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ABSTRACT 

UNDERSTANDING THE GEOGRAPHIC DYNAMICS OF GOAL-DIRECTED 

SOCIAL BEHAVIORS 

Alec Dayhaw Barker, Ph.D. 

George Mason University, 2015 

Dissertation Director: Dr. Kevin M. Curtin 

 

No fundamental empirical research exists to describe the goal-directed behavior of teams 

in geographic space. This dissertation describes a basic research project that produces 

new metrics, hypotheses, and distributions of observations about the geographic 

behaviors of discrete social networks or teams pursuing collective objectives. The 

motivation is to propose theories that explain and predict how illicit teams – such as 

groups involved in terrorism, smuggling, and other criminal or politically subversive 

activities – move and communicate. The research design uses network-based stochastic 

geosimulation, formal experimental design, and spatiotemporal statistics to perform an 

experimental analysis of small team behaviors. The project produces theoretical and 

randomized data about the times, locations, and message traffic of simulated players and 

teams engaged in 1.11 million repetitions of pursuit-and-evasion, a simple game akin to 

hide-and-seek. This computer simulation-based project will serve as a basis for future 
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mixed methods research employing human subjects in laboratory and full-scale instances 

of the pursuit-and-evasion game. Furthermore, the research approach will support future 

extensions to understand not only teams, but also multiteam systems. This approach 

draws from extant research, and applies statistics, methods, and theoretical frameworks 

from among multiple disciplines including geography, industrial and organizational 

psychology, network science, operations research, and strategic studies. Development of 

reliable theories about the geographic patterns of team behaviors will support further 

basic research as well as applied research in societal instability, criminology, radicalism, 

social psychology, and simulation of stochastic human geographic processes, ultimately 

leading to improvements in civil services, social welfare, and public safety. 
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CHAPTER ONE: INTRODUCTION 

Intelligence approaches to the problems of terrorism, insurgency, trafficking, 

organized crime, and political subversion demand methods to discern and interpret 

geographic patterns of activity belonging to teams pursuing illicit goals while operating 

freely among a population. Analysts use terms like “autonomous cells” (Abuza, 2002) 

and “leaderless resistance” (Kaplan, 1997) to characterize these teams as discrete social 

networks that are united by common objectives even though they may operate in a 

decentralized manner and work toward a disparate variety of tasks (Arquilla, Ronfeldt, & 

Zanini, 1999; Sageman, 2008). Behavioral scientists, especially organizational 

psychologists, have studied team motivation and performance for many decades and 

produced sophisticated models of goal-oriented collective action (Salas, Cooke, & Rosen, 

2008). Significantly, research focused on the interdependence of teams under conditions 

of decentralized authority has produced the concept of multiteam systems that may help 

explain the behaviors of politically subversive groups (Zaccaro, Marks, & DeChurch, 

2011). While there is a rich theoretical literature to describe the forms, functions, and 

functioning of teams, and while there are also numerous examples of theory-driven 

models of human competition, there is no fundamental empirical research to describe 

how teams and multiteam systems, especially clandestine teams, actually pursue goals in 

geographic space.  
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Two concurrent phenomena have focused researchers’ interest upon the dynamic 

behaviors of social networks in geographic space: the increased capacity of small teams 

to achieve social and political influence, and improvements in scientific capabilities to 

measure and model the communications and spatiotemporal movement of these small 

teams. In the latter half of the twentieth century the phenomena of decolonization, proxy 

wars, international institutionalism, globalization, and the information revolution have all 

contributed to a worldwide fragmentation of geopolitical authority. As this dissolution of 

the centralized international system accelerated after the fall of the Soviet Union, so did 

the rise of multinational corporatism and radical advances in computing and 

communications technology. The world today is exceedingly interconnected. Ties of 

commerce, culture, information, and ideology increasingly and more rapidly transcend 

physical distance and social boundaries. As a result, societies are far less subject to the 

control of the state and small social networks are much more capable of achieving social 

and political influence. This has given rise to many politically subversive groups 

becoming active worldwide, such as the al-Baghdadi group in Syria and Iraq, Al Qaeda, 

Hezballah, Hamas, Al Shabaab, and Lashkar-e-Taiba. In several areas around the world, 

the United States has, as a matter of policy and strategy, become involved in stabilizing 

societies undermined by the behaviors of illicit teams and multiteam systems. 

Setting aside the problems of criminality and political subversion, there are not 

even any basic geographic models about how legitimate teams pursue commonplace 

objectives in everyday life, and there are many social phenomena other than security 

operations that might be better understood via a geographically grounded study of goal-
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directed team behaviors. All around the world, people move, communicate, and work 

together with each other while striving to achieve big and small social goals. Commercial 

relationships are often complicated combinations of competition and cooperation 

demanding that individuals work simultaneously with and against each other in order to 

maximize profit. In the cultural domain, mavens, traditionalists, and upstarts interact 

spatially and conceptually to accumulate influence over social norms and mores. Public 

safety professionals seek greater awareness not only of rioters, gang members, and 

organized criminals but also of people displaced or affected by natural and manmade 

disasters. Public health researchers seek greater knowledge of the epidemiological effects 

of societal reactions to the outbreak of disease. In short, the increased ability to describe 

and measure the spatial behaviors of discrete social networks has broad applicability. 

There may be observable patterns of team behaviors and their underlying factors. 

Naïve conjecture would suggest that swarming or scattering, for example, may occur in 

ways which are both noticeable to casual observers and scientifically measurable. 

Furthermore, these patterns may occur as a function of objective type, task type, 

topography, political boundaries, social boundaries, cultural heterogeneities, group 

cohesion, and/or technologies. However, these behaviors cannot be accurately 

differentiated and these crude hypotheses cannot be scrutinized or improved upon 

because geographers have not yet modeled goal-oriented team behaviors. No field-based 

empirical studies have focused upon the possibility that social groups behave in 

spatiotemporally coherent ways according to such conjecture. Therein lays the potential 
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to make new discoveries about the geographic dynamics of goal-directed social 

behaviors.  

This dissertation describes a program of basic research that produces new metrics, 

hypotheses, and distributions of observations about the geographic behaviors of discrete 

social networks or teams pursuing collective objectives. The ultimate motivation is to 

propose theories that explain and predict how illicit teams – such as groups involved in 

terrorism, smuggling, and other criminal or politically subversive activities – move and 

communicate in geographic space. While it exclusively assesses the behaviors of teams, it 

is designed to support future extensions that will explore the dynamics of MTSs. 

Fundamental scientific knowledge about the geographic attributes of team behaviors will 

support future empirical research aimed at reliably discriminating between malevolent 

and innocuous social activities. However this research will also lead to generalizable 

theory usable to understand the behaviors of many different kinds of teams in numerous 

domains. The research design uses network-based stochastic geosimulation, formal 

experimental design, and spatiotemporal statistics to perform an experimental analysis of 

small team behaviors. The project produces theoretical and randomized data about the 

times, locations, and message traffic of simulated players and teams engaged in 1.11 

million repetitions of pursuit-and-evasion, a simple game akin to hide-and-seek. This 

computer simulation-based project will serve as a basis for future mixed methods 

research employing human subjects in laboratory and full-scale instances of the pursuit-

and-evasion game. The approach draws from extant research, and applies statistics, 

methods, and theoretical frameworks from among multiple disciplines including 
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geography (e.g. movement analysis, spatial analysis of conflict, dynamic point pattern 

analysis, geosimulation, location science), industrial and organizational psychology 

(multiteam systems, teams, motivation, communication, culture), network science (social 

network analysis, dynamic network theory, reality mining), operations research (network 

modeling/optimization, stochastic processes), and strategic studies (netwar). This project 

will support further basic research as well as applied research in human geography, 

geographic information analysis, societal instability, criminology, radicalism, social 

psychology, and simulation of stochastic human geographic processes, thereby improving 

civil services, social welfare, and public safety.  
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CHAPTER TWO: LITERATURE REVIEW 

This project relies upon multiple disciplines including geography, operations 

research, computer science, network science, sociology, industrial/organizational 

psychology, international relations, and strategic studies. In particular, it employs 

theories, methods, tools, and data structures that deliberately integrate geography and 

geospatial considerations into analyses of social behaviors.  

The figure below is a concept map that illustrates the various disciplines and key 

topics in each discipline that form the basis of the research. The concept map illustrates 

interrelations among concepts by convergence. Convergence is the property of centrality 

to the main topic of this research, which is positioned at the center of the concept map. 

Concepts which are more closely related to the research topic converge towards the 

center. Those topics which most closely support and connect with the main topic are 

called proximal topics. Distal topics provide additional support and amplification to 

proximal topics and/or the main topic. Distal topics may also include concepts that are 

relevant and interesting to the main topic, but are ultimately discursive. Fundamental 

topics are those foundational ideas that preceded and underpinned distal and/or proximal 

topics. 
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Figure 1: A Concept Map of the Literature Review 

 

This literature review is accompanied by a caveat about vocabulary. The 

multidisciplinary nature of this literature review introduces troublesome inconsistencies 

in key terminology. Every academic discipline methodically develops and defends its 

own lexicon. Since key terms carry critical significance in each discipline, and because 

terms and topics may be described similarly or differently, the peculiarities of this 

multidisciplinary vocabulary are very important to understand. The most significant 

inconsistency is in the description of human groups, which are here described variously 

as groups, teams, and networks. Whereas “group” can be used as a generic term referring 

to two or more people who interact with each other, it also may be used in the social 
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psychological sense to refer to a collection of individuals that undergo a process of 

developing cohesiveness (Tuckman, 1965). “Team” is a term from industrial and 

organizational psychology that is used in a way similar to the second and more specific 

usage of “group” to refer to a small collective that comes together to accomplish some 

discrete purpose. Among industrial and organizational psychologists the distinction 

between “group” and “team” is a superficial one to be disregarded (Sundstrom, McIntyre, 

Halfhill, & Richards, 2000). “Network” is a term with various usages in geography, 

mathematics, biology, physics, environmental science, operations research, sociology, 

computer science, and communications, among other disciplines (Newman, 2010). 

Unless otherwise specified, “network” refers herein to generic social constructs defined 

by sets of individuals and their relationships. Group and team are used interchangeably to 

refer to a discrete set of individuals and relationships that are distinguished by their 

collective pursuit of an objective(s). 

The Diffusion of Power 
At the root of this research’s interest in the geographic attributes of team 

behaviors are two assertions: (1) that the worldwide diffusion of power is growing and 

(2) that the influence of small social groups upon societies is rising. Now more than ever 

before in human history, societal values, beliefs, ideas, and events are constructed by 

everyday interaction among ordinary people as well as people of status. The 

contemporary societal phenomena of globalization, social networking, information 

networks, and mobile information technology have permitted independent social groups, 

most of which are small networks of private individuals, to exert tremendous influence 
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over politics, culture, and economy at local, national, and international scales. In 

geopolitics, examples of the power of small, independent, and motivated social groups 

are found in the success of the so-called “color revolutions,” the political upheaval of the 

Arab Spring, the development of international terrorist networks like Al Qaeda, non-state 

weapons proliferation networks like that of A.Q. Khan, and sub-state insurgent groups 

like the Taliban (Barker, 2011; Pollack, 2012; Roko, 2012; Wilson, 2010). Quite often 

political and territorial boundaries have failed to contain these types of groups, and their 

activities and influence have increasingly transcended international borders (Straus, 

2012). Organizing inconspicuously in public or online, discrete social groups 

communicate, plan, prepare, and ultimately execute important activities that profoundly 

shape public discourse and government policy (Mascaro & Goggins, 2011; Weimann, 

2004, 2006). And many savvy artists, consumers, and businesses have also successfully 

harnessed the interconnectedness of social groups, although their influence, objectives, 

and messages may be far less serious than those of terrorist groups (Swamynathan, 

Wilson, Boe, Almeroth, & Zhao, 2008; Trusov, Bucklin, & Pauwels, 2009). Lately, so-

called “flash mobs” have begun exploiting the capacity for rapid social mobilization 

inherent in mobile communications technology, resulting in both sensationally 

entertaining (Gore, 2010) and sensationally violent (R. D. White, 2006) public spectacles. 

An awareness of the nature of power is available in the major theories of 

international relations beginning with realism (Gilpin, 1983; Morgenthau, 1967), 

liberalism (Kant, 1983; Keohane & Nye, 1998), and constructivism (Bull, 2002). 

Whereas realism and liberalism emphasize the personalities and institutions of the state, 
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constructivism emphasizes societal influences residing within and without the state. 

Similarly, the evolution of historiographical theory exhibits movement from state-centric 

explanations (von Ranke, 1976) to styles that focus upon the significance and 

interrelation of non-state social, cultural, and economic themes (Braudel, 1995a, 1995b) 

as well as meta-state systems constructed by private businesses, social classes, and 

identity groups (Wallerstein, 2004). The trajectory of thought among economically 

minded historians and theorists also begins with concepts of state control in mercantilism 

(Hinton, 1955; Viner, 1948) and industrialism (Ricardo, 2010; Smith, 2013) but gives 

way to concepts of the influence of social classes (Marx & Moore, 2011), free markets 

(Keynes, 2011), and international businesses (Cardoso & Faletto, 1979). There is ample 

evidence for the phenomena of diffuse power and non-state influence in such theories of 

world history, politics, and economy. 

An examination of the history of geographic ideas about power begins to raise the 

issue of war and conflict. Mackinder offered a vision of global power that focused upon 

state control of the “heartland” of the Eurasian land mass (1904). By contrast, Spykman 

believed that global power derived from containing the “heartland” by occupying the 

“rimland” (Spykman & Sempa, 2008), and Mahan argued that state control of the seas 

amounted to control of all continents (Mahan, 1987). Though not a geographer, the 

Prussian strategist Carl von Clausewitz (1989; Paret, 1993) also offered enduring state-

centric explanations of war. While these ideas all stressed notions of state power at a 

global scale, the events of the post-nuclear era that followed World War II showed the 

significance of regional and local power as well as the myriad human interactions that 
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can lead to conflict. The experiences of the decolonization era begat theories of 

insurgency and guerilla warfare (Fall & Minh, 1967; Marighella, 1971; Taber, 2002; Tse-

tung, 2013), counterinsurgency (Nagl, 2005; Trinquier, 2006), terrorism (Cruickshank & 

Ali, 2007), and counterterrorism (Hoffman, 2006; Rubin, Gunaratna, & Jerard, 2011), 

culminating in the formulation of netwar (Arquilla & Ronfeldt, 2001) that emphasizes the 

role of networks. While netwar applies to human social networks in physical space, some 

analysts foresee an era of warfare fought entirely within information networks in virtual 

space, by both state and non-state actors, with inexpensive computer code as the primary 

weapon (Farwell & Rohozinski, 2011).  

The political geographer Colin Flint offers a vision of conflict shaped by the idea 

of networks. He has led the development of sophisticated analytical constructs attuned to 

the complex and numerous social relationships that are associated with places and define 

conflict (Flint, Diehl, Scheffran, Vasquez, & Chi, 2009; Radil, Flint, & Tita, 2010). 

Relying upon actor-network theory (Latour, 2005), Flint’s conceptualization of conflict 

examines how individuals and social groups relate themselves to each other, to places, 

and to ideas about polity, culture, gender, and resources, among others (Flint, 2004; Flint 

et al., 2009). Although there is value to understanding war as a local state-versus-state 

phenomena (O’loughlin & Anselin, 1991), Flint’s approach goes well beyond the dyadic 

inter-state relationships and physical boundaries that have traditionally driven concepts of 

war, exploring conflict within urban networks at the scale of third-order administrative 

divisions (Lohman & Flint, 2010; Radil et al., 2010). Conflict is also comprehensible as 

the result of numerous competing political interests simultaneously active at multiple 
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levels of analysis: groups, regions, states and international systems (Raleigh & Dowd, 

2013). 

An increasingly refined understanding of modern war, combined with the tools 

and techniques of geographic information science, has led to a revolution in the 

sophistication and precision of spatial analyses of contemporary conflict. Geography and 

spatial relations are not an afterthought to the politics and history of violence. 

Geographers and geographic information scientists offer a distinct and integrative 

perspective about conflict. First, the vocabulary of conflict introduces spatial nuance into 

explanations of war. Criminals, insurgents, terrorists, and other subversive actors 

perpetrate violence from safe havens, with the support of diasporic populations, within 

territory they aspire to dominate (Richard M Medina & Hepner, 2013). Several analyses 

locate violent individuals and groups in both material and semiotic spaces (Richard M. 

Medina & Hepner, 2011). Second, network constructs enable the location of nodes and 

flows belonging to combatant groups (R. Medina & Hepner, 2009). These network flows 

may include transfers of instructions, ideas, intelligence, funds, goods, weapons, 

contraband, recruits, and supporters (Richard M Medina & Hepner, 2013). These 

locations of nodes and flows within violent groups correspond to patterns of team-based 

goal-seeking activity as well as behaviors associated with organizing, supporting, 

preparing, and/or executing violent campaigns. Third, spatial statistical and 

spatiotemporal event analyses of aggregated violent event data have enabled deeper 

exploration and understanding of discrete conflict phenomena. Studies of event 

frequency, intensity/effects, attack type, target type, attacker identity, spatial 
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autocorrelation, temporal autocorrelation, and clustering have proliferated as tools of 

conflict knowledge and provided a means to empirically investigate asserted hypotheses 

like conflict migration and contagion (Barker, 2011, 2012; Dowd & Raleigh, 2013; 

Richard M. Medina, Siebeneck, & Hepner, 2011; O’Loughlin, Witmer, Linke, & 

Thorwardson, 2010; Siebeneck, Medina, Yamada, & Hepner, 2009). This trend in 

scholarship recognizes the importance of team- and network-based analyses of trans-

border conflict at microscopic (e.g. neighborhood, municipality) and mesoscopic (e.g. 

county, province) scales.  

Locating Social Networks 
Human geographers study the human experience in the spaces and places people 

occupy. The geographic perspective is an integrative one that unites political, economic, 

cultural, behavioral, social, demographic, and other analyses through the definition of 

spaces and places (Goodchild & Janelle, 2004). A few fundamental ideas that underpin 

this scholarly integration of social phenomena include interaction, interdependence, 

choice, centrality, and autocorrelation. Spatial interaction recognizes that human beings 

purposefully move objects and themselves to improve their opportunities (Ullman, 1953, 

1956). Locational interdependence suggests that the location(s) chosen by an individual is 

influenced by the locations of others, and vice versa (Graitson, 1982). Spatial choice 

theory offers ideas about the evaluation of locational alternatives according to individual 

preferences (which may be economic, physical, political, cultural, or other) and extant 

constraints (Desbarats, 1983; Rushton, 1969). Central place theory argues that people will 

gravitate towards those areal centers that serve their various needs, and that these centers 
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exist in interdependent and geometrically explicable hierarchies of human settlement 

(Christaller, 1966). Autocorrelation in geography refers to the fundamental assumption of 

dependence among things and people that are near each other (Tobler, 1970).  

These principles, among others, help explain the geographic nature of human 

activity, especially where static settlements offer unambiguous evidence of human 

decisions about location. In the geographic disciplines they have been particularly useful 

in explaining patterns of land use and land cover, especially phenomena of urbanization. 

However these principles also apply in situations and spaces where evidence of human 

activity is ephemeral. When people interact, communicate, and make decisions that are 

temporarily observable, geographers must adopt different sorts of tools and approaches to 

record, analyze, and interpret the patterns that human social groups present. 

One example of an unusual approach to the analysis of strategic spatial choice 

would be to apply the theories of behavioral economists, especially game theory. Two of 

the fundamental assumptions of economists are that 1) people derive satisfaction from 

their consumption of a good and 2) people will maximize their consumption of a good 

according to their preference for it and their means. Geographers who think about space 

like a commodity have asserted that people will “consume” space by choosing their 

location according to their preferences and their means (Kaufmann, Bergman, & Joye, 

2004; Rushton, 1969). Game theory applies mathematical abstraction to the modeling of 

cooperative and competitive behaviors (Nash, 1996; Von Neumann, 2007). Game 

theorists define the choices that confront players, anticipate the interaction that could 

result from such choices, and enumerate the various quantifiable outcomes associated 
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with each potential interaction. These outcomes, which are also known as pay-offs, are 

organized into matrices that serve as models of the game. These models assist economists 

in predicting states of equilibrium that characterize the likely outcomes of the entire 

interaction. Sometimes, these equilibriums reveal behaviors that can be described 

heuristically as maximizing the minimum (or maximin) of a variable pay-off (Camerer, 

2003). In a situation where an individual wanted to locate themselves as far away from 

several known points of potential danger, such heuristics might provide an opportunity to 

anticipate spatial choices at an equilibrium state. Insofar as distance from competitors is a 

quantifiable result of a choice-based interaction among competing players, it is possible 

to consider a game theory of spatial choice. The literature that has considered individual 

spatial preferences has shown that individual spatial choices are characterized by 

equilibrium, but this literature has thus far not applied a game-theoretic approach (Ahas, 

Aasa, Silm, & Tiru, 2010; Ahas, Silm, Järv, Saluveer, & Tiru, 2010; Flamm, Jemelin, & 

Kaufmann, 2008) . 

While there are several studies of individual spatial choice, there is little research 

that applies geographic treatment of social networks. Social networks exist in geographic 

as well as virtual space (Wellman, 2001). The development of methods by which to 

geographically understand social phenomena in populated space is a growing area of 

research interest (Mateos, de Smith, & Singleton, 2011). Social networks are dynamic, in 

that people who are members of a group vary their location and communications through 

space, virtual space, and time. Fundamentally, discrete social networks may be 

decomposed into human members, which can be modeled as network nodes (or vertexes), 



 

16 

 

and their relationships and communications, which can be conceptualized as links (or 

edges). 

Geographers can address the physical and virtual locations of nodes and links by 

treating node location stochastically and applying spatial statistics. A stochastic process is 

a system in which the position of a point or set of points varies according to time and 

some given probability (Doob, 1937). Social network nodes can be modeled in 

geographic space as points with locations (and other attributes) that comprise a pattern 

that is presumed to have been stochastically created. Geographically speaking, social 

networks are therefore best treated as a three-dimensional point pattern, rather than a 

surface pattern. On the other hand, virtual locations of social groups are probably better 

modeled as network-based point patterns in conceptual space. Spatial statisticians have 

developed many techniques for the geographic analysis of point patterns and seen these 

techniques applied in epidemiology (Gatrell, Bailey, Diggle, & Rowlingson, 1996), plant 

ecology (Perry, Miller, & Enright, 2006), and criminology (L. Anselin, Cohen, Cook, 

Gorr, & Tita, 2000), among many other disciplines. A special niche exists among spatial 

statisticians who focus upon point patterns on networks (Okabe, 2012). Point pattern 

analyzers use inter-event distance, first moment properties (mean count per unit area) or 

second moment properties ([co]variance of counts per unit area) to test for departures 

from complete spatial randomness (Diggle, 2003; B. D. Ripley, 1977), to test for 

clustering/dispersal (Luc Anselin, 1995; Getis & Ord, 1992), or to compare patterns by 

descriptive means (Greig-Smith, 1983). Since point patterns are created via spatial point 

processes, these may also be modeled in order to provide expected values for statistical 
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testing (Baddeley, Gregori, Mahiques, Stoica, & Stoyan, 2005; Getis & Boots, 2008; 

Illian, Penttinen, & Stoyan, 2008; B. D. Ripley, 1977; Brian D. Ripley, 2005). However 

useful these techniques are for studying static patterns of stationary points, static 

instances or “snapshots” of continuously dynamic patterns (Reades, Calabrese, Sevtsuk, 

& Ratti, 2007), or time-series reconstructions of continuously dynamic patterns (Esker, 

2007), there is little utility for analyzing spatiotemporally dynamic patterns in which the 

locations of point objects (nodes) are continuously variable. This void may be explained, 

at least until recently, by the scarcity and imprecision of the instrumentation needed to 

collect data as well as the computational intensity required to perform analysis on such 

data. Data about the behaviors and activities of individual users and their affiliates is 

becoming more abundant as a result of greater digitization, miniaturization, availability, 

and interconnectedness in mobile technology (J. E. Katz & Aakhus, 2002; Rainie & 

Wellman, 2012). These and other geospatial technologies provide abundant data, and 

therefore greater opportunity, to study the dynamics of location, movement, and 

communications within social networks (Gudmundsson, Laube, & Wolle, 2012; 

Pentland, 2009).  

Movement in Space and Time 
Spatial statistics involve methods to collect, organize, and summarize data about 

events occurring in space with the purpose of drawing conclusions about the nature of 

those events (Burt, Barber, & Rigby, 2009). Spatiotemporal analysis is an area of spatial 

statistics that addresses patterns of change along multiple dimensions, relying upon data 

in well-defined covariance matrices (Eshel, 2011). While the name of this discipline 
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suggests that the dimensions of interest are universally geographic location and 

chronological time, the techniques of spatiotemporal analysis allow researchers to 

understand multivariate phenomena in which at least one variable is an ordered 

coordinate. So “distance” may be understood as conceptual, genetic, or evolutionary 

proximity, for example, as well as physical or temporal proximity. Although he had 

important forerunners (Matern, 1986, originally 1960; Whittle, 1951), Knox (1963) 

introduced the most popular statistic of spatiotemporal interaction. Insofar as the Knox 

statistic has the problem of population shift bias (Kulldorff & Hjalmars, 1999), there are 

other notable spatiotemporal statistics including the Mantel test, which is the product-

moment coefficient of linear correlation, similar to Pearson’s R, but between two 

matrices of distance. (P. R. L. Dutilleul, 2011; P. Dutilleul, Stockwell, Frigon, & 

Legendre, 2000; Mantel, 1967). Space Time Scan Statistics - such as the Poisson, 

Bernouli, and permutation variants – offer capabilities to identify significant event 

clusters without onerous definition of search radii (Kulldorff, Heffernan, Hartman, 

Assunção, & Mostashari, 2005). Further, there is specific utility for this project in 

methods for the statistical evaluation of spatiotemporal clustering on static networks 

(Eckley & Curtin, 2013). Spatiotemporal heterogeneity may be analyzed in at least eight 

different modes (P. R. L. Dutilleul, 2011), however there are four such modes that are 

optimal for studies of social networks and these are first- and second-order properties in 

space and time of point patterns. 

The emerging discipline of movement analysis builds upon basic principles of 

spatiotemporal analysis and exploits efficient and increasingly available capabilities to 
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track and analyze objects that continuously vary their geographic position (Eagle & 

Pentland, 2006; Gudmundsson et al., 2012; Laube, 2011). These objects, which are 

dubbed Moving Point Objects or MPOs, generate individual spatiotemporal trajectories 

(also called “geospatial lifelines,” “geographic lifelines,” or “movement traces”) that are 

“series of observations consisting of a triple of id, location and time (P. Fisher, Laube, 

Kreveld, & Imfeld, 2005; Mark, 1998).” Fundamental movement analysis results in 

descriptions of speed, acceleration, direction, and path sinuosity of individual trajectories 

(Laube, Dennis, Forer, & Walker, 2007). Movement analysis has roots in quantitative 

ecology (Turchin, 1998), however the dynamism present in an urban human population 

may be orders of magnitude greater than that of wild plant populations, and therefore 

may demand enhancements for the pace and breadth of activity. Historically, the 

movement patterns of animal populations have been modeled using Levy Flight and other 

random walks (Bovet & Benhamou, 1988; Williams, 1992). These models presume that 

individual movement is demonstrably unpredictable. However, evidence for generalizing 

such models to human mobility is limited to studies of particle proxies for human 

movement, notably bank note dispersal (Brockmann, Hufnagel, & Geisel, 2006). 

Research using mobile phone records rather than proxy particles has shown that 

individual human mobility patterns are more regular and explicable than previously 

thought (González, Hidalgo, & Barabási, 2008). Basic research about movement analysis 

is currently focused on issues of precision, especially scale (Arie Croitoru, Eickhorst, 

Stefandis, & Agouris, 2006; Hornsby & Egenhofer, 2002; Laube & Purves, 2011), 

pattern detection in two-dimensions (Graikousis & Photis, 2009; Gudmundsson, van 
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Kreveld, & Speckmann, 2007; Laube & Purves, 2006), and interpolation of continuous 

values from discrete observations (Wentz, Campbell, & Houston, 2003). Of particular 

interest to the proposed project is the computational derivation of emergent group 

behaviors from analysis of the trajectories of individua l actors. Three basic “steering 

forces” that indicate group behaviors from individual movement include cohesion, 

separation, and alignment (Reynolds, 1987). Algorithmic approaches relying on nonlinear 

optimization and swarm intelligence techniques including Particle Swarm Optimization 

(Kennedy & Eberhart, 1995) offering a promising way to derive these individual steering 

forces from global observations, and vice versa (A. Croitoru, 2009). Still others 

investigate collective animal behaviors through the lens of shared cognition, asserting 

ordered movement and collective memory (Buhl et al., 2006; Couzin, 2009). 

Cognitive scientists and geographers with expertise in cognition have discovered 

processes of spatial knowledge acquisition from their research about human movement 

(Golledge, 1992, 1993). Unsurprisingly, many of these researchers assert that maps are an 

appropriate way to understand how the mind builds, stores, and retrieves spatial 

knowledge. Cognitive maps are the hypothesized neurological construct, resident in the 

brain’s hippocampus, by which spatial relations among environmental features are 

represented within an environment (Golledge, 2004; O’Keefe & Nadel, 1978). Two 

processes that are believed to rely on the hippocampus are navigation and wayfinding. 

Whereas navigation most properly refers to the guiding of ships over bodies of water, 

wayfinding refers to the way in which people choose paths to an objective location on 

land, often in networked space (Bovy & Stern, 1990). Wayfinding is a proposed cognitive 
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process by which people “search an environment to a path that can link an origin and a 

destination (Golledge, 1992).” Wayfinding involves knowledge about places and routes 

and draws upon cognitive processes to 1) recall place names and locations, 2) link these 

pieces of information together sequentially, and 3) infer unknown spatial relationships 

from known characteristics of the environmental configuration (Golledge, 1992; Hirtle & 

Hudson, 1991). The distinction between navigation and wayfinding is important because 

navigation implies movement mostly by dead reckoning with instruments, and 

wayfinding implies the association of landmarks, routes, distances, and angles. 

Pedestrians negligibly use dead reckoning in everyday life.  

At the intersection of point pattern analysis, wayfinding, and movement analysis 

lays the potential to identify patterns in continuous behaviors of groups of MPOs. Much 

of the thrust of research here is founded in theoretical simulations (Simini, González, 

Maritan, & Barabási, 2012) or surrogate realities (Szell, Sinatra, Petri, Thurner, & Latora, 

2012), rather than field-based empiricism. One example (Shoshany, Even‐Paz, & Bekhor, 

2007) used multi-agent simulation and linear programming to study how individuals 

engaged in flocking, merging, and separation (clustering and de-clustering) through time. 

However some empirical work has claimed a high degree of predictability in the 

movement patterns of MPOs (González et al., 2008; Song, Qu, Blumm, & Barabási, 2010 

a). Wayfinding may offer supportive theory to such efforts aimed at understanding and 

interpreting observed movement patterns. 

Insofar as groups of human MPOs may also be linked as a social network, a 

significant scientific advance may lie in a greater understanding of the ways in which the 
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movements of human points (nodes) are influenced by conditions of their links (edges). 

Geographic network analysis, social network analysis, and theories of information 

diffusion are all germane to the study of the collective action, in four-dimensions, of 

groups of individual elements, or what has been termed “dynamic collectives (Galton, 

2005).” Here, the identity, affiliation and/or mode of individuals introduces an interesting 

fifth dimension; the condition of an individual’s relationship with the rest of the network 

(Hornsby & Egenhofer, 2000). Since human beings vary their longitude, latitude, 

elevation, and relationships to one another over time, it is both reasonable and 

challenging to pursue social/geographic network dynamics in five dimensions (Radil et 

al., 2010). Views on affiliation vary, with some researchers emphasizing how 

relationships endure as a matter of meaningful friendship (Hui, Crowcroft, & Yoneki, 

2008), while still others emphasize how relationships in networks are fleeting as a matter 

of physical or virtual proximity (Eagle & Pentland, 2006). Indeed it may be that the 

hybrid nature of physical and social space may imbue illicit networks with critical 

dependencies (Medina & Hepner, 2011a; Medina & Hepner, 2011b) originating in the 

type and strength of relationships. 

Two technological phenomena that enable greater geographic exploration of 

network dynamics are geosimulation, which is associated with theory-driven approaches, 

and reality mining, which is more commonly an element of data-driven approaches.  

Geosimulation combines the data models of GIS with multiagent simulation to 

produce spatially explicit agent-based models (Benenson & Torrens, 2004; Crooks, 

2010). Geosimulation allows for the evaluation of hypotheses about complex human 
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geographic phenomena via repeated rule-based interaction of large populations of virtual 

agents in “artificial societies;” this offers an approach that is beneficial for ethical and 

practical reasons (Epstein & Axtell, 1996; Luke, Cioffi-Revilla, Panait, Sullivan, & 

Balan, 2005; Tisue & Wilensky, 2004). The efficient integration of entities in geospatial 

data models and multi-agent simulation models have demanded heuristic computational 

approaches like spatial indexing that resembles branch-and-cut techniques (Blecic, 

Cecchini, & Trunfio, 2009). Studies employing applied geosimulation have addressed the 

topics of land use (Zhao & Murayama, 2007), traffic planning (Torrens, 2004), 

epidemiology (Bouden, Moulin, & Gosselin, 2008), and civil disturbances (Torrens & 

McDaniel, 2013) often in urban environments where pervasive social interaction, 

vertically constructed environments, and propagation along transit networks present 

important challenges not easily handled on a Euclidean plane. A chronic problem in any 

application of multi-agent simulation is the quality and diversity of decision rules, which 

tend to oversimplify cognitive processes, deemphasize collective identities, and 

presuppose the validity of hypotheses (Castle & Crooks, 2006; O’Sullivan & Haklay, 

2000). 

Reality mining involves computational analysis of communications, identity, and 

location data collected from digital emitters and/or sensors such as smart phones (Raento, 

Oulasvirta, & Eagle, 2009), Bluetooth-enabled devices (Eagle & Pentland, 2006), Wi-Fi 

devices (Kim & Kotz, 2006), and RFID tags (Roth, Kang, Batty, & Barthélemy, 2011). 

The predictability of an individual’s location, activity, and proximity to other individuals 

is the major interest of researchers engaged in reality mining; these scientists grapple 
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with the degree of behavioral entropy (or randomness) extant in an individual’s life 

(Eagle & Pentland, 2006; Phithakkitnukoon, Husna, & Dantu, 2008; Song et al., 2010). 

An object of the reality mining movement is to develop computational approaches that 

extract knowledge useful for making sense of complex spatial phenomena from large sets 

of data collected digital, specifically mobile, electronic devices (Fayyad, Piatetsky-

Shapiro, & Smyth, 1996; Giannotti & Pedreschi, 2008).  

Reality mining relies heavily upon the emergence of the “sensor web,” the system 

of distributed and networked in situ sensors that now constitute a new kind of earth 

observation system (Liang, Croitoru, & Tao, 2005). The concepts of Volunteered 

Geographic Information or VGI are some of the more celebrated explanations of this new 

sensing paradigm (Goodchild, 2007). Goodchild describes how individual users, enabled 

by mobile devices with Global Positioning System (GPS) sensors, cameras, and data 

connections, interact with each other to generate geographic content that is published via 

the World Wide Web. Lately, VGI has been recast in other terms as Crowdsourced 

Geospatial Data or CGD (Rice, Paez, Mulhollen, Shore, & Caldwell, 2012) as well as 

Ambient Geospatial Information or AGI (Stefanidis, Crooks, & Radzikowski, 2013). 

These concepts carry different notions about the intentions, authority, accuracy, and 

technologies of the “volunteers.” For example, AGI collects information from users who 

may not have intended to contribute to geographic knowledge and emphasizes social 

media technology platforms like Twitter (Stefanidis et al., 2013). The popularity and 

accessibility of social media platforms such as Facebook and Twitter have driven the 

“GeoSocial” trend in research (A. Croitoru et al., 2012). VGI and CGD, on the other 
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hand, cover information that may have been designed or intended to compete with 

official sources of geographic knowledge (Rice et al., 2012). Another way to differentiate 

these approaches is to examine the information that each one emphasizes. Whereas AGI 

is interested primarily in the content of user contributions, other approaches emphasize 

metadata such as identity, date, time, and location (P. Fisher et al., 2005; Stefanidis et al., 

2013). 

Geographic Information Systems that drawn upon VGI, CGD, and AGI make 

heavy use of GPS technologies. GPS is a nearly ubiquitous location information system 

that relies upon satellites and is therefore highly effective at locating items outdoors 

(Hofmann-Wellenhof, Lichtenegger, & Collins, 1993). Since buildings obstruct GPS 

signals, GPS is less adept at locating items underneath overhead obstructions. Some have 

resolved this difficulty by combining GPS and cellular phone technologies in what has 

been termed “Assisted GPS” or aGPS (Djuknic & Richton, 2001). Recent research 

attention has been devoted to developing indoor location system capabilities (Liu, Darabi, 

Banerjee, & Liu, 2007). Many of these “indoor positioning systems” or IPSs use ground-

based wireless networks, such as 802.11-type WiFi networks, to assess proximity to 

multiple known access points and triangulate a likely location in a building. Others 

accomplish the same effect with cellular phone network technologies (A. Bar-Noy & 

Kessler, 1993; Amotz Bar-Noy, Kessler, & Naghshineh, 1996). IPS technology relies 

upon accurate “fingerprints” of wireless emissions measured at every discrete location in 

a building (Haeberlen et al., 2004). Hobbyists, technologists, security professionals, and 

even criminals have engaged in the practice of “wardriving” or “warwalking” in order to 



 

26 

 

scan locations for wireless emissions associated with nearby access points (Kim, 

Fielding, & Kotz, 2006). Owing to the high expense associated with mapping and 

maintaining accurate data about indoor wireless emissions, greater research attention has 

been paid to technologies that either reduce dependence upon such information or find 

methods by which to collect this information more easily (Bolliger, 2008; Ledlie et al., 

2012; Park et al., 2010). Interestingly, the IPS initiative seeks to inform users about their 

location using information that users knowingly or unknowingly collected, bringing the 

ostensible purposes of VGI and CGD to a full circle.  

The Science of Societies 
Fundamental sociological theory underpins the geosimulation and reality mining 

approaches that employ knowledge of social structures and influences. Classical 

sociological theorists explored social constructs and forces such as socioeconomic class 

and the competition for resources (Marx & Moore, 2011), hierarchy and collective 

morality (Durkheim, 2006), and individualism and rational authority (M. Weber, 1994). 

Later, sociologists explored the specific concepts of homophily (McPherson, Smith-

Lovin, & Cook, 2001) and deviance, finding deeply individualistic causes in some cases 

(Hirschi & Gottfredson, 1994; Schelling, 1971), and deeply systemic causes in others 

(Merton, 1968, 1976). These theories each offer compelling explanations for the 

behaviors of politically violent groups. More importantly, their ideas introduce a debate 

among social scientists about the relative importance of social structure and individual 

agency. Following Durkheim (2006) and Simmel (1964), the structures of group relations 

primarily shape the nature of the social group. On the other hand, Weber’s perspective 
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emphasizes the importance of individual perceptions, rationality, roles, and actions in 

defining the nature of the group. Sociological analyses of human networks have carried 

forward this tension between explanations that favor structure and those that favor 

individual agency, although the tendency has been to favor the structuralist approach 

(Mizruchi, 1994).  

Concerned with knowledge of a “…set of relationships that apply to a set of 

actors (Prell, 2011),” social network analysis is a body of concepts and methods that is 

variously described as an interdisciplinary, sub-disciplinary, or altogether independent 

approach to understanding social phenomena. The origins of structuralist treatment of 

social networks begin in Europe as early as the thirteenth century (Freeman, 2004) but 

blossom in the nineteenth century with the rigidly empiricist perspective of sociological 

research pioneered by Auguste Comte, the French philosopher who fathered positivism 

(Comte, 1988), and Adolphe Quetelet, Comte’s Belgian contemporary who applied 

statistics in developing what he called “social physics” (Quetelet, 2013). The views of the 

old “social physicists” developed in earnest in the United Kingdom and the United States 

in the 1930s (J. Scott, 1988). Jacob Moreno and Helen Jennings produced graphical 

representations of social groups (called “sociograms”) and computed statistical measures 

of social relationships on their way to developing what they termed “sociometry” 

(Moreno, 1960; Moreno & Jennings, 1938). In the 1970s, Harvard’s Harrison White 

oversaw a series of revolutionary advances in social network analysis (Boorman & 

Harrison C. White, 1976; Harrison C. White, Boorman, & Breiger, 1976) that culminated 
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in a theory of social identity that is deferential to the role of relationships and 

mathematical definitions of their structure (H. C. White, 1992).  

Among more recent social network analysts, some have deepened the structuralist 

techniques of the Harvard revolution by adding new clarifications, measurements, and 

tests (Snijders, 2003; Wasserman & Faust, 1994; Wellman, 1997) while still others have 

worked to reinvent the paradigm. Dynamic Network Analysis is a reconceptualization of 

social network analysis that begins with the premise that actors, their relationships, and 

social institutions evolve in many ways over time (Carley, 2003). Affiliation, for 

example, is not a permanent and binary state; affiliation is often partial, conditional, 

divided, and/or in flux. Representing the choices that independent actors make with 

respect to their social surroundings is something that researchers have addressed with 

multi-agent simulations (Louie & Carley, 2004), genetic algorithms (Matthews, Gongora, 

and Hopgood in Bramer, Petridis, & Hopgood, 2010), and exponential random graph 

models (Hanneke & Xing, 2007) among other computational tools. Significantly, Tom 

Snijders has used Markov chain Monte Carlo methods to produce stochastic simulation 

models of continuous time interactions in social networks (Snijders, 2001) and his work 

may provide a foundation of theoretical distributions to leverage in developing statistics 

and analyses of the geographic dynamics of goal-directed social behaviors. 

As recently as the 1990s, physicists who specialized in networks began applying 

their knowledge to social phenomena. With fanfare, new social physicists like Albert-

Laszlo Barabasi (Barabasi, 2003) and Duncan Watts (Watts, 2004) argued the 

structuralist sociological perspective while presenting concepts such as preferential 
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attachment (new network members deliberately seek out other members who are already 

well-connected (Barabási & Albert, 1999)) and “small-worlds” (networks that are highly 

clustered with short path lengths (Watts & Strogatz, 1998)). Today, the concepts of so-

called “social physics” are highly fashionable, although some scholars contend these 

analytical paradigms are debatable extensions of basic research in physics and 

mathematics (J. P. Scott & Carrington, 2011).  

Three difficulties with these sociological or social-physical approaches are: 

placing social networks in geographic space, accounting for human attributes, and 

generalizing about small social groups. Most practitioners of social network analysis 

locate nodes in network space, however few attempt to locate nodes geographically (an 

exception is Radil et al., 2010) owing perhaps to “reductionist traditions in science 

(Goodchild, Anselin, Appelbaum, & Harthorn, 2000).” This tendency to take geography 

for granted in pursuit of social scientific elegance is not universally inappropriate. 

However, remedies must be sought for a theory about the geographic dynamics of goal-

directed social behaviors such as that which this review would support. For example, Zipf 

(1949) explained homophily in expressly spatial terms, finding that distance is a barrier to 

heterophilous relations. There are numerous studies of communities that find the bonds of 

networks vary according to distance, although it is as yet unclear the extent to which 

modern communications technologies are diminishing this distance decay effect 

(McPherson et al., 2001). While many social network researchers and social physicists 

emphasize the pursuit of natural laws embedded in the structure of social networks, few 

emphasize how individual concepts of personality, objective, or agency determine the 
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behavior and influence of a given network. Indeed, even the fundamental factor of gender 

is often suspended to support structural analyses (Lorrain & White, 1971). And while 

their analyses of random large-scale networks (such as global internet communities) 

occur at a level intended to produce generalizable knowledge, it may be useful to 

reemphasize small-scale or local-level networks that organize to achieve distinct 

objectives. Study of the latter smaller type of social network might reveal how discrete 

teams behave, and operate towards their objectives, within larger social contexts 

(DeShon, Kozlowski, Schmidt, Milner, & Wiechmann, 2004). A fundamental proposition 

here is that the proposed scale-free properties of large social groups on the internet apply 

primarily to groups that operate overtly, build predominately shallow interpersonal 

relationships, and recruit newcomers in public. By contrast, groups that organize 

privately, forge interpersonal bonds deeply, and recruit prudently are not characterized by 

the same properties as large scale networks. So the question is how to delineate these 

smaller social networks and how to begin to understand their nature. Dynamic Network 

Theory (Westaby, 2011) offers such a starting point because it attributes roles, objectives, 

and aggregate forces to individuals and groups of people involved in a social endeavor. 

Whereas Carley’s Dynamic Network Analysis (2003) offers perspectives about 

the multivariate evolution of the structure of social networks over time, Westaby’s 

Dynamic Network Theory (2011) largely vacates the structuralist view and emphasizes 

agency, role, and motivation in relation to networks and counter-networks defined in 

terms of common goals. Carley’s paradigm is dynamic primarily because of the notion of 

multifaceted temporal change, but for Westaby, the word “dynamic” heeds the ways in 
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which countervailing forces of multiple generic types interact and produce net effects 

upon the accomplishment of goals. Carley acknowledges the many types of nodes and 

relationships that may reside in a social network, allowing for the different “forces” 

present in Westaby’s models. Insofar as Westaby’s “dynamics” surely vary over time, his 

models may be compatible with Carley’s sense of the importance of change, possibly 

opening the way to an integration of her Analysis with his Theory. This is significant to 

the proposed research because the dynamism of affiliation and agency present in real-

world networks such as teams may reveal important relationships that explain movement 

and communications patterns. 

Network Models and Doctrines 
Network modeling is a separate field with a literature grounded in mathematics 

and operations research, independent of sociology, and largely empathetic to geography. 

Problems in the area of network modeling that may be relevant to this study are in three 

broad categories: modeling of objects (individuals, vehicles) physically moving through 

networked space (e.g. a transportation grid), modeling of flows virtually moving through 

a social network (e.g. communications), and the development of appropriate network 

topological models to support each of the foregoing two needs.  

Classical problems in modeling network flows originate in the work of Leonhard 

Euler (1741) and include deriving the shortest path, minimum cost, and maximum flows 

of entities moving among points on a network, as well as algorithmic treatments thereof 

(Ahuja, Magnanti, & Orlin, 1993). These approaches use general optimization techniques 

(Dantzig, Orden, & Wolfe, 1955) and are broadly applicable. For example, information 
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technologists have applied network flow concepts to optimize the distribution of 

information throughout computer networks (Lucas, 2010) while marketing officers have 

sought ways to quantify the flows of word-of-mouth product recommendations among 

networks of potential consumers (Trusov et al., 2009). An entire geographic field known 

as Geographical Information Systems in Transportation (or GIS-T) has very successfully 

capitalized upon the incorporation of network models and associated techniques into 

geographically explicit planning systems (Curtin, 2007; Waters, 1999). Network 

approaches have addressed optimization topics such as evacuation (Church & Cova, 

2000; Cova & Church, 1997), public transit (Biba, Curtin, & Manca, 2010; Bielli, 

Caramia, & Carotenuto, 2002; Curtin & Biba, 2011), and public safety (Current, Re 

Velle, & Cohon, 1985; Curtin, Hayslett-McCall, & Qiu, 2010), underpinning an entire 

geographic field - called location science - concerned with optimal facilities location 

(Church, 2002; Curtin & Church, 2006, 2007; Hale & Moberg, 2003). Since human 

beings may desire to locate themselves optimally on an urban network, the field of 

location science offers an interesting complementary perspective to the behaviorist and 

cognitive approaches of spatial choice theory. 

Where it may be desirable to model the passage of members (nodes) of a social 

network in and through physically networked space, solutions are well specified. 

However, a far more useful and yet unresolved application of network analysis principles 

may be the propagation of communications which themselves substantiate the 

relationships among members of a social network. Information diffusion through social 

networks is an important phenomenon to model because it considers not only the 
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structure (edges) of social networks but also the strength and nature of network ties, as 

well as the communicative behaviors of the members (nodes). Some researchers 

hypothesize that information diffuses in human networks like infectious outbreaks 

(Buskens & Yamaguchi, 2002), while others (Iribarren & Moro, 2009) find that network 

information diffusion follows far more enigmatic processes. It is probable that 

information diffusion on illicit networks follows some atypical processes because of the 

value of information secrecy to these networks (Lindelauf, Borm, & Hamers, 2008). 

A principal question in the geographic modeling of social networks is to 

determine what types of data models are appropriate. While social networks may exist on 

continuous surfaces, we have seen that they behave as groupings of defined nodes that 

communicate along defined paths. Since social networks are aptly analyzed in geographic 

space as discrete point patterns rather than continuous surface patterns, it follows that 

vector data models, rather than raster data models, are suitable. However the challenge of 

developing vector data models of social networks for geographic applications ultimately 

lies in graph theoretic topology. Positional information in three dimensions, as well as 

affiliation and institution variables, must be integrated as attributes of graph theoretic 

data models in order to support GIS. Graph theory is a foundational element of the 

emerging science of networks (Steen, 2010). 

There are many researchers integrating sociological methods, physics-based 

models, mathematical theory, systems theory, network models, and/or new computational 

capabilities to produce new knowledge of our social world (Lazer et al., 2009; Macy & 

Willer, 2002). Network Science builds upon the advances of graph theory, social network 
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analysis, and systems analysis to study the “…theoretical foundations of network 

structure/dynamic behavior and the application of networks to many subfields (Lewis, 

2009).” The implied objective of many Network Scientists is to predict trends and events 

that may fundamentally alter society (Vespignani, 2009). While one topic of interest is 

the resilience of a social network to the removal of highly central nodes, another 

important subject is the “phase transition,” also known as a “tipping point,” which is a 

critical mass event in which large scale systems change from one state (e.g. concern) to 

another (e.g. revolt) (Barrat, Barthélemy, & Vespignani, 2008). Some researchers have 

examined how in extreme instances the removal of highly central nodes may give way to 

“cascading failures” that extensively damage systems of networks and require significant 

rehabilitation (Grubesic & Murray, 2006). In still other cases, network scientists have 

been working to develop ways to infer and/or detect links between important nodes 

(Napoletani & Sauer, 2008). The U.S. government has made several major investments in 

Network Science in the expectation of discovering and understanding social forces 

critical to national security and other strategic objectives (Schmorrow et al., 2009).  

In fact, over much of the past decade a principal U.S. strategic objective has been 

to transform its national security capabilities to contend with “shadowy networks” of 

terrorists, insurgents, covert operatives, and organized criminals (S. Weber, 2004). First 

articulated in the early 1990s, the concept of netwar focuses upon “…an emerging mode 

of conflict and crime at societal levels, involving measures short of traditional war, in 

which the protagonists use network forms of organization and related doctrines, 

strategies, and technologies… (Arquilla et al., 1999).” A significant feature of netwar is 
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the notion that illicit networks and resistance networks transcend political boundaries 

with an ease that enables their activities (Routledge, 2000, 2008). Developing strategies 

to locate illicit networks in geographic as well as social space and to dissociate them from 

potential sources of power is a central focus of the netwar paradigm. Methods for 

interrupting flow across networks have appeared in the operations research literature for 

some time (Hodgson, 1990; Kuby & Lim, 2007), although no application of such flow 

interdiction or flow covering strategies have yet been made to dynamic social networks. 

In their work to integrate spatial and social network analyses of conflict, Flint et al (2009) 

noted the multi-dimensional nature of the challenge: “Actors in a conflict are situated 

within historical, network, and territorial circumstances that must be analyzed 

simultaneously.” Flint’s notion of simultaneity in analyzing the activities of social groups 

in time and space pervades the project of comprehensively understanding the geographic 

dynamics of goal-directed social behaviors. 

Team Movement and Goal Orientation  
The field of industrial and organizational psychology deals with human mentality 

in the workplace. Areas of interest in this field include organizational structure, 

motivation, attitudes, leadership, culture, cohesion, communication, stress and strains, 

interpersonal factors, and the discrete and aggregate effects of these and other 

determinants upon collective performance (Spector, 2008). The field blossomed in the 

early 20th century as the industrial revolution came into its fullest maturity. Early 

influences in this field included Francis Taylor (2011) and Max Weber (Du Gay, 2000; 

Wagner & Hollenbeck, 2010) who advocated top-down hierarchical management 
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structures as the most efficient means to secure effective performance. The premises of 

the hierarchical approach include the idea that employees are most highly influenced by 

rewards and punishments and motivated primarily by the extrinsic benefits of 

employment (i.e. compensation). 

A more sensitive and humanistic approach argues that people are also influenced 

by the likability and expertise of their leaders and gain intrinsic satisfaction from their 

work (D. Katz & Kahn, 1978). Others understood that human beings behave in ways that 

are shaped by their independent goals, intentions, and plans (Ryan, 1970). Ryan and 

others found that motivation is a factor independent of organization. Motivation is the 

individual process of resolving preferences for different intentions; motivation ultimately 

leads to the establishment and pursuit of goals (Lewin, 1951). The setting of goals can 

affect performance by directing, increasing, and sustaining effort, and can lead to 

unanticipated discoveries and the development of skills (Locke & Latham, 2002; O 

Leary-Kelly, Martocchio, & Frink, 1994). While individuals are guided by their own 

motives and goals, they communicate in groups as they develop their awareness of 

potential intentions. Group communication is another factor influencing goal-setting. 

Members of a group may influence one another interdependently, by verbal and non-

verbal messaging, and with emphasis on objective or subjective observations (Keyton & 

Beck, 2008). The process of communication leads to a rationalization of problems, goals, 

and actions that become manifest in that group’s behavior (Keyton & Beck, 2008). The 

shared awareness that results from this communication has been referred to as “team 

cognition” (Beck & Keyton, 2012).Groups also maintain an awareness of shared norms, 
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values, and attitudes that partly form the group’s culture. Every human group exists 

within a society that possesses a culture with its own forms; these forms necessarily and 

inconspicuously shape how that group behaves (Benedict, 1959; Geertz, 1973). 

Idioculture refers to the unique system of knowledge, beliefs, behaviors, and customs that 

are shared by members of a discrete group and provide the basis for sustained interaction 

among the members of that group (Fine, 1979). Industrial and organizational 

psychologists who have recognized the forces of leadership, motivation, communication, 

and culture have advanced beyond hierarchy to team-based organizations (Cohen & 

Bailey, 1997; Hackman, 1987; Stewart, Manz, & Sims, 1999). 

Teams are social constructs of at least more than one individual who work 

together to accomplish some common goal(s) (Sundstrom et al., 2000). Teams may be 

formal or informal in origin and may be confined within organizational boundaries or 

reach across organizational divisions (Espinosa, Cummings, Wilson, & Pearce, 2003; 

Sundstrom et al., 2000). In-team influence may be founded in notions of rank, friendship, 

norms, or other social factors (Rank & Tuschke, 2010; Salk & Brannen, 2000). Some 

researchers have applied categories to teams such as management, service, production, 

and advisory (Cohen & Bailey, 1997; Sundstrom et al., 2000). Others have extended the 

concept of teams to include virtual teams who collaborate via information technology and 

distributed teams who collaborate remotely (Hertel, Konradt, & Orlikowski, 2004). Task 

interdependence, communications, conflict, roles, and leadership are persistent themes in 

the team research literature (Bell & Kozlowski, 2002; Curseu, Schalk, & Wessel, 2008; 
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S. G. Fisher, Hunter, & Macrosson, 1998; Hinds & Bailey, 2000, 2003; Rico & Cohen, 

2005; Senior, 1997; Yoo & Alavi, 2004; Zaccaro, Rittman, & Marks, 2001).  

Insofar as some team members will integrate the observations and perceptions of 

their team members into their own cognitive maps and shared mental models, individual 

cognition becomes team or social cognition (Beck & Keyton, 2012; Borgatti & Foster, 

2003; Mathieu, Heffner, Goodwin, Salas, & Cannon-Bowers, 2000). Given this literature, 

it is anticipated that movement –based progress towards team objectives will improve 

commensurately with team facilities to exploit their collective awareness and memory of 

each other’s locations, perceptions, and communications, as well as their understanding 

of team performance and interaction (Mathieu et al., 2000; Yoo & Kanawattanachai, 

2001). Baseline individual capacities for social cognition about geographic goal-directed 

processes are as yet unknown.  

However, prior research about team processes in general has revealed a 

fundamental distinction between transition phases, in which teams observe, orient, set 

goals, and plan, and phases of action phases, in which teams execute, pursue goals, and 

coordinate work (Marks, Mathieu, & Zaccaro, 2001). Goal-oriented team processes 

involve repetitive cycles of transition and action phases known as “performance 

episodes” or simply “episodes.” Episodes are “…distinguishable periods of time over 

which performance accrues and is reviewed (Mathieu & Button, 1992).” Two challenges 

set out by this literature are therefore (1) defining what geographic and communications 

behaviors conform to transition or action phases and (2) using these patterns and phases 

to “distinguish” performance episodes and cycles. It is possible that a combination of 
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spatial statistics, social statistics, and isolated steering forces will reveal such behaviors, 

phases, and episodes. However, no prior research exists to describe and categorize such 

behaviors. 

Team movement patterns necessarily involve individuals moving coherently, but 

it is unclear the extent to which team wayfinding is a socially constructed behavior or 

merely composited from sets of individual behaviors. Wayfinding is a goal-directed 

cognitive process (Golledge, 1999; Montello, 2005). While the wayfinding literature 

addresses the cognitive aspects relating to the motivated movements of individuals, there 

is no research that explores team wayfinding in general or task-oriented team wayfinding 

specifically. Rarely do authors in the behavioral sciences mention spatial or geographic 

aspects of teams except to discuss static geographical dispersal in the context of virtual or 

distributed teams. While some effort has been devoted to spatial analysis of team 

behaviors in sports, none has been dedicated to dynamic geographic attributes of team 

behaviors in non-athletic pursuits (Bartlett, Button, Robins, Dutt-Mazumder, & Kennedy, 

2012; Coutts & Duffield, 2010; Sukthankar & Sycara, 2006a, 2006b). It is possible that 

concepts of goal-oriented team wayfinding would combine ideas about spatial cognition 

(identification and association of routes and landmarks) with ideas about social cognition 

(cognitive maps, shared mental models) and other team-focused concepts (roles, 

leadership, communications, interdependence, etc.). 

Multiteam Systems (MTSs) are networks of teams that interdependently achieve 

their own team-level tasks while striving to accomplish some overarching system-level 

goal(s) (Mathieu, Marks, & Zaccaro, 2002). Insofar as MTSs may be understood as teams 
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of teams, MTSs exhibit some similarities with teams in the significance of 

communications, culture, and leadership. MTSs organize individuals, according to roles 

and tasks, into teams that work interdependently (Zaccaro, DeChurch, & Marks, 2012). 

MTSs demand leadership that can iteratively make sense of complex requirements, 

establish objectives, and coordinate the achievement of these requirements (DeChurch & 

Marks, 2006). Culturally, MTSs rely upon normative processes and shared meaning 

rooted in systems of values rather than rules or constraints (Zaccaro & DeChurch, 2012). 

MTS leaders set these cultural conditions that enable the fulfillment of these requirements 

by intergroup problem solving. More importantly, MTSs also organize teams according 

to their tasks and enable team interdependence so that cross-boundary work-sharing 

occurs where needed to efficiently achieve system-level goals (Davidson & Hollenbeck, 

2012). Thus, inter-organizational collaborative effort is the cornerstone of the MTS idea. 

MTS communication, in turn, enables collaboration by creating a sense of shared 

meaning that illuminates task requirements and priorities (Keyton, Ford, & Smith, 2012). 

While there is some mention of geographic processes in the MTS literature, such mention 

is limited to discussion of the effect of geographic distribution upon the functioning of 

MTSs. No scholarly examination has assessed the geographic attributes of the behaviors 

of MTS members in the way proposed by this research project. 

The development of MTS concepts conforms to the assertions, offered above, of 

growing decentralization of power and increased influence of teams. MTSs are 

particularly attuned to descriptions of illicit social movements that perpetrate political 

violence. In an infamous 1,600-page treatise, the influential Al Qaeda strategist known as 
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Abu Musab al-Suri exhorted his followers to perpetrate a global resistance in which small 

autonomous groups organized to achieve locally-determined goals in support of Al 

Qaeda’s larger objective of restoring the Islamic caliphate (Cruickshank & Ali, 2007). 

Other observers have recognized that terror groups exhibit a hybrid structure in which a 

supreme leadership facilitates interdependence among a distributed network of semi-

autonomous teams, also called cells (Richard M Medina & Hepner, 2013). The MTS 

construct aptly describes resilient, adaptive, and non-hierarchical systems of terror cells 

observed by terrorism experts (Hoffman, 2002; Sageman, 2008). 

Naïve Hypotheses 
This literature provokes several naïve hypotheses which are listed below. These 

are conjecture and merely a starting point from which this and future projects build 

towards theoretical concepts about the geographic dynamics of goal-directed social 

behaviors. 

1. Human groups have a geographic presence that is temporally dynamic. 

2. The geographic presence of human groups is describable with network 

concepts and comprised of: point locations of members (network nodes); 

communications and relationships among members (network links); facts 

of identity, affiliation, or disaffiliation (boolean variable); and patterns of 

movement (spatio-temporal network topology). The topological structure 

used to understand this presence is therefore a combination of interrelated 

networks that exist in physical, virtual, and hybrid space. 
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3. The communications and geographic presence of discrete human groups 

exhibits heterogeneity. Potential factors of this heterogeneity are: cultural 

influences, idioculture, social objectives, strength of links or 

communications, network structure, physical or social barriers, individual 

roles, leadership, internal conflict, factors of social cognition, and 

technology.  

4. Individual group members make decisions about their locations and move 

in pursuit of goals according to their perceptions of geographic optima. 

These perceptions derive from the spatial knowledge, spatial preferences, 

and the spatial behaviors of those individual team members as well as the 

spatial knowledge, spatial preferences, and the spatial behaviors they 

observe in their teammates, adversaries, and others. Since spatial 

knowledge and individual knowledge about teammates, adversaries, and 

others is imperfect, individual perceptions of geographic optima are 

flawed.  

5. Patterns of group movement and communication are characterized by 

transition phases and action phases. These phases are recognizable in 

behavioral changes that are distinguishable from random behaviors and 

therefore recognizable via statistical inference. 

6. Exploring the geographic dynamics of goal-directed social behaviors 

offers the potential to understand and predict social behaviors as a 
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function of the factors of heterogeneity, enhancing knowledge of forces 

influential in the polity, economy, and culture of contemporary societies. 

7. Empirical observation of the dynamics of human social networks is 

sensitive to parameters including scale of analysis, sampling rate, 

timestamp rate, and sensor type, among others. 

The literature reveals that no scientific effort to understand the geographic 

dynamics of goal-oriented team behaviors has yet been undertaken, and any such effort 

must draw from among many scientific disciplines. Furthermore, this review supports the 

observation that such research is now much more possible as a result of numerous 

scientific, technological, and social advances. While game theory has been successfully 

exported to numerous academic disciplines, it has not yet integrated notions of distance 

and spatial preference into game theoretic models and geography has yet to bring such 

knowledge of strategic cooperation and competition into the geographic domain. Much 

attention in industrial and organizational psychology has been paid to the effects of 

geographic dispersion upon work performance in teams; however there is no other deeply 

substantive treatment of location integrated within the theories and models of this 

discipline. Reality mining is leading to discoveries about how individuals reason 

spatially, but it has not yet yielded reliable research about group behaviors. Despite the 

significant influence of the concept of netwar, there is a negligible amount of research 

that has considered some of its propositions under empirical conditions with the help of 

human subjects. Geosimulation has offered theory-driven evidence about the root causes 

of spatially manifest social phenomena; however these ideas could benefit from empirical 
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examination of the sort that can only be obtained by full-scale experimentation with 

human subjects. While important human geographic theory has derived from behavioral 

approaches, these theories are rarely developed with information gleaned by geographic 

optimization, and this combination could enable greater awareness of the geographic 

decisions of individuals, teams, and larger social systems. Accounting for the geographic 

ways in which individuals act upon messages they receive from their friends and 

acquaintances, in the context of their goals and their technologies, will illuminate social 

processes of political mobilization and subversion. Alternatively, this research could 

provide insight about social behaviors to improve public services and the offerings of 

commercial ventures. 
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CHAPTER THREE: METHODS 

General 
The purposes of this research are to produce new metrics, hypotheses, and 

distributions of observations about the geographic dynamics of goal-directed social 

behaviors. The research design uses network-based stochastic geosimulation, formal 

experimental design, and spatiotemporal statistics to perform an experimental analysis of 

small team behaviors. A series of computer simulation experiments uses a simple game to 

isolate and distill one type of goal-directed team behavior that is associated with illicit 

group activities: hiding when being actively sought. This game, called here “pursuit-and-

evasion,” is similar to the schoolyard game of hide-and-seek. Pursuit-and-evasion is 

offered as an abstraction of military and law enforcement activities oriented against 

clandestine cells engaged in terrorism, insurgency, or political subversion. In each 

experiment exercise there are two teams, a pursuing team and an evading team, that seek 

to achieve goals that depend upon the location of the opposing team. The pursuing team’s 

goal is to identify and locate each member of the evading team. Conversely, the evading 

team’s goal is to avoid being identified and located by the pursuing team. The game ends 

when either the pursuers achieve their goal or a predetermined period of time concludes 

and at least one of the evaders have successfully avoided detection and location. In the 

interest of simplicity, this game assumes that all players are pedestrian in their mobility.  



 

46 

 

Study Area 
The area of this study is within a 670-acre contiguous university campus, the 

George Mason University (GMU) Main Campus in Fairfax, Virginia. The study area was 

virtually represented as a set of terrain models within the computer simulation model. 

The campus is a combination of residential, academic, and administrative buildings set 

amid a network of pedestrian walkways in a Mid-Atlantic woodland environment. 

Although there are two arterial roadways adjacent to the campus (Virginia State Routes 

123 and 620), there is a limited road network within the university’s property. This road 

network includes Patriot Circle, which circumnavigates the periphery of the central 

campus and links large parking facilities. Virginia State Route 123 bisects the campus, 

separating the athletics facilities in the West Campus from the remaining area of the 

campus. Bicycle transportation is prohibited in many areas. Pedestrian travel is the most 

common method of movement on the GMU campus. See Figure 2. 
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This map uses Virginia State Plane coordinate system that is commonly used by 

governmental activities in Virginia, Fairfax County, and the City of Fairfax. Lambert 

Conformal Conic is the projection associated with Virginia’s State Plan coordinate 

system which uses the North American Datum of 1983 as the Earth Model. This Lambert 

Conformal Conic projection uses standard parallels set at 38.033 and 39.200. By law, the 

Virginia State Plane uses the foot as a standard unit of distance. Although the Lambert 

Conformal Conic is best at preserving the shape of geographic features, this projection 

minimizes distortion of distance and direction when standard parallels are customized to 

Figure 2: A Map of the George Mason University Campus in Fairfax, Virginia 
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the geographic region and the scale is sufficiently large that localities such as towns fully 

contain the map’s extent. This map’s scale is approximately 1:9,000.  

Experimental Design 
This project employs the methods of experimental design, also known as the 

statistical design of experiments (or DoE). Experimental design is an approach to 

planning, executing, and analyzing experiments in order to understand multivariate 

causation while achieving efficiency and internal validity. Experimental design is a 

proven set of quantitative methods that enables scientific investigators to explore data and 

make discoveries that become hypotheses. One feature of the DoE approach is efficiency 

because the approach allows investigators to obtain reliable estimates of input-output 

effects at a fraction of the computational and time expense that would be required for a 

full and complete analysis of those effects. Another feature is the ability to identify not 

only the effects of an input variable on an output variable but also the interaction effects 

of input variable upon each other and output variables. It is therefore well-suited to the 

objectives of this research. DoE methods as applied to simulation modeling are 

extensively described in (Box, 2005; Croarkin & Tobias, 2013; Law & Kelton, 2000). 

This section presents a summary of these authors’ descriptions of DoE as they pertain to 

the methods employed in this research project. 

A primary objective of the DoE approach is to produce a process model that 

closely approximates the interaction of several controlled input variables, called 

“factors,” and one or more output or “response” variables. A process model that fits the 

data well can serve to explain the nature of a set of multivariate interactions as well as 
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predict potential outcomes of future multivariate interactions. Models are most 

commonly linear or quadratic in form. Linear models include terms for the main effects 

of each factor as well as the possible effects of the interaction of multiple (usually two) 

factors. Quadratic models add squared terms to allow for curvature. 

The DoE approach begins by defining factors (k) and response variables (R). This 

involves judging what independent and dependent variables are operative within the 

system of interest. When there are few factors (i.e. k = 2, k = 3, or k = 4), simulation 

resources are inexpensive, and time is plentiful, it may be easy to test every possible 

combination of factors with the simulation model. This situation in which an investigator 

tests every possible combination of factors is called a full factorial design.  

Although factors may exist as continuous variables along a significant range, it is 

not necessary or efficient to test at every possible value of a factor. To estimate the 

effects of factor changes, it is only necessary to test at two value levels for each factor: a 

high level and a low level. Running a set of simulations at every combination of both 

factor levels (2k) gives a design that comprehensively describes the solution space 

(known as a hypercube) in which all response values must be contained. 

The technique of 2k full factorial experimentation yields understanding about not 

only the main effects of each factor upon the response, but also about the multi- factor and 

non-linear effects of every factor upon the response. Since multiple factors may work 

together to exert different effects upon the response than each would independently, it is 

advantageous to understand the effects of factor combinations. 
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Full factorial 2k designs may be impractical when k ≥ 5, simulation resources are 

costly, and/or time is scarce. In these situations, investigators may test some fraction of 

those factor combinations to gain an estimate of the probable results of the full factorial 

design. These types of designs, called fractional factorial designs, are constructed by 

taking a subset (2k-p) of the full factorial set of factor-and-level combinations (2k). The 

experimenter runs simulations for the factor combinations contained only in the subset; 

therefore only 1/2p of 2k possible combinations are run. 

Since a fractional factorial design samples a subset of points that define the full 

parameter space, it only partially captures the interactions among factors and responses. 

The terms “aliasing” and “confounding” refer to the state in which some relationships 

cannot be meaningfully differentiated from others using a fractional factorial design. 

Although the aliasing problem cannot be entirely avoided without employing a full 

factorial design, the problem can be mitigated if the experimenter understands the 

probability that, for example, a multi- factor interaction is more influential than single-

factor main interaction with which it is aliased. Part of the design process is determining, 

in a deliberate way, how to manage aliasing between and among factors, as well as the 

risk that a particular response may be improperly associated with a factor or combination 

of factors. 

Experimental designs are expressed in a design matrix. Design matrices describe 

the factor level combinations to be tested in an experiment, as well as the order in which 

they should be tested.  Each test run is described in a row containing the combination of 

factor levels. Factor levels may be described generically (i.e. + or -) or with specific 
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values (e.g. 1 or 100). Proper ordering of the test runs is important to control for the 

possible effects of pseudo-random number generation. Design matrices present runs in 

both standard order (the generic order in which the design was created) and actual order 

(the random rearrangement of the standard order). 

The closer a design is to a full factorial design, the more desirable are the alias 

patterns that result from the design. The term “resolution” is used to describe the qualities 

of an experimental design that produce more useful outputs. Resolutions are designated 

with Roman numerals and range from I (one) to VI (six), with resolutions I and II being 

generally not useful and resolution VI being considered inefficient. Generally, resolution 

III designs are used to cost effectively “screen” out unimportant relationships and factors. 

Higher resolution designs (IV and V) afford aliasing patterns that allow one to assert 

importance to certain factors and relationships. The explanatory power of resolution IV 

and V designs can be increased with the addition of center points, or test runs with factor 

combinations set at the geometric center of the hypercube. 

Response Surface Methods refer to a family of techniques used in the second-

order (i.e. non-linear or non-planar) analysis of the information that results from formally 

designed experiments. Response surface models are second-order polynomial models 

used to approximate curvature in functions describing non-linear or non-planar 

phenomena. 

Response Variables 
This research project employed six response variables by which to measure the 

outcomes of each simulation experiment: 
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1. The success rate of the pursuing team: The rate at which the pursuers find 

and engage (or “tag”) every member of the evading team before the 

expiration of a user-defined game duration. The difference of 1 and the 

success of pursuers is the success of evaders. 

2. The success rate of the evading team: The rate at which the evaders avoid 

being found and engaged such that at least one evader remains active at 

the expiration of a user-defined game duration. The difference of 1 and the 

success of evaders is the success of pursuers. 

3. The mean time-to-win of pursuers, when game duration is unconstrained: 

The mean length of time in which the pursuing team finds and engages 

every member of the evading team. This value is unconstrained by the 

user-defined game duration. Effectively, this variable is partly the answer 

to the question, “How long could it possibly take the pursuers to win the 

game?” 

4. The standard deviation of the time-to-win of pursuers, when game 

duration is unconstrained: The standard deviation of the length of time in 

which the pursuing team finds and engages every member of the evading 

team. This value is unconstrained by the user-defined game duration. 

Effectively, this variable is partly the answer to the question, “How long 

could it possibly take the pursuers to win the game?” 

5. The players’ preference for locations adjacent to a boundary (termed here 

“boundariness”): The ratio of the amount of time in which a player 
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occupies a location on the outer boundary of the study area to the total 

duration of that player’s involvement in a game. 

Spatiotemporal Analysis 
The space-time permutation scan statistic, a method originally developed to 

provide early warning of disease outbreaks, makes “…minimal assumptions about the 

time, geographical location, or size of the outbreak, and it adjusts for natural purely 

spatial and purely temporal variation,” (Kulldorff et al., 2005). Unlike many other 

spatiotemporal tests, Kulldorff et al’s permutation scan does not require the user to define 

time or space windows because the statistic evaluates many thousands or millions of 

potential space-time windows in search of “unusual” quantities of observations. Another 

feature of the space-time permutation scan statistic is that it does not require information 

about the underlying geographic or temporal distribution of the population at risk. The 

statistic operates solely on case data, which it uses to produce both observed and 

expected values for every space-time window that gets “scanned.” 

One disadvantage of the space-time permutation scan statistic is computational 

intensity. This is partly because the statistic applies intensive Monte Carlo hypothesis 

testing. One way to reduce the runtime necessary to apply the space-time permutation 

scan statistic to many simulated runs is to aggregate the times of cases at user-defined 

intervals.  

In this project, application of the space-time permutation scan statistic to every 

model run without time aggregation would have been prohibitively expensive in terms of 

computer resources. Each application elapsed over approximately twenty minutes in 
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preparatory testing. If every application required twenty minutes, analysis of every 

simulation run in this project would have required approximately 35 years of continuous 

processor time.  

In this project, this statistic’s computational burden was mitigated in two ways. 

First, case times were aggregated at fifteen-minute intervals. Second, the project 

randomly sampled thirty runs from among 190,000 generated in one of the seven 

experiments. Thirty observations provide mere indications of the characteristics of the 

entire population; however, far greater resources and time than are available to this 

project are needed to comprehensively apply the space-time permutation scan statistic to 

every run of the computer simulation model.  
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CHAPTER FOUR: DATA 

Terrain Model 
This project required the generation of a two network-based terrain models used 

in the computer simulation experiments: a “concealment-variegated” terrain model and a 

“concealment- isotropic” alternative. These terrain models represented the study area 

described in the methods section above. In particular these terrain models expressed the 

attributes of concealment and pedestrian accessibility that prevailed across the George 

Mason University Fairfax campus.  

Both terrain models were geometrically tessellated networks of nodes, hexagonal 

cells, and arcs. Two variables to consider in developing a regular geometric tessellation 

are the shape and size of each cell. Regular geometry shows that a continuous 

arrangement of hexagonal cells in which the cell centroids follow a triangular pattern 

ensures maximal dispersion and total areal coverage. Prior research about distances of 

interpersonal visual recognition suggest that facial features are recognizable at a 

maximum distance of about 150 feet (Loftus & Harley, 2005). Given this previous 

research, it is reasonable to assert that non-facial characteristics contributing to suspicion 

or recognition of another’s identity, such as body morphology, hairstyle, complexion, and 

clothing, may be seen at some marginal distance thereafter, perhaps as far away as 300 

feet. Mean pedestrian speed among people in the greater Richmond, VA – Washington, 

DC area aged 14-64 years has been measured at about 4.7 meters, or 15.4 feet, per second 
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(Knoblauch, Pietrucha, & Nitzburg, 1996). In a minute, the average adult VA-DC 

pedestrian could traverse as many as 925 feet. However, the pedestrians in this prior 

research were motivated by vehicular traffic to cross a street, and this pace is probably 

neither reliable without such motivation nor sustainable over longer distances and 

durations. 

In accordance with this preceding research, an appropriate hexagonal cell could 

use a 200-foot apothem and 230-foot radius. 200-230 feet is a reasonable and 

conservative distance at which to scan a 360-degree zone, suspect a person’s identity, and 

move near to them within one minute, assuming that the targeted person is located near 

the edge of an adjacent hexagon and potentially ambulant at a similar pace. See Figure 3 

for a hexagonal lattice of the study area set at a 200-foot apothem and 230-foot radius. 
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Figure 3: A Hexagonally tessellated lattice of the study area 

 

Both terrain models contained 256 arcs among 54 nodes/cells. Arcs were not 

modeled where there was no pedestrian access between adjacent cells. For example, 

Mason Pond is a large water feature that comprises most of Cell 13. Since it was not 

possible to walk from that cell to two of six adjacent cells, there are no arcs in the terrain 

model among those cells. 

In the concealment-variegated terrain model, each node/cell was assigned a 

concealment value representing the percentage of the cell circumference through which 

people and objects in adjacent cells could be clearly seen. The development of cell 
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concealment values required an extensive concealment survey that was conducted on foot 

in June 2014. Every cell was surveyed for concealment properties attributable to 

vegetation, buildings, or terrain-based inter-visibility. Concealment was also adjusted to 

account for boundary properties. The proportion of a cell circumference that faced areas 

outside of the study area (i.e. “boundary-based” concealment) was added to the 

proportions that were assessed as concealed by any other cause. 

 

 
Figure 4: Concealment values for the concealment-variegated terrain model 
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The concealment- isotropic terrain model artificially applies uniform concealment 

values across the study area, effectively removing vegetation, buildings, terrain-based 

inter-visibility, or boundary-based concealment as variables in the computer simulation 

experiments. In the concealment- isotropic terrain model every node/cell was assigned a 

concealment value of 50%. 

Computer Simulation Model 
This research project developed a family of computer simulation models to 

produce data to help understand how groups move and communicate in pursuit of 

collective goals. The models are examples of geosimulation insofar as they are both 

agent-based and spatially explicit. They are turn-based insofar as all active agents apply 

rule sets to make “choices” at fixed time increments. 

The premises of the models are that individuals make choices rationally according 

to their natural tendencies, their group’s objective, and their relative preferences for any 

of the location and communication options available to them.  

Natural tendencies are represented by user-defined parameters for the movement 

preferences, communication preferences, and memory capacities of each individual. 

Movement preference is the endogenous probability that an individual player would 

desire to relocate if no actionable information is available. Communication preference is 

the endogenous probability that a player will notify teammates of his/her own 

observations. Communications preferences also include a set of parameters that govern 

how and to whom individuals transmit messages. Memory capacity is the period of time 

over which a player retains and uses information, whether by choice or by nature. 
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The models initialize player locations randomly or according to user definitions. 

The user also defines the potential duration of the game by entering a maximum value for 

the number of turns in each instance of the game. Each turn follows a five-step cycle of 

events in which players 1) observe who else is at their immediate location, 2) attempt to 

tag or avoid being tagged by opponents, 3) scan adjacent areas for opponents, 4) generate 

messages to teammates, and 5) decide if and where to move next. Tagging, movement, 

and communications transactions do not occur until every player has processed its 

intentions so that events occur simultaneously and no individual enjoys the advantages of 

being the first to act. Each instance of the game concludes when either of two conditions 

is met: every evader is tagged (and the pursuers win) or the maximum turn limit is 

reached (and the evaders win). 

Observation and tag events are governed by Monte Carlo methods. When 

pursuers and evaders attempt to observe opponents, the observation is determined by 

comparison of a random draw and the concealment value available at the opponent’s 

location. When pursuers attempt to tag evaders, the tag is determined by comparison of a 

random draw and a constant probability of 0.5. In this way pursuers and evaders have 

equal chances of tagging or avoiding being tagged by an opponent with whom they are 

co-located. When a pursuer successfully tags an evader, the evader ceases activity and the 

pursuer cannot move or tag another player until the subsequent turn. 

Communication events are also governed by Monte Carlo methods. When a tag 

has not occurred, evaders and pursuers who have made observations of opponents will 

communicate with their teammates according to a comparison of a random draw and the 
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individual’s communication preference value. The messages communicate when and 

where an opponent was sighted. Recipients store this information for use in determining 

movements. 

Evaders and pursuers implement distinct movement decision processes when they 

possess or do not possess actionable information. Table 1 summarizes these distinct 

processes.   

 

Table 1: A Summary of Movement Decision Processes in the Computer S imulation Models  

 Does Not Have Actionable Information Has Actionable Information 

Evader 

CONCEALMENT MAXIMIZATION 
Maximizes concealment available at any 
of the seven nodes in the immediate area 

RISK MINIMIZATION 
Minimizes risk by evaluating 
cumulative concealment, pursuer 

proximities, and information quality 
at each of the seven nodes in the 
immediate area 

Pursuer 

RANDOM SEARCH 
Applies random draws to movement 
preferences to determine if and where to 

move 

COST MINIMIZATION 
Minimizes cost by evaluating 
cumulative distance required to 

move to a node where an evader(s) 
was observed  and information 

quality  
 

 

At each turn, each individual evaluates choices by comparing movement and 

communication parameters against separate Monte Carlo draws. If the Monte Carlo draw 

exceeds either parameter, then the individual chooses to move or communicate, 

respectively. Separately, evaders and pursuers execute procedures to determine where to 

move or what, to whom, and how to communicate. The following ten paragraphs describe 

those procedures. 
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Evaders possessing no actionable information move to maximize the concealment 

afforded by the options available in their immediate area: the cell they currently occupy 

and the six cells immediately adjacent to them. Although it is possible that human 

evaders would make uninformed movement decisions based on a rationale different from 

that of concealment maximization, this project plans to identify, evaluate, and – if 

warranted – justify such possibilities and rationales through future experimentation with 

human subjects. In the Phase 2 computer simulation experiments described below, the 

probability that evaders will disregard concealment and move spuriously according to 

endogenous movement preferences is held constant at zero. 

Evaders possessing actionable information prepare to move by evaluating the risk 

that they will be detected by a pursuer at each location in their immediate area. The 

evader scores that risk and chooses to move to the cell that minimizes the score. The risk 

score is computed by summing the natural probability of detection at cell x (symbolized 

Pdx, given by the difference of 1 and the concealment value) with the known or suspected 

proximities of pursuers to that cell. Pursuer proximities are derived from what the evader 

has observed in his/her own surroundings and from the reports of the evader’s teammates. 

Where the total number of pursuer observations is symbolized n, distance(s) along the 

shortest path between the evader’s current location and pursuer locations are symbolized 

d1, d2, d3...dn.  

Evader proximities are weighted by the passage of time: older observations of 

pursuers exert less influence over the evaders’ evaluations of movement options. 

Observations that are older than the evader’s memory capacity are forgotten. Where the 
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evader’s memory parameter is symbolized m and the current turn is symbolized t, the 

memory function purges information received prior to t-m. Where the total number of 

pursuer observations is symbolized n, the time that has elapsed since each report of 

observation is symbolized e1, e2, e3...en. 

The risk score at each of the evader’s potential movement options (symbolized 

Rx) is therefore:  

 

Rx = Pdx + ((1/ d1)+(1/ e1)) + ((1/ d2)+(1/ e2)) + ((1/ d3)+(1/ e3))… + ((1/ dn)+(1/ en)) 
Equation 1: Evader Movement Risk Score 

 

Pursuers possessing no actionable information move according to a sequence of 

two random draws.  The first draw applies the pursuer’s movement preference to 

determine if the pursuer will move. The second draw, which occurs only if the pursuer 

will move, randomly selects one cell from among the seven options available in the 

pursuer’s immediate area. Although it is possible that human pursuers would make 

uninformed movement decisions using a rationale different from a random walk, this 

project plans to identify, evaluate, and – if warranted – justify such possibilities and 

rationales through future experimentation with human subjects. 

Pursuers possessing actionable information prepare to move by evaluating the 

distance costs that will be incurred by traveling along the shortest path to each location 

where an evader has been observed by the pursuer or a pursuer’s teammate. The pursuer 

evaluates that distance cost and chooses to move to the cell that minimizes the cost. 

When distance costs are equal for multiple movement options, the pursuer chooses the 
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option with highest natural probability of detection. Where the total number of evader 

observations is symbolized n, distance(s) along the shortest path between the pursuer’s 

current location and evader locations are symbolized d1, d2, d3...dn.  

Distance costs are weighted by the passage of time: older observations of evaders 

exert less influence over the pursuers’ evaluations of movement options. Observations 

that are older than the pursuer’s memory capacity are forgotten. Where the pursuer’s 

memory parameter is symbolized m and the current turn is symbolized t, the memory 

function purges information received prior to t-m. Where the total number of evader 

observations is symbolized n, the time that has elapsed since each report of observation is 

symbolized e1, e2, e3...en. 

The cost value at each of the pursuer’s potential movement options (symbolized 

Cx) is therefore:  

 

Cx = d1 + e1 , d2 + e2 , d3 + e3 … dn + en  
Equation 2: Pursuer Movement Cost Value 

 

Evaders and pursuers who have made observations in a given turn will determine 

how to communicate with teammates according to two user-defined parameters. The first 

parameter governs how many teammates an individual will contact. This value may be 

preset or configured as a random draw. The second parameter governs which teammates 

an individual will contact. An individual may select recipient teammates by random 

draw, proximity to the observation, or proximity to the individual sending the message. 
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The simulation models were written in Microsoft Visual Basic for Applications 

and Microsoft Excel. The computer simulation experiments were run on an array of 

twelve CPUs installed with Intel Core i3-3217U 1.8 GHz microprocessors and 4 GB of 

RAM. Each simulation batch consisted of ten thousand repetitions and required about 

eight hours of runtime, meaning that an experimental design of twelve or fewer batches 

could be completed in about eight hours and an experimental design of thirteen to twenty-

four batches could be completed in about sixteen hours.  

Simulation Output 
The computer simulation models produced five comma separated value (.csv) 

tables for analysis in R and SaTScan as well as keyhole markup language (.kml) files for 

visualization in Google Earth. The five data tables recorded game outcomes, player 

movements, player communications, detection and engagement events, and cell 

occupancies. Table 2 describes the fields contained in each data table. 

 

Table 2: Data Fields in the Data Tables Produced by the Computer S imulation Models 

 
 

Data Table Data Fields

Game Outcomes game serial number, game end time, number of evaders, number of evaders engaged

Player Movements
game serial number, turn, player, start cell, end cell, start latitude, start longitude, end latitude, end 

longitude

Player Communications

game serial number, turn, sender, message type, receiver, message cell, sender cell, receiver cell, 

message latitude, message longitude, sender latitude, sender longitude, receiver latitude, receiver 

longitude

Detections and Engagements
game serial number, turn, observer, target, result, observer cell, target cell, observer latitude, observer 

longitude, target latitude, target longitude

Cell Occupancies game serial number, cell, number of occupants, turn, team



 

66 

 

Phase 1 
Phase 1 was an exploratory effort that used a “beta” version of the computer 

simulation model. It was comprised of three experiments and ran from May to September 

of 2014. In all, 460,000 simulation runs were produced during Phase 1. 

Experiment One 
The first simulation experiment comprised a 26-3 fractional factorial (Resolution 

III) design. The purpose of Experiment One was to isolate variables and variable 

combinations deserving further investigation. The response variables for this experiment 

were the success of pursuers and the success of evaders.  

This experimental design, illustrated in Table 3, involved eight batch runs of 

10,000 repetitions each for a total of 80,000 repetitions.  Every repetition was constrained 

to a maximum of 180 minutes. The input variables were the pursuers’ probability of 

movement (P_Pmove), pursuers’ probability of communication (P_Pcomm), pursuers’ 

memory (P_Mem), evaders’ probability of movement (E_Pmove), evaders’ probability of 

communication (E_Pcomm), and evaders’ memory (E_Mem). Values for P_Pmove, 

P_Pcomm, E_Pmove, and E_Pcomm varied between 0.10 (low level) and 0.90 (high 

level) while values for P_mem and E_mem varied between 1 minute (low level) and 180 

minutes (high level). Experiment One used a generic terrain model that evenly applied 

dispersed concealment values of 0.25, 0.5, or 0.75 to each third of the cells in the 

network. 
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Table 3: Experiment One Design 

 
 

Experiment One was conducted on 3-6 June 2014 and produced 3.97 GB of data. 

The response data is summarized in Table 4. 

 

Table 4: Experiment One Response Data 

 
  

Experiment Two 
The second simulation experiment comprised a 26-2 fractional factorial 

(Resolution IV) design with three center points. The purpose of Experiment Two was to 

deepen and confirm the findings of Experiment One. The input variables remained the 

Evader Pursuer

1 8 4629 5371

2 6 1515 8485

3 1 783 9217

4 4 1876 8124

5 3 6552 3448

6 7 783 9217

7 2 7676 2324

8 5 8508 1492

Success Rate

Response VariablesRun Number

Actual 

Order

Standard 

Order
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same in this experiment as they were in the first experiment. While the response variables 

of evader and pursuer success remained, Experiment Two added the response variables of 

game duration (mean and standard deviation), as well as boundariness for both evaders 

and pursuers. 

This experimental design, illustrated in Table 5, involved nineteen batch runs of 

10,000 repetitions each, for a total of 190,000 repetitions.  The maximum run time for 

each repetition was unconstrained; each repetition ended whenever every evader was 

caught. The levels/values used for the six input variables remained the same as they were 

in Experiment One. Centerpoint values used 0.50 for P_Pmove, P_Pcomm, E_Pmove, 

and E_Pcomm and 90.5 for P_mem and E_mem. Experiment Two used the concealment-

variegated terrain model.  
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Table 5: Experiment Two Design 

 
 

Experiment Two was conducted on 25-30 June 2014 and produced 6.81 GB of 

data. The response data is summarized in Table 6. 

 

Movement Communications Memory Movement Communications Memory

P_Pmove P_Pcomm P_mem E_Pmove E_Pcomm E_mem

1 0 50 50 90.5 50 50 90.5

2 12 90 90 1 10 10 180

3 16 90 90 180 90 90 180

4 13 10 10 180 90 90 180

5 7 10 90 180 10 10 180

6 11 10 90 1 90 90 1

7 15 10 90 180 10 10 1

8 1 10 10 1 10 10 1

9 9 10 10 1 10 10 180

10 0 50 50 90.5 50 50 90.5

11 5 10 10 180 90 90 1

12 14 90 10 180 10 10 1

13 6 90 10 180 10 10 180

14 2 90 10 1 90 90 180

15 8 90 90 180 90 90 1

16 10 90 10 1 90 90 1

17 4 90 90 1 10 10 1

18 3 10 90 1 90 90 180

19 0 50 50 90.5 50 50 90.5

Run Number Pursuer Variables

Actual 

Order

Standard 

Order

Evader Variables
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Table 6: Experiment Two Response Data 

 
 

Experiment Three 
The third simulation experiment also comprised a 26-2 fractional factorial 

(Resolution IV) design with three center points. Experiment Three was similar to 

Experiment Two with one critical difference: this experiment used the concealment-

isotropic terrain model rather than the concealment-variegated terrain model. The input, 

response variables, variable values, and design remained the same in this experiment as 

they were in the second experiment. The purpose of Experiment Three was to provide a 

Evader Pursuer Mean Std. Dev. Evader Pursuer

1 0 2313 7687 135.75 82.65 0.747625 0.473693

2 12 2462 7538 116.88 74.05 0.731902 0.473082

3 16 1726 8274 108.02 67.89 0.740573 0.510539

4 13 7894 2106 409.61 304.05 0.749876 0.424862

5 7 8470 1530 424.39 296.62 0.693366 0.44947

6 11 8605 1395 448.67 291.6 0.68063 0.393282

7 15 7669 2331 377.2 269.38 0.502997 0.400789

8 1 6486 3514 317.38 267.52 0.426233 0.3575

9 9 7668 2332 349.34 282.51 0.636885 0.390206

10 0 2313 7687 137.07 82.73 0.747625 0.473693

11 5 7321 2679 379.94 297.09 0.640571 0.402561

12 14 3833 6167 180.23 179.95 0.444116 0.39109

13 6 3313 6687 133.3 92.18 0.736214 0.462884

14 2 3743 6257 140.9 106.8 0.743341 0.44366

15 8 2314 7686 107.48 64.99 0.669375 0.427942

16 10 4040 5960 179.69 123.81 0.618321 0.403805

17 4 1964 8036 136.22 126.48 0.479059 0.380971

18 3 8788 1212 481.75 312.04 0.764216 0.429962

19 0 2357 7643 137.49 85.66 0.74868 0.475293

Response VariablesRun Number

Actual 

Order

Standard 

Order

Success Rate Pursuer Time-to-Win Boundariness
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basis against which to compare the results of other experiments in order to understand the 

effects of concealment upon team behaviors and game outcomes.  

Experiment Three was conducted on 29 July – 5 August 2014 and produced 8.07 

GB of data. The response data is summarized in Table 7. 

 

Table 7: Experiment Three Response Data 

 
 

Phase 2 
Phase 2 commenced after the computer simulation model completed “beta” 

testing and a thorough code review that resulted in several improvements. It was 

Evader Pursuer Mean Std. Dev. Evader Pursuer

1 0 1493 8507 113.93 70.99 0.747625 0.473693

2 12 248 9752 82.14 40.41 0.731902 0.473082

3 16 150 9850 74.01 36.85 0.740573 0.510539

4 13 7676 2324 422.92 321.36 0.749876 0.424862

5 7 7614 2386 434.43 338.14 0.693366 0.44947

6 11 8672 1328 480.42 308.28 0.68063 0.393282

7 15 6763 3237 346.18 277.89 0.502997 0.400789

8 1 5233 4767 263.28 244.71 0.426233 0.3575

9 9 6610 3390 335.12 278.76 0.636885 0.390206

10 0 1493 8507 113.93 70.99 0.747625 0.473693

11 5 7538 2462 397.86 299.27 0.640571 0.402561

12 14 238 9762 76.43 41.81 0.444116 0.39109

13 6 438 9562 85.58 48.17 0.736214 0.462884

14 2 460 9540 83.88 49.57 0.743341 0.44366

15 8 654 9346 100.41 47.65 0.669375 0.427942

16 10 418 9582 87.41 45.60 0.618321 0.403805

17 4 322 9678 84.52 43.55 0.479059 0.380971

18 3 8425 1575 477.81 331.00 0.764216 0.429962

19 0 1389 8611 112.71 70.15 0.74868 0.475293

Run Number Response Variables

Actual 

Order

Standard 

Order

Success Rate Pursuer Time-to-Win Boundariness
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comprised of another three experiments similar in design to those of Phase 1. Phase 2 ran 

from September to November 2014. In all, 650,000 simulation runs were produced 

during Phase 2. 

Experiment Four 
The fourth simulation experiment comprised a 25-2 fractional factorial (Resolution 

III) design. The purpose of Experiment Four was to isolate variables and variable 

combinations deserving further investigation. The response variables for this experiment 

were the success of evaders, the success of pursuers, the mean and standard deviation of 

the distribution of pursuer time-to-win, and the mean “boundariness” values for both 

pursuers and evaders. 

This experimental design, illustrated in Table 8, involved eight batch runs of 

10,000 repetitions each for a total of 80,000 repetitions.  Every repetition of the 

simulation was unconstrained by time; however the output was analyzed according to a 

three-hour (180-minute) game duration for the purpose of evaluating pursuer and evader 

success rates. The input variables were P_Pmove, P_Pcomm, P_Mem, E_Pcomm, and 

E_Mem. Values for P_Pmove, P_Pcomm, and E_Pcomm varied between 0.10 (low level) 

and 0.90 (high level) while values for P_mem and E_mem varied between 1 minute (low 

level) and 180 minutes (high level). Experiment Four used the concealment-variegated 

terrain model.  
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Table 8: Experiment Four Design 

 
 

Experiment Four was conducted on 31 October – 3 November 2014 and produced 

89.1 GB of data. The response data is summarized in Table 9. 

 

Table 9: Experiment Four Response Data 

 
 

Experiment Five 
The fifth simulation experiment comprised a 25-1 fractional factorial (Resolution 

V) design with three center points. The purpose of Experiment Five was to deepen and 

Movement Communications Memory Communications Memory

P_Pmove P_Pcomm P_mem E_Ecomm E_mem

1 7 90 90 1 90 1

2 6 90 10 180 10 1

3 5 10 90 1 10 180

4 1 90 90 180 10 180

5 8 10 10 1 10 1

6 4 90 10 1 90 180

7 2 10 90 180 90 1

8 3 10 10 180 90 180

Run Number Pursuer Variables Evader Variables

Actual Order Standard Order

Evader Pursuer Mean Std. Dev. Evader Pursuer

1 7 7268 2732 315.13 198.07 0.524338 0.383842

2 6 8440 1560 418.68 272.21 0.534331 0.392048

3 5 8939 1061 523.31 340.06 0.384273 0.384141

4 1 4560 5440 188.88 95.25 0.451990 0.413580

5 8 8114 1886 471.11 358.96 0.362833 0.384717

6 4 8446 1554 511.36 380.14 0.395647 0.384356

7 2 8981 1019 530.18 337.09 0.410428 0.425522

8 3 8388 1612 494.26 352.09 0.363661 0.401757

Response Variables

Success Rate Pursuer Time-to-Win Boundariness

Run Number

Actual 

Order

Standard 

Order
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confirm the findings of Experiments One, Two, Three, and Four. The response variables 

for this experiment were the success of evaders, the success of pursuers, the mean and 

standard deviation of the distribution of pursuer time-to-win, and the mean 

“boundariness” values for both pursuers and evaders. 

This experimental design, presented in Table 10, involved nineteen batch runs of 

10,000 repetitions each, for a total of 190,000 repetitions.  The maximum run time for 

each repetition was unconstrained; each repetition ended whenever every evader was 

caught. Pursuer and evader success was measured at a threshold of 180 minutes. The 

levels/values used for the five input variables remained the same as they were in 

Experiment Four. Centerpoint values used 0.50 for P_Pmove, P_Pcomm,  and E_Pcomm 

and 90.5 for P_mem and E_mem. Experiment Five used the concealment-variegated 

terrain model.  
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Table 10: Experiment Five Design 

 
 

Experiment Five was conducted on 3-6 November 2014 and produced 194 GB of 

data. The response data is summarized in Table 11. 

 

Movement Communications Memory Communications Memory

P_Pmove P_Pcomm P_mem E_Ecomm E_mem

1 0 50 50 90.5 50 90.5

2 7 10 90 180 10 180

3 10 90 10 1 90 180

4 1 10 10 1 10 180

5 9 10 10 1 90 1

6 6 90 10 180 10 180

7 4 90 90 1 10 180

8 13 10 10 180 90 180

9 8 90 90 180 10 1

10 0 50 50 90.5 50 90.5

11 11 10 90 1 90 180

12 14 90 10 180 90 1

13 15 10 90 180 90 1

14 12 90 90 1 90 1

15 16 90 90 180 90 180

16 3 10 90 1 10 1

17 5 10 10 180 10 1

18 2 90 10 1 10 1

19 0 50 50 90.5 50 90.5

Run Number Pursuer Variables Evader Variables

Actual Order Standard Order
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Table 11: Experiment Five Response Data 

 
 

 

Experiment Six 
Like Experiment Five, the sixth simulation experiment also comprised a 25-1 

fractional factorial (Resolution V) design with three center points. Experiment Six was 

similar to Experiment Five with one critical difference: this experiment used the 

concealment- isotropic terrain model rather than the concealment-variegated terrain 

model. The purpose of Experiment Six was to provide a basis against which to compare 

the results of other experiments in order to understand the effects of concealment upon 

team behaviors and game outcomes. 

Evader Pursuer Mean Std. Dev. Evader Pursuer

1 0 5812 4188 230.02 131.94 0.4276659 0.4107197

2 7 8871 1129 504.04 328.25 0.3791843 0.4232464

3 10 7980 2020 360.38 220.15 0.4319030 0.3850005

4 1 8308 1692 489.05 362.23 0.3798896 0.3857387

5 9 8444 1556 515.35 385.28 0.4092193 0.3853954

6 6 7770 2230 330.65 196.58 0.4828914 0.3918563

7 4 6209 3791 245.51 139.19 0.4676431 0.3849776

8 13 8388 1612 494.26 352.09 0.3636613 0.4017569

9 8 6279 3721 253.61 151.36 0.5102036 0.4126537

10 0 5812 4188 230.02 131.94 0.4276659 0.4107197

11 11 8837 1163 509.35 340.34 0.3674745 0.3847943

12 14 8521 1479 429.39 281.39 0.5435609 0.3917369

13 15 8966 1034 530.18 337.09 0.4104277 0.4255224

14 12 7268 2732 315.13 198.07 0.5243384 0.3838418

15 16 4144 5856 181.87 96.00 0.3826467 0.4100588

16 3 9132 868 550.23 349.18 0.4057831 0.3881745

17 5 8669 1331 548.65 400.62 0.3975343 0.4059593

18 2 8742 1258 460.91 300.79 0.5452036 0.3867329

19 0 5812 4188 230.02 131.94 0.4276659 0.4107197

Response Variables

Success Rate Pursuer Time-to-Win Boundariness

Run Number

Actual 

Order

Standard 

Order
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This experimental design, presented in Table 12, involved nineteen batch runs of 

10,000 repetitions each, for a total of 190,000 repetitions.  The maximum run time for 

each repetition was unconstrained; each repetition ended whenever every evader was 

caught. Pursuer and evader success was measured at a threshold of 180 minutes. The 

levels/values used for the five input variables remained the same as they were in 

Experiment Five. Centerpoint values used 0.50 for P_Pmove, P_Pcomm,  and E_Pcomm 

and 90.5 for P_mem and E_mem. Table 12 provides the design of Experiment Six. 

 

Table 12: Experiment S ix Design 

 
 

Movement Communications Memory Communications Memory

P_Pmove P_Pcomm P_mem E_Ecomm E_mem

1 0 50 50 90.5 50 90.5

2 7 10 90 180 10 180

3 6 90 10 180 10 180

4 11 10 90 1 90 180

5 10 90 10 1 90 180

6 4 90 90 1 10 180

7 5 10 10 180 10 1

8 16 90 90 180 90 180

9 8 90 90 180 10 1

10 0 50 50 90.5 50 90.5

11 3 10 90 1 10 1

12 1 10 10 1 10 180

13 13 10 10 180 90 180

14 2 90 10 1 10 1

15 15 10 90 180 90 1

16 12 90 90 1 90 1

17 14 90 10 180 90 1

18 9 10 10 1 90 1

19 0 50 50 90.5 50 90.5

Run Number Pursuer Variables Evader Variables

Actual Order Standard Order
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Experiment Six was conducted on 5-7 November 2014 and produced 134 GB of 

data. The response data is summarized in Table 13. 

 

Table 13: Experiment S ix Response Data 

 
 

Experiment Seven  
Experiment Seven was designed to produce a baseline distribution of random 

team movements for comparative analysis of boundariness. Therefore, Experiment Seven 

required no special design. This experiment applied a random walk algorithm to each 

individual in a five-person team and used no other variables. Experiment Seven involved 

Evader Pursuer Mean Std. Dev. Evader Pursuer

1 0 2305 7695 134.69 78.17 0.5579077 0.4365456

2 7 8649 1351 571.26 399.85 0.5238876 0.4406719

3 6 492 9508 89.14 47.54 0.5093680 0.4290204

4 11 8895 1105 560.06 365.43 0.5836499 0.4030292

5 10 293 9707 77.59 44.09 0.5542713 0.4163354

6 4 379 9621 88.82 43.90 0.5166048 0.4234999

7 5 8360 1640 472.53 324.25 0.4710663 0.4056108

8 16 275 9725 85.58 40.88 0.5778764 0.4556257

9 8 715 9285 102.07 50.13 0.5073927 0.4385668

10 0 2305 7695 134.69 78.17 0.5579077 0.4365456

11 3 8971 1029 530.14 338.90 0.4925432 0.4032518

12 1 7869 2131 444.50 336.18 0.4937044 0.3794809

13 13 8275 1725 492.19 355.81 0.5743407 0.4104402

14 2 624 9376 91.55 51.19 0.4962815 0.4062297

15 15 8957 1043 577.34 363.59 0.5911065 0.4438814

16 12 688 9312 99.79 49.67 0.5858506 0.4132829

17 14 794 9206 99.69 54.28 0.5753192 0.4239743

18 9 8209 1791 464.91 327.81 0.5755076 0.3819812

19 0 2305 7695 134.69 78.17 0.5579077 0.4365456

Run Number

Actual 

Order

Standard 

Order

Response Variables

Success Rate Pursuer Time-to-Win Boundariness
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nineteen batch runs of 10,000 repetitions each, for a total of 190,000 repetitions.  The 

maximum run time for each repetition was constrained to 180 minutes. Experiment Seven 

was conducted on 19 September - 21 November 2014 and produced 4.2 GB of data. The 

response data is summarized in Table 14. 

 

Table 14: Experiment Seven Response Data 

 
 

Run Boundariness

1 0.3617195

2 0.3616914

3 0.3615570

4 0.3621451

5 0.3613460

6 0.3615560

7 0.3616221

8 0.3617681

9 0.3621159

10 0.3613275

11 0.3622756

12 0.3628125

13 0.3615151

14 0.3611688

15 0.3615015

16 0.3617325

17 0.3632115

18 0.3616566

19 0.3608473
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CHAPTER FIVE: RESULTS 

Correlates of Team Success 
Experiments One, Two, Four, and Five suggested that the outcomes of a game of 

pursuit and evasion correlated most strongly with the basic probability that a pursuer 

would decide to move if the pursuer did not possess actionable information (P_Pmove). 

Experiments Two and Five also suggested that the outcomes of a game of pursuit and 

evasion are also correlated with the interaction of the basic probabilities that a pursuer 

would decide to move and communicate (P_Pmove:P_Pcomm). 

A half-normal probability plot is a graphical tool that relies on least squares 

estimation to develop ordered estimates of the absolute effects of input factors upon 

response variables  (Croarkin & Tobias, 2013). Half-normal plots are useful to determine 

which factors are statistically unimportant (i.e. having near-zero effects upon responses) 

and important (i.e. having effects that are removed from zero beyond a certain threshold). 

In Experiment One, P_Pmove was the sole input factor revealed to have statistically 

important effects upon success of both teams at the threshold of α= 0.05. Figure 5 and 

Figure 6 are half-normal plots illustrating the absolute effects of P_Pmove on Evaders’ 

Success (evade_succ) and Pursuer Success (pursu_succ), respectively. Unsurprisingly, 

the absolute effects on both response variables appear to be identical to each other. Each 

response is merely the difference between 1 and the other response. 

 



 

81 

 

 
Figure 5: Half Normal Plot for Evader Success, Experiment One, α= 0.05 
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Figure 6: Half Normal Plot for Pursuer Success, Experiment One, α= 0.05 

 

An attempt to fit a linear model to the evade_succ results of Experiment One 

yielded imperfect results. While the model achieved a good fit measured by an adjusted 

R-squared value of 0.9305, it failed an F-test that produced an F-statistic of 16.61 on 6 

and 1 degrees of freedom and a p-value of 0.1856. These results suggested some non-
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linearity in relationships among the dominant input factors and the response variables of 

team success.  

Experiment Two corroborated the results that suggested the dominant correlation 

of P_Pmove and the team success response variables.  However the increased resolution 

afforded by Experiment Two also revealed the statistical significance of a two-factor 

interaction involving P_Pmove and the basic probability that a pursuer would choose to 

communicate with teammates, P_Pcomm. Figure 7 is a half normal plot that illustrates 

the significance of the main effect of P_Pmove on team success as well as the two-factor 

interaction of P_Pmove:P_Pcomm on team success at the threshold α=0.05. 

An attempt to fit a linear model to the evade_succ results of Experiment Two 

yielded poor results. This provided further evidence of non-linearity in the relationships 

among the dominant input factors and the response variables of team success. 

An attempt to fit a response surface model to the evade_succ results of 

Experiment Two yielded very strong results. The model achieved excellent fit measured 

by an adjusted R-squared value of 0.9959, and an F-statistic of 316.9 on 14 and 4 degrees 

of freedom with a corresponding p-value of 2.263e-05. These results strengthened earlier 

indications of non-linearity in relationships among the dominant input factors and the 

response variables of team success. This response surface model revealed the strengths of 

the main effect of P_Pmove, the two-factor interaction of P_Pmove:P_Pcomm, as well as 

the pure quadratic effect of P_Pmove (i.e. P_Pmove:P_Pmove) on team success, as 

defined by p-values smaller than 1e-04 and (absolute value) coefficients of 2469.12, 

664.12, and 3065.83 respectively. Figure 8 and Figure 9 illustrate the bivariate function 
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of pursuer propensities to move and communicate upon the success of evaders. Figure 10 

and Figure 11 illustrate the bivariate function of pursuer propensities to move and 

communicate upon the success of pursuers. The pure quadratic effect of P_Pmove is 

clearly visible along the x1 axis of all four plots. 

 

 
Figure 7: Half Normal Plot for Evader Success, Experiment Two, α= 0.05 
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Figure 8: Response Surface Plot (3D) for Evader Success, Experiment Two, x1=P_Pmove, x2=P_Pcomm 
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Figure 9: Response Surface Plot (2D) for Evader Success, Experiment Two, x1=P_Pmove, x2=P_Pcomm 
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Figure 10: Response Surface Plot (3D) for Pursuer Success, Experiment Two, x1=P_Pmove, x2=P_Pcomm 
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Figure 11: Response Surface Plot (2D) for Pursuer Success, Experiment Two, x1=P_Pmove, x2=P_Pcomm 

 

Experiment Four did not produce statistically significant results about the team 

success response variables, and attempts to fit linear models to the team success results of 

Experiment Four produced poor results. However, Experiment Four continued to 

demonstrate the relative strength of P_Pmove, albeit at a level below the α = 0.05 

threshhold. Figure 12 depicts the main effects of the Experiment Four input factors upon 
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evader success. Pursuer propensity to move is most strongly correlated with changes in 

team success in the results of Experiment Four. 

 

 
Figure 12: Main Effects Plot for Evader Success, Experiment Four 
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Experiment Five corroborated the results that suggested the dominance of 

correlations of both P_Pmove and P_Pmove:P_Pcomm and the team success response 

variables.  Figure 13 is a half normal plot that illustrates the significance of the main 

effect of P_Pmove on evader success, as well as the two-factor interaction of 

P_Pmove:P_Pcomm on evader success, at the threshold α=0.05. 
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Figure 13: Half Normal Plot for Evader Success, Experiment Five, α= 0.05 

 

An attempt to fit a linear model to the evade_succ results of Experiment Five 

yielded poor results. This provided further evidence of non-linearity in the relationships 

among the dominant input factors and the response variables of team success. 

An attempt to fit a response surface model to the evade_succ results of 

Experiment Five yielded very strong results. The model achieved very good fit measured 
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by an adjusted R-squared value of 0.9511, and an F-statistic of 32.84 on 11 and 7 degrees 

of freedom with a corresponding p-value of 5.867e-05. These results strengthened earlier 

indications of non-linearity in relationships among the dominant input factors and the 

response variables of team success. This response surface model revealed the strengths of 

the main effect of P_Pmove, the main effect of P_Pcomm, the two-factor interaction of 

P_Pmove:P_Pcomm, as well as the pure quadratic effect of P_Pmove on team success, as 

defined by p-values smaller than 1e-04 and (absolute value) coefficients of 793.88, 

444.75, 694.38, and 2096.00, respectively. Figure 14 and Figure 15 illustrate the bivariate 

function of pursuer propensities to move and communicate upon the success of evaders. 

Figure 16 and Figure 17 illustrate the bivariate function of pursuer propensities to move 

and communicate upon the success of pursuers. The pure quadratic effect of P_Pmove is 

clearly visible along the x1 axis of all four plots. 
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Figure 14: Response Surface Plot (3D) for Evader Success, Experiment Five, x1=P_Pmove, x2=P_Pcomm 
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Figure 15: Response Surface Plot (2D) for Evader Success, Experiment Five, x1=P_Pmove, x2=P_Pcomm 

 

 



 

95 

 

 
Figure 16: Response Surface Plot (3D) for Pursuer Success, Experiment Five, x1=P_Pmove, x2=P_Pcomm 
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Figure 17: Response Surface Plot (2D) for Pursuer Success, Experiment Five, x1=P_Pmove, x2=P_Pcomm 

 

Spatiotemporal Clustering Behaviors 
Evidence of spatiotemporal clustering in team movement behaviors is observable 

in thirty game repetitions randomly sampled from Experiment Five. Table 15 presents the 

results of an application of the Space Time Scan Statistic to the movements of both the 

pursuing and evading teams in the sample set. 
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Table 15: Space-Time Clusters Observed in 30 Randomly Sampled Observations of Experiment Five. 

 
 

1 13 9958 5 1E-17 1 1E-17

2 11 7182 4 1E-17 3 1E-17

3 5 9791 5 1E-17 3 1E-17

4 16 5404 5 4.7E-15 1 1E-17

5 10 6087 5 1E-17 5 1E-17

6 5 8185 3 1E-17 2 0.041

7 11 2367 4 1E-17 2 1E-17

8 4 4704 6 1.2E-15 3 0.0000013

9 3 4072 2 0.0000086 1 0.00074

10 16 1120 5 1E-17 3 1.7E-14

11 13 2999 3 1E-17 4 0.017

12 13 186 4 1E-17 2 1E-17

13 3 7178 5 0.028 3 0.0012

14 7 2915 4 3.2E-12 4 2.2E-16

15 9 3143 3 1E-17 3 0.017

16 9 5945 5 0.038 1 0.0033

17 9 2947 2 1E-17 2 1E-17

18 10 1364 5 0.000017 1 1E-17

19 4 6071 6 1E-17 1 1E-17

20 8 107 4 1E-17 4 0.033

21 17 4286 10 0.0083 4 0.00088

22 15 5314 3 0.0000011 2 0.0059

23 11 5716 7 1E-17 1 1E-17

24 8 9228 5 0.00031 1 0.0012

25 3 5874 4 0.00013 2 7.4E-11

26 17 8051 4 1E-17 3 1E-17

27 5 7666 5 1E-17 1 3.3E-16

28 4 227 12 0.0000023 3 1.4E-13

29 14 2015 4 0.018 4 0.0013

30 16 9306 5 1E-17 2 2.7E-10

Mean 4.8 Mean 2.4

St. Dev. 2.007 St. Dev. 1.172

Data Source

Sample Run Game

Evader

Number of 

clusters

Maximum p-

value

Pursuer

Number of 

clusters

Maximum p-

value
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Spatiotemporal clustering behaviors were observed in every game repetition in the 

sample set. P-values for this analysis were very low; the majority of p-values were 

smaller than 1E-10 and the maximum was 0.028.  

Spatiotemporal clustering behaviors were more strongly represented in the 

movements of the pursuing team; there were twice as many clusters observed in pursuit 

behaviors than there were in evasion behaviors, on average. This is not surprising 

because the goal of team pursuit requires that individuals converge upon discrete 

objectives when those objectives are known and individuals can share information with 

each other. It is less clear if or when evaders need to locate themselves together; however 

the analysis of this sample suggests that evaders regularly engage in spatiotemporal 

clustering behaviors. Figure 18 illustrates the presence of clustering behaviors in evading 

team movements in the 30-repetition sample set.  
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Figure 18: A Visualization of Space-Time Clusters Observed in 30 Randomly Sampled Observations of Evading 

Team Locations in Experiment Five. 
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Boundary-Seeking Behaviors 
This set of experiments reveals very strong evidence for the primacy of 

boundaries and borders in the location decisions of teams engaged in pursuit and evasion. 

Comparison of the “boundariness” values generated for each team in Experiments Two, 

Three, Five, and Six with boundariness values generated in Experiment Seven support the 

idea that evading teams seek locations on areal boundaries, whether or not concealment is 

available in interior areas. Consequentially, pursuing teams also occupy boundary 

locations more frequently than in random walk models. Experiment Seven demonstrated 

that the boundariness of randomly moving, five-player teams in this study area may be 

understood as a constant value of 0.3617668. Although intuition might have suggested 

that the boundariness constant for randomly moving teams would approximate the 

percentage of locations adjacent to boundaries, the constant derived via simulation is 

notably less than the percentage of locations along the boundary in the terrain models 

(26/54 or 0.481481). 

These findings are shown in an analysis of boundariness values using the t-Test 

for paired samples of means. Under the null hypothesis that a team’s preference for 

boundary locations is not differentiable from random and the alternate hypothesis that a 

team’s preference for boundary locations is differentiable from random, we apply a two-

tailed test.  Under the null hypothesis that a team’s preference for boundary locations is 

not differentiable from random and a second alternate hypothesis that a team’s preference 

for boundary locations both is differentiable from and higher than random, we apply a 

one-tailed test. In every experiment analyzed, the two-sample means test for both teams 

shows statistically significant evidence to reject the null hypothesis. P-values were no 
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larger than 3.43 e-05 for any test performed in this analysis. Table 16 contains the team 

boundariness values for each experiment analyzed as well as test statistics and p-values.  

 

Table 16: Analysis of Boundary-Seeking Behaviors (α=0.05, 18 DF) 

 
 

The evidence suggesting high boundary-seeking activity prompted the question, 

“Does boundariness correlate with team success?” An analysis of Experiment 5 suggests 

that there is little evidence to support a correlation of boundariness and success. The 

correlation coefficient of the evading team’s boundariness and success rate was both 

Experiment 7

Run Evader Pursuer Evader Pursuer Evader Pursuer Evader Pursuer Random

1 0.745243 0.437785 0.747625 0.473693 0.427666 0.41072 0.557908 0.436546 0.3617195

2 0.716672 0.435616 0.731902 0.473082 0.379184 0.423246 0.523888 0.440672 0.3616914

3 0.718161 0.467971 0.740573 0.510539 0.431903 0.385001 0.509368 0.42902 0.3615570

4 0.757495 0.40434 0.749876 0.424862 0.37989 0.385739 0.58365 0.403029 0.3621451

5 0.706365 0.410647 0.693366 0.44947 0.409219 0.385395 0.554271 0.416335 0.3613460

6 0.714624 0.362571 0.68063 0.393282 0.482891 0.391856 0.516605 0.4235 0.3615560

7 0.619595 0.372221 0.502997 0.400789 0.467643 0.384978 0.471066 0.405611 0.3616221

8 0.601929 0.361069 0.426233 0.3575 0.363661 0.401757 0.577876 0.455626 0.3617681

9 0.682364 0.372156 0.636885 0.390206 0.510204 0.412654 0.507393 0.438567 0.3621159

10 0.742302 0.436982 0.747625 0.473693 0.427666 0.41072 0.557908 0.436546 0.3613275

11 0.698811 0.388055 0.640571 0.402561 0.367475 0.384794 0.492543 0.403252 0.3622756

12 0.658497 0.424791 0.444116 0.39109 0.543561 0.391737 0.493704 0.379481 0.3628125

13 0.723792 0.438443 0.736214 0.462884 0.410428 0.425522 0.574341 0.41044 0.3615151

14 0.728494 0.419683 0.743341 0.44366 0.524338 0.383842 0.496282 0.40623 0.3611688

15 0.716022 0.469493 0.669375 0.427942 0.382647 0.410059 0.591107 0.443881 0.3615015

16 0.731489 0.419389 0.618321 0.403805 0.405783 0.388175 0.585851 0.413283 0.3617325

17 0.636518 0.384479 0.479059 0.380971 0.397534 0.405959 0.575319 0.423974 0.3632115

18 0.771624 0.393543 0.764216 0.429962 0.545204 0.386733 0.575508 0.381981 0.3616566

19 0.746039 0.437359 0.74868 0.475293 0.427666 0.41072 0.557908 0.436546 0.3608473

Mean 0.706107 0.412452 0.657979 0.429752 0.43603 0.398927 0.542237 0.420238 0.3617668

Std.Dev. 0.046738 0.033199 0.112895 0.04102 0.05619 0.013462 0.036524 0.019677 0.0005264

t Stat 31.93491 6.616392 11.40215 7.168108 5.464802 11.3746 20.41046 12.18945

P(T<=t) one-tail 1.33E-17 1.64E-06 5.72E-10 5.64E-07 1.72E-05 5.94E-10 3.39E-14 1.96E-10

t Critical one-tail 1.734064 1.734064 1.734064 1.734064 1.734064 1.734064 1.734064 1.734064

P(T<=t) two-tail 2.65E-17 3.27E-06 1.14E-09 1.13E-06 3.43E-05 1.19E-09 6.78E-14 3.92E-10

t Critical two-tail 2.100922 2.100922 2.100922 2.100922 2.100922 2.100922 2.100922 2.100922

Experiment 2 Experiment 3 Experiment 5 Experiment 6
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negligible and negative at r = -0.07. The correlation coefficient of the pursuing team’s 

boundariness and success rate was weakly positive at r = 0.27. 
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CHAPTER SIX: CONCLUSIONS 

 

The geographic dynamics of goal-directed team behaviors are a fertile research 

area with numerous potential vectors of analysis. This research project has produced 

several datasets, demonstrated a methodological approach, and constructed some tools 

useful for continuing research of this kind. It has built baseline distributions and 

developed hypotheses about the geographic dynamics of goal-directed social behaviors. 

This project began with three fundamental lines of inquiry in order to produce a starting 

point or cornerstone for the creation of a much larger analytical framework that will be 

useful for understanding how groups of people move and communicate in pursuit of their 

collective goals. This project provides evidence for several conclusions and hypotheses 

resulting from those three lines of inquiry: factors of team success, clustering behaviors, 

and boundary-seeking behaviors.  

In the computer simulation model, pursuers’ movement preferences are the 

primary positive correlate of evading team failure and pursuing team success. The effect 

of pursuers’ movement is non-linear, suggesting that pursuers who increase their 

endogenous propensity to move will only increase their chances of team success and goal 

accomplishment to an optimum, after which they will experience diminishing returns. 

The interactive effect of pursuer movement and pursuer communications is another, 
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generally positive correlate of evading team failure and pursuing team success. This 

interaction also exerts a non-linear influence upon team success. 

If the computer simulation model faithfully represents real-world dynamics, then 

pursuing teams could optimize movements and communications to maximize pursuer 

success rate. This optimum is defined by a response surface model and a corresponding 

“sweet spot” in which just enough movement and communication produces the pursuing 

teams’ best results. While optimization of pursuing team movements could by itself lead 

to improvements in pursuing team outcomes on the order of 75% (from a basic success 

rate of ~20% to a basic success rate of ~35%), optimization of movements and 

communications could enlarge the “sweet spot” sufficiently to achieve improvements on 

the order of 200% (from a basic success rate of ~15% to a basic success rate of ~45%). 

Preliminary analysis of the computer simulation data indicates that both evading 

and pursuing teams exhibit movement behaviors characterized by spatiotemporal 

clustering. This finding must yet be confirmed through sustained analysis requiring high 

computational intensity. However, the constant observation of spatiotemporal clusters in 

a random sample (n=30) of simulation runs confidently suggests the prevalence of such 

behaviors in the entire population of simulation runs. If these findings are confirmed and 

if the computer simulation model faithfully represents real-world dynamics, then both 

pursuing and evading teams could develop and exploit indications of spatiotemporal 

clusters to benefit their teams. Pursuers and evaders could use this information to both 

reduce risk in their own movement behaviors and develop anticipatory strategies to 

capitalize on the clustering behaviors of opponents. 
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In the computer simulation model, evading team players locate themselves at 

peripheral locations at a rate that is both differentiable from and consistently greater than 

teams moving randomly. This suggests a strong tendency to occupy locations along 

boundaries, even when concealment is available at interior locations. Since evaders tend 

to choose locations along boundaries, pursuers who follow evaders also tend to occupy 

boundary locations. If the computer simulation model faithfully represents real-world 

dynamics, then these results suggest that pursuing teams could improve their basic rate of 

success by establishing and reinforcing boundaries and emphasizing boundary search 

strategies. 
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CHAPTER SEVEN: FUTURE RESEARCH 

Validation by Empirical Investigation 
While knowledge can be derived via exclusive application of the methods of 

computer simulation, knowledge is best developed through iteration of inductive inquiry 

(such as modeling) and deductive inquiry (like observation of natural phenomena). Cyclic 

induction and deduction produces feedback that can be applied to refine the set of beliefs 

about the true state of nature. Collectively these beliefs are known as the conceptual 

model. Accordingly, it is inadvisable to rely solely on computer simulation results as the 

basis for theoretical knowledge about human behaviors, and it is much more desirable to 

repeatedly compare computer simulations with real-world phenomena. Such comparison 

will spur improvements to the conceptual model and thereby improve the validity of the 

ideas incorporated in the simulation model. 

In the study of human phenomena, especially social phenomena, it is often 

impossible, inadvisable, or unethical to consider conducting controlled experiments in the 

real world with human subjects. This is the case when the experiments would necessarily 

expose the subjects to harm or the potential of harm, or when the resources, organization, 

and/or logistics needed to conduct the experiment would be prohibitive. In these cases, 

scientists have relied on a combination of computer simulation, casual observation, and 

natural experiments to suggest approaches to theory. 
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In the case of this research, there are no such barriers preventing the study of 

goal-oriented team behaviors like pursuit and evasion with human subjects under 

controlled circumstances in the real world. Simulating these behaviors in the real world is 

as easy, safe, and inexpensive as playing a controlled version of the schoolyard game 

hide-and-seek. Participant risk is mitigated via standard human subjects protections such 

as informed consent and anonymity. The problem of precisely measuring the complete 

set of movement and communication decisions undertaken by human participants in these 

simulations can be overcome at the affordable expense of relatively simple software and 

common smartphone technology. 

In the future, extensions to this research project will engage in two types of 

controlled experiments by which to perform deduction through the observation of human 

subjects: table-top exercises and full-scale exercises. Generally, the table-top and full-

scale exercises will, at very low cost and risk, explore the real goal-seeking behaviors of 

human teams engaged in pursuit and evasion. These experiments will employ mixed 

methods, meaning that they will collect and analyze data quantitatively (via statistical, 

spatial statistical and spatio-temporal statistical analysis of movement and 

communications information) as well as qualitatively (via surveys and structured 

elicitation). The feedback gained in these experiments will serve to validate, refine, and 

improve the conceptual model of team pursuit and evasion that underpins the computer 

simulation model so that both models more faithfully represent real social phenomena. 

The researchers and software developers will perform periodic code reviews to ensure 
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regular verification of the programming and implementation that instantiate the 

conceptual model in the computer simulation model software. 

Table-Top Exercises 
The table-top exercises will employ a map-and-turn-based game instantiated in 

Visual Basic .NET on a network of up to thirteen personal computers. The game 

interface, illustrated in Figure 19, will present a map of the study area, a simple 

smartphone, and a few buttons. On each turn, player/participants will decide where to 

locate themselves and how to move to those locations by drawing paths along the map. 

Player/participants will also decide how and what to communicate with their teammates 

using the smartphone. After all player/participants submit their turns, 

observers/controllers will automatically adjudicate the results of the turn, and process 

feedback for the player/participants. The feedback will inform the player/participants 

how far they moved toward their desired location, what messages they received from 

their teammates, what they observed, and if they engaged (or were engaged by) another 

player. This automated and networked system will produce and store output tables that 

detail movements, communications, and interactions among players in this virtualized 

environment. The table-top exercises will also employ a pre-exercise demographic survey 

and a post-exercise structured interview to collect qualitative information from the 

player/participants about themselves as well as their decisions and actions during each 

exercise. 
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Figure 19: The User Interface of the Table-Top Pursuit and Evasion Game 

 

The computers will be configured in a laboratory setting where player/participants 

(the human subjects) will sit in individual carrels. Observers/controllers will run the 

exercise from an adjudication interface on a display located in a separate area of the 

laboratory. Player/participants will not be able to see the adjudicator interface. 

Observers/controllers will be able to supervise the player/participants as they complete 

exercise tasks. Figure 20 illustrates the proposed layout of the table-top laboratory. 
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Figure 20: A Diagram of the Proposed Configuration of the Table-Top Experiment Laboratory 

 

The carrels (and the exercise observers/controllers who supervise them) will 

prevent player/participants from seeing or communicating with each other via any means 

other than the computer game. Figure 21 depicts four player/participant carrels in the 

laboratory. 
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Figure 21: Computers and Player/participant Carrels in the Table-Top Laboratory 

 

The global representation of player interaction in a table-top exercise will be 

collected automatically by the adjudication application and will be visualized using a 

GIS-based terrain model. For example, a three-dimensional relief model in Google Earth, 

when overlaid with the study area and animation of player movements, can serve well to 

track the locations and progress of players in each exercise. Figure 22 illustrates this 

concept using blue (pursuer) and red (evader) player symbols. This approach also permits 

visualization of player locations and sightlines using realistic building models as depicted 

in Figure 23. 
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Figure 22: Three-Dimensional Visualization of a Table-Top Exercise (Study Area Highlighted in Pink) 
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Figure 23: Three-Dimensional Visualization of a Table-Top Exercise (Buildings and Sightlines Example) 

 

Full-Scale Exercises 
During the full-scale exercises, player/participants will interact with each other in 

the actual study area, the Fairfax campus of George Mason University. Data will be 

automatically collected by customized smartphones (and associated applications and 

information networks) given to each participant. The smartphones will collect and 

assemble player communications and movement information into tabular form and relay 

this information securely to the researcher. Figure 24 is an illustration of the envisioned 

data collection architecture, herein described as a “Smartphone-based Reality Mining 

Architecture.” 
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Figure 24: A Smartphone-Based Reality Mining Architecture 

 

This instrumentation system will rely on an analysis platform (the researcher’s 

computer system), data relay (a secure web-based server and an information network), 

sensor hardware (client device smartphones), and sensor software (client smartphone 

applications).  The system will use a set of applications developed in the R programming 

language to perform inferential, spatial, spatio-temporal, and social network analysis. 

The server will be a remotely operated, physically secured, and internet-based 

computer system that communicates using Secure Sockets Layer (SSL) protocol with 

client cellphones on the mobile phone network as well as the wireless network. The 

server will receive and store output files in a specific directory to be accessed only by the 
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researcher. It will also function as an indoor positioning system (IPS) server, receiving, 

storing, and fulfilling IPS queries. 

The primary information network is the mobile communications network 

associated with the contracted mobile service provider. It is anticipated that this network 

will use the Global System for Mobile Communications (GSM) digital cellular network 

protocol. No limitations on data volume are anticipated. The precise configuration of this 

system is subject to the availability of resources by which to procure network services. 

The alternate information network is the wireless data network (the WiFi network) 

installed and maintained in the study area by the University.  

The targeted sensor platform is a smartphone similar to ZTE Concord, equipped 

with an 823 MHz Broadcom BCM21553 processor, Android v2.3, 512 MB of RAM, 512 

MB of integral storage, 2 GB of micro SD memory card storage (expanded to 32 GB), 

802.11 b/g/n WiFi, a GPS receiver, and mobile network frequencies including GSM 

850/900/1800/1900 MHz and HSPA/UMTS 850/1900 MHz/AWS. Figure 25 depicts the 

ZTE Concord. This smartphone provides appropriate functionality, ample processing and 

storage capacity, and configuration flexibility at a reasonable expense. Furthermore, 

participants are likely to be familiar with low-cost Android smartphones and will 

therefore require little familiarization and training. 
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Figure 25: The Full-Scale Exercise Sensor Platform: The ZTE Concord Android Smartphone  

 

This desired client software is a mobile device application written in the Java 

programming language and developed for the Android operating system. The application 

will be named RM Beacon and will be activated and deactivated using a password-

protected user interface. RM Beacon will run in the operating system’s “background” and 

passively collect the communications (metadata and non-voice content) and location 

information (geographic coordinates) attributable to the mobile device (See Table 17 for 

a description of the communications information to be collected). RM Beacon will 

assemble and convert this data into a table via a specific .xml file format. RM Beacon 

will transmit this .xml data securely using SSL to the remote server. RM Beacon will 
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automatically transmit collected information at user-defined time intervals as well as on 

ad hoc designated events. 

 

Table 17: Message Types and Data Fields to be Collected by RM Beacon 

 
 

Since IPSs are imperfect technologies that remain under development, the 

instrumentation system used for full-scale exercises will not integrate indoor localization 

into the client software. Instead, each client device will run the Redpin IPS separately 

from the RM Beacon (Bolliger, 2008). Positional reporting via Redpin will be collected 

at the server and stored separately from the .xml files transmitted via RM Beacon. 

Similarly, each smartphone will be separately installed with a phone call 

recording application (Call Recorder) to capture and store voice calls on local drives. 

These voice recordings will not be transmitted and will instead be removed from the 

devices at the conclusion of each exercise.  

Each smartphone will also be installed with a customized Gmail client and an 

internet browser. Each Gmail client will be configured to operate exclusively with a user 

account that is established and controlled by the researcher for the exclusive purpose of 

enabling email communication during the exercises. 

SMS date, time, location, sender ID, recipient ID, message content

MMS date, time, location, sender ID, recipient ID(s), message content, multimedia

email (Gmail) date, time, location, sender address, recipient address(es), message content, attachment metadata

web browsing date, time, location, URL, download metadata

phone/voice date, time, location, caller ID (phone number), called ID(s) (phone numbers)

Message type Data fields
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The Smartphone-based Reality Mining Architecture will enable exploration of 

real team behaviors, rather than those that were hypothesized and programmed in the 

computer simulation model. Real team behaviors will likely exhibit unanticipated 

patterns, spurring subsequent investigation into the characteristics and root causes of 

those patterns. 

Investigating Phase Transitions in Team, Multiteam, and Social 
Behaviors 

An exciting future branch of this research is the development of quantifiable 

indications of phase transitions in social behaviors, relying on geographic information 

science, behavioral science, the application of non-linear optimization, and analysis of 

Reynolds’ individual- level steering forces of cohesion, separation, and alignment 

(Reynolds, 1987, 1999). The analysis of individual- level steering forces following 

Croitoru (2009) may provide a quantified means to isolate individual and team movement 

behaviors. A first goal would be to separate coherent (i.e. nonrandom) team behaviors 

from incoherent (i.e. indistinguishable from random) behaviors within large datasets of 

social activity. A second goal would be to characterize and classify coherent behaviors 

according to the strength and type of movements observed. A third goal would be to 

isolate transitions between distinct behaviors in order to understand phase transitions in 

team activity. 

Separation is the force that prevents crowding; it is the measurement of the 

distance maintained by an individual from others nearby. Cohesion is the force that 

brings groups closer together; it is the measurement of the vector that brings an individual 

to the mean center of the locations of others nearby. Alignment is the force that causes an 
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individual to move in the same direction and speed as the group; it is the difference 

between the individual’s current velocity and the average velocity of others nearby. The 

sum total of the displacement effects achieved by separation, cohesion, and alignment is 

called “steering activity.” See Figure 26. 

 

 
Figure 26: Individual-Level Steering Forces as given by Reynolds (1999) 

 

 

Morphological enumeration of the potential combinations of active steering forces 

offers a method by which to define every potential team movement behavior. Table 18 

lists every possible combination of individual- level steering forces, where “+” indicates 

significant observations of a steering force and “0” indicates observations that are 

indistinguishable from random. Each combination can be described with a name, an 

intensity of the steering activity associated with that behavior, and a phase (transition or 

action) associated with the performance episode. 
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Table 18: Hypothesized Team Behaviors and their Characteristics 

 
 

Changes from one team movement behavior to another could indicate the start or 

end of a performance episode as well as the beginning of an action phase. These could 

also lead to identification of coordinating behaviors or changes in tasks or task 

assignments. Hypothetically, there is a finite set of changes in team movement behavior 

dyads. This set is enumerated in Table 19. The predecessor behavior appears in the first 

column while the successor behavior is in the second column. There is a descriptive name 

for each change in team movement behaviors in the third column. The fourth column 

identifies changes between team activity phases: transition to action (T->A), action to 

transition (A->T), or no change (None). 

 

Immobile Disoriented 0 0 0 Low Transition

Immobile Cooriented 0 + 0 Low Transition

Converge 0 0 + Moderate Action

Disperse + 0 0 Moderate Action

Swarm 0 + + High Action

Fan + + 0 High Action

Mobile Disoriented + 0 + High Action

Mobile Cooriented + + + High Action

Behavior Separation Alignment Cohesion Steering Activity Team Performance Phase
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Table 19: Hypothesized Changes in Team Behaviors 

 

Immobile Disoriented Immobile Cooriented Facing None

Immobile Disoriented Converge Scanning Smaller T->A

Immobile Disoriented Disperse Scanning Bigger T->A

Immobile Disoriented Swarm Opportunistic Swarm T->A

Immobile Disoriented Fan Opportunistic Fan T->A

Immobile Disoriented Mobile Disoriented Scanning Start T->A

Immobile Disoriented Mobile Cooriented Facing Start T->A

Immobile Cooriented Immobile Disoriented Scanning None

Immobile Cooriented Converge Facing Smaller T->A

Immobile Cooriented Disperse Facing Bigger T->A

Immobile Cooriented Swarm Directed Swarm T->A

Immobile Cooriented Fan Directed Fan T->A

Immobile Cooriented Mobile Disoriented Scanning Start T->A

Immobile Cooriented Mobile Cooriented Facing Start T->A

Converge Immobile Cooriented Facing Halt A->T

Converge Immobile Disoriented Scanning Halt A->T

Converge Disperse Reversal In-to-Out None

Converge Swarm Deliberate Swarm None

Converge Fan Reversal Burst Out None

Converge Mobile Disoriented Gather to Hover None

Converge Mobile Cooriented Gather to March None

Disperse Immobile Cooriented Facing Halt A->T

Disperse Immobile Disoriented Scanning Halt A->T

Disperse Converge Reversal Out-to-In None

Disperse Swarm Reversal Burst In None

Disperse Fan Deliberate Fan None

Disperse Mobile Disoriented Release to Hover None

Disperse Mobile Cooriented Release to March None

Swarm Immobile Cooriented Facing Halt A->T

Swarm Immobile Disoriented Scanning Halt A->T

Swarm Converge Dissipated Swarm None

Swarm Disperse Dispersed Swarm None

Swarm Fan Reversed Swarm None

Swarm Mobile Disoriented Swarm to Hover None

Swarm Mobile Cooriented Swarm to March None

Fan Immobile Cooriented Facing Halt A->T

Fan Immobile Disoriented Scanning Halt A->T

Fan Converge Converged Fan None

Fan Disperse Dissipated Fan None

Fan Swarm Reversed Fan None

Fan Mobile Disoriented Fan to Hover None

Fan Mobile Cooriented Fan to March None

Mobile Disoriented Immobile Cooriented Facing Halt A->T

Mobile Disoriented Immobile Disoriented Scanning Halt A->T

Mobile Disoriented Converge Hovering Smaller None

Mobile Disoriented Disperse Hovering Bigger None

Mobile Disoriented Swarm Hover to Swarm None

Mobile Disoriented Fan Hover to Fan None

Mobile Disoriented Mobile Cooriented Hover to March None

Mobile Cooriented Immobile Cooriented Facing Halt A->T

Mobile Cooriented Immobile Disoriented Scanning Halt A->T

Mobile Cooriented Converge Marching Smaller None

Mobile Cooriented Disperse Marching Bigger None

Mobile Cooriented Swarm March to Swarm None

Mobile Cooriented Fan March to Fan None

Mobile Cooriented Mobile Disoriented March to Hover None

Behavior 1 Behavior 2 Behavioral Change Phase Change
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Future experimentation could extend this research from studies of team dynamics 

and processes to studies of MTS dynamics and processes. Such an extension would 

require modifying the experiment’s design in order to isolate characteristics of MTSs. A 

modified design would involve multiple pursuit teams and evasion teams organized into 

competing MTSs. Each MTS would operate across multiple zones of team-level 

responsibility that represent and bound distinct team-level goals. Opposing MTSs would 

operate in areas that were incongruently overlapped with each other to allow teams to 

interact across internal zone boundaries.  

Each team would be comprised of individual players with different roles and 

goals. An MTS extension of the Pursuit and Evasion game could employ three types of 

players for each team: “Kings,” “Rabbits,” and “Scouts.” The goal of the King Evader 

would be to not be caught. If the Pursuers caught the King Evader before time runs out, 

the Evaders would lose and the game would ends. The goal of Rabbit Evaders would be 

to protect the King Evader by trying to divert Pursuers. The goal of Scout Evaders would 

be to protect the King Evader by observing and communicating what the Pursuers are 

doing. Conversely, the King Pursuer’s goal would be to catch the King Evader by 

coordinating and the actions of all pursuing teams. The goal of Rabbit Pursuers would be 

to intercept Evaders, especially the King. The goal of Scout Pursuers would be to capture 

the King Evader by observing and communicating what the Evaders are doing. 

Communication among players would be restricted to superior-subordinate, in-team, and 

in-role dyads. Kings on both teams would make decisions about where to locate 

themselves (which could be anywhere in any zone) and what the subordinate teams do. 
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However these directions to subordinate teams would be limited to breaking ties, 

directing some movements, and adjusting decision rules. 

Figure 27 illustrates how the study area, team zones, and players could be 

arranged at the start of an instance of MTS Pursuit-and-Evasion. 

 

 
Figure 27: An Illustration of the P&E Game Design when Extended from Team to Multiteam System Format 

 

Applied Research and Technology Development 
A program of basic research in geographic dynamics of goal-directed social 

behaviors may lead to promising applications in any interest area where it would be 

useful to understand how teams and systems of teams move and communicate as they 
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pursue goals in geographic space. Some examples of potential applied research topics and 

questions include: 

 Targeting and Decision Support in Irregular Warfare – What patterns of 

movement and communication may permit identification of hidden discrete teams 

operating within large populations? How can understanding the geographic 

dynamics of goal-directed social behaviors assist in differentiating illicit social 

networks operating clandestinely to achieve politically subversive goals? 

 Migration, Trade, and Trans-border Communication – What factors influence 

how teams move, communicate, and make decisions in different socio-economic 

and political contexts? How do these factors change with differences in culture, 

security conditions, or communications technologies? 

 Cohesion and Culture – How do teams and systems of teams behave in ways that 

improve cohesion, relational bonds, and goal accomplishment? How do changes 

in organizational culture correlate with changes in the operational activities of 

front line teams? When and how do outwardly observable behaviors indicate 

serious dissension within teams? 

 Transportation and Urban Planning – How can geographic measures of coherent 

social behaviors assist in efficient allocation of transportation and public safety 

services during periods of extraordinary transportation demand? How do urban 

design attributes shape the movement and communication behaviors – as well as 

the resulting resource demands – of social groups? What group movement 

behaviors may be anticipated in the design of evacuation systems and networks? 
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 Disaster Response and Recovery – How do survivors move and communicate as 

teams in the aftermath of natural and manmade disasters? What team behaviors 

correlate with successful disaster response and recovery operations like urban 

search and rescue? How do teams of long-term relief workers learn about their 

environment, wayfind, and communicate with each other? 

 Criminology and Law Enforcement – What variables may indicate the time, 

location, and severity of mob behaviors such as rioting, looting, vandalism, and 

other unlawful “flash mobs?” What variables or measures suggest when and 

where these behaviors are likely to metastasize, relocate, or subside? 

 Art, Taste, and Influence Networks – How do discrete influence networks 

propagate memes in geographic space? What concepts are transferrable to 

understanding influence networks in virtual space? What indicators suggest how, 

when, and where economic, cultural, and political “tipping points” occur? 

 Economics and Society – How do teams associate, move, and communicate to 

maximize revenue in industries characterized by mobility and cooperative 

competition (street vendors, fisheries, taxicabs, etc.)? What behavioral geographic 

measures reliably distinguish among competition, collusion, cartelism, and 

monopoly? 

Once corroborated by further field research and experimentation, development of 

theory and method about the geographic dynamics of goal-directed social behaviors may 

also invoke tool development in the areas of network-based simulation modeling, graph 

theoretic multi-agent simulation, and geosimulation. This research will one day lead to 
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the development of tools such as geospatial intelligence analytics and decision support 

systems applicable to security, military, and intelligence as well as commercial, cultural, 

and recreational purposes. While this research project suggests many potential 

outgrowths in applied research and technological development, the strongest research 

potential exists in sustaining a program of fundamental science that leads toward theory. 

Sustained Basic Research 
The geographic dynamics of goal-directed team behaviors are so fundamental to 

human experience that there is great potential to expand this research effort in many 

different directions. For example, a multi-year basic research agenda could explore the 

variables of demographics, culture, terrain, goal type, leadership, affiliation, cohesion, 

and diurnal rhythm. Such research could involve repeating the series of computer-

simulated, table-top, and full-scale experiments described heretofore in various locations, 

such as urban, suburban, or rural settings in domestic and foreign environments. It could 

involve recruiting experiment participants from a demographically varied subject pool, 

thereby assessing the influence of age, place of origin, or terrain familiarity. The project 

could examine the impact of exogenous social activities (such as meal time, work/class, 

prayer time, or rush hour) by varying the time of day at which full-scale exercises occur. 

Leadership, cohesion, and affiliation could be investigated via controlled interventions in 

team organization. The influence of goal types may be examined through simulation and 

experimentation involving different combinations of competitive behaviors like 

smuggling-and- interdiction or security-and-infiltration. The effort could be informed by 
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more economic research regarding the game theory of locational choice, or more 

qualitative inquiry into the psychological aspects of team spatial cognition. 

While this research project focused on team behaviors, it is intended to use team-

based hypotheses, methods, and tools to explore the geographic dynamics of multiteam 

systems pursuing organizational objectives. If it is true that the phenomena that originally 

inspired this project – illicit and subversive activities like terrorism – are better 

understood as the products of multiple interdependent teams rather than discrete teams, 

then future basic research must apply the multiteam system framework. Such research 

would involve increased sophistication of the experimental design, especially the addition 

of multiple interdependent hierarchies of actors, teams, tasks, and goals. 

Insofar as multiteam systems are purposive social networks, research approaches 

that examine the social structures of multiteam systems engaged in goal-oriented 

activities will likely yield useful insight. In particular, role, relationship intensity, and 

variability of affiliation provide interesting vectors of inquiry, as will investigation of the 

spatial, temporal, and spatiotemporal dynamics of social structures in both geographic 

and virtual space.  

Continued basic research will develop and assess hypotheses, building towards a 

geographic theory of social behaviors. While the experimental phases of this project does 

not directly address the naïve hypotheses offered in the literature review, this research 

does demonstrate parts of an analytical framework which could be used to make 

theoretical advances in the area of human collective behaviors. 
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