
UNSUPERVISED CROSS-DOMAIN AND CROSS-LINGUAL METHODS FOR
TEXT CLASSIFICATION, SLOT-FILLING, AND QUESTION-ANSWERING

by

Jitin Krishnan
A Dissertation

Submitted to the
Graduate Faculty

of
George Mason University
In Partial fulfillment of

The Requirements for the Degree
of

Doctor of Philosophy
Computer Science

Committee:

Dr. Huzefa Rangwala, Dissertation Director

Dr. Hemant Purohit, Dissertation Co-Director

Dr. Jessica Lin, Committee Member

Dr. Carlotta Domeniconi, Committee Member

Dr. Antonios Anastasopoulos, Committee Member

Dr. David Rosenblum, Department Chair

Dr. Kenneth Ball, Dean, Volgenau School
of Engineering

Date: Spring Semester 2021
George Mason University
Fairfax, VA

Jitin Krishnan
04/23/2021



Unsupervised Cross-Domain and Cross-Lingual Methods for Text Classification,
Slot-Filling, and Question-Answering

A dissertation submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy at George Mason University

By

Jitin Krishnan
Master of Science

George Mason University, 2016
Bachelor of Science

University of Virginia, 2012

Director: Dr. Huzefa Rangwala, Professor
Department of Computer Science

Spring Semester 2021
George Mason University

Fairfax, VA



Copyright © 2021 by Jitin Krishnan
All Rights Reserved

ii



Dedication

This dissertation is dedicated to my parents, Mr. Balakrishnan Chellaton and Dr. Vanaja
Taliyil, to my wife, Chandini Narayan, and to my younger brother, Hrishikesh. Without
their love, support, and encouragement this work would not have been possible.

iii



Acknowledgments

I thank my advisors Dr. Huzefa Rangwala and Dr. Hemant Purohit for the amazing
guidance they have given me throughout my PhD life. I thank them for their patience,
hours of discussions, and motivating me to push research boundaries. I would also like
to express my gratitude towards Dr. Antonios Anastasopoulos for his exceptional guidance
with NLP technical concepts. I would also like to thank my additional committee members,
Dr. Jessica Lin and Dr. Carlotta Domeniconi for their valuable guidance and support.

I thank the U.S. National Science Foundation grants IIS-1815459 and IIS-1657379 for
partially supporting my research. I thank my labmates Yasas Senarath and Rahul Pandey
for COVID-19 data annotation along with the Montgomery County CERT volunteers led
by Steve Peterson. I thank Chandini Narayan, Sujay Das, and Arun Krishna for data an-
notation in Malayalam and Hindi. I also thank GMU’s ARGO team and their support in
running my experiments.

I thank Sneha Mehta, Raj Patel, Angeela Acharya, Huangxin Wang, Qian Hu, and all
of my labmates and peers for valuable research discussions and advice they have given along
the way.

I thank Patrick Coronado, Ming Sun, Ruoyu Li, and Nathan Hurst for showing me that
AI/Machine Learning can be fun and also is very impactful for our society at large.

Finally, I thank my entire family and friends for their constant support and encourage-
ment. I will forever be grateful.

iv



Table of Contents

Page

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

List of Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Dissertation Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Background & Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Cross-Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 Text Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.2 Application in Crisis Management . . . . . . . . . . . . . . . . . . . 13

2.2.3 Generative Question Answering . . . . . . . . . . . . . . . . . . . . . 16

2.3 Cross-Lingual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.1 Text Classification & Application in Crisis Management . . . . . . . 17

2.3.2 Intent Prediction and Slot-Filling . . . . . . . . . . . . . . . . . . . . 19

2.3.3 Transliterated Text Classification . . . . . . . . . . . . . . . . . . . . 23

3 Diversity-Based Generalization for Unsupervised Cross-Domain Text Classification 27

3.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2.2 Models & Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3.3 Baselines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4 Results & Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

v



3.5 Key Takeaways . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4 Unsupervised and Interpretable Domain Adaptation: Application in Crisis Man-

agement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2.2 Models & Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.3 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.3.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.3.2 Baselines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.3.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.4 Results & Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.5 Key Takeaways . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5 Domain Adversarial Masking and Regeneration for Cross-Domain Generative

Question Answering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.2.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.2.2 Models & Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.3 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.3.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.3.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.4 Results & Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.5 Key Takeaways . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6 Attention Realignment and Pseudo-Labeling for Interpretable Cross-Lingual Clas-

sification of Crisis Tweets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.2.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.2.2 Models & Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.3 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.3.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.3.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.4 Results & Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.5 Key Takeaways . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

vi



7 Multilingual Code-Switching for Zero-Shot Cross-Lingual Intent Prediction and

Slot-Filling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

7.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

7.2.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

7.2.2 Models & Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

7.3 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7.3.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7.3.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

7.3.3 Baselines & Upper Bound . . . . . . . . . . . . . . . . . . . . . . . . 90

7.4 Results & Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

7.5 Key Takeaways . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

8 Cross-Lingual Text Classification of Transliterated Hindi and Malayalam . . . . 100

8.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

8.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

8.2.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

8.2.2 Models & Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

8.3 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

8.3.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

8.3.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

8.4 Results & Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

8.5 Key Takeaways . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

9 Conclusion & Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

9.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

9.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

9.2.1 Crisis Tweet Representation . . . . . . . . . . . . . . . . . . . . . . . 115

9.2.2 Interpretabilty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

9.2.3 Language Families . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

9.2.4 Aligning Multilingual Knowledge Graphs for Crisis . . . . . . . . . . 116

9.2.5 Transliteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

vii



List of Tables

Table Page

2.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1 Amazon and Crisis Tweet Dataset Statistics . . . . . . . . . . . . . . . . . . 36

3.2 Implementation Details for Diversity Models . . . . . . . . . . . . . . . . . . 37

3.3 Diversity Performance Evaluation on Amazon Reviews . . . . . . . . . . . . 41

3.4 Diversity Performance Evaluation on Crisis Tweets . . . . . . . . . . . . . . 42

3.5 Runtime of Diversity Models . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.6 Additional Experiments with Diversity Models . . . . . . . . . . . . . . . . 42

3.7 Evaluation of Attention Aggregation Methods . . . . . . . . . . . . . . . . . 44

4.1 MT-DAAN Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2 TREC Dataset Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.3 Implementation Details for MT-DAAN . . . . . . . . . . . . . . . . . . . . . 55

4.4 Performance of Deep Neural Models on Amazon Reviews . . . . . . . . . . 57

4.5 Performance of Deep Neural Models on TREC Dataset . . . . . . . . . . . . 58

4.6 MT-DAAN Results on TREC Dataset . . . . . . . . . . . . . . . . . . . . . 58

4.7 MT-DAAN Results on COVID-19 Dataset . . . . . . . . . . . . . . . . . . . 59

4.8 Comparison of Word Vector Models . . . . . . . . . . . . . . . . . . . . . . 59

4.9 Improving MT-DAAN with Additional Web Data . . . . . . . . . . . . . . . 61

5.1 Evaluation of Amazon QA and COVID QA Datasets using BLEU Scores . 71

6.1 Notations for Attention Realignment . . . . . . . . . . . . . . . . . . . . . . 77

6.2 Appen Dataset Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.3 Implementation Details for Attention Realignment . . . . . . . . . . . . . . 80

6.4 Performance Evaluation of Attention Realignment . . . . . . . . . . . . . . 82

7.1 Selected Language Families . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

7.2 Datasets for Code-Switching . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

7.3 Performance Evaluation of Code-Switching on MultiATIS++ . . . . . . . . 91

7.4 Performance Evaluation of Code-Switching on Crisis Data . . . . . . . . . . 93

7.5 Runtime for Joint Training with Code-Switching . . . . . . . . . . . . . . . 93

8.1 Statistics of Transliteration Test Data . . . . . . . . . . . . . . . . . . . . . 105

viii



8.2 Transliteration Performance Evaluation . . . . . . . . . . . . . . . . . . . . 108

8.3 Evaluation of Teacher-Student Model on Source Language . . . . . . . . . . 108

8.4 Evaluation of Teacher-Student Model on Original Script . . . . . . . . . . . 109

8.5 Teacher-Student Model Runtime . . . . . . . . . . . . . . . . . . . . . . . . 113

ix



List of Figures

Figure Page

1.1 Cross-Domain Text Classification Example . . . . . . . . . . . . . . . . . . 2

1.2 Cross-Lingual Text Classification Example . . . . . . . . . . . . . . . . . . . 2

1.3 Implication of Our Work in the Crisis Domain . . . . . . . . . . . . . . . . 3

1.4 Overall Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 t-SNE of mBERT Embeddings on Parallel Data . . . . . . . . . . . . . . . . 20

2.2 Transliteration Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3 t-SNE of Transliterated Embeddings . . . . . . . . . . . . . . . . . . . . . . 24

3.1 Diversity Model Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Tri-training Setup with Diversity . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3 Attention Aggregation Methods . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4 Diversity Model Attention Visualization . . . . . . . . . . . . . . . . . . . . 39

3.5 Optimal Number of Attention Heads . . . . . . . . . . . . . . . . . . . . . . 40

4.1 Crisis Tweets Domain Adaption . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2 Multi-Task Domain Adaptation Setup . . . . . . . . . . . . . . . . . . . . . 47

4.3 Visualizing Attention on Crisis Tweets . . . . . . . . . . . . . . . . . . . . . 62

4.4 Interpretability on COVID-19 Tweets . . . . . . . . . . . . . . . . . . . . . 63

5.1 QA Domain Adaptation Examples . . . . . . . . . . . . . . . . . . . . . . . 67

5.2 Masking and Regeneration Architecture . . . . . . . . . . . . . . . . . . . . 68

5.3 Masking and Regeneration Examples . . . . . . . . . . . . . . . . . . . . . . 72

6.1 Cross-Lingual Tweet Classification Example . . . . . . . . . . . . . . . . . . 75

6.2 Attention Realignment Architecture . . . . . . . . . . . . . . . . . . . . . . 76

6.3 Attention Visualization with Realignment . . . . . . . . . . . . . . . . . . . 81

7.1 Slot-Filling Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

7.2 Language Family Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

7.3 Code-Switching Training Runtime . . . . . . . . . . . . . . . . . . . . . . . 94

7.4 mBERT Performance with Code-Switching . . . . . . . . . . . . . . . . . . 95

7.5 XLM-R Performance with Code-Switching . . . . . . . . . . . . . . . . . . . 95

x



7.6 Impact of Code-Switching . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

7.7 mBERT vs XLM-R for Code-Switching . . . . . . . . . . . . . . . . . . . . 97

7.8 Freezing mBert Layers for Code-Switching . . . . . . . . . . . . . . . . . . . 98

8.1 Teacher-Student Model Overview . . . . . . . . . . . . . . . . . . . . . . . . 101

8.2 Transliteration Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

8.3 Teacher-Student Model with Joint Training. . . . . . . . . . . . . . . . . . . 103

8.4 New Transliteration Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

8.5 Unsupervised Alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

8.6 Freezing mBERT layers for the Teacher-Student Model . . . . . . . . . . . . 111

xi



List of Abbreviations

NLP Natural Language Processing

NLU Natural Language Understanding

QA Question Answering

MTL Multi-Task Learning

MLM Masked Language Model

CNN Convolutional Neural Network

RNN Recurrent Neural Network

SVM Support Vector Machines

KG Knowledge Graph

GCN Graph Convolutional Network

TREC-IS Text Retrieval Conference - Incident Streams

MHA Multi-Head Attention

MHAD Multi-Head Attention with Diversity

ST Single-Task Attention Network

ST-DAAN Single-Task Domain Adversarial Attention Network

MT-DAAN Multi-Task Domain Adversarial Attention Network

Tukey’s HSD Tukey’s Honest Significant Di↵erence [1]

LSTM Long Short-Term Memory [2]

BiLSTM Bidirectional Long Short-Term Memory [3]

GRU Gated Recurrent Unit [4]

T5 Text-to-Text Transfer Transformer [5]

XLM Cross-Lingual Masked Language Modeling [6]

XLM-R Cross-Lingual Masked Language Modeling in a Roberta way [7]

BERT Bidirectional Encoder Representations from Transformers [8]

xii



mBERT Multilingual BERT [8]

MUSE Multilingual Unsupervised and Supervised Embeddings [9]

VecMap Cross-Lingual Word Embedding Mappings [10]

SDA Stacked Denoising Autoencoders [11]

mSDA Marginalized Stacked Denoising Autoencoders [12]

DAmSDA Domain Adversarial Marginalized Stacked Denoising Autoencoders [11]

XNLI Cross-lingual Natural Language Inference [13]

GloVe Global Vectors for Word Representation [14]

MT-Tri Multi-Task Tri-training [15]

DANN Domain-Adversarial training of Neural Networks [16]

AMN Adversarial Memory Network [17]

HATN Hierarchical Attention Network [18]

IATN Interactive Attention Transfer Network [19]

MemN2N End-To-End Memory Networks [20]

QACNN Query-based Attention CNN [21]

CliniQG4QA Generating Diverse Questions for Domain Adaptation of Clinical QA [22]

YAGO Yet Another Great Ontology [23]

MTransE Multilingual KG Embeddings for Cross-lingual Knowledge Alignment [24]

JAPE Cross-Lingual Entity Alignment via Joint Attribute-Preserving Embedding [25]

t-SNE t-Distributed Stochastic Neighbor Embedding [26]

xiii



Abstract

UNSUPERVISED CROSS-DOMAIN AND CROSS-LINGUAL METHODS FOR TEXT
CLASSIFICATION, SLOT-FILLING, AND QUESTION-ANSWERING

Jitin Krishnan, PhD

George Mason University, 2021

Dissertation Director: Dr. Huzefa Rangwala

Transfer learning has significantly revolutionized modern machine learning systems by

instilling the ability to use the knowledge gained from solving one problem for another. It

has also helped to adapt and build models that can be generalized beyond the distributions

that they are trained on. This dissertation explores and presents novel techniques for two

transfer learning problems (cross-domain and cross-lingual) in the field of Natural Language

Processing, for the tasks of text classification, slot-filling, and question-answering. This is

particularly motivated by scenarios such as crisis management in which labeled data from a

new domain or language cannot be easily obtained during an ongoing crisis to train models.

A cross-domain setup (also known as domain adaptation) adapts a model trained on one

domain (e.g., Tweets posted during Hurricane Harvey) to another (e.g., Tweets posted

during Hurricane Florence). A cross-lingual setup adapts a model trained on one language

(e.g., English) to another (e.g., Hindi). Essentially, our goal is to bring seemingly dissimilar

distributions into a comparable representation based on a task at hand, so that a model

trained on data from one domain/language can be generalized to another.



We make three contributions for the task of domain adaptation, focusing on text data

in English: (a) We show that machine learning architectures that ensure su�cient diversity

can generalize better. In the context of text classification, this is achieved by enforcing

orthogonality constraints within and across attention-based neural models, in a fully unsu-

pervised manner unlike traditional methods that require unlabeled data from the target.

(b) For text classification in low-resource scenarios (e.g., crisis tweets), where there exist

multiple domains and multiple tasks, a setup with domain discrimination while sharing a

few internal layers for multiple tasks can generalize well to an unseen domain. (c) For the

task of generative question-answering, we propose an adversarial method of masking domain

specific words and regenerating them using a sequence-to-sequence language model trained

using unlabeled target data. The purpose of this approach is to construct pseudo-labeled

target data from the labeled source data.

We also make three contributions for the task of cross-lingual learning: (a) In the context

of text classification, we show that an attention realignment method that enforces the

model to distinguish task-specific versus language-specific words can improve cross-lingual

performance. (b) For the task of joint learning of intent prediction and slot-filling (intent

being sentence-level label and slot being word-level label), randomized switching of phrases

in a sentence to various other languages is shown to generalize well on unseen languages.

(c) Finally, we enhance the modern multilingual language models with the ability to classify

transliterated text.

Practical implications of our work are demonstrated on Twitter posts collected during

various natural disasters that span di↵erent languages. Due to the generalizability of our

models across domains and languages, they can be immediately deployed to aid emergency

services during crisis events to extract relevant information. Towards this goal and for

designing models that can explain the predictions for crisis management, interpretability of

models is also explored. Furthermore, for some of our tasks, we release newly labeled crisis

datasets for the research community.



Chapter 1: Introduction

Text documents or words transcribed from speech are ubiquitous data sources created from

the fundamental nature of human communication. We see text in books, TV, movies,

social media, email, and other plethora of sources on a daily basis. Information extracted

and insights gained from such textual data can be used to build exciting applications such

as virtual assistants, summarizing news content, classifying spam, detecting urgent tweets

posted during a crisis, analyzing social media interactions, etc. Under the hood of such

applications lie complex machine learning models that are ready to make predictions on

an unseen data point. Quality of such models largely depend on the quality of data on

which they are trained on. And, with more labeled data comes robustness and the ability

to tackle very specific problems. However, in many real-world problems such as an ongoing

crisis event, obtaining labeled data for training supervised or semi-supervised models is

tedious and mostly unrealistic. Consider situations where we need to classify Twitter posts

based on urgency or identify words that represent resource needs such as food, water, shelter,

etc. In such scenarios, it is imperative to make use of past data and adapt it to the new

situation. For example, machine learning models trained on labeled data from past crisis

events can be used for an ongoing crisis event with minimal or no data from the new event.

Similarly, if the past data is in a di↵erent language, we would like the models to transfer

that knowledge to a language that we are interested in. These are typically known as

cross-domain (also domain adaptation) and cross-lingual problems respectively. Creating

machine learning models with this setup in mind for various tasks forms the fundamental

motivation behind this dissertation.

To elaborate on an example, consider domain adaptation applied to text classification.

A benchmarking task in text classification is sentiment analysis [27], where textual data

can be classified as either positive or negative. For example, consider reviews posted by
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Figure 1.1: An example of cross-domain text classification. A cross-domain model will be
trained on one domain and evaluated on a di↵erent domain.

Figure 1.2: An example of cross-lingual text classification. A cross-lingual model will be
trained on one language and evaluated on a di↵erent language.

customers for movies, restaurants, or items purchased on Amazon. By training a simple

binary classification model using such reviews, for which treating all reviews less than 3 stars

as negative and more than 3 stars as positive, we could predict binary ratings for reviews

that have no rating associated with it or distinguish unrated comments posted by the public

into positive or negative to study the sentiment behind them. In the cross-domain setting

that we interested in, the setup is slightly tweaked such that the training and test datasets

come from two di↵erent domains. E.g., Kitchen Product Reviews versus Book Reviews as

shown in Fig. 1.1. Similarly, a cross-lingual setting assumes that the test data comes from

a di↵erent language. For example, a model can be trained using reviews in English and
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Figure 1.3: An application scenario in the crisis domain to interpretably predict labels for
tweets collected during an ongoing crisis using only the past crisis data, given a) unavail-
ability of labeled data in the ongoing event, and b) need for interpretability of machine
reasoning behind data filtering for emergency managers.

evaluated on reviews in Hindi, as shown in Fig. 1.2. As evident from the generic nature

of the examples shown, this setup can be expanded to varieties of tasks, other than just

classification, such as Slot-Filling, Question-Answering, Named Entity Recognition, Natural

Language Inference, Knowledge Graph Construction, etc. In this dissertation, we focus on

three such tasks: Classification, Slot-Filling, and Question-Answering.

1.1 Motivation

The primary motivation of this dissertation is to solve key machine learning challenges

in order to build models that can extract relevant information from social media posts

during crisis situations such as Hurricanes or Earthquakes to aid emergency managers for

an e�cient and timely allocation of resources. Cross-domain and cross-lingual settings gain

prominence particularly in crisis situations because it is impractical to label new datasets
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Figure 1.4: Unsupervised cross-domain and cross-lingual setup of our work (s = source, t =
target, H = hypothesis). The goal is to train a model with the ability to generalize beyond
the original distribution (Ds).

during an ongoing crisis. Such situations require models that can be immediately deployed

regardless of a change in domain or language. Thus, the practical implication of our work is

demonstrated in this context throughout. An example is shown in Fig. 1.3. This example

also shows the importance of interpretability in model predictions. As language technologies

continue to improve and include various domains and languages, transferring knowledge

gained from one domain/language to another still remains a challenging problem. The

quality of such machine learning models lie in their ability to generalize beyond their original

distribution, which is the theoretical motivation behind our work.

1.2 Problem Statement

We define our problem statement commonly for both cross-domain and cross-lingual tasks.

The training dataset is called as source and the evaluation dataset is called as target. In

a cross-domain setting, source and target are two domains in the same language, while in

a cross-lingual setting, source and target are two languages in the same domain. Given a

source (Ds) and a target (Dt) distribution, the goal is to train a model using data from Ds

and predict examples from the completely (or partially) unseen Dt. Xs and Xt represent the
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set of labeled data from source and target distributions respectively with their corresponding

ground truth labels ys and yt. Xt and yt are used only for evaluation purposes. In scenarios

where unlabeled data is available, we also define Xu
s and Xu

t from the source and target

distributions respectively. Note that some of our models completely avoid Xu
t . Superscript

pred represents predicted result. This is briefly outlined below and shown in Fig. 1.4:

Input: Xs, ys, Xu
s , (X

u
t if needed)

Goal: ypredt  predict(Xt).

1.3 Contributions

We make six overall contributions with three each for cross-domain and cross-lingual prob-

lems. Each contribution has its dedicated chapter (3 to 8) and described briefly below.

Cross-Domain Text Classification (Chapter 3)

For our first contribution, we address the challenge of improving generalizability of neu-

ral sequence models in the context of domain adaption in unsupervised text classification

task. We introduce novel diversity-based models focusing on attention layers and evaluate

them on the benchmark datasets of Amazon reviews. To further improve generalizability

and utilize additionally available unlabeled source data, a tri-training procedure is defined

with an additional diversity constraint between the attention layers of the tri-trained clas-

sifiers. Addressing the existing evaluation gap in component-level performance analysis, a

systematic and incremental creation of our models is shown by creating strong unsupervised

baselines and improving upon existing work. A key advantage of our model is that it does

not require any target data for training; making it universally adaptable to any domain.

Our models are computationally cheaper (training converges quickly) when compared to the

state-of-the-art. Diversified attention can provide better quality of attended words which

can be used for various downstream tasks such as knowledge graph construction.
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Cross-Domain Text Classification for Multi-Domain Dataset with Limited

Labels (Chapter 4)

For our second contribution, we address the problems of data sparsity and limited labels in

the context of cross-domain text classification. We construct a multi-task learning architec-

ture with di↵erent tasks sharing a common layer along with a multi-domain discriminator.

We apply this technique to filter tweets for crisis management by training four di↵erent

classification tasks across ten di↵erent crisis events under domain shift. Our design con-

sists of dedicated attention layers for each task for interpretability and a domain classifier

branch to promote the model to be domain-agnostic. The interpretability provided by the

attention layers is demonstrated for the predictions made by the classifiers, with the goal

to aid emergency services in a more meaningful way. Furthermore, through experiments,

we show that deep networks struggle with small datasets, and that this can be improved by

sharing the base layer for multi-task learning and domain adversarial training.

Cross-Domain Generative Question Answering (Chapter 5)

For our third contribution, we address the task of generative question answering under

domain shift. Generative QA is a setup in which the model produces free form answers

to a question. We propose an improvement upon the state-of-the-art T5 [5] transformer

by introducing an adversarial masking and regeneration method. This is evaluated on the

Amazon QA dataset. And, a practical implication is demonstrated by applying it to answer

questions regarding COVID-19 from tweets.

Cross-Lingual Text Classification (Chapter 6)

For our fourth contribution, we address the challenge of improving cross-lingual text classi-

fication while exploring interpretability. We propose a novel attention realignment method

to promote the task classifier to be more language agnostic, which in turn tests the e↵ec-

tiveness of multilingual knowledge capture of the state-of-the-art XLM-R model [7]. This
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is enhanced with a pseudo-labelling procedure which further improves the model’s gener-

alization capability. Furthermore, incorporating the attention-based mechanism allows to

perform an interpretability analysis on the model, by comparing how words are attended

in the original versus translated versions. Experiments are conducted on a multilingual

dataset consisting of tweets posted during various crisis events.

Cross-Lingual Intent Prediction and Slot Filling (Chapter 7)

For our fifth contribution, we address a Natural Language Understanding (NLU) task of

intent prediction and slot-filling. This is a classification task that jointly predict the intent

(sentence-level label) and slots (word-level labels) of a sentence/phrase. To enhance the

language neutrality of Multilingual BERT (mBERT) [8] for fine-tuning, we propose a data

augmentation method via multilingual code-switching. By code-switching into di↵erent

language families, it is shown that potential linguistic relationships between a family and a

target language can be identified and studied. This could help foster zero-shot cross-lingual

research in low-resource languages. A key advantage of our model is that, with enhanced

generalizability, it can be deployed with an out-of-the-box functionality as training using

code-switched data is conducted independent of the target language, as compared to [28,29].

Methods of first machine translation of the source data into the known target language,

followed by fine-tuning (referred ‘translate-train’) [30–33] require a separate model to be

trained for each language. Furthermore, a new human-annotated tweet dataset, collected

during Haiti earthquake disaster, for intent prediction and slot filling in English and Haitian

Creole is publicly released.

Cross-Lingual Classification of Transliterated Text (Chapter 8)

For our sixth contribution, we address the task of classifying transliterated text (text which

is transferred from the alphabet one language to another). We propose a novel Teacher-

Student method to address the alignment problem for contextual representations of translit-

erated text (and show its e�cacy on Hindi and Malayalam). Two newly labeled datasets
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are released; a binary sentiment dataset of Malayalam movie reviews and a binary relevancy

dataset of tweets posted during North India and Kerala flood crises.

The work (Chapters 3 to 8) presented in this dissertation are also published/submitted/to-

be-submitted at peer reviewed venues [34–37].

1.4 Dissertation Outline

To summarize, this dissertation is primarily split into two types of research problems in

NLP: cross-domain and cross-lingual transfer learning. A background and related work of

all the tasks are provided in Chapter 2. Chapters 3, 4, and 5 tackle cross-domain problems of

text classification, its application in the crisis domain, and question-answering respectively.

Chapters 6, 7, and 8 tackle cross-lingual problems of text classification, slot-filling, and

transliterated text classification respectively. Finally, the conclusion and future directions

are presented in Chapter 9.
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Chapter 2: Background & Related Work

This chapter introduces the background work related to cross-domain and cross-lingual

problems addressed in this dissertation. We assume that the readers are familiar with

the basic concepts in machine learning and text classification. Among the vast amount of

research done in this area, we focus specifically on a subset of topics that is relevant to

us. This includes an exploration of the state-of-the-art techniques and a literature review

of domain adaptation in text classification and generative question-answering tasks, cross-

lingual text classification and slot filling tasks, and their applications in crisis management.

These form the basis and benchmarks for the new models presented in this dissertation.

2.1 Notations

This section discusses the commonly used notations throughout the dissertation. A sum-

mary is provided in Table 2.1. Individual chapters may define new notations or terminologies

for specific concepts or tasks. s and t subscripts are used to represent source and target

versions of data respectively. Some of our methods use unlabeled data as well as their

soft/pseudo-labeled versions. These are represented with u and pl superscripts. Given a

dataset X of text samples, x represents a single data point. In problems such as text clas-

sification, the feature vector for each word present in x comes from word vector models

such as fastText [38] or language models such as BERT [8]. For example, x<k> will have a

dimension of 300 if using fastText. We will describe them in more detail in the upcoming

sections and chapters.
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Table 2.1: Notations

Notation Definition

s (subscript) Source Domain/Language Data
t (subscript) Target Domain/Language Data
u (superscript) Unlabeled Data
pl (superscript) Pseudo-labeled Data
pred (superscript) Predicted Result (as compared to ground truth)
D Distribution
X Set of labeled data
y Set of ground truth labels for X
H Hypothesis
x input text (i.e., a sample from X)
x<k> feature vector representing k-th word of the input text x
Tx Number of words in the input text
~↵ Attention vector produced from the input text
↵<k> Attention weight of k-th word
T↵ Number of attention heads
a<k> Activation from k-th word

2.2 Cross-Domain

2.2.1 Text Classification

In NLP, domain adaptation of sequence classification problems has several applications

ranging from sentiment analysis [27] to classifying social media posts during crisis events

[39]. Knowledge learned from one domain, book reviews for instance, can be adapted to

predict examples from a di↵erent domain such as reviews of electronics. Similarly, infor-

mation about resource-need events learned from one natural disaster can be adapted to

predict events from an ongoing crisis. With the publication of Amazon reviews dataset

[27] consisting of around 25 di↵erent domains, cross-domain sentiment analysis became a

common way to evaluate machine learning models for domain adaptation in text.

The best methods in this line of research largely remain semi-supervised with the best

performing models utilizing unlabeled target data during training. We consider the essential
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criterion for no supervision in domain adaptation as having zero knowledge about the target

domain beforehand; even if it is unlabeled. Thus, our proposed method can be viewed either

as a strong baseline for future semi-supervised cross-domain research or as a new direction

in fully unsupervised domain adaptation. Our work is scoped to the following setting:

a) single-task transfer, b) single source and target, and c) without unlabeled target data

available during training. The unsupervised methods proposed in our work are compared

and contrasted with the existing semi-supervised counterparts. Supervised or minimally

supervised approaches are not considered in this work.

Early works on domain adaptation such as Structural Correspondence Learning [40]

made use of unlabeled target data to find a joint representation by automatically inducing

correspondences among features from di↵erent domains. The importance of a good feature

representation was later formally analyzed with a generalization bound by Ben-David et

al. [41]. These studies realized the importance of finding commonality in features or pivots

and minimizing the di↵erence between the domains. Pan et al. [42] proposed a spectral

feature alignment method to align domain-specific and domain-independent words into uni-

fied clusters via simultaneous co-clustering in a common latent space. Later, introduction

of deep learning and neural networks helped remedy the problems of manual pivot selection

and discrete feature representations. In order to learn better higher level representations,

Stacked Denoising Autoencoders (SDA) [11] were introduced. Along with SDA, a more

e�cient version called marginalized SDA [12] with low computational cost and scalability

has been utilized successfully in cross-domain tasks [43, 44]. Domain-Adversarial training

of Neural Networks (DANN) [16] was proposed to e↵ectively utilize unlabeled target data

to create a classifier that is indiscriminate toward di↵erent domains. In DANN, a negative

gradient (gradient reversal) from a domain classifier branch is back-propagated to promote

the features at the lower layers of the network incapable of discriminating domains. DANN

became an essential component in many works that followed. Recent works such as Ad-

versarial Memory Network (AMN) [17] bring interpretability by using attention to capture

the pivots. Along with attention, they e↵ectively use gradient reversal to learn domain
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indiscriminate features. Hierarchical Attention Network (HATN) [18] expands upon AMN

by first extracting pivots and then jointly training a pivot and non-pivot networks. Inter-

active Attention Transfer Network (IATN) [19], another closely related work to AMN and

HATN, showed the importance of attending ‘aspect’ information. Another line of research,

that approached domain adaption through innovation in training procedure, is tri-training

[45,46]. Tri-training utilizes three independently trained classifiers; of which one is trained

only on unlabeled target data, pseudo-labeled by the other two. The final prediction is done

by majority voting. Multi-task tri-training (MT-Tri) [15], on the other hand, introduced

an orthogonality constraint between the two classifiers such that it can be trained jointly

reducing the compute time. This constraint is one of the inspirations for our work. All of

these recent works used unlabeled target data for training classifiers. Our goal is to show

that similar performance is achievable without using unlabeled target data.

Based on how the dataset is used, approaches to domain adaptation can vary as minimally-

supervised, semi-supervised, or unsupervised. Minimally-supervised approaches such as

Aligned Recurrent Transfer [47] utilize some labeled data from the target domain. Semi-

supervised approaches such as DANN, AMN, HATN, or IATN utilize unlabeled target data

making it a more realistic scenario in terms of usability where collecting labeled target data

is expensive. However, many state-of-the-art semi-supervised methods, strikingly, never

compare with strong fully unsupervised baselines where no target data is used. Newer

methods have started using word vectors [48] for their input word representations. How-

ever, the baselines they compare with, utilize 5000-dimension feature vector of the most

frequent unigrams and bigrams as the input representation. In addition, many recent works

present a complex system without conducting a component-wise analysis which makes it

unclear as to how much each component (word vectors, gradient reversal, or attention)

contributed to the performance boost as compared to a simple DANN architecture. To

address these evaluation gaps, we perform a systematic and incremental construction of

architectures such that individual performance gain is realized.
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2.2.2 Application in Crisis Management

A crucial implication of this work is the crisis domain as shown in Fig. 4.2. During the

sudden onset of a crisis situation, social media platforms such as Twitter provide valuable

information to aid crisis response organizations in gaining real-time situational awareness

[49]. E↵ective analysis of important information such as a↵ected individuals, infrastructure

damage, medical emergencies, or food and shelter needs can help emergency responders to

make time-critical decisions and allocate resources in the most e�cient and e↵ective manner

[50–57].

Several machine learning systems have been deployed to help towards this humanitarian

goal of converting real-time social media streams into actionable knowledge. Classification

being the most common task, researchers have designed models [39,54,58–61] that classify

tweets into various categories such as priority, a↵ected individuals, type of damage, type of

assistance needed, usefulness of the tweet, etc. Social media streams are short, informal, and

abbreviated; with potential linguistic errors and sometimes contextually ambiguous. These

inherently challenging properties of tweets make their classification task and formulation

less trivial when compared to traditional text classification tasks.

We address two practically important and underdeveloped aspects of current research

in the crisis-domain to classify relevant social web posts (e.g., “please send medical supplies,

paramedics, temporary shelters Asap #NepalQuakeRelief ”): a) a fully unsupervised domain

adaptation and b) interpretability of predictions. A fully unsupervised domain adaptation

uses no data from the ongoing crisis to train the model. [58] showed that their convolutional

neural network (CNN) model does not require feature engineering and performed better

than the state-of-the-art methods; one of their models being completely unsupervised [58].

Similarly, [39] designed a CNN architecture with adversarial training on graph embeddings,

but utilizing unlabeled target data. Our goal is to construct an unsupervised model that

does not require any unlabeled target data with the capability of being interpretable. The

problem of data sparsity and limited labels is addressed, in particular, by designing a multi-

task classification model with domain adversarial training; which to the author’s knowledge
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is not explored in the crisis domain. In prior works, when a top performing model produces

an accuracy of 78%, for instance, it is unclear what that score really represent and how

trustworthy it is. An interpretable model, such as the one presented in our work, can present

with a convincing evidence of which words the classifier deems important when making a

certain prediction. This also brings additional benefits of using them in downstream tasks

such as knowledge graph construction.

For filtering social web data for crisis management, traditional domain adaptation mod-

els do not su�ce and need customized expansions due to the following reasons: a) Collecting

and using large unlabeled target data from the new/ongoing crisis event may not be practi-

cally viable, thus, we aim for a fully unsupervised modeling. b) Having access to unlabeled

data from multiple crisis events can alleviate the above problem to an extent by using it

to train the domain classifier branch to push the model to be domain independent. c) Due

to the low-resource nature of the dataset, binary classifiers may miss important lower level

features that can be potentially improved by a multi-task model that shares the lower layers

of the network for all the tasks. This is also evident from our results in Table 4.4 and 4.5,

which show that deep models that perform much better than simple models on Amazon

reviews do not significantly outperform them on TREC tweet dataset for crises.

Multi-Task Learning. In the context of low-resource datasets, a method that gained

prominence is Multi-Task Learning (MTL). MTL solves multiple tasks at the same time

with a goal to improve the overall generalization capability of the model [62]. Within the

context of Deep Learning, MTL is performed by sharing (or constraining) lower level layers

and using dedicated upper level layers for various tasks. A rich overview of MTL in Deep

Neural Networks is presented by Ruder (2017) [63]. MTL has been a successful strategy

over the past few years for many research explorations such as relationship networks [64] in

computer vision and Sluice networks [65] in natural language processing. Similar problems

in domain adaptation of semantic classification and information retrieval were addressed by

jointly learning to leverage large amounts of cross-task data [66]. In low resource datasets
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such as for crises, the chance of overfitting is very high. Thus, it seems intuitively better for

the model to find a shared representation capturing di↵erent tasks and not just one, such

that feature commonalities across tasks can be exploited; which is the motivation for our

second contribution.

Interpretability. Our cross-domain models also make use of a popular methodology

called attention. Attention mechanism [67], originally designed for machine translation

problems, has become one of the most successful and widely used methods in deep learning

that can look at a part of a sentence at a time like humans. This is particularly useful

because of its ability to construct a context vector by weighing on the entire input sequence

unlike previous sequence-to-sequence models [68] that used only the last hidden state of

the encoder network (typically BiLSTM [3], LSTM [2], or GRU [4]). For example, in a

sentence, the context vector is a dot product of the word activations and weights associated

with each word; thus leading to an improved contextual memorization, especially for long

sentences. Our method incorporates such attention mechanisms to enhance interpretability

of the classifier. With more and more machine learning systems being adopted by diverse

application domains, transparency in decision-making inevitably becomes an essential cri-

teria, especially in high-risk scenarios [69] where trust is of utmost importance. With deep

neural networks, including natural language systems, shown to be easily fooled [70,71], there

has been many promising ideas that empower machine learning systems with the ability

to explain their predictions [72–74]. [75] presents a survey of interpretability in machine

learning, which provides a taxonomy of research that addresses various aspects of this prob-

lem. Similar to the work by [76], we employ an attention-based approach to evaluate model

interpretability applied to the crisis-domain.
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2.2.3 Generative Question Answering

So far, we addressed the task of classification in cross-domain context. Now, we explore

a di↵erent and one of the most popular tasks in Natural Language Processing: Question-

Answering (QA). Large neural language models that are pre-trained on unlabeled text have

seen tremendous success in recent times when fine-tuned on downstream tasks [5,8,77–79];

QA being one of them. There are several variants of QA tasks, the typical ones based

purely on language models are defined by either i) explicitly providing a contextual text,

alongside the question, from which the answer is extracted (extractive QA) [80–83], or ii)

providing no context and letting the model to answer from an external knowledge base or

from the underlying pre-trained language model (open-domain and generative QA) [84–87].

This work restricts the problem to the specific setting of generative QA given a contextual

text alongside the question under domain shift as shown in Fig. 5.1.

Domain adaptation research in QA tasks have focused on approaches such as domain

adversarial training [88–90], extending vocabulary of the language model [91], and adding a

mixture of experts layer [92]. [93] comprehensively explores QA on multiple choice questions

based on MemN2N [20] and QACNN [21]. However, the most common models such as BERT

[8] are encoder-only, but generative models typically require a decoder to produce free-form

answers, as advocated in models such as T5 [5]. Domains where a dedicated NER tagger is

available, like Clinical QA, synthetic data generation approaches like CliniQG4QA [22, 94]

which first extracts answer phrases and then predicts diverse question phrases from the

unlabeled target have found promising results. Recently, an approach to generate question-

answer pairs from the target domain using text-to-text language models, was proven to be

successful for extractive QA [95, 96]. However, synthetic QA generation is non-trivial for

generative QA as the answer is not always an exact span from the context. Therefore, as

a deviation from these works, we design an alternative QA generation method from the

target with the help of the source domain using masking and regeneration. We assume that

the two domains share some semantic similarity (eg., how users answer questions about
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di↵erent genres of products on Amazon such as Music Instruments versus O�ce Products).

2.3 Cross-Lingual

A cross-lingual setting is typically described as a scenario in which a model trained for a

particular task in one language (e.g. English) should be able to generalize well to a di↵erent

language (e.g. Japanese). While a semi-supervised solution [97, 98] assumes some target

language data is available, a zero-shot solution [30, 99, 100] assumes none is available at

training time. This is particularly significant in real world problems such as extracting

relevant information during a new disaster [35, 101] and hate speech detection [102, 103],

where the target language might be of low-resource or unknown. In such scenarios, it is

crucial that models can generalize well to unseen languages.

2.3.1 Text Classification & Application in Crisis Management

Social media platforms such as Twitter provide valuable information to aid emergency

response organizations in gaining real-time situational awareness during the sudden on-

set of crisis situations [49]. Extracting critical information about a↵ected individuals, in-

frastructure damage, medical emergencies, or food and shelter needs can help emergency

managers make time-critical decisions and allocate resources e�ciently [50,53–55,104,105].

Researchers have designed numerous classification models to help towards this humanitarian

goal of converting real-time social media streams into actionable knowledge [39,54,58,59,61].

Recently, with the advent of multilingual models such as multilingual BERT [8] and XLM

[6], researchers have started adopting them to multilingual disaster tweets [106,107]. Since

XLM-R [79] has been shown to be the most superior model in cross-lingual language un-

derstanding, our work leverages XLM-R to explore the aspects of cross-lingual transfer of

knowledge and interpretability.

We address two questions in particular. First is to examine whether XLM-R is e↵ective

in capturing multilingual knowledge by constructing a custom model over it to analyze if a
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model trained using English-only tweets will generalize to multilingual data and vice-versa.

An example is shown in Fig. 6.1. Social media streams are generally di↵erent from other

text, given the user-generated content. For example, tweets are usually short with possibly

errors and ambiguity in the behavioral expressions. These properties in turn make the

classification task or extracting representations a bit more challenging. Second question is

to examine whether word translations will be equally attended by the attention layers. For

instance, the words with higher attention weights in a sentence in Haitian Creole such as

“Tanpri nou bezwen tant avek dlo nou zon silo mesi” should align with the words in its

corresponding translated tweet in English “Please, we need tents and water. We are in

Silo, Thank you!”. The core idea is that if ‘dlo’ in the Haitian tweet has a higher weight,

so should its English translation ‘water ’. This word-level language agnostic property can

promote machine learning models to be more interpretable. This also brings several benefits

to downstream tasks such as knowledge graph construction using keywords extracted from

tweets. In situations where data is available only in one language, this similarity in attention

would still allow us to extract relevant phrases in cross-lingual settings. To the best of the

author’s knowledge in crisis analytics domain, aligning attention in cross-lingual setting is

not attempted before. The classification experiments are focused only to tweets containing

‘request ’ intent, which will be expanded to other behaviors, tasks, and datasets in the future.

There are numerous prior works (c.f. surveys [49,108]) that focus specifically on disaster

related data to perform classification and other rapid assessments during an onset of a new

disaster event. Crisis period is an important but challenging situation, where collecting

labeled data during an ongoing event is very expensive. This problem led to several works on

domain adaptation techniques in which machine learning models can learn and generalize to

unseen crisis event [16,18,34,40]. In the context of crisis data, [58] designed a convolutional

neural network model which does not require any feature engineering and [39] [39] designed a

CNN architecture with adversarial training on graph embeddings. [35] showed that sharing

a common layer for multiple tasks can improve performance of tasks with limited labels.
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In multilingual or cross-lingual direction, many works [9, 109] tried to align word em-

beddings (such as fastText [38]) from di↵erent languages into the same space so that a word

and its translations have the same vector. These models are superseded by models such

as multilingual BERT [8] and XLM-R [79] that produce contextual embeddings which can

be pretrained using several languages together to achieve impressive performance gains on

multilingual use-cases.

Attention mechanism [67,110] is one of the most widely used methods in deep learning

that can construct a context vector by weighing on the entire input sequence which improves

over previous sequence-to-sequence models [2,3,68]. As the model produces weights associ-

ated with each word in a sentence, this allows for evaluating interpretability by comparing

the words that are given priority in original versus translated tweets.

With more and more machine learning systems being adopted by diverse application do-

mains, transparency in decision-making inevitably becomes an essential criteria, especially

in high-risk scenarios [69] where trust is of utmost importance. With deep neural networks,

including natural language systems, shown to be easily fooled [71], there has been many

promising ideas that empower machine learning systems with the ability to explain their

predictions [72, 74]. [75] presents a survey of interpretability in machine learning, which

provides a taxonomy of research that addresses various aspects of this problem. Similar to

the work by [76], we employ an attention-based approach to evaluate model interpretability

applied to the crisis-domain.

2.3.2 Intent Prediction and Slot-Filling

Intent prediction and slot filling are important NLU tasks and significant for real world

problems. They are studied extensively for goal-oriented dialogue systems currently, such

as Amazon’s Alexa, Apple’s Siri, Google Assistant, and Microsoft’s Cortana. Finding the

‘intent’ behind the user’s query and identifying relevant ‘slots’ in the sentence to engage in

a dialogue are essential for an e↵ective conversational assistance. For example, users might

want to ‘play music’ given the slot labels ‘year ’ and ‘artist ’ [111], or they may want to ‘book
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Figure 2.1: t-SNE plot of embeddings across the 12 multi-head attention layers of mul-
tilingual BERT. Parallelly translated sentences of MutiATIS++ dataset are still clustered
according to the languages: English (black), Chinese (cyan), French (blue), German (green),
and Japanese (red).

a flight ’ given the slot labels ‘airport ’ and ‘locations ’ [112]. A strong correlation between the

two tasks has made jointly trained models successful [113–116]. In a cross-lingual setting,

the model should be able to learn this joint task in one language and transfer knowledge to

another [30, 117,118]. This is the premise of our work.

Highly e↵ective multilingual models such as mBERT [8] and XLM-R [7] have shown suc-

cess across several multilingual tasks in recent years. In the zero-shot cross-lingual transfer

setting with an unknown target language, a typical solution is to use pre-trained trans-

former models and fine-tune to the downstream task using the monolingual source data

[30]. However, previous work [119] has shown that existing transformer-based representa-

tions may exhibit systematic deficiencies for certain language pairs.Previous work [119] has

shown that existing transformer-based representations may exhibit systematic deficiencies

for certain language pairs. Fig. 2.1 shows that the representations across the 12 multi-head

attention layers of mBERT are still clustered according to the languages. This leads to a

fundamental challenge that we address in this work: enhancing the language neutrality so

that the fine-tuned model is generalizable across languages for the downstream task. To

this goal, we introduce a data augmentation method via multilingual code-switching, where

the original sentence in English is code-switched into randomly selected languages. For ex-

ample, chunk-level code-switching creates sentences with phrases in multiple languages as
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shown in Fig. 7.1. We show that this can lead to a better performance in the zero-shot set-

ting such that mBERT can be fine-tuned for all languages (not just one) with a monolingual

source data.

Further, we show how code-switching with di↵erent language families impact the model’s

performance on individual target languages. Cross-lingual study of language families largely

remains unexplored for NLU tasks. For instance, while it might be intuitive that Sino-

Tibetan language family can aid a task in Hindi, results indicating that Turkic language

family may help Japanese can reveal intriguing inter-family relationships and how they are

aligned in the underlying language model’s vector space.

Cross-Lingual Transfer Learning. Researchers have studied cross-lingual tasks in var-

ious settings such as sentiment/sequence classification [99, 120, 121], named entity recogni-

tion [122–124], parts-of-speech tagging [31, 125, 126], and natural language understanding

[30, 117, 127]. The methodology for most of the current approaches for cross-lingual tasks

fall into the following three categories: a) multilingual representations from pre-trained

or fine-tuned models such as mBERT [8] or XLM-R [7], b) machine translation followed

by alignment [31–33], or c) a combination of both [30]. Before transformer models, e↵ec-

tive approaches included domain adversarial training to extract language-agnostic features

[44, 128] and word alignment methods such as MUSE [9] to align fastText word vectors

[129]. Recently, [130] has shown that having shared parameters in the top layers of the

multi-lingual encoders can be used to align di↵erent languages quite e↵ectively on tasks

such as XNLI [13].

Monolingual models for joint slot filling and intent prediction have used methods such

as attention-based RNN [131] and attention-based BiLSTM with a slot gate [113] on bench-

mark datasets such as ATIS [112] and SNIPS [111]. These methods have shown that a joint

method can enhance both tasks and slot filling can be conditioned on the learned intent. An

interrelated mechanism was introduced [114] to iteratively learn the relationship between

the two tasks. Recently, BERT-based approaches [115, 116] have shown improved results.
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On the other hand, cross-lingual versions of this joint task include a low-supervision based

approach for Hindi and Turkish [117], new dataset for Spanish and Thai [118], and the most

recent work of MultiATIS++ [30] creating a comprehensive dataset in 9 languages; which

is used to benchmark our results.

The joint task mentioned above in a pure zero-shot learning is the motivation of our work.

Zero-shot is described as the setting where the model sees a new distribution of examples

during test time [100, 132, 133]. It is common for machine translation based methods to

translate source data to the target language before training. We assume that target language

is unknown during training, so that our model is generalizable across languages.

Code-Switching. Linguistic code-switching is a phenomenon where multilingual speak-

ers alternate between languages. Recently, monolingual models have been adapted to

code-switched text in several tasks such as entity recognition [134], part-of-speech tagging

[135, 136], sentiment analysis [137], and language identification [138–140]. Recently, [141]

have proposed a pipeline to sample code-mixed documents using minimal supervision. [28]

allows randomized code-switching to include the target language, as shown in their Figure

3. In our context for example, if the target language is German, we ensure that there is no

code-switching to German during training. We consider this distinction essential to evaluate

a true zero-shot learning scenario and prevent any bias when comparing with translate-and-

train. Another recent work by [29] presents a non-zero-shot approach that performs code-

switching to target languages. [142] presents presents a code-switching based method to

improve the ability of multilingual language models for factual knowledge retrieval. Code-

switching is usually done at the word-level. However, our results favor chunk-level switching

over word-level as the latter may bring more noise to the code-switched version when com-

pared to the original meaning of the sentence. A contemporary work by [143]makes use of

both word and phrase-level code-mixing to switch to a set of languages to perform adver-

sarial training for XNLI [13]. Code-switching and other data augmentation techniques have

been applied to the pre-training stage in recent works [144–146], however we do not address
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pre-training in this work. Highly popular pre-trained multilingual models such as XLM-R

is also likely to be exposed to code-switched data, as it is trained using common-crawl; for

which an analysis is given in Section 7.4. We focus primarily on mBERT which largely

remain monolingual at the sentence level to identify the impact of code-switching during

fine-tuning. In addition to studying multilingual slot filling and language families, another

key distinction of our method is that we fully ignore the target language during training to

represent a fully zero-shot scenario.

2.3.3 Transliterated Text Classification

Transliteration is a common phenomenon where a word from the alphabet of one language

is transferred to another. A significant number of native Hindi or Malayalam speakers

use Latin script instead of Devanagari or Brahmic scripts for a wide range of social media

interactions such as posting tweets, updating Facebook status, commenting on YouTube

videos, and writing reviews for restaurants/movies. This behavior occurs because keyboard

optimizations focus primarily on English [147] and languages such as Hindi or Malayalam

can be very time consuming to type on small devices. If users prefer the original script, the

current solution is to back-transliterate the romanized text to the original language [148].

Examples of this transliteration process for Hindi and Malayalam are shown in Fig. 2.2. In

the first row, English and Hindi are translations of each other, while Latin-transliterated

(or romanized) Hindi is phonetically identical to Hindi but written using Latin characters.

In this context, we explore state-of-the-art language models such as multilingual BERT

[8, mBERT] and XLM-R [79] to improve their multilingual generalizability through in-

clusion of romanized Hindi and Malayalam. Previous work [119] has shown that existing

transformer-based representations may exhibit systematic deficiencies for certain language

pairs. This deficiency also appears in transliterated sentences. The t-SNE plot, across

various transformer layers, of 3-way parallel datasets consisting of sentences in source (En-

glish), target (Malayalam/Hindi), and their romanizations are clearly clustered in their own
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Figure 2.2: Examples of English sentences and corresponding translations and translitera-
tions.

Figure 2.3: t-SNE plot of embeddings across the multi-head attention layers shows that
the alignment deficiency identified in previous works [119] also extends to transliteration.
XLM-R on Hindi (top). mBERT on Malayalam (bottom). English (blue), Original Script
(green), and Latin-Transliteration (red).

groups, even though they match semantically, as shown in Fig. 2.3. Our work aims to pro-

vide a general solution towards alleviating this issue, by designing a generic and extensible

architecture that can be used for aligning cross-lingual sentence representations in general.

Our problem setting is related to language alignment works where static [9,149] or con-

textual [150–152] word representations from di↵erent languages are aligned to a shared vec-

tor space. Such methods primarily use a parallel word corpus and either design an alignment

loss or explicitly perform rotations (transformations) on the representations. This work de-

viates from these methods in three aspects: (a) we focus on sentence-level representation

(in this case as produced by the [CLS] classification BERT token; (b) we create a synthetic

3-way parallel corpus out of the source data using machine translations/transliterations,
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and (c) by using a Teacher-Student training scheme, the final representations of the 3 lan-

guage variants (source, target, and romanized target) are aligned to the same space as the

source language embeddings as produced by the original pre-trained model.

Our Teacher-Student model is inspired from knowledge distillation methods [153] that

are intended to transfer knowledge from a complex model (Teacher) to a simpler model

(Student). This approach has been utilized for various tasks such as distillation to reduce

the dimension of word embeddings [154], distilling BERT for text generation [155], and

self-knowledge distillation [156]. A similar approach is taken where the Teacher model

acts as an anchor by freezing all the layers, while the Student model is fine-tuned based

on our optimization procedure to align sentences in English, their target translations, and

transliterations.

The practical implications of the work are demonstrated by applying the idea on a

naturally-occurring transliterated tweet dataset posted during the North India and Kerala

flood crises. A model that can immediately handle transliterated tweets by producing

embeddings in the same space as that of English tweets can immensely benefit information

systems for emergency services, by utilizing the vast amount of crisis response models trained

in English [35,101,157,158].

Sentiment analysis in Hindi spans a variety of tasks such as analysis of movie reviews

[159], building subjective lexica for product reviews and blogs [160], analysis on tweets

[161], aspect-based sentiment [162], predicting elections [163], and analysis on code-mixed

text [137]. Code-mixing is another related phenomenon where multilingual speakers alter-

nate between languages, often in the same sentence. Both code-mixing and transliteration

are studied for Hindi and Marathi texts using supervised learning methods by [164]. We

restrict our analysis to transliteration, although our dataset may contain code-mixed text.

Recently, [141] have proposed a pipeline to sample code-mixed documents using minimal

supervision. In cross-lingual context, researchers have used linked WordNets [165] and cross-

lingual word embeddings [166] using MUSE [9] and VecMap [10] to bridge the language gap,
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later addressing code-mixing and transliteration. With the advent of large pre-trained lan-

guage models, we take a step further in this direction to enhance mBERT/XLM-R to cover

transliterations for fine-tuning it to the downstream task of sentiment analysis.

Meanwhile, Malayalam also has seen several works on sentiment analysis [167–170]. Re-

cently, a new Malayalam-English code-mixed corpus [171] has been constructed by scraping

YouTube comments. This corpus primarily consists of romanized sentences with some code-

mixing. After converting this dataset into its original script to obtain the parallel corpus,

this can also be used as an additional dataset for our model evaluation.

Translate and train has been a popular methodology [30–33] that utilizes the power of

existing Machine Translation tools [172, 173] to perform cross-lingual tasks by augmenting

the original source dataset with the target-translated data before training. This kind of

training could enhance the performance of multilingual representations by fine-tuning the

pre-trained models such as mBERT or XLM-R, creating a pseudo-supervised environment

where the model now has access to data in the target language. We follow the same approach

to create strong baselines as well as for the Teacher-Student model.

To summarize, in this chapter, we presented the relevant background and related work

necessary to follow the materials presented in the dissertation. This included an exploration

of state-of-the-art techniques and a literature review of our tasks in the context of cross-

domain and cross-lingual learning. In the upcoming chapters, we dive into the specific

tasks/challenges and present solutions with extensive empirical evaluation.
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Chapter 3: Diversity-Based Generalization for Unsupervised

Cross-Domain Text Classification

3.1 Summary

This chapter1 [34] focuses on the problem of unsupervised domain adaptation applied to

text classification. Domain adaptation approaches seek to learn from a source domain and

generalize it to an unseen target domain. At present, the state-of-the-art domain adap-

tation approaches for subjective text classification problems are semi-supervised; and use

unlabeled target data along with labeled source data. We propose a novel method for do-

main adaptation of single-task text classification problems based on a simple but e↵ective

idea of diversity-based generalization that does not require unlabeled target data. Diversity

plays the role of promoting the model to better generalize and be indiscriminate towards

domain shift by forcing the model not to rely on same features for prediction. We apply

this concept on the most explainable component of neural networks, the attention layer. To

generate su�cient diversity, we create a multi-head attention model and infuse a diversity

constraint between the attention heads such that each head will learn di↵erently. We fur-

ther expand upon our model by tri-training and designing a procedure with an additional

diversity constraint between the attention heads of the tri-trained classifiers. Extensive eval-

uation using the standard benchmark dataset of Amazon reviews and a newly constructed

dataset of Crisis events shows that our fully unsupervised method matches with the compet-

ing semi-supervised baselines. Our results demonstrate that machine learning architectures

that ensure su�cient diversity can generalize better; encouraging future research to design

ubiquitously usable learning models without using unlabeled target data.

1Published in the proceedings of the 19th European Conference on Machine Learning and Principles
and Practice of Knowledge Discovery in Databases (ECML-PKDD). URL: https://arxiv.org/pdf/2002.
10937.pdf
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Figure 3.1: Complete architecture of the multi-head attention model with diversity.

3.2 Methodology

3.2.1 Problem Definition

Given a source (Ds) and a target (Dt) domain, the goal is to train a classifier using data

only from Ds and predict examples from the completely unseen Dt. Xs and Xt represent

the set of labeled data from source and target domains respectively with their corresponding

ground truth labels ys and yt. Xt and yt are used for testing purposes only. Xu
s and Xu

t

represent unlabeled data available from the source and target domain respectively. Xu
t
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(used in all of our competing models either for adversarial training or tri-training) is never

used in our models. Finally, [.]pl represents data that is pseudo-labeled by the classifier. To

summarize:

Input: Xs, ys (and Xu
s for tri-training)

Output: ypredt  predict(Xt)

3.2.2 Models & Concepts

We introduce 4 models with one integral concept: diversity. Fig. 3.1 provides an overview of

the first two models and Fig. 3.2 provides an overview of the last two. First is a multi-head

attention baseline created to understand the naturally occurring diversity when multiple

attention heads are connected. The second model enforces this diversity as a constraint

such that all heads learn di↵erent features. The third model puts together three diversity-

based classifiers and tri-trains them. Tri-training procedure in itself consists of an additional

diversity constraint which forces two of the classifiers to learn di↵erently. This is a one-step

tri-training procedure intended for scenarios where no unlabeled source data is additionally

available. When it is available, a full tri-training can be done until convergence, which is

the fourth model.

What is diversity? Simply put, we define diversity as the dissimilarity between the

objects in a group. In the context of machine learning, these objects can be classifiers or

particular components of a model such as attention heads. One way to enforce this is by

introducing an orthogonality constraint. In works such as [15], a constraint is introduced

between two classifiers such that they learn slightly di↵erent features leading to better

generalization during the test phase. Note that the opposite of diversity is simply using the

same component multiple times. For example, a simple tri-training procedure may just use

three of the same classifiers and take a majority vote for prediction [45,46]. This method still

produces a better result as compared to a single model because, with random initialization

of weights, three copies of the same model may still learn to focus on di↵erent aspects
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and help avoid getting stuck in local minima. In Multi-task tri-training (MT-Tri) [15], the

explicitly defined orthogonality constraint forces the three classifiers to learn di↵erently. In

our work, we apply this idea of diversity specifically to attention heads within and across

the models that we design.

BiLSTM+MHA: Multi-Head Attention for Sequence Classification. BiLSTM+

ATT is a standard baseline attention architecture constructed using BiLSTM [2, 3] and

attention mechanism [67, 110]. Bidirectional Long Short-Term Memory (BiLSTM) units

have been successfully used in sequence modeling tasks because of their e↵ectiveness in

representing forward and backward dependencies in a sequence. For example, meanings of

words like ‘good’ and ‘bad’ can be changed when they are prefixed with ‘not’ or su�xed with

‘but’. Attention, on the other hand, provides task-specific benefits by attending the most

relevant words such as ‘excellent’ or ‘poor’ in sentiment analysis. Attention and BiLSTM

have been successfully combined previously for tasks such as relation extraction [174] to

capture important semantic information in a sentence.

BiLSTM+MHA is an extension of the BiLSTM+ATT baseline by adding multiple at-

tention heads as shown in Fig. 3.1. This is similar to machine-translation-like architecture

[110] where each attention head leads to an LSTM cell with memory carried from previous

cells to predict the next word. To customize it to classification purpose, we simply use

the output from the final LSTM cell. Setting the classification task this way gives more

leniency for the model to learn, remember, and generalize. Multiple attention heads can

learn di↵erently and what is learned from the previous heads is transferred to the next.

However, this does not guarantee diversity as we do not know if the attention heads will in

fact learn di↵erently. In order to enforce diversity, we introduce the following models.

BiLSTM+MHAD: Multi-Head Attention with Diversity. In order to guarantee

that these attention heads learn di↵erently and forcing the model not to rely on the same
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Algorithm 1 One-Step Diversity Tri-training
Input: Xs

Output: m1, m2, m3

1: m1,m2  joint diversity train models(Xs)
2: m3  diversity train model(Xs)
3: apply majority vote over mi

features, we create a diversity constraint, an additional loss term shown below.

Ld =
1

k

T↵�2X

i=1

T↵�1X

j=i+1

k~↵ T
i · ~↵jk

2

F ; where i 6= j (3.1)

where k = (T↵�2)(T↵�1)

2
, the total number of combinations. T↵ is the total number of

attention heads. ~↵i and ~↵j are ith and jth attention heads and k.k2F is the squared Frobenius

norm, similar to the orthogonality constraint used in [15]. We leave the last attention head

from this loss term so that we have one layer that learns freely without any constraints. The

complete architecture of this diversity-based model is shown in Fig. 3.1. Resulting overall

loss function, consisting of a binary cross entropy loss term and the diversity loss term, for

N training examples is shown below.

L(✓) = �
1

N

NX

i=1

[yi log ŷi + (1� yi) log(1� ŷi)] + �Ld (3.2)

where � is the hyperparameter to control how much diversity to be enforced within the

model.

BiLSTM+MHAD-Tri-I: One-Step Diversity Tri-training. To further expand the

concept of diversity, we tri-train the BiLSTM+MHAD models by adapting the multi-task

tri-training procedure by [15]. In addition to applying the diversity constraint within each

classifiers, an additional orthogonality loss is enforced between first two models m1 and m2.

31



The third model m3 is left out from the joint training. The loss term is shown below.

Lo =
1

k

T↵X

i=1

T↵X

j=1

k(~↵[m1]

i )T · ~↵[m2]

j k
2

F (3.3)

where k = (T↵�1)(T↵)

2
. ~↵[m1] and ~↵[m2] are the attention heads for models m1 and m2

respectively. T↵ is the total number of attention heads of each model. The total tri-training

diversity loss is given below.

Ldtri = �1Lo + �2Ld (3.4)

where �1 and �2 are the hyperparameters to control how much diversity to be enforced

within and between the models.

For one-step diversity tri-training show in Algorithm 1, we jointly train m1 and m2 with

tri-training diversity loss Ldtri. m3 is separately trained as a BiLSTM+MHAD model. For

predictions, a majority voting rule is applied over the three classifiers. The overall loss

function for N training examples is given below.

L(✓) = �
1

N

NX

i=1

[yi log ŷi + (1� yi) log(1� ŷi)] + Ldtri (3.5)

BiLSTM + MHAD-Tri-II: Tri-training until Convergence. Full tri-training, shown

in Algorithm 2 and Fig. 3.2, utilizes additionally available unlabeled source data. While the

first two classifiers m1 and m2 are jointly trained on labeled source data, the third classifier

m3 is solely dedicated to the train unlabeled data pseudo-labeled by m1 and m2. Similar to

[15], we define a threshold value ⌧ such that at least one out of the two models should predict

with probability greater than ⌧ to be considered successfully pseudo-labeled. We set ⌧ to

be 0.7. Starting with second iteration, m1 is trained jointly with m2 using a combination

of labeled source data and unlabeled source data pseudo-labeled by m2 and m3. During

joint-training, we give priority to the primary model by setting the loss weights accordingly.
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Algorithm 2 Tri-training [15] - Modified

Input: Xs, Xu
s

Output: m1, m2, m3

1: while convergence condition is not met do
2: for i 2 1..3 do
3: Xpl

 ;

4: for x 2 Xu
s do

5: if pi(x) = pk(x)(j, k 6= i) then

6: Xpl
 Xpl

[ {(x, pj(x))} {where p(x) = predicted label}
7: end if
8: end for
9: if i = 3 then

10: m3  diversity train(Xpl) {Eq. 4.2}
11: else if i = 1 then
12: m1  joint diversity train(Xs [Xpl,m2) {Eq. 8.3}
13: else
14: m2  joint diversity train(Xs [Xpl,m1) {Eq. 8.3}
15: end if
16: end for
17: end while
18: apply majority vote over mi

For example, while joint-training m1 with m2, losses for the models can be minimized in a

2 : 1 ratio, giving priority to m1. We continue this process until a convergence condition is

met: m1 ⇡ m2 ⇡ m3.

Other Aggregation Methods. Multi-Head Aggregated Attention Network shown in

Fig. 3.3 is a simple variation of the multi-head attention model used in machine translation

tasks [175]. In the figure, Tx represents a constant that corresponds to the number of

words in a sentence passed to the BiLSTM layer. Sentences with words greater than Tx

are stripped and with words lower than Tx are padded. Activations for each word from the

BiLSTM layer are passed through the attention block to generation the attention vector

↵ consisting of weights that represents importance of each word in the sentence. In a

traditional attention network, the context vector is given by product of the attention vector

and the word activations:
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Figure 3.2: Tri-training BiLSTM+MHAD models

Context =
TxX

k=1

↵<k>a<k> (3.6)

Aggregating T↵ multiple attention layers can add stability to the resulting layer with

more feature inclusions. Each word attention of dimension Tx is aggregated across T↵

attention layers to form a resulting vector of dimension Tx as shown below:

��!↵agg =

"
↵<k>
agg 8 1  k  Tx 3 ↵<k>

agg =
T↵X

h=1

↵<k>
h

#
(3.7)

The aggregated context is given by:

Contextagg =
TxX

k=1

↵<k>
agg a<k> (3.8)

which is then passed through dense and softmax layers to predict the label.

Having multiple attention layers brings two new hyperparameter: aggregation method
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Figure 3.3: Multi-Head Attention Aggregation Methods: a) Sum (+), b) Max (M), c)

Mean (µ), d) Concatenation. ~C = Context and h = [1, T↵].

and number of layers. Performance variation with di↵erent types of aggregation methods

such as ‘sum’, ‘average’, or ‘max’ and finding the optimal number of attention layers (T↵)

are analyzed in the Results and Discussion section.

3.3 Experimental Evaluation

3.3.1 Datasets

Benchmark Dataset of Amazon Reviews. We use the standard benchmark Amazon

reviews dataset2 [27] which is widely used for cross-domain sentiment analysis. We consider

four domains: Books (B), Kitchen (K), DVD (D), and Electronics (E). For a fair evaluation

of the architectures, we use the exact same raw dataset3 used by our top competitor model

HATN [18], which is a part of Blitzer’s original raw dataset. We also use the same 300-

dimensional word vectors4 [48]. Table 3.1 summarizes this dataset.

2
http://www.cs.jhu.edu/~mdredze/datasets/sentiment/

3
https://github.com/hsqmlzno1/HATN/tree/master/raw_data

4
https://code.google.com/archive/p/word2vec/
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Table 3.1: Dataset Statistics

Positive Negative Unlabeled Average Num-
ber of Tokens

Vocab

Books 3000 3000 9750 182.0 105920
DVD 3000 3000 11843 197.5 117619
Kitchen 3000 3000 13856 102.0 52972
Elec. 3000 3000 17009 119.3 72458

Harvey 1122 960 10001 17.2 23562
Florence 201 1475 10001 17.1 26380
Irma 313 596 10001 15.3 20764

Crisis Dataset (Tweets). Additionally, we construct a new dataset consisting of Twitter

posts (tweets) collected during three hurricane crises by CitizenHelper [176] system: Harvey

and Irma in 2017, and Florence in 2018. Similar to sentiment classification, our goal here

is to classify whether a tweet text indicates an event or not. Using the crowd-sourcing

platform Figure-Eight5, three workers at minimum were assigned to give binary label to

each tweet. We define events to be actions that involve at least one noun/entity. Events

could be past, present, or future actions. It could also be questions, news, or instructions

about actions. Some examples are: ‘A rescues B ’, ‘A is sending food to B ’, ‘A will move

to location B ’, and so on. Table 3.1 summarizes this dataset. Unfortunately, the labeled

dataset for Florence and Irma consists of very low number of positive events. Consequently,

we set up the experiments such that we train only on Harvey and test on Florence and

Irma.

3.3.2 Experiments

Experimental Setup. We follow the traditional cross domain sentiment classification

set up where each experiment consists of a source domain (S) and a target domain (T ). A

model will be trained on source data and tested on target data, represented as S ! T . We

5
https://www.figure-eight.com
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Table 3.2: Implementation Details

Deep Learning Library Keras
Optimizer Adam [lr = 0.005, beta1 = 0.9,

beta2 = 0.999, decay = 0.01]
Maximum Epoch 40
Early Stopping Patience 3
Batch Size 32
Validation Split 0.15
Dropout 0.4
T↵ 5
Tx 200
⌧ 0.7

use all available labeled target data for testing. Crisis dataset is balanced before training

and testing.

Implementation Details. We use Keras deep learning library with Adam optimizer.

Implementation details are shown in Table 3.2. To keep the model simple, we do not

change Tx and T↵ further. Tri-training is stopped at 85% agreement. We set � = 0.01,

�1 = 0.05 and �2 = 0.01. These values are obtained by performing a basic hyperparameter

tuning using grid search. Keras initializes the LSTM and Dense layers with glorot uniform

(or Xavier) [177] initializer. Addressing convergence to avoid local minima issues, we use a

validation split of 0.15, with a patience of 3, and conduct 5 independent runs for each of

the 12 cross-domain combinations.

3.3.3 Baselines

Adversarial Learning Based Methods. DANN [16] introduced adversarial training

by making use of unlabeled target domain data. Earlier layers of the deep neural network

architecture are made domain invariant through back-propagating a negative gradient using

a jointly trained domain classifier. It uses 5000-dimension feature vector of the most frequent

unigrams and bigrams as the input representation. DAmSDA [44], on the other hand, uses
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mSDA [12] representation instead. We report the scores for DAmSDA and DANN from

HATN [18]. For DANN, additionally, we create a customized implementation (DANN+)

using BiLSTM and word vectors. This modified architecture simply consists of a shared

BiLSTM layer followed by a dense layer for sentiment classification and the same BiLSTM

layer followed by a gradient reversal layer and a dense layer for domain classification. Note

that the accuracy for our improved DANN is+3.2% higher than what is reported in HATN.

Tri-training Based Methods. Multi-task tri-training (MT-Tri) [15] conducts tri-training

on a multilayer perceptron model with an orthogonality loss between the final layers to en-

force diversity between the jointly trained models. Unlabeled target data pseudo-labeled

by the first two classifiers are fed to the third classifier. Three classifiers are optimized until

none of the models’ predictions change. We improve upon this model (MT-Tri+) by using

word vectors and BiLSTM.

Attention Based Methods. Recent works such as AMN [17], HATN [18], and IATN

[19] use attention to identify sentiment pivots. Utilizing unlabeled target data, gradient

reversal is an essential component in their models for domain classification. AMN expands

DANN to an attention-based model. HATN improves AMN further by building a pivot

and non-pivot networks. The pivot network (P-Net) performs the same task as AMN by

extracting pivots. The non-pivot network (NP-Net) takes a transformed input that hides

previously extracted pivots which is then jointly trained with P-Net. IATN6 incorporates

‘aspect’ information in addition to the sentence attentions. It reports a 0.8% increase

in performance as compared to HATN (85.9% versus 85.1%). IATN uses the same input

settings and the dataset as HATN with one di↵erence: 200-dimensional word vectors instead

of 300. Meanwhile, we use the exact same dataset and GoogleNews word vectors used by

HATN for all our experiments for both reproducibility as well as blind comparison.

6https://github.com/1146976048qq/IATN
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Figure 3.4: Two examples of kitchen review predictions by BiLSTM + ATT and BiLSTM
+ MHAD models trained on book reviews. When a single attention head fails to attend key
words like ‘excellent’ or ‘but’, at least one of the diverse heads tends to make up for it.
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Figure 3.5: Performance change with increase in number of attention heads for six S!T
combinations.

Strong Unsupervised Baselines. To study component-wise performance, we construct

two strong unsupervised baselines from standard neural network architectures: BiLSTM

and BiLSTM+ATT. BiLSTM consists of traditional BiLSTM units with the final unit

making the prediction. BiLSTM+ATT, as show in Fig. 3.1, adds a single attention layer on

top of BiLSTM and the prediction is based on the output from the attention layer. Note

that these two baselines still produce strong results and provide a reference for how much

improvement following models make.

3.4 Results & Discussion

Tables 3.3, 3.4, and 3.5 show the competitive nature of our fully unsupervised methods when

compared with the existing semi-supervised counterparts. Our experiments showed incre-

mentally improving results when each component is added to the baselines. Attention with

diversity improved the single-attention baseline and tri-training with diversity improved it
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Table 3.3: Classification accuracy scores showing that unlabeled target data is not neces-
sary to achieve strong performance. +: improved implementations, }: reproduced imple-
mentations, �: strong unsupervised baselines constructed from standard neural network
architectures, *: reported scores from [18, 19] (see description). Our scores are averaged
over 5 independent runs. Note that only the models in the bottom table are fully
unsupervised as they do not use any unlabeled target data.

S ! T DANN* DAmSDA* IATN* DANN+ MT-Tri+ AMN}

/P-Net
HATN}

B ! D 83.42 86.12 86.80 82.85 84.67 87.07 87.70
B ! E 76.27 79.02 86.50 81.03 84.62 82.98 86.20
B ! K 77.90 81.05 85.90 82.01 84.78 84.85 87.08
K ! B 74.17 80.55 84.70 79.38 80.98 83.50 84.83
K ! D 75.32 82.18 84.40 79.04 78.89 82.83 84.73
K ! E 85.53 88.00 87.60 86.00 85.87 86.72 89.08
E ! B 73.53 79.92 81.80 78.92 80.64 83.28 83.62
E ! K 84.53 85.80 88.70 86.43 89.62 89.80 90.12
E ! D 76.27 82.63 84.10 77.83 79.97 83.37 83.87
D ! B 80.77 85.17 87.00 84.32 85.67 87.85 88.02
D ! E 76.35 76.17 86.90 81.74 84.48 84.65 86.78
D ! K 78.15 82.60 85.80 83.29 85.05 84.28 87.00
AVG 78.52 82.43 85.90 81.78 83.77 85.10 86.59

S ! T BiLSTM� BiLSTM
+ATT�

BiLSTM
+MHA

BiLSTM
+MHAD

BiLSTM
+MHAD-Tri-I

BiLSTM
+MHAD-Tri-II

B ! D 84.19 87.44 87.29 87.54 87.76 87.46
B ! E 83.61 83.90 85.36 85.63 85.75 86.08
B ! K 83.87 85.21 86.04 87.06 87.34 87.68
K ! B 80.52 82.15 83.11 83.70 84.19 84.23
K ! D 78.28 80.17 81.50 82.27 82.11 83.34
K ! E 86.33 87.30 88.60 88.81 88.98 89.22
E ! B 80.58 82.10 83.55 83.67 83.96 84.33
E ! K 88.07 88.19 89.61 89.96 90.07 91.05
E ! D 78.08 81.93 82.77 82.93 82.87 82.81
D ! B 83.93 87.72 87.77 88.22 88.51 88.74
D ! E 82.98 84.57 84.75 85.93 85.79 86.21
D ! K 84.38 85.45 86.50 86.73 86.74 87.37
AVG 82.90 84.68 85.57 85.98 86.17 86.54

even further. Using additionally available unlabeled source data proved to be fruitful for

most of the domains. Note that for crisis dataset we only use Harvey for training because

labeled data for Florence and Irma was just too low.

An implication of the diversity-based attention heads is shown in Fig. 3.4. Diversity
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Table 3.4: Classification accuracy scores for crisis dataset.

HATN BiLSTM
+ATT

BiLSTM
+MHA

BiLSTM
+MHAD

BiLSTM
+MHAD-Tri-I

BiLSTM
+MHAD-Tri-II

H ! F 80.01 74.88 74.32 75.69 76.00 78.11
H ! I 58.53 63.84 64.32 65.10 65.02 64.38

Table 3.5: Training time in d-hh:mm:ss for H!F on a Dual Intel(R) Xeon(R) Gold 5120
CPU@2.2GHz with 28 cores and 1.5TB RAM.

HATN BiLSTM+MHA BiLSTM+MHAD BiLSTM+MHAD-Tri-I BiLSTM+MHAD-Tri-II
1-08:31:09 00:50:31 01:29:28 2:07:23 6:21:18

Table 3.6: Classification accuracy scores for three distinct combinations shown in the addi-
tional analysis.

S ! T P-Net BiLSTM +MHAD-Tri-II
Electronics ! Yelp 88.45 89.15
Kitchen ! IMDb 76.38 78.33
Yelp ! IMDb 78.75 77.28

pushes the model not to rely on the same features. First example shows misclassification

by a single attention model that attends incorrect sentiment words like ‘Vortex’ and ‘Heat’.

However, with diversity, the model is lenient and look for alternate features. At least one

of the Ty diverse heads tends to find important words like ‘excellent’. These examples also

show that placing diversity on attention layers, rather than on any other hidden layers,

provides an explainable understanding of which words the model deems to be important

and can be used for subsequent pivot extraction like in AMN or HATN.

Computational Performance. To show that our work is practically useful for all com-

munities alike, experiments are run on a CPU. A sample training time comparison is shown

in Table 3.5. HATN needs gradient reversal to utilize unlabeled target data for the domain
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classifier branch and pivot extraction for joint training; subsequently making it slower.

Gradient Reversal. To study the impact of gradient reversal procedure with BiLSTM,

we conducted experiments with unlabeled target data. The performance of BiLSTM versus

DANN+ (improved DANN) models in Table 3.3 showed that, with a good dropout value

for the BiLSTM units, gradient reversal did not help much. On a similar note, domain

adversarial loss was found not to be helpful in tri-training experiments [15]. In our context,

we speculate that this might be because the dropout in the BiLSTM layer drops individual

words that can lead to a better generalization which is essentially the purpose of gradient

reversal. We plan to explore this problem in future for semi-supervised domain adaptation.

Additional Analysis: Generalizability of our models is further tested with three ran-

domly selected experiments using very divergent domains such as Yelp7 restaurant reviews

and IMDb [178] movie reviews in addition to Amazon reviews; Electronics (Amazon) !

Yelp, Kitchen (Amazon) ! IMDb, and Yelp ! IMDb. We randomly selected 2000 positive

and negative reviews from Yelp and IMDb. Their accuracy scores on our final model when

compared to PNet8 of HATN is shown in Table 3.6. Once again, this shows that unla-

beled target data is not always necessary; thus providing us with a fully unsupervised and

computationally e�cient alternative for domain adaptation in text classification tasks.

Analysis of Aggregation Methods. Attention layers can be aggregated in multiple

ways such as ‘average’, ‘sum’, or ‘max’. In our experiments ‘sum’ produced slightly better

results. A full comparison of the these three options on the Amazon dataset is shown in

Table 3.7.

Adding more attention layers may become computationally expensive when compared

to the single-layer counterpart. In order to find the optimal number of layers needed,

we conducted experiments on two randomly picked combinations of Kitchen!Books and

Books!DVD with layers varying from 1 to 12. The plots are shown in Fig. 3.5. We obtained

7https://www.yelp.com/dataset/challenge
8PNet is the first component of HATN which is computationally faster and within ⇠ 1.5% accuracy of

HATN
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Table 3.7: Evaluation of four attention aggregation methods

S ! T No Attention Single-Head MH-Sum MH-Mean MH-Max MH-Concat

Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

B ! K 84.45 84.52 87.22 87.23 87.55 87.59 86.97 86.96 86.84 87.17 86.88 86.86

B ! E 84.61 84.57 85.51 85.51 86.03 86.18 85.54 85.52 85.36 85.64 86.08 86.02

B ! D 83.52 83.13 86.32 86.24 87.30 87.37 87.26 87.27 87.15 87.19 87.18 87.38

K ! B 80.67 80.87 81.85 82.46 84.22 84.19 83.22 83.28 83.61 83.40 83.93 83.17

K ! E 87.37 87.39 87.09 87.05 88.48 88.58 87.04 86.95 87.66 86.66 88.41 88.36

K ! D 78.49 78.90 81.13 81.23 83.62 82.73 79.72 79.64 80.59 80.39 81.70 82.88

E ! B 81.18 81.24 81.50 81.71 83.53 83.87 82.55 81.95 82.69 82.23 83.39 83.35

E ! K 89.00 89.10 89.21 89.08 90.30 90.29 89.67 89.67 89.42 89.41 90.37 90.37

E ! D 78.46 77.63 81.37 80.86 82.60 82.55 81.57 81.42 79.32 78.04 81.64 81.74

D ! B 84.83 84.50 87.02 87.02 87.54 87.56 87.28 87.43 87.65 87.57 87.57 87.45

D ! K 85.21 85.23 86.37 86.27 87.27 87.32 86.63 86.71 86.67 86.65 87.34 87.20

D ! E 83.66 83.68 85.63 85.23 85.93 86.04 84.26 84.27 84.68 84.34 85.71 85.68

AVG 83.45 83.40 85.02 84.99 86.20 86.19 85.14 85.09 85.14 84.89 85.85 85.87

a similar result as [175] where the optimal number of T↵ was around 5-6, past which the

improvement seemed insignificant.

3.5 Key Takeaways

In this chapter, we showed that machine learning architectures designed for su�cient di-

versity can generalize better. Further, unlabeled target data, used often by state-of-the-art

models, is not always necessary to produce strong performance for subjective text classi-

fication problems. We introduced a novel diversity-based generalization approach for the

domain shift problem using a multi-head attention model where attention heads are con-

strained to learn di↵erently such that the classifier can leverage on alternative features.

Experiments on the standard benchmark dataset of Amazon reviews and a newly con-

structed dataset of Crisis events showed that our fully unsupervised methods can indeed

match the competing semi-supervised baselines.

44



Chapter 4: Unsupervised and Interpretable Domain

Adaptation: Application in Crisis Management

4.1 Summary

This chapter1 [35] focuses on the problem of unsupervised and interpretable domain adap-

tation in the context of crisis tweet classification as shown in Fig. 4.1. During the onset of

a natural or man-made crisis event, public often share relevant information for emergency

services on social web platforms such as Twitter. However, filtering such relevant data in

real-time at scale using social media mining is challenging due to the short noisy text, sparse

availability of relevant data, and also, practical limitations in collecting large labeled data

during an ongoing event. We hypothesize that unsupervised domain adaptation through

multi-task learning can be a useful framework to leverage data from past crisis events for

training e�cient information filtering models during the sudden onset of a new crisis. We

present a novel method to classify relevant social posts during an ongoing crisis without

seeing any new data from this event (fully unsupervised domain adaptation). Specifically,

we construct a customized multi-task architecture with a multi-domain discriminator for

crisis analytics: multi-task domain adversarial attention network (MT-DAAN). This model

consists of dedicated attention layers for each task to provide model interpretability ; crit-

ical for real-word applications. As deep networks struggle with sparse datasets, we show

that this can be improved by sharing a base layer for multi-task learning and domain ad-

versarial training. The framework is validated with the public datasets of TREC incident

streams that provide labeled Twitter posts (tweets) with relevant classes (Priority, Factoid,

Sentiment) across 10 di↵erent crisis events such as floods and earthquakes. Evaluation of

1Published in the proceedings of the 2020 IEEE/ACM International Conference on Advances in Social
Networks Analysis and Mining (ASONAM). URL: https://arxiv.org/pdf/2003.04991.pdf
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Figure 4.1: Problem Statement: Interpretably predict labels for tweets collected during
an ongoing crisis using only the past crisis data, given a) unavailability of labeled data in the
ongoing event, and b) need for interpretability of machine reasoning behind data filtering
for emergency managers.

domain adaptation for crisis events is performed by choosing one target event as the test

set and training on the rest. Our results show that the multi-task model outperformed

its single-task counterpart. For the qualitative evaluation of interpretability, we show that

the attention layer can be used as a guide to explain the model predictions and empower

emergency services for exploring accountability of the model, by showcasing the words in a

tweet that are deemed important in the classification process. Finally, we show a practical

implication of our work by providing a use-case for the COVID-19 pandemic.
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Figure 4.2: Fully Unsupervised Domain Adaptation Set-up for Multi-Task Crisis Tweet
Classification.

4.2 Methodology

4.2.1 Problem Definition

Using notations in Table 4.1, consider a set C of all crisis events such as Guatemala Earth-

quake or Typhoon Yolanda. The task of unsupervised domain adaptation for crisis analytics

is to train a classifier for a specific target crisis (ct) using labeled (LC�ct) and unlabeled

(UC�ct) data from all other crises; where C � ct denotes the set of all crisis events minus

the target crisis. We assume that no data record from the target crisis is available for

training. Following the traditional domain adaptation terminology, Xs = LC�ct represents

the labeled data from the source domain S and Ys = yC�ct represents the ground truth

labels on which the classifier is trained. And, Xt = Lct represents the labeled data from
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Table 4.1: Notations (Top 5 rows contain new notations introduced).

Notation Definition

C Set of all crisis events {c1, c2, ...}
Lck Set of labeled data from the event ck
yck Set of ground truth labels for Lck .
m Number of tasks (Number of bits in each label)
Uck Set of unlabeled data from the event ck
Tx Number of words in a sentence
x<k> k-th word of a sentence
↵<k> attention from k-th word
a<k> BiLSTM activation from k-th word

the target domain T and Yt = yct represents the ground truth labels; both of which are

only used for testing the classifier. Xd = UC�ct represents the unlabeled data from di↵erent

domains minus the target. To summarize:

Input: Xs, Ys, Xd

Output: Y pred
t  predict(Xt).

4.2.2 Models & Concepts

In the following sections, we describe three models: Single-Task Attention Network (ST),

Single-Task Domain Adversarial Attention Network (ST-DAAN), and Multi-Task Domain

Adversarial Attention Network (MT-DAAN). ST is the model we adopt from [34] to build

the single-task attention based baseline. ST-DAAN is constructed on top of ST to make the

model domain agnostic by performing adversarial training using gradient reversal. Finally,

MT-DAAN is constructed on top of ST-DAAN with dedicated attention layers for each task

on a shared BiLSTM layer. This is shown in Fig. 4.2.
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Single-Task Attention Network (ST). We first describe the single-task attention net-

work [34] on top of which we build our models. This model aligns with our goals of inter-

pretability and unsupervised domain adaptation. This BiLSTM based model with Attention

gives us three main advantages:

1. Unlike several existing domain adaptation methods that use unlabeled target data to

train the domain adversarial component via gradient reversal, this method is a fully

unsupervised baseline which also can be customized for multi-task learning.

2. The method uses attention mechanism which in turn weighs each word in a sentence

based on its importance. This can be directly utilized for interpretability.

3. The method also runs much faster (only a few minutes), i.e. highly useful in crisis

times, as compared to the top performing semi-supervised models such as HATN [18]

(hours).

This model [34] consists of a BiLSTM layer which produces Tx activations, each corre-

sponding to a word in the sentence. These activations are passed through dense and softmax

layers and are combined by dot product to produce the context vector
PTx

k=1
↵<k>a<k>,

where a<k> is the BiLSTM activation from k-th word and ↵<k> is the attention weight of

k-th word. Sentences with words greater than Tx are stripped and those with words lower

than Tx are padded. This single-task (m = 1) attention network is the building block with

which rest of the following models are constructed. The single-task loss function is shown

below using the standard binary cross entropy loss.

LT = �
1

N

NX

i=1

[yi log ŷi + (1� yi) log(1� ŷi)] (4.1)

where T represents the task, y is the true label, and ŷ is the predicted label.
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Single-Task Domain Adversarial Attention Network (ST-DAAN). To study the

specific contribution of domain adversarial training, we construct a secondary baseline over

the ST architecture by constructing an additional branch with gradient reversal layer which

is represented by the green blocks in Fig. 4.2. This is a single-task binary classifier with

m = 1. Domain Adversarial Training of Neural Networks (DANN) [44] was introduced with

a goal to confuse the classifier by back-propagating a negative gradient from a separate

domain classifier branch (right-most branch, as shown in Fig. 4.2). This makes the classifier

agnostic to di↵erence in domains. This back-propagation is implemented using a gradient

reversal layer [44] which does nothing during the forward pass but pushes a negative gradient

(��@Ld
@✓f

) during the backward (gradient update) pass. Ld is the domain classification loss,

� is the strength of the reversal, and f represents the lower level layers or features over

which the negative gradient update is performed. In our architecture, the goal is to make

the BiLSTM layer indiscriminate towards various crisis domains such that the multi-task

classification does not depend on the domain from which the tweet/sentence is coming from.

The ST-DAAN loss function is shown below.

L0
T = LT + wdLd (4.2)

where wd is the domain adversarial loss weight. Ld represents the categorical cross

entropy loss for multi-domain discriminator shown below.

Ld = �
1

N

NX

i=1

|C�ct|X

j=1

[yij log ŷij ] (4.3)

where C � ct is the set of all crisis events without the target event.

Multi-Task Domain Adversarial Attention Network (MT-DAAN). Building on

top of ST-DAAN, we construct MT-DAAN, which is intended to classify problems with

multiple tasks or labels. For each task, a dedicated attention layer is allocated from which
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it predicts binary labels. The BiLSTM layer remains exactly the same as in the single-

task model but multiple attention blocks are added for each task along with a domain

classifier. In the architecture decision process, we first investigated a multi-label classifier

where all layers are shared with the final softmax layer making multi-label predictions. In

low resource settings, constructing a multi-label classifier using a shared architecture is

challenging for two reasons: a) jointly balancing positive and negative samples across all

classes is not trivial and potentially challenging to make it extensible when new classes

need to be added, and b) attention layer may not always produce class-specific insights

as the weights are assigned to train for the combination of labels. On the other hand, in

the multi-task architecture with separate attention layers, it is easy to add more classes.

If some classes require more training, it is trivial to further tune a model specific to that

class. More importantly, context<tj> vector for j-th task identifies the influential words

from each sentence for that specific task. The complete architecture is shown in Fig. 4.2.

MT-DAAN loss function is shown below:

LMT�DAAN =
mX

k=1

(wkLTk) + wdLd (4.4)

where m is the number of tasks, wk is the loss weight and LTk is the loss term for each

task, wd is the domain adversarial loss weight, and Ld is the domain adversarial loss term.

Model Interpretability. The output (↵) of the attention layer (ATT ) of each task,

is a Tx-dimensional vector; Tx being the number of words in the sentence. The context

vector (
PTx

k=1
↵<k>a<k>) is the product of these attention weights and the Tx-dimensional

activation (a) from the BiLSTM layer. ↵ essentially weighs how much each word in the

sentence contributes to the classification result. Thus, ↵ is the component that is evaluated

for model interpretability.
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Table 4.2: TREC Dataset Statistics; Showing the number of positive samples for each of
the 4 classes. P=Priority, F=Factoid, S=Sentiment, and I=Irrelevant.

CRISIS EVENTS Total
Tweets

Vocab Avg
#words

P F S I

2012 Guatemala Earthquake 154 422 18.74 104 108 12 15
2013 Typhoon Yolanda 564 1746 19.47 249 46 119 51
2013 Australia Bushfire 677 2102 20.21 152 213 167 36
2013 Boston Bombings 535 1755 19.30 147 28 234 198
2013 Queensland Floods 713 2301 19.08 293 54 173 215
2014 Chile Earthquake 311 919 16.54 48 26 50 10
2014 Typhoon Hagupit 1470 2893 15.36 469 375 276 101
2015 Nepal Earthquake 2048 4026 13.77 1067 377 741 133

2015 Paris Attacks 2066 4152 18.62 306 183 782 429
2018 Florida School Shooting 1118 2940 21.40 329 64 206 70

4.3 Experimental Evaluation

4.3.1 Datasets

TREC Dataset. TREC-IS2 (Text Retrieval Conference - Incident Streams) is a program

that encourages research in information retrieval from social media posts with the goal to

improve the state-of-the-art social media based crisis analytics solutions. We use the dataset

from 2018 track proposal. Statistics of this curated dataset of Twitter downloaded from

TREC is shown in Table 4.2. The original dataset consisted of 15 crisis events. However,

due to very low data, we trimmed the events and tasks such that there are at least 10

positive samples for each task.

The four tasks used in our experiments are shown below:

1. Priority : Di↵erent priority levels are assigned for each tweet: low, medium, high,

critical. We convert this into a binary classification problem where low = 0 and

{medium, high, critical} = 1.

2. Factoid : ‘Factoid’ is a categorical label that represents if a tweet is stating a fact. Eg:

‘death toll rises ...’
2
http://dcs.gla.ac.uk/~richardm/TREC_IS/
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3. Sentiment : ‘Sentiment’ is a categorical label that represents if a tweet represents a

sentiment. Eg: ’Worried.. Thoughts and prayers.’

4. Irrelevant : ‘Irrelevant’ is a categorical label for tweets that do not provide any relevant

information.

Amazon Reviews Dataset. The standard benchmark dataset3 of Amazon reviews [27]

is widely used for cross-domain sentiment analysis. We chose four domains: Books (B),

Kitchen (K), DVD (D), and Electronics (E). The raw data4, a part of Blitzer’s original raw

dataset, used in this work is from HATN [18]. This dataset consists of 3000 positive and

3000 negative samples for each of the 4 domains. This dataset is used for two purposes: 1) to

validate the performance of the state-of-the-art methods including the single-task baseline

and 2) to compare and contrast the performance of deep models when trained with rich

versus sparse datasets.

COVID-19 Tweet Dataset. For the COVID-19 use-case, we use Twitter posts collected

using CitizenHelper [179] system in March 2020, for the geo-bounding box of the Washington

D.C. Metro region. These tweets were annotated by volunteers of regional Community

Emergency Response Teams (CERTs), with ‘Relevant ’ label denoting how relevant a tweet

is for crisis response operations. The label values range on a scale of 1-4. We convert them

into binary classes by considering values 1 and 2 as �ve (0) class and values 3 and 4 as +ve

(1) class. This dataset consists of 4911 tweets with �ve (Relevant=0) and 637 tweets with

+ve (Relevant=1) classes. Following unsupervised domain adaptation criteria, the filtering

models are trained using only the TREC dataset and evaluated on the COVID-19 tweets.

For each independent run of the experiment, a balanced subset of size 637 for both classes

is selected for testing.

3
http://www.cs.jhu.edu/~mdredze/datasets/sentiment/

4
https://github.com/hsqmlzno1/HATN/tree/master/raw_data
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4.3.2 Baselines

1. Simple Baselines: We construct simple baseline classifiers [180]: Logistic Regression

(LR) and Support Vector Machines (SVM). The input to these models are constructed

by aggregating the 300-dimensional word embeddings of words in each review.

2. CNN: A standard Convolutional Neural Network inspired by Kim, 2014 [181] is con-

structed with the following architecture:

Word Embeddings(Tx, 300)! Conv1D(128, 5)

!MaxPooling1D(5) ! Conv1D(128, 5)

!MaxPooling1D(5) ! Conv1D(128, 5)

! GlobalMaxPooling1D()! Dense(128)

! Dense(2)! y.

This is combined with dropouts, relu activations, and ending with softmax activa-

tion producing labels for binary classification. State-of-the-art deep learning methods

for existing social media mining approaches of crisis analytics [39, 58] use a similar

architecture.

3. BiLSTM: This is the bottom-most layer in Fig. 4.2 with the activation a<Tx> passed

through the following: Dense(10) ! Dense(2) ! y also including dropouts, relu

activation, and ending with softmax.

4. AMN and HATN: AMN [17] and HATN [18] are attention-based methods which use

gradient reversal to perform domain adversarial training on the unlabeled data from

source and target domains. HATN is an extension to AMN by adding the hierarchical

component and jointly training pivot and non-pivot networks.

4.3.3 Experiments

Pre-processing. A tweet, as it gets broken down into tokens, undergoes the following

pre-processing steps:
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Table 4.3: Implementation Details for MT-DAAN

Tx 200 (Amazon Reviews), 30 (Tweets)
Deep Learning Library Keras
Optimizer Adam [lr = 0.005, beta1 = 0.9, beta2 =

0.999, decay = 0.01]
Maximum Epoch 50
Dropout 0.4
Early Stopping Patience 3
Batch Size 32
Validation Split 0.15

1. Contractions such as didn’t is expanded to did not using a basic English contractions

dictionary.

2. Simple misspellings are corrected. For example, words with 3 of the same characters

appearing consecutively like goood is changed to good.

3. Numbers and words with no alpha-numeric characters are converted to special tags.

4. Hashtags (or just the # symbol) can optionally be removed.

5. Stop words are selectively removed keeping words such as ‘but ’ and ‘not ’ which can

impact sentiment phrases such as ‘not good ’.

Choice of Word Embeddings. We use fastText [38] as our word embeddings for tweets

because of its sub-word usage and the ability to create vectors for arbitrary and out-of-

vocabulary words. Although there exists many alternatives, picking the one that works

well for a specific dataset is not trivial. In the next section (5.4), we compare and contrast

the performance of three more options for word vectors: a) GoogleNews [48], b) GloVe

Twitter Embeddings [14], and c) CrisisNLP Embeddings [182]. Unlike fastText, we fine-

tune these pre-trained vectors using Gensim [183] to create vectors for out-of-vocabulary
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words. Vectors for words that are already in the vocabulary are locked while tuning for

consistency in evaluation.

We first validate the performance of the adopted unsupervised ST model [34] by compar-

ing it with the following standard neural network architectures and state-of-the-art models

used for domain adaption in text. We use the standard benchmark dataset of Amazon

reviews. Following the traditional domain adaptation experimental setup, each experiment

represented as S ! T consists of a source domain (S) on which the model is trained and a

target domain (T) on which the model is tested. Implementation details is shown in Table

4.3.

Input to all the models are word vectors5 [48]. The evaluation on amazon reviews shows

how well the single-task (ST) model perform when compared to the existing top-performing

domain adaptation models on benchmark dataset. Table 4.4 shows accuracy scores on

the Amazon cross-domain sentiment analysis dataset. HATN uses unlabeled target data,

gradient reversal, explicit pivot extraction, and joint training making it a computationally

expensive method. As shown in the experimental evaluation, we use the same Amazon

dataset and GoogleNews word vectors for our experiments. ST, being unsupervised with

no need of unlabeled target data, performed competitively with an overall accuracy of

85.02%; thus establishing a strong fully unsupervised building block for us to build upon.

4.4 Results & Discussion

Crisis Tweets vs Amazon Reviews. Table 4.4 and 4.5 show that deep models strug-

gle with small datasets such as TREC-IS tweets. When ST model outperformed Logistic

Regression by ⇠ 8% on the Amazon reviews dataset, the di↵erence was only less than 1%

with no statistical significance on the TREC-Priority dataset. Note that we conduct exper-

iments with various parameter combinations on the deep models when using tweets. For

example, Tx = 200 for amazon reviews and Tx = 30 for tweets due to the di↵erence in

their average word-length. Books domain of Amazon reviews has 182 average number of

5
https://code.google.com/archive/p/word2vec/
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Table 4.4: Performance comparison (accuracy) various models on the standard benchmark
dataset of amazon reviews. Blue colored methods do not use any unlabeled target data;
hence relevant in our context. Each reported score is an average of 10 independent runs of
each experiment.

S ! T LR SVM CNN BiLSTM AMN HATN BiLSTM+ ATT
B ! K 76.40 75.95 81.20 84.45 81.88 87.03 87.22
B ! E 75.53 74.05 80.44 84.61 80.55 85.75 85.51
B ! D 81.08 81.43 82.94 83.52 85.62 87.07 86.32
K ! B 76.12 75.78 78.78 80.67 79.05 84.88 81.85
K ! E 80.37 81.20 85.17 87.37 86.68 89.00 87.09
K ! D 73.32 74.98 76.41 78.49 79.50 84.72 81.13
E ! B 74.85 74.18 78.08 81.18 77.52 84.03 81.50
E ! K 81.85 81.85 86.59 89.00 87.83 90.08 89.21
E ! D 75.82 75.83 78.35 78.46 85.03 84.32 81.37
D ! B 81.17 82.20 82.26 84.83 84.53 87.78 87.02
D ! K 76.42 77.58 81.09 85.21 81.67 87.47 86.37
D ! E 72.47 73.68 79.56 83.66 80.42 86.32 85.63
AVG 77.12 77.39 80.91 83.45 82.52 86.54 85.02

tokens per review with a vocab size of 105920. On the other hand, the event with highest

number of tweets in the TREC dataset (Paris Attacks) has only 18.62 average number of

tokens per tweet with a vocab size of 4152. This di↵erence makes it intuitively challenging

to train deep models with several parameters that may lead the model to memorize the

entire dataset resulting in poor generalization. Multi-task learning and domain adversarial

training try to alleviate this problem by training the shared BiLSTM layer with much more

data from di↵erent tasks and unlabeled data.

MT-DAAN Performance Evaluation. The primary purpose of the MT-DAAN model

is to show that sharing the bottom layer of the model (i.e., shared representation) for dif-

ferent tasks along with domain adversarial training can help improve the generalizability

of some of the tasks that are otherwise trained alone in the single-task model. The ex-

periments for MT-DAAN are setup in the same unsupervised way as for single-task. No

data from the test crisis is used for training. For example, if we are testing our model for

the event ‘Typhoon Yolanda’, no data from this crisis is used for training. Note that the

domain classifier component uses unlabeled data only from rest of the crisis; making it a
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Table 4.5: Performance comparison (accuracy) of unsupervised models on TREC-Priority
dataset showing that deep models are not strictly superior than simpler models due to
data sparsity. Each reported score is an average of 10 independent runs of each experiment.
Source = Everything - Target.

Target LR SVM CNN BiLSTM BiLSTM+ ATT
Guatemala Earthquake (G) 60.14 56.76 60.47 65.54 59.97
Typhoon Yolanda (Ty) 65.39 65.97 63.05 65.49 65.53
Australia Bushfire (A) 65.61 63.23 62.10 60.10 62.44
Boston Bombings (B) 71.47 75.45 69.72 71.43 72.08
Queensland Floods (Q) 65.56 64.81 64.13 66.01 66.21
Chile Earthquake (C) 43.09 37.94 43.37 35.45 39.23
Typhoon Hagupit (Th) 49.86 46.22 49.21 54.13 52.61
Nepal Earthquake (N) 57.11 55.39 58.61 60.49 61.35

Paris Attacks (P) 71.43 71.72 72.50 72.14 71.31
Florida School Shooting (F) 58.79 63.02 58.82 59.71 60.55

AVG 60.85 60.05 60.20 61.05 61.13

Table 4.6: Unsupervised domain adaptation results on TREC dataset showing performance
boost for Priority, Factoid, and Irrelevant tasks. However, Sentiment task did not
show a significant improvement. See performance evaluation section for details. Each
reported score is an average of 10 independent runs of each experiment.

TARGET Priority Factoid

ST ST-DAAN MT-DAAN ST ST-DAAN MT-DAAN
Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

G 59.97 62.39 69.07 69.66 69.05 69.34 68.92 68.47 79.90 80.76 84.05 97.01
Ty 65.53 65.47 66.07 63.73 67.42 67.30 80.50 84.42 82.71 85.61 84.36 86.93
A 62.44 66.69 61.07 63.42 61.93 64.28 64.58 60.69 65.64 60.53 65.04 60.13
B 72.08 74.29 72.34 73.37 73.80 74.74 83.10 88.51 81.42 85.90 85.82 88.82
Q 66.21 65.94 67.19 66.97 66.74 66.46 37.56 48.90 50.46 59.82 49.52 59.21
C 39.23 40.92 38.91 42.37 41.80 46.33 30.38 33.97 39.87 48.68 45.28 54.58
Th 52.61 50.59 58.97 58.94 57.50 57.52 68.98 70.79 71.42 72.44 69.49 70.08
N 61.35 59.44 60.18 57.80 61.65 59.49 74.04 76.08 80.72 81.00 81.04 81.02
P 71.31 76.26 70.42 74.08 74.44 77.21 75.78 80.35 82.35 84.89 82.52 85.63
F 60.55 61.75 65.47 64.07 62.51 63.24 76.73 82.67 84.55 87.51 85.80 88.15

AVG 61.13 62.37 62.97 63.44 63.68 64.59 66.06 69.49 71.90 74.71 73.29 77.16

TARGET Sentiment Irrelevant

ST ST-DAAN MT-DAAN ST ST-DAAN MT-DAAN
Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

G 96.96 97.03 96.45 96.68 96.76 92.73 89.36 89.03 91.22 91.06 93.11 92.73
Ty 75.81 77.62 77.54 79.01 76.82 78.35 76.05 79.77 78.49 80.59 80.46 82.31
A 75.95 77.58 78.80 79.12 78.54 78.92 35.42 47.164 53.78 65.11 51.76 63.36
B 81.39 81.11 80.73 80.70 82.13 82.10 58.15 55.73 58.15 57.43 61.49 61.45
Q 81.69 80.39 81.05 81.39 81.53 81.32 65.68 65.36 67.26 65.72 67.88 67.27
C 92.69 92.91 93.10 93.21 93.62 93.68 75.16 84.98 80.46 86.38 80.64 86.56
Th 84.98 85.86 85.15 86.14 85.43 86.38 63.21 75.04 71.50 78.25 70.22 77.27
N 67.75 68.42 70.20 70.51 69.96 70.31 31.79 42.10 36.97 47.41 41.49 52.87
P 76.01 76.63 73.65 73.98 74.47 74.60 33.91 35.25 44.52 48.32 47.17 51.32
F 68.77 71.77 67.06 70.03 68.14 71.05 32.66 40.90 44.22 55.27 47.64 58.65

AVG 80.20 80.93 80.37 81.08 80.74 80.94 56.14 61.53 62.66 67.55 64.19 69.38

fully unsupervised domain adaptation approach. Performance scores of the four tasks (Pri-

ority, Factoid, Sentiment, and Irrelevant) are shown in Table 4.6. The results show clear
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Table 4.7: Unsupervised domain adaptation results for COVID-19 tweets using only the
TREC dataset for training. Each reported score is an average of 10 independent runs of
each experiment.

TARGET Relevant
ST ST-DAAN MT-DAAN

Acc F1 Acc F1 Acc F1
COVID-19 73.25 77.36 74.55 77.51 77.00 78.09

Table 4.8: Performance comparison (accuracy) of four relevant word embedding models on
TREC-Sentiment task showing that the tweet-based embeddings such as Glove or CrisisNLP
did not significantly outperform other models.

TARGET fastText [38] GoogleNews [48] Glove [14] CrisisNLP [182]
Guatemala Earthquake 96.96 95.72 95.27 97.97

Typhoon Yolanda 75.81 83.30 86.49 79.41
Australia Bushfire 75.95 79.35 80.24 75.86
Boston Bombings 81.39 82.43 80.55 81.16
Queensland Floods 81.69 84.06 84.01 81.50
Chile Earthquake 92.69 92.82 92.93 92.60
Typhoon Hagupit 84.98 87.55 84.25 88.76
Nepal Earthquake 67.75 68.46 73.63 67.50

Paris Attacks 76.01 77.67 74.49 77.43
Florida School Shooting 68.77 66.84 66.97 65.06

AVG 80.20 81.82 81.88 80.73

performance improvement for Priority, Factoid, and Irrelevant tasks. However, Sentiment

task did not show significant improvement. We speculate that this is because other tasks do

not generalize the bottom layer enough to boost the sentiment classification performance.

These results show the usefulness of multi-task learning as well as domain adversarial train-

ing where di↵erent tasks in multiple domains help each other when the data is sparse and

labels are limited.

MT-DAAN Hyperparameters. Apart from the generic hyperparameters mentioned in

Table 4.3, multi-task learning has specific hyperparameters that can be tuned to improve

performance. The domain adversarial training hyperparameters, wd and �, are set to 0.1
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and 0.4 respectively (similar to ST-DAAN ). wd is the domain adversarial loss weight and

� is the strength of the reversal (refer section 3.3 for more details). Furthermore, the loss

weights (wp, wf , ws, and wi) corresponding to the 4 tasks (Priority, Factoid, Sentiment,

and Irrelevant), can be set di↵erently to give prominence to the task under consideration.

A baseline setting is to set all weights to 1.0. However, this forces the model to focus

on all tasks equally. To provide more flexibility for the model to learn specific tasks, the

weights can be changed accordingly. For example, [wp=1.0, wf=0.3, ws=0.1, and wi=0.6]

is a Priority task which gives more prominence to Irrelevant class label and less prominence

to Sentiment class label. We perform a simple grid search for values in range [0.1-1.0] with

0.1 interval to find corresponding weight combination for each task.

MT-DAAN with Additional Web Datasets. In order to understand if additional web

resources can further improve the performance of MT-DAAN, we expand it by adding new

tasks from Amazon review dataset and Sentiment140 dataset6. Architecturally, this adds

two more attention branches in Fig. 4.2 and two more domains for the domain classifier.

We select Priority as our primary classification task and design 5 more experiments:

1. Single Task: Train solely on Priority.

2. MTL: Multi-Task Learning where other classes such as Factoid, Sentiment, and Irrel-

evant are jointly trained.

3. MTL+Amazon: Multi-Task Learning with an additional task to jointly train and

classify Amazon reviews.

4. MTL+Sentiment140: Multi-Task Learning with an additional task to jointly train

and classify Sentiment140 positive/negative reviews.

Results are shown in Table 4.9. Both Amazon reviews and Sentiment140 datasets proved

to be useful additions to the MTL setup showing that adding additional web resources may

in fact help.

6
http://help.sentiment140.com/for-students
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Table 4.9: Performance increases when additional web data is added for classifying TREC
Priority task. Similar to Table 4.6, scores shown are average and standard deviation of 10
independent runs of each experiment.

TARGET MT-DAAN +Amazon +Sentiment140

Acc F1 Acc F1 Acc F1

Guatemala Earthquake 69.05 69.34 69.59 69.84 75.00 74.45

Typhoon Yolanda 67.42 67.30 65.39 64.90 67.21 66.95

Australia Bushfire 61.93 64.28 63.39 65.85 62.05 64.47

Boston Bombings 73.80 74.74 73.14 74.30 72.03 73.08

Queensland Floods 66.74 66.46 67.82 67.83 65.26 65.02

Chile Earthquake 41.80 46.33 52.89 58.93 41.32 46.00

Typhoon Hagupit 57.50 57.52 57.01 57.33 59.99 60.41

Nepal Earthquake 61.65 59.49 60.42 57.60 61.25 59.04

Paris Attacks 74.44 77.21 67.46 72.01 75.67 78.02

Florida School Shooting 62.51 63.24 65.58 65.04 66.59 65.79

AVG 63.68 64.59 64.27 65.36 64.64 65.32

Word Vectors. We use fastText [38] as our word embeddings for tweets because of its

sub-word usage and the ability to create vectors for arbitrary and out-of-vocabulary words.

Although there exists many alternatives, picking the one that works well for a specific

dataset is not trivial. We conducted experiments to classify TREC Sentiment tweets using

four choices of word embeddings: fastText [38], GoogleNews [48], GloVe [14], and CrisisNLP

[182]. Unlike fastText, we fine-tune the other pre-trained vectors using Gensim [183] to cre-

ate vectors for out-of-vocabulary words. Vectors for words that are already in the vocabulary

are locked while tuning for consistency in evaluation. Their performance is shown in Table

4.8. All of them performed similarly with Glove performing slightly better than the rest.

The tweet-based embeddings such as GloVe or CrisisNLP did not significantly outperform

other models. Glove vectors are 200-dimensional while the rest are 300-dimensional which

makes the experiment favoring Glove word vectors. This experiment shows that the prob-

lem of finding a strictly superior word vector model for tweets still remains a challenging

task.

Interpretability (Attention Visualization). The attention weights used to create the

context vector by the dot product operation with word activations represent the inter-

pretable layer in our architecture. These weights represent the importance of each word in
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Figure 4.3: Examples of interpretable results using attention; darker the shade, higher the
attention. Recall that no data from the crisis-event for testing is used for training the
model. Even then, relevant keywords such as ‘police urging’, ‘death toll rises’, ‘worried’,
and ‘thoughts with people’ are correctly picked up by the attention layers of their respective
tasks.
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Figure 4.4: Examples of interpretable results using attention for relevancy prediction of
COVID-19 tweets. With 77% accuracy, although the highly attended words in the ‘Rele-
vant’ tweets provide some intuitive sense of interpretability, the highlighted words in the
‘Irrelevant’ tweets are somewhat ambiguous because it is unclear if those words are cho-
sen due to their specific or generic nature. This shows both the benefits and challenges of
unsupervised and interpretable domain adaptation.

the classification process. Some examples are shown in Figures 4.3 and 4.4. Stronger the

color intensity stronger the word attention. In the first example, ‘boston police urging ’ is

the reason why the tweet is classified as +ve priority. Similarly, ‘death toll rises ’ in the

Factoid example, ‘worried, prayers ’ in the Sentiment example, and ‘thoughts with people’

in the Irrelevant example are clear intuitive indicators of +ve predictions. These examples

show the importance of having interpretability as a key criterion in crisis domain adaptation

tasks for social media.

To the best of our knowledge, in social media mining for crisis analytics, there does not

exist a ground truth dataset that highlights the words that explain the labels for tweets.

Using our model as a guide, we hope to build a robust evaluation dataset as our immediate
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next step so that the models can be quantitatively evaluated using robust trust-evaluation

methods such as LIME [72]. It is also crucial to note that binary classification tasks such

as sentiment analysis of Amazon reviews has a clear class divide that produces intuitive

keywords such as ‘good’, ‘excellent’, or ‘great’ for +ve reviews and ‘bad’, ‘poor’, or ‘horrible’

for �ve reviews. However, for short texts such as tweets shown in Fig. 4.4, ‘relevancy’ can

depend on the context and it is unclear which keywords truly represent the examples in the

‘irrelevant’ class.

COVID-19 Use-Case. We show a practical implication of our work by applying it to

COVID-19 tweets described in Section 4.3. Our goal is to interpretably predict if a COVID-

19 tweet is relevant or not; a binary classification task. The models are trained using only

the TREC dataset and evaluated on the COVID-19 tweets (a balanced subset of size 637 for

+ve and �ve labels). We found that a combination of ‘Priority ’ and ‘Irrelevant ’ labels from

TREC performs better to predict COVID-19’s ‘Relevant ’ label (this can be trivially verified

by constructing two binary classifiers). We augment all three methods (ST, ST-DAAN,

and MT-DAAN ) with an additional condition before label prediction: Rc = Pt \ It, which

means that a COVID-19 tweet is ‘Relevant ’ only if it is predicted both ‘Priority ’ = 1 and

‘Irrelevant ’ = 0. The scores are reported in Table 4.7 and the attention results are shown

in Fig. 4.4, demonstrating the e↵ectiveness of our proposed method.

4.5 Key Takeaways

In this chapter, we presented a novel approach of unsupervised domain adaptation with

multi-task learning to classify relevant information from Twitter streams for crisis man-

agement, while addressing the problems of data sparsity and limited labels. We showed

that a multi-task learning model that shares the lower layers of the neural network with

dedicated attention layers for each task along with a domain classifier branch can help

improve generalizability and performance of deep models in the settings of limited data.

Furthermore, we showed that using an attention-based architecture can help in interpreting
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the classifier’s predictions by highlighting the important words that justify the predictions.

We also presented an in-depth empirical analysis of the state-of-the-art models on both

benchmark dataset of Amazon reviews and TREC dataset of crisis events. The application

of our generic approach for interpretable and unsupervised domain adaptation within a

multi-task learning framework can benefit social media mining systems in diverse domains

beyond crisis management.
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Chapter 5: Domain Adversarial Masking and Regeneration

for Cross-Domain Generative Question Answering

5.1 Summary

This chapter1 focuses on the problem of domain adaptation in the context of generative

question answering as shown in Fig. 5.1. Contextually dependent generative question

answering (QA) is yet to be well-studied in cross-domain settings, as compared to their ex-

tractive and open-domain variants. We introduce a method of domain-adversarial masking

and regeneration to address this cross-domain transfer learning task, with a goal to improve

over the state-of-the-art Text-to-Text Transfer Transformer (T5) baseline. We evaluate our

method across four domains selected from the Amazon QA dataset. We also demonstrate

a practical implication of our work by applying it to COVID-19 tweets. Additionally, we

also show a qualitative analysis of the masking and regeneration method.

5.2 Methodology

5.2.1 Problem Definition

Given a source (s) and a target (t) domain, we define C as the context, Q as the question,

and A as the answer. Unlike extractive QA, where the answer is a substring from the

context, in generative QA the answer may or may not be explicitly present in the context.

Refer to Fig. 5.1 for a few examples. The goal is to train a QA system using question-answer

pairs from the source, and contexts from both domains to evaluate a partially-unseen target

domain. Note, we assume that only unlabeled contexts (Cu
t , i.e., raw sentences without any

associated QA pairs) from the target domain are available during training time. Briefly

1To be submitted as a conference short paper.
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Figure 5.1: Overview of our problem statement showing examples of the cross-domain task
of contextual and generative QA using the pre-trained T5 model on i) Amazon product
reviews and ii) Tweets.

outlined below:

Input: Xs = {Cs, Qs}, Xu
t = Cu

t , and ys = As,

Goal: At  predict(Ct, Qt).

5.2.2 Models & Concepts

Domain Adversarial Masking. Our first goal is to identify and mask domain-specific

words in the source dataset. This can be achieved by constructing an attention-based

binary classifier that classifies Cs versus Cu
t . The attention weights play a crucial role in
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Figure 5.2: A simple example of our pipeline showing the masking process of domains-
specific words in the source domain and then regenerating them using target-trained regen-
eration model (Top). The source QA training data is then converted to pseudo-target data
(Middle), which is used to train the final QA model to evaluate ground truth target data
(Bottom).

highlighting the important words that assist the classifier’s prediction. We pass word tokens

as fastText word vectors [38] through a BiLSTM [2, 3] based architecture, to calculate the

context vector as
Pm

t=1
↵<t>a<t> (m = number of word tokens) to learn the attention

[67,110,175] weights ↵<t> for the words activations a<t> from the BiLSTM cells. As shown

in Fig. 5.2, the input sentence “I like donuts and mu�ns” from the grocery domain is passed

through the classifier and words like donuts and mu�ns are highlighted. We mask such
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words to construct domain-agnostic sentences, which is then fed to the regeneration model

described in the next section. In our model, we chose a simpler form of attention because

the weights have naturally interpretable meaning as compared to more complex models such

as BERT [8] where interpretability at the word-level for its classification ([CLS]) token is

too complex for easy intuitive interpolation [184]. We leave this for future work.

Mask Regeneration. In order to train a QA model in the target domain, ideally we

need in-domain data. However, we lack that. Our solution is to construct a dataset that is

similar to it. We use the masked domain-agnostic data from the source domain to construct

this pseudo target-domain data. This is performed by using two keys strategies over a text-

to-text model: i) Self-Supervised Fine-tuning and ii) Attention-Masked Fine-tuning.

i) Self-Supervised Fine-tuning: This method follows the 10-15% masking strategy em-

ployed by the standard Masked Language Models (MLMs) that train on the self-supervised

task of masked word prediction. In our context, training a text-to-text model on this task

using the unlabeled target data empowers the model with target domain knowledge, helping

us for the downstream QA task.

ii) Attention-Masked Fine-tuning: Unlike the previous fine-tuning method, instead of

randomly choosing characters to mask, attention-based masking masks domain-specific text

(e.g., ‘donuts’ in grocery domain) using the binary domain classifier constructed previously.

The idea is to teach the model to fill in the blanks of domain-agnostic sentences created in

the adversarial masking step with domain-specific words. Algorithm 3 describes this process

in detail. k represents the amount of text to be masked and <M> is the masking token.

To summarize, as shown in Fig. 5.2, domain-specific words from the source data is

masked and then regenerated using a language model fine-tuned on the target. This way, we

can convert any QA datasets from one domain to another before using it for any downstream

tasks.
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Algorithm 3 Attention-Masking for Fine-tuning of T5 for the Target Domain
Input: Cs, Cu

t

Output: T5finetuned
DC  traain domain classifier(Cs, Cu

t )
T5in  ;, T5out  ;
for c 2 Cu

t do
W  get attention weights(c,DC)

Wk  select topK(W,k) // k in %

in ;, out ;
for word 2 c do

if word 2Wk then
in in [ <M>
out out [ word

else
in in [ word

end

end
T5in  T5in [ in
T5out  T5out [ out

end

T5finetuned  train(T5in, T5out, T5pretrained)

5.3 Experimental Evaluation

5.3.1 Datasets

Amazon Reviews. We combine the Amazon question-answer dataset [185, 186] with

the product reviews dataset [187] to create our (Context, Question, Answer) triplets. We

randomly select three sub-domains with manageable data size: Musical Instruments (M),

O�ce Products (O), and Grocery and Gourmet Food (G). Their dataset sizes are 1117,

717, and 1879 respectively. 20% from each domain is kept aside as the test set.

Tweets. Tweet data is used to show the practical utility of our work. Here, the source

domain is the TweetQA (TQa) dataset [188] consisting of tweets, questions about the tweet

content, and free-form answers. The target domain is a COVID-19 (CQa) dataset [189]. Our

goal is to show cross-domain transfer learning by training on tweets unrelated to COVID

to answer COVID-related questions from tweets. The original COVID data is a slot-filling
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Table 5.1: BLEU scores on Amazon and Tweet Datasets. *: TT = Target-Train, the model
trained and evaluated on target data, serving as an upper bound.

Source ! Target M ! O M ! G O ! M O ! G G ! M G ! O TQa ! CQa

T5 (Original) 35.89 34.42 39.37 36.52 37.88 39.89 03.17
+ Ours 36.74 35.41 38.30 36.54 38.24 39.20 03.34

+ TT* 34.99 33.60 35.12 33.60 35.12 34.99 03.17

dataset that extract events each tweets. We convert them to a QA dataset as each slot

is essentially answering a specific COVID-related question. Refer to [189] for more details

about the slots.

5.3.2 Experiments

Experimental Setup. We follow the traditional unsupervised cross-domain experimental

setup of train the model on a source domain and testing on a target domain, represented

as S ! T . This also assumes that only unlabeled data (Cu
t ) from the target domain is

available during training time. For evaluation, we use BLEU scores which measure the

quality of the predicted answer with respect to a given question.

Implementation Details. Our implementation is in PyTorch [190] with simpletrans-

formers2 library which is based on the Hugging Face transformers library [191]. For T5

training, we use Google Colab with K80 GPU and set the maximum epoch to 15, sequence

length to 128, and training batch size to 8. We use wandb [192] for experiment tracking.

Baselines. State-of-the-art pre-trained T5 model [5] is our first baseline. We fine-tune

this model with the source data and then evaluate on the target. This model is not exposed

to any unlabeled target data (Cu
t ) during the fine-tuning phase.

2https://simpletransformers.ai

71



Figure 5.3: Examples of applying masking to the Kitchen Product domain and regenerating
it using the Book domain.

5.4 Results & Discussion

Qualitative examples of masking and regeneration procedure are shown in Fig. 5.3. For this

analysis, we use 3 positive and 3 negative reviews from Kitchen Products to mask and use the

Books domain for regeneration. Kitchen column shows the original reviews written by the

users for Kitchen products, Kitchen-Masked column shows the masked version of the same
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using an attention-based domain classifier that can highlight domain-specific words in the

Kitchen domain, and Kitchen!Books shows the version in which the masks are regenerated

using a T5 transformer pre-trained using unlabeled data from the Books domain. We see

that the results (column 3) are not perfect, but the transformed data appear to represent

the Books domain slightly better than what it was in their original form.

Table 5.1 shows our performance evaluation across various combinations of source-to-

target transfer learning on QA datasets. When compared the original T5 model, our strat-

egy appears to work on combinations except O !M and G! O. In the context of tweets,

the performance of all models were significantly lower compared to the Amazon data. Al-

though there was no one strictly significantly outperforming model, our method indicated

an overall positive direction with a +0.3% gain. It is also intriguing to note that training in

the target domain itself did not produce any significant gains; which is counter-intuitive and

requires further experimental evaluation. We leave a deeper analysis and experimentation

of this as future work.

5.5 Key Takeaways

In this chapter, we presented a method of adversarial masking and regeneration to improve

upon the state-of-the-art T5 for the task of cross-domain generative QA. A qualitative

analysis shows promising transformation of source to target-like data. Our method outper-

formed the baselines on 5 out of 7 combinations when evaluated across di↵erent domains in

the Amazon and Tweet QA datasets. The extend of linguistic nuances between the source

and target domains may impact masking and regeneration, resulting in the performance

di↵erences. We also presented a qualitative evaluation of our method showing a promising

direction to generate text from the target domain. A further investigation with a deeper

analysis and probing in to the T5 model are left as future work.
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Chapter 6: Attention Realignment and Pseudo-Labeling for

Interpretable Cross-Lingual Classification of Crisis Tweets

6.1 Summary

This chapter1 [36] focuses on interpretable cross-lingual text classification. State-of-the-

art models for cross-lingual language understanding such as XLM-R [79] have shown great

performance on benchmark data sets. However, they typically require some fine-tuning or

customization to adapt to downstream NLP tasks for a domain. In this work, we study un-

supervised cross-lingual text classification task in the context of crisis domain, where rapidly

filtering relevant data regardless of language is critical to improve situational awareness of

emergency services. Specifically, we address two research questions: a) Can a custom neu-

ral network model over XLM-R trained only in English for such classification task transfer

knowledge to multilingual data and vice-versa? b) By employing an attention mechanism,

does the model attend to words relevant to the task regardless of the language? To this goal,

we present an attention realignment mechanism that utilizes a parallel language classifier

to minimize any linguistic di↵erences between the source and target languages. Addition-

ally, we pseudo-label the tweets from the target language which is then augmented with the

tweets in the source language for retraining the model. We conduct experiments using Twit-

ter posts (tweets) labelled as a ‘request’ in the open source data set by Appen2, consisting

of multilingual tweets for crisis response as shown in Fig. 6.1. Experimental results show

that attention realignment and pseudo-labelling improve the performance of unsupervised

cross-lingual classification. We also present an interpretability analysis by evaluating the

performance of attention layers on original versus translated messages.

1Published in the proceedings of KDD Workshop on Knowledge-infused Mining and Learning (2020).
URL: http://ceur-ws.org/Vol-2657/paper3.pdf

2
https://appen.com/datasets/combined-disaster-response-data/
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Figure 6.1: Problem Statement: Unsupervised cross-lingual tweet classification, e.g., train
a model using English tweets, predict labels for Multilingual tweets, and vice-versa.

6.2 Methodology

6.2.1 Problem Definition

Consider tweets in language A and their corresponding translated tweets in language B.

The task of unsupervised cross-lingual classification is to train a classifier using the data

only from the source language and predict the labels for the data in the target language.

This experimental set up is usually represented as A! B for training a model using A and

testing on B or B ! A for training a model using B and testing on A. X refers to the data

and y refers to the ground truth labels. The multilingual dataset used in our experiments

consists of original multilingual (ml) tweets and their translated (en) tweets in English. To

summarize:

Experiment A (en! ml):

Input: Xen, yen, Xml

Output: ypredml  predict(Xml)

Experiment B (ml! en):

Input: Xml, yml, Xen

Output: ypreden  predict(Xen)
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Figure 6.2: Attention Realignment with Pseudo-Labelling over XLM-R model

6.2.2 Models & Concepts

In the following sections, we propose two methodologies to enhance cross-lingual classifi-

cation: 1) Attention Realignment and 2) Pseudo-Labelling. Attention realignment utilizes

a language classifier which is trained in parallel to realign the attention layer of the task

classifier such that the weights are more geared towards task-specific words regardless of

the language. Pseudo-Labelling further enhances the classifier by adding high quality seeds

from the target language that are pseudo-labelled by the task classifier.
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Table 6.1: New Notations

Notation Definition

en Tweets translated to English (‘message’ column in the
dataset)

ml Multilingual Tweets (‘original’ column in the dataset)
~↵ Attention Weights
T A component that uses Task-specific data. i.e., + and �

‘Request’ tweets
L A component that uses Language-specific data. i.e., en and

ml tweets
aBiLSTM Activation from the BiLSTM layer
�, �, ⇣ Hyperparameters

Attention Realignment by a Parallel Language Classifier. As depicted in Fig. 6.2,

model on the left side is the task classifier and the model on the right side is a language

classifier that is trained in parallel. The purpose of this language classifier is to pick up

aspects that is missed by the XLM-R model. This could be tweet-specific, crisis-specific, or

other linguistic nuances that can separate original tweets and translated tweets. Note that

semantically, translated words are expected to have similar XLM-R representations.

Attention realignment is a mechanism we introduce to promote the task classifier to be

more language independent. The main idea is that the words that are given higher attention

in a language classifier should be less important in a task classifier. For example, ‘dlo’ in

Haitian and ‘water ’ in English should have the same vector representation in language

agnostic models; while the sentence structure, grammar, and other nuances can vary. We

enforce this rule by constructing two operations:

1. Attention Di↵erence: When a sentence goes through model M1, it also goes

through model M2. For the same sentence, this returns two attention layer weights:

one from the task classifier (�!↵T ) and the other from the language classifier (�!↵T
0).

Directly subtracting �!↵T
0 from �!↵T poses two issues: 1) we do not know whether they

are comparable and 2) �!↵T
0 may have negative values. A simple solution to this is
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to normalize bothe vectors and clip �!↵T
0 such that it is between 0 and 1. Thus, an

attention subtraction step is as follows:

�!↵T

k
�!↵T k

� �T clip

 
�!↵T

0
���!↵T

0�� , 0, 1
!

(6.1)

where �T is a hyperparameter to tune the amount of subtraction needed for the task

classifier. Similarly, for the language classifier,

�!↵L
0

���!↵L
0�� � �L clip

 
�!↵L

k
�!↵Lk

, 0, 1

!
(6.2)

2. Attention Loss: Along with attention di↵erence, the model can also be trained by

inserting an additional loss function term that penalizes the similarity between the

attention weights from the two classifiers. We use the Frobenius norm.

LAt = k
�!↵T

T �!↵T
0
k
2

F (6.3)

LAl = k
�!↵L

T �!↵L
0
k
2

F (6.4)

for task and language respectively. Resulting final loss function of joint training will

be:

L(✓) = ⇣T
⇣
CET + �TLAt

⌘
+ ⇣L

⇣
CEL + �LLAl

⌘
(6.5)

where � is the hyperparameter to tune the attention loss weight, ⇣ is the hyperpa-

rameter to tune the joint training loss, and CE denotes the binary cross entropy

loss,

CE = �
1

N

NX

i=1

[yi log ŷi + (1� yi) log(1� ŷi)] (6.6)
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Table 6.2: Dataset Statistics for both en amd ml

Train Validation Test

Positive 3554 418 496
Negative 17473 2152 2128

It is important to note that the Frobenius norm is not simply between the attention

weights of the two models but rather between the attention weights produced by

the two models on the same input tweet. For example, for a given tweet, the task

classifier attends more to task-specific words and the language classifier attends to

language-specific words. So the mechanism makes sure that they are distinct.

Pseudo-Labelling. To enhance the model further, we pseudo-label the data in the tar-

get language. Pseudo-labelling [193] is first introduced by [193] who showed how a small

set of labelled data along with a large amount of unlabelled data can improve a model’s

performance. For example, if we are training a model using the English tweets, we use

the original tweets before translation for pseudo-labelling. The idea is simply to gather

high-quality seeds from the target to retrain the model. Note that, we still do not use any

target labels here; still following the unsupervised goal. Thus, for retraining model M1 for

en ! ml, the new dataset would consist of: X+
en and Xpseudo+

ml as positive examples and

X�
en and Xpseudo�

ml as negative examples.

XLM-R Usage. The recommended feature usage of XLM-R3 is either by fine-tuning to

the task or by aggregating features from all the 25 layers. We employ the later to extract

the multilingual embeddings for the tweets.

3https://github.com/facebookresearch/XLM
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Table 6.3: Implementation Details

Tx 30
Deep Learning Library Keras
Optimizer Adam [lr = 0.005, beta1 = 0.9,

beta2 = 0.999, decay = 0.01]
Maximum Epoch 100
Dropout 0.2
Early Stopping Patience 10
Batch Size 32
⇣T 1
⇣L 0.1
�T , �L, �T , �L 0.01

6.3 Experimental Evaluation

6.3.1 Datasets

We use the open source dataset from Appen4 consisting of multilingual crisis response

tweets. The dataset statistics for tweets with ‘request’ behavior labels is shown in Table

8.1. For all the experiments, the dataset is balanced for each split.

6.3.2 Experiments

Each experiment is denoted as A! B, where A is the data that is used to train the model

and B is the data that is used for testing the model. For example, en! ml means we train

the model using English tweets and test on multilingual tweets.

Models are implemented in Keras and the details are shown in Table 6.3. Hyperparam-

eters �T , �L, �T , and �L are not exhaustively tuned; we leave this exploration for future

work.
4https://appen.com/datasets/combined-disaster-response-data/
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Figure 6.3: Attention visualization example for ‘request ’ tweets: words and their attention
weights for two tweets in Haitian Creole and its translation in English (darker the shade,
higher the attention).

6.4 Results & Discussion

Table 6.4 shows the cross-lingual performance comparison of all the models. The three

models are described below:

1. Baseline: The baseline model consists of embeddings retrieved from XLM-R trained

over BiLSTMs and Attention layers. This is a traditional sequence (text) classifier

enhanced with attention mechanism. Activations from the BiLSTM layers are weighed
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Table 6.4: Performance Comparison (Accuracy in %) for Source ! Target (Source !
Source). Baseline = XLMR + BiLSTM + Attention. Model M1 = Baseline + Attention
Realignment. Model M2 = Model M1 + Pseudo-Labelling.

Baseline Model M1 Model M2

en! ml 59.98 (80.57) 62.53 (77.02) 66.79 (82.39)
ml! en 60.93 (70.07) 65.69 (63.50) 70.95 (73.84)

by the attention layer to construct the context vector which is then passed through a

dense layer and softmax function to produce the classification output.

2. Model M1: Adding attention realignment to the baseline model produces model

M1. Attention realignment is achieved through a language classifier which is trained in

parallel with the goal to make the task classifier more language agnostic. The attention

weights for both task and language classifiers are manipulated by each other during

training by a process of subtraction (attention di↵erence) as well a loss component

(attention loss). See Section 3.3.

3. Model M2: Adding the pseudo-labelling procedure to model M1 produces model

M2. Using Model M1 which is trained to be language agnostic, tweets from the

target languages are pseudo-labelled. High quality seeds are selected (using Model M1

p > 0.7) and augmented to the original training dataset to retrain the task classifier.

Results show that, for cross-lingual evaluation on en ! ml, model M1 outperforms

the baseline by +4.3% and model M2 outperforms by +11.4%. On ml ! en, model M1

outperforms the baseline by +7.8% and model M2 outperforms by +16.5%. This shows

that both models are e↵ective in cross-lingual crisis tweet classification. An interesting

observation to note is that using attention realignment alone decreased the classification

performance in the same language, which is brought back up by pseudo-labelling. These

scores are shown in brackets in Table 6.4. A deeper investigation in this direction on various

other tasks can shed more light on the impact of realignment mechanism.

82



Interpretability (Attention Visualization). We follow a similar attention architec-

ture shown in [34]. The context vector is constructed as a result of dot product between

the attention weights and word activations. This represents the interpretable layer in our

architecture. The attention weights represent the importance of each word in the classifica-

tion process. Two examples are shown in Fig. 6.3. In the first example, both en! en and

ml ! ml give attention to the word ‘hungry ’ (i.e., ‘grangou’ in Haitian Creole). Note that

these two are results from the models that are trained in the same language in which they

are tested; thus, expecting an ideal performance. For the baseline model in the cross-lingual

set-up en ! ml, although it correctly predicts the label, the attention weights are more

spread apart. In model M2 with attention realignment and pseudo-labelling, although with

some spread, the attention weights are shifted more toward ‘grangou’. Similarly in example

2, the attention weights in the baseline model are more spread apart. Cross-lingual perfor-

mance of model M2 aligns more with en ! en and ml ! ml. These examples show the

importance of having interpretability as a key criterion in cross-lingual crisis tweet classifi-

cation problems; which can also be used for downstream tasks such as extracting relevant

keywords for knowledge graph construction.

6.5 Key Takeaways

In this chapter, we presented a novel approach for unsupervised cross-lingual crisis tweet

classification problem using a combination of attention realignment mechanism and a pseudo-

labelling procedure (over the state-of-the-art multilingual model XLM-R) to promote the

model to be more language agnostic. Performance evaluation showed that both models M1

and M2 outperformed the baseline by +4.3% and +11.4% respectively for cross-lingual text

classification from English to Multilingual. We also presented an interpretability analysis

by comparing the attention layers of the models. It shows the importance of incorporating

a word-level language agnostic characteristic in the learning process, when training data is

available only in one language.
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Chapter 7: Multilingual Code-Switching for Zero-Shot

Cross-Lingual Intent Prediction and Slot-Filling

7.1 Summary

This chapter1 [37] focuses on the task of cross-lingual intent prediction and slot-filling.

Predicting user intent and detecting the corresponding slots from text are two key prob-

lems in Natural Language Understanding (NLU). In the context of zero-shot learning, this

task is typically approached by either using representations from pre-trained multilingual

transformers such as mBERT, or by machine translating the source data into the known

target language and then fine-tuning. Our work focuses on a particular scenario where the

target language is unknown during training. To this goal, we propose a novel method to

augment the monolingual source data using multilingual code-switching via random trans-

lations to enhance a transformer’s language neutrality when fine-tuning it for a downstream

task. This method also helps discover novel insights on how code-switching with di↵erent

language families around the world impact the performance on the target language. Ex-

periments on the benchmark dataset of MultiATIS++ yielded an average improvement of

+4.2% in accuracy for intent task and +1.8% in F1 for slot task using our method over the

state-of-the-art across 8 di↵erent languages2. Furthermore, we present an application of our

method for crisis informatics using a new human-annotated tweet dataset of slot filling in

English and Haitian Creole, collected during Haiti earthquake disaster.

1To be submitted as a conference paper. URL: https://arxiv.org/pdf/2103.07792.pdf
2Languages that have di↵erent morphological structures compared to English, such as Hindi, Turkish,

Chinese, and Japanese, yielded higher benefits.
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Figure 7.1: An original example in English from MultiATIS++ dataset and its multi-
lingually code-switched version. In the above code-switching example, the chunks are in
Chinese, Punjabi, Spanish, English, Arabic, and Russian. ‘atis airfare’ represents an intent
class where the user seeks price of a ticket.

7.2 Methodology

This section first describes our problem for zero-shot cross-lingual transfer setting, followed

by a novel data augmentation method using multilingual code-switching of monolingual

source to enhance language neutrality. We then describe language families, followed by the

joint training setup.

7.2.1 Problem Definition

Given a source and a set of target languages, the goal is to train a classifier using data only in

the source language and predict examples from the completely unseen target languages. We

assume the target language is unknown during training time, which makes direct translation

to target infeasible. In this context, we use code-switching (cs) to augment the monolingual

source data. Thus, the input and output of our problem can be defined as:

Input: Xs
ut, y

s
i , y

s
sl

Code-Switched Input: Xcs
ut , y

cs
i , ycssl

Output: yti , y
t
sl  predict(Xt

ut)

where Xut represents sentences, yi their ground truth intent classes, and ysl the slot

labels for the words in those sentences. An example sentence, its intent class, and slot

labels are shown in Fig. 7.1.
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Algorithm 4 Data Augmentation via Multilingual Code-Switching (Chunk-Level)

Input: Xen
ut , yeni , yensl

Output: Xcs
ut , ycsi , ycssl

Xcs
ut  ;, ycsi  ;, ycssl  ;

lset = googletrans.languages� lT
for i 2 1.. k do

for i 2 1.. len(Xen
ut ) do

Gcs
 ;, Lcs

 ;

chunks = slot chunks(Xen
ut [i], yensl [i])

for c 2 chunks do
l random.choice(lset)
t translate(c, l)
Gcs
 Gcs

[ t
Lcs
 Lcs

[ align label(c, t)

end
Xcs

ut  Xcs
ut [ Gcs

ycsi  ycsi [ ycsi [i]
ycssl  ycssl [ Lcs

end

end

7.2.2 Models & Concepts

Multilingual Code-Switching. Multilingual masked language models, such as mBERT

[8], are trained using large datasets of publicly available unlabeled corpora such as Wikipedia.

Such corpora largely remain monolingual at the sentence level because the presence of intra-

sentence code-switched data in written texts is likely scarce. The masked words that needed

to be predicted usually are in the same language as their surrounding words. We study how

code-switching can enhance the language neutrality of such language models by augmenting

it with artificially code-switched data for fine-tuning it to a downstream task. Algorithm

4 explains this code-switching process at the chunk-level. When using slot filling datasets,

slot labels that are grouped by BIO [194] tags constitute natural chunks. To summarize the

algorithm, we take a sentence, take each chunk from that sentence, perform a translation

into a random language using Google’s NMT system [172], and align the slot labels to fit

the translation, i.e., label propagation through alignment as the translated sentence do not
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Table 7.1: Selected language families to evaluate their impact on a target language.

Group Name Languages
Afro-Asiatic Arabic (ar), Amharic (am), Hebrew (he), Somali (so)
Germanic German (de), Dutch (nl), Danish (da), Swedish (sv), Norwegian (no)
Indo-Aryan Hindi (hi), Bengali (bn), Marathi (mr), Nepali (ne), Gujarati (gu), Punjabi (pa)
Romance Spanish (es), Portuguese (pt), French (fr), Italian (it), Romanian (ro)

Sino-Tibetan & Japonic Chinese (zh-cn), Japanese (ja), Korean (ko)
Turkic Turkish (tr), Azerbaijani (az), Uyghur (ug), Kazakh (kk)

preserve the number and order of words in the original sentence. At the chunk-level, we use

a direct alignment. The BIO-tagged labels are recreated for the translated phrase based on

the word tokens. More complex methods can be applied here to improve the alignment of

the slot labels such as fast-align [195] or soft-align [30]. Code-Switching at the word-level

essentially translates every word randomly, while at the sentence-level translates the entire

sentence. During the experimental evaluation process, to build a language neutral model

using monolingual source of English data, all 8 target languages are excluded from the

code-switching procedure to avoid unfair model comparisons, i.e. remove target languages

from lset in Algorithm 4.

Complexity : The augmentation process is repeated k times per sentence producing a new

augmented dataset of size k⇥n, where n is the size of the original dataset, i.e. space complex-

ity of O(k⇥n). Algorithm 4 has a runtime complexity of O(k⇥n⇥ translations/sentence)

steps assuming constant time for alignment. Word-level requires as many translations as

the number of words but sentence-level requires only one. An increase in the dataset size

also increases the training time, but an advantage is one model fits all languages.

Language Families. A language family is defined as a group of related languages that

are likely coming from the same parent. For example, Portuguese, Spanish, French, Italian,

and Romanian are daughter languages derived from Latin [196]. We use language families

to study their impact on the target languages. We augment the source language with

code-switching from a particular language family. For instance, code-switching the English
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Table 7.2: Datasets and statistics.

Language Utterances Tokens Intents Slots
train dev test train dev test

MultiATIS++ [30]
English 4488 490 893 50755 5445 9164 18 84
Spanish 4488 490 893 55197 5927 10338 18 84

Portuguese 4488 490 893 55052 5909 10228 18 84
German 4488 490 893 51111 5517 9383 18 84
French 4488 490 893 55909 5769 10511 18 84
Chinese 4488 490 893 88194 9652 16710 18 84
Japanese 4488 490 893 133890 14416 25939 18 84
Hindi 1440 160 893 16422 1753 9755 17 75
Turkish 578 60 715 6132 686 7683 17 71

Disaster Tweets (New Dataset)
English 3518 490 - 16369 4242 - 2 5

Haitian Creole - - 520 - - 2834 2 5

dataset with Turkic language family and testing on Japanese can reveal how closely the two

are aligned in the vector space of a pre-trained multilingual model. From a set of 5 distinct

language families, we select a total of 6 groups of languages: Afro-Asiatic [197], Germanic

[198], Indo-Aryan [199], Romance [200], Sino-Tibetan and Japonic [201, 202], and Turkic

[203]. Germanic, Romance, and Indo-Aryan are branches of the Indo-European language

family. Language groups and their selected daughter languages are shown in Table 7.1.

Each group is selected based on a target language in the dataset and Afro-Asiatic family

is added as an extra group. In experiments, lset in Algorithm 4 will be assigned languages

from a specific family.

Joint Training. Joint training is traditionally used for intent prediction and slot filling

to exploit the correlation between the two tasks. This is done by feeding the feature vectors

of one model to another or by sharing layers of a neural network followed by training the

tasks together. So, a standard joint model loss can be defined as a combination of intent

(Li) and slot (Lsl) losses. i.e., L = ↵Li + �Lsl, where ↵ and � are corresponding task
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weights. Prior works [113, 114, 118, 131] that use BiLSTM or RNN are now modified to

BERT-based implementations explored in more recent works [30, 115, 116]. A standard

Joint model consists of BERT outputs from the final hidden state (classification (CLS)

token for intent and m word tokens for slots) fed to linear layers to get intent and slot

predictions. Assuming hcls represents the CLS token and hm represents a token from the

remaining word-level tokens, the BERT model outputs are defined as [30, 116]:

pi = softmax(W ihcls + bi)

pslm = softmax(W slhm + bsl) 8m

(7.1)

with a multi-class cross-entropy loss3 for both intent (Li) and slots (Lsl). We will use this

model as our baseline for joint training. Our goal will be to show that code-switching on

top of joint training improves the performance. The output of Algorithm 4 will be the input

used for joint training on BERT for code-switched experiments.

7.3 Experimental Evaluation

7.3.1 Datasets

Benchmark Dataset. We use the latest multilingual benchmark dataset of MultiATIS++

[30], which was created by manually translating the original ATIS [112] dataset from English

(en) to 8 other languages: Spanish (es), Portuguese (pt), German (de), French (fr), Chinese

(zh), Japanese (ja), Hindi (hi), and Turkish (tr). The dataset consists of utterances for

each language with an ‘intent’ label for ‘flight intent’ and ‘slot’ labels for the word tokens

in BIO [194] format. A sample datapoint in English is shown in Fig. 7.1.

New Dataset for Disaster NLU. We construct a new intent and slot filling dataset

of tweets collected during natural disasters, in two languages: English and Haitian Creole.

3L = � 1
n

Pn
i=1[y log ŷ]
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The tweets originally were released by Appen4. For English, a language expert coded the

tweets, and for Haitian Creole, we used Amazon Mechanical Turk with five annotators.

Intent classes include: ‘request ’ and ‘others’. Slot filling consists of 5 labels: ‘medical help’,

‘food ’, ‘water ’, ‘shelter ’, and ‘other aid ’. Table 8.1 provides the dataset statistics.

7.3.2 Experiments

We use the traditional cross-lingual task setting where each experiment consists of a source

language and a target language. A model is trained on the source data (English) and eval-

uated on the target data (8 other languages). For code-switching experiments, an English

text is augmented with multilingual code-switching before training. Our implementation is

in PyTorch [190] and we use the pre-trained bert-base-multilingual-uncased [8] with Bert-

ForSequenceClassification [191] as the mBERT model. Maximum epoch is set to 25 with

an early stopping patience of 5, batch size of 32, and Adam optimizer [204] with a learning

rate of 5e�5. We select the best model on the validation set. Consistent with the metrics

reported for intent prediction and slot filling evaluation in the past, we also use accuracy

for intent and micro F15 to measure slot performance.

7.3.3 Baselines & Upper Bound

Since we assume that target language is not known before hand, Translate-Train (TT)

[30] method is not a suitable baseline. Rather, we set this to be an upper bound, i.e.

translating to the target language and fine-tuning the model should intuitively outperform

a generic model. Additionally, we add code-switching to this TT model to assess if augmen-

tation negatively impacts its performance. The zero-shot baselines for the code-switching

experiments use an English-Only [30] model, which is fine-tuned over the pre-trained

mBERT separately for each task and an English-only Joint model [116].

4
https://appen.com/datasets/combined-disaster-response-data/

5To address class imbalance for slots, we use Micro F1 instead of Macro F1, which is why our F1 scores
are inflated when compared to scores in [30].
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Table 7.3: Performance evaluation of code-switching with setting k = 5. CS: Code-
Switching. Reported scores are average of 5 independent runs (including a separate code-
switched data for each run). m = number of distinct models to be trained. *: modified
BERT-based implementations [30, 116]. †: Similar to [28] but modified for slot-filling task

and also excluding target language from randomized switching. �: The di↵erence is sig-
nificant with p < 0.05 using Tukey HSD (conducted between Jointen�only + CCS versus
Jointen�only Baseline for each language).

Intent Acc. m es de zh ja pt fr hi tr AVG
English-Only Baseline* 1 94.42 94.29 79.53 73.75 92.90 93.86 67.06 69.71 83.19
Jointen�only Baseline* 1 95.03 94.51 80.54 73.57 93.48 93.33 73.53 71.05 84.38
Word-level CS† 1 94.18 93.92 81.67 75.48 92.54 94.18 81.19 74.22 85.92
Sentence-level CS 1 94.60 93.53 81.21 75.01 93.10 93.24 82.37 75.11 86.02
Chunk-level CS (CCS) 1 95.12 95.27 83.88 74.27 94.20 93.48 82.73 77.51 87.06
Jointen�only* + CCS 1 95.48 94.51 84.43� 76.48� 94.15� 94.89� 85.37� 78.04� 87.92

Upper Bound
Translate-Train (TT)* 8 94.02 93.84 90.21 84.19 95.66 94.54 85.08 85.79 90.42
JointTT * 8 94.16 94.24 91.56 85.98 95.75 95.01 86.45 84.95 91.01
JointTT * + CCS 8 95.48 95.41 91.60 87.17 95.34 94.60 87.94 85.93 91.68

Slot F1 m es de zh ja pt fr hi tr AVG
English-Only Baseline* 1 96.16 96.73 83.12 78.81 95.63 95.40 77.05 88.09 88.87
Jointen�only Baseline* 1 96.12 96.76 84.95 79.60 95.76 95.76 77.63 88.92 89.44
Word-level CS† 1 95.81 96.33 85.46 79.33 96.27 95.08 79.10 86.86 89.28
Sentence-level CS 1 96.57 96.92 86.32 79.52 96.65 95.84 81.94 89.84 90.45
Chunk-level CS (CCS) 1 96.68 96.82 87.10 80.00 96.46 96.31 80.95 91.60 90.51
Jointen�only* + CCS 1 96.09 96.56 88.61� 82.28� 96.01 95.94 82.28� 90.45� 91.03

Upper Bound
Translate-Train (TT)* 8 96.89 96.04 93.48 85.29 96.35 96.02 82.03 91.21 92.16
JointTT * 8 96.92 95.66 93.64 87.84 96.11 95.95 82.98 91.15 92.53
JointTT * + CCS 8 96.98 96.27 93.37 85.87 95.88 95.44 82.00 91.31 92.14

7.4 Results & Discussion

E↵ect of Multilingual Code-Switching. Table 7.3 describes performance evaluation

on the MultiATIS++ dataset. When compared to the state-of-the-art jointly trained

English-only baseline, we see a +4.2% boost in intent accuracy and +1.8% boost in slot

F1 scores on average by augmenting the dataset via multilingual code-switching without

requiring the target language. From the significance tests, except for Spanish and

German, all other languages were helped by code-switching for intent detection. For slot

filling, improvement on Portuguese and French went insignificant. This suggests that code-

switching primarily helped languages that are morphologically more di↵erent as compared

to the source language (English). For example, Hindi and Turkish have the highest intent
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performance improvement of +16.1% and +9.8% respectively. And for slots, Hindi and Chi-

nese with +6.0% and +4.3% respectively. Japanese showed +4% improvement for intent

and +3.4% for slots.

The running time of the models in Table 7.5 show that code-switching is expensive

which can take up to 5 hours for k = 5. Its training is also expensive because there is k

times more data as compared to the monolingual source data. Increasing the number of

code-switchings (k) for a sentence from 5 to 50 improved the performance by +1%, while

increasing the run-time by a large margin. So, parameter k should be picked appropriately.

Albeit this time cost is for training, with benefits at the prediction stage for real world

problems.

In the translate-train (upper bound) scenario, it is not immediately clear if augmentation

can help, because data in the same language as the target is always preferred over other

languages, or code-switched. However, we show in Table 7.3 that augmentation did not

hinder the performance.

For both intent and slot performance, chunk-level model remained robust across the

languages. For intent, di↵erence between word-level and sentence-level was insignificant.

For slot, sentence-level was in par with chunk-level on average. Thus, we think that code-

switching at chunk-level is safer for avoiding semantic discrepancies (as in the word-level)

while also capturing better intra-sentence language neutrality.

Evaluation on Disaster Dataset. We found that disaster data is more challenging when

compared to the ATIS dataset for transfer learning in NLU. The predictive performance is

shown in Table 7.4. Code-Switching improved intent accuracy by +12.5% and slot F1 by

+2.3%, which is promising considering that they are tweets. Joint training added +0.9%

improvement to intent accuracy, however did not seem to help slot F1. This might imply

a lack of strong correlation between the two tasks, i.e. a mention of ‘food ’ or ‘shelter ’

in a tweet may not always mean that it is a ‘request ’ or vice-versa. The upper bound of

translate-train method did not perform any better than the randomly code-switched model
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Table 7.4: Performance on disaster data in Haitian Creole (ht). CS = Code-Switching.
Reported scores are average of 5 independent runs (*: modified BERT-based).

Intent Acc. ht
English-Only Baseline* 56.12
Chunk-level CS (CCS) 63.15
Jointen�only* + CCS 63.73

Slot F1 ht
English-Only Baseline* 68.72
Chunk-level CS (CCS) 70.27
Jointen�only* + CCS 70.02

Table 7.5: Runtime on Google Colab (K80 GPU for training joint models). MTT : Machine
Translation to Target. Note that MTT and JTT are for one target language (averaged).

CS (k=5) MTT Jointen Jointcs JointTT

05:04:49 1:31:32 00:11:50 01:06:50 00:11:04

which seemed counter-intuitive. This might be due to the lack of strong representation for

Haitian Creole in the pre-trained model, although it is similar to French.

Impact of Language Families. Results of language family analysis are shown in Fig. 7.2.

The input in English is independently code-switched using 6 di↵erent language families.

Note that the target language is always excluded from the group when evaluating on the

same, i.e. Hindi is excluded from Indo-Aryan family when that family is being evaluated on

it. Translate-train model is provided as a frame of reference and upper bound. We dropped

French and Portuguese from the chart as they fall in to Romance family similar to Spanish.

Results show the language families helped their corresponding languages, i.e. Romance

helped Spanish, Germanic helped German, and so on; with the exception of Chinese and

Japanese. In both cases, Turkic language family helped better than others.

Control Experiments on k. Hyperparameter k controls the amount of code-switched

data. k = 0 represents original size with no code-switching, k = 1 represents original size
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Figure 7.2: Impact of di↵erent language groups on the target languages.

Figure 7.3: Training runtime (Google Colab K80 GPU) as k increases.
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Figure 7.4: Slot F1 and Intent Accuracy as k increases (on mBERT).

Figure 7.5: Slot F1 and Intent Accuracy as k increases (on XLM-R).

with code-switching, and k = 10 means 10-times more code-switched data than the original.

The main experiments in Table 7.3 use k = 5. Fig. 7.4 shows how varying this parameter

k a↵ects the performance. For this analysis, we consider 4 target languages on which code-

switching produced significant results in Table 7.3 on both Intent Accuracy and Slot F1:
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Figure 7.6: Impact of code-switching on selected slot labels (left) and intent classes (right).

Chinese, Japanese, Hindi, and Turkish. Quite intuitively, we observe that as k increases,

too much code-switching becomes too expensive in terms of runtime, while performance

improvement slowly plateaus. For Slot F1 performance in all four cases, unlike Intent, we

observe an interesting dip when k = 1, which represents the augmentation having just one

copy of code-switching (without the original non-code-switched data), as compared to k = 0.

Note that this is done to maintain the size; which we speculate is the reason for this dip.

This is also evident from the scores shooting up at k = 2 when the original data is added.

Overall, we see improvement for both Intent and Slot tasks, with Slot F1 plateauing early

on. Fig. 7.3 and Table 8.5 show how code-switching impact training runtime. Runtime

increases as k increases; thus finding an optimal value of k and specific language groups are

essential for downstream applications.

Error Analysis. Selecting intent classes with support > 10, Fig. 7.6 (right) shows how

each class is positively or negatively impacted by code-switching. Improvement was pri-

marily on ‘airfare’, ‘distance’ ‘capacity ’, ‘airline’, and ‘ground service’ which had longer

sentences such as ‘Please tell me which airline has the most departures from Atlanta’ when

compared to ‘abbreviations’ and ‘airport ’ classes that included very short phrases like ‘What
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Figure 7.7: mBERT vs XLM-R

does EA mean? ’ However, note that, Spanish and German did not improve much; aligning

with our results in Table 7.3. For slot labels in Fig. 7.6 (left), we selected the ones with

support > 50 and that have di↵erent characteristics, e.g. ‘name’, ‘code’, etc. The overall

trend in slot performance shows improvements for labels such as ‘day name’, ‘airport code’,

and ‘city name’ and slight variations in labels such as ‘fight number ’ and ‘period of day ’;

implying textual slots benefiting over numeric ones.

mBERT versus XLM-R. We conduct an additional analysis on XLM-R [7] and compare

it with mBERT [8]. The implementation is very similar in PyTorch [190] but using the

pre-trained xlm-roberta-base with RobertaForSequenceClassification [191] as the XLM-R

model. We observe that, setting k = 5, XLM-R outperforms mBERT on average (by 2%

Intent Accuracy and 1.5% Slot F1). Individually, XLM-R improved Chinese, Japanese,

Portuguese, and Turkish for Intent Prediction and German, Chinese, Japanese, Portuguese,

and Hindi for Slot Filling as shown in Fig. 7.7. We observe a trend similar to mBERT

with k on XLM-R shown in Fig. 7.5. However, for XLM-R, we observe that randomized

97



Figure 7.8: Freezing earlier layers and unfreezing a few at the top of the transformer appear
to be most optimal.

code-switching did not help Chinese for Intent Prediction and Hindi for Slot F1. If code-

switched to a specific language family, instead of switching to random languages, it might

improve their performance. A deeper dive into XLM-R and language families are left for

future work.

Hyperparameter Tuning. For joint training with same task weights, we tuned ↵ and �

using grid search to see the strength of correlation between the tasks. For intent, the (↵,�)

combination of (1.0, 0.6) performed well, while (1.0, 1.0) for slots. This suggests that intent

benefiting slot might be slightly more than slot benefiting intent. Additionally, during fine-

tuning, freezing the layers of the transformer a↵ected the model performance as shown in

Fig. 8.6. Keeping the first 8 layers frozen gave the best performance. By freezing the earlier

layers, the transformer can retain its most fundamental feature information gained from the

massive pre-training step, and by unfreezing some top layers, it can undergo fine-tuning.
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7.5 Key Takeaways

In this chapter, we showed that augmenting the monolingual input data with multilingual

code-switching via random translations at the chunk-level helps a zero-shot model to be

more language neutral when evaluated on unseen languages. This approach enhanced the

generalizability of pre-trained mBERT when fine-tuning for downstream tasks of intent

detection and slot filling. We presented an application of this method using a new annotated

dataset of disaster tweets. Further, we studied code-switching with language families and

their impact on specific target languages, which can be used to enhance the zero-shot

generalizability of models created for low-resource languages.
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Chapter 8: Cross-Lingual Text Classification of

Transliterated Hindi and Malayalam

8.1 Summary

This chapter1 focuses on classification of transliterated text. Transliteration (and more

typically romanization) is very common on social media, but transliterated text is not

adequately handled by modern neural models for various NLP tasks. In this work, we

combine data augmentation approaches with a Teacher-Student training scheme to address

this issue in a cross-lingual transfer setting. We evaluate our method on transliterated Hindi

and Malayalam, also introducing new datasets for benchmarking on real-world scenarios:

one on sentiment classification in transliterated Malayalam, and another on crisis tweet

classification in transliterated Hindi and Malayalam (related to the 2013 North India and

2018 Kerala floods). Our method yielded an average improvement of +5.6% on mBERT [8]

and +4.7% on XLM-R [7] in F1 scores over their strong baselines.

8.2 Methodology

This section first describes our problem for cross-lingual transfer setting for transliterations,

followed by the Teacher-Student model.

8.2.1 Problem Definition

Given a source (S) dataset in language � e.g., in English (en), the goal is to train a classi-

fier such that it can be used to predict examples from a target (T ) dataset that consists of

1Under review as a conference paper.
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Figure 8.1: Overview of our method to enhance the multilinguality of transformer models
such as mBERT or XLM-R to include Latin-transliterations (romanizations) for two Indic
languages: Hindi and Malayalam.

Figure 8.2: Examples of English sentences and corresponding translations and translitera-
tions.

transliterations of the target language (⌧). To tackle the lack of training data in the translit-

erated target, as well as the lack of representation alignment between the source sentences

X� and the transliterated target space X⌧ , we propose data augmentation. Specifically,

we first create translations Xtr(�,⌧) of the source language sentences in the target language.

Then, we also create transliterations of those translated sentences into the source language’s

script: Xtl(tr(�,⌧),⌧).2 All of these are matched with the correct labels y� from the original

2tr(a, b) represents translation from language a to b, and tl(a, b) represents transliteration from language
a to b.
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dataset. Briefly outlined:

Input: S = X�, y�

Augmented Input: S
0 = X�, Xtr(�,⌧), Xtl(tr(�,⌧),�), y�

Goal: T = y⌧  predict(X⌧ ).

For example, Xtl(tr(en,hi),en) represents the data that are the result of first translating

from English to Hindi, then romanizing the result. The augmentation process can be

performed using any existing machine translation and transliteration tool. An example of

this process is shown in Fig. 8.2. In the first row, second column is the result of tr(en,hi)

and the third column is the result of tl(tr(en,hi), en). In the following sections, for ease of

representing notations, we simply use ‘tr’ for translated and ‘tl’ for transliterated data from

augmented input.

8.2.2 Models & Concepts

Teacher-Student Model & Joint Training. The base component of our proposed

model is straightforward: it obtains sentence representations from a pre-trained language

model (mBERT, XLM-R, or similar) and uses the [CLS] token to classify the utterance.

Our Teacher-Student method uses two such models, jointly trained, as outlined in Fig. 8.3.

In this setup, the Teacher model acts as an anchor that does not change, i.e., all its multi-

head attention layers are completely frozen. The goal is that the representations produced

from training the Student model for the translated and transliterated data will eventually

align with the original (Teacher) model’s source language pre-trained representations.

The training consists of two tasks, an unsupervised alignment task and a classification

task. The goal of the alignment task is to ensure that the three variants (source, target, and

transliterated target) end up with similar representations. As this only requires a 3-way

parallel corpus with no labels, it is trained in an unsupervised fashion. The goal of the

classification task is to train the model for the given class labels. Joint training on both

tasks is necessary for tackling our problem.

102



Figure 8.3: Teacher-Student Model with Joint Training.

Since the two tasks we are interested in only require the classification token for making a

prediction, we build our loss functions on top of the [CLS] token. We treat its representation

as the encoder’s output (h), which is directly used to compute the unsupervised loss and

passed through linear layers to compute the classification output (p = softmax(Wh + b)).

As shown in Fig. 8.3, h�, htr, and htl denote the representations of X�, Xtr(�,⌧), and

Xtl(tr(�,⌧),�) respectively.

The unsupervised alignment loss consists of three components: Lts, Ltr, and Ltl. The

Teacher-Student Loss (Lts) is defined as the di↵erence between output embeddings produced

using source language (X�) by the Student (s) versus the Teacher (t). The Translation Loss

(Ltr) is defined as the di↵erence between output embeddings produced using Xtr(�,⌧) on the

Student versus X� on the Teacher. Similarly, the Transliteration Loss (Ltl) is defined as the

di↵erence between output embeddings produced using Xtl(tr(�,⌧),�) on the Student versus

X� on the Teacher.
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Figure 8.4: Data samples from new datasets. Malayalam and Transliterated-Malayalam
movie sentiment data samples (Top). North India and Kerala floods data samples (Bottom).

All distances are measured using the cosine similarity between the two vectors.3 Essen-

tially, all three losses penalize moving away from the Teacher’s representation of the source

language:

Lts =
1

N

X
d(ht�, h

s
�), Ltr =

1

N

X
d(ht�, h

s
tr)

Ltl =
1

N

X
d(ht�, h

s
tl),

(8.1)

where N represents the number of samples. Thus, the final unsupervised loss (Lu) defined

over the Teacher-Student model can be defined as the weighted sum of the three losses:

Lu = �1Lts + �2Ltr + �3Ltl (8.2)

Meanwhile, the loss function (Jjoint) for the sentiment task is a sum of binary cross-entropy

(BCE4) losses, defined similarly for the three variants of parallel data (Source (�), Trans-

lated (tr), and Transliterated (tl)):

(8.3)Jjoint =
X

k2[�,tr,tl]

BCEk

3We use d(a, b) = 1� a·b
|a||b| .

4BCE = � 1
N

PN
i=1 yi log ŷi + (1� yi) log(1� ŷi)
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Table 8.1: Statistics for the test datasets.

Dataset + � Avg. # of words Avg. # of chars. Avg. # of chars.
per sentence per word per sentence

Movie Review Datasets - Sentiment
Hindi Movie Reviews 335 293 154.5 4.0 613.8

Romanized Hindi (hiro) 335 293 154.5 5.0 775.8

Malayalam Movie Reviews 501 451 10.4 9.3 108.2

Romanized Malayalam (mlro) 501 451 10.4 10.8 122.6

Crisis Tweet Datasets - Relevancy
North India Floods (hinf ) 206 250 20.2 3.9 78.1

Kerala Floods (mlkf ) 109 132 19.1 5.4 103.6

The overall loss is simply the combination of the unsupervised and the classification loss.

Ljoint ts = Jjoint + ↵Lu (8.4)

where ↵ is the hyperparameter that controls the unsupervised loss. To summarize, the

Teacher-Student model takes the augmented data (S 0) as the input and optimizes over a

joint loss function that comprises of an unsupervised component that aligns the translated

and transliterated representation into the same vector space as the source language and a

supervised component that learns to classify for the task at hand.

8.3 Experimental Evaluation

8.3.1 Datasets

In this section, we describe various datasets used in our experiments.

English Movie Reviews. English movie reviews are sampled from the large IMDb movie

review dataset [178] with randomly sampled balanced counts of 5000 positive and 5000

negative reviews for training and 500 each for validation. During training, this dataset is

translated to Hindi and Malayalam, and subsequently transliterated. Ground truth Hindi

and Malayalam datasets (described in the following sections), are used only for evaluation.
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The ‘ro’ notation used in the following section for representing datasets signify tl(•, en); i.e.,

romanization or Latin-transliteration using transliteration tools.

Hindi Movie Reviews. Notations: (hi, hiro). The original Hindi movie review dataset5

is constructed from various News Websites. This dataset consists of positive, negative, and

neutral movie reviews. We select only positive and negative reviews from both training and

validation datasets to construct the test dataset for our cross-lingual setup. From this, we

construct the romanized Hindi dataset using the Indic-nlp transliteration tool [205].6

Malayalam Movie Reviews - New Dataset I. Notations: ml and mlro. For Malayalam

movie reviews, we construct a new human-labeled dataset from the Samayam News website.7

Reviews are lengthy, in general, with plenty of neutral text. So, a native Malayalam speaker

was tasked with extracting a few sentences from each movie review such that each positive

or negative example in our dataset is highly polar. From this, we construct the romanized

Malayalam dataset using the ml2en tool.8 A few samples from the dataset are shown in

Fig. 8.4 and dataset statistics are available in Table 8.1.

Crisis Tweets from Appen. Notation: en. Appen9 provides a labeled collection of

tweets posted during various natural disasters such as earthquakes, floods, and hurricanes.

The three most common languages in this dataset are English, Spanish, and Haitian Creole.

For our experiments, we focus on the related label column signifying the relevancy of

tweets. The dataset also contains English translations of non-English tweets. Training and

validation datasets are constructed using only the English tweets (message column in the

Appen dataset). Statistics are shown in Table 8.1.

5
https://www.kaggle.com/disisbig/hindi-movie-reviews-dataset

6
https://pypi.org/project/indic-transliteration/

7
https://malayalam.samayam.com/malayalam-cinema/movie-review/articlelist/48225004.cms

8
https://pypi.org/project/ml2en/

9
https://appen.com/datasets/combined-disaster-response-data/
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Crisis Tweets from North India and Kerala Floods - New Dataset II. Notations:

hinf and mlkf . To construct our test datasets for the crisis tweet classification experiments,

we collected tweets from the 2013 North India and 2018 Kerala Floods using Twitter API.

We filtered these tweets to restrict only to naturally-occurring transliterated Hindi and

Malayalam sentences, using a set of transliterated crisis-related keywords such as madad,

toofan, baarish, sahayta, floods, etc., for Hindi and pralayam, vellapokkam, vellam, sahayam,

durantham, veedukal, etc., for Malayalam. With the help of a native language expert for

each language who are also proficient in English, the tweets are labeled based on contextual-

relevancy or relatedness; similar to the related label for the English tweets in the Appen

dataset. Dataset statistics are shown in Table 8.1 and a few tweet samples are shown in

Fig. 8.4.

8.3.2 Experiments

Since we are interested in cross-lingual transfer, we only use the English datasets (IMDb

reviews for Sentiment Analysis and Appen Crisis Dataset for Tweet Classification) for train-

ing, augmented with their automatic translations and transliterations. We evaluate on all

other datasets (c.f. Table 8.1).

Monolingual LM Baselines. Our first baseline uses pre-trained language models from

Hugging Face [191] that are monolingually trained on Hindi10 and Malayalam.11

mBERT/XLM-R Baselines. We also consider baselines using multilingual masked LMs

(MLM), specifically mBERT [8] and XLM-R [79]. We compare our models with the following

MLM baselines: 1) a model trained using only in English, 2) a model trained using English

translated to the target language using MarianMT [173], 3) a transliterated model which

is trained using the target-transliterated version of target-translated English data, and 4)

a combination of the three. These baselines use our augmented datasets but do not use the

10
https://huggingface.co/monsoon-nlp/hindi-tpu-electra

11
https://huggingface.co/eliasedwin7/MalayalamBERT
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Table 8.2: Performance evaluation (weighted F1) on various romanized datasets shows that
our Teacher-Student model outperforms the baselines. }: Dedicated Hindi and Malayalam
language models (LM) from Hugging Face; results reflect the best performing model by

varying the training data. �: The di↵erence is significant with p < 0.05 using Tukey HSD
(compared against the best baseline model).

Test Data ! hiro mlro hinf mlkf AVG
Models # Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1

Monolingual LM} 50.38 37.99 48.76 47.55 54.39 49.06 63.35 63.33 54.22 49.48
mBERT Baselines

mBERTen 47.55 41.23 48.23 41.63 56.67 55.27 57.84 57.72 52.57 48.96
mBERTtr 51.81 48.21 51.32 45.62 52.89 47.89 58.26 57.54 53.57 49.82
mBERTtl 55.29 54.18 61.72 56.47 56.14 55.78 58.09 57.79 57.81 56.06

mBERTen+tr+tl 55.16 54.75 61.72 61.25 56.71 56.03 63.74 63.42 59.33 58.86
Our mBERT models

mBERT-Joint 55.57 55.56 64.29 63.58 57.75 56.73 51.85 53.98 57.37 57.46

mBERT-Joint-TS 57.37
�

57.36
�

65.15
�

65.78
�

63.22
�

63.14
� 62.55 62.40 62.07 62.17

XLM-R Baselines

XLM-Ren 50.57 45.76 50.86 47.13 58.11 56.77 61.74 60.98 55.32 52.66
XLM-Rtr 49.52 47.67 51.72 50.16 57.11 56.95 61.74 61.72 55.02 54.13
XLM-Rtl 54.81 53.72 51.67 54.71 51.45 51.24 59.84 59.23 54.44 54.73

XLM-Ren+tr+tl 55.57 54.19 62.46 61.52 56.40 55.67 63.24 63.10 59.42 58.62
Our XLM-R Models

XLM-R-Joint 56.09 55.40 62.90 63.14 53.68 52.81 62.79 62.77 58.87 58.53

XLM-R-Joint-TS 57.70
�

57.03
�

65.93
�

65.71
�

58.39 57.86 64.87
�

64.87
�

61.72 61.37

Table 8.3: Evaluation (weighted F1) on IMDb English test data showing that our model
preserves the performance on the source language for Hindi but not for Malayalam. The
results in hi and ml are with our modifications. †: See discussion 5.1.

Train Language ! en hi ml†

Model (Baseline) (Joint-TS Model)

mBERT 81.06 82.35 71.25
XLM-R 83.47 84.00 74.16

Teacher-Student training scheme. For example, mBERTtl represents the mBERT baseline

which is trained using the target-transliterated version of target-translated English data.

Our Proposed Models. Joint-TS represents our Teacher-Student model shown in Fig-

ure 8.3 and Eq. 8.4. We also perform an ablation (the Joint model) without the Teacher

model (setting ↵ = 0 in Eq. 8.4), i.e. this model does not have an anchored Teacher, which

means that there is no penalty for representations of parallel sentences being di↵erent.
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Table 8.4: Evaluation (weighted F1) on Hindi and Malayalam original script showing that
our model preserves or outperforms their performance on the baselines except for Malayalam
on XLM-R. †: See discussion 5.1.

Test Language ! hi ml

mBERTen 54.34 54.07
mBERTtr 60.11 66.20

mBERT-Joint-TS 61.35 66.24

XLM-Ren 60.82 78.11
XLM-Rtr 59.72 71.40

XLM-R-Joint-TS 62.23 76.46†

Implementation Details. Our implementation is in PyTorch [190] with the transformers

library [191]. We use the pre-trained cased multilingual BERT and the pre-trained xlm-

roberta-base with a standard sequence classification architecture. Maximum epoch is set

to 40 with an early stopping patience of 10, batch size to 32, and we use the Adam optimizer

[204] with a learning rate of 5e�5. We select the best model based on the validation set,

using both accuracy and weighted F1 as performance measures.

8.4 Results & Discussion

In this section, we discuss our results on the two key aspects of our work: i) performance

improvement on transliterated target, and ii) preserving performance on source and target.

Performance on Transliterated Target. Table 8.2 shows the classification perfor-

mance on transliterated datasets. Averaging the scores, we see a total boost of +5.6%

on mBERT and +4.7% on XLM-R in weighted F1 12 performance across the 4 romanized

datasets. Our top baseline models in each of the masked language models are mBERTen+tr+tl

and XLM-Ren+tr+tl, which combine the augment data with the original data to fine-tune

the model for the classification task. The improvement produced by our model is due to the

12With similar trends on accuracy as well.
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Figure 8.5: Plotting representations from the final transformer layer on the movie review
test data shows that unsupervised alignment training brings the representations of the 3
variants in a shared space.

fact that the pre-trained models have likely not seen that many transliterations in these lan-

guages. mBERT is trained using data from Wikipedia, while XLM-R uses Common Crawl.

As such, XLM-R likely has been trained on at least some code-switched or transliterated

data. This is also supported by the scores in Tables 8.2, 8.3, and 8.4, where XLM-Ren out-

performs mBERTen on all datasets, i.e., XLM-R’s English representations are much more

generalizable than mBERT’s for these two languages.

Performance on Source and Target. Table 8.3 shows the performance evaluation

on English data (1000 randomly selected positive and negative reviews from the IMDb

dataset [178]). Table 8.4 reports the performance evaluation on the original script. These

evaluations let us assess whether our Teacher-Student model preserves the performance

on the source and non-romanized target languages. We observe that fine-tuning on Hindi

preserves and slightly improves performance in English, but training on Malayalam does not

(† in Table 8.3; c.f. two bottom columns.) We speculate that this is because, for Malayalam,
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Figure 8.6: Plot showing performance variation by freezing the transformer layers on
mBERT. Freezing up to layers 8 to 10 appears to be optimal.

the transliterated embeddings (red) are not blended in well with the others compared to

those for Hindi as shown in Fig. 8.5 (right panels).

On the other hand, evaluation on the original script (Table 8.4) shows that our model

either preserves or outperforms the baselines trained in English and non-romanized target,

except for Malayalam on XLM-R († in Table 8.4). This exception can be attributed to

the power of XLM-R pre-training in producing a more generalizable English representation

than the original script (XLM-Ren vs. XLM-Rtr).

Representation Alignment. Fig. 8.5 shows a visual reason behind our model’s afore-

mentioned performance improvements. While the t-SNE projection of the (3-way parallel)

sentence representations for the original model are quite distinct based on language/script

(left), our model brings all representations in the same vector space (right). This method

of unsupervised training (Lu in Eq. 8.2) is very generic in nature that it can be adapted

for any alignment scenarios where di↵erent variants or dialects of the same language need

to be aligned.
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Unsupervised Domain Adaptation. In addition to being cross-lingual, our approach

also falls under the paradigm of unsupervised domain adaptation. Our sources and targets

do not strictly fall in the same domain, even though the classification tasks are similar. For

example, the training data for classifying tweets consists of not only floods, but also other

events such as hurricanes, fires, earthquakes, etc. This leads to another application of our

method, which can be deployed at the onset of crisis events in any region, with minimal

requirement to collect labeled data from the new crisis, or converting the data to native

script or English, which might save precious time for crisis response.

Hyperparameter Tuning. Primarily, we tune two hyperparameters: a) ↵ - the weight

that is given to unsupervised loss in Eq. 8.4 and b) number of layers to freeze to identify

the appropriate amount of pre-trained information to be preserved without alteration. ↵

values are tuned using a simple grid search from a range of [0.01-1.0]. All � values (Eq. 8.2)

are set to 1 to prioritize the three variants (source, target, transliterated target) equally.

For Joint-TS (Eq. 8.4), best hyperparameters for mBERT are ↵hiro= 0.3 and best ↵mlro=

0.05 and for XLM-R are ↵hiro= 0.5 and best ↵mlro= 0.01. Intuitively, we find that giving

the classification loss primary focus and the unsupervised loss secondary focus produced

better results. On the other hand, we found that freezing bottom layers and unfreezing a

few top layers lead to the best results as shown in Fig. 8.6. The amount of layers to freeze

was empirically between 8 to 10.

Model Runtime. The runtime of our Joint-TS model and key baselines is shown in Ta-

ble 8.5. The mBERTen and XLM-Ren model are trained only on English data without any

augmentation while mBERTen+tr+tl, XLM-Ren+tr+tl, and the Joint-TS models are trained

using translated and transliterated target in addition to English data. The additional la-

tency is caused due to the augmented data (two times more data). Our Joint-TS model also

consists of unsupervised optimization for alignment, in addition to the augmented data. An

interesting observation is that the Teacher-Student model based on mBERT converges faster

than its en+tr + tl counterpart and XLM-R, while also having a comparable performance
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Table 8.5: Runtime on a single K80 GPU in HH:MM:SS for training a Malayalam model
on Crisis data.

Model ! mBERTen XLM-Ren mBERTen+tr+tl XLM-Ren+tr+tl mBERT-Joint-TS XLM-R-Joint-TS

Runtime ! 00:35:55 00:55:53 02:38:39 02:40:48 01:30:48 04:39:16

as shown in Table 8.2.

Ethical Considerations. The tweets extraction procedure followed the Twitter Terms

of Service and did not violate privacy policies of individual users. Also, the datasets we

share include only Tweet IDs in the public domain. Data statement that includes annota-

tor guidelines for the labeling jobs and other dataset information will be provided with the

dataset packet. From a broader impact perspective, our code is open-source and allows NLP

technology to be accessible to information systems for emergency services and social scien-

tists in studying a large population in India who use transliterated text for communication

in everyday life.

8.5 Key Takeaways

In this chapter, we proposed a Teacher-Student model to enhance the multilinguality of lan-

guage models such as mBERT/XLM-R so that it can be adapted to perform cross-lingual

text classification tasks for transliterated Hindi and Malayalam. Experiments showed that

our model outperforms traditional fine-tuning and other baselines built on the state-of-the-

art. Furthermore, we release two human-annotated datasets: a highly polar Malayalam

movie review dataset for sentiment analysis and a dataset of Hindi and Malayalam roman-

ized tweets posted during North India and Kerala floods. Additionally, our method presents

a generic and extensible architecture that could be adapted to any language alignment sce-

narios where the pre-trained models may fall short.
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Chapter 9: Conclusion & Future Work

9.1 Conclusion

The main agenda behind this thesis was to study and promote NLP models to generalize

well to unseen distributions: to a new domain or to a new language. Leveraging the

state-of-the-art architectures as the building blocks, we tackled cross-domain and cross-

lingual problems on the tasks of classification, slot-filling, and question-answering. Key

takeaways of this dissertation are: (a) infusing diversity in machine learning models can

improve generalization, (b) sharing layers between tasks along with a domain discriminator

can aid low-resource domain adaptation, (c) a combination of any attention method and a

text-to-text transformer can be used to mask domain-specific words in the source domain

and construct a pseudo-target data by regeneration, (d) realigning the attention weights

using a language discriminator can make help sequence models become more language

agnostic, (e) augmenting datasets with code-switching into random languages at the chunk-

level can enhance language neutrality of large language models, and (f) a teacher-student

alignment method can be used to jointly align transliterated embeddings into a comparable

representation as their English/original counterparts. Furthermore, to demonstrate the

practical implications of all our methods, they are applied to extract relevant information

from tweets posted during various natural disasters, with a vision to aid crisis management.

Reproducibility: Source code and documentation are publicly available at-

https://github.com/jitinkrishnan.
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9.2 Future Work

9.2.1 Crisis Tweet Representation

As evident from our results, tweets remain a challenging genre of text regardless of the

task. In the context of word vector models, we saw from the empirical evaluation of word

vector models for practical purposes on challenging datasets that tweet-trained models such

as Glove or CrisisNLP did not significantly outperform other models such as fastText or

GoogleNews vectors. In the context of transformer models as well, performance of transfer

learning on tweets generally remained lower when compared to less ambiguous forms of

text such as Amazon product reviews. We also saw the importance of starting with simple

baselines and analyzing component-level performance as models get more complex. This

is particularly relevant when dealing with low-resource and sparse datasets like tweets.

This calls for an in-depth quality analysis of existing tweet datasets and standardizing the

annotation procedure.

Another direction is to study the non-transferable components in the context of low-

resource tweet datasets. For example, Sentiment is easier to transfer than Factoid because

there is more linguistic overlap in how sentiments are expressed in di↵erent domains. How-

ever, it is not immediately clear that Factoid phrases such as ‘Indian army names aid

mission’ shown in Fig. 4.3 are in fact finding transferable representations. This calls for

methods that leverage external knowledge to link entities [206] and then learn heteroge-

neous graph representations [207] for nodes and relations. Although, this is a growing field,

tweet-based implementations (for the crisis domain in particular) are still scarce.

9.2.2 Interpretabilty

Interpretable nature should be an essential component of machine learning models that

are deployed during emergency scenarios. This brings accountability and connects the

emergency managers or any downstream users of such complex systems in a more meaningful

way and can avoid ambiguities. With the advent of transformer models such as BERT
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[8], where self-attention captures more contextual and complex features than the previous

attention models [67], where the word-level weights have naturally interpretable meaning,

an intuitive interpolation of interpretability is a challenging task [184]. This also includes

the directions of studying transformers for symbolic reasoning [208]. Addressing this in

the context of domain adaptation with low-resource tweet datasets is an impactful future

direction.

9.2.3 Language Families

We showed the impact of analyzing language families in studying linguistic dependencies

with respect to the underlying language model (e.g., training in Turkic language group helps

Japanese; Fig. 7.2). An in-depth analysis with the help of linguistic researchers may lead

to uncover more interesting connections between languages in the context of pre-trained

embeddings (such as mBERT or XLM-R). This is particularly beneficial when training

models that can be generalized to unseen low-resource languages where enough training

data is not available.

9.2.4 Aligning Multilingual Knowledge Graphs for Crisis

Multilingual KGs such as DBpedia [209] and YAGO [23] have been successfully utilized

in several cross-lingual applications. Among numerous ideas proposed for this alignment

problem, embedding-based approaches such as MTransE [24], JAPE [25], a joint embed-

ding method [210], and an iterative entity alignment method [211] stand out due to their

strong performance without requiring machine translation or feature engineering. A newer

approach [212] that showed to outperform the embedding-based methods utilizes graph

convolution network (GCN) to train entity embeddings of each language into the same

vector space, given a set of pre-aligned entities. However, crisis management still remains

a challenging domain that could benefit from such multilingual KGs. A promising future

direction is to incorporate such methods to build multilingual crisis KGs.
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9.2.5 Transliteration

In our work, we acknowledge the limitations posed by the existing Hindi and Malayalam

translation and transliteration tools. For example, the Indic transliteration tool adds an

extra ‘a’ for some Hindi words which is unnecessary (eg., ‘sandarbh’ vs ‘sandarbha’ ) which

may not reflect how native users tend to write. We expect that an improved transliteration

system would further improve the downstream accuracy. This is also the case for many Indic

languages where extensive datasets are not available. Expansion of our model to other Indic

languages such that their translations and transliterations are aligned in state-of-the-art

language models like mBERT/XLM-R is left as future work. Another future direction is to

perform a detailed sensitivity analysis over �2 and �3 parameter that tunes the unsupervised

loss (Lu) in Eq. 8.2, which might also address some of the exceptions shown in Tables 8.3

and 8.4 when, in some cases, the model does not preserve performance on English or non-

romanized target data. To summarize, cross-lingual transliteration problem still has many

areas of improvement on both the process of transliteration as well as language modeling.
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