatments, we still find that there are statisti-

cally significant treatment differences in our measure of distance to stability (χ2(2)

= 7.119, p-value = 0.0285). Hence, we conclude that the level of information about

other agents’ preferences affects the magnitude of the deviations from stability.

We now turn to equilibrium selection across treatments. Figure 2 shows the dis-

tribution of the distance to the W-optimal stable outcome by treatment. This mea-

sure is also statistically different between the four treatments at conventional levels

(Kruskal-Wallis test, p-value = 0.0957). Since responders can engage in meaningful
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Figure 1: Distance to the nearest stable outcome across treatments.
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Figure 2: Distance to the W-optimal stable outcome across treatments.
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strategic behavior only in treatments in which they possess complete information,

we also use a Wilcoxon-Mann-Whitney test to assess whether the distance to the

W-optimal stable matching is statistically smaller in the three treatments where re-

sponders have complete information. We cannot reject the null hypothesis that the

distance to the W-optimal stable matching is statistically indistinguishable between

the incomplete information treament and the remaining treatments (z-score = -1.170,

p-value = 0.2419).

In the next section, we investigate behavioral explanations for these findings when

discussing individual behavior.

Individual Behavior

Responders

We start by reporting the behavior of responders. In the static DA mechanism, re-

sponders have an incentive to misrepresent their preferences in markets with more

than one achievable match partner. This misrepresentation can take two forms: trun-

cation (submitting a shortened preference list that otherwise maintains the order of

the true preferences) and manipulation (submitting a preference list that switches

the order of preference between at least two match partners). In our dynamic imple-

mentation, a truncation of preferences is observed anytime an unmatched responder

rejects an offer. Intuitively, an agent who truncates her preferences is pretending

that she would rather be unmatched than be matched to less preferred partners. A

manipulation of preferences, on the other hand, is observed anytime (1) a currently

matched responder accepts a less-preferred offer or (2) an unmatched responder ac-

cepts a less-preferred offer when facing two or more offers.

An agent who truncates her preferences faces a balance of risks. By truncating,
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Table 5: Responder behavior across treatments.

Treatment Manipulation Percent Truncation Percent Number of Decisions
Complete Info. 5 1.6% 18 5.8% 310

Incomplete Info. 1 0.4% 26 11.0% 236
Incomplete-Proposer 5 1.3% 52 13.7% 380

Incomplete-Responder 7 2.1% 25 7.6% 328
Total 18 1.4% 121 9.6% 1,254

there is a greater likelihood of remaining unmatched, but there is also a greater like-

lihood of obtaining a more preferred match partner conditional on matching. When

all other agents behave straightforwardly, there is an “optimal” truncation strategy:

a responder can be matched with her most preferred achievable partner by rejecting

all offers from lower-ranked partners. However, this strategy requires for a responder

to calculate or otherwise know the identity of her most preferred achievable partner.

Absent this information, responders face the risk of “over-truncating” and remain-

ing unmatched.13 Thus, meaningful truncation behavior is only possible in the three

treatments in which responders have complete information about all other subjects’

preferences.14 In addition, merely identifying the existence of a profitable trunca-

tion opportunity requires for an agent to know that she has more than one achievable

partner. Similarly, this information is only available with complete information about

other subjects’ preferences.

Table 5 presents the behavior of responders by treatment. We observe that neither

manipulation nor truncation of preferences is common. Of a total of 1,256 decision

problems15 faced by responders, 18 (1.4%) involve a manipulation of preferences and

13Over-truncation refers to the situation where a responder rejects an offer from her most preferred
achievable partner.

14Since strategic uncertainty remains about other agents’ behavior in our experimental design,
even playing the optimal truncation strategy does not guarantee for a responder to be matched with
her most preferred achievable partner.

15By “decision problem”, we refer to any instance in which a responder is called upon to act in
the dynamic DA mechanism. In other words, either (1) an unmatched responder who must evaluate
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121 (9.6%) involve a truncation of preferences. The results indicate that the distribu-

tion of truncations is affected by the information structure (χ2(3) = 14.4001, p-value

= 0.002), but that the distribution of manipulations is not (χ2(3) = 2.9466, p-value

= 0.400).

Regarding responders’ willingness to engage in strategic behavior, we find no sta-

tistically significant difference between the incomplete information treatment and the

other three treatments combined (χ2(3) = 0.6239, p-value = 0.430).16 This indi-

cates that strategic preference misrepresentation is not systematically related to the

available information. Since purposeful strategic behavior requires information about

the preferences of other agents, this suggests that responders’ non-straightforward

behavior is driven by other heuristics.

In particular, it is natural to investigate whether truncation behavior is driven by

a simple threshold strategy in which responders are more likely to reject offers that

yield low payoffs. Figure 3 shows truncation rates for different payoff levels. Twenty-

percent of offers that would have yielded a payoff of $3 are rejected by responders.

However, only 1% of offers that would have yielded a payoff of $21 are rejected. We

use an extension of the Wilcoxon rank-sum procedure to non-parametrically test for

a trend in truncation rates across payoff levels. We find that truncation rates are

decreasing by the profitability of the offer (p-value < 0.001).

Table 6 presents an OLS regression of a truncation dummy variable on the round

of the experiment, a dummy variable for the three treatments where responders have

complete information, the rank of an agent’s most preferred achievable partner,17 the

one or more offers or (2) a tentatively matched responder who must evaluate one or more alternative
offers.

16For this test, we pool all manipulations and truncations together.
17This measure captures the riskiness of truncation. It can be thought of as the likelihood of

mistakenly over-truncating.
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Figure 3: Truncation rates according to the profitability of offers.
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span of the core,18 and the rank of an agent’s most preferred offer in a given decision

problem. The regression indicates that responders are sensitive to the profitability

of truncation (i.e., the span of the core). However, responders are not sensitive to

the riskiness of truncation (i.e., the rank of their most preferred achievable partner

in their preference list).

The regression results also confirm our earlier intuition: the rank of an offer is a

statistically significant predictor of truncation behavior. In particular, receiving an

offer from a proposer who is ranked one spot lower in preference (i.e., lowering the

payoff by $3) makes a responder 4% more likely to reject the offer. The fact that

the coefficient estimate on the complete information dummy variable is neither eco-

nomically nor statistically significant further supports the conclusion that responders

are not making use of the relevant information for truncation decisions but rather

following a simpler heuristic.

Proposers

In the static DA mechanism, proposers have a dominant strategy of truthful preference

revelation. In the dynamic DA mechanism, the analogue of truthful behavior is

straightforward behavior (i.e., when an agent makes offers in the order of her true

preferences). We will focus our analysis on initial offers (i.e., the first offers made by

proposers in each experimental market).19

Of the 656 initial offers made by proposers across all the experimental markets,

365 (56%) were made to proposers’ first choice match partners. This represents a non-

trivial departure from the weakly dominant strategy. The breakdown by treatment

18The span of the core is defined as the ordinal distance between an individual’s most preferred
and least preferred achievable partners.

19This is because we do not have access to subjects’ complete strategies. For all markets, however,
we do have data on the first offer made by each proposer.
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Table 6: OLS regression of truncation on market features. Standard errors are clus-
tered at the individual level.

(1)
VARIABLES Truncation

Round of the experiment -0.00444
(0.00383)

Complete information -0.00977
(0.0387)

Rank of best achievable partner -0.00245
(0.00590)

Span of the core 0.0346***
(0.0105)

Rank of best offer 0.0399***
(0.00528)

Constant -0.0934
(0.0404)

Observations 1,254
*** p<0.01, ** p<0.05, * p<0.1
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Table 7: Proposers’ initial offers across treatments.

Offers Made Number of Skips Total Number
Treatment to First Choice Percent Mean Std. Dev. of Offers

Complete Info. 81 46% 1.2 1.5 176
Incomplete Info. 98 77% 0.39 0.81 128

Incomplete-Proposer 74 46% 1.46 1.77 160
Incomplete-Responder 112 58% 0.89 1.34 192

is shown in Table 7. Interestingly, the incomplete information treatment has the

highest proportion of dominant-strategy play in terms of initial offers. We find that

the failure to play the dominant strategy varies across treatments (χ2(3) = 35.5771,

p-value < 0.001). This is not only due to the fact that proposers play their dominant

strategy more frequently in the incomplete information treatment. The distribution of

dominant-strategy play is significantly different across the remaining three treatments

as well (χ2(2) = 7.2797, p-value = 0.026).

A natural measure of the extent of a deviation from the dominant strategy is

the ordinal distance between a worker’s initial offer and her most preferred match

partner. We refer to this measure as a “skip”. A skip of 0 is equivalent to dominant-

strategy play and a skip of 7 indicates that a proposer’s initial offer was made to

her least preferred match partner (i.e., the proposer skipped over 7 more preferred

matches). Table 6 also shows the mean and standard deviation of this measure for the

four treatments. According to this measure, there are also differences in dominant-

strategy play across treatments (χ2(21) = 60.9252, p-value < 0.001).

Figure 4 shows the distribution of the number of skips across treatments. The

empirical distributions of first offers suggest that dominant-strategy play is most com-

mon in the incomplete information treatment. Indeed, we can reject the hypothesis

that the average number of skips in the incomplete information treatment is equal to

the average number of skips in the remaining three treatments (t-statistic = 5.5313,
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p-value < 0.001). We also reject this hypothesis in pairwise comparisons against the

incomplete information treatment (IC v C, t-statistic = 5.6573, p-value < 0.001; IC

v IP, t-statistic = 6.3459, p-value < 0.001; IC v IR, t-statistic = 3.7895, p-value =

0.0002). Finally, the incomplete information treatment has less skipping than the

other three treatments according to non-parametric trend tests (test for IC,IR,IP,C:

z-score = 5.79, p-value < 0.001; test for IC, IP, IR, C: z-score = 3.81, p-value <

0.001).

The fact that truth-telling by proposers is only a weakly dominant strategy implies

the existence of a class of skipping behavior that is not harmful (i.e., does no worse

than truth-telling). In fact, we know that an individual agent can do no better than

to be matched with her most preferred achievable partner via a Nash equilibrium

strategy profile. Thus, in equilibrium, there is no welfare loss from a proposer skipping

past her most preferred match partner and instead making her first offer to her most

preferred achievable match partner. We speak of “consequential” skipping to refer

to the situation where a proposer makes her first offer to an individual ranked below

her most preferred achievable partner.20

We find that 53% (155/291) of skips are consequential. Figure 5 shows the dis-

tribution of consequential skipping across treatments.21 The proportion of inconse-

quential skips is highest in the complete information treatment: 60% (57/95). Im-

portantly, proposers can determine whether skipping is consequential or not only by

calculating the set of stable matchings. In other words, for proposers to know whether

skipping entails welfare losses, they must have full information about other agents’

preferences. Thus, purposeful skipping is only possible in the complete information

20This construction is a bit loose since proposers who skip will sometimes have the option of
correcting their mistake by making their next offer to a more preferred individual. That is, proposers
are not forced to monotonically move down their preference lists when making offers.

21Figure 4 presents data on consequential skipping conditional on skipping. Dominant-strategy
play (a “skip” of 0) is not included in the graphs.
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Figure 4: The number of skips across treatments.
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Figure 5: The number of consequential skips across treatments.

treatment. We find that the distribution of consequential skipping depends on the

information structure that subjects face (Kruskal-Wallis test, p-value = 0.0001). In

fact, this difference persists if we compare the distribution of consequential skipping

in the complete information treatment against the pooled data from the remaining

three treatments (Kruskal-Wallis test, p-value = 0.0010).

The stark difference in proposers’ behavior between the complete and incomplete

information treatments suggests that information affects the play of dominant strate-

gies. By altering the information that is available to proposers, our experimental

design allows us to decompose these information effects. Echenique et al. (2014), for

instance, suggest that proposers might internalize the probability of rejection when
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Table 8: OLS regressions of the number of skips for each treatment. The regressions
include fixed effects at the individual level.

Dependent Variable: (1) (2) (3) (4)
Number of Skips Complete Incomplete I-Proposer I-Responder

Round of the experiment -0.0620 -0.0315* -0.0691 0.0125
(0.0413) (0.0169) (0.0506) (0.0411)

Rank in responder’s preference 0.254*** 0.0264 -0.0440 0.142***
(0.0469) (0.0222) (0.0406) (0.0444)

Number of competitors 0.0550 0.00644 -0.0268 -0.0312
(0.0360) (0.0147) (0.0486) (0.0466)

Number of inconsequential skips 0.153* -0.0617 -0.0509 0.0868
(0.0877) (0.0368) (0.0662) (0.0865)

Constant -0.0103 0.501*** 2.06*** 0.136
(0.340) (0.130) (0.238) (0.268)

Observations 176 128 160 192
Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

deciding to make an offer. In other words, a proposer might conjecture (correctly

or not) that her offer is more likely to be rejected the lower she is ranked in the re-

sponder’s preference list. Another possible explanation is that proposers might avoid

making offers to their favorite match partner if there are other proposers competing

for the same individual (i.e, other proposers agree on who the “best” partner is). Both

of these theories would suggest skipping if agents are averse to rejection or otherwise

sensitive to the probability of rejection. The former theory requires that proposers

have information about the preferences of responders. The latter theory, however,

requires that proposers have information about the preferences of other proposers.

We now use our experimental design to tease apart what drives proposers’ behav-

ior. Table 8 presents a regression analysis of skipping behavior as a function of four

variables: the round of the experiment, a proposer’s rank in her most preferred part-

ner’s preferences, the number of proposers who share the same most preferred partner,

and the number of available inconsequential skips.22 Importantly, and depending on

22Column 1 presents the result for the complete information treatment, column 2 for the incom-
plete information treatment, column 3 for the incomplete-proposer treament, and column 4 for the
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the particular treatment, not all of the explanatory variables can be observed by the

experimental subjects. However, the same explanatory variables are included in all

the regressions as a way to test for placebo effects.23

We do not find evidence for the theory that proposers take into account how many

competitors they have for their most preferred partner. The coefficient estimate on

the number of competitors is statistically insignificant for all experimental treatments.

However, we do find support for the hypothesis advanced by Echenique et al. (2014):

when deciding on initial offers, proposers take into account how they are ranked by the

other side of the market. A proposer’s rank in the preference list of her most preferred

partner is a statistically significant predictor of skipping behavior in both treatments

where this information is available (complete and incomplete-responder). Moreover,

this variable is not a statistically significant predictor of skipping in the treatments

where this information is not available (incomplete and incomplete-proposer).

In addition, we find that the availability of opportunities for inconsequential skip-

ping is significantly and positively correlated with skipping in the complete infor-

mation treatment. This lends further support to our earlier finding that harmless

skipping is most pronounced in the complete information treatment. Notably, this is

also the only experimental treatment in which it is theoretically possible for a subject

to calculate the identity of her most preferred achievable partner.

incomplete-responder treatment.
23For instance, the coefficient estimate on the number of competitiors should not be significant in

the incomplete information or incomplete-responder treatments. Similarly, the coefficient estimate
on the rank in the responder’s preference list should not be significant in the incomplete information
or incomplete-proposer treatments.
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6 Conclusion and Discussion

We investigate the impact of information on strategic behavior in a decentralized

matching market that mimics the Gale-Shapley deferred acceptance procedure. Rather

than have subjects submit preference lists to a centralized clearinghouse, our exper-

imental design requires subjects to make sequential decisions in an extensive-form

game. This dynamic implementation has the advantage of reducing experimenter

demand effects and making the strategic tensions of the game more transparent to

subjects.

We find that information does not affect the stability of final outcomes, but it does

affect selection among stable outcomes. This result is driven largely by a change in the

behavior of one side of the market. When information is available about other agents’

preferences, proposers often fail to play their dominant strategy of truth-telling and

instead skip past more preferred partners when making offers. This skipping behavior

is sophisticated in the sense that proposers take into account how they are ranked

by the other side of the market. Responders, on the other hand, play similarly in all

information treatments and accept the best offer that is available to them at any given

time. This straightforward behavior is in contrast to the theoretical prediction that

responders should be engaging in strategic preference misrepresentation in markets

with more than one stable matching.

Our results highlight the important role that behavioral biases play in these envi-

ronments. Much like market participants can fail to recognize the existence of prof-

itable strategic opportunities (e.g., responders’ straightforward behavior), they can

also fail to recognize the lack of profitable strategic opportunities (e.g., proposers’

skipping behavior). The ability to successfully absorb “behavioral” agents is a criti-

cal component of sound market design. In the context of the DA mechanism, there are
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alreadly protective features in place that bound the losses of proposers who behave

sub-optimally. Indeed, the fact that their best course of action is weakly dominant

necessarily allows for inconsequential skipping in a large class of markets.24

There is another compelling reason to incorporate behavioral insights into mech-

anism design. One of the stated advantages of strategy-proof mechanisms in the field

is that, under theoretical conditions, they permit the observation of true preferences.

This in turn allows researchers to make welfare statements about market participants.

By documenting the prevalence of strategic behavior in a strategy-proof environment,

our results suggest a note of caution in this regard.25 However, more work needs to be

done to investigate the extent to which findings from laboratory studies of matching

markets generalize to the field.

24Rees-Jones (2014) suggests that this type of tolerance for behavioral faults is one reason for the
success and persistence of the DA mechanism in the field.

25Sub-optimal strategic behavior in the DA mechanism has also been documented empirically by
Echenique et al. (2014) and Rees-Jones (2014).
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Appendix A

Complete Information

BLACK BLUE GREEN PINK PURPLE RED WHITE YELLOW

APPLE $9,$9 $15,$24 $18,$18 $21,$12 $24,$9 $3,$15 $6,$21 $12,$24

BANANA $21,$18 $6,$21 $9,$3 $24,$3 $3,$24 $18,$3 $15,$15 $12,$21

CHERRY $12,$12 $24,$12 $6,$24 $21,$18 $3,$18 $18,$21 $9,$24 $15,$9

GRAPE $12,$3 $21,$18 $6,$6 $3,$21 $18,$21 $24,$12 $9,$3 $15,$3

KIWI $18,$21 $3,$15 $15,$21 $24,$6 $9,$3 $6,$6 $12,$9 $21,$15

MANGO $12,$6 $6,$3 $9,$9 $3,$15 $24,$12 $21,$18 $18,$18 $15,$6

PEACH $15,$15 $9,$9 $21,$15 $12,$24 $3,$6 $6,$9 $24,$6 $18,$18

PEAR $9,$24 $18,$6 $12,$12 $6,$9 $15,$15 $3,$24 $21,$12 $24,$12

Incomplete Information

PURPLE PINK GREEN BLUE YELLOW BLACK WHITE RED

APPLE $24 $21 $18 $15 $12 $9 $6 $3

Incomplete-Proposer

BLACK BLUE GREEN PINK PURPLE RED WHITE YELLOW

APPLE $9 $15 $18 $21 $24 $3 $6 $12

BANANA $21 $6 $9 $24 $3 $18 $15 $12

CHERRY $12 $24 $6 $21 $3 $18 $9 $15

GRAPE $12 $21 $6 $3 $18 $24 $9 $15

KIWI $18 $3 $15 $24 $9 $6 $12 $21

MANGO $12 $6 $9 $3 $24 $21 $18 $15

PEACH $15 $9 $21 $12 $3 $6 $24 $18

PEAR $9 $18 $12 $6 $15 $3 $21 $24
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Incomplete-Responder

BLACK BLUE GREEN PINK PURPLE RED WHITE YELLOW

APPLE $9,$9 $15,$24 $18,$18 $21,$12 $24,$9 $3,$15 $6,$21 $12,$24

BANANA $18 $21 $3 $3 $24 $3 $15 $21

CHERRY $12 $12 $24 $18 $18 $21 $24 $9

GRAPE $3 $18 $6 $21 $21 $12 $3 $3

KIWI $21 $15 $21 $6 $3 $6 $9 $15

MANGO $6 $3 $9 $15 $12 $18 $18 $6

PEACH $15 $9 $15 $24 $6 $9 $6 $18

PEAR $24 $6 $12 $9 $15 $24 $12 $12
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Appendix B

The end of the first stage of offers in the DA algorithm.

Food APPLE chooses an offer in the second stage of the DA algorithm.
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Food BANANA is tentatively matched and cannot make an offer in the second

stage of the DA algorithm.

Color BLACK has not received any offers in the second stage of the DA algorithm.
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Color BLUE is tentatively matched and has received a new offer in the second stage

of the DA algorithm.
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Appendix C

Market Characteristics

Market Stable Matches Turns to Converge with Truth-Telling

A 2 10

B 5 5

C 2 10

D 5 3

E 2 5

F 1 8

G 1 8

H 5 5

I 2 3

Ordinal Preference Profiles and Stable Matchings

When there are multiple stable outcomes listed below, the first matching corresponds

to the proposer-optimal stable matching while the last matching corresponds to the

responder-optimal stable matching. Asterisks in an individual’s preference list are

used to denote the identities of that individual’s achievable match partners.
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Market A

P (f1) = c2, c4, c
∗
6, c8, c1, c7, c3, c5

P (f2) = c6, c2, c
∗
5, c
∗
8, c1, c7, c3, c4

P (f3) = c4, c8, c
∗
1, c3, c7, c5, c6, c2

P (f4) = c5, c6, c7, c
∗
8, c1, c

∗
3, c2, c4

P (f5) = c∗7, c3, c8, c1, c4, c2, c6, c5

P (f6) = c8, c7, c
∗
2, c
∗
5, c3, c1, c4, c6

P (f7) = c5, c4, c
∗
3, c
∗
2, c8, c1, c7, c6

P (f8) = c∗4, c1, c6, c7, c8, c3, c2, c5

P (c1) = f ∗3 , f5, f1, f7, f8, f6, f4, f2

P (c2) = f ∗7 , f4, f3, f
∗
6 , f1, f8, f5, f2

P (c3) = f2, f
∗
4 , f3, f8, f6, f1, f

∗
7 , f5

P (c4) = f ∗8 , f3, f6, f1, f4, f7, f5, f2

P (c5) = f3, f1, f
∗
6 , f

∗
2 , f8, f5, f7, f4

P (c6) = f ∗1 , f2, f7, f5, f8, f3, f6, f4

P (c7) = f8, f
∗
5 , f2, f7, f3, f1, f6, f4

P (c8) = f1, f
∗
2 , f

∗
4 , f5, f3, f7, f8, f6

µ1 = (f1, c6), (f2, c5), (f3, c1), (f4, c8), (f5, c7), (f6, c2), (f7, c3), (f8, c4)

µ2 = (f1, c6), (f2, c8), (f3, c1), (f4, c3), (f5, c7), (f6, c5), (f7, c2), (f8, c4)

Market B

P (f1) = c∗6, c2, c
∗
5, c8, c1, c7, c3, c4

P (f2) = c4, c8, c1, c
∗
3, c
∗
7, c5, c6, c2

P (f3) = c∗5, c
∗
6, c7, c

∗
8, c1, c3, c2, c4

P (f4) = c∗7, c
∗
3, c8, c1, c4, c2, c6, c5

P (f5) = c∗8, c7, c2, c5, c3, c1, c4, c
∗
6

P (f6) = c5, c
∗
4, c3, c2, c8, c1, c7, c6

P (f7) = c4, c
∗
1, c6, c7, c8, c3, c2, c5

P (f8) = c∗2, c4, c6, c8, c1, c7, c3, c5

P (c1) = f ∗7 , f4, f3, f6, f1, f8, f5, f2

P (c2) = f2, f4, f3, f
∗
8 , f6, f1, f7, f5

P (c3) = f8, f3, f6, f1, f
∗
4 , f7, f5, f

∗
2

P (c4) = f3, f1, f
∗
6 , f2, f8, f5, f7, f4

P (c5) = f ∗1 , f2, f7, f5, f8, f
∗
3 , f6, f4

P (c6) = f8, f
∗
5 , f2, f7, f

∗
3 , f

∗
1 , f6, f4

P (c7) = f1, f
∗
2 , f

∗
4 , f5, f3, f7, f8, f6

P (c8) = f ∗3 , f
∗
5 , f1, f7, f8, f6, f4, f2

µ1 = (f1, c6), (f2, c3), (f3, c5), (f4, c7), (f5, c8), (f6, c4), (f7, c1), (f8, c2)
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µ2 = (f1, c6), (f2, c7), (f3, c5), (f4, c3), (f5, c8), (f6, c4), (f7, c1), (f8, c2)

µ3 = (f1, c5), (f2, c3), (f3, c6), (f4, c7), (f5, c8), (f6, c4), (f7, c1), (f8, c2)

µ4 = (f1, c5), (f2, c7), (f3, c6), (f4, c3), (f5, c8), (f6, c4), (f7, c1), (f8, c2)

µ5 = (f1, c5), (f2, c7), (f3, c8), (f4, c3), (f5, c6), (f6, c4), (f7, c1), (f8, c2)

Market C

P (f1) = c1
4, c8, c1, c3, c7, c5, c6, c2

P (f2) = c5, c
∗
6, c7, c8, c1, c3, c2, c4

P (f3) = c∗7, c3, c8, c1, c4, c2, c6, c5

P (f4) = c8, c7, c2, c5, c
∗
3, c
∗
1, c4, c6

P (f5) = c∗5, c4, c3, c2, c8, c1, c7, c6

P (f6) = c4, c
∗
1, c6, c7, c8, c

∗
3, c2, c5

P (f7) = c2, c4, c6, c
∗
8, c1, c7, c3, c5

P (f8) = c6, c
∗
2, c5, c8, c1, c7, c3, c4

P (c1) = f2, f
∗
4 , f3, f8, f

∗
6 , f1, f7, f5

P (c2) = f ∗8 , f3, f6, f1, f4, f7, f5, f2

P (c3) = f3, f1, f
∗
6 , f2, f8, f5, f7, f

∗
4

P (c4) = f ∗1 , f2, f7, f5, f8, f3, f6, f4

P (c5) = f8, f
∗
5 , f2, f7, f3, f1, f6, f4

P (c6) = f1, f
∗
2 , f4, f5, f3, f7, f8, f6

P (c7) = f ∗3 , f5, f1, f7, f8, f6, f4, f2

P (c8) = f ∗7 , f4, f3, f6, f1, f8, f5, f2

µ1 = (f1, c4), (f2, c6), (f3, c7), (f4, c3), (f5, c5), (f6, c1), (f7, c8), (f8, c2)

µ2 = (f1, c4), (f2, c6), (f3, c7), (f4, c1), (f5, c5), (f6, c3), (f7, c8), (f8, c2)
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Market D

P (f1) = c∗5, c6, c7, c8, c1, c3, c2, c4

P (f2) = c∗7, c
∗
3, c8, c1, c4, c2, c6, c5

P (f3) = c∗8, c
∗
7, c
∗
2, c5, c3, c1, c4, c6

P (f4) = c5, c4, c
∗
3, c2, c

∗
8, c1, c7, c6

P (f5) = c4, c
∗
1, c
∗
6, c7, c8, c3, c2, c5

P (f6) = c∗2, c4, c6, c8, c
∗
1, c7, c3, c5

P (f7) = c∗6, c2, c5, c8, c
∗
1, c
∗
7, c3, c4

P (f8) = c∗4, c8, c1, c3, c7, c5, c6, c2

P (c1) = f8, f3, f
∗
6 , f1, f4, f

∗
7 , f

∗
5 , f2

P (c2) = f ∗3 , f1, f
∗
6 , f2, f8, f5, f7, f4

P (c3) = f1, f
∗
2 , f7, f5, f8, f3, f6, f

∗
4

P (c4) = f ∗8 , f5, f2, f7, f3, f1, f6, f4

P (c5) = f ∗1 , f2, f4, f5, f3, f7, f8, f6

P (c6) = f3, f
∗
5 , f1, f

∗
7 , f8, f6, f4, f2

P (c7) = f ∗7 , f4, f
∗
3 , f6, f1, f8, f5, f

∗
2

P (c8) = f2, f
∗
4 , f

∗
3 , f8, f6, f1, f7, f5

µ1 = (f1, c5), (f2, c7), (f3, c8), (f4, c3), (f5, c1), (f6, c2), (f7, c6), (f8, c4)

µ2 = (f1, c5), (f2, c7), (f3, c8), (f4, c3), (f5, c6), (f6, c2), (f7, c1), (f8, c4)

µ3 = (f1, c5), (f2, c3), (f3, c7), (f4, c8), (f5, c6), (f6, c2), (f7, c1), (f8, c4)

µ4 = (f1, c5), (f2, c3), (f3, c7), (f4, c8), (f5, c1), (f6, c2), (f7, c6), (f8, c4)

µ5 = (f1, c5), (f2, c3), (f3, c2), (f4, c8), (f5, c6), (f6, c1), (f7, c7), (f8, c4)
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Market E

P (f1) = c7, c
∗
3, c8, c

∗
1, c4, c2, c6, c5

P (f2) = c8, c
∗
7, c2, c5, c3, c1, c4, c6

P (f3) = c∗5, c4, c3, c2, c8, c1, c7, c6

P (f4) = c∗4, c1, c6, c7, c8, c3, c2, c5

P (f5) = c∗2, c4, c6, c8, c1, c7, c3, c5

P (f6) = c∗6, c2, c5, c8, c1, c7, c3, c4

P (f7) = c4, c8, c
∗
1, c
∗
3, c7, c5, c6, c2

P (f8) = c5, c6, c7, c
∗
8, c1, c3, c2, c4

P (c1) = f3, f
∗
1 , f6, f2, f8, f5, f

∗
7 , f4

P (c2) = f1, f2, f7, f
∗
5 , f8, f3, f6, f4

P (c3) = f8, f5, f2, f
∗
7 , f3, f

∗
1 , f6, f4

P (c4) = f1, f2, f
∗
4 , f5, f3, f7, f8, f6

P (c5) = f ∗3 , f5, f1, f7, f8, f6, f4, f2

P (c6) = f7, f4, f3, f
∗
6 , f1, f8, f5, f2

P (c7) = f ∗2 , f4, f3, f8, f6, f1, f7, f5

P (c8) = f ∗8 , f3, f6, f1, f4, f7, f5, f2

µ1 = (f1, c3), (f2, c7), (f3, c5), (f4, c4), (f5, c2), (f6, c6), (f7, c1), (f8, c8)

µ2 = (f1, c1), (f2, c7), (f3, c5), (f4, c4), (f5, c2), (f6, c6), (f7, c3), (f8, c8)

Market F

P (f1) = c∗1, c2, c3, c4, c5, c6, c7, c8

P (f2) = c1, c
∗
2, c3, c4, c5, c6, c7, c8

P (f3) = c1, c2, c
∗
3, c4, c5, c6, c7, c8

P (f4) = c1, c2, c3, c
∗
4, c5, c6, c7, c8

P (f5) = c1, c2, c3, c4, c
∗
5, c6, c7, c8

P (f6) = c1, c2, c3, c4, c5, c
∗
6, c7, c8

P (f7) = c1, c2, c3, c4, c5, c6, c
∗
7, c8

P (f8) = c1, c2, c3, c4, c5, c6, c7, c
∗
8

P (c1) = f ∗1 , f2, f3, f4, f5, f6, f7, f8

P (c2) = f1, f
∗
2 , f3, f4, f5, f6, f7, f8

P (c3) = f1, f2, f
∗
3 , f4, f5, f6, f7, f8

P (c4) = f1, f2, f3, f
∗
4 , f5, f6, f7, f8

P (c5) = f1, f2, f3, f4, f
∗
5 , f6, f7, f8

P (c6) = f1, f2, f3, f4, f5, f
∗
6 , f7, f8

P (c7) = f1, f2, f3, f4, f5, f6, f
∗
7 , f8

P (c8) = f1, f2, f3, f4, f5, f6, f7, f
∗
8

µ1 = (f1, c1), (f2, c2), (f3, c3), (f4, c4), (f5, c5), (f6, c6), (f7, c7), (f8, c8)

45



Market G

P (f1) = c8, c7, c6, c5, c4, c3, c2, c
∗
1

P (f2) = c8, c7, c6, c5, c4, c3, c
∗
2, c1

P (f3) = c8, c7, c6, c5, c4, c
∗
3, c2, c1

P (f4) = c8, c7, c6, c5, c
∗
4, c3, c2, c1

P (f5) = c8, c7, c6, c
∗
5, c4, c3, c2, c1

P (f6) = c8, c7, c
∗
6, c5, c4, c3, c2, c1

P (f7) = c8, c
∗
7, c6, c5, c4, c3, c2, c1

P (f8) = c∗8, c7, c6, c5, c4, c3, c2, c1

P (c1) = f8, f7, f6, f5, f4, f3, f2, f
∗
1

P (c2) = f8, f7, f6, f5, f4, f3, f
∗
2 , f1

P (c3) = f8, f7, f6, f5, f4, f
∗
3 , f2, f1

P (c4) = f8, f7, f6, f5, f
∗
4 , f3, f2, f1

P (c5) = f8, f7, f6, f
∗
5 , f4, f3, f2, f1

P (c6) = f8, f7, f
∗
6 , f5, f4, f3, f2, f1

P (c7) = f8, f
∗
7 , f6, f5, f4, f3, f2, f1

P (c8) = f ∗8 , f7, f6, f5, f4, f3, f2, f1

µ1 = (f1, c1), (f2, c2), (f3, c3), (f4, c4), (f5, c5), (f6, c6), (f7, c7), (f8, c8)

Market H

P (f1) = c5, c
∗
4, c
∗
3, c
∗
2, c8, c1, c7, c6

P (f2) = c4, c
∗
1, c6, c

∗
7, c
∗
8, c3, c2, c5

P (f3) = c∗2, c
∗
4, c
∗
6, c8, c1, c7, c3, c5

P (f4) = c∗6, c
∗
2, c
∗
5, c8, c1, c7, c3, c4

P (f5) = c4, c
∗
8, c
∗
1, c
∗
3, c7, c5, c6, c2

P (f6) = c∗5, c
∗
6, c
∗
7, c8, c1, c3, c2, c4

P (f7) = c7, c
∗
3, c
∗
8, c1, c

∗
4, c2, c6, c5

P (f8) = c8, c
∗
7, c2, c

∗
5, c3, c

∗
1, c4, c6

P (c1) = f ∗8 , f
∗
5 , f

∗
2 , f7, f3, f1, f6, f4

P (c2) = f ∗1 , f2, f
∗
4 , f5, f

∗
3 , f7, f8, f6

P (c3) = f3, f
∗
5 , f

∗
1 , f

∗
7 , f8, f6, f4, f2

P (c4) = f ∗7 , f4, f
∗
3 , f6, f

∗
1 , f8, f5, f2

P (c5) = f2, f
∗
4 , f3, f

∗
8 , f

∗
6 , f1, f7, f5

P (c6) = f8, f
∗
3 , f

∗
6 , f1, f

∗
4 , f7, f5, f2

P (c7) = f3, f1, f
∗
6 , f

∗
2 , f

∗
8 , f5, f7, f4

P (c8) = f1, f
∗
2 , f

∗
7 , f

∗
5 , f8, f3, f6, f4

µ1 = (f1, c4), (f2, c1), (f3, c2), (f4, c6), (f5, c8), (f6, c5), (f7, c3), (f8, c7)

µ2 = (f1, c3), (f2, c7), (f3, c4), (f4, c2), (f5, c1), (f6, c6), (f7, c8), (f8, c5)

46



µ3 = (f1, c3), (f2, c8), (f3, c6), (f4, c2), (f5, c1), (f6, c7), (f7, c4), (f8, c5)

µ4 = (f1, c2), (f2, c7), (f3, c4), (f4, c5), (f5, c3), (f6, c6), (f7, c8), (f8, c1)

µ5 = (f1, c2), (f2, c8), (f3, c6), (f4, c5), (f5, c3), (f6, c7), (f7, c4), (f8, c1)

Market I

P (f1) = c∗8, c7, c2, c5, c3, c1, c4, c6

P (f2) = c5, c4, c
∗
3, c2, c8, c1, c7, c6

P (f3) = c∗4, c1, c6, c7, c8, c3, c2, c5

P (f4) = c∗2, c4, c
∗
6, c8, c1, c7, c3, c5

P (f5) = c∗6, c
∗
2, c5, c8, c1, c7, c3, c4

P (f6) = c4, c8, c
∗
1, c3, c7, c5, c6, c2

P (f7) = c∗5, c6, c7, c8, c1, c3, c2, c4

P (f8) = c∗7, c3, c8, c1, c4, c2, c6, c5

P (c1) = f1, f2, f7, f5, f8, f3, f
∗
6 , f4

P (c2) = f8, f
∗
5 , f2, f7, f3, f1, f6, f

∗
4

P (c3) = f1, f
∗
2 , f4, f5, f3, f7, f8, f6

P (c4) = f ∗3 , f5, f1, f7, f8, f6, f4, f2

P (c5) = f ∗7 , f4, f3, f6, f1, f8, f5, f2

P (c6) = f2, f
∗
4 , f3, f8, f6, f1, f7, f

∗
5

P (c7) = f ∗8 , f3, f6, f1, f4, f7, f5, f2

P (c8) = f3, f
∗
1 , f6, f2, f8, f5, f7, f4

µ1 = (f1, c8), (f2, c3), (f3, c4), (f4, c2), (f5, c6), (f6, c1), (f7, c5), (f8, c7)

µ2 = (f1, c8), (f2, c3), (f3, c4), (f4, c6), (f5, c2), (f6, c1), (f7, c5), (f8, c7)
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Appendix D

The distance to stability across markets from 10,000 simulations. The simulations

were conducted assuming independent and uniformly random play by agents.
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The distance to stability across markets from the experimental data.
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CHAPTER 2

1 Introduction

Two-sided matching theory has informed the design of institutions in areas as di-

verse as kidney exchange (Roth, Sönmez, and Ünver, 2004), entry-level labor markets

(Roth and Peranson, 1999), and school choice (Abdulkadiroğlu and Sönmez, 2003).

These institutions often operate as centralized clearinghouses, in which participants

submit rank-order lists of their preferences and then a particular algorithm selects

the final outcome (i.e., who is paired with whom). In this context, a widely-used

matching algorithm is the Gale-Shapley deferred acceptance algorithm.1,2 In the DA

algorithm, the market is divided into “proposers” and “receivers.” This algorithm has

an important property: if all agents submit their true preferences, then the resulting

outcome is stable and is also the most preferred stable outcome for the proposing

side of the market.3 In the DA algorithm, it is well-known that the proposers have a

dominant strategy of truth-telling (Dubins and Freedman, 1981). The receivers, on

the other hand, might have incentives to misrepresent their preferences to produce a

more favorable outcome for themselves (Gale and Sotomayor, 1985).

We investigate whether - and under what conditions - receivers behave strate-

gically in the preference-revelation game induced by the DA algorithm. We focus

attention on a particular class of strategic behavior: truncation strategies (i.e., sub-

mitting a shortened preference list that otherwise maintains the order of the true

1The algorithm was first introduced by Gale and Shapley (1962).
2Henceforth, DA algorithm.
3A matching is said to be stable if no agent prefers remaining unmatched to her current allocation

and no pair of agents mutually prefer each other to their current allocations.
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preferences). This emphasis arises for two reasons. First, truncation strategies are

intuitively appealing and simple for agents to implement. Second, when evaluating

an agent’s profitable misrepresentation opportunities in the DA algorithm, it suffices

to restrict attention to truncation strategies. In other words, misrepresenting one’s

true preferences in a manner other than truncation can do no better than what can

be achieved via truncation (Roth and Peranson, 1999).

To make progress on this question, we first characterize the conditions under

which a receiver acting on her own can secure a match that is no worse than her

most preferred achievable partner.4 Our proposition is a straightforward extension

of a classic result: in markets with more than one stable matching, there will be

an incentive for some receiver to truncate her preferences whenever all other agents

report their preferences truthfully (Gale and Sotomayor, 1985). Although an agent’s

optimal truncation is a function of the profile of other agents’ reported preferences, we

show that no direct knowledge of the strategies of other agents is required. Rather, it

merely suffices for other receivers to be constrained to truncation strategies to be able

to calculate the best response. In general, the optimal truncation strategy will change

if other receivers are allowed to play more general misrepresentation strategies since

these strategies can substantially alter the set of stable matchings. In those situations,

it is possible to be optimally truncating with respect to the true preferences but sub-

optimally truncating with respect to the reported preferences. While not breaking

new ground, this result is methodologically important for our experimental design.

It allows us to construct environments that maintain the key interactive features of

matching markets while essentially reducing optimal truncation to a decision-theoretic

problem.

4Two individuals are said to be achievable for each other if they are paired at some stable
matching.
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Even after removing this aspect of strategic uncertainty, there are two practical

difficulties that present themselves with respect to optimal truncation. First, an agent

might be unable to identify the existence of a profitable opportunity to misrepresent

her preferences. Second, an agent might over-truncate her preferences and remain

unmatched (her worst possible outcome).5 In a laboratory experiment, we investi-

gate whether truncation depends on the magnitude of the potential monetary gains

from truncation as well as the rank of the most preferred achievable partner in an

agent’s preferences. The first measure is important since it is only when a profitable

opportunity exists that an agent has an incentive to truncate her preferences. The

second measure is important since the rank of the most preferred achievable partner

determines the likelihood of remaining unmatched by mistakenly over-truncating.

To mirror the theoretical conditions, the experiment is conducted in an environ-

ment with complete information about other agents’ preferences. The proposing side

of the market is automated to play its dominant strategy of truthful preference rev-

elation. The experimental subjects play in the role of the receivers and they are

restricted to either truth-telling or truncation strategies. Importantly, since we have

removed the element of strategic uncertainty over other players’ actions, the only

risk associated with truncation in our environment comes from over-truncating. Our

experiment tests whether agents truncate their preferences in situations that are the

most conducive to truncation behavior.6 Ideally, the simplicity of our environment

would provide insight into the reasons why market participants choose to either be-

have straightforwardly or strategically.

5Over-truncation refers to the situation where an agent truncates “too much” and leaves her
most preferred achievable partner off her submitted rank-order list.

6Another factor that makes truncation more attractive in our experiment is the linearity in subject
payoffs. In most applications, it is reasonable to expect a discontinuity in utility between matching
with one’s least preferred partner and remaining unmatched. If the risk of remaining unmatched is
important in our environment, then it is likely to be even more important in field settings where
remaining unmatched is very costly.
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We find truth-telling to be the most common strategy in our experimental markets:

56% (511/920) of submitted rank-order lists are identical to subjects’ true preferences.

We also find that truncation is not sensitive to considerations of profitability, but is

sensitive to the rank of the most preferred achievable partner. This result is robust

to alternative specifications. We consider this to be remarkable given the difficulty in

identifying achievable match partners even in small markets.

Regarding aggregate outcomes, 88% (203/230) of our experimental markets cul-

minate in stable outcomes. This is not only due to the fact that truth-telling is

common, but also because over-truncation is rare.7 We also find that final outcomes

are closer to the receiver-optimal stable matching than to the proposer-optimal stable

matching. However, this result is not entirely surprising. Since strategic behavior has

positive spillover effects in our environment, the receiver-optimal stable outcome can

be attained when only a subset of agents truncates its preferences optimally.

A useful benchmark to measure the success of centralized matching clearinghouses

is their ability to produce stable outcomes.8 The hallmark of a stable matching mech-

anism is that, for any profile of reported preferences, it produces an outcome that is

stable with respect to the reported preferences. However, understanding which stable

outcome arises in markets with multiple stable outcomes is no less important than

the question of whether a stable outcome arises. The issue of equilibrium selection

has important welfare consequences since the interests of the two sides of the market

are diametrically opposed on the question of which stable matching to implement.9

This is a relevant consideration for policymakers, who may have reasons to favor the

7Due to the constrained nature of our strategy space, over-truncation is the only way to observe
instability in final outcomes.

8Mechanisms that produce unstable outcomes necessarily give some participants an incentive to
seek out alternative match partners after the market closes. In fact, centralized clearinghouses based
on unstable matching mechanisms often perform no better than the decentralized markets that they
replace (Roth, 1991).

9This result is a consequence of the fact that the set of stable matchings is a lattice.
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welfare of one side of the market over another when designing matching markets. In

May 1997, for instance, the National Resident Matching Program (NRMP) switched

from the hospital-proposing version of the DA algorithm to the student-proposing

version over concerns that the original design unduly favored hospitals at the expense

of students.

Empirically, it is also important to determine whether the DA mechanism ap-

proaches strategy-proofness in practice. By providing a level playing field for all

participants, regardless of their institutional knowledge or strategic reasoning abili-

ties, strategy-proof mechanisms can help assuage the concerns of market participants

and promote market “thickness”. If receivers generally play truth-telling strategies

even in situations where there are gains from preference misrepresentation, then this

fact could partially explain the success and persistence of the DA mechanism in the

field.

Finally, our work highlights the complementarity between controlled laboratory

experimentation and market design. In the field, data on submitted rank-order lists is

often available but participants’ underlying preferences are not observed. This makes

the extent of strategic behavior difficult to estimate. By allowing us to directly con-

trol for subjects’ preferences and other market features, the laboratory setting is

ideally suited for answering questions related to both strategic behavior and equilib-

rium selection. Our results show that subjects respond to market features, but not

necessarily in the ways suggested by theory. In particular, the finding that subjects

respond to the riskiness of strategic behavior suggests that behavioral insights can

play an important role in the field of market design.

There is a growing body of experimental work studying the performance of central-

ized matching mechanisms in the lab. However, much of this experimental literature

focuses on the DA algorithm as it relates to the school choice problem (e.g. Chen
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and Sönmez, 2006; Ding and Schotter; Featherstone and Niederle, 2014; Pais and

Pintér, 2008). In these studies, strategic agents exist only on the proposing side of

the market. There has been relatively little experimental work done on the strategies

pursued by the receiving side of the market.10 This is an important gap to fill: only

the receivers in the DA algorithm face substantive strategic questions. In addition,

their ability to behave strategically - either in isolation or as a group - can have large

effects on market outcomes and participants’ welfare.11

Our work is most closely related to Featherstone and Mayefsky (2014), which to

the best of our knowledge is the only laboratory experiment studying the DA al-

gorithm to automate the proposing side of the market in order to focus exclusively

on the strategies pursued by the receiving side. They interpret “out-of-equilibrium

truth-telling” as a reason for the success and persistence of the DA mechanism despite

being manipulable in theory. However, our paper departs from their design in that we

introduce a novel experimental framework with which to study truncation strategies.

The advantage of our approach lies in the fact that, by studying a restricted version

of the same problem, we have created an environment in which some form of trunca-

tion is always a best response. Although our work addresses the optimal truncation

problem in a complete information environment, it can also be viewed in the same

spirit as Roth and Rothblum (1999), which addresses the question of what practical

advice can be given to market participants in the context of a centralized matching

clearinghouse based on the DA algorithm. They show that any non-truncation strat-

egy is stochastically dominated by a truncation strategy in symmetric, incomplete

10Existing studies, however, report high rates of truth-telling by receivers (Echenique, Wilson,
and Yariv, 2014; Featherstone and Mayefsky, 2014; Harrison and McCabe, 1989).

11However, it should be noted that “core convergence” results for large matching markets imply
that there is limited scope for strategic behavior in this context. We will return to this issue when
discussing the implications of our main findings.
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information environments.12

A critical question that remains is whether truncation behavior has theoretical or

empirical relevance. While the literature on “core convergence” suggests that there is

little scope for strategic misrepresentation in large markets (Immorlica and Mahdian,

2005; Kojima and Pathak, 2009; Lee, 2014), there are important qualifications to

these results. Coles and Shorrer (2014), for instance, show that while the utility gain

from optimal truncation may be small, the optimal degree of truncation can still

remain quite large. In fact, when an agent has uniform beliefs regarding the reported

preferences of others, the optimal truncation approaches 100% of her list as the size

of the market grows.13

The paper is organized as follows. Section 2 provides theoretical background,

Section 3 describes our experimental design, Section 4 presents results, and Section

5 discusses broader implications and concludes.

2 Theory

In this section, we introduce the theoretical framework that informs our experimental

design. We first review some basic results from two-sided matching theory that are

necessary for this purpose. For a more detailed survey, see Roth and Sotomayor

(1992).14 Consider two finite, disjoint sets M and W , where M is the set of men

and W is the set of women. Each agent has complete and transitive preferences

over the agents on the other side of the market (as well as remaining single). The

preferences of man m will be represented by an ordered list of preferences P (m) on

12Ehlers (2008) generalizes this result from deferred acceptance mechanisms to a much larger class
of mechanisms.

13“Uniform beliefs” refers to the case where an agent believes that the reported preferences of
others are chosen uniformly and randomly from the set of all possible full-length reported preference
lists.

14Proofs of most of the cited results can be found there.
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the set W ∪ {m}. Similarly, the preferences of woman w will be represented by an

ordered list of preferences P (w) on the set M ∪ {w}. We write w �m w′ to denote

that m prefers w to w′, and w �m w′ to denote that m likes w at least as much as w′.

Similarly, we can write m �w m
′ and m �w m

′. Woman w is said to be acceptable to

man m if he likes her at least as much as remaining single (i.e., w �m m). Similarly,

m is acceptable to w if m �w w.

Let P denote the set of all preferences, one for each man and one for each woman.

A marriage market is denoted by the triplet (M,W,P). A matching is a function

µ : M ∪W −→M ∪W such that

1. for any m ∈M , µ(m) ∈ W ∪ {m}

2. for any w ∈ W , µ(w) ∈M ∪ {w}

3. for any m ∈M , w ∈ W , µ(m) = w if and only if µ(w) = m

Throughout the analysis, we also distinguish between market-wide matchings (repre-

sented by µ) and a given individual’s match partner. For woman w at the matching µ,

her match partner is represented by µ(w). For each individual, their preference over

two alternative matchings corresponds exactly to their preference over their match

partners at the two matchings.

A matching µ is individually rational if every individual is matched to an

acceptable partner. A pair of agents (m,w) is said to block a matching µ if they are

not matched to one another at µ but they prefer each other to their assignments at

µ (i.e., w �m µ(m) and m �w µ(w)). A matching µ is stable if it is individually

rational and not blocked by any pair of agents. A stable matching is called an M-

optimal stable matching (denoted µM) if every man likes it at least as well as any

other stable matching. A W-optimal stable matching can be defined analogously
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(denoted µW ). The M-optimal stable matching is thus the “best” stable matching

for the men and the W-optimal stable matching is the “best” stable matching for

the women. A man m and a woman w are said to be achievable for each other

in a marriage market (M,W,P) if they are matched to each other at some stable

matching. For woman w, µW (w) is her most preferred achievable partner.

Gale and Shapley (1962) proved the following result:

Theorem 1: A stable matching exists for every marriage market.

In their constructive proof of the existence of stable matchings, Gale and Shapley

(1962) developed a “deferred acceptance” procedure that produces one of the two

extremal stable matchings for any preference profile. In their algorithm, the market

is divided into two groups: “men” (proposers) and “women” (receivers). Initially,

all the men and women are unmatched. The algorithm then goes through several

stages where men and women take turns in making decisions. In a generic stage,

each unmatched man makes an offer to his most preferred woman among the set of

women that he has not previously made an offer to. Each woman then views all the

offers she has received in that stage and tentatively accepts her most preferred offer

among the new offers and any tentatively accepted offer that she is still holding from

a previous stage. The algorithm ends when there are no men left to make offers. This

can happen because (1) all men are matched or because (2) the only unmatched men

have already been rejected by all of the women. The tentative matches that are in

place when the algorithm ends become the final matches. This leads directly to the

following result:

Theorem 2: When all men and women have strict preferences, there always ex-
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ist an M-optimal stable matching and a W-optimal stable matching. The matching

produced by the deferred acceptance algorithm with men proposing is the M-optimal

stable matching. The W-optimal stable matching is the matching produced by the al-

gorithm when the women propose.

A related result, often referred to as the “lone wolf” theorem, will prove useful later

in our analysis:

Theorem 3: In a market (M,W,P) with strict preferences, the set of people who

are single is the same for all stable matchings.

To examine the strategic issues involved in two-sided matching markets, we ana-

lyze the preference-revelation game in which each man m with preferences P (m) is

faced with the strategy choice of what preference ordering Q(m) to state, and like-

wise for the women. Denote the set of stated preference lists, one for each man and

one for each woman, by Q. The mechanism then computes a matching µ = h(Q),

where h is the function that maps any set Q of stated preferences into a matching.

A mechanism h that for any stated preferences Q produces a matching h(Q) that is

stable with respect to the stated preferences is called a stable mechanism. If h(Q)

produces the M-optimal stable matching with respect to Q, then h is called the M-

optimal stable mechanism. The next theorem highlights an important negative result:

Theorem 4: No stable matching mechanism exists for which stating the true prefer-

ences is a dominant strategy for every agent.

However, it is possible to arrange the market in such a way that only one side faces
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strategic questions. This is summarized by the following theorem:

Theorem 5: The M-optimal stable mechanism makes it a dominant strategy for

each man to state his true preferences.

Combining these results suggests that, under the M-optimal stable mechanism, it

is the women who will sometimes have a profitable deviation by misrepresenting their

true preferences. This is formalized below:

Corollary 1: When preferences are strict and the M-optimal stable mechanism is

employed, there will be an incentive for some woman to misrepresent her preferences

whenever more than one stable matching exists.

Consider a marriage market characterized by (M,W,P) in which preferences are

strict and there is more than one stable matching. Let µM denote the M-optimal

stable matching and µW denote the W-optimal stable matching under the true pref-

erences P. With slight abuse of notation, we denote the last man on the preference

list P (w) of woman w by P (w). Furthermore, we confine attention to markets in

which each agent prefers being married to remaining single (all men are acceptable to

all women and vice versa) and |M | = |W |. Without loss of generality, the theoretical

results below are framed in terms of the incentives facing the women in the revelation

game induced by the man-proposing deferred acceptance algorithm. A symmetric

argument holds for men when the woman-proposing deferred acceptance algorithm is

used.

We will find it useful to define two classes of strategies for the women in this

market:
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Definition 1: A truncation of a preference list P (w) containing k acceptable men

is a list P ′(w) containing k′ ≤ k acceptable men such that the k′ elements of P ′(w)

are the first k′ elements of P (w), in the same order.

Definition 2: A manipulation of a preference list P (w) is any list that is not

a truncation of P (w).

A truncation strategy involves misrepresenting your preferences by shortening the

list of acceptable matches without changing their order. For convenience, we allow

for truth-telling to trivially satisfy the definition of a truncation strategy. A manipula-

tion strategy involves misrepresenting preferences by changing the order of preference

between at least two men (regardless of the length of the list). We now define three

particular types of truncation strategies that are central to our analysis:

Definition 3: An over-truncation of a preference list P (w) is a truncation of

P (w) that does not contain µW (w), the most preferred achievable partner of woman

w.

Definition 4: Optimal truncation of a preference list P (w) is a truncation of

P (w) that contains µW (w) but does not contain any men who are ranked below

µW (w).15

Definition 5: An under-truncation of a preference list P (w) is a truncation of

15To be clear, it is still possible for an agent to achieve the optimal equilibrium result (being
matched to her most preferred achievable partner) without optimal truncation. However, it is
convenient to define optimal truncation in this manner.
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P (w) that contains µW (w) but also contains at least one man who is ranked below

µW (w).

By submitting a truncated preference list, an agent is effectively telling the mech-

anism to play a threshold strategy on her behalf (i.e., to reject all offers below a

certain cutoff). With truncation, agents face a balance of risks: the likelihood of re-

maining unmatched increases, while conditional on matching the likelihood of being

matched to a more favorable partner increases. The risks associated with truncation

can arise from two sources: over-truncation and uncertainty regarding other agents’

actions. This is a subtle point that deserves clarification. Optimal truncation requires

an agent to possess a great deal of information on the preferences of other agents and

the ability to calculate or otherwise identify her most preferred achievable partner. A

mistake in this calculation could result in over-truncation. If an agent over-truncates,

then this opens up the possibility of remaining unmatched.16

However, even if an agent is able to correctly identify her most preferred achievable

partner and then truncate optimally, it is still possible for her to remain unmatched

depending on the actions of other agents. If other agents distort their preferences in

a manner that changes the set of stable outcomes, then it is possible for a particular

woman to be optimally truncating with respect to the true preferences but over-

truncating with respect to the stated preferences. This naturally leads to the question

of what restrictions need to be placed on other agents’ strategies to prevent this from

happening.

In the context of the man-proposing deferred acceptance algorithm, we can now

state and prove the following results: Consider a marriage market in which prefer-

16An agent who over-truncates is hurting herself but is also helping the other agents on her side
of the market. Thus, even with over-truncation, it is possible for an agent to be matched if at least
one other agent over-truncates.
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ences are strict and there is more than one stable matching. Suppose that |M | = |W |

and all men are acceptable to all women (and vice versa). Let Q be a profile of stated

preferences in which each man states his true preferences, and each woman w states

a list Q(w) that constitutes a truncation of P (w) but not an over-truncation. Then

the following statements are true:

1. No woman w will remain single.

Proof. See Appendix A.

2. The set of stable matchings under Q is a subset of the set of stable matchings

under P.

Proof. See Appendix A.

3. Each woman w can truncate in such a way as to be matched to µW (w), her

most preferred achievable partner under the true preferences P.

Proof. See Appendix A.

If we do not restrict attention to Nash equilibrium strategy profiles (and hence

permit outcomes that are unstable with respect to the agents’ true preferences), we

can make an even stronger statement regarding the conditions under which it is

advisable for an individual agent to play a truncation strategy. This is formalized

in the following proposition: Consider a marriage market in which preferences are

strict and there is more than one stable matching. Suppose that |M | = |W | and all

men are acceptable to all women (and vice versa). Let Q be a set of preferences in

which each man states his true preferences, and each woman in W \ {w} states a list

that is not a manipulation of her true preferences. Then woman w can truncate her
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preference list in such a way as to be matched to a man she likes at least as much as

µW (w), her most preferred achievable partner under the true preferences P.17

Proof. See Appendix A.

An alternative characterization of Proposition 2 is as a dominant-strategy result

for a modified matching game with a pruned strategy space. Suppose a woman found

herself playing the preference-revelation game induced by the man-proposing DA

algorithm. Suppose further that the woman knew the identity of her most preferred

achievable partner. Would it be advisable for this woman to truncate her preferences

by leaving off all men ranked below her most preferred achievable partner? In general,

the answer to this question would depend on the woman’s risk attitudes and beliefs

about other agents’ actions. However, Proposition 2 provides the conditions on other

players’ strategies such that the answer to this question is unambiguously yes.

Proposition 2 is at the heart of our experimental design. Our environment con-

tains automated, truthful proposers and also constrains the set of strategies that are

available to receivers. This approximation of a decision-theoretic setting allows us to

conveniently test for truncation behavior without worrying about the need to coor-

dinate behavior with other agents and the heterogeneity of beliefs over other agents’

actions. As detailed in the next section, our experimental design systematically ma-

nipulates the profitability of truncation (i.e., the magnitude of the monetary gain from

truncation) and the riskiness of truncation (i.e., the likelihood of over-truncation).

There are two points worth emphasizing. First, we should only expect behav-

ioral agents to be responsive to the magnitude of the monetary gain from truncation

and the likelihood of over-truncation. Sophisticated agents who have the ability to

calculate the set of stable outcomes should only be responsive to the existence of a

17This proposition is a straightforward extension of a result from Gale and Sotomayor (1985).
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profitable strategic opportunity: they should (optimally) truncate their preferences

only if they have more than one achievable partner. Second, these features that we

identify are only relevant under the conditions imposed in our experiment. If an agent

faces strategic uncertainty about the actions of other agents, then these notions lose

much of their value. For instance, it could be the case that an agent is optimally

truncating with respect to the true preferences but over-truncating with respect to

the stated preferences.

In the context of our experiment, we can now cast the following hypotheses:

Hypothesis 1: Truncation behavior will be increasing in the profitability of trun-

cation.

Hypothesis 2: Truncation behavior will be decreasing in the riskiness of trunca-

tion.

3 Experimental Design

In the experiment, the two sides of the market are labeled “firms” (proposers) and

“workers” (receivers). Each experimental market consists of four subjects. Each

experimental session contains either one or two parallel experimental markets (thus

each session consists of either four or eight subjects). The roles of the firms are

automated: they are programmed to play their dominant strategy of truth-telling.

Fixing the behavior of firms in this fashion is necessary in order to test our main

proposition. Each subject is randomly assigned to the role of one of the four workers.

Their assigned role remains the same throughout the experiment.

Upon arriving at the lab, subjects read and sign an informed consent document.
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The experimenter then reads aloud the experimental instructions.18 Before the ex-

periment begins, each subject is required to work through a demonstration of the

DA algorithm and answer relevant questions. We use a hypothetical set of reported

preferences that includes examples of both truth-telling and truncation. To secure

comprehension, we do not proceed with the actual experiment until all the subjects

complete the demonstration and answer the questions correctly. The relevant screen

shots from the demonstration are included in Appendix B.

Subjects play 10 rounds of the preference-revelation game induced by the firm-

proposing DA algorithm. In each round, subjects observe the payments that they

(and the other subjects) will receive from matching with the different firms. They

also observe the order in which the firms will be making offers to match with the

workers in the DA algorithm. The action that subjects take in each round is to

choose which message (i.e., ranking of the firms) to submit to the computer to be

used in the matching process.19 Subjects are required to spend a minimum of three

minutes on this task in each round: if all subjects are done sooner than that, they

still have to wait until the full three minutes have elapsed. A representative screen

that subjects face during the experiment is shown in Figure 1.

At the end of each round, subjects are informed of the identity of their match

partner and their payoff for that round. While each subject’s role remains the same

throughout the 10 rounds, each round corresponds to a different matching market

(i.e., the agents are endowed with a different set of preferences). The particular

preference profiles used in the experiment are included in Appendix C. At the end of

the experiment, 1 of the 10 rounds is randomly selected and subjects are paid based

18The full set of instructions is included after the appendices.
19Importantly, the terminology of “preferences” is never used in the experimental instructions

or the experimental interface. Subjects’ true preferences are referred to as payments and subjects’
reported preferences are referred to as submitted messages or rankings. This caution was taken to
reduce experimenter demand effects.
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Figure 1: An example of our experimental interface. This is the screen that WORKER
A observes in Round 1 of the experiment.

on their match partners in that round (in addition to a fixed $5 show-up payment).20

Matched subjects earn anywhere from $5 to $20 in increments of $5 (depending on

whether they matched with their most preferred, second most preferred, third most

preferred, or least preferred firm). Unmatched subjects earn $0 for that round.

Proposition 2 establishes the optimality of truncation when other workers refrain

from manipulating their preferences (i.e., they do not switch their order of preference

between firms). In that sense, strategic behavior in the context of the DA algorithm

can be viewed as a coordination problem: a worker can best-respond by truncat-

ing her preferences only if other workers are also truncating (or truth-telling). In

20The choice of payment procedure is still an open question in the field of experimental economics.
Advantages and disadvantages of competing approaches, and the theoretical conditions under which
they can be justified, are discussed in Azrieli, Chambers, and Healy (2014).

69



Table 1: Our within-subject experimental design varies the strategic incentives that
subjects face in terms of the profitability and riskiness of truncation.

risky not risky
not profitable P (w) = f2, f4, f1, f3

∗ P (w) = f2
∗, f4, f1, f3

profitable P (w) = f2, f4
∗, f1

∗, f3 P (w) = f2
∗, f4

∗, f1
∗, f3

∗

our experiment, we solve this coordination problem by restricting subjects to either

truth-telling or truncation. Thus, in our 4x4 experimental markets, each subject has

four pure strategies. Their decision problem consists of choosing the length of their

submitted rank-order list.21 Subjects who attempted to submit a manipulation of

their preferences or who left an empty position in the middle of their rank-order list

received appropriate error messages on their screens.

However, even controlling for the behavior of other agents, optimal truncation

is still a practical challenge. For an agent to optimally truncate, it requires (1) the

ability to identify the existence of a profitable strategic opportunity and (2) the ability

to identify her most preferred achievable partner. Having controlled for other agents’

behavior, the only risk associated with truncation in our experiment is the possibility

of over-truncation (which could result in remaining unmatched). We use a within-

subject experimental design to investigate whether truncation behavior is correlated

with the profitability and riskiness of truncation.

By profitability, we refer to the ordinal distance between a worker’s most pre-

ferred and least preferred achievable firms in her preference list (i.e., the span of the

core).22 If a worker has a unique achievable firm, then truncation can do no better

21The same number of mouse clicks was required to submit a rank-order list, regardless of length.
This was done to ensure that subjects do not perceive truncation to be (marginally) more convenient
or easier than truth-telling.

22This measure is distinct from the number of achievable partners that an agent has. Rather, it
can be thought of as a measure of the potential monetary gain from optimal truncation compared
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- and in fact can do worse - than truth-telling. If a worker has multiple achievable

firms, then her optimal strategy is to submit a truncation of her true preferences by

leaving off all firms that are ranked below her most preferred achievable firm.23

By riskiness, we refer to the ranking of a worker’s most preferred achievable firm

in her preference list. If a worker’s most preferred achievable firm coincides with her

most preferred firm overall, then there is no possibility of mistakenly over-truncating.

On the other hand, if a worker’s most preferred achievable firm coincides with her

least preferred firm overall, then any truncation is an over-truncation and carries with

it the possibility of remaining unmatched.

Table 1 illustrates how our within-subject experimental design systematically

varies the profitability and riskiness of truncation. Note that the worker’s achiev-

able firms are denoted by asterisks (*) in her preference list. In the top left box of

Table 1, it is both unprofitable and risky for worker w to submit a truncation of her

true preferences. There is a unique achievable firm (so there is no benefit to misrep-

resenting preferences) and furthermore any truncation will be an over-truncation. In

the bottom right box of Table 1, it is both profitable and risk-less for worker w to

truncate her preferences. By truth-telling, worker w will be matched to firm f3, but

by optimally truncating her preferences worker w will be matched to firm f2.24 Since

her most preferred achievable firm is also her most preferred firm overall, there is no

chance of mistakenly over-truncating and remaining unmatched.

For convenience, we define indices for profitability and riskiness that we refer

to throughout the remaining analysis. We measure the profitability of truncation

to truth-telling.
23In fact, any truncation that does not include a worker’s second most preferred achievable firm

will yield the same result. Thus, there is no unique optimal truncation strategy in certain markets.
24These statements assume that all other workers submit their true preferences. If other workers

are truncating, this can sometimes result in worker w being matched to a more favorable partner
than f3 even if she behaves truthfully. In other words, truncation behavior in this environment has
positive externalities.
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Figure 2: The payoff difference between truth-telling and optimal truncation across
rounds of the experiment.
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on an integer scale from 0-3, representing the ordinal distance between an agent’s

most preferred and least preferred achievable partners in her preference list. For a

worker with a unique achievable firm, the profitability of truncation is thus coded

as a “0”. Similarly, we measure the riskiness of truncation on an integer scale from

1-4, representing the ranking of an agent’s most preferred achievable partner in her

preference list. For a worker whose most preferred achievable firm coincides with her

most preferred firm overall, there is no possibility of over-truncation and the riskiness

of truncation is coded as a “1”.

Another characterization of profitability is given in Figure 2, which presents the

payoff difference between truth-telling and optimal truncation across all experimental

rounds. This difference is calculated under the assumption of truthful reporting by

all other subjects. However, calculating the optimal truncation strategy is a difficult

problem. It is natural to ask how profitability is perceived by a naive agent who

chooses a truncation level (corresponding to a “cut point” in her preferences) and

plays it consistently throughout all experimental rounds. Appendix D shows the

expected payoffs in the experiment for this hypothetical subject in different roles.25

Even for a subject who does not optimally best-respond, the strategic tension is

apparent: on average, truncation will increase a subject’s payoff up until the most

extreme truncation strategy. Thus, our experimental design allows for significant

amounts of truncation to be profitable and for the gains from truncation to be realized

by naive agents.

Clearly, the measures that we use for profitability and riskiness are correlated. In

fact, approximately 31% of the variability in the profitability index is shared with

the riskiness index in our experimental markets. When discussing the results, we will

25As before, the expected payoff is calculated under the assumption of truthful reporting by all
other subjects.
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Figure 3: Distribution of the number of truthful reports.

use regression analysis to tease out the effects of the variables in isolation. However,

a strength of our experimental design lies in the fact that profitable and risk-less

opportunities for truncation are not clustered near the beginning nor end of the ex-

periment, but rather are spread uniformly throughout. Appendix D lists key features

of the markets in the order that they are presented to subjects.

Experiment Implementation

The experimental sessions were conducted from June-October 2014 at the ICES Ex-

perimental Economics Laboratory of George Mason University. A total of 92 subjects

participated in the experiment. Experimental subjects were recruited via email from a

pool of George Mason University undergraduates who had all previously registered to

receive invitations for experiments. Each experimental session lasted approximately

90 minutes. Subject payments ranged from $5 to $25 (including a $5 show-up pay-

ment). The experiment was programmed and conducted with the software z-Tree
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(Fischbacher, 2007).

4 Experimental Results

The rest of this section proceeds as follows. We begin by analyzing individual behav-

ior, and then move on to market-level outcomes.

Individual Behavior

We first analyze the basic decision of whether to report preferences truthfully or to be-

have strategically (i.e., truncate preferences). We find that truth-telling is common in

our experimental markets: 56% (511/920) of submitted rank-order lists coincide with

agents’ true preferences. Since subjects have four pure strategies, uniformly random

behavior would imply a truth-telling rate of 25%. We find that truth-telling occurs

significantly more often than random chance would predict (χ2(1) = 457.740, p-value

< 0.001). Each individual subject submits a total of 10 rank-order lists throughout

the experiment (one for each experimental round). Figure 3 shows the distribution

of the number of truthful rank-order lists in our experimental data. Twenty-seven

percent (25/92) of subjects consistently reported their true preferences; the remaining

subjects truncated their preferences in at least one round.

A natural question that emerges from this analysis is whether subjects become

more strategic with market experience. Figure 4 shows truncation rates across the

rounds of the experiment. We use an extension of the Wilcoxon rank-sum test to non-

parametrically test for any trend in truncation rates across experimental rounds. We

find that truncation rates systematically increase across the rounds of the experiment

(z = 5.090, p-value < 0.001).26

26It should be noted that the incentive to truncate does not exist in all experimental rounds.
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Figure 4: Truncation rates across the rounds of the experiment.

Tables 2 and 3 show a more detailed breakdown of the strategies found in our

experimental data. Table 2 shows the breakdown according to the length of the sub-

mitted rank-order list (i.e., how many firms were included in the ranking), while Table

3 shows the breakdown according to the degree of truncation (i.e., over-truncation,

optimal truncation, and under-truncation). For this latter purpose, it is convenient

to classify all strategies as either over-truncation, optimal truncation, or under-

truncation.27 In both tables, we include the distribution of strategies derived from

random behavior (i.e., if subjects were to randomize uniformly among their four pure

strategies) alongside the distribution from our experimental data. When comparing

the empirical distribution with the random distribution, we find a significant dif-

However, this result is unchanged when we confine attention to cases where the span of the core is
non-zero (z = 4.270, p-value < 0.001).

27If an agent’s unique achievable partner is ranked last in her preferences, then truth-telling
qualifies as optimal truncation. In all other cases, truth-telling constitutes under-truncation.
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Table 2: Distribution of subjects’ strategies (based on the length of the submitted
rank-order list). The distributions from both the experimental data and derived from
uniformly random behavior are included.

Frequency Percent Random Percent
1 Firm 99 10.76 25.00
2 Firms 165 17.93 25.00
3 Firms 145 15.76 25.00
4 Firms 511 55.54 25.00
Total 920 100 100

Table 3: Distribution of subjects’ strategies (based on the degree of truncation). The
distributions from both the experimental data and derived from uniformly random
behavior are included.

Frequency Percent Random Percent
Over-Truncation 30 3.26 18.75

Optimal Truncation 247 26.85 25.00
Under-Truncation 643 69.89 56.25

Total 920 100 100

ference for both cases (Table 2: χ2(3) = 467.7, p-value < 0.001; Table 3: χ2(2) =

149.410, p-value < 0.001). The entire difference comes from experimental subjects

behaving more conservatively: the rate of the most extreme truncation strategy (only

one ranked firm) is 57% less than random behavior would dictate and the rate of

over-truncation is 83% less than random behavior would dictate.

We now examine whether strategic behavior is sensitive to considerations of prof-

itability and riskiness. For the remainder of our analysis, we differentiate truncation

from truth-telling. In other words, a truncation is observed whenever an agent’s

submitted rank-order list contains strictly less than four firms. Figure 5 shows the
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Figure 5: Proportion of truncation according to the profitability and riskiness of
truncation.

proportions of truncation in varying environments of profitability and riskiness.28 We

find that there is a statistically significant relationship between truncation and both

measures (profitability: χ2(3) = 23.025, p-value < 0.001; riskiness: χ2(3) = 45.876,

p-value < 0.001). Furthermore, non-parametric trend tests show that truncation is

increasing in profitability and decreasing in riskiness (profitability: p-value < 0.001;

safety: p-value < 0.001).

We estimate an OLS regression model of a dummy variable for truncation on

relevant market features: the index for profitability (0-3), the index for riskiness (1-

4), and the round of the experiment (1-10).29 We find that the riskiness of truncation

and market experience are the only significant predictors of truncation. In particular,

moving the most preferred achievable firm down one rank in preference decreases

28Since profitability and riskiness are correlated, a more illuminating 3-D graph of the sensitivity
of truncation to strategic incentives is shown in Appendix D. The “holes” in the graph to the right of
the main diagonal correspond to profitability-riskiness ordered pairs that are impossible to construct
in 4x4 matching markets.

29The OLS regression results are shown in Table 4. By using individual-specific fixed effects, our
estimation rules out the effects of “naive” truncators who are playing identical strategies in each
round.
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the probability of truncation by 0.11 and an additional round of market experience

increases the probability of truncation by 0.3. We also estimate probit and conditional

logit regression models of the dummy variable for truncation on the same set of

regressors.30 The main results remain unchanged. The coefficient estimates for both

the riskiness of truncation and the round of the experiment are still significant in the

directions predicted by theory.

We conduct several checks for the robustness of our results. First, we replace

our index for profitability with a dummy variable for situations where truncation is

profitable (i.e., whenever an agent has more than one achievable partner). Even if

agents are not responsive to the magnitude of the monetary gains from truncation,

it is possible that they are responsive to the existence of a profitable strategic oppor-

tunity. We find that profitability measured in this manner is also not significant at

conventional levels.

Second, we add an “average rank” variable to the regressions. For a particular

worker in a given market, average rank is defined as the average of the ordinal position

of that worker in the firms’ preference lists. Thus, average rank would be “1” for a

worker who is ranked first by all of the firms and “4” for a worker who is ranked last

by all of the firms. Since determining the riskiness of truncation according to our

measure requires that a worker have knowledge of the identity of her most preferred

achievable firm, average rank has appeal as a plausible heuristic that agents might

instead use in this setting. We find that the coefficient estimate on average rank

is only significant for the OLS regression specification. However, the significance of

riskiness as a predictor of truncation behavior still remains.

We also explore the possibility of an alternative heuristic. If a worker is ranked

first by a particular firm, then the worker can secure that match as a lower bound

30The probit and conditional logit regression results are included in Appendix D.
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Table 4: The table reports results from OLS regressions with individual-specific fixed
effects.

(1) (2) (3) (4)
VARIABLES Truncation Truncation Truncation Truncation

Profitability 0.00728 0.0251 0.00370
(0.0125) (0.0158) (0.0165)

More than one achievable partner 0.0362
(0.0334)

Riskiness -0.110*** -0.105*** -0.0722*** -0.115***
(0.0155) (0.0157) (0.0225) (0.0222)

Average rank in firms’ preferences -0.0485*
(0.0274)

Ranked first by top three -0.0121
(0.0369)

Round of the experiment 0.0304*** 0.0303*** 0.0299*** 0.0299***
(0.00576) (0.00578) (0.00571) (0.00546)

Constant 0.460*** 0.437*** 0.495*** 0.481***
(0.0435) (0.0464) (0.0484) (0.0686)

Observations 920 920 920 920
Number of individuals 92 92 92 92

Robust standard errors are shown in parentheses.
*** p<0.01, ** p<0.05, * p<0.1

by including the firm in her reported preference list. This implies that if a worker

is ranked first by one of her top three firms, then it is safe to exclude her least

preferred firm from her reported preference list. To test whether this line of reasoning

is predictive of truncation in our experimental data, we add a dummy variable for

whether a worker is ranked first by one of her top three firms. For all regression

specifications, the coefficient estimate on this dummy variable is not significant while

the significance of our riskiness measure remains.

Finally, we investigate whether the degree of truncation is responsive to the strate-

gic incentives that we identify. For this purpose, we estimate an ordered logit regres-

sion model of the number of firms included in an agent’s submitted rank-order list

on the same set of regressors.31 We find that the round of the experiment and the

31Results from the ordered logit regression are shown in Table 5. We exclude the dummy variable
for whether a worker is ranked first by one of her top three choices since that line of reasoning would
not capture any truncation beyond the fourth choice.
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Table 5: The table reports results from ordered logit regressions.

Dependent Variable: Number of Firms in Submitted List (1) (2) (3)
VARIABLES

Profitability 0.130** 0.0870
(0.0543) (0.0682)

More than one achievable partner 0.117
(0.164)

Riskiness 0.736*** 0.671*** 0.647***
(0.0965) (0.0918) (0.124)

Average rank in firms’ preferences 0.126
(0.139)

Round of the experiment -0.160*** -0.159*** -0.159***
(0.0252) (0.0250) (0.0251)

Observations 920 920 920
Standard errors are shown in parentheses and are clustered at the individual level.

*** p<0.01, ** p<0.05, * p<0.1

rank of the most preferred achievable firm matter once again. Surprisingly, we now

also have that increasing the monetary gains from truncation makes subjects slightly

more likely to lengthen their submitted rank-order lists. This finding is the opposite

of what theory predicts. However, the significance of profitability disappears both

when average rank is included in the regression and when our index for profitability

is replaced with a dummy variable. The other findings remain unchanged in these

alternative specifications.

Aggregate Outcomes

Stability is the norm in our experimental markets: 88% (203/230) of final outcomes

are stable. Assuming uniformly random behavior by subjects, only 51% of final

outcomes are expected to be stable. The high incidence of stability in our data

is due to the fact that over-truncation is the only way to observe instability. As

shown earlier, over-truncation is rare in our experiment. Three percent (30/920) of

submitted preference lists constitute over-truncation and this occurs in 27 of the 230
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markets. Table 6 shows a more detailed distribution of the stability of final outcomes.

The worker-optimal stable matching arose in 24% (56/230) of markets, suggesting a

limited ability on the part of our experimental subjects to play the “right” kind of

truncation strategy.

To make welfare statements about the two sides of the market, we need a mean-

ingful way to measure the “distance” from an observed outcome in our experimental

data to a particular stable outcome. To that end, we first define a metric for the space

of all matchings. Let M denote the set of all matchings and let W denote the set of

all workers. Consider an arbitrary matching µ ∈M and an arbitrary worker w ∈ W .

Define F (µ(w)) as the position of µ(w) in the ordinal preference list of worker w. If

w is matched to her most preferred firm at µ, then F (µ(w)) = 1. If w is matched to

her least preferred firm at µ, then F (µ(w)) = 4. For simplicity, if w is unmatched

we let F (µ(w)) = F (w) = 5. Thus, |F (µ(w))− F (µ′(w))| is the absolute distance in

ranking between µ(w) and µ′(w) according to the preferences of worker w. We can

then define the distance from µ to µ′ as the sum of this measure for all the workers

in the market. More formally, the distance d :M×M −→ <+ between two match-

ings µ and µ′ is defined as d(µ, µ′) =
∑

w∈W |F (µ(w))− F (µ′(w))|. Intuitively, we

are defining the distance between two outcomes as the sum of the absolute distance

between each worker’s match partners at those outcomes (according to the worker’s

ordinal preferences).

Figure 6 shows the distances to the worker-optimal and firm-optimal stable match-

ings across all experimental markets. According to our metric, the average distance

to the worker-optimal stable matching is 2.16 and the average distance to the firm-

optimal stable matching is 3.42. We find that final outcomes are significantly closer

to the worker-optimal stable matching than to the firm-optimal stable matching (one-

sided t-test, p-value < 0.001). However, this result should be interpreted with caution:
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Table 6: Distribution of final outcomes.

Frequency Percent
Firm-Optimal Stable 48 20.87

Worker-Optimal Stable 56 24.35
Intermediate Stable 60 26.09

Unique Stable 39 16.96
Unstable 27 11.74

Total 230 100

it is not due to the fact that a majority of agents optimally truncates its preferences.

In this context, truncation behavior has positive externalities: non-strategic agents

can benefit from other agents’ truncation behavior. Thus, the worker-optimal stable

matching can be observed if even a small subset of agents optimally truncates its

preferences.

5 Discussion and Conclusion

The paper investigates the ability of agents to strategically misrepresent their prefer-

ences in two-sided matching markets. We use a controlled laboratory experiment that

allows us to construct environments that are conducive to truncation behavior. We

find that subjects do not truncate their preferences more often when it is profitable

to do so. They do, however, truncate less often when it is dangerous (i.e., when there

is a risk of “over-truncating” and remaining unmatched).

Our results suggest that agents in matching markets may respond to strategic

incentives, but not necessarily in the ways that are predicted by theory. In particular,

this implies that eliminating profitable opportunities for strategic behavior might not

be sufficient to induce participants to reveal their true preferences. In other words,
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Figure 6: Distributions of the distances to the worker-optimal and firm-optimal stable
matchings.

just as agents can fail to recognize profitable strategic opportunities, they can also fail

to recognize the lack of profitable strategic opportunities.32 Our work also highlights

the importance of understanding behavioral biases and heuristics when designing

matching markets. In fact, for the proposing side of the market, it has been shown

that the DA algorithm already possesses protective features that bound the losses of

agents who behave sub-optimally (Rees-Jones, 2014). However, more work needs to

be done to understand the extent to which this tolerance of behavioral faults applies

to the receivers in the DA algorithm.

An open question remains as to the efficacy of strategic behavior in this context.

We argue that the ability of agents to engage in strategic behavior is important

because it affects equilibrium selection - and hence welfare - in these environments.

However, there is both computational and theoretical evidence suggesting otherwise.

In May 1997, the NRMP transitioned from the hospital-proposing version of the

DA algorithm to the student-proposing version. When analyzing the data from the

32Relatedly, there is evidence that proposers also misunderstand the incentives in the DA algorithm
and engage in suboptimal behavior (Echenique et al., 2014; Rees-Jones, 2014).
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NRMP transition, it has been shown that very few participants would have received

different matches from the two algorithms. This has been cited as evidence of the

fact that the set of stable matchings is small (Roth and Peranson, 1999).33 As a

consequence, it is argued that there is little room for strategic misrepresentation of

preferences in this environment.

However, the comparison of match outcomes in the NRMP transition is based

on agents’ submitted rank-order lists and not on their underlying preferences. If

the students were optimally truncating their preferences in the original NRMP, then

reversing the roles in the DA algorithm (with the same set of reported preferences)

would still produce the student-optimal stable outcome. Moreover, there is evidence

suggesting that the submitted rank-order lists differ substantially from the underlying

preferences. Echenique et al. (2014) note the high incidence of matches between

residents and their top-ranked hospitals. This suggests that either preferences have a

strong negative correlation in this market, or more likely that the stated preferences

are different from the true preferences. Thus, the span of the core might be small for

the stated preferences but not for the true preferences.

Even if the theoretical incentives to behave strategically vanish in larger markets

(Immorlica and Mahdian, 2005; Kojima and Pathak, 2009; Lee, 2014), survey data

from the field suggests that strategic behavior still persists. In March 2014, the

NRMP surveyed the directors of all programs participating in the residency match.34

Across all specialties, the average number of applicants interviewed was 96 and the

average number of applicants ranked was 77. It should be noted that this is merely

33In a field setting such as the NRMP, the set of stable matchings can plausibly be small for several
reasons. First, there might be a high degree of positive correlation in agents’ preferences. In the
extreme case of perfect correlation, there is a unique stable matching. Second, there are practical
limits on the number of interviews that can be conducted between hospitals and medical students.
This restriction is at the heart of many of the “core convergence” results.

34The results of the 2014 NRMP Program Director Survey can be found here:
http://www.nrmp.org/wp-content/uploads/2014/09/PD-Survey-Report-2014.pdf
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suggestive of truncation and not definitive evidence. It is quite plausible that in many

of these instances, the residency programs would genuinely prefer to leave a positon

vacant rather than hire a low-quality applicant. The 2013 NRMP Applicant Survey

is more conclusive. When asked about different strategies used in creating their rank-

order lists, 29% of US senior applicants and 53% of independent applicants answered

no to the claim “I ranked all programs that I was willing to attend.”35 This is

particularly surprising since the students have a dominant strategy of truth-telling in

this environment.

The evidence from the field has natural analogues to our experimental data. The

fact that a non-trivial proportion of medical students admit to strategic considerations

speaks again to the idea that agents might be misrepresenting their preferences even

in environments in which it is unprofitable to do so. Similarly, our finding that

subjects take into account the riskiness of truncation suggests that submitted NRMP

lists should be shorter on average for top-ranked residency programs.

Our results also suggest natural directions for future work. We have shown that

truncation behavior has the flavor of a coordination game: optimal truncation can

essentially be reduced to a decision-theoretic problem only if other agents are also

truncating. In our experiment, we overcome the need for coordination by exogenously

imposing a constraint on the strategy space and making the constraint common knowl-

edge. It would be worthwhile to investigate whether agents can endogenously coordi-

nate on truncation strategies in an unconstrained environment and also whether their

truncation behavior depends on the size of the market. In addition to the benefit of

increased ecological validity, this environment also allows for a more direct test of the

empirical content of truncation strategies.

35The results of the 2013 NRMP Applicant Survey can be found here: http://www.nrmp.org/wp-
content/uploads/2013/08/applicantresultsbyspecialty2013.pdf
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Appendix A: Proofs

Proof of Proposition 1(a): Consider µW , the W-optimal stable matching with

respect to the true preferences P. At µW , woman w is matched to µW (w) ∈ M .36

Clearly the matching µW is still individually rational under Q.37 Also, the matching

µW still admits no blocking pairs under Q since there are now fewer possible blocking

pairs. Thus, µW is stable with respect to the stated preferences Q. We can conclude

from Theorem 3 that w must be matched at all stable matchings with respect to

the stated preferences Q. Since the man-proposing deferred acceptance algorithm

produces the M-optimal stable matching with respect to Q, w is matched by the

algorithm.

Proof of Proposition 1(b): Suppose that µ is a stable matching with respect to

the stated preferences Q. Then µ is individually rational and not blocked by any

pair of agents under Q. Clearly, the construction of the preference profile P does not

create any new blocking opportunities. To see this, note that for each man m added

to Q(w) in order to construct P (w), we have that µ(w) �w m.38 Thus, µ is also a

stable matching with respect to the true preferences P.

Proof of Proposition 1(c): Let Q(w) = µW (w). Denote by µ′M the M-optimal

stable matching with respect to the submitted preferences Q. By Proposition 1(a),

we know that woman w will not be single at µ′M . Thus, w has to be matched to a

man she likes at least as much as µW (w). Suppose that w is matched to a man she

36Woman w is not single at µW since |M | = |W | and all men are acceptable to all women (and
vice versa).

37Since no woman is over-truncating, note that µW (w) is included on the list Q(w) for each w.
38Recall that w is not single at µ by Proposition 1(a).
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strictly prefers to µW (w). Denote this man by m. By Proposition 1(b), we know that

µ′M is also stable with respect to the true preferences P. Thus, m is achievable for w

and m �w µW (w). We have now arrived at a contradiction since µW (w) is the most

preferred achievable mate of w. Therefore, w must be matched to µW (w).

Proof of Proposition 2: Suppose that woman w submits a preference list Q(w)

that is a truncation of P (w) such that Q(w) = µW (w). If none of the other women

over-truncates, then woman w will be matched to µW (w) by Proposition 1(c). So

the remaining case to be considered involves at least one of the other women over-

truncating. Without loss of generality, suppose that some non-empty subset T ⊆

W \ {w} over-truncates. Let M ′ = {µW (w′) : w′ ∈ T}. Each man m′ ∈ M ′ is now

available to make offers to other women in the deferred acceptance algorithm. Clearly

woman w can only benefit from the availability of these men. If man m′ now makes

an offer to match with woman w, the algorithm would only accept the offer on the

woman’s behalf if it were the case that m′ �w µW (w).
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Appendix B: Demonstration of the DA Algorithm

Before the experiment begins, all subjects are required to work through a demonstra-

tion of the DA algorithm and correctly answer a series of questions. The relevant

screen shots are shown below (with the correct answers already selected).
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Appendix C: Ordinal Preference Profiles

An agent’s achievable match partners are denoted by asterisks (∗) in her preference

list.

Round 1

P (f1) = w∗1, w2, w3, w4

P (f2) = w1, w
∗
2, w3, w4

P (f3) = w1, w2, w
∗
3, w4

P (f4) = w1, w2, w3, w
∗
4

P (w1) = f ∗1 , f2, f3, f4

P (w2) = f1, f
∗
2 , f3, f4

P (w3) = f1, f2, f
∗
3 , f4

P (w4) = f1, f2, f3, f
∗
4

Round 2

P (f1) = w∗1, w
∗
2, w3, w4

P (f2) = w∗2, w
∗
1, w3, w4

P (f3) = w∗3, w
∗
4, w1, w2

P (f4) = w∗4, w
∗
3, w1, w2

P (w1) = f ∗2 , f3, f
∗
1 , f4

P (w2) = f ∗1 , f3, f
∗
2 , f4

P (w3) = f ∗4 , f1, f
∗
3 , f2

P (w4) = f ∗3 , f1, f
∗
4 , f2

Round 3

P (f1) = w∗4, w
∗
2, w3, w1

P (f2) = w∗3, w
∗
1, w4, w2

P (f3) = w∗2, w
∗
4, w1, w3

P (f4) = w∗1, w
∗
3, w2, w4

P (w1) = f3, f
∗
2 , f

∗
4 , f1

P (w2) = f4, f
∗
1 , f

∗
3 , f2

P (w3) = f3, f
∗
4 , f

∗
2 , f1

P (w4) = f4, f
∗
3 , f

∗
1 , f2
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Round 4

P (f1) = w∗1, w
∗
2, w3, w4

P (f2) = w∗2, w
∗
1, w3, w4

P (f3) = w∗3, w
∗
4, w1, w2

P (f4) = w∗4, w
∗
3, w1, w2

P (w1) = f ∗2 , f3, f4, f
∗
1

P (w2) = f ∗1 , f3, f4, f
∗
2

P (w3) = f ∗4 , f1, f2, f
∗
3

P (w4) = f ∗3 , f1, f2, f
∗
4

Round 5

P (f1) = w∗3, w1, w4, w2

P (f2) = w3, w
∗
4, w

∗
1, w2

P (f3) = w3, w
∗
1, w

∗
4, w2

P (f4) = w3, w4, w1, w
∗
2

P (w1) = f1, f
∗
2 , f

∗
3 , f4

P (w2) = f1, f3, f2, f
∗
4

P (w3) = f ∗1 , f2, f3, f4

P (w4) = f1, f
∗
3 , f

∗
2 , f4

Round 6

P (f1) = w∗2, w4, w1, w3

P (f2) = w2, w
∗
1, w

∗
4, w3

P (f3) = w2, w
∗
4, w

∗
1, w3

P (f4) = w2, w1, w4, w
∗
3

P (w1) = f1, f
∗
3 , f

∗
2 , f4

P (w2) = f ∗1 , f2, f3, f4

P (w3) = f1, f3, f2, f
∗
4

P (w4) = f1, f
∗
2 , f

∗
3 , f4
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Round 7

P (f1) = w∗1, w
∗
2, w

∗
3, w

∗
4

P (f2) = w∗2, w
∗
3, w

∗
4, w

∗
1

P (f3) = w∗3, w
∗
4, w

∗
1, w

∗
2

P (f4) = w∗4, w
∗
1, w

∗
2, w

∗
3

P (w1) = f ∗2 , f
∗
3 , f

∗
4 , f

∗
1

P (w2) = f ∗3 , f
∗
4 , f

∗
1 , f

∗
2

P (w3) = f ∗4 , f
∗
1 , f

∗
2 , f

∗
3

P (w4) = f ∗1 , f
∗
2 , f

∗
3 , f

∗
4

Round 8

P (f1) = w∗1, w
∗
2, w3, w4

P (f2) = w∗2, w
∗
1, w3, w4

P (f3) = w∗3, w
∗
4, w1, w2

P (f4) = w∗4, w
∗
3, w1, w2

P (w1) = f ∗2 , f
∗
1 , f3, f4

P (w2) = f ∗1 , f
∗
2 , f3, f4

P (w3) = f ∗4 , f
∗
3 , f1, f2

P (w4) = f ∗3 , f
∗
4 , f1, f2

Round 9

P (f1) = w∗4, w
∗
2, w3, w1

P (f2) = w∗3, w
∗
1, w4, w2

P (f3) = w∗2, w
∗
4, w1, w3

P (f4) = w∗1, w
∗
3, w2, w4

P (w1) = f3, f
∗
2 , f1, f

∗
4

P (w2) = f4, f
∗
1 , f2, f

∗
3

P (w3) = f3, f
∗
4 , f1, f

∗
2

P (w4) = f4, f
∗
3 , f2, f

∗
1

94



Round 10

P (f1) = w∗4, w3, w2, w1

P (f2) = w4, w
∗
3, w2, w1

P (f3) = w4, w3, w
∗
2, w1

P (f4) = w4, w3, w2, w
∗
1

P (w1) = f1, f2, f3, f
∗
4

P (w2) = f1, f2, f
∗
3 , f4

P (w3) = f1, f
∗
2 , f3, f4

P (w4) = f ∗1 , f2, f3, f4
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Appendix D: Additional Figures and Tables

The expected payoff of different truncation levels.
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Round Worker Number of Achievable Partners Profitability Riskiness

1 A 1 0 1

1 B 1 0 2

1 C 1 0 3

1 D 1 0 4

2 A,B,C,D 2 2 1

3 A,B,C,D 2 1 2

4 A,B,C,D 2 3 1

5 A 2 1 2

5 B 1 0 4

5 C 1 0 1

5 D 2 1 2

6 A 2 1 2

6 B 1 0 1

6 C 1 0 4

6 D 2 1 2

7 A,B,C,D 4 3 1

8 A,B,C,D 2 1 1

9 A,B,C,D 2 2 2

10 A 1 0 4

10 B 1 0 3

10 C 1 0 2

10 D 1 0 1

The strategic incentives faced by workers throughout the experiment.
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Proportion of truncation across varying strategic incentives.
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Probit Regression of Truncation by Market Features

(1) (2) (3) (4)

VARIABLES Truncation Truncation Truncation Truncation

Profitability 0.00908 0.0210 0.00713

(0.0129) (0.0180) (0.0177)

More than one achievable partner 0.0562

(0.0394)

Riskiness -0.123*** -0.115*** -0.0980*** -0.125***

(0.0193) (0.0194) (0.0289) (0.0258)

Average rank in firms’ preferences -0.0328

(0.0346)

Ranked first by top three -0.00645

(0.0391)

Round of the experiment 0.0325*** 0.0325*** 0.0322*** 0.0322***

(0.00654) (0.00660) (0.00650) (0.00630)

Observations 920 920 920 920

The table reports marginal effects from probit regressions.

Standard errors are shown in parentheses and are clustered at the individual level.

*** p<0.01, ** p<0.05, * p<0.1

99



Conditional Logit Regression of Truncation by Market Features

(1) (2) (3) (4)

VARIABLES Truncation Truncation Truncation Truncation

Profitability 0.0355 0.182 0.0208

(0.110) (0.155) (0.134)

More than one achievable partner 0.254

(0.254)

Riskiness -0.851*** -0.814*** -0.551** -0.872***

(0.135) (0.128) (0.260) (0.173)

Average rank in firms’ preferences -0.384

(0.289)

Ranked first by top three -0.0531

(0.279)

Round of the experiment 0.238*** 0.238*** 0.235*** 0.236***

(0.0357) (0.0356) (0.0358) (0.0377)

Observations 650 650 650 650

Number of individuals 65 65 65 65

The table reports results from conditional logit regressions with individual-specific fixed effects.

Standard errors are shown in parentheses.

*** p<0.01, ** p<0.05, * p<0.1
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CHAPTER 3

1 Introduction

In recent decades, two-sided matching clearinghouses have been successfully used

in a variety of allocation problems (Abdulkadiroğlu and Sönmez, 2003; Roth and

Peranson, 1999; Sönmez and Switzer, 2013; Abdulkadiroğlu and Sönmez, 1998). In

a matching clearinghouse, participants submit rank-order lists of their preferences to

a central authority, which uses the submitted lists to calculate a particular outcome

(i.e., who is matched with whom). These environments induce a non-cooperative

game in which an agent’s strategy choice is which preference ordering to report to

the central authority.

Both theory and practice suggest the use of stable matching mechanisms where

no single individual nor coalition of individuals have an incentive to deviate from the

final allocation that is produced by the mechanism. When attention is confined to

stable outcomes, the interests of the two sides of the market are opposed: the best

stable matching for one side of the market is the worst stable matching for the other

side of the market, and vice versa.1

However, in markets with multiple stable outcomes, the question of which sta-

ble outcome arises becomes equally important. This is a relevant consideration for

policymakers, who may have reasons to favor the welfare of one side of the market

over another when designing matching mechanisms. An example of the sensitivity of

policymakers to participants’ welfare is provided by the National Resident Matching

1This divergence of interests is a consequence of the fact that the set of stable matchings is a
lattice.
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Program (NRMP), the entry-level labor market for American physicians. In May

1997, the NRMP altered the algorithm that was being used over concerns that the

original design unduly favored hospitals at the expense of students.

We apply insights from the literature on equilibrium selection in coordination

games to better characterize the outcomes that emerge in two-sided matching mar-

kets. First, we focus on symmetric equilibria and highlight the tension between the

familiar concepts of payoff-dominance and risk-dominance in our environment. Sec-

ond, we present a simple behavioral model of strategic preference misrepresentation

that provides useful comparative statics predictions and argues for the selection of

asymmetric equilibria.

At the heart of our theoretical results is the inherent trade-off between improving

one’s match partner and the risk of remaining unmatched. As either the potential

gains from strategic behavior decrease or the utility loss from remaining unmatched

increases, our equilibrium selection criteria eliminate a certain type of preference

misrepresentation. This suggests that our results will be sensitive to the details of

the institutional environment that is being studied, particularly the assumptions on

agents’ cardinal preferences.

2 Theoretical Background

Equilibrium Selection

Let G = (N, (Si)i∈N , (ui)i∈N) denote a standard game, where N is a non-empty,

finite set of players, Si is the non-empty, finite set of pure strategies available to

player i, and ui : ×j∈NSj −→ < is the von Neumann-Morgenstern utility function

of player i. We denote the set of all possible pure strategy profiles by S = ×j∈NSj.
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A Nash equilibrium in pure strategies is then a strategy profile s∗ ∈ S such that

ui(s
∗) ≥ ui(s

∗
−i, si) for all i ∈ N and for all si ∈ Si.

We begin my summarizing basic definitions regarding the desirable properties that

equilibria may possess in normal-form games.2

Definition: Let r and t be two Nash equilibrium strategy profiles. We say that r

payoff-dominates t if ui(r) > ui(t) for all i ∈ N .

Definition: Let r be a Nash equilibrium strategy profile. We say that r is payoff-

dominant if there is no other Nash equilibrium strategy profile that payoff-dominates

r.

Clearly, payoff-dominance is an attractive feature for a Nash equilibrium to possess.

In games with multiple equilibria, the presence of a payoff-dominant equilibrium can

serve as a focal point for coordination. Intuitively, allowing pre-play communica-

tion between the players would likely further improve the chances of coordination by

allowing the players to enter into a self-enforcing agreement.

However, there are arguments against the use of payoff-dominance as an equilib-

rium selection device (Aumann, 1990). In particular, payoff-dominance ignores the

possibility of “mistakes” or perturbations in other players’ strategy choices. When

faced with this strategic uncertainty, a payoff-dominated equilibrium may actually ap-

pear more compelling if it guarantees a higher minimum payoff in the counter-factual

situation where the other player deviates from the proposed equilibrium.

For motivation, consider the game shown in Figure 1.3 The two pure-strategy

2These definitions can be found in Harsanyi and Selten (1988).
3This game is taken from Harsanyi and Selten (1988).
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A B
A 9,9 0, 8
B 8, 0 8,8

Figure 1: A game where payoff-dominance and risk-dominance conflict.

Nash equilibria are shown in bold. Although the equilibrium (A,A) payoff-dominates

the equilibrium (B,B), it is not unreasonable to expect a conservative player to choose

B. In fact, playing B becomes a best-response for either player if their assessment of

the probability with which the other player chooses B is greater than 1
9
.

This has inspired the notion of risk-dominance in 2 × 2 games. For the generic

game shown in Figure 2, we have the following definition:

Definition: U risk-dominates V if

(a11 − a21)(b11 − b12) > (a22 − a12)(b22 − b21) (1)

In other words, equilibrium U risk-dominates equilibrium V if the product of the

players’ utility losses of deviating from U is greater than that of deviating from V .

Although the concept of risk-dominance was originally constructed for 2 × 2

games, it is straightforward to extend the logic to any finite, normal-form game.

Suppose the game G = (N, (Si)i∈N , (ui)i∈N) has two pure-strategy Nash equilibria:

r = (r1, r2, ...rn) and t = (t1, t2, ..., tn).
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U2 V2
U1 a11, b11 a12, b12
V1 a21, b21 a22, b22

Figure 2: The two pure-strategy Nash equilibria are U = (U1, U2) and V = (V1, V2).

Definition: r risk-dominates t if

∏
i∈N

[ui(r)− ui(ti, r−i)] >
∏
i∈N

[ui(t)− ui(ri, t−i)] (2)

In this more general definition, equilibrium r risk-dominates equilibrium t if the prod-

uct of each player i’s utility loss of deviating from ri to ti is greater than that of deviat-

ing from ti to ri. However, the ability of risk-dominance to select a unique equilibrium

in finite normal-form games is limited by the fact that the risk-dominance relationship

can be cyclical (Morris, Rob, and Shin, 1995). Thus, it is possible to have pairwise

comparisons among three equilibria A, B, and C such that A risk-dominates B, B

risk-dominates C, and C risk-dominates A.

Two-Sided Matching Markets

Consider two finite, disjoint sets M and W , where M is the set of men and W is the

set of women. Each agent has complete and transitive preferences over the agents on

the other side of the market (as well as remaining single). The preferences of man m

will be represented by an ordered list of preferences Pm on the set W ∪{m}. Similarly,

the preferences of woman w will be represented by an ordered list of preferences Pw on

the set M ∪ {w}. We write w �m w′ to denote that m prefers w to w′, and w �m w′

107



to denote that m likes w at least as much as w′. Similarly, we can write m �w m′ and

m �w m′. Woman w is said to be acceptable to man m if he likes her at least as

much as remaining single (i.e., w �m m). Similarly, m is acceptable to w if m �w w.

Let P denote the set of all preferences, one for each man and one for each woman.

A marriage market is denoted by the triplet (M,W,P). A matching is a function

µ : M ∪W −→M ∪W such that

1. for any m ∈M , µ(m) ∈ W ∪ {m}

2. for any w ∈ W , µ(w) ∈M ∪ {w}

3. for any m ∈M , w ∈ W , µ(m) = w if and only if µ(w) = m

Throughout the analysis, we also distinguish between market-wide matchings (repre-

sented by µ) and a given individual’s match partner. For woman w at the matching µ,

her match partner is represented by µ(w). For each individual, their preference over

two alternative matchings corresponds exactly to their preference over their match

partners at the two matchings.

A matching µ is individually rational if every individual is matched to an

acceptable partner. A pair of agents (m,w) is said to block a matching µ if they are

not matched to one another at µ but they prefer each other to their assignments at

µ (i.e., w �m µ(m) and m �w µ(w)). A matching µ is stable if it is individually

rational and not blocked by any pair of agents. A stable matching is called an M-

optimal stable matching (denoted µM) if every man likes it at least as well as any

other stable matching. A W-optimal stable matching can be defined analogously

(denoted µW ). The M-optimal stable matching is thus the “best” stable matching

for the men and the W-optimal stable matching is the “best” stable matching for

the women. A man m and a woman w are said to be achievable for each other
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in a marriage market (M,W,P) if they are matched to each other at some stable

matching. For woman w, µW (w) is her most preferred achievable partner.

To examine the strategic issues involved in two-sided matching markets, we ana-

lyze the preference-revelation game in which each man m with preferences Pm is faced

with the strategy choice of what preference ordering Qm to state, and likewise for the

women. Denote the set of stated preference lists, one for each man and one for each

woman, by Q. The mechanism then computes a matching µ = h(Q), where h is the

function that maps any set Q of stated preferences into a matching. A mechanism

h that for any stated preferences Q produces a matching h(Q) that is stable with

respect to the stated preferences is called a stable mechanism. If h(Q) produces the

M-optimal stable matching with respect to Q, then h is called the M-optimal stable

mechanism.

In the strategic game induced by the M-optimal stable mechanism, it is well-known

that the men have a dominant strategy of truth-telling (Dubins and Freedman, 1981).

The women, on the other hand, might have incentives to misrepresent their prefer-

ences to produce a more favorable outcome for themselves (Gale and Sotomayor,

1985). We will find it useful to define two classes of strategies for the women in this

market:

Definition: A truncation of a preference list Pw containing k acceptable men is a

list P ′w containing k′ ≤ k acceptable men such that the k′ elements of P ′w are the first

k′ elements of Pw, in the same order.

Definition: A manipulation of a preference list Pw is any list that is not a trun-

cation of Pw.
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A truncation strategy involves misrepresenting your preferences by shortening the

list of acceptable matches without changing their order. For convenience, we allow

for truth-telling to trivially satisfy the definition of a truncation strategy. A manipula-

tion strategy involves misrepresenting preferences by changing the order of preference

between at least two men (regardless of the length of the list). We now define two

particular types of truncation strategies that are central to our analysis:

Definition: An over-truncation of a preference list Pw is a truncation of Pw that

does not contain µW (w), the most preferred achievable partner of woman w.

Definition: Optimal truncation of a preference list Pw is a truncation of Pw

that contains µW (w) but does not contain any men who are ranked below µW (w).

3 Results

Our immediate goal is to more precisely characterize the nature of the different equilib-

ria that can arise in the strategic game induced by the M-optimal stable mechanism.

Although our focus is on symmetric equilibria, we will discuss the implications of

asymmetric equilibria as well. Ideally, we would like to pave the way toward a theory

or solution concept that argues for the selection of one equilibrium over another.

For these purposes, the concepts of payoff-dominance and risk-dominance will

prove useful. To apply these concepts, we first need to model the preferences of mar-

ket participants from a cardinal perspective. Let um : W ∪{m} −→ < denote the von

Neumann-Morgenstern utility function for man m ∈ M , and uw : M ∪ {w} −→ <

denote the von Neumann-Morgenstern utility function for woman w ∈ W .4 We now

4To avoid the case of indifference, we will impose the restriction that these functions are all
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consider a simple example that illustrates the tension between payoff-dominance and

risk-dominance in this strategic environment.

Example: Consider a marriage market with two men and two women characterized

by the following ordinal preferences:

P (m1) = w1, w2

P (m2) = w2, w1

P (w1) = m2,m1

P (w2) = m1,m2

Suppose that the von Neumann-Morgenstern utilities for this economy are as follows:

um1(w1) = 3

um1(w2) = 2

um1(m1) = 0

um2(w2) = 3

um2(w1) = 2

um2(m2) = 0

uw1(m2) = 3

uw1(m1) = 2

uw1(w1) = 0

uw2(m1) = 3

uw2(m2) = 2

uw2(w2) = 0

If the men are constrained to truth-telling, then the preference-revelation game can

be represented by the following normal-form, where w1 is the row player and w2 is

the column player. The seven pure-strategy Nash equilibria are shown in bold.

one-to-one.
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m1,m2 m2,m1 m1 m2

m1,m2 2, 2 2,2 2, 0 2,2

m2,m1 2, 2 2, 2 3,3 2, 2

m1 2, 2 2,2 2, 0 2,2

m2 3,3 0, 2 3,3 0, 2

This game can be simplified to the following reduced normal-form, where the strate-

gies are classified as either truth-telling, truncation, or manipulation. As before, the

pure-strategy Nash equilibria are shown in bold.

Truth Truncate Manipulate

Truth 2, 2 3,3 2, 2

Truncate 3,3 3,3 0, 2

Manipulate 2, 2 2, 0 2,2

Note that manipulating one’s preference list is weakly dominated by reporting

one’s true preference list in this example. In fact, in the game induced by the M-

optimal stable mechanism, any strategy in which a woman does not list her true first

choice at the head of her list is weakly dominated (Roth and Sotomayor, 1992). Thus,

while all manipulation strategies in 2 × 2 marriage markets are weakly dominated,

there exist un-dominated manipulation strategies in more general marriage markets.

There are several points worth emphasizing regarding the equilibria in this game:

1. There is no Nash equilibrium in which both women report their true preferences.

2. There is a Nash equilibrium in which both women manipulate their preferences.

3. The payoff-dominant Nash equilibria all involve one woman truncating her pref-

erences and the other woman either truncating or reporting her true preferences.
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4. The Nash equilibrium in which both women manipulate their preferences risk-

dominates the Nash equilibrium in which both women truncate their prefer-

ences.

The question that we now address is whether any of these findings generalize from

our simple example to generic marriage markets. We answer in the affirmative in

all cases. All the propositions below are framed in the context of the preference-

revelation game induced by the M-optimal stable mechanism. We confine attention

to markets in which each agent prefers being married to remaining single (all men

are acceptable to all women and vice versa) and |M | = |W | = n. Throughout, we

assume that all men are playing their dominant strategy of truth-telling.

Proposition 1. Consider a marriage market in which preferences are strict and there

is more than one stable matching. There is no Nash equilibrium in which all women

report their true preferences.

Proof. Consider a candidate Nash equilibrium strategy profile in which all women

report their true preferences: p = (p1, p2, ..., pn). By Theorem 4.6 of Roth and So-

tomayor (1992), there exists one woman who can profitably misrepresent her pref-

erences when all other agents report their true preferences. This means that there

exists a woman w ∈ W such that uw(qw, p−w) ≥ uw(p) for some qw ∈ Pw. Therefore,

p is not a Nash equilibrium.

Proposition 2. Consider a marriage market in which preferences are strict and all

women have more than one achievable partner. There is a Nash equilibrium in which

all women manipulate their preferences.
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Proof. Consider µM , the M-optimal stable matching with respect to the true prefer-

ences. Suppose that each woman w submits the following preference list: Q(w) =

µM(w). This is clearly a preference manipulation since µM(w) is not at the head of

any woman’s true preference list.5 Furthermore, this is also a Nash equilibrium by

Theorem 4.15 of Roth and Sotomayor (1992).

Proposition 3. Consider a marriage market in which preferences are strict and there

is more than one stable matching. There is a payoff-dominant Nash equilibrium in

which all women truncate their preferences.

Proof. Suppose that each woman w truncates her preference list by leaving off all

men ranked below µW (w), her most preferred achievable partner with respect to

the true preferences. Denote this strategy profile by t. By Theorem 4.17 of Roth

and Sotomayor (1992), t is a Nash equilibrium and it produces the matching µW .

Suppose that another Nash equilibrium c payoff-dominates t. Denote the matching

that c produces by µ′. Since c payoff-dominates t, we know that uw(c) > uw(t) for

all w ∈ W . In other words, we have that µ′(w) �w µW (w) for all w ∈ W . Since

c is a Nash equilibrium, we know by Theorem 4.16 of Roth and Sotomayor (1992)

that the matching µ′ is also stable with respect to the true preferences. This is a

contradiction, since µW is the most preferred stable matching by the women. Thus,

there is no other Nash equilibrium that payoff-dominates t. We conclude that t is

payoff-dominant.

5If µM (w) were at the head of any woman’s true preference list, then this contradicts the as-
sumption that all women have more than one achievable partner.
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Proposition 4. Consider a marriage market in which preferences are strict and there

is more than one stable matching. There is a payoff-dominant Nash equilibrium in

which a subset of women truncates its preferences.

Proof. To prove this claim, we construct a strategy profile where a subset of women

truncates its preferences that still produces the matching µW . By the same argument

given in the proof of Proposition 3, this strategy profile will constitute a payoff-

dominant Nash equilibrium.

Since there is more than one stable matching, there exists a woman w ∈ W such

that µM(w) 6= µW (w). Denote by Q the profile of stated preferences in which woman

w reports her true preferences and each woman v ∈ W \ w truncates her preference

list by leaving off all men ranked below µW (v). Let µ′ denote the M-optimal stable

matching with respect to the stated preferences Q. By Proposition 1 of Castillo and

Dianat (2014), µ′ is also stable with respect to the true preferences P . Thus, for each

woman v ∈ W \ w, µ′(v) = µW (v).6 Since the set of individuals who are unmatched

is the same at all stable matchings, we must have that µ′(w) ∈M . We conclude that

µ′(w) = µW (w).

Proposition 5. Consider a marriage market in which preferences are strict and all

women have more than one achievable partner. If uw(µM(w))−uw(w) > uw(µW (w))−

uw(µM(w)) for all w ∈ W , then there exists a Nash equilibrium in weakly dominated

manipulation strategies that risk-dominates the Nash equilibrium in which all women

optimally truncate their preferences.

Proof. Denote by r the Nash equilibrium in which each woman w submits the pref-

erence list Q(w) that ranks µM(w) in the first position but otherwise leaves her

6Note that we cannot have µ′(v) �v µW (v), since that contradicts the fact that µW is the W-
optimal stable matching. We also cannot have µW (v) �v µ′(v), since that implies µ′(v) = v and
contradicts the fact that the set of individuals who are unmatched is the same at all stable matchings.
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true preferences P (w) unchanged. Denote by t the Nash equilibrium in which each

woman w plays the optimal truncation strategy where all men ranked below µW (w)

are deemed unacceptable.

Consider the equilibrium r and let µ be the matching that is produced. Clearly, we

have that µ(w) = µM(w) for all w ∈ W . Suppose that woman v deviates to strategy

tv and let µ′ be the new matching that is produced. We argue that µ′(v) = v (i.e.,

woman v remains unmatched).7 Thus, uw(r) = uw(µM(w)) and uw(tw, r−w) = uw(w)

for all w ∈ W .

Similarly, consider the equilibrium t and let µ be the matching that is produced.

Clearly, we have that µ(w) = µW (w) for all w ∈ W . Suppose that woman v deviates

to strategy rv and let µ′ be the new matching that is produced. We argue that

µ′(v) = µM(v).8 Thus, uw(t) = uw(µW (w)) and uw(rw, t−w) = uw(µM(w)) for all

w ∈ W .

We now know that uw(µM(w))− uw(w) > uw(µW (w))− uw(µM(w)) is equivalent

to uw(r) − uw(tw, r−w) > uw(t) − uw(rw, t−w). Since this is true for all w ∈ W , we

have that ∏
w∈W

[uw(r)− uw(tw, r−w)] >
∏
w∈W

[uw(t)− uw(rw, t−w)] (3)

We conclude that equilibrium r risk-dominates equilibrium t.

Proposition 5 demonstrates the existence of a symmetric equilibrium in manipula-

tion strategies that risk-dominates the symmetric equilibrium in truncation strategies.

This result holds for markets in which the “risk-dominance condition” is satisfied (i.e.,

7To see this, note that woman v now rejects the offer from man µM (v) at some stage of the DA
algorithm. All future offers that man µM (v) makes in later stages of the DA algorithm will also
be rejected, since each woman w ∈ W \ {v} prefers µM (w) to µM (v) according to their submitted
preferences.

8To see this, note that man µM (v) prefers woman v to his match partner at µ (since woman v is
his M-optimal stable match partner).
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uw(µM(w)) − uw(w) > uw(µW (w)) − uw(µM(w))). This condition has a natural and

intuitive interpretation: the manipulation equilibrium risk-dominates the truncation

equilibrium when the utility loss from “over-truncation” (i.e., uw(µM(w)) − uw(w))

exceeds the utility gain from “optimal truncation” (i.e., uw(µW (w))− uw(µM(w))).

Although this condition may seem restrictive, we argue that it is likely to be

satisfied in real-world settings for two reasons. First, having a large utility loss be-

tween matching with less-preferred partners and being unmatched reflects the fact

that remaining unassigned might be particularly distasteful in field settings.9 Sec-

ond, the theoretical literature on “core convergence” shows that the span of the core

is decreasing in market size. This suggests that there are limited gains from strategic

preference misrepresentation in large markets (Immorlica and Mahdian, 2005; Kojima

and Pathak, 2009; Lee, 2014).

The existence of a payoff-dominant equilibrium in truncation strategies raises

the question of whether it is reasonable to expect this equilibrium to arise. We

have shown that, under plausible conditions, risk-dominance argues in favor of a

different equilibrium. However, this obscures a more fundamental reason to doubt

the emergence of the truncation equilibrium: to implement the optimal truncation

strategy, it is necessary for each woman w to know the identity of µW (w). This

requires the ability to calculate the set of stable matchings. As suggested by Roth and

Sotomayor (1992), this is an unreasonable assumption for the real-world environments

where this theory applies.

Absent this degree of strategic sophistication, truncation behavior carries with it

the risk of “over-truncating” and remaining unmatched. We illustrate the salience of

this risk through a simple behavioral model that allows for the possibility of mistakes

9In the NRMP, for example, remaining unassigned could mean no longer having the option to
pursue a career in medicine.
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in the calculation of the optimal truncation strategy. Suppose that a woman playing

the optimal truncation strategy “trembles” and over-truncates her preference list with

probability ε.10 We can now state and prove the following result:

Proposition 6. If ε > uw(µW (w))−uw(µM (w))
uw(µW (w))−uw(w)

and all women v ∈ W \ w report their

true preferences, then truth-telling yields a higher expected payoff than truncation for

woman w.

Proof. Let pw denote the strategy in which woman w reports her true preferences and

tw denote the strategy in which woman w optimally truncates her preferences with a

tremble probability of ε. For all w ∈ W , we have that

uw(p) = uw(µM(w)) > (1− ε)uw(µW (w)) + εuw(w) = uw(tw, p−w)

Define ε∗ as the threshold tremble probability that makes woman w indifferent

between truth-telling and optimal truncation (when all other women report their

true preferences). In other words,

uw(µM(w)) = (1− ε∗)uw(µW (w)) + ε∗uw(w)

Solving for ε∗, we have that

ε∗ =
uw(µW (w))− uw(µM(w))

uw(µW (w))− uw(w)

We can now demonstrate the following comparative statics properties:

10Thus, if there are n strategies that constitute over-truncation, then each over-truncation strategy
is played with probability ε

n .
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Proposition 7. The threshold tremble ε∗ is increasing in the utility of matching with

the most preferred achievable partner.

Proof.

∂ε∗

∂uw(µW (w))
=

uw(µM(w))− uw(w)

[uw(µW (w))− uw(w)]2
> 0

Proposition 8. The threshold tremble ε∗ is decreasing in the utility of matching with

the least preferred achievable partner.

Proof.

∂ε∗

∂uw(µM(w))
=

−1

uw(µW (w))− uw(w)
< 0

Proposition 9. The threshold tremble ε∗ is increasing in the utility of remaining

unmatched.

Proof.

∂ε∗

∂uw(w)
=
uw(µW (w))− uw(µM(w))

[uw(µW (w))− uw(w)]2
> 0

There are several important advantages to directly incorporating a probability

of error into the strategic model. First, for a sufficiently high ε, truth-telling can

be explained through payoff-maximizing behavior. This is in line with experimental

studies that demonstrate high truth-telling rates by women in the M-proposing DA

mechanism (Castillo and Dianat, 2014; Echenique, Wilson, and Yariv, 2014; Feath-

erstone and Mayefsky, 2014). Second, allowing for trembles clarifies the welfare im-

plications of asymmetric equilibria. While the women prefer truncation equilibria to
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non-truncation equilibria, each individual woman prefers not to bear the truncation

risk herself.11

This incentive to free-ride on other agents’ truncation is implied in our model. Let

p denote the strategy profile in which all women report their true preferences, and t

denote the strategy profile in which all women optimally truncate their preferences.

Clearly, for all w ∈ W we have that

uw(pw, t−w) = uw(µW (w)) > (1− ε)uw(µW (w)) + εuw(w) = uw(t)

4 Discussion and Conclusion

In this paper, we investigated equilibrium selection in the context of two-sided match-

ing clearinghouses. For a large class of markets, the familiar concepts of payoff-

dominance and risk-dominance argue for the selection of different equilibria. While

there is no equilibrium that supports truth-telling for all agents, payoff-dominance

suggests a symmetric equilibrium in which participants truncate their preference lists

while risk-dominance suggests a symmetric equilibrium in which participants manipu-

late their preference lists. By introducing a simple behavioral model that incorporates

“trembles” in agents’ strategies, we then derive several useful comparative statics pre-

dictions.

Since our analysis exploits the inherent trade-off between improving one’s match

partner and the risk of remaining unmatched, our results are necessarily sensitive

to the assumptions placed on agents’ cardinal utilities. The importance of cardinal

payoff structures has also been demonstrated experimentally by Battalio, Samuelson,

11In asymmetric truncation equilibria of the Bayesian game where agents submit preferences to
the M-optimal stable mechanism, the women who truncate less receive higher payoffs (Coles and
Shorrer, 2014).
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and Van Huyck (2001), who provide evidence that the pecuniary incentive to play a

best-response strategy (i.e., optimization premium) significantly affects the behavior

of laboratory subjects in coordination games. In our environment, when the opti-

mization premium is small or the utility loss from remaining unmatched is large,

the symmetric truncation equilibrium becomes less attractive since agents prefer to

free-ride on others’ truncation behavior.

Our findings suggest directions for future work. Rather than allowing for trembles

in players’ strategy choices, we can model the strategic environment with a noisy

payoff structure. This is the approach to equilibrium selection taken by the “global

games” literature (e.g. Carlsson and Van Damme, 1993). In addition, evolutionary

approaches can help us to further refine the set of equilibria to those that are resistant

to small mutations in the population.12

12For an introduction to the evolutionary approach to games, see Gintis (2000) or Samuelson
(1998).
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