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Abstract

QUERY CONSOLIDATION: INTERPRETING QUERIES SENT TO INDEPENDENT
HETEROGENOUS DATABASES

Aybar C. Acar, PhD

George Mason University, 2008

Dissertation Director: Dr. Amihai Motro

This dissertation introduces the problem of query consolidation, which seeks to interpret

a set of disparate queries submitted to independent databases with a single “global” query.

The problem has multiple applications, from improving virtual database design, to aiding

users in information retrieval, to protecting against inference of sensitive data from a seem-

ingly innocuous set of apparently unrelated queries. The problem exhibits attractive duality

with the much-researched problem of query decomposition, which has been addressed inten-

sively in the context of multidatabase environments: How to decompose a query submitted

to a virtual database into a set of local queries that are evaluated in individual databases.

The new problem is set in the architecture of a canonical multidatabase system, using it

in the “reverse” direction. The reversal is built on the assumption of conjunctive queries

and source descriptions. A rational and efficient query decomposition strategy is also as-

sumed, and this decomposition is reversed to arrive at the original query by analyzing the

decomposed components

The process incorporates several steps where a number of solutions must be considered,

due to the fact that query decomposition is not injective.



Initially, the problem of finding the most likely join plan between component queries is

investigated. This is accomplished by leveraging the referential constraints available in the

underlying multidatabase, or by approximating these constraints from the data when not

available. This approximation is done using the information theoretic concept of conditional

entropy. Furthermore, the most likely join plans are enhanced by the expansion of their

projections and adding precision to their selection constraints by estimating the selection

constraints that would be applied to these consolidations offline.

Additionally, the extraction of a set of queries related to the same retrieval task from

an ongoing sequence of incoming queries is investigated. A conditional random field model

is trained to segment and label incoming query sequences. Finally, the candidate consolida-

tions are re-encapsulated with a genetic programming approach to find simpler intentional

descriptions that are extensionally equivalent to discover the original intent of the query.

The dissertation explains and discusses all of the above operations and validates the

methods developed with experimentation on synthesized and real-world data. The results

are highly encouraging and verify that the accuracy, time performance, and scalability of the

methods would make it possible to exploit query consolidation in production environments.



Chapter 1: Introduction

Loosely coupled data integration among networked sources has become so ubiquitous over

the recent years that many of the services and applications used daily are actually not

monolithic information systems but rather collections of sources tied together. Instead

of building centralized and large data sources (i.e., the Extract-Transform-Load method),

many organizations and individuals are opting for a virtual database approach. Especially

along with the advent of XML based service-oriented architectures, it has become very easy

to leave data in its original source and to instead recruit the service provided by that source

as needed. This structure is seen in a variety of scenarios such as hybrid web applications

(mash-ups), enterprise information integration models, aggregation services and federated

information retrieval systems. Furthermore, individual users are often forced to procure

and assemble the information they need from sources distributed across a network.

Consequently, a good amount of work done to obtain the answers, including intermediate

results, sub queries and the sources used, are observable to some degree to a third party.

This presents a new opportunity for monitoring query activity from the outside. When

an individual requires information or when a integration system is given a query, they are

forced to disassemble their query into components and send them over the network to the

relevant data sources and combine the answers into what they need. This party will for the

rest of this dissertation be termed the querying agent. I propose that an outside party, the

monitor, will be, to some extent, able to guess at the goal of the querying agent.

1.1 Motivational Examples

Assume one has a chance to observe the actions of a particular user. This user first connects

to the website of the piano technicians guild and downloads a table listing the names and

1



phone numbers of registered piano tuners. Next, the user goes to the phone company

website and retrieves a list of area codes for the New York area (212, 917 &c.). Finally, the

user searches for the names of piano tuners having good ratings from a customer review

site for piano enthusiasts.

These transactions can be viewed as three separate relations:

1. Names and phones of registered tuners from the piano technicians guild.

2. Area codes in the New York area from the phone company.

3. Names of ‘good’ tuners from the review site.

A monitor observing these transactions will come to the conclusion that the user is trying

to find a good piano tuner that operates in the New York area. This is the consolidation

of these queries. Looking at it from the relational algebra point of view, if the component

relations listed above are named R1 to R3, respectively, the consolidation would be:

R1 ./ R2 ./ R3

Another example illustrates a slightly different scenario. Assume now that the querying

agent is a person trying to organize her vacation from Washington D.C. to some resort in the

Caribbean. She does not necessarily care which resort it is as long as it is in the Caribbean.

Unfortunately the flight booking website requires distinct airports to be specified to search

for flights. Therefore, she first retrieves a listing of airports from IATA with the constraint

that the airports be in the Caribbean region. Then, one by one, searches for flights from

Dulles International to each of these airports. Watching these queries, the monitor would

decide that the proper consolidation is the list of flights from D.C. to Anguilla, or to Aruba,

or to Bermuda and so forth. In relational algebra terms, if one names the list of airports

R1 and the result of the search for each airport R2 to Rn the consolidation would be:

R1 ./ (R2 ∪R3 . . . ∪Rn)

2



A final example illustrates the recursive aspect of query plans that may be employed

by querying agents. Consider a software program tasked with building a bibliography on

some subject. Assume the citation server it connects to allows only searches by paper ID.

Once an ID is given the server returns the list of paper IDs and information for the papers

that the original paper cites. Since there is no way for the querying agent to ask for all the

papers at once, it will need to extract the list, or as much of it as it can by traversing the

citations. Starting from a known paper ID, the software agent retrieves the bibliography

of that paper and then one by one retrieves the citations of the papers it has just received

and so forth until it gets no new results (i.e., the recursion arrives at a fixpoint). The

consolidated result is the list of all the papers it has seen up to the point that it can find no

more. Again, if one terms the answers of each of its queries as R1 to Rn, the consolidation

is:

R1 ∪R2 . . . ∪Rn

1.2 The Problem

The problem being addressed is: Given a set of queries which are the result of the de-

composition of a global query across multiple independent databases, can we recreate the

global query from these pieces? One can approach the problem by using the well-researched

architecture of virtual databases.

Briefly, a virtual database architecture consists of a set of local databases L1, . . . , Ln,

a global database scheme G, and a mapping of the global scheme into the local databases.

The conventional way of using this architecture is as follows:

1. A query Q is submitted to the global database G;

2. Q is decomposed to a set of queries Q1, . . . , Qn on the local databases L1, . . . , Lm;

3. Each query Qi is submitted to one of the databases Lj resulting in an answer Ai;

3



4. The answers A1, . . . , An are assembled in an answer A to the original query Q.

This entire process may be summarized as a query decomposition problem:

Given a global query Q, find local queries Q1, . . . , Qn and an expression E
such that Q k E(Q1, . . . , Qn).

Notice that the global query Q is not necessarily always equal to the result of the

decomposition. Depending on the available views, an arbitrary query may only be partially

answerable with any expression. Therefore, the result of the expression E is equivalent or

maximally contained in the answer of the global query Q. I use the ‘j’ and ‘k’ symbols

throughout this document to denote maximal containment. The maximal containment

concept and related issues will be further discussed in Chapter 3.

For the purpose of interpreting a set of local queries, I adopt the same architecture, but

consider a task which is the inverse of the earlier task, and which is thus named the query

consolidation problem:

Given local queriesQ1, . . . , Qn, find a global queryQ and a related expression
E such that E(Q1, . . . , Qn) j Q.

In the “forward” direction (i.e., query decomposition), there could be many alternative

decompositions; i.e., one could have both Q = E(Q1, . . . , Qn) and Q = E′(Q′
1, . . . , Q

′
n). In

such cases a query optimizer will normally prefer the solution in which the local queries

retrieve only data that are necessary to answer Q.

Example 1.1. Consider a virtual database R = (B,C,D) and two local database relations

R1 = (A,B,C) and R2 = (C,D,E), and let Q = πBσD=3(R).

Consider these two decompositions:

4



1.

Q1 = R1

Q2 = R2

E = πBσD=3(Q1 ./ Q2)

2.

Q1 = πB,C(R1)

Q2 = πCσD=3(R2)

E = πB(Q1 ./ Q2)

The first decomposition retrieves the entire relations R1 and R2, whereas the second de-

composition retrieves only the information necessary to evaluate Q. In other words, the

assembly process of the first decomposition discards much more data. Well-known tech-

niques of query optimization may be used to improve a given solution [86].

Similarly, in the “backward” direction (i.e., query consolidation), one should also look

for an expression E (and its implied query Q) that removes as little data as possible; i.e., a

global query Q that will interpret as much of the data retrieved by Q1, . . . , Qn as possible.

In the previous example, the query Q = πBσD=3(Q1 ./ Q2) is a poor interpretation of

the queries Q1 = R1 and Q2 = R2, as it removes much of the data retrieved by the two

queries. On the other hand, the query E = πB(Q1 ./ Q2) is a good interpretation of the

queries Q1 = πB,C(R1), Q2 = πCσD=3(R2), as it removes only a small amount of retrieved

data.

These observations may be summarized as follows.

A query Q is a consolidation of a given set of local queries Q1, . . . , Qn if Q

can be decomposed into Q1, . . . , Qn by optimal query decomposition.

1.3 Applications

The goal of the querying agent requires information that must be obtained from different

sources, and the information is then assembled off-line. There are two principal motivations

for such activities. One motivation is innocent. The information this user requires is

dispersed over multiple databases, forcing the user into the laborious process of submitting
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individual queries to different databases and then assembling and correlating the information

off-line. Discovering an interpretation for this query set may help suggest how information

could be reorganized to facilitate such tasks in the future. Indeed, the main argument

for constructing virtual databases has always been to provide in a single source all the

information necessary for a particular task [69]. Discovering interpretations for distributed

query sets may suggest useful reorganizations and consolidations, either physical or virtual.

The applications can be grouped under several more specific aims:

Distributed Re-design. Consider a shopping mall with multiple stores, and assume

that an analysis of sale records shows that within a small time interval, the same customer

purchased a box of candy in one store, gift-wrapping paper in another, and a greeting

card in a third. A global interpretation of this local information may suggest that service

could be improved if these three items where to be sold in the same store. Similarly, query

consolidation may suggest redesign of available information sources to correspond more

efficiently to popular information needs.

Targeted Advertising Similar to the previous application, the individual requests of a

user can give the system information as to the general goal. This in turn will allow an

associated advertising mechanism to offer products or services that more relevant to the

task the user wants to achieve than the individual parts. The example of the shopping mall

is again pertinent. Instead of offering different gift-wrapping papers and candy selections

as the user browses these, a more precise and thus enticing offer is possible if the individual

parts are consolidated. If the system can predict the global task (i.e., getting a gift for

someone), it can offer pre-packaged gift selections instead, which are more in tune with the

users current situation.

User-Database Interface Improvement. The problem described could easily be adapted

to a situation in which the input set of queries is obtained from the log of a single database;

i.e., a set of queries submitted by a single user to a single database. The reason for such a
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set may be that the user-database interface does not permit arbitrary queries, and the user

is forced to submit multiple queries, each usually small, and then assemble the information

off-line. A good example to this is the case of the person trying to book a flight to the

Caribbean, given earlier. A query consolidation analysis may discover the overall purpose

of the query set, and possibly lead to a re-design of the query database interface to facilitate

future inquiries.

User Education. A different, though not entirely unrelated, reason for query sets, in ei-

ther the distributed or centralized cases, is user inexperience or ignorance. In the distributed

case, the user might be submitting a set of queries to different databases and correlating

them off-line, when the same goal could be achieved by accessing a single database. In the

centralized case, the user might be submitting a set of small queries and assembling them

off-line, when the same goal could be achieved with a single query, perhaps using a feature

of which the user is not aware. A query consolidation analysis may suggest flaws in the way

the system is advertised or in the training of its users. This application is reminiscent of

other systems that track user behavior and suggest improvements, such as office software

or online stores.

The second motivation for leads to the interesting application of query consolidation

in surveillance and security. The consolidated queries imply the intentions and motives of

the querying agent. The actual inference of these intentions from consolidated queries is

a task for a human expert but a query consolidation system can do the tedious work of

consolidation. Since there will probably be a large number of users each with a lengthy

history of queries, the function of the query consolidator will be to sift through the logs and

compile the simplified forms of likely consolidations and present them to the expert. This

will allow a security expert to infer the intentions by looking at the distilled form without

having to assemble and prune of a possibly huge number of queries manually. A variety of

options are available: The expert can focus on a single user and essentially get a listing of

interests during a time period. Alternatively, trends can be analyzed across many sources

looking for a certain intention shared by a group of users. Query consolidation will also be
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useful as a detection mechanism if the possible intentions and the global queries that imply

them are known in advance. The system can be set up so that certain information is on a

watch-list and any consolidation of queries that significantly overlap that information can

be flagged automatically by the system, along with the users that posed said queries (e.g.,

“Did anyone want to compile this information and if so, how did they go about it?”). This

will undoubtedly have its uses in national security and certain commercial settings where

confidentiality is at a premium. Again, there are a couple of more specific ways that this

application can be elaborated:

Detecting Malevolent Intent. By consolidating a set of independent queries submitted

to different databases,one may be able to detect illegal or suspicious requests that could

otherwise go undetected. As a simple example, assume (Person,Rank) and (Rank,Pay)

are retrieved from two different databases. A possible global interpretation may include

the association (Person,Pay), a disclosure which might be undesirable. To discover such

activities requires that a set of “protected” concepts be pre-declared, and that the discovered

consolidations be compared to this set for possible infringements.

Global Inference Control. Inference control is a well-researched subject that concerns

prevention of situations in which information obtained legally from a database is used,

possibly (but not necessarily) in conjunction with “outside” knowledge, to infer protected

information. As a simple example, the two facts “The patient Jones lives in Springfield” and

“only two of the hospital’s cancer patients live in Springfield” may be combined to infer

that “With probablility 0.5 Jones has cancer”. Attempts to detect inference are greatly

handicapped in a distributed environment, where it is hard to keep tab of the information

made available to attackers. By linking together independent databases by means of a

virtual database, inference control mechanisms may be applied to consolidated information,

thus providing greater protection.
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1.4 Research Issues

The problem of query consolidation presents significant challenges. These can be classified

into five main research issues that are handled to some extent in this dissertation.

Solution Multiplicity. In practice, the implemented query decomposition procedure

may not be truly optimal, but in defining a deterministic procedure, query decomposi-

tion becomes a function (i.e., single-valued). Nonetheless, it is not necessarily an injective

function (i.e., one-to-one). Hence, there is no unique inverse.

In the environment of Example 1.1, consider the global queries Q = σB>D(R) and

Q′ = σB<D(R). Both would require the same two component queries Q1 = πB,C(R1) and

Q2 = πC,D(R2). Hence, given Q1 and Q2, both Q and Q′ are possible consolidations.

Consequently, query consolidation requires additional techniques for determining the

most likely consolidations for a given set of local queries. These techniques would involve

the application of additional knowledge on likely search targets, as well as the development

of ranking procedures.

Input Extraction. The statement of the problem assumes a given set of local queries

Q1, . . . , Qn. In practice, however, each of the local databases can be assumed to have a log

of queries submitted to that database. A practical problem is to extract a set of queries

from the n logs that corresponds to a single task submitted by a single querying agent.

There are two dimensions to the problem. The first issue is to ascertain the identity

of the agent. There are multiple pieces of information associated with every transaction

that allows one to identify individual parties. These include connection information such as

IP addresses, authentication details such as usernames and passwords and session tagging

mechanisms such as cookies. In the current computing and networking environment it is

generally not very difficult to identify a certain individual unless the party concerned is

going to the trouble of hiding their identity. Notice that, if such is the case most of the

mechanisms mentioned can be circumvented by using proxies and periodically resetting
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session information. Although explicit user authentication is more difficult to circumvent

it is still possible to confuse identification by several individuals colluding to share the

workload of a suspicious query plan among themselves.

Given this situation, the issue of identifying individuals has been kept out of the scope

of the research. Ultimately, this sort of identification is either trivial or extremely difficult.

Furthermore, the difficulty stems from a matter of security policy and enforcement of au-

thentication procedures and is largely out of the scope of this research. Therefore, I assume

that there is a universal ID associated with each user and as such each query in each log is

identifiable as belonging to one agent or another. Even when the origins of the queries are

known, input extraction still remains a problem as there is the issue of segmenting the input

coming from an individual agent into subsequences denoting individual tasks or “sessions”.

As an example consider the case of the person looking for a piano tuner mentioned in Sec.

1.1. During the lifetime of that user they will necessarily ask many queries. For example,

the same person may inquire about current movies after finishing their task regarding the

piano tuners. A query consolidation system should be able to distinguish the fact that one

task is finished and a new one has started.

Input Imperfection. In practice, the set of local queries Q1, . . . , Qn may be incomplete;

that is, the global query that is the true intent of the user encompasses additional queries,

which may be unavailable to the system for a variety of reasons: The user may already

have the answers to these queries, or he may have submitted them to databases that are

“outside” the system, or the monitoring system missed them for some unknown reason.

Similarly, the input set Q1, . . . , Qn may be unsound, including queries and tuples that

are not part of the eventual goal of the user. The reason for the inclusion of such unrelated

queries could be innocent (e.g., user error or lack of granularity in the querying mechanism)

or malevolent (e.g., to obscure the true intent of the user). Obviously, the presence of such

“noise” is a hindrance to the discovery process.

An important research issue is how to assure that the discovery process is robust, and

can withstand moderate levels of input imperfection (i.e., incompleteness and unsoundness).
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Real-time Analysis. The initial definition of the treatment of the query consolidation

problem (Sec. 1.2) assumed that the entire set of input queries is available before the

analysis begins. In some of the applications, in particular those that concern security and

privacy, it would be desirable to be able to conclude that a suspicious or malevolent attack

is forming as soon as possible. Indeed, one could envision a tool that tracks query logs

continuously, updating and refining its conclusions, and signaling an “alert” as soon as

it concludes that a suspicious goal is being attempted. The required facilities for such

operation are an evolving model and fast consolidation algorithms.

Precision vs. Conciseness. Two desirable properties of the global query Q are preci-

sion and conciseness. Precision means that Q corresponds to the local queries Q1, . . . , Qn

precisely; i.e., the optimal decomposition of Q is precisely Q1, . . . , Qn. Conciseness means

that Q is brief and simple. There is a well known trade-off between these two properties

[85]. That is, to achieve good precision may require a query that is complex and unnatural,

whereas there may exist a much simpler interpretation that corresponds less perfectly to

Q1, . . . , Qn. Compact yet imperfect interpretations are attractive because the data retrieved

by Q1, . . . Qn may include noise: small amounts of data that were retrieved even though

they are not part of the overall goal, and vice-versa, small amounts of data in the overall

goal that were not retrieved. In essence, having a very precise and bloated expression may

be seen as overfitting and may lose the generality of the original goal.

1.5 Operational Scenarios of the Monitor

The system can presumably monitor queries posed to independent sources in one of two

modes depending on what is being monitored.
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Figure 1.1: Object Monitoring Mode

Object Monitoring

In object monitoring (Figure 1.1) the system is set up to monitor the query logs of local

data sources1. This is analogous to monitoring the records of a library for checkout records.

The advantage is to be able to monitor the use of sensitive data located on the local sources

by anybody, as opposed to monitoring users one by one. Therefore, the main application

of this mode security and privacy. There are two primary difficulties associated with this

mode including:

When looking at queries coming into a source, one needs to separate the interleaved

queries into separate threads which isolate different users. If an authentication mechanism

is used by the source, this authentication can be used for threading. However, if the source

is unauthenticated or there is a conspiracy of users sharing various sub-queries of a concept,

user identification with authentication information is not possible. Even when the user is

unequivocally identified, there is the problem of session or concept identification.

When the sources themselves are monitored there is always the chance that the user
1Note that in the example in Figure 1.1 the monitor is not able to monitor Source 1, one of the drawbacks

of the Object Monitoring Mode.
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is employing outside sources which the system may not be monitoring. This leads to an

incomplete picture of the users input. Since the system can only construct consolidations

from what it can monitor, there is the probability that the consolidation is incomplete if

not incorrect if the user is using other sources.

Subject Monitoring

TRUSTED
 FRONTEND

QUERIES

ANSWERS

LOCAL SOURCE 1 LOCAL SOURCE 2 LOCAL SOURCE n

CONSOLIDATOR

USER CLIENT

Figure 1.2: Subject Monitoring Mode

In the subject monitoring mode (Figure 1.2) the system will monitor the user’s client

(e.g., database browser or web browser). This mode is applicable for both security ap-

plications as well as user assistance and feedback applications. In the security case, the

client with the monitoring system may be a trusted front end that any user is required to

use while accessing data sources 2. There are numerous advantages to this mode. First

and foremost, user identification is trivial except for the case where several users collude to

share the task, in order to mislead the system. Session identification is still a problem as the

user will be looking for different things at different times. Incomplete information likewise

becomes considerably easier to handle as the system can now see all the online sources the
2This is possible in organizations where it is policy to have employees use trusted browser/client software

to access the intranet or the internet.
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Figure 1.3: Query Consolidation Workflow

user is employing. Outside sources such as the user’s common sense knowledge or domain

knowledge is still missing but that is largely unavoidable.

1.6 Layout of the Dissertation

In order to describe the function of the subsequent chapters, I will first give a brief overview

of the proposed approach. Figure 1.3 gives a schematic representation of the workflow for

a possible query consolidation setup.

The query consolidation starts as with a stream of queries that arrive from one or more

querying agents. For the rest of the dissertation only a single querying agent is considered

without loss of generality. As will be apparent, the actions of different agents and the queries
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they ask may be considered independent and each agent can be monitored in parallel and

completely exclusive of others. In a sense one can assume a “virtual” system monitoring

one querying agent whereas in reality many of these virtual monitors may be operating on

the same platform or distributed amongst several nodes.

The queries arriving3 initially need to be packaged into meaningful tasks. This requires

the processing of these streams of queries. Each packet is a set of queries that constitute,

independent of the queries outside the packet, the components of a global query. I call each

packet a “goal” in that they define one particular aim of the querying agent. These have

been analogously called “sessions” in previous literature, particularly in works dealing with

web usage mining. The approach to the problem of extracting these goals from a stream of

queries uses some of the concepts and tools originating from the natural language processing

field. Roughly, an analogy can be drawn between a stream of queries and natural language

text, each query serving the role of a word. The self-contained goals are then analogous to

sentences. The approach uses previously marked streams of queries to train a conditional

random field model to effectively and efficiently mark the goal boundaries (i.e the query

that is the beginning of each goal) in newly encountered streams. Furthermore, the same

model can be used to label individual queries within the goal as to their function within

that goal. This is again reminiscent of part-of-speech tagging in natural language processing.

The detailed discussion of this method is given in Chapter 5.

Once a set of queries is extracted from the incoming stream one can attempt to find the

most likely consolidation of these queries into a global query. The issue here, as previously

mentioned, is that the query decomposition is not injective. Therefore, given a set of

component queries there are multiple ways these may be assembled. I approach this problem

by a variant of join inference. All the possible consolidations of a set of queries are ranked

in order of the likelihood of the consolidation. This likelihood is a direct result of how

“strong” the joins are among the constituent parts. I quantify this likelihood using an

information theoretic measure based on the Kullback – Liebler divergence, or information
3or that have already arrived and that have been logged
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gain, occurring on alternative joins. This join likelihood is assessed during both the labeling

of streams and later in ranking the candidate consolidations. Since both these steps may

be, depending on the application, operating in real-time (as the queries arrive), the join

inference has to be very efficient. Hence, a less exact but very rapid approximation of this

measure is also developed. The assumptions and methods used in generating the ranked

consolidation candidates and these optimizations are described in Chapter 4.

Even after a ranking of consolidations has been generated, there are further improve-

ments that can be done on the result. In the environment the consolidation is attempted,

the monitor has only a limited view of the process by which the querying agent arrives at

its global query. Even if all the local sources accessed can be monitored, there are certain

operations that can be done at the integration site which are not visible to the monitor.

These are operations performed by the querying agent only after all the pieces are joined

and the resulting consolidation is filtered by further constraints. These constraints are

“global” in that it would not be possible for the querying agent to perform them at the

local sources. Hence, for the outside observer, there is no indication as to what constraints

are being applied at the integration site. Therefore, a monitor can only guess at the global

constraints that are likely applied by considering what has been retrieved. I approach this

estimation using association analysis. Using earlier global queries as training data a rule

base of associations can be created which relates a likelihood that the global constraint will

be applied given the attributes that have been retrieved. This approach is discussed in

Chapter 6.

Finally, once the candidate consolidations have been obtained, and possibly enhanced

with possible global selections, there is an optional operation that can be performed to

make the result more useful to a human observer. The final candidates are all sound in

that they are equivalent to one of the global queries that could be assembled given a set

of local queries. However, they are not necessarily as concise as possible. Parsimony is

important in that it makes the intention behind a concise global query more apparent than

a convoluted one. Furthermore, by the axiom of Occam’s Razor, it can be argued that the
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simplest global query that covers the retrieved information is more likely to be the intended

consolidation. I therefore describe a way to re-encapsulate the final answers in a simpler

intensional description. One issue with a simpler re-encapsulation is that it may not be as

precise as the original. This approach is further detailed in Chapter 7.

The layout of the dissertation is slightly rearranged so that the narrative develops in a

more natural manner. The following chapter (Chp. 2) surveys the previous work relevant

to the techniques and problems discussed in the remainder of this dissertation and therefore

gives an idea about the areas of research within the scope.

Chapter 3 discusses the theoretical aspects of the research, establishes the theorems,

bounds and assumptions inherent in the succeeding chapters and describes the model and

environment the whole approach works under.

Chapter 4 explains the methods used to evaluate and rank the possible joins between

components of a global query. After the concept of joinability has been thus elaborated,

Chapter 5 returns to the beginning and discusses the methods used to extract individual

goals from a continuous stream of queries and the incremental operation of the whole system.

Chapter 6, discusses the enrichment of the candidate solutions with the expansion of

their projections and the addition of global selection constraints by using earlier experience.

Chapter 7 describes the optional re-encapsulation of the candidate solutions into simpler

intentional representations using a genetic programming approach.

Chapter 8 gives experimental validation to all of the methods described above along

with insights and discussions as to their scalability and the sensitivity of their accuracy

noisy or incomplete input.

Finally, Chapter 9, concludes the dissertation with an overview of the technology, the

results achieved, discussion of the shortcomings and possible future work.
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Chapter 2: Background and Related Work

The subject of this dissertation is mainly rooted in the virtual database (Sec. 2.1) and

query decomposition (Sec. 2.2) areas. I therefore start by giving a brief survey of the

relevant work and basic definitions in these areas. Subsequently, I will go over several of

the related subjects such as join inference (Sec. 2.3) and schema matching (Sec. 2.4) that

are relevant to the methods used in this dissertation in discovering how pieces of a global

query fit together.

In addition to the main subjects, the dissertation is based on the use of several tech-

nologies (i.e., ‘tools’) in attempting to achieve the main goals. One of these is association

analysis (Sec. 2.5), which is used in finding supplementary global constraints to the global

queries, once assembled. The sequence analysis and segmenting done on incoming query

logs is inspired by session identification done in web log mining (Sec. 2.6) and makes use

of conditional random fields (Sec. 2.7) in order to probabilistically label and segment the

incoming queries, therefore the previous research and preliminaries in these areas will be

briefly discussed as well. Finally, as the background for the re-encapsulation candidate

results into simpler intentional expressions, I will go over the literature on intensional an-

swering (Sec. 2.8) as well as a brief introduction to genetic programming (Sec. 2.9) which

is used to generate simpler encapsulations.

2.1 Virtual Databases

Virtual Databases or information integration systems are distributed database systems

which combine a heterogeneous collection of autonomous data sources. For virtual databases,

the assembly site mentioned in the preceding section is the information integration system

itself. The assembly site consists of a schema with no instance. The materialization of a
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global query is done by translating the query (with optimizations mentioned above where

applicable) into multiple sub-queries to be materialized at the local sources and shipped

back to the integrator for assembly [55].

Therefore, information integration systems are distributed databases in the general sense

while having several special aspects and peculiarities not found in coordinated distributed

databases. First of all, while not a strict rule, it can be contended that most distributed

databases will have a star architecture, i.e., the integrator will have a connection to each

local source and the local sources do not communicate with each other [21]. The second and

primary concern for virtual databases is inconsistency. The inconsistencies possible between

the components of an integration system can be classified as intensional or extensional [72].

Intensional inconsistencies, or schema inconsistencies, are the inherent semantic mis-

matches between the global schema of the integrator to the schemata or equivalent semantic

representations of the local sources. One of the main tasks of the integration system is to

reconcile these differences by mappings. There are three mapping paradigms applicable to

schema mapping [55]:

Local-as-View (LAV): The mapping associates each relation of each local schema to a

view of the global schema.

Global-as-View (GAV): The mapping associates each relation of the global schema to

a view of a local schema.

Global-and-Local-as-View (GLAV): The mapping associates views of the global schema

to views of the global schema.

There have been examples of integration systems employing each of these schema. The

Information Manifold integration system [48] and a newer XML query based integrator

reported in [65] are examples of LAV systems. TSIMMIS [36] is an example of a GAV

approach. Multiplex is an example of a GLAV system [72].

Apart from how they handle their mappings, integration systems can further be classified

based on the mechanism they use for their global schema. Some systems such as Multiplex
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and the Information Manifold keep static mappings from local sources to a fixed global

schema. Other systems, such as TSIMMIS and HERMES [4, 5] are called “mediator”-

based. Mediators are software constructs that handle semantic inconsistencies by using

logical inference to reason about the incoming information and assemble ad-hoc knowledge

elements. The drawback is that a new module must be developed for each new source. This

is in line with the inherent problem of GAV, which makes it necessary to change the global

schema as new local sources are added.

The second form of inconsistency encountered by an information integration system is

extensional or data inconsistencies. These arise as different sources often have varied data

on the same subject. There are various methods of resolving inconsistencies between data

elements that have already been semantically reconciled. A straightforward way of handling

data mismatches is giving all the different answers as a list. Other methods include voting

[6] such that the consensus value for any element is return to the user.

The final alternative in literature to resolving inconsistencies is to fuse the answers into

one true answer. Various ways of doing this have been proposed in literautre. TSIMMIS

attempts fusion through its mediators which group the answers and try to logically combine

them [75]. Multiplex does it at the record level by providing the largest consensus and

smallest all-encompassing answers as lower (sound) and upper (complete) bounds for the

true answer. The extension of Multiplex, called Fusionplex [73] attempts to fuse data at

the element level using a multidimensional quality metric for each of the sources to do a

weighted superposition of inconsistent data [74].

2.2 Query Decomposition

Query decomposition is a major issue in information integration, particularly for LAV and

GLAV systems. In GAV integrators the problem is rather simple since each base relation

in the global scheme is mapped onto a view on on of the local sources. If a global query

requires a relation the part of the query relevant to that relation is simply nested with the

view of the local source mapped to the relation. When there is a LAV setup however, the
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local source is a view on the global scheme so the problem becomes a problem of answering

queries in terms of views which is a known difficult problem. In fact, finding the exact

equivalent of a query in terms of arbitrary views is known to be undecidable [32]. A query

Q1 is said to be contained in another query Q2 if the tuples retrieved by Q1 are a subset

of those returned by Q2 for every possible instance of scheme. Q1 is said to be maximally

contained in Q2 if there is no query Q3 contained in Q2 that also contains Q1. Also, if

any two queries Q1 and Q2 are contained reciprocally by each other they are said to be

equivalent. Since the existence of this equivalence is undecidable, algorithms for answering

queries in terms of views attempt to find a maximally contained answer for any given global

query.

There are several algorithms in previous literature that handle the query decomposition

in terms of views. The first of these is the Bucket Algorithm [56]. It is the first major

algorithm described in literature and was developed for the aforementioned Information

Manifold system. The algorithm can handle conjunctive views and conjunctive queries but

not recursion. It does however support range queries (i.e., arithmetic comparison operators)

and unions. The algorithm starts by considering each subgoal (i.e., conjuct) individually to

determine the views relevant to the subgoal. For each such subgoal a “bucket” is created and

the relevant views are placed in these. Subsequently, the algorithm checks combinations of

elements from each bucket to see whether the combination is contained in the original query

or if containment can be achieved by adding constraints. The approach is somewhat näıve

in that it misses the interactions between conjuncts as it considers them independently.

Therefore, it may end up considering many options that are destined to fail in the second

phase.

Another approach to the problem of query decomposition is the Inverse Rules Algo-

rithm [33]. The inverse rules algorithm can find maximally contained equivalents of both

conjunctive and recursive queries in terms of conjunctive views. Although the method will

be discussed further in Chapter 3, briefly the method works as follows: the view definitions

are inverted such that the heads of the conjunctive view definitions become the bodies and
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the relations involved in the bodies become the heads of the inverted rules. Existential

variables within the view definitions are Skolemized. The query is then simply evaluated

in terms of the inverted rules. Any recursive or conjunctive datalog query can thus be

answered. The Skolem functions introduced during inversion cause no problems since only

the view definitions are simply conjunctive and never recursive. Therefore, the chaining of

Skolem functions are guaranteed to be finite. The algorithm does not inherently support

range queries or negation. An advantage of the method is that the inverted views can be

generated once as local sources are discovered and recruited into the system and reused for

subsequent queries. This makes the method technically dependent only on the complexity

of the query and not the number of views. However, since the method does not check for

semantic relevancy it may end up materializing many views that are not really relevant to

the query, thus the real-world performance of the method may much worse than expected.

As in the previous case, this algorithm was developed as part of a LAV information in-

tegration system, namely Infomaster. A second very similar but independently developed

algorithm which only handles conjunctive queries is described in [81]

Finally, a more recent and improved algorithm called by MiniCon has been proposed

by [80]. This algorithm was designed to improve the performance of earlier methods, and is

particularly descended from the bucket algorithm, the aforementioned näıvete of which it

fixes. Instead of considering individual subgoals independently as in the bucket algorithm,

MiniCon considers the variables in the subgoals and their interaction with the local views.

For every subgoal g in the query the algorithm looks at subgoals in the views and tries to

find a match. When a matching subgoal g’ in any view is found, the algorithm calculates

what else would be needed in order to evaluate the query given that g is mapped to g’. For

each match, this information is recorded into a data structure called a MiniCon Description

(MCD) which therefore is essentially a containment mapping for that match. In the second

part of the algorithm, the MCDs that are pairwise disjoint are combined into a single query

which is guaranteed to be maximally contained in the original query. Like the bucket

algorithm, MiniCon is able to decompose conjuctive queries over conjunctive views. The
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queries can be range queries and may have unions. Again, however, recursive queries are

not suported. The Minicon algorithm does support limitations on variable binding however,

as an improvement over the bucket algorithm.

For the remainder of this dissertation, I will focus on the Inverse Rules algorithm since

it is simple, concise and natively supports recursive query plans.

2.3 Join Inference

Relational query languages such as SQL are well suited, in fact designed, to unambiguously

retrieve a required set of tuples from databases of arbitrary size and complexity. However,

by their very nature such languages are by no means intuitive and generally have a steep

learning curve. Furthermore, it is not generally possible for the user to construct a query

without knowing the schema of a database. Therefore, relational database systems and their

associated query languages, while being undeniably useful, suffer from a lack of usability

by the general public [26].

One of the main obstacles to usability can be identified as the difficulty of performing

joins. Therefore, research has been ongoing, for the last 30 years, on systems that can infer

these more complicated operations of query building without requiring the user to specify

them explicitly.

Probably the first endeavour in this respect was the universal relation model [64]. The

universal relation model attempts to make the joins among relations in a database trans-

parent by automatically traversing the schema through join dependencies. There exists

a problem of ambiguity, however when the underlying schema graph has cycles. In these

cases there are multiple lossless join paths that can be constructed. The universal relation

was thus extended with the concept of maximal objects [63] which are expert determined

semantically meaningful partitions of the graph into acyclic subgraphs. Alternatively, these

maximal objects can be generated by analyzing the functional dependencies that exist

among attributes, again as described in [63]. In cases where a query covers parts of more

than one maximal object, the union is given as the result.
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Another approach to the problem of identifying the one join path expected by the user

assumes the path with the lowest cost tends to be the right answer [91]. Here, the cost is

computed by reducing the problem to a minimum directed cost Steiner tree problem and

edge costs are defined in terms of the cardinality of the relationship.

Later approaches to the problem deviate from earlier ones in that they do not attempt

to find a single correct join or merge all correct joins. Inspired by the way search engines

work, newer methods tend to find several explanations as to how the join may be performed

and rank them according to some relevance score which varies from study to study.

The Discover system, described in [42], uses keyword based queries. Once the keywords

are located in the various relations of the database, these relations are connected through

their primary-foreign key relationships. When several minimal join paths result, they are

ranked according to the length of the join path, shorter join sequences having more relevance.

An improvement over this method was introduced in the DBXplorer system [11]. The

essentials of DBXPlorer are the same as Discover except that it utilizes keyword indices1

to more efficiently determine the locations of keywords in relations, whereas Discover scans

relations each time.

Another query interface, INFER [66], generates and ranks the top-k join possibilities

and allows the user to select the one intended before materializing the query. The results

are ranked by prioritizing shorter join sequences over longer ones and lossless joins over

lossy joins. The candidate generation in this system is particularly efficient, according to

the authors, in that it precomputes the maximal join trees and looks up subtrees of these

during query time.

The approach to join inference in this dissertation falls into a niche within the latter

generation of methods, in that it ranks possible answers according to a relevance scheme.

Due to the particular requirements of query consolidation it starts with a fixed number of

relations to join. Ranking by join sequence length is not useful in this case since almost

always the join sequences contain the same number of joins. Hence, the present ranking
1called symbol tables

24



scheme depends on the strength of the connections between various attributes of these

relations and prioritizes spanning trees with higher total weights.

One property of this approach that distinguishes it from previous literature is that it is

completely schema agnostic. In other words, the method can be given a set of relations to

join without any indication as to which attributes are keys and what kind of relationships

there are between these relations.

2.4 Schema Matching

Schema matching is a much researched area in information integration dealing with recon-

ciling two schemas. The basic operation is the mapping of the elements of two database

schemas to each other. Generally, in the context of information integration, one schema is

the global schema of the virtual database and the other is that of a local source to be inte-

grated. A comprehensive survey and classification of schema matching approaches are given

in [83]. According to the classification done in the same work, schema matching approaches

vary according to whether they use intensional (schema-level) or extensional (instance-level)

information. In other words whether they match schemata according to only the metadata

or using the actual data in the repositories defined.

There have been various instance-level schema matching approaches defined in previous

literature. A good number of these are machine learning techniques to classify attributes as

belonging to the same domain. Methods based on artificial neural networks [59], Bayesian

inference with feature selection [17], meta-learning [31] and rule based systems [25] have

been proposed. In the case of the problem in this dissertation schema matching methods

are useful when a query cannot be mapped on to the existing global schema. In that case,

one has to find an ad-hoc mapping between attributes in order to discover the relationship

of one fragment with the rest. The data that is available (i.e., fragments to be joined) is

expected to be specific to the instance at hand and not generally applicable. Therefore I

approach the problem of finding domain compatibility between two attributes in one of two

ways. In the exact (although slower) form of the method I make a closed world assumption
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and consider the instance at hand is all there is. Therefore while matching attributes’

domains I use a straightforward overlap measure. For the approximate method where the

whole of the data cannot be processed efficiently I use a constraint-based approach. I use

a method of matching attribute domains based on the syntax of the values rather than the

values themselves. This is a simplified version of the algorithm described in [76] for inferring

pattern matching finite automata from examples of text patterns, which is in this case a

sample of values for the an attribute. Such constraint-based approaches have been used in

schema matching methods [54] and include data types, cardinality, range and syntax.

2.5 Association Analysis

Association analysis or association rule mining has been a considerably active field for more

than a decade, since the initial treatment was proposed by Agrawal et al. [8]. Association

analysis is mining a set of transactions in a database to find rules that generalize the

associations among the items that constitute said transactions.

The major problem in association analysis has been the complexity of finding frequent

item sets in a set of transactions. Assume that there is a catalogue of some N different

items and a list of orders each of which contain 1 < m < N items together. While finding

individual items occurring frequently in the orders is rather trivial, when all possible sets

that can be built from these itmes are considered, the problem becomes very time consuming

indeed. As a matter of fact, if each possible subset of the catalogue is to be considered,

one would have to check 2N − 1 possible sets and count the occurrence of each one in the

database of transactions. Clearly, such an endeavor would be virtually intractable for any

case where N is respectably large.

Hence, a significant number of algorithms have been proposed which prune the search

space into manageable proportions. The way almost all of these algorithms work is based

on the fact that the frequency of occurrence of a set of items is anti-monotone with respect

to its subsets. This frequency is termed the support of the set of items. If a set of k items is

above a certain support threshold, by definition any of its subsets must also have at least the
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same amount of support. Hence, given a threshold for support, any set of items occurring

at least as frequently as the threshold, along with its subsets, are termed frequent itemsets.

A related definition is that of closed frequent itemsets. Closed frequent itemsets are

defined as those frequent itemsets which have no supersets with the same support. Note

that, since support is anti-monotone, these supersets thus would have lower supports. Given

a support threshold some of these closed frequent itemsets are such that all of their supersets

have supports lower than the threshold. These are termed maximal frequent itemsets. In

other words they are the largest sets of items occurring together in the database to the

extent that they satisfy a minimum level of support. It is easy to see that the set of maximal

frequent itemsets is a subset of the set of closed frequent itemsets which are in turn a subset

of the set of frequent itemsets. Maximal frequent itemsets are also noteworthy in that they

define the boundary in the search lattice where algorithms will prune all descendents for

lack of support.

The methods suggested in the literature can be categorized into two pairs of orthogonal

categories [41]:

• Breadth-first counting algorithms

• Breadth-first intersection algorithms

• Depth-first counting algorithms

• Depth-first intersection algorithms

I will briefly go over some exemplary algorithms that employ each of these approaches.

The pioneering algorithm in literature, Apriori [10], is an example of a breadth-first counting

algorithm. It is the first algorithm to utilize the anti-monotone property of support. Apriori

works in a breadth-first manner, counting each level in one pass of the transaction database.

So, all itemsets with k-1 items are counted for support before the first itemset with k items

is counted. It is therefore possible to prune any k-item sets without counting them if any of

their subsets are infrequent. Once these are pruned the remaining itemsets can be counted

within the database.
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A good example of a breadth-first intersection algorithm is reported by [84]. The advan-

tage of the algorithm is that it can generate results in just two passes of the database and

is thus suitable for very large databases. It divides the database into logical partitions such

that each partition can fit in memory. Subsequently, each partition is counted separately

to generate frequent itemsets for that partition only. The results are merged into a global

list which may have false positives. These are then eliminated by a second pass over the

whole database.

The depth-first search of a subset lattice is, at first glance, not such a good idea. Breadth-

first searches count subsets at each cardinality level by doing one pass of the database. A

depth-first search would require a counting pass over the database at each node, which,

given the exponential number of subsets, would be terribly inefficient. However, several

techniques and requirements vindicate a depth-first approach. Foremost, if one requires

only the maximal frequent itemsets, depth-first analysis tends to be faster in finding the

pruning boundary. Also, with maximal frequent itemsets look-aheads and neighbor branch

pruning is also possible.2 A good example of an algorithm that exploits these advantages,

among others, is MAFIA [20].

Depth-first traversal is also aided a great deal by using transaction lists or bitmaps

instead of direct counting. This way, at each node, the database does not require recount-

ing, all that has to be done is the intersection of the parent node’s list with the added

element’s list. Since in depth-first traversal only the current branch of the lattice is under

consideration, the only lists or bitmaps that need to be stored in memory are those of nodes

from the root down to the node currently under consideration. In contrast to breadth-first

searching, where the whole level (i.e., all k-itemsets) has to be stored, in-memory counting

by intersections is more viable in depth-first search [41].

A rather different approach, [39], deviates from the standard candidate set generation
2Given the set of items {A, B, C, D}, in a lexicographically ordered subset lattice, if one knows that {B,

C, D} is maximal frequent, there is no longer a need to traverse subtrees rooted at {B, D}, {C} and {D},
since any descendants of these are already subsets of {B, C, D}. Likewise, if it is known that the nodes {A,

B} and {A, B, C} have the same support, the node {A, B, D} does not need to be visited, since A, B and
C obviously always co-occur and therefore there can not be a case where A and B exist with D and not C.

28



and pruning by employing a novel data structure called a Frequent Pattern Tree (FP-Tree).

The building of this structure is done in a depth-first manner. The FP-tree is then used to

compute the support values of frequent itemsets.

Generally, once frequent itemsets are found, association rule generation is done by di-

viding these itemsets into antecedent and consequents such that given the antecedent the

consequent is probable to some extent, termed the confidence of the rule. The confidence

is also bound by a minimum so an itemset X would be partitioned such that the rule

(X −Y) → Y has at least the minimum confidence where Y is a subset of X. The use of

association analysis in this dissertation somewhat at this point since, in the present prob-

lem, the antecedent is of a domain different than the consequent. Therefore, I modify the

standard maximal frequent itemset generation as performed in standard algorithms such

as those described in [7, 20, 39] slightly to fit the needs of the particular problem of query

consolidation. This will be further elaborated in Chapter 6.

2.6 Session Identification

Most of the previous literature on session identification and analysis of query logs is geared

towards web log mining. In web log mining, sequences of document requests from a web

server are analyzed instead of database queries. A second form of web log analysis is the

analysis of keyword and parameter queries sent to search engines and other information

retrieval services (e.g., digital libraries, travel sites &c.) This type of analysis is based on

clustering queries in order to find trends [14] and other clues as to the general information

demands of the users in order to better design services [45].

In terms of session identification, the most prevalent and simplest method of isolating

user sessions is the timeout method. In the timeout method, the user is assumed to have

started a new task after a given amount of time has passed without activity. For web

information retrieval the threshold is reported [40] to be 10 to 15 minutes, for optimal

separation of subsequent user sessions. Another method proposed in [28] is based on the
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fact that the users spend less time on auxiliary pages (navigation pages &c.) than on content

pages. The method assumes that a session is finished when a user navigates to content page

and times out. The timeout method is applicable to the database query environment as

well, as a supportive addition to the method proposed in the following section.

Finally, a method is proposed in [27] called maximal forward reference. In this method

the user is assumed to be in the same session as long as the next page requested has a link

from the current page. This approach is relevant to the problem at hand as it uses a metric

of relevance between two requests to cluster them into the same session. A similar approach

is used in the method proposed in the following section, to cluster relevant queries together.

As far as query log analysis in database environments, there is one relevant study [93]

that uses methods based on statistical language analysis in order to do session identification.

Their method is based on training a statistical model with previous examples. The method

predicts session boundaries where a sequence of queries becomes improbable with respect

to previous experience. The method differs from the one proposed by this dissertation in

that it requires an in-order arrival. These concepts will be discussed further in Chapter 5.

2.7 Conditional Random Fields

The most common approach to segmenting sequence data and labeling the constituent parts

has been the use of probabilistic graphical models. Particularly, hidden Markov models

(HMMs) [82] have been used extensively in the literature for sequence data such as natural

language text, speech, sensor logs and event streams. An HMM defines the joint probability

distribution p(X,Y ), where X is a random variable over possible sequences of observations

and Y is a random variable over the possible sequences of labels (i.e., the possible states of

the process generating said observations) that can be assigned to the same input. Because

they define a joint probability, HMMs are termed generative models.

A generative model can be used to generate new sequences obeying a certain distribu-

tion defined by the parameters of the model. These parameters are either coded directly
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or optimized by using training data. However, given a certain sequence of observations,

finding the most likely sequence of labels involves using Bayes’ Rule and knowledge of prior

probabilities. Furthermore, defining a joint probability requires enumerating all possible

sequences, both observations and labels. Given that the number of possible sequences in-

creases exponentially with the sequence length, this is generally intractable unless strong

assumptions are made about the independence of sequence elements and long-range depen-

dencies thereof.

In contrast, a different class of graphical models, known as discriminative models model

the conditional distribution p(Y |x) for a particular sequence of observations, x and cannot

generate the joint distributions. Since the problem at hand when trying to label a sequence

of queries is finding the most probable sequence of labels given a sequence of observations

(i.e., the observation sequence is already fixed), discriminative models are better suited to

the task.

Yi-1 Yi Yi+1

Xi-1 Xi Xi+1

Yi-1 Yi Yi+1

X

(a) Hidden Markov Model (b) Linear-chain Conditional Random Field

Figure 2.1: Comparison of a Hidden Markov Model to a Linear Chain Conditional
Random Field

Shaded nodes indicate the variables that are generated by the model.

A rather recent form of discriminative model is the Conditional Random Field [53].

A conditional random field (CRF) can be regarded as an undirected graphical model, or

Markov network [47], where each vertex represents a random variable. The edges of the

graph represent dependencies between the variables. In the simplest case, the graph is

a linear chain of state (label) variables Yi dependent on the previous state and globally
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conditioned on the sequence of observationsX (see Fig. 2.1b) but higher order and arbitrary

graphs are possible. As long as each state variable Yi obeys the Markov property (i.e., is

conditionally dependent only on its clique in the graph), the graph is a conditional random

field.

Given this structure, it is therefore possible to factorize the joint distribution of Y into

potential functions, each one contained to a clique of vertices in the CRF. In other words,

the arguments of each potential function must be limited to the same clique of vertices. In

the case of a linear chain CRF such as that given in Fig. 2.1, the arguments of any such

function will be Yi, Yi−1, and X. As long as the feature functions are positive and real

valued, the product will satisfy the axioms of probability, provided that it is normalized by

a factor. Therefore the definition of any potential function fk for a clique consisting of a

particular observation sequence x and elements yi and yi−1 of a particular state sequence

y would be:

fk(yi, yi−1,x, i) = r ∈ R, 0 ≤ r ≤ 1

The values of these potential functions can then be aggregated over the complete se-

quence to obtain the feature functions:

Fk(y,x) =
n∑

i=1

fk(yi, yi−1,x, i)

In trying to segment and label a sequence of queries, the interest is only in decoding

a particular state sequence y. In other words, given a particular sequence of observations

one would like to find out the sequence y that would maximize p(y|x). This conditional

distribution associated with the CRF is:

p(y|x, λ) =
1

Z(x)
exp

K∑
k=1

λkFk(y,x) (2.1)
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where Z(x) is the aforementioned normalization factor, and λ is the set of parameters

(or weights) associated with each of the K feature functions. For any given application

the training of a CRF involves estimating these parameters. This parameter estimation is

done using maximum likelihood training. Given a set of training sequences consisting of an

observation sequence and the associated label sequence, {(x(j),y(j))}, the product of Eqn.

2.1 over all the j pairs of sequences is the likelihood. In maximum likelihood training the

set λ that maximizes the log-likelihood function:

L(λ) =
∑

j

[
log

1
Z(x(j))

+
∑

k

λkFk(y(j),x(j))

]
(2.2)

is found. The log-likelihood function is concave and differentiable. However, the equat-

ing the differential to zero does not necessarily result in a closed-from in terms of the

parameters. Therefore, the parameters that maximize the likelihood cannot be solved for

analytically [92]. However, the problem is amenable to numerical solution by iterative

scaling [18,44] or quasi-Newton methods [60].

2.8 Intensional Answers

The foundations of the research on qeury re-encapsulation in this dissertation can be traced

into previous literature along two primary headings. The first is the previous state of

the art in intensional answering. The second heading consists of genetic programming and

especially genetic programming as it applies to databases and data mining. As far as I know,

this dissertation is the only point of intersection for the two areas, therefore the subjects are

thus far necessarily unrelated. To this end I will go through them independently, starting

with the former.

Intensional answering arises as a form of cooperative database function in which system

returns a description of the result as a set of rules or predicates instead of a set of tuples.

The thinking here is that rules are conceptually more informative and easier to comprehend
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to the user than a set of derived tuples [43]. The results of any query may therefore be

seen as either an information centric extensional answer or a knowledge centric intensional

answer. In other words, a set of tuples that comprise a view of the database is the extension

and the predication that defines that view is the intension [71]. These two forms of answers

are possible exclusively or in a mixed manner. The choice of answer depends mostly on

the query itself. If the user is asking for a list of phone numbers, an intensional answer

is almost useless. On the other hand, a query looking for employees making more than a

specified amount is most likely looking for a class of employees rather than a list of names.

An answer such as ”Managers and Engineers make more than X” might be appreciated

more by the user. One aspect that is generally of concern is that the intensional answer

itself should be considerably more concise than the extension [85]. It is easy to see from

the previous example that a predicate enumerating all the people who make more than X

is necessarily the same thing as returning the extensional answer.

There have been several ways in which previous literature has attempted to handle in-

tensional answering. These include using the integrity constraints of the database [70], in

which every query is executed normally on the data to obtain the extensional answer, but

also accompanied with an intensional answer derived from the schema and integrity con-

straint metadata associated with the database. Another work has proposed using decision

tree methods to classify the extensional answer as a class in the whole database and subse-

quently derive the intensional predicate from the resulting decision tree [16]. This is closer

to the approach in this dissertation in that it uses machine learning techniques to classify

the set of tuples in the answer to derive the intensional answer. Totally different methods

involving logic programming [30] and deduction [79] have also been suggested.

2.9 Genetic Programming

Genetic programming [29] has developed over the last two decades as local-optimization

method for generating simple computer programs that present solutions for semi-structured

or ”black-box” problems. The point to notice is that these programs are evolved to map to
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the required values of a range given distinct values of the domain. The extent to which the

programs can map to the correct results defines their fitness to the problem. The programs

which have the highest fitness survive as the optimization progresses. These programs can

thus recombine with other such programs to generate offspring of even higher fitness. The

ultimate goal is a program which can attain performance above a certain threshold fitness.

The basic principals of genetic programming was defined by the landmark book by J.

Koza [50]. This publication forms the foundations of genetic programming, including the

basic tree generation algorithms, breeding operations and the basic evolutionary cycle used

by my approach. A second publication by the author [51] is also relevant to this dissertation

in that it outlines mechanisms to use the optimal substructure properties of the problem

and defines reusable program portions called automatically defined functions (ADFs). The

atomic selection operators, described in Section 7.2, are essentially ADFs and my approach

tries to exploit optimal substructure by starting from very simple sub-queries and build an

accurate but concise intensional answer in a bottom-up fashion.

Genetic programming has been used to some extent in data mining. In some cases

researchers have preferred genetic programming as a classification method instad of or along

with more traditional methods such as decision trees. The reason is generally to increase

the accuracy of prediction. Genetic algorithms are better able to capture trends and rules

in smaller subsets of the dataset which more conventional methods usually overlook [23,24].

Genetic programming and algorithms have been successful enough in data mining to prompt

complete systems which have been built on the premise and commericalized [34]. For a more

complete treatment of genetic programming and genetic algorithms in data mining see the

survey by Freitas [35].
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Chapter 3: Preliminaries and Theoretical Results

In this chapter, I will start by making the basic definitions used throughout the dissertation

and also introduce notational conventions used throughout. Subsequently, I will describe

the data model. Since query consolidation is the reverse of information integration, the

consolidator uses a conceptual integration scheme as a substrate. This substrate in effect

defines the knowledge of the consolidator on the domain. I will go on to define the query

decomposition method used as a benchmark. Using the behavior of the decomposition

algorithm I will introduce the primary assumptions used in the rest of the research. Finally,

I will introduce the theoretical framework based on this model and assumptions, discussing

the possibilities of consolidation and specifically the combinatorial problems that result

from the multiplicity of correct solutions given a consolidation problem.

3.1 Basic Definitions and Notation

The environment in which I study the query consolidation problem is the relational model.

Thus the most basic data structure involved will be the relation. A relation, in its simplest

sense, defines a connection between one or more objects, concepts, classes or, in general,

attributes. Relations will be denoted by uppercase letters (e.g., R, S, T) or capitalized short

phrases that define their nature (e.g., Flight, Employee, &c.). Base relations in schemata

are generally named with letters starting from R, views are named with letters starting

from V. Relations defined by queries are denoted with Q, with appropriate subscripts when

there are more than one query in question. When required for clarity, the relations may

have their schemata listed along with their names (e.g., R(A,B,C)). Individual attributes

will be denoted with uppercase letters starting with A, or may be denoted as capitalized
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short phrases defining the attribute. Sets of attributes will be denoted in boldface capital

letters starting with X (e.g., X,Y,Z).

There is a certain duality when considering relations which will become very important.

A relation may be regarded as an intensional concept, in which case the sense of the relation

is meant. Otherwise the relation may be thought of as an extensional entity, in which case

the relation is simply a set that contains all the tuples that obey the intension of the

relation. Notationally, when the relation is mentioned in its intensional sense I will use

standard uppercase or capitalized text. For the extensional form of relations, since they are

sets of tuples, I will use a boldface notation (e.g., R: colors of the rainbow, R ={ (Red),

(Orange), (Yellow), ... , (Violet)}.). Relations can thus be intensional or extensional, with

the extensional form being an instance of the intensional form, i.e., sch(R) = R.

Database schemata can be simply regarded as collections of base relations. For the

rest of the dissertation, whenever mentioned, schemata will be denoted with a calligraphic

typeface (e.g., G for a global schema). Similar to individual relations, the instance of the

same database will be denoted in boldface (i.e., sch(G) = G).

In this research the scope is limited to conjunctive views. A conjunctive view over a

database is defined as the result of a conjunctive expression on the database. A formal

definition is as follows:

Definition 3.1 (Conjunctive View). A view V over a database D is defined by a Horn

clause of the form:

V (X) ← R1(Y1), . . . , Rn(Yn)

where R1...n ∈ D and X ⊆ (Y1 ∪ . . . ∪Y2). In other words, the predicates should all

be base relations of the database D and the all variables in the head of the clause should

appear in the body as well. Similar to all relations, the materialization (i.e., extension) of

the view V is denoted as V
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Queries are regarded as “ad-hoc” views. The formal definition of a query is the same

as that of a view. In practical terms, views are assumed to be more or less persistent over

the life of the database while queries are specific to a single information request. In both

queries and views, an important definition is that of containment.

Definition 3.2 (View Containment). Given views V and U over a database D:

V ⊆ U ⇐⇒ D |= V ⊆ U

Therefore, the view V is contained in U if its extension, V is a subset of the extension U ,

for all instances of the database.

The definition of containment leads to the definition of view equivalence. Two views are

equivalent if they contain each other:

Definition 3.3 (View Equivalence). Given views V and U over a database D:

V ≡ U ⇐⇒ (V ⊆ U) ∧ (U ⊆ V )

3.2 The Data Model

Since query consolidation is ultimately the reverse of data integration, one needs a virtual

database model that will be the substrate on which the monitor operates. As reviewed

in the previous chapter, there are many different virtual database architectures that have

been proposed in previous literature. These ultimately represent different variations on

three basic approaches to the problem of integrating data, namely Local-as-View (LAV),

Global-as-View (GAV) and to a lesser extent, the hybrid of these two, Global-Local-as-View

(GLAV).

In this dissertation, I adopt the Multiplex architecture [72] as a starting point. The

advantages of Multiplex that are attractive here are its simplicity and generality. Simplicity
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is due to the fact that Multiplex assumes that all databases are in the well-known relational

model, without introducing any new concepts or structures.1 Generality is achieved by the

method in which the global and component (local) databases are associated, namely as

arbitrary view pairs, hence making it a GLAV system.

A Multiplex database is

1. A global database scheme G,

2. A set {L1, . . . ,Ln} of local database schemes, and their associated database instances

L1, . . . ,Ln, and

3. A set M = {(V1, U1), . . . , (Vm, Um)} of view pairs, where each Vi is a view of the global

scheme G, and each Ui is a view of one of the local schemes.

The global scheme is defined in the relational model in Multiplex. Hence, it consists of

a set of relations. A portion of these relations will encapsulate the real-world concepts in

the application domain (e.g., employee, department, project &c.). Other relations hold the

relationships of these concepts to each other (e.g., WorksIn, Manages &c.). In addition to

the relations themselves, a set of known generalized dependencies can be encoded in the

scheme.

Definition 3.4 (Generalized Dependency). A generalized dependency [38] is an implication

of the form:

∀X̄[φ(X̄)⇒ ψȲ ]

Where φ and ψ are conjunctive expressions of relations and equality assertions on vari-

ables X̄ and Ȳ respectively.

This form of generalized dependency encapsulates all of the relevant dependencies one

may want to capture in the scheme. The most important being functional dependencies,
1Yet, as noted in [72], with certain assumptions, local databases could be in other models as well.
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all other equality and tuple generating dependencies such as join dependencies and multi-

valued dependencies are covered. For example, a functional dependency such as A→ B on

a relation R may be written as:

∀A∀B∀B′[R(A,B) ∧R(A,B′)⇒ B = B′]

Inclusion dependencies are enforced only during data entry and updates. Since neither

the querying agent nor the monitor have much control over the quality of the data in

the local sources, it makes no sense enforce these extra constraints. Note that functional

dependencies can be violated as well, due to duplicates with different values and extensional

inconsistency between the local sources. However, since functional dependencies encode the

essential relationship information between attributes and are thus included in the global

scheme.

Finally, the global scheme includes a set of mappings between attributes. Reminiscent

of schema matching mechanisms, this set contains a mapping between two attributes (e.g.,

R.A and Q.B) if the attributes have the same meaning.

Example 3.1. Consider a schema consisting of two relations: Dept(ID,Name,Chair)

and Faculty(ID,Name,Rank,Dept). In this case DeptID in the Dept relation and the

Dept attribute in Faculty refer to the same concept, namely the identifier of a department.

Likewise Dept.Chair and Faculty.ID both refer to the ID number of a faculty member.

Thus, the mapping set for this example becomes Φ = {< Dept.ID, Faculty.Dept >,<

Faculty.ID,Dept.Chair}.

Formally, then, a global database scheme G is a triple < R,Σ,Φ > composed of:

• A set of relations R and

• A set of generalized dependencies Σ

• A set of pairs Φ mapping the real world meanings of attributes to each other.
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This is the bare minimum of information needed to build the global scheme. Note

that one can readily derive key information from the closure Σ+. Given a relation R, any

functional dependency of the form X → R indicates that X is a key of R. Likewise, given

X ⊆ R and Y ⊆ Q, the following conclusions can be drawn for cases where dom(X) =

dom(Y):

• If X → R, R has a 1-to-many relationship with Q.

• If Y → Q, Q has a 1-to-many relationship with R.

• If both X → R and Y → Q, Q and R have a 1-to-1 relationship.

The global scheme G has no instance. It serves as a template while materializing the

answers to queries posed by the users of Multiplex. A view pair (Vi, Ui) is a mapping

between the local data source Li and the global scheme G.

Having a mapping between a global view Vi and a local view Ui implies that these two

views are equivalent. In other words, for any possible instance Li of a local database Li the

extensions of the local view Ui would be equivalent to the extension of the global view Vi,

had there been an instance of the global database G.

This is where the GLAV property of Multiplex becomes evident. Notice that if all

views Vi were equivalent to individual base relations of the global database, each local

view Ui would be mapped directly on to a single relation, thus making it a global-as-View

architecture. Alternatively, if each local view Ui was mapped one-to-one on individual

relations of the local databases, the mapping is reduced to a local-as-View architecture.

When a query is posed to the Multiplex system, the relevant parts of the global scheme

are considered and the query is rewritten in terms of the views Vi that overlap with these

parts. The resulting queries are sent to the local databases to be evaluated against the

views Ui of those local databases.
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3.3 Query Decomposition

As mentioned in the previous chapter, there are several query decomposition algorithms

in previous literature. Of these, I have chosen to base further analysis of the problem on

the Inverse Rules algorithm described in [32, 33]. All the algorithms reviewed previously

take the same basic approach to answering queries in terms of views and the Inverse Rules

algorithm was chosen because it was found to be the most succinct and least ambiguous

treatment of the subject. That being said, the analysis performed here is applicable to

any query decomposition algorithm as long is it is correct and efficient. Inverse Rules also

guarantees maximal containment of the answer in the original intension of the query.

Maximal Containment is defined in terms of a global query Q, an assembly expression

E(V1 . . . Vn) and a set of views V1 . . . Vn.

Definition 3.5 (Maximal Containment). A query plan E is maximally contained in a query

Q (i.e., Q k E) if for all possible instances of V1 . . . Vn:

E ⊆ Q ∧ @E′ : (E′ ⊆ Q ∧ E ⊆ E′)

To recap how Inverse Rules works, consider a simple example:

Example 3.2. Let the information integration system consist of a single relation of the

form:

Flights :< From, To, F lightNo >

and be connected to two local sources L1 and L2 with the mappings

V 1 :< To, F lightNo > ⇔ Flights(‘IAD′, T o, F lightNo)

V 2 :< To, F lightNo > ⇔ Flights(‘DCA′, T o, F lightNo)

respectively. Therefore, the local sources map to the same base relation on the global

schema with different constraints, i.e., one is the outgoing flights from Dulles Airport and
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the other from Reagan Airport. Initially, the inverse rules algorithm prepares an inverted

set of views as rules. The inversion is such that the head of the rule is a base relation and

the body is in terms of views. The two inverse rules would be:

Flights(‘IAD′, T o, F lightNo) : − V 1(X,Y )

Flights(‘DCA′, T o, F lightNo) : − V 2(X,Y )

Now, assume that the query is:

Q(To, F lightNo) : −Flights(To, ‘JFK ′, F lightNo)

namely, the flights to JFK. The inverse rules algorithm simply evaluates the original query

along with the inverse rules, so that the query plan becomes:

Q(To, F lightNo) : − Flights(From, ‘JFK ′, F lightNo)

Flights(‘IAD′, T o, F lightNo) : − V 1(To, F lightNo)

Flights(‘DCA′, T o, F lightNo) : − V 2(To, F lightNo)

Note that the list of flights obtained from this query plan is not going to be complete.

However, since the system is linked to only two airports it will retrieve the maximally

contained answer, i.e., the list of flights to JFK, given the available information.

For views that contain a conjunction of multiple base relations (i.e., joins), the reversal

involves introducing Skolem functions.

Example 3.3. Starting off with the database of the previous example, let there now be a

third mapping2.
2In order to keep the example simple, assume that a given airline has only one flight between two locations.
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V 3 :< To, From,Airline >⇔ Flights(To, From,F lightNo), Operator(FlightNo,Airline)

The set of inverse rules now becomes:

Flights(‘IAD′, T o, F lightNo) : − V 1(To, F lightNo)

Flights(‘DCA′, T o, F lightNo) : − V 2(To, F lightNo)

Flights(To, From, f1(To, From,Airline)) : − V 3(To, From,Airline)

Operator(f2(To, From,Airline), Airline) : − V 3(To, From,Airline)

Notice that the function terms can be treated as regular variables and become bound

when all of their arguments are bound as well. Since the function terms are only intro-

duced during inversion of view definitions, and since the view definitions are conjunctive,

the functions are guaranteed to not have nested functions as arguments. They do not there-

fore prevent the evaluation of any query plan and can indeed be eliminated altogether as

explained in [33].

The inverse rules algorithm also naturally supports recursive query plans. Recursive

plans are of great importance since even if they are not explicitly used, users sometimes are

forced into recursive behavior in order to collect the information they need, as will be seen

further on.

Example 3.4. Consider the case where the query is:

Q(X,Y ) : − Flights(X, ‘JFK ′, Y )

Q(X,Y ) : − Flights(X,Z, Y ), Q(Z,W )
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This is a recursive plan that searches for any flights either direct or connecting flights

to JFK. This query may be combined with the inverse rules from Example 3.3 to obtain a

query plan that will retrieve all known flights to JFK, direct or connecting.

3.4 Assumptions

I will make two primary limiting assumptions that will define a baseline for the rest of the

research. While the former of these will be relaxed in certain points when possible, they

are nevertheless central to the decisions made hereafter.

3.4.1 Language Assumptions

The first assumption on the expressiveness of the query language. I assume that all the

queries and view definitions are in Selection-Projection-Cartesian product (SPC) relational

algebra 3. Although SPC is a restricted set of relational algebra (i.e., it excludes union,

difference, non-conjunctive selections, and aggregations), it is adequately expressive for the

large portion of queries used in the real world [57].

The simplification this assumption allows is that one can now use a canonical expression

for all queries and views expressed in SPC. It can be shown that any expression in a SPC

algebra can be written in the form4 :

Q = πPσC(R1 ×R2 × . . .×Rn) (3.1)

Therefore, each query or view may be defined by a tuple Q = {PQ, CQ,RQ} where RQ

is the set of relations mentioned in Q. PQ and CQ are the projection attribute set and

selection condition expression of Q, respectively.
3Or, equivalently, Selection-Projection-Join-Rename (SPJR), in the named perspective
4See [1] for proof.
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The selection condition CQ is defined as a conjunctive predicate with each term being a

comparison between two variables (i.e., attribute names) or a variable and a constant. Com-

parisons between constants and variables are termed simple comparisons and comparisons

between two variables are termed immediate comparisons.

3.4.2 Behavior Assumptions

As stated in in the introduction, the main problem is:

Given local queries Q1, . . . , Qn, find a global query Q and an expression E
such that Q k E(Q1, . . . , Qn).

One can think of the problem as a reversal. I start by assuming that there is a “querying

agent” that is sending out queries to several sources in order to collect information which

will in turn answer a global question. The aim is to infer this question by looking at queries

of the agent, which is assumed to be rational and efficient.

There are certain assumptions inherent in considering a rational and efficient querying

agent. The first is the necessity assumption. Here, I assume that the local queries are such

that they only project necessary attributes. Likewise, any queries that are not necessary

for the integration would not be asked. Therefore, Q1 . . . Qn are assumed to be necessary

to build Q.

Recall that query decomposition was characterized as a procedure with a unique out-

come. Consider a simple global query that retrieves a single value such as a person’s age.

Obviously, there could be multiple correct decompositions. For example, the local query

Qi could retrieve just the person’s age; or it could retrieve that person’s entire tuple, and

the expression E would project the age; or it could retrieve the tuples of multiple persons

and E would select that person’s tuple and project the age. The guiding principle of the

query decomposition procedure is to retrieve from the local databases as little as possible,

taking advantage of the local system’s query processing capabilities. This reduces possible

costs charged by the local database, as well as the costs and time of transmitting the data.

Hence, the decomposition adopted is one that optimizes the process.
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An important dimension of the necessity assumption is that it restricts the the degrees

of freedom on CE due to frugality in processing. This frugality assumption states that any

information that can be filtered locally will be filtered locally. This means that CE cannot

contain any selection terms that are relative to constants (i.e., simple comparisons). This

is better illustrated by an example:

Example 3.5. Given Q = πAσA=3(V1), where V1 = {A,B,C} is the global view of the

local database.

Consider these two formulations of E:

1. Q = E(Q1) = πA(Q1), where Q1 = πAσA=3(V1)

2. Q = E′(Q′
1) = πAσA=3(Q′

1), where Q′
1 = V1

The second formulation (i.e., E′) is flawed since Q′
1 is not the most frugal local query

strategy. In this formulation all the tuples in local database D1 are retrieved whereas Q1

retrieves only column A and only the tuples where A = 3.

Through the standard transformation rules of relational algebra, any constant-based

selections can be pushed into the local query [1]. Therefore, the terms of CE are assumed

to only contain immediate comparisons (e.g., A = B, A > B, &c.). Furthermore, any

immediate comparisons that can be done within a local source will be done at the local side.

So CE only contains immediate comparisons between variables originating from different

local sources.

The second assumption is that of sufficiency. This assumes that the user is not using

information obtained elsewhere to achieve his goal. The information in the local queries

Q1, . . . , Qn is sufficient to achieve the goal, and hence can be approximated by an appro-

priate consolidation.

These two assumptions restrict the problem space considerably. They are, however, not

justified in some cases. The necessity and sufficiency assumptions are based on the more

general assumption that the querying agent is both perfectly logical and honest. Note that
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by “querying agent” I refer to both automated integration systems as well as a human

operator manually collecting and integrating data.

If the integrator makes logical errors, it may well ask for attributes or even whole queries

that are not going to be used in the global question. Alternatively, even a logical integrator

may ask for spurious data in an attempt to misdirect any surveillance. Likewise, in conflict

with the frugality assumption, selections that could be done locally could be instead done

more expensively at the integration site as a result of poor optimization or a purposeful

attempt to mislead.

Mindful of these considerations, I still adopt these two assumptions in order to be able

to approach the problem in a simple manner.

3.5 Analysis of the Extent of Solution Multiplicity in Con-

solidation

One may start the analysis of the non-unique nature of query consolidation from the point

of view of the querying agent. Any conjunctive query can be put into a canonical form.

From a relational algebra point of view, a conjunctive query is any query expressible in the

project-select-join algebra. The canonical form for any such query is:

Q = ΠPσC(R1 ×R2 × ...×Rn)

where R1...Rn are the base relations used, P is the set of projection attributes and C

is a conjunctive predicate. The predicate C is by definition a conjunction of terms of the

form Ai = Aj or Ai = K where Ai,j are attributes of the cartesian product and K is a

constant value. Ai = Aj type terms are essentially how one performs equi-joins of the

component relations and Ai = K type terms are how the results are filtered to include

only the desired tuples for the query. Note that the comparison operators used may not

be limited to equality and may be any binary comparison such as arithmetic comparison,
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lexicographic ordering, string length &c. This being the case for all SPJ queries, a global

query decomposed by a query decomposition algorithm may thus be written as:

QG = ΠPσC(V1 × ...× Vn)

where V1...Vn are the global views used. By the rules of relational algebra, this form

can be re-expressed as:

QG = ΠPG
σCG

[ΠP1(σC1(V1))× ...×ΠPn(σCn(Vn))] (3.2)

by distributing the projection and selection operators over the cartesian product. In

fact, this would be exactly what a query optimizer would do in order to push as much of

the processing down to the local sources and to minimize the amount of intermediate results

to be transferred and processed. Simply by replacing the global view Vi with the local view

on the source, Ui, and maybe changing certain attribute names and constant values with

respect to the rules of the mapping, the query decomposition algorithm arrives at the set

of local queries to be sent to the local sources. These would therefore be of the form:

Qi = ΠPi(σCi(Ui)) (3.3)

Therefore the relationship between the global query, QG, and its components, Qi, (i.e.,

queries decomposed to local sources) is:

QG = ΠPG
σCG

[Q1 × ...×Qn] (3.4)

The model of a querying agent is that of a rational and efficient one. Therefore I assume

that the querying agent will optimize its queries as much as possible. This would mean that

any constant comparisons (i.e., of the form Ai = K) will be processed at the local source

if possible. Therefore if a local source, Di, can make the selection against an attribute the

query Qi sent to that source will have the required selection predicate in its conjuction
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Figure 3.1: Visibility of the Query Process
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Ci. Likewise, if some of the attributes in the view for a source are unnecessary for the

computation of the global query these are assumed to be projected out at the local source

(i.e., using Pi) rather than at the integration site (i.e., using PG).

Looking at the operation from the point of view of the monitor (Figure 3.1), the only

visible entities are the component queries, Qi, that the querying agent sends out to local

sources. The monitor has to guess at the global query, QG, by considering these. The

missing information are the operations done at the integration site by the querying agent.

For the case of PSJ queries, these are the contents of PG and CG.

In order to estimate an upper bound on the number of possible solutions, I start with

the worst case scenario. Consider the following:

Lemma 3.1. Let a querying agent retrieve N relations from different sources. Each relation

has an arity of M attributes.

The worst case in the size of the consolidation space is when each attribute of each

retrieved relation is of the same type (e.g., all integers), and therefore comparable to each

other in terms of joins or global selections.

As a very simple example to the preceding lemma, consider the following:

Example 3.6. Given two components Q1 :< A,B > and Q2 :< C,D >

Q1:

A B

1 2

2 4

3 6

4 8

5 10

Q2:

C D

1 1

5 2

10 3

15 5

20 6

Even when the projection is assumed to be the union of the projection sets of Q1 and

Q2, and with just one possible operation (i.e., equality of attributes or lack thereof), there
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are four possible minimal5 consolidations:

σA=C(Q1 ×Q2)

A B D

1 2 1

5 10 6

σA=D(Q1 ×Q2)

A B C

1 2 1

2 4 2

3 6 10

5 10 6

σB=C(Q1 ×Q2)

A B D

2 1 1

σB=D(Q1 ×Q2)

A B C

1 3 1

3 6 20

The remaining consolidations are all intersections of the minimal consolidations, such

as:

σA=C=D(Q1 ×Q2),σA=C∧B=D(Q1 ×Q2),σA=B=C(Q1 ×Q2), . . .

and so forth, for a total of ten distinct solutions to the consolidation problem in this example.

Given the worst case, one can calculate the worst case size of the solution space, i.e.,

the number of candidate consolidations.

Theorem 3.1. Given N queries with M attributes each, the size of the consolidation solu-

tion space is bounded by Ω(b(M
2N2)), where is b the number of possible binary comparisons

that can be done among individual attributes (e.g., =,≤,≥ &c.).

Proof. Let H = {V,E} be a hypergraph. Also, let there be a set of colors C = {c0, . . . cb+1}.

Each hyperedge has a color defined by the function c(e) : E→ C. The set of vertices V is

defined as:

V = {ai,j : i = 1 . . . N ; j = 1 . . .M}
5The definition of a minimal consolidation will be formalized later in this section.
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Thus, there is one vertex in the hypergraph for each attribute, i.e., |V| = NM . The set of

hyperedges E is the union of two disjoint subsets:

E = Ê ∪E
′

The original relations are defined as hyperedges in Ê with color c0:

Ê = {{ai,j : j = 1 . . .M} : i = 1 . . . N}

e ∈ Ê ⇐⇒ c(e) = c0

Therefore there are |Ê| = N hyperedges with color c0.

Let the remaining hyperedges (i.e., the set E
′
) represent binary comparisons between

attributes of different relations and be colored in any possible permutation, each color

defining the operation to be performed between the two attributes or lack thereof (e.g., c1

being a non-link (i.e., null operation), c2 representing an equi-join, c3 representing a “≥”

comparison &c.). Since there are b colors, one for each possible operation, and a color for

null operations (c1) there are a total of b+ 1 colors, excluding c0.

Therefore, the set of hyperedges defining these comparisons is:

E
′

= {{ai,j , ak,l} : i, k = 1 . . . N ; j, k = 1 . . .M ; i 6= k}

e ∈ E
′ ⇐⇒ c(e) = ci : 1 ≤ i ≤ (b+ 1)

Through standard combinatorics, the number of different binary links between any two

attributes, provided they are not in the same relation, is:

|E′ | =
(
|V|
2

)
− |Ê|

(
M

2

)
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Since the hyperedges in set E
′
can each be colored b+ 1 different ways the hypergraph has:

|TCG
| = (b+ 1)|E

′ | = (b+ 1)(
1
2
M2N(N−1))

colorings. Each coloring represents one possible configuration of the selection expression

σCG
as given in Eqn. 3.4.

The number of candidates occurring from the number of possible projections can be

calculated directly from the total number of attributes (i.e., |V|). The number of possible

projections is simply the size of the power set given the set of all attributes in all the N

relations. Therefore,

|TPG
| = |2V| = 2|V| = 2MN

The number of candidate consolidations is the product of the sizes of the configuration

spaces of PG and CG. Therefore the size of the solution space for consolidation becomes:

|TPG
||TCG

| = 2MN (b+ 1)(
1
2
M2N(N−1))

Given that there is at least one operation (i.e., b ≥ 1), it is evident that the growth rate of

the PG configuration space is always dominated by the growth rate of the CG configuration

space. Hence, one arrives at the asymptotic bound of Ω(b(M
2N2)).

3.5.1 Minimal Consolidations

Obviously, the enumeration, ranking and refinement of such a large set of solutions is

unrealistic except for very small problems. I therefore define a subset of the solution space

in which effective query consolidation is possible realistically.
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Definition 3.6 (Minimal Consolidation). A minimal consolidation of a set of queries

Q1 . . . Qi is a consolidation where the hypergraph representing the consolidation is min-

imally connected.

In other words, a minimal consolidation is one where the removal of a single clause from

the selection expression CG would cause one of the component queries Qi to be disconnected

from the rest. This would therefore cause that component to become “unnecessary” in terms

of the necessity assumption introduced in Sec. 3.4. In that regard, minimal consolidations

are the simplest solutions that still satisfy the necessity assumption.

Corollary 3.1. Given N queries with M attributes each, the size of the set of minimal

consolidations is bounded by Ω(M2NNbN ), where is b the number of possible binary com-

parisons.

Proof. Using the hypergraph in the proof of Thm. 3.1, by definition, minimal consolidations

represent spanning trees over the hypergraph such that the vertex set is identical and the

hyperedge set is the union of two disjoint sets:

E = Ê ∪E
′′

Ê is defined as in the proof of Thm. 3.1, representing the hyperedges defining the base

relations. E
′′

defines the smallest set of links that connect these relations. It is clear from

basic graph theory that all configurations of E
′′

consist of exactly |Ê| − 1 elements, since

there will be one link and one link only connecting each relation to the other.

Using Cayley’s formula, if each relation consisted of a single vertex (i.e., a single at-

tribute), there would be |Ê|(|bE|−2) possible sets that could link these together. Instead,

each relation is a hyperedge of M attributes (vertices). Note that every subgraph of the

original hypergraph induced by a pair of edges in Ê is a Moore Graph (i.e., complete bi-

partite graph of the form KM,M ). Therefore, by definition, there are M2 possible ways to

link each pair of relations.
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Hence, the number of possible configurations for the edge set E
′′

is the product of the

number of ways the relations can be paired up and the number of ways each pair can be

linked:

|TE′′ | = M2Ê(bE−2)

Working in a manner similar to the proof of Thm. 3.1, given b possible comparison oper-

ations, there are c1 . . . cb ways each link may be colored. The final number of colorings is

thus:

|TE′′ |b(|bE|−1) = M2N (N−2)b(N−1)

leading to the asymptotic upper bound of Ω(M2NNbN ).

Therefore, considering only minimal consolidations gives a rich set of solutions while

alleviating some the combinatorial explosion inherent in the complete solution set.

Figure 3.2 shows the growths of the two with respect to the number of component views

and the number of attributes per view. In both cases the number of binary operations

was limited to b = 1. This shows the case where there are, for example, only equi-joins

between the components. The number of minimal consolidations (Figure 3.2(b)) are the

ways of assembling the components that have the minimum number of joins in order to

connect all. The number of total consolidations (Figure 3.2(a)) are all the possible ways

these components can be joined, including equi-joins over multiple attributes and cyclical

joins.

In the subsequent chapter, I will approach the problem initially in terms of evaluating

the minimal consolidations as to their “likelihood”. This likelihood emphasizes the pairwise

join consistency over constituent relations. Since minimal consolidations are by definition

spanning trees, they are also acyclic. It has been previously proven [15] that in acyclic

schemes local (pairwise) join consistency leads to global consistency. Therefore, if a minimal

consolidation is made up of pairwise consistent joins, one can say it will be consistent
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Figure 3.2: Extent of the Number of Possible Consolidations
(a) Growth of total number of consolidations (b = 1).

(b) Growth of number of minimal consolidations (b = 1).
Note: Clearly, the number of consolidations is defined only when the number of views and the number of attributes
per view is a positive integer, and is itself always an integer. Nevertheless, the growth functions are continuous over

real numbers and hence the surfaces on this plot are thus shown continuously for illustration purposes.
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globally. Further on in Chp 6, these minimal consolidations are going to be enhanced by

adding new selection operations.

3.6 Summary

I have given definitions for the important concepts underlying information integration, query

decomposition, and its reverse; query consolidation. Additionally, I have described the data

model and the structure of the global schema used to provide a setting for the remain-

ing chapters. Furthermore, I’ve introduced the basic assumptions on query language and

querying agent behavior.

Finally, the multiplicity of the possible solutions was investigated in this chapter, dis-

cussing the reasons for the multiplicity, the extent thereof and the growth of the number

of solutions with respect to number of component queries, their respective arities and the

number of comparison operations possible. A new subclass of solutions termed minimal

consolidations was also introduced and analyzed. This subclass will form the basis of the

solution method in the next chapter.
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Chapter 4: Evaluating Minimal Consolidations and Join

Inference

In the previous chapter, the number of consolidations possible over a given number of views

with a given number of common attributes was discussed. The results of that analysis is, at

first, discouraging. However, with several assumptions and heuristics, most of the solutions

can and will be pruned, with the remaining solutions being ranked in order of likelihood.

The number of possible consolidations being impractically large, I will focus instead on

the minimal consolidations. The reasons for this are threefold. First of all, as seen previ-

ously, the number of minimal consolidations for a given problem are orders of magnitude

lower than that of all possible consolidations.

Secondly, minimal consolidations are represented by acyclic graphs, which makes it

possible to enumerate, evaluate and rank them easily. This comes from the fact that in

an acyclic organization, local evaluation of certain aspects (such as pairwise lossless-ness of

joins) are distributive to the global level. If the join plan is acyclic, pairwise evaluation of

join strengths (i.e., degrees of the join dependency) can be summed up to obtain the same

for the whole plan.

Finally, all possible consolidations are derivable from at least one minimal consolidation.

This means that for any possible solution of the form:

Q = ΠPG
σCG

(V1 × . . .× Vn)

for a given consolidation problem, there exists a minimal consolidation Q′ of the same

problem and a selection expression C ′
G such that:

Q = σC′
G
(Q′)
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In other words, minimal consolidations can be used as precursors to more complex

consolidations by the introduction of additional selection constraints. Furthermore, I limit

the number of comparisons possible to one1, namely equality testing. Given this limitation,

it clear that the minimal consolidations of this form are join plans. Specifically, since all

minimal consolidations are trees, the join plans considered are star and chain joins and

hybrids thereof.

I will start by discussing the construction of a join graph from which the join plans are

derived. From there I will discuss how the Multiplex global scheme is used to select and

rank those minimal consolidations that make sense in the real world.

In the second part of the chapter, I will consider the case where the global schema

cannot be used. This happens when one or more of the views that are to be consolidated

cannot be mapped onto the global schema, or they do not have any dependency links to

the other views and thus have to be analyzed extensionally in order to discover these links.

4.1 Methodology

In the previous chapter, I discussed the possible number of minimal consolidations from a

completely combinatorial aspect. In actuality, a large number of the minimal consolidations

do not make sense semantically. Consider the following example:

Example 4.1. Consider the following two relations retrieved from two different sources

(e.g., a list of employees of ABC Corp. and the list of accounts at XYZ Bank) :

Employees:

EmpID Name Phone

222-99-3034 Alice 555-3456

342-23-3244 Bob 555-3422

234-43-4322 Carol 555-3422

Accounts:

SSN Tel Balance

222-99-3034 555-3456 $5644.03

342-23-3244 555-3422 $56.34

234-43-4322 555-3422 $3456.08

1i.e., b = 1 using the nomenclature of Chp. 3.
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Immediate inspection by a human, even without any metadata, reveals that there are

two ways of joining these tables, namely joining with SSN = EmpID or Tel = Phone and

one can see right away that the remaining seven combinations of these two relations will

not succeed. Upon closer inspection it is apparent that SSN = EmpID is a better way to

join these two tables since Bob and Carol have the same telephone number (meaning they

share the same house/office line).

The monitor can use its own global schema (defined in section 3.2) to prune meaningless

joins and therefore arrive at a subset of the minimal consolidation solutions that actually

make sense in the real world. Recall that the monitor’s global schema contains a set of gen-

eralized dependencies Σ. These dependencies will indicate which joins between an arbitrary

set of answer fragments are meaningful in constructing a global answer.

The proposed monitor will contain mappings between a global schema and the local

sources that have been mapped to this schema. This mapping architecture is equivalent to

an information integration system, which is Multiplex.

In accordance with Multiplex, the mappings are to follow the GLAV paradigm, in which

views of the local sources are mapped into views of the global schema. Figure 4.1 illustrates

the idea. Note that if the local view for a mapping covers the entire source, the mapping

effectively becomes a LAV mapping for that source. Likewise, if the global view of the

mapping covers the whole global schema the mapping is a GAV mapping. It is therefore

possible to achieve generality in the mappings.

Once a global schema that unifies the local sources is available, any queries that are

posed to a local source can be expressed as queries acting on the global view of the source.

This gives one the ability to manipulate and relate queries on widely different sources on

a common substrate (i.e., the global schema). Therefore, while monitoring queries sent to

different sources, the system will map these onto the global schema and can thus consolidate

them as a single global query.

In rough strokes, the overall approach may be sketched as follows. I assume a virtual

database is available that integrates local databases L1, . . . ,Ln in a global scheme G. Given

61



GLOBAL SCHEMA

LOCAL SOURCE 1 LOCAL SOURCE 2 LOCAL SOURCE n

INTEGRATOR (CONSOLIDATOR)

Figure 4.1: Mapping of Local Sources to the Global Schema
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local queriesQ1, . . . , Qn, I start with a procedure that roughly reverses query decomposition:

1. For each local query Qi, determine the views Uj that are relevant (intersect with Qi).

2. Materialize the extensions Qi to obtain the part Q̄i that is within Uj .

3. In the virtual database, materialize the corresponding views Vj with the answers Qi.

4. Populate the base relations Rk with materialized views Vj .

As described in steps 1 and 2, it is possible that a local query Qi would not be contained

in a local view Uj , causing some data to be discarded when global structures are populated.

As this will decrease the effectiveness of the consolidation, I assume that all local queries

are contained in mapped views. I will relax this assumption in Sec. 4.2, later on.

Upon materializing the views Vj from the received answers Qi, and then populating

the relations Rk with these views, one finds that a view may be contained in a relation, or

several views may be contained in the same relation, or a view may span several relations.

Consider the example in Figure 4.2: V1 spans relations R1 and R2, both V2 and V3 are

contained in R3, and V4 is contained in R4. The task now is to join the relations that

received data; all other relations are ignored.

V1  

Q1 Q2

V2

Q3 Q4

V3

V4

R1 R2 R3 R4

Alternative Join Path

Discarded Join Path

Locked Join Path

Figure 4.2: View Mapping and Join Paths
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The global scheme contains dependency and dictionary information (essentially, foreign

key constraints) that establishes possible relationships among its relations. Figure 4.2 also

shows the relationships among the four relations. Initially, I ignore the relationships that

cannot be used because none of their attributes were materialized. These are shown as

dashed lines. Furthermore, any relations that are spanned by a single view are considered

to be joined unambiguously. Therefore, the join implied by the spanning view is “locked”

and all its alternatives (i.e., other join paths between the two relations) are ignored. Locked

joins are shown in bold lines. Thus, I obtain a multigraph in which vertices are relations

and edges are possible joins. The join graph for the example is given in Figure 4.3.

R1 R2

R3 R4

Figure 4.3: Join Graph of the Mapping in Fig. 4.2

A join plan is a tree that spans this graph. Such a join plan is also, by definition, a min-

imal consolidation. One can therefore obtain all the possible minimal consolidations (join

plans) by enumerating the spanning trees in the join graph. Mandatory edges indicating

locked joins (such as the one between R1 and R2) are handled by merging their two end

vertices.

4.2 Join Inference without Global Schema Information

In this section I consider the problem of inferring joins among relational (tabular) data

instances in the absence of a comprehensive schema that describes the data. In other

words, given two or more pieces of tabular information the problem is of deciding if, and

how, these tables may be joined in a way that the resulting table contains the relevant

tuples of the input tables such that they are related.
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In a way the method proposed here acts as a simplified ad-hoc relational information

integration system. Given a set of tables with no information about the columns and of

how they are related to each other it attempts to find the most likely universal relation [64]

with the given pieces.

Apart from query consolidation, a schema agnostic join inference method has appeal as a

data source discovery and assimilation tool for unstructured or semi-structured sources [19],

the most prominent of which is the World Wide Web. The sources on the Web that are

exploitable by information integration systems currently are those with well defined access

methods and rich metadata (e.g., XML based web services). There is however, a large

amount of information on the web which is published as tables with no such descriptive

information. These include text documents with embedded tables, web pages with HTML

tables and even older text which has been scanned with OCR systems and put online. All

of these documents have tabular (i.e., relational) data that can be satisfactorily extracted

from text automatically [78]. Even then, however, these are semi-structured data with no

descriptions as to their meaning in a global schema or their dependencies. An automated

join inference method, if efficient, can analyze a large number of such pieces rapidly and

find any possible join links between these and the extensions of existing parts of a virtual

database, thereby allowing them to be recruited to further increase the completeness of the

information. Alternatively, the method proposed here can also be used as a data mining

tool in its own right in collecting pieces of relational data strewn over multiple documents

and joining them into larger, global relations that can then serve as fact tables or existing

dimensions to fact tables in a data warehouse and can be mined for knowledge.

The first step in finding possible joins among unmarked relations is identifying the at-

tributes that are compatible in their domains. There are various methods2 for matching

attribute domains in previous literature. I will introduce a simpler method that is able

to work with scarce information and in polynomial time by exploiting certain aspects of

key attributes. Even when matching by domain is done, there may be multiple join paths
2See Chp. 2
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available due to more than one pair of attributes matching. In order to solve this ambi-

guity, I make the assumption that likely joins paths are those that employ key-foreign key

relationships among the relations. While it can be argued that there may be cases where

interesting joins may be obtained by joining on non-key relationships I will limit the scope

to join plans that are lossless or, if there are no such options, to join plans that approximate

the same as much as possible.

The terms in the conjunct are the equi-join links between pairs of relations. One thus

needs to find the set of links which are foreign key relationships such that all relations are

connected in a single tree. If every input table is guaranteed to have at least one such

good link to another table, then one can find a minimal consolidation. However, given that

the data coming from unstructured and independent sources is liable to be flawed both

intensionally and extensionally, such perfect linkage is not guaranteed by any means. Thus

one must be able to find the closest match, in other words the maximally contained con-

solidation with the available data. I approach this problem using an information theoretic

measure by which I score each possible link between two relations with a value defining to

what extent that link constitutes a foreign key relationship. Thereafter, the tree of links

spanning all the input relations and having highest total score is the maximally contained

one. Furthermore, one is able to rank alternative trees (i.e., join plans) by their total scores,

thus achieving a method that has better recall.

4.2.1 The Join Graph

I model the set of input queries with an undirected and labeled multigraph G = (V,E),

termed the join graph. The vertices V are the input relations R1, . . . , Rn, and the edges

E are possible equi-joins between the corresponding relations. As two relations could be

joined on different pairs of attributes, there may be parallel edges and the edges are labeled

with the join attributes. For example, an edge labeled (A1, A2) represents the equi-join

R1 ./A1=A2 R2.
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Figure 4.4 shows an example join graph involving three relations R1 = {A,B,C}, R2 =

{K,L} and R3 = {X} and a complete set of edges, representing a situation where every

pair of attributes from two different relations is a possible equi-join.

R1

R2 R3

A=K
B=K
C=K

L=X

B=X
C=X

A=L
B=L

C=L

A=X

K=X

Figure 4.4: Example Join Graph

A join plan for the given relations is a relational algebra expression in which every

relation appears exactly once, and relations are connected with single-attribute equi-joins.

In the example of Figure 4.4, R1 ./A=K R2 ./L=X R3 and R1 ./B=X R3 ./K=X R2 are two

join plans. Given a connected join graph, a join plan is represented as a spanning tree.

The goal is not merely to find a possible join plan or to enumerate all the possible join

plans. Rather, the goal is to sort the possible join plans according to their likelihood. Hence,

I describe a method by which each join plan is assigned a likelihood score (i.e., a weight).

As mentioned previously, because they are acyclical, the join plans are locally opti-

mizable. That is, if given more than two relations, the most likely join plan is one that

comprises the most likely individual joins. Consequently, I describe a method for assigning

weights to individual joins.

In the graph model, I score each edge in the multigraph with a weight that represents

the likelihood of the join it represents. The weight of a join plan is then the total weights of

the participating edges, and possible join plans (minimal consolidations) are sorted by their

total weight. The most likely join plan is the one that corresponds to a maximum weight
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spanning tree.

Example 4.2. Consider Figure 4.5, which shows a weighted version of the graph in Fig-

ure 4.4. For simplicity, only 5 of the 11 possible joins are considered. This simple join graph

has a total of 8 possible spanning trees. Of these, the maximum spanning tree (shown in

bold edges) denotes the join plan R1 ./B=K R2 ./L=X R3; The tree in second place denotes

the join plan R2 ./B=K R1 ./A=X R3; and so forth.

R1

R2 R3

B=K
(0.9)

L=X
(0.6)

A=X
(0.3)C=L

(0.2)

K=X
(0.1)

Figure 4.5: Weighted Join Graph

Enumeration of spanning trees can be done by a variety of algorithms, and I use the al-

gorithm described in [46], which allows the enumeration of an arbitrary number of spanning

trees in order of total weight and can handle multigraphs. Its complexity depends on the

number of trees generated and the worst case complexity is O(N log V + V E), where V is

the number of vertices, E is the number of edges and N is the desired number of top-ranked

trees to be generated.

4.2.2 Pruning Edges

I now turn to the central issue of assigning weights to equi-joins. Given attribute A1 of

relation R1 and attribute A2 of relation R2, one considers the join R1 ./A1=A2 R2 to be

optimal (most likely), if A1 and A2 have identical domains, and are primary keys of their
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respective relations. The lesser the degree of satisfaction of these two conditions, the farther

the join is from optimum.

To justify, consider the situations at the other extremes. (1) When the domains are

completely disjoint, the join is empty; and (2) when the attributes are “anti-keys” (i.e., all

tuples of R1 have the same value in their A1 attribute, and all the tuples of R2 have the

same value in their A2 attribute), the join is either empty (when these values are different),

or the entire Cartesian product of R1 or R2 (when they are identical). In either of these

extreme cases, the join R1 ./A1=A2 R2 is farthest from optimal.

The optimal join can be viewed as a foreign-key join, in which every tuple in one relation

matches exactly one tuple in the other relation (a 1:1 matching). When the domains are

not identical, there will be tuples in each relation that are not matched. And when the

attributes are not strict keys, tuples in one relation may match several tuples in the other

relation.

Hence, the likelihood of a join R1 ./A1=A2 R2 is derived from these two parameters:

• The compatibility of dom(A1) and dom(A2).

• The selectivity of A1 on R1, and the selectivity of A2 on R2.

In a preliminary step, I identify those attributes that are considered improbable for

joins. These include attributes that contain long character strings or real numbers. These

attributes are discarded.3 Next, for the remaining attributes one can construct a compati-

bility matrix. Attribute compatibility is calculated using this domain similarity measure:

sim(A1, A2) =
|dom(A1) ∩ dom(A2)|
|dom(A1) ∪ dom(A2)|

(4.1)

The values of this measure are between 0 and 1. The measure is 0 when the attribute

domains are disjoint, and 1 when they are identical. Using a threshold, the compatibility
3In the experiments (to be detailed in Chp. 8) I consider attributes with strings exceeding 10 characters

to be unlikely participants in joins. Clearly, the definition of attributes that are join candidates can be
relaxed.
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matrix is binarized. The join graph is then constructed with an edge for every two attributes

judged compatible.

There is an anomaly that may occur in some join graphs that is corrected at this stage.

As an example, consider a relation Country that lists countries, and a relation Border that

lists pairs of countries that share a border. In essence, Borders models a many-to-many

relationship between entities of Country. Unfortunately, such occurrences lead to cyclical

join graphs and must be remedied. Figure 4.6(a) shows the initial join graph. Obviously,

the desirable join plan is Country ./ Borders ./ Country, yet the spanning tree approach

will not discover this join plan. This anomaly is rectified if the join graph includes two

instances of Country, each with its own edge to Borders, as shown in Figure 4.6(b). Such

situations are discovered by searching for edges from two different attributes of one relation

to the same attribute of another relation. When such an occurrence is found, the vertex of

the latter relation is split in two, with each vertex receiving one of the edges.

              Name      Code   Area    Population   Capital

COUNTRY

               Country1 Country2

BORDERS

               Name      Code   Area    Population   Capital

COUNTRY
   Instance 1

               Country1 Country2

BORDERS

               Name      Code   Area    Population   Capital

COUNTRY
  Instance 2

(a) (b)

Figure 4.6: Resolution of Join Cycles
(a) Unresolved join cycle

(b) Reinstantiation to resolve cycle

4.2.3 Weighting Edges

Having constructed a join graph based on attribute compatibility, I now describe how to

score its edges on the basis of attribute selectivity. As mentioned earlier, the method quan-

tifies the levels to which attribute relationships obey referential constraints. The method is

based on the concept of conditional entropy in information theory.

The entropy of an attribute A is defined as
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H(A) =
∑

v∈dom(A)

−p(A = v) · log2 p(A = v)

where p(A = v) is the proportion of tuples in which the value v occurs. Intuitively, H(A)

measures the uniformity of the distribution of the values of A. Assuming n distinct values,

entropy ranges between 0 and log2(n). The maximal value corresponds to perfect uniformity

of distribution (lowest information content). For example, when dom(A) contains 4 distinct

values, and each occurs 5 times, then H(A) = log2(4) = 2. In this case, H(A) is also the

number of bits required to represent the values of dom(A). The entropy of a relation R is

thus the sum of the entropies of its attributes, i.e.,

H(R) =
∑

i

H(Ai) (4.2)

Let A be an attribute of R, and consider a “horizontal slice” of R, created by requiring

A to have a specific value v. Denote the entropy of this slice H(σA=v(R)). As dom(A) is

the set of all the values of attribute A, its values partition R to several such slices, each

with its own entropy. The average of these slice entropies weighted by the prior probability

of the individual values is the expected value of the relation given a value for attribute A.

This is termed the conditional entropy of R given the attribute A:

H(R|A) =
∑

v∈dom(A)

p(A = v) ·H(σA=v(R)) (4.3)

This conditional entropy reflects a reduced level of uncertainty when R has been parti-

tioned by its A values. The difference between the prior and posterior entropies quantifies

this reduction. For a meaningful comparison with reductions obtained in other relations us-

ing other attributes, I normalize this difference by dividing it by the prior relation entropy.
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The result is the information gain4 in R given attribute A:

I(R|A) =
H(R)−H(R|A)

H(R)
(4.4)

Assume A1 is attribute of relation R1 and A2 is attribute of relation R2, and consider

the join R1 ./A1=A2 R2. For each tuple of R1 the value of A1 is compared to the value of A2

in each tuple of R2. dom(A1) ∩ dom(A2) is then the set of values of A1 that find a match

in R2. Therefore, in the aftermath of the join, the relation A2 is partitioned by the values

in the set dom(A1) ∩ dom(A2).

The information gain of R2 in the aftermath of this join is therefore

I(R2|A2) =
H(R2)−H(R2|A2)

H(R2)
(4.5)

Note that the posterior entropy H(R2|A2) is calculated as the expected values of entropies

for slices created by values in dom(A1) ∩ dom(A2).

If A2 is a key of R2, then each of the slices has a single tuple. Therefore each of the

slice attributes contains just one value and its entropy is 0. Since slice entropy is the sum

of its attribute entropies, each slice entropy is 0. Consequently, the posterior entropy of R2

is 0, as well, and the information gain of R2 in the aftermath of the join is 1.

If A2 is anti-key (dom(A2) has but a single value), then a single slice is created, the

posterior entropy of R2 is the same as its prior entropy, and the information gain in the

aftermath of the join is 0.

In between these extreme cases, the information gain is a value between 0 and 1. The

information gain will be higher when slice sizes are more uniform, and the tuples in each

slice are more homogeneous. In other words, the more an attribute acts like a key, the closer

its gain will be to 1.
4Alternatively called the KullbackLeibler Divergence [52]
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This method may be regarded as an information theoretic way of quantifying the

strength of referential constraints. If a foreign attribute produces an information gain

of 1 in another relation, that relation is functionally dependent on the attribute. Indeed,

this approach generalizes the definition of dependency from a binary concept to a gradual

one.

Note, however, that the join operation is symmetrical, and thus induces a dual informa-

tion gain in R1:

I(R1|A1) =
H(R1)−H(R1|A1)

H(R1)

The weight assigned to the edge that denotes the join R1 ./A1=A2 R2 is therefore a pair

of values, expressing the information gain of each of the join participants:

w(A1, A2) = (I(R1|A1), I(R2|A2)) (4.6)

Example 4.3. Consider the relations

R(A,B) = {(1, b1), (2, b2), (3, b3), (4, b4)}

S(A,C) = {(2, c1), (3, c2), (4, c3), (5, c4)}

and a join between R.A and S.A. It is a one-to-one matching and it results in three

tuples. Consider now the effect of the join on the entropy of S. Initially, the entropy of

the attributes of S are H(S.A) = 2 and H(S.C) = 2, and the apriori entropy is therefore

H(S) = H(S.A) + H(S.B) = 4. When the join iterates over the four values of R.A it

creates in S four slices: A = 1 creates an empty slice, A = 2 creates {(2, c1)}, A = 3 creates

{(3, c2)}, and A = 4 creates {(4, c3)}. Each slice has entropy 0 + 0 = 0, and the posterior

entropy is therefore HA(S) = (0 + 0 + 0 + 0)/4 = 0. Consequently, the information gain for

S from this join is IA(S) = (4− 0)/4 = 1. In this case, the information gain for R from this

join would be identical: IA(R) = 1.
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As a second example, consider

R(A,B) = {(1, b1), (2, b2), (3, b3), (4, b4)}

S(A,C) = {(2, c1), (2, c2), (3, c3), (3, c4),

(4, c5), (4, c6), (5, c7), (5, c8)}

and a join between R.A and S.A. It is a one-to-many matching in which every tuple of R

matches zero or two tuples of S, and it results in six tuples. The apriori entropy of S is

H(S) = H(S.A)+H(S.B) = 5. When the join iterates over the four values of R.A it creates

in S one empty slice and three slices with two tuples each: {(2, c1), (2, c2)}, {(3, c3), (3, c4)}

and {(4, c5), (4, c6)}. The empty slice has entropy 0, and each of the other three slices has

entropy 0 + 1 = 1, and the posterior entropy is therefore HA(S) = (0 + 1 + 1 + 1)/4 = 0.75.

Consequently, the information gain for S from this join is IA(S) = (5−0.75)/5 = 0.85. The

information gain for R from this join would be IA(R) = 1.

Next, consider a join between

R(A,B) = {(1, b1), (2, b2), (3, b3), (4, b4)}

S(A,C) = {(2, c1), (2, c2), (3, c3), (4, c4), (4, c5), (5, c6)}

It is a one-to-many matching in which tuples of R match different numbers of tuples of

S, and it results in 5 tuples. The apriori entropy is H(S) = 4.5 and posterior entropy is

HA(S) = 0.66. The information gain for S is IA(S) = 0.85. The information gain for R

would be IA(R) = 1.
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Next, consider

R(A,B) = {(1, b1), (1, b2), (2, b3), (2, b4),

(3, b5), (3, b6), (4, b7), (4, b8)}

S(A,C) = {(2, c1), (2, c2), (3, c3), (3, c4),

(4, c5), (4, c6), (5, c7), (5, c8)}

It is a many-to-many matching in which every tuple of R relation matches zero or two tuples

of S. Both information gains are identical: IA(S) = 0.85 and IA(R) = 0.85.

Finally, consider

R(A,B) = {(1, b1), (2, b2), (2, b3), (2, b4),

(3, b5), (4, b6), (4, b7), (4, b8)}

S(A,C) = {(2, c1), (2, c2), (3, c3), (3, c4),

(4, c5), (4, c6), (4, c7), (5, c8)}

It is a many-to-many matching in which tuples of R match different numbers of tuples of

S. The information gains are IA(S) = 0.82 and IA(R) = 0.83.

The examples demonstrate how the method is sensitive to the selectivity of the join

(on both participating relations). A join matching a single tuple is scored with perfection,

and as the average number of tuples matched increases, the score decreases. Therefore, on

average, a one-to-n join will be scored higher than a one-to-m join when n < m.

When ranking spanning trees I use the higher of the two values to decide between two

different edges; the second value is used to resolve ties.

Notice that this method of approximating key relationships is superior to methods in

previous literature. A commonly used measure is g3 [49]:
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g3(X → Y,R) =
|R| −max{|S| | S ⊆ R,S |= X → Y )}

|R|

In essence the value of g3 is the fraction of a relation R that satisfies a functional de-

pendency, and therefore a key. While straightforward and logical, this measure neglects the

effects of data quality. Especially in distributed heterogenous database setups, intensionally

identical tuples may be extensionally inconsistent between two sources.

Example 4.4. Consider the following relations:

R:

ID Name Phone

1 Alice 9345

2 Bob 9342

3 Carol 9341

R′:

ID Name Phone

1 Alice 9345

2 Bob 9345

2 Bob 9343

3 Carol 9341

Here, R′ is an extensionally inconsistent form of R. Notice that Bob is shown twice,

with different telephone extensions, possibly due to a union from two sources with different

information (e.g., older phone number, or typo). Now compare the values of g3 and the

information gain measures:

X g3(ID → X) IID(X)

R 1 1

R′ 0.5 0.93

The discrete (i.e., all or nothing) nature of the g3 measure neglects the fact that the ID

field is very close to being a proper key in R′. The information gain measure, however, is

able to capture that fact and thus is more tolerant of rare inconsistencies in an attribute,

especially if the remainder of a tuple is functionally dependent on the key.
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4.2.4 Cost Analysis

To help analyze the cost of the method for assigning weights to the edges of a join graph,

Figure 4.7 summarizes the method in algorithm format. In this figure, the set Candidates

accumulates the edges that pass the compatibility test, and θ is the threshold of compati-

bility.

1: Candidates← ∅
2: for all Ai do
3: if Ai is a viable join attribute then
4: Candidates← Ai
5: end if
6: end for
7: for all Ai ∈ Candidates do
8: for all Aj ∈ Candidates do
9: if i 6= j and Ai and Aj are in different relations then

10: if sim(Ai, Aj) < θ then
11: Discard edge (Ai, Aj)
12: else
13: Calculate w(Ai, Aj)
14: end if
15: end if
16: end for
17: end for

Figure 4.7: Pruning and Weighting Algorithm

Let K denote the total number of relations, P the average arity, and N the average

cardinality. Typically, K and P are small, whereas N could be very large. The initial

pruning phase (lines 1–6) can be done by a single pass of each relation, and is therefore of

complexity O(KN).

The calculation of similarity of two attributes (line 10) requires finding the cardinality

of the union and intersections of the two domains. This can be accomplished by sorting the

two relations on these attributes and then traversing both relations simultaneously. The

time required for calculating a single similarity is therefore of complexity O(N logN).

The calculation of weights (line 13) is slightly more complicated. Consider the join

R1 ./A1=A2 R2. First, each relation is sorted on its join attribute. Next, R1 is traversed,

and for each new value of A1, the matching tuples of R2 (if any) are written out. These

constitute a slice. To calculate the posterior entropy of this slice, it is sorted P times; after

77



each sort, the slice is traversed and the posterior entropy of one attribute is calculated.

Eventually, the posterior entropy of the slice is derived by summation. The number of

slices is V = dom(A1) ∩ dom(A2) and each slice has on average N/V tuples. Hence, the

total cost is 2N logN for the sorts, 2N for the traversals, and V P ((N/V ) log(N/V )+N/V )

for sorting and traversing each of V slices P times. Hence, the cost of calculating the

posterior entropy H(R2|A2) is at worst O(PN logN). Calculating the prior entropy H(R2)

is done by P sorts and traversals, with cost O(PN logN). Altogether, the calculation of

each information gain is of complexity O(PN logN).

To estimate the cost of the entire algorithm I add the cost the initial pruning and the

cost of calculating similarity and weights for every pair of attributes from different relations.

At worst, there will be P 2K2 such pairs.5 Altogether, the cost of generating the weighted

join graph is O(P 3K2N logN).

4.3 Optimization of the Join Inference Method

Clearly, the most time consuming steps of the algorithm are the calculations of sim(Ai, Aj)

and w(Ai, Aj). This computational task may be reduced by using a Monte Carlo approach.

Instead of using the complete relations Ri I use subsets R′
i obtained by random samples.

From each sample of a relation, I obtain a sample of each of its attributes by a projection.

Random sampling of a relation can be done in O(N) time (a single pass of each relation

is required). Assuming the sampling rate |R′
i|/|Ri| is such that the samples can fit into

memory, it will be possible to perform these two computations quickly.

However, calculating sim(Ai, Aj) on samples presents problems. For example, assume

Ai and Aj are key attributes and dom(Ai) = dom(Aj). Even when sampling as much as half

of the domains, one could not guarantee a match. I address this problem by using classifiers

to summarize domains. As discussed in Sec. 2.4, several classifiers have been proposed to

match domains of attributes. Most of these are general in nature and relatively expensive
5Note that each edge requires two calculations, one for each of its end attributes.
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to train. In this case, however, the domains of attributes that survived the initial pruning

step have certain helpful characteristics.

Join attributes are generally either integers or short strings of characters (or a combi-

nation of these); for example, ID numbers, telephone numbers, model numbers, geographic

locations, &c. Such values are often described by simple regular expressions. I therefore

summarize the domains by representing them as small finite automata that recognize the

strings in a domain. For example, the domain of US Social Security numbers of the form

123-45-6789 may be summarized as the regular expression (d3−d2−d4 : d ∈ {0, 1, 2, . . . , 9})

To accomplish this, I use the ID algorithm proposed by [12] and extended in [76] which

gives a canonical deterministic finite automaton (DFA) that will recognize a set of strings.

The complexity of the algorithm is O(NP |Σ|), where N is the number of states, P is the

size of the training set, and |Σ| is the size of the alphabet. A simple alphabet that can be

used is one that includes one symbol for all letters, one symbol for all digits, and several

symbols for punctuation marks. The number of states in the DFA cannot be larger than

the size of the alphabet times the longest string in the language. Since the alphabet is small

and the strings in the domains are small as well, both |Σ| and N are small with respect to

P . Thus, one can bound the complexity of creating a DFA to O(P ). Recall that P is the

size of the training set, namely the size of the sample.

Let A′
1 and A′

2 be samples of dom(A1) and dom(A2), respectively. Based on these

samples two DFAs are constructed, denoted D1 and D2, respectively, to recognize these

domains. Given a set of strings S, let Di(S) denote the proportion of strings recognized

by Di. I now define a new similarity measure to quantify the compatibility of two domain

samples A′
1 and A′

2. D1(A′
2) measures the level to which a DFA trained to recognize A′

1

recognizes the set A′
2. Hence, it can be viewed as measuring the similarity of A′

2 to A′
1.

In duality, D2(A′
1) quantifies the level to which a DFA trained to recognize A′

2 recognizes

the set A′
1. Hence, it can be viewed as measuring the similarity of A′

1 to A′
2. These two

“directional” similarity measures are multiplied to create the new measure of similarity,
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denoted sim′:

sim′(A′
1, A

′
2) = D1(dom(A′

2)) ·D2(dom(A′
1))

The new measure, which is calculated on domain samples, will be used to measure the

compatibility of the domains.

The other costly calculation is that of information gain (which provide the weights).

Here, too, one can define approximate information gain. Equation 4.5 expressed the infor-

mation gain of R2 in the aftermath of a join R1 ./A1=A2 R2. Instead of using the entire

relation R, one could use a sample R′ of R, and define approximate information gain:

I ′(R′
2|A′

2) =
H(R′

2)−H(R′
2|A′

2)
H(R′

2)

One can then use I ′(R′
2|A′

2) to estimate I(R2|A2). Because the information is merely a

sample of the original, the time required to calculate the estimation is much smaller than

the time required to calculate the actual information gain.

Recall, however, that the calculation of H(R2|A2) used only the values of dom(A2)

that are present in dom(A1). Hence, when working with samples, one needs to calculate

dom(A′
1) ∩ dom(A′

2). But, as discussed earlier in this subsection, approximating the inter-

section of domains with the intersection of samples is not a viable option.

For a moment, assume that the two domains are identical. Then dom(A′
1)∩ dom(A′

2) =

dom(A′
2), and one could use dom(A′

2) (no need to intersect). Since this assumption cannot

be made safely, I correct the information gain obtained by multiplying it by the selectivity of

the DFA for recognizing dom(A′
2) as it is applied to dom(A′

1) (i.e., I reduce the information

gain by the same factor that D1 would have reduced dom(A′
2)). Altogether one obtains this

estimator for the weight pair:

w′(A1, A2) = (I ′(R′
1|A′

1) ·D1(A′
2), I

′(R′
2|A′

2) ·D2(A′
1))
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The new calculation has two advantages with respect to complexity. First, the entire

process is performed on a sample of N (which is often an order of magnitude smaller). Sec-

ond, and more significant, is the number of times that similarity and weight are calculated.

This is due to the fact that the need to intersect domains has been removed from both of

these calculations. Previously, a given attribute Aj in relation Ri needed to be compared

with each of the P attributes of each of the other relations, essentially PK times. Since

the calculations now are essentially independent of the other attributes (for example, the

new information gain of Ri.Aj is calculated just once, and only corrected for each counter-

attribute Rk.Al by the acceptance rate of the latter domain by the DFA of the former

domain, which is also calculated just once), the new complexity is only O(P 2KS logS),

where S is the sample size. As the experiments described in the next section demonstrate,

this reduction is very significant.

4.4 Summary

This chapter explains the enumeration of join plans representing possible minimal consoli-

dations and their ranking according to likelihood. The method begins with the mapping of

the answers (i.e., extensions) of the component queries onto a global schema and builds a

join graph encompassing all the possible joins among the components. The join plans are

spanning trees on this join graph.

The scoring of join plans in terms of likelihood and their ranking is done by analyzing the

consistency of the joins between pairs of components and selectivity (i.e., key-ness) of the

join attributes. The selectivity is scored using an information theoretic approach based on

information gain. Two forms of the approach are described: an exact yet computationally

expensive variant and a sampling variant that is fast yet less accurate.
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Chapter 5: Query Sequence Analysis

5.1 Introduction

Thus far I have discussed query consolidation in terms of a set of queries and their materi-

alized answers. However, in the real world, databases receive queries from a given user as a

sequence over time. There is no marker that indicates which queries in a sequence consti-

tute a meaningful set. In the absence of such information, all the consolidating system has

are logs of queries for local sources. The set of queries that are part of a global query must

therefore be extracted from the sequence in the logs or collated in real time as these queries

arrive. Furthermore, it would be very useful to the consolidation effort to individually label

the queries in a segment with their probable roles in the bigger picture. The purpose of this

chapter is the investigation of this problem.

5.2 Problem Overview and Assumptions

Throughout this chapter, ‘goal’ will be used in the same sense as ‘session’. In previous

literature, the term ‘session’ is used in multiple meanings. Occasionally, it is used to indicate

the range of transactions between a login-logout cycle or during a given timeframe. In the

scope of the consolidation problem, however, a session is generally meant to denote a single

information retrieval task of the user, either done in a single query or by combining multiple

queries. In order to avoid this ambiguity the set of queries that make up a task of the user

will be referred to as a goal.

I start by assuming that one can identify users by some identification mechanism such

as a cookie, through authentication or from their network address &c. Therefore the query
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Table 5.1: Intrinsic Features of Query Qi

Name Notation Description
Attributes Atti The set of fields projected by the query.

Dependencies F∗i The functional dependency closure of fields in the query.
Constraints Ci The set of constraints associated with the query.

Source Di The unique identifier of the local source the query was sent.
Answer Set Ri The set of tuples returned in response to the query.
Timestamp ti The universal time at which the query was posed.

sequence being observed is for a single user at a time. However, the sequence is not neces-

sarily of queries sent to the same data source. This data can be collected in two ways. The

subject can be monitored directly, either using the logs of the client she is using directly,

or through the logs of a proxy or gateway she uses to access the sources. In this case the

provenance of the queries in the sequence is more certain (unless someone else is using the

terminal). Alternatively, given a common identifier (such as IP or a cookie) one can monitor

the logs of the data sources the subject uses. In this case the queries belonging to the same

user are collected from the various data sources and are compiled into a single sequence, in

order of time stamps.

In either case the existence of a list of queries in chronological order and coming from

the same user can be assumed. The queries will be labelled Qi in a sequence Q = Q1...Qn

such that Qi is chronologically earlier than Qi+1. For each query Qi I assume to have a set

of intrinsic features. These are given in Table 5.2.

Given the methods developed in the previous chapters, these pieces of information are

clearly available for every query in the sequence. These intrinsic features will be used to

generate more detailed feature functions for the approach of this chapter.

Since the scope is limited to conjunctive queries, each query in the sequence can be thus

represented by a Horn clause (or alternatively a relational algebra expression containing

only selection, projection and joins).

Example 5.1. Let a query sent to an online bookstore’s data service be represented as:

Qexample = Π{ISBN,T itle,Y ear}(σ(AuthorID=“Dickens”)(Author) ./(Book.AuthorID=Author.ID) Book)
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This query has the following intrinsic features:

Attexample = {ISBN, T itle, Y ear}

F∗example = {ISBN → Title, ISBN → Y ear, ...}

Cexample = {(Author.Name = “Dickens′′), (Book.AuthorID = Author.ID)}

Dexample = http://soap.mybooks.com/Search.wsdl

Rexample = {(0679783415, “David Copperfield”, 1850), ...}

texample = 2008-04-24T20:39Z

Given a query sequence and the intrinsic features of each member of the sequence, the

problem involves two sub-problems:

Segmenting Otherwise known as boundary detection, this involves finding when one goal

in the sequence ends and the other begins.

Labeling Within each segment (goal) I also seek to find the function of each member query.

This aids in reproducing the original goal exactly.

Both problems have analogues in natural language processing. The segmenting problem

is reminiscent of sentence boundary detection and the labeling is very similar to part-of-

speech tagging. In order to induce the most useful features for the task, I begin to build a

model for the sequence structure.

5.3 Assembly of Goals

In the simplest case, the assembly of a goal, G, is the conjunction of queries Qi in the

sequence. In terms of relational algebra this is essentially the joining of the answer sets,
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Ri, into a single universal relation. Even with this simple approach, however, there are

complications. It may be the case that the component queries do not offer a join path:

Example 5.2. Consider a sequence of two queries, Q1 and Q2 with attributes Att1 =

{SSN,Name} and Att2 = {Phone,Address}. The straightforward conjunction (join) of

these will result in a cartesian product, which is all but meaningless. Therefore, perhaps

it is better to consider these two queries as two separate goals of one query each, rather

than a goal of two queries. However, the arrival of a third query Q3 with attributes Att3 =

{SSN,Phone} would change the picture dramatically. The three queries can now be joined

into a cohesive goal of three queries.

The problem of isolating goals from a sequence of queries can be stated as follows:

Given a sequence of queries Q = Q1...Qn coming from a user, find all user goals within

the sequence that are maximally coherent.

A maximal coherent goal, G, is defined as the largest substring, G v Q, of the whole

query sequence Q, that is cohesive. The informal definition of coherence is clear from the

example above. In order to formalize the defintion further, I define the following feature

between any two queries Qi and Qj :

joinable(i, j) =


1 if ∃X ⊆ Atti;∃Y ⊆ Attj ; [(X = Y) ∧ (X→ Atti ∨Y → Attj)]

0 otherwise

(5.1)

The joinable function thus returns 1 only if there is the possibility of lossless join between

the answer sets of the input queries. One requirement for this is that at least some subset

of the shared attributes be the key of one the sets. This is checked through the closures,

F+, of the queries, or alternatively using the join inference methods previously explained

in Sec. 4.2. Of course, the relationship being considered is not precisely a key-foreign key

relationship. Such would, as well as a functional dependency, require that each value in
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one relation find its counterpart in another (i.e., an inclusion dependency). However, due

to the fact that the constituent query materializations originate from independent sources,

enforcing or requiring inclusion would not be realistic.

Therefore in this simple case, a goal goes on as long as the incoming queries are join-

able to the existing ones in the goal. These queries will subsequently be termed subgoals.

Ultimately, all subgoals are conjoined to assemble the goals.

5.3.1 Composite Subgoals

Composite subgoals are subgoals that are obtained by assembling more than one query in

a way other than conjunction. Notice that, due to the commutativity of the conjunction

(join) operation, designating a number of queries as constituting a composite subgoal is

is no different than designating each one as a subgoal if the composite subgoal is itself

created by a conjunction. Hence, I define a composite subgoal as one that is created by the

disjunction (or union) of its constituent queries.

In constructing a composite subgoal, a user posing a sequence of queries to several

sources is possibly collecting information from each of them in order to create a more

comprehensive view of the information. An example would be to send a query selecting for

the Italian restaurants in Washington D.C. to two or more different dining registries. The

answers obtained are more likely to be unified rather than intersected since the aim here is

to garner as many answers as possible.

Another case which requires aggregation rather than cross-referencing is when the com-

plete answer cannot be obtained in a single query due to particular limitations of the data

source. The most common reason for this are the binding limitations imposed by data

sources. In the simplest case, consider an online telephone directory for some large organi-

zation. Generally, the service will not have the option of listing all the telephones at once.

More likely, the directory will require the user to constrain (bind) at least one field, such

as the last name, department &c. A user wanting the whole list will then be forced to ask

for one department at a time, or worse a last name at a time. Monitoring such a series of
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queries, it would be wrong to label them as a conjunction when clearly the intention is to

combine the answers into a large list.

The previous example is a special case where the unification of information is associated

with a recursive plan. One has to assume that the user knew or obtained the list of

departments (which is a table itself) from somewhere, then iteratively expanded each item

with the associated telephone listings. Deeper recursive plans may be employed by a user

in order to obtain the information needed. Consider a bibliography database that limits

binding by requiring that some information about a paper (e.g., title) be given. The only

way a user can get all or as many as possible papers is to start with one paper he knows

and to recursively expand the citations until no new papers can be found.

Recursive plans may be used in case of poorly structured data services as well. Consider

an airline reservation system which only lists direct flights given a source or destination

airport. A user trying to get from Washington to Havana will not be able to find a direct

flight. Instead, the user will ask for flights out of Washington and will ask follow-up queries

asking for possible destinations from those places, until he can recursively find a path to

Havana with as few stopovers as possible (e.g., Washington-Toronto-Havana). Again, the

aim here is not to join the answers to these queries so they need to be treated differently.

Each example illustrates a different form of recursion requiring a different retrieval

strategy. In the case of the bibliography example, a depth first traversal is the best option.

In the case of the airline example, breadth first or iterative deepening is needed as depth

first recursion will probably be unnecessarily expensive. A third form of traversal is the

case where the user recurses using some form of heuristic. Assume the user wants to reach

a certain person in a social network service. Similar to the bibliography example, the only

way she can accomplish this is to find a string of friends that can connect them. If the user

knows that the person lives in a certain city, she may direct the recursion at each level to

expand only people living in that city, knowing that this will result in finding a path more

rapidly.

Ultimately, there is one common property of recursive query plans that allows one to
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identify them as such. Each query in such a sequence will bind one of its attributes to a

value obtained from a previous sequence. One can formalize this using the intrinsic features

of queries previously defined. The feature indicating that two queries Qi and Qj may belong

to a recursive sequence is given as:

recursive(i, j) =


1 if (i < j) ∧ ∃x ∈ (Atti ∩Attj);∃y ∈ πx(Ri) [(x = y) ∈ Cj ]

0 otherwise
(5.2)

In creating composite subgoals, a requirement is that the queries that are part of the

subgoal have the same “footprint”. In other words, it is not possible to unify two answer

sets unless they have the same arity and indeed not meaningful unless they share the same

attributes. Therefore, a measure is needed to indicate the overlap in attributes between two

queries. This can be simply stated as:

overlap(i, j) =
Atti ∩Attj

Atti ∪Attj
(5.3)

The binary feature associated with overlap is the complete overlap:

completeoverlap(i, j) =


1 if overlap(i, j) = 1

0 otherwise
(5.4)

An analogous and useful feature would compare the overlap in the set of constraints

between two queries:

constraintoverlap(i, j) =
Ci ∩Cj

Ci ∪Cj
(5.5)
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Thus far, the features I have defined have been completely about the queries themselves.

When working in a virtual database environment the provenance of the queries is also very

useful. In other words, the source to which the query has been sent and whence the answer

originated might further help in defining the role of the query. Particularly if two or more

subsequent queries are sent to the same source, there is a higher likelihood that the user

is attempting a unification or recursion. In terms of query optimization it is more efficient

to ask everything in one query per source. However, if for some reason (e.g., binding

limitations or less expressive query mechanism at that particular source) the user is not

able to accomplish their subgoal in one query, they will be required to collect the data

in pieces. For example, a complete overlap between two queries sent to the same source

is a good indicator that the user is combining subsets (e.g., phone numbers in different

departments) of the same information. I therefore introduce the following feature:

samesource(i, j) =


1 if Di = Dj

0 otherwise
(5.6)

5.4 Application of Conditional Random Fields

Apart from the complexity of assigning relevance to goals there is some difficulty associated

with building the goals in the first place. Several aspects of the sequence will give clues as

to the generation of goals:

Do the goals arrive one at a time? The question here is whether the user is done

with one task before she starts another one. If this is not true, parts of different goals may

arrive interleaved with each other. Without interleaving, the problem of goal identification

is simply a problem of boundary detection, namely finding the first query of each goal.

Otherwise, goals have to be extracted explicitly.
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Do goals evolve coherently? This is related to whether the queries within a goal arrive

in the correct order. For the goal to be coherent, each arriving query has to be relevant to

at least one other query that is already part of the goal. If the queries arrive out of order, in

the worst case, it is possible that there will not exist a coherent goal until the last query of

the goal arrives. As an example consider the queries Att1 = {A,B,C}, Att2 = {K,L,M},

Att3 = {X,Y, Z} and Att4 = {A,K,X}. A goal consisting of these queries will evolve

coherently only if Q4 arrives first. Whether or not this is assumed to be true will determine

the solution method.

Are queries used by multiple goals? This factor determines the number of possible

goals that can be generated given a sequence of length N. If one assumes that each query

can be part of multiple goals, the set possible goals in the query sequence Q will be the

power set of Q, having 2N − 1 goals, not counting the empty set. If it is assumed that each

query in Q belongs to just one goal, the set of possible goals becomes the partition of Q.

The number of parts in Q can be at most N, i.e., single-query goals.

Given the above considerations, there is a range to the complexity of the problem de-

pending on which assumptions are adopted. In the simplest case, it can be assumed that

queries arrive in order, in a non-interleaved fashion and that each query is part of a single

goal only. In this case, the goal identification starts combining arriving queries into a goal.

The first query to violate the coherence of the goal will be deemed the beginning of the

next goal and the previous goal will be closed.

In the most complicated case, it is accepted that queries can arrive out of order, inter-

leaved with queries of other goals and certain queries might be used by multiple goals. In

this case the system will have to keep track of multiple goals at once, evolving some or all

of them as new queries are received.

Even if one has a totally objective way of evaluating a given set of queries as to whether

they contain an interesting goal, there are still ‘technical’ difficulties. Given a sequence of

queries the set denoting a goal is not necessarily an uninterrupted sub-sequence. Two or
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more goals may be interleaved with each other or with noise. Some queries in the sequence

may be replacements or refinements of older queries. Furthermore, it is possible that the

queries needed to build a goal do not arrive in the order they are used. This defeats

machine learning methods (e.g., [93]) which are sensitive to the sequence in which queries

arrive. Another question is whether the user being monitored is using the same query for

multiple goals or one. This distinction affects the number of goals to be evaluated greatly1.

As the these problems are being discussed, a probabilistic and thus noise-tolerant method

of handling the problem has been introduced. The method is distinct in that it can accept

realtime streams, constantly evolving a working scenario as new queries arrive. Scenarios

that have stopped evolving are dropped for fresh ones as new evidence arrive. Furthermore,

the method proposed here leverages the evidence available exclusively in a virtual database

environment, namely the source information, to guide its decisions. Such a method will

require semantic information about the application domain either in a latent fashion (i.e.,

machine learning) or explicitly using the constraints of the schema along with a logical

inference engine. Such an approach has met with some success in the area of semantic

query caching [37] and optimization [22, 58]. The same principle can apply to the present

problem as well.

For the purposes of this dissertation, a middle ground between these two extremes is

selected. It will be assumed that each query will be part of one goal only. Interleaving will

be neglected. The in-order arrival of queries is not a requirement to the extent that the

sequence can be kept in memory. As will be seen, the method works in an active window

on the sequence starting from the last query going back as far as the window size. A query

arriving prematurely can still be added into its goal as long as it is still within this window.

I start by defining a finite state machine which will take one query at a time and

transition from one state to another. The state to which the FSM transitions after the

arrival of a new query will become the label of that query. The outline of the state machine

is given in Fig. 5.1
1If the component queries are assumed to be re-used, the number of possible goals increases exponentially,

as opposed to a linear growth otherwise.
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Figure 5.1: Labeling Finite State Machine
Only relatively likely transitions are shown.

Converting this finite state machine to a probabilistic one, one arrives at a conditional

random field. The probability distribution is thus calculated as given in Eq. 2.1. The

sequence x is the query sequence Q (i.e., the observations) and sequence y is the sequence

of states, L, the FSM traverses (i.e., the labels). Each transition of the FSM to the Initial

state denotes the beginning of a new goal. For each arrival of a new query (observation) the

CRF is decoded in order to find the label sequence L that results in the highest conditional

probability P (L|Q). Hence, each time a new query arrives, the conditional probability is

recalculated and may therefore change the labels on earlier queries as well.

Figure 5.2 shows an example sequence. Also provided in the figure is the operations

performed on the queries by the user. This information is naturally not available to the

party monitoring the queries but serve to illustrate the example. Table 5.2 illustrates the

labeling for the incoming queries incrementally as each one arrives. The first two queries

are joinable, therefore they are labeled with as the initial query and a conjunctive subgoal.

The third query initially has no relationship to the preceeding two. It is therefore labelled

as the beginning of a new goal. The next few are found to be queries most likely to be

unioned with the third query and are thus labelled. The sixth query is again found to be
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Figure 5.2: Consolidation of Example Sequence

unrelated to the existing goals and labelled as the beginning of a new goal. Query 7 happens

to be the “keystone” query in that it has join paths to both query 6 and the previous goals.

Therefore when query 7 arrives, the labels on the previous queries are changed, coalescing

the three goals into one. This is possible since with each new query the labels of all the

previous queries are reexamined and a new Viterbi path2 is calculated for the probabilistic

FSM. Subsequently, query 8 arrives and is first deemed to be a single subgoal. However, as

more evidence arrives, i.e., queries 9 and 10, it now becomes more probable that the three

constitute a recursive subgoal and thus the labels are rearranged.

5.4.1 Features of the Conditional Random Field

In order to complete the definition of the CRF that represents this probabilistic FSM, the

set of features Fk(L,Q) have to be defined. There are two forms of features, namely state
2A sequence of transitions with highest probability
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Table 5.2: Evolution of Example Sequence
Time Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

1 I
2 I S
3 I S I
4 I S I U
5 I S I U U
6 I S I U U I
7 I S U U U S S
8 I S U U U S S S
9 I S U U U S S R R
10 I S U U U S S R R R

I: Init, S: Subgoal, U: Union, R: Recursion
New or updated labels are shown in boldface.

and transition features. The state features are defined in terms of identity functions. There

is an identity function for each label type and each position in the sequence. For example

the identity function defining whether the label Li is the initial state would be:

initial(i) =


1 if Li = INITIAL

0 otherwise
(5.7)

There will be one such identity function for each label per state. For example, given a

sequence of 10 queries and the 4 labels defined in the FSM (i.e., Initial, Subgoal, Union,

and Recursion), there will be 40 identity functions. Rather, there are 4 state features per

clique in the CRF.

The basic building blocks for the transition features have already been given in equations

5.1 through 5.6. I now add two more features that encapsulate the real-time arrival of the

queries. The fact that a query arrives after a long delay following the previous query is

a valuable observation, particularly in identifying goal boundaries. The first feature is a

straightforward timeout feature:
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timeout(i) =


1 if ti − ti−1 ≤ τ

0 otherwise
(5.8)

where τ is a predetermined timeout, dependent on the application. This is the maximum

time alloted to any given session. This is a fail-safe to sever a goal and should be chosen

to be a duration that leaves no doubt that the user’s interest has expired. For example, for

web sessions this is generally set as 2 or 3 days. To achieve a more fine grained use of the

time dimension one can also introduce an adaptive timeout:

adaptivetimeout(i) =


1 if ti − ti−1 ≤ τ

P
∀j<i(tj−tj−1)

i

0 otherwise
(5.9)

the adaptive timeout feature is thus true if the delay is larger than a multiple, τ , of the

average inter-query delay so far.

Since conditional random fields are log-linear models, in order to capture the query

model correctly there is a need to prepare and add conjunctions of the basic features (eqns.

5.1-5.9) into the feature set. For example, a compound feature particularly useful in de-

termining recursion uses the conjunction (completeoverlap∧ recursive∧ samesource). Up

to this point, for each clique in the CRF, there are 9 basic features and 4 state identity

features. Along with the possible conjunctions (i.e., the powerset of the 13 features) one

may consider up to 213 − 1 = 4095 features in evaluating the CRF.

Feature Scope

There is also a need to define the scope of each of the features. Recall that a feature function

is fk(Li, Li−1,Q, i). However, the functions defined so far take two arguments which are

in turn two queries to be compared according to some criterion (e.g., joinability, recursive
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nature &c.). For each clique, one of these queries is the current one (i.e., Qi). What this

query is being compared to in the sequence is dependent on the scope. One can hence use

two different scopes, namely local and global. The global scope effectively compares all the

queries in the range to Qi and succeeds if there is at least one successful comparison. For

example the feature fglobal
samesource(Li, Li−1,Q, i) would succeed if there is at least one other

query in the sequence that has the same source as Qi. Therefore, given a basic feature

gk(Qi, Qj), a global feature is then:

fglobal
k (Li, Li−1,Q, i) = max

∀j 6=i
(gk(Qi, Qj))

In contrast, a local feature only checks the queries proximal in the sequence to Qi.

Hence, for example for a window of 5, the local feature would be:

f local
k (Li, Li−1,Q, i) = max( max

i−5<j<i
(gk(i, j)), max

i<j<i+5
(gk(i, j)))

Note, however, that the state features previously mentioned and any conjunctions con-

taining them cannot be global and can only be local within a window of 2. Otherwise,

the probability of a given label would not be independent of previous states except the

neighboring one.

Time-shifted Features

The final enrichment to the feature space involves the time-shifting of features, such that

clique potentials can be affected by previous and future observations. A time shifted feature

f<j>
i would be defined as:

f<j>
i = f(Qi+j) (5.10)

So, a feature f<−2>
i would be the said feature for the observation two queries previous

to Qi used to evaluate the potential for the i-th clique in the CRF. Again, this is limited
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to the transition features since the potential of a given clique cannot be a function of the

label of state not neighboring it. Therefore, features containing any of the state identity

functions can only be shifted by -1. According to these restrictions and assuming time shifts

of -2, -1, 0, 1, 2, global and local forms for all the possible features, one may have up to

12278 features per clique.

5.4.2 Gain-based Feature Selection

Note that the number of features is the combinatorial maximum of features obtained in the

model thus far. All of these features are not expected to be predictive to the same degree.

In fact, depending on the case, some might be completely useless. Hence the need to prune

those that have little utility in order to keep the model manageable and more importantly

to avoid over-fitting the training data.

In order to do this I use gain based feature selection. Recall that the training of a

CRF involves optimizing the weight parameter vector λ in the log-likelihood function (Eqn.

2.2) in order to obtain the maximum likelihood. This is done in a supervised manner by

iteratively maximizing for a set of training data. Each training sequence of queries has an

associated sequence of correct labels which are used to optimize the parameters, λ, to obtain

the weights that will have the least training error. Since some of the features are expected

to be less discerning, the changes in the associated weights will have less impact on the

training error. The idea is termed Gain-based Feature Selection the method for CRFs is

described detail in [67]. The gain of a feature f is defined as:

GΛ(f) = max
µ

(LΛ+fµ − LΛ)

where LΛ+fµ and LΛ are the log-likelihoods of the CRF with or without the feature f ,

given the training data. If done näıvely, this gain calculation will be very time consuming,

given the large number of features. Fortunately, there are several optimizations including

mean field approximation and limiting the gain calculation only to mislabeled outputs.
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These are quite outside the scope of this work and I refer the reader to [67] for an extensive

treatment of the subject. Using this gain based pruning I show that one is able to use a tenth

of the features of the original model while gaining better accuracy and better generalization

(Cf. Sec 8.1).

5.5 Summary

Up to this chapter, the discussion has assumed that there is a set of selected queries that

constitute the components of a consolidation. In actuality, queries arrive and are monitored

as sequences rather than discrete sets. There is no clear delimitation of the point at which

one task ends and a new one begins.

This chapter explores this issue and introduces a method to segment ongoing sequences

into clearly delimited ‘tasks’ using the concepts from previous chapters along with the ap-

plication of conditional random fields to probabilistically labeling incoming queries. Condi-

tional random field models are supervised learners which are trained with pre-labeled data.

The model resulting from the training is used to label future sequences. The labels serve

as delimiters for tasks and also classify component queries within a single task as to their

function and whether they should be conjunctively or disjunctively assembled to form a

consolidation.

The chapter starts by defining the intrinsic features of each query in a sequence and goes

on to derive the features relevant to sequence analysis, scoping and time-shifting of these

features and discusses the use features dependent on the content of the queries. Finally

the training of the CRF model is described with attention to regularization of the objective

function and pruning of features.

98



Chapter 6: Enhancement of Candidate Consolidations

In Chapter 4, I described and discussed the generation of minimal consolidations as a limited

set of solutions which would form a basis of joinability that was later used in Chapter 5 as

one of the features in isolating coherent goals from sequences of queries.

Having isolated a goal, created minimal consolidations and ranked them, one can further

enhance these solutions with information from the schema and from earlier patterns of user

activity. I approach the enhancement of minimal consolidations in two dimensions:

• Horizontally: Given the projection of a minimal consolidation on the global schema,

one could leverage the functional dependency information available as part of the

global schema to add more attributes to the consolidation. This might increase the

amount of information available to the monitor, thereby capturing additional details

that may have not been requested explicitly by the querying agent.

• Vertically: The tuples in the extension of a minimal consolidation are the result of

equi-joins and not necessarily as precise as the consolidation the querying agent had in

mind. As discussed previously, the querying agent may indeed be applying additional

selection criteria on to the results at the integration site. These selections would not

be visible to the monitor (see Fig. 3.1) due to their global nature. However, they can

be estimated by analyzing trends in earlier query activity.

6.1 Expanding the Projections

The minimal consolidation of a set of queries Q1, . . . , Qn is a join plan that assumes that

the queries themselves are sufficient for the goal of the querying agent. In reality, this may

not be the case. The querying strategy of the agent may include outside information that

is used to come up with the query strategy.

99



Example 6.1. Assume the most likely consolidation of a set of queries is the following:

Make Model Year

IBM RS/6000 1990

Apple Xserve 2002

IBM AS/400 1988

This particular extension may not be very informative by itself. Assume the global schema

has the following functional dependency:

{Make,Model, Y ear} −→ {Processor}

The initial extension can be then expanded with the appropriate join to arrive at:

Make Model Year Processor

IBM RS/6000 1990 PowerPC

Apple Xserve 2002 PowerPC

IBM AS/400 1988 PowerPC

Clearly, this expanded version of the consolidation offers more clues as to the aim of the

querying agent (i.e., searching for computers with a PowerPC processor). The reason the

processor attribute was not used might be because the local source did not have that

attribute, or that it could not be used as selection criterion, or that the user did not know

that the same information could be gathered using the processor field.

This expansion of projections can be done using the functional dependency closure

Σ+ assumed to be present along with the global schema G. Figure 6.1 gives a reference
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Input: Query Q, set of attributes A
Output: Expanded query Q
Environment: Global relation G, FD closure Σ+

1: A+ ← A2 − {∅}
2: for all X ∈ A+ do
3: for all F ∈ Σ+ | F : X −→ Y do
4: if ∃y ∈ Y : y /∈ R then
5: R← (ΠX∪Y (G))
6: if R is materializable then
7: Q← (Q ./Y R)
8: Q← Expand(Q,Y)
9: end if

10: end if
11: end for
12: end for
13: Return Q

Figure 6.1: The Expand Algorithm

algorithm that will recursively expand an extension given a set of attributes to expand on.

Therefore, any consolidation Q may be expanded by executing Expand(Q,AttQ). The

expansion algorithm assumes that the global schema G is acyclic and can thus be reduced

to a universal relation G and that any subschema (denoted R in line 5 of the algorithm)

of the universal relation may be materialized by sending the decomposing to relevant local

sources (as performed in line 6).

Clearly, this may not be the case in some situations. There may be cycles in the schema

or some parts of the schema may not be materializable. In the case where the materialization

of an attribute fails, that branch of the recursion, and any transitive expansions resulting

from thereon, may fail.

In the case of a cyclic schema the algorithm is still guaranteed to halt since ultimately

either the dependency closure will be exhausted or there are no more attributes that can

be added to Q (check in line 4). However, the expansion based on a cyclic schema will not

necessarily be correct.
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6.2 Adding Global Selection Constraints

Once minimal consolidations are generated, there is at least one relation representing the

way queries sent to different sources may have been joined. This relation contains all the

information collected by the querying agent and thus, in a way, is an acceptable result.

At least, in terms of information disclosure, this relation, provided that the join scenario

is correct, is complete. However, in terms of the precision of the answer, more processing

might be needed.

Example 6.2. Consider a user asking for the following views from two different sources:

• Q1 = {SSN, Year, TaxOwed}

• Q2 = {SSN, Year, TaxWithheld}

The top ranked join will probably be Q = Q1 ./SSN Q2. The relation Q, while holding all

the information retrieved by the user, is not really very informative at first glance. Knowing

something about the domain of the information one might easily speculate that the user

would like to further refine this data offline by comparing the amounts of tax owed and

withheld by each taxpayer in the table by year. The result would become:

Q′ = σY ear1=Y ear2(Q1 ./SSN Q2) (6.1)

Notice that, due to the distribution of the information among the two sources, the

querying agent could not have done the comparison locally, and is forced to do it at the

integration site. Therefore, as an observer only able to monitor retrievals, one cannot say

for certain that it is performing such a refinement.

Example 6.3. The previous example can be further extended by speculating that querying

agent wants to see only the taxpayers who got a refund. So the global question now becomes:

Q′′ = σY ear1=Y ear2,TaxOwed<TaxWithheld(Q1 ./SSN Q2) (6.2)
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Again, this comparison would have to be done at the integration site and thus would be

invisible to the monitor.

Obviously, while contained in the original join Q, the final question Q′′ is considerably

different. One would like to be able to infer such constraints added at the integration site.

It should be noted that since the monitor has no information as to the operations performed

offline, there is no certain way of telling precisely what the user wanted to obtain.

The information one does have, namely the projections done, however, allow educated

guesses as to the use the information will be put to, once combined. While join inference

can be done in a domain-agnostic manner, the same is unfortunately not possible for this

problem. Consider the previous examples; there is no way to speculate that a comparison

on the year field or a comparison of the tax owed to the tax withheld is probable without

having some domain knowledge on the subject of taxes.

Since encoding such domain knowledge manually is prohibitively tedious and expensive,

one would like to distill near equivalent knowledge by mining existing query logs. Assume

there is a large number of global queries available from previous usage of the information

sources. Also assume that these global queries also carry information on the operations per-

formed offline. Such a repository of existing queries would contain the knowledge required,

albeit in a latent fashion. From now on, I shall call this body of existing global queries the

training set.

Referring back to the tax example, if there are a significant number of examples in the

training set which project the set of attributes { TaxOwed, TaxWithheld } and a significant

portion of these also contain the selection predicate TaxWithheld > TaxOwed one can

infer the rule:

Π(TaxWithheld) ∧Π(TaxOwed)→ σ(TaxWithheld > TaxOwed) (6.3)

The problem of inferring a set of rules such as the one above from a set of transactions

is an active field of data mining called association analysis where the transactions are

analyzed in order to discover frequent item sets [8, 9]. The classical example is market
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basket analysis where purchase records of retailers are mined in order to find out which

products are purchased together (e.g., beer and peanuts).

In analogy, in this case, I mine the training set of queries to find out which attributes

are frequently projected together. Furthermore, I would like to see whether the fact a set

of attributes is projected also implies the existence of a comparison.

The frequency of a set of items in the training set is the support of the item set. For

example, if the attributes TaxWithheld and TaxOwed are projected together in 30% of the

queries in the training set, the attribute set {TaxWithheld, TaxOwed} is said to have a

support of 0.30. Note that the support of an attribute set is anti-monotone, so that it

cannot have a higher support than any of its subsets. In other words, if TaxWithheld is

projected in 40% of the queries in the training set and TaxOwed is projected in 30%, the

set {TaxWithheld, TaxOwed} cannot have a support greater than 0.30.

Algorithms that mine for frequent item sets generally depend on this property to prune

the superset of possible attributes so that most subsets of attributes do need to be consid-

ered.

One can therefore mine the training set of queries for sets of projected attributes that

have at least a certain degree of support. The selection of a threshold for support depends

on many factors including the total number of attributes the in the domain, the size of

the training set and the extent of generality to which one would like to capture the knowl-

edge [88]. In this case, the support level is selected such that a set of projected attributes is

above a absolute number of occurrences. Therefore, the support level is set depending pri-

marily on the size of the training set. As an example, if there is a training set of 500 queries,

a minimum support of 0.1 would mean that the set of attributes occurs at least 50 times.

This entails a statistically significant amount of interest in those attributes. Therefore, as

the training set gets larger, one may theoretically decrease the minimum support level, such

that the absolute number of occurrences is statistically significant. However, in reality, as

the support threshold gets smaller, the number of rules generated and the time required to

train get larger. Hence, the support threshold to be selected is essentially a compromise
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between the desire to select the minimum threshold to ensure statistical significance and

real world considerations of time complexity and rule-base size.

Once a threshold is set, a standard algorithm such as those mentioned previously may

be used to find maximal frequent itemsets. At this point there is a minor difference between

the present problem and that of market basket analysis.

Consider a market basket such as:

{Beer,Milk,Diapers} (6.4)

having a support of, say 10%. Standard rule generation partitions this frequent itemset

to generate a rule such as:

Milk ∧Diapers→ Beer (6.5)

where the probability of beer existing in a basket is above a certain threshold (i.e.,

minimum confidence). A query in a training set is analogous to a basket in a database

of transactions. However, in the case of queries, there are two distinct subsets associated

with each query, namely the set of projected attributes and the set of constraints. Thus the

following SQL query for example:

SELECT A1, A2

FROM R

WHERE C1 AND C2;

would be a record in the training set in an ordered-pair form:

{{A1, A2}, {C1, C2}} (6.6)

Ultimately, one requires rules that have a conjunction of elements from the first part of

the pair in the antecedent and elements of the second part in the consequent, e.g.,

105



A1 ∧A2 → C1 (6.7)

Therefore, any itemsets that contain only comparisons (i.e., Ci) are useless. This allows

the reduction of the search space for frequent itemsets even further, in additon to standard

pruning techniques of standard algorithms mentioned in the background chapter. Consider

the search tree given in Figure 6.2. This tree maps out how the search for frequent patterns

progresses.

{}

A1A2 C1C2

A1...AnC1

A1...AnC1...Cm

A1A2A4 AnC1...Cm
A1A2A3

C1 CmA1 An

A1A3 A1Cm AnC1 AnCm

C1...Cm

Figure 6.2: Partial Evaluation of Lattice
Prefix tree shows the search space of a depth-first search. Ai are projected attributes, Ci are

comparison predicates. The grey shaded nodes are pruned away before searching.

I adopt an ordering function such that all projected attributes and comparisons are

ordered lexicographically within themselves and all projected attributes are smaller than

any comparison predicate. The ordering is thus:
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Ai < Ai+1 : (1 ≤ i ≤ n)

Ci < Ci+1 : (1 ≤ i ≤ m)

An < C1

Under these circumstances one can prune a good portion of a prefix-ordered search tree.

Namely, none of the subtrees that are rooted at a Ci node need be visited, since none of

these trees will have any nodes which contain any projected attributes, Ai. Such nodes will

only lead to rules without antecedents and are therefore not needed. In Fig. 6.2, these

nodes are shaded gray.

Note that such pruning is only really viable in a depth-first search. A breadth-first

searching algorithm generates all 1-itemsets before moving on, which is precisely what is

to be avoided. Furthermore, k-1 itemsets are used when evaluating k-itemset candidates,

hence one cannot get away with pruning half the 1-itemsets, since all of them are required

to build 2-itemsets which are in turn required to build 3-itemsets and so forth.

Once a list of maximal frequent itemsets are generated, these lists are filtered such that

only those that include at least one comparison item are left. Just as there is no point in

having rules with no antecedent (hence the pruning mentioned above), there is no point

in having rules without consequents. Therefore, itemsets with only projected attributes in

them are useless.

With the remaining itemsets, the rules are generated much like standard rule generation

in association rule mining. The itemset is partitioned into a rule such that given the set

of items in the antecedent (i.e., a set of projected attributes), the queries in the training

set have at least a miniumum probability of having a given consequent (i.e., a comparison

or conjunction of comparisons). Given an itemset such as {A1, A2, A3, C1, C2} the rules to

consider would be:

Rule 1 A1 ∧A2 ∧A3 → C1
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Rule 2 A1 ∧A2 ∧A3 → C2

Rule 3 A1 ∧A2 ∧A3 → C1 ∧ C2

Notice that, in analogy to support, confidence has an anti-monotone property as well

under these conditions. In the example, it is clear that rule 3 cannot have a confidence

higher than rule 1 or rule 2. Therefore, one may generate rules in a bottom-up manner

by starting with single comparisons and later combine those with confidence above the

minimum into larger rules involving conjunctions on the consequent side. The same kind of

pruning as done in Apriori and other breadth-first methods are applicable due to this anti-

monotone property. Since one would like to keep the rule base small, I only use maximal

rules. In other words if rule 3 in the above example meets the minimum confidence, rules

1 and 2 need not go into the rule base as they are subsumed by rule 3.

Once the rule base is constructed, it can be used for query enrichment. Whenever a

set of query fragments are joined, the projection set of that join can be compared against

the rule base and additional comparisons may be suggested to the user. The consequent of

each rule that is satisfied by the projection of a join is suggested as a possible enhancement,

ranked by the confidence of the rule.

6.3 Summary

In this chapter I have suggested two methods by which likely minimal consolidations may

be enriched to approximate the consolidation done by the querying agent at its integration

site.

The first enhancement involves traversing the functional dependency closure in order to

expand the projection of the minimal consolidation. This expansion is aimed to estimate

the ‘offline’ information the querying agent may have and will in turn aid in finding a more

concise intensional expression to encapsulate the consolidation, as will be discussed in the

next chapter.
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The second enhancement is the addition of global selection constraints to the consolida-

tion based on the estimation of which global selections are likely. This estimation is done

by using a set of rules linking the existence of certain attributes in the projection to the

likelihood of the constraint to be introduced. These rules are generated by performing asso-

ciation analysis on a training set of global queries in the domain where both the projections

and the global selections are visible.
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Chapter 7: Re-Encapsulation of Candidates

The problem of intensional answering has long been an open research area [71]. These

systems seek to generate a concise expression that defines the information in a database or

a subset thereof. The aim is to derive the queries or schemata that completely and precisely

define a database relation or a view of the database by processing only the extensional

representation (i.e., the collection of tuples that comprise the view or relation). The problem

is closely related to data mining in that it seeks to derive the underlying explanation from

a collection of data. However, the real use of the system is in information integration. The

ability to generate intensional and machine parseable expressions from external views allows

systems to automatically integrate new information sources into a virtual database [16].

An additional application also arises in database security, where one wants to analyze the

intensional representation of the records received in order to determine if an attacker is

trying to infer restricted information [2].

This chapter describes the method [3] developed for generating such intensional ex-

pressions for the consolidations generated using the approach detailed thus far in the dis-

sertation. In conjunction with projection expansion explained in the previous chapter,

re-encapsulation of the extensions of consolidations with new intensional expressions may

yield simpler explanations to the consolidated query.

Example 7.1. Let there be an consolidation with the original intensional expression:

Q = (σ(AreaCode=212)(Phonebook) ∪ σ(AreaCode=917)(Phonebook))

./ (σ(Job=‘CEO’)(Employee) ∪ σ(Job=‘VP’)(Employee))
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or, “The vice presidents and CEO who have area codes of 212 or 917”. Let this query be

materialized as:

ID AreaCode Phone Name Job Salary

1 212 555-1234 Alice CEO $750,000

43 917 555-2355 Edward VP $540,000

56 212 555-4322 Jane VP $620,000

Analyzing at the extension, a re-encapsulation might find the following intensional expres-

sion:

Q = (σ(AreaCode=212)(Phonebook) ∪ σ(AreaCode=917)(Phonebook))

./ σ(Salary≥$500,000)(Employee)

or, “Employees making more than $500,000 and having area codes 917 or 212”. Now, con-

sider the same query with its projection expanded as described in Sec. 6.1:

ID AreaCode Phone Name Job Salary City

1 212 555-1234 Alice CEO $750,000 New York

43 917 555-2355 Edward VP $540,000 New York

56 212 555-4322 Jane VP $620,000 New York

A re-encapsulation of this extension might yield:

Q = (σ(City=‘New York’)(Location) ./ σ(Salary≥$500,000)(Employee)

or, “Employees in New York who make more than $500,000”. Clearly, the last encapsulation

is much more concise and arguably more informative than the original.
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The method I will describe in this chapter is essentially a locally optimizing search

which employs genetic programming. Candidate queries which attempt to explain a set of

records are generated. These candidates are evolved and recombined with each other until

a satisfactory result is obtained. The attributes and attribute values used for these candi-

date queries are selected using näıve Bayesian inference which incorporates the probability

distributions of various values occurring in the database.

7.1 Overview of Method

There are two primary ways one might use the programs resulting from the evolutionary

process of genetic programming. In the first case, the point of interest is the performance

itself and one is only interested in having a program which performs the required function

without necessarily needing to know the inner workings. The second case, the object is

the structure of the program itself. One would like to evolve a program that performs a

certain function and subsequently would like to see the mechanism by which it performs.

The latter case is the approach of this chapter.

A query is, in effect, a computer program that extracts a certain subset of some master

relation as a separate class. The point of interest is the mechanism that caused the original

query to pick out a given subset. Therefore, the method evolves programs (i.e., queries)

that perform the same function as the original query. Once the evolution has succeeded in

producing an identical or close enough extension, one can examine the mechanism by which

it operates. This mechanism is the intensional re-encapsulation one is looking for.

In order to describe the operation of the system I provide a simple example and will

follow through the rest of the chapter with this example. The master extension (hereafter

called R ) is given in Table 7.1. The set of records retrieved (i.e., the extension of some

consolidation for which the system attempts to find the intensional answer) is called the

target record set (T s.t. T ⊆ R) and is given in Table 7.1.

The main premise of the approach is that it creates a population of candidate queries

and evolves the population until one or more of the candidates perform as required. The
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Table 7.1: An Example Master Extension

Employee Job Dept Salary
Alice Engineer Clothing 12430
Bob Salesperson Hardware 14500
Carol Accountant Food 15340
David Engineer Hardware 11230

. . . .

. . . .

. . . .

Table 7.2: An Example Target

Employee Job Dept Salary
Carol Accountant Food 15340

George Accountant Furniture 9540
Mike Accountant Hardware 12000

candidates are each queries Qi. The performance requirement here is that Qi ≡ T. Note

that this is the ideal requirement and in the real system it could be that an amount of

similarity might be deemed sufficient instead of absolute equivalence.

The method starts with the generation of a number of candidate Qi’s. This initial

generation is said to be random in that it is a set of arbitrary queries. They are, however,

each fully operational, correct queries made out of primitives which have been selected

probabilistically to have a higher chance of being fit to the task at hand. The primitives

themselves, their selection and combination into queries will be discussed in detail later in

the chapter.

Each candidate in this initial population is then evaluated to obtain a fitness value. The

fitness in question can be defined as the similarity of T to the extension Qi, produced by

materializing (i.e., executing) the query Qi. The similarity measure will be discussed in a

later section but generally is a value between zero and one where the former means a totally

disjoint T and Pi and the latter denotes Pi ≡ T.

The candidates with the highest fitness are then bred with each other using either

direct combination, crossover or mutation to generate a new population of candidates. The
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Figure 7.1: Overview of the Method

114



selection of high fitness candidates and the breeding process that is used to obtain the new

generation of candidates is a discussion to follow. This new generation is then re-evaluated

in the same manner as its predecessor and the evaluation is used to produce yet a newer

generation of candidate population. This evolution gradually increases the mean fitness of

the candidates in the population. The cycle is stopped once one candidate in a population

achieves a satisfactory fitness. A satisfactory fitness is defined as a similarity to T above

a certain limit which may be preset as a constant or as a function of the sizes of R, T or

depending on the application. Figure 7.1 gives a schematic representation of the cycle. The

cycle is unbound in that it will never stop until the threshold is reached. Therefore, as a

practical consideration, generally an exception is added which stops the evolution if there

is no improvement over a given number of generations.

7.2 Generating the Initial Population

In keeping with the premise of genetic programming, the queries Qi in the population

are represented as trees. These trees can be parsed directly to yield relational algebraic

expressions. Each tree has selection operators as terminal nodes and set operators as internal

nodes.

The system has three fixed set operators for use in queries. These are:

Union ∪(A,B) = {∀x : x ∈ A ∨ x ∈ B} Arity: 2

Intersection
⋂

(A,B) = {∀x : x ∈ A ∧ x ∈ B} Arity: 2

Set Difference \(A,B) = {∀x : x ∈ A ∧ x /∈ B} Arity: 2

Apart from the basic operators the system has automatically defined selection operators

which are created with respect to the database and target in question. The following classes

of automatically defined operators, presented as relational algebra constructs, are created:

EQSELECT EqSelect[a, vi](R) := σ(a=vi)(R)
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NUMSELECT NumSelect[a, vi, vj ](R) := σvi6a<vj (R)

LIKESELECT LikeSelect[a, vi](R) := σa⊇vi(R)

In the preceeding descriptions a denotes an attribute in the master relation and v denotes

a distinct value of that attribute. Thus, instances of these operators may be created for

each possible combination of values and attributes. Note that these operators are selected

with care to be easily represented in SQL. They map directly to the SQL phrases for easy

construction of queries:

EqSelect(a, vi)→ “WHERE a = v1”

NumSelect(a, vi, vj)→ “a BETWEEN v1 AND v2”

LikeSelect(a, vi)→ “a LIKE ‘%v1%’ ”

Given the example target in Table 7.1, for instance, an operator such as EqSelect(Job, ‘Engineer′)

would make little sense in finding a proper intensional answer for the target since the tar-

get is composed solely of accountants. Therefore, while generating individuals one has to

assign probabilities to each attribute and value with respect to their relevance to the target

extension.

The question then is how to assign probabilities to operators. This is done in different

ways for different types of attributes. For the purposes of this dissertation, I define three

types which map to the three different selection operators above. These are

Nominal Attributes Attributes made of short strings with enumerable ranges of values

or integers with no ordinal relationship. These are exemplified by database fields such

as model numbers, names, phone numbers &c.

Numeric Attributes Numbers with possibly infinite range which also have an ordinal

relationship such as salary, size, distance, time &c.

Text Attributes Long strings. Examples are comment fields, addresses &c.
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The nature of each attribute (or field) in a database relation is assumed to be known at

the outset. Given the type of each attribute the system can perform feature selection for the

genetic programming process. Whenever a new operator is needed during the evolutionary

cycle, either during initial population generation or subsequent mutations, a closure1 is

generated depending on the type of attribute. The closure is the combination of a function

and its lexical environment. The function to be used is determined by the attribute such

that it is an EqSelect if the attribute is nominal, a NumSelect if the attribute is numeric

and a LikeSelect if the attribute is a text attribute. The lexical environment on the other

hand is characterized by the values of a, v1 and v2, if applicable.

At this point, consider a random variable A which has a range of possible values equal

to the set of possible attributes of the master relation R. For reasons of simplicity, let this

be a discreet random variable with uniform distribution, such that the value of A will be

equal to any of the attributes with equal probability. Therefore, while generating closures

one can use the distribution of this variable to determine the value of a while building

closures as needed. Once the attribute for the closure is determined, depending on the type

of attribute I define the values of vi in a similar manner.

7.2.1 Nominal Attributes

A good portion of the attributes in a database are probably going to be nominal values.

These are defined as values which have no inherent order. Examples are names, boolean

values, pointers to other tuples, &c. Given a nominal attribute in R called ai, I now define a

discreet random variable Ai. The range of this random variable is the set of values associated

with the relevant attribute. In the example of Table 7.1, the range of ADept would be {

‘Clothing’, ‘Food’, ‘Furniture’, ‘Hardware’ }. To determine the probability of each value I

use Bayesian methods. For each value vj of attribute ai in R I define the prior probability

as:
1The term closure in this context is meant in the sense it is used in functional programming literature.
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p(vj) =
|σai=vj (R)|
|R|

(7.1)

This is essentially the probability of each value occurring in the master relation and can

be calculated once and stored as long as the master relation does not change. In a virtual

database, the calculation of this prior would in essence mean materializing the whole global

schema G. Clearly such an operation my be intractable. Thus the prior probabilities can be

instead estimated with sampling and stored. Next, the prior probability of a record being

part of the target subset is:

p(T) =
|T|
|R|

(7.2)

Again the sizes of the relations which constitute the basis for any one consolidation may

not be known and may have to be estimates. The conditional probability of the value vj

given the subset T, however, can be calculated directly from the extension available:

p(vj |T) =
|σai=vj (T)|
|T|

(7.3)

The preceding two calculations are done whenever a new target extension (i.e., a con-

solidation) is processed and involve computing the results of a single SQL query of the form:

SELECT DISTINCT ai, COUNT(ai) FROM T GROUP BY ai;

Once these values have been calculated the probability of a record being part of the target

given evidence that its attribute ai has a particular value vj may be derived using the Bayes

rule:

p(T|vj) =
p(T)p(vj |T)

p(vj)
(7.4)
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This probability happens to be a good indicator for predicting the usefulness of a partic-

ular value for the purposes of defining the target T intensionally. Thus I use this conditional

probability in assigning the probabilities of the random variable Ai. Note that since Ai is

likely to be very sparse2, the conditional probabilities cannot be used directly. So I define

Ai using the normalized values:

p(Ai = vj) =
p(T|vj)∑
k p(T|vk)

(7.5)

Therefore, one can define the selection value of all the selector closures for nominal

attributes using the random variables Ai.

7.2.2 Text Attributes

Since text attributes are character strings of arbitrary length, it would not be wise to use the

above method for these directly. Defining a conditional probability for all possible values of

a long string would be both expensive and also futile in that it would not give the pattern

of occurrence. Instead, one can think of strings as combinations of tokens out of a master

dictionary (i.e., a bag of words).

One can start by consdering all the values of a given text attribute of R. Each value

is tokenized in that it is represented as a set of tokens. A token is defined as a character

substring delimited by whitespace or punctuation characters. The tokens can be sampled

from the materialization of the virtual database G, or if that is not tractable they can be

generated from a wordlist of the language in question. Once the tokens and their frequencies

are tabulated one can calculate the prior probabilities of each of the tokens similar to the

way it is done in Eqn. 7.1. Again, like nominal values, these prior probabilities have to

be calculated only once unless the data sources underlying the virtual database change

dramatically.
2i.e., most values ai will have zero probability
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When re-encapsulating a new target, one may calculate the conditional probabilities of

tokens occurring in the target in a fashion similar to Eqn. 7.3. The prior probability of the

target itself is defined as the ratio of the total frequency of tokens occurring in the target to

the total frequency of tokens in the master dictionary. Hence, one can generate a random

variable Ti which has a range composed of all the tokens. The probability of Ti being equal

to a particular token would be equal to the normalized conditional probability of a record

being part of T given that the token occurs in the text attribute ti of that record. Thus,

one can use random values of Ti to define selection values for the LikeSelect closures.

7.2.3 Numerical Attributes

Numerical attributes can also be given intelligent selection values using random variables.

Ideally this would be done using a continuous random variable with values that closely

mimics the probability density function of the distribution of the numerical attribute in

question. This however, is a rather complex approach that requires a good deal of infor-

mation about the distribution of values within the target extension as well as the source

database. Since such information is clearly very tedious or impossible to generate, I opt to

reduce numerical attributes into nominal attributes using discretization.

The range of values occurring in a numerical attribute of the source database R maybe

divided into discreet intervals which capture the semantic essence of the data. In a healthy

discretization, the semantic difference among values falling into separate intervals is signif-

icant but variation within intervals is not. Arguably the best way to define such intervals

on a numeric attribute is by using human experts who are well appraised of the meaning of

the data.

In the absence of such help, one can still define a good enough method to discretisize

the data. The method I use is inspired in most part by [77] and uses a recursive algorithm

to split numerical attributes into discreet intervals. The objective of the algorithm is to

split the range of an attribute into intervals that have variation below a certain threshold.

The algorithm is given in Figure 7.2.3.
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For a given numeric attribute ni: procedure Bisect
Input: V ← SortAscending(vi ∈ ni), Variation Threshold dVmax, p, q
Output: Set P of cut points
1:
2: P ← ∅
3: if V [q]− V [p] 6 dVmax then
4: return P
5: else
6: P ← V [(q − p)/2]
7: P ← P

⋃
Bisect(V, dVmax, p, (q − p)/2)

8: P ← P
⋃
Bisect(V, dVmax, (q − p)/2 + 1, q)

9: return P
10: end if

Figure 7.2: The Bisect Algorithm

Either by expert intervention or using the Bisect algorithm one can obtain a set of

intervals which essentially reduce the numeric attribute into a nominal attribute. Once

this is done, any value occurring within the target can be classified as part of an interval.

Notice that the discretization is similar to the calculation of priors in the preceding sections.

Once an attribute of the master relation is discretized, the intervals can be used for all

subsequent targets unless there is a significant change in the distribution of values in the

source database. One can now define a random variable Ni which returns number pairs.

Each possible value of Ni is the pair of boundaries for an interval. The probability of each

interval returned by Ni is proportional to the conditional probability of a record being in

T given the value of its ni attribute is in the said interval.

Having defined the manner of feature selection, one can generate the population using

selection closures that have a high probability of getting the correct answer. The initial

population is composed of single-node trees. Each tree is therefore a basic single-predicate

selection. A number of these equal to the size of the required initial population are gener-

ated. The size of the population stays constant during evolution. The actual number de-

pends primarily on the application, size of the database, number of attributes and amount

of processing power invested.
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7.3 Evaluation of Individuals

Once the population is created, each individual must be evaluated in order to determine its

fitness. The evaluation is done with respect to the precision and recall of each individual in

approximating the target extension. At this point it might be worthwhile to define precision

and recall in terms of the target extension T and the extension Qi of an individual in the

population:

Precision(Qi) =
|Qi

⋂
T|

|Qi|
(7.6)

Recall(Qi) =
|Qi

⋂
T|

|T|
(7.7)

These two measures each give a different view of the performance. Precision essentially

represents the performance in avoiding false positives, whereas recall is the measure of

success in avoiding false negatives. Ultimately however, one needs a single measure to

combine both performances in to a comparable fitness value. One such measure is the

complement of e-measure [13] defined as a combination of the above two measures:

E
′
=

1 + b2

b2

Recall(Qi)
+ 1

Precision(Qi)

(7.8)

where b is a user defined parameter which allows one to favor recall over precision and

vice versa. When b = 1, E
′
is identical to the harmonic mean of precision and recall. The

advantage of using these measures is that they have well defined boundaries and behavior.

The e-measure will always range between 0 and 1. It will tend to zero as Qi and T grow

disjoint and will tend to unity as they become identical.
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7.3.1 Selection of Individuals

In genetic programming literature, the two most common methods of selecting individuals

with higher fitness are fitness-proportional selection and tournament selection [50, 61]. In

the former, individuals are selected with probability proportional to their fitnesses. In the

latter, groups of 3 or 7 individuals are randomly selected and the individual with the highest

fitness of each group becomes the selected individual. The main selection process repeats

either method a number of times equal to the population size in order to obtain the parents

for the new generation. Notice that several copies of the individuals with highest fitness are

likely to be added to the parent pool whereas the lowest ranking individuals will not get a

chance to breed at all.

Of these two methods, I shall use tournament selection with groups of 7. The choice

in this case is neither easy nor absolute. However, the fact that tournament selection is

easier to implement and easier to parallelize is a major advantage. Also, as with all local

search methods genetic programming tends to converge as it proceeds. This is seen as

diminished variation between individuals in the later generations. Proportional selection

tends to overlook marginally better individuals in a population of equals. Tournament

selection is more likely to capture small improvements.

7.3.2 Breeding of the Next Generation

Once a pool of parent individuals is prepared with selection, the next generation of individ-

uals are created using three different operations. Each operation requires two individuals

and in turn returns two new children. The next generation is not necessarily totally com-

prised of new individuals. A random portion of the parents may be injected into the new

mix without any alteration. For example, in the experiments (cf. Sec. 8.4), 10 percent of

the individuals of each generation were comprised of unmodified parents from the preceding

generation. The remaining 90 percent were modified with a random probability of direct

combination, mutation and crossover. The schematic representations of the recombination

methods are given in Figure 7.3
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Figure 7.3: Recombination Methods
: (a) Crossover (b) Mutation (c) Direct Combination
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Mutation

In this type of modification a pair of individuals from the parent pool are removed and

modified separately. Remember that each individual is a tree with leaf nodes composed

of selection closures and internal nodes composed of set operations. In mutation, for each

one of the two individuals, a random node is selected and the tree is pruned at that node.

A newly generated selection closure is added to the part of the tree that was cut. The

resulting two new individuals are added to the new generation

Crossover

In crossover, a random node is removed from each of the parent individuals, along with

any sub nodes connected to that node. The removed subtrees are switched such that the

subtree removed from the first parent individual is connected to the point emptied by the

subtree removed from the other individual and vice versa. The resulting trees are added to

the next generation.

Direct Combination

In direct combination, the two parent individuals are copied to obtain two pairs. Each pair

is connected by a new root node. This root node is selected as a random set operation from

the three possible operations defined in Section 3.2. The resulting larger individuals are

added to the new generation.

The new generation being thus generated, the cycle is repeated as shown in Figure

7.1. The cycle repeats until one individual attains a fitness above the threshold or a given

number of generations pass without any improvement in the best fitness so far.

7.3.3 Optimizations

Several optimizations are done in implementation, primarily to increase the speed of the

system and also to improve the quality of the results. The main optimization is the caching

of intermediate answers. Since the leaves of each query tree are selection operators, these are
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executed as simple selections on the master relation R and the resulting tuples are stored

in memory as efficient bit vectors. Hence, the subsequent set of operations done as a result

of combining the leaves through intermediate nodes up to the root is done in memory and

on CPU time. This is a major improvement over sending each query directly to the DBMS

for processing. The DBMS and disk access steps are shown to be the biggest bottlenecks in

the next section. Therefore, it makes sense to remove as much of the processing from the

DBMS to the CPU. The intermediate nodes, likewise also cache their results and return

these directly unless their descendant nodes have changed due to mutation or crossover.

The second optimization involves building the individuals up from the smallest possible

size and grow them gradually as the generations advance. This ensures that it will be

more likely to get the most concise intensional answer for a given target. Concordantly, the

zeroth generation is composed solely of single nodes which are subsequently grown into more

complex and larger queries primarily through the direct combination method. Therefore,

the probability of the system selecting a direct combination during breeding is given by a

function inversely proportional to the size of the trees that are to be combined. For example,

for individual of size 1 (i.e., single node queries) the system will use direct combination.

For trees of size 2 (i.e., two leaves combined by a single set operation) the probability of

using direct combination is 0.5, the probabilities of crossover and mutation are 0.25 each.

For trees of size 3 the respective probabilities are 0.33, 0.33, 0.33 and so forth.

7.4 Summary

This chapter describes a method of re-encapsulating the extensions of candidate consolida-

tion with new intensional expressions (i.e., those different from the expressions generated

originally by the techniques described in Chapters 4 and 6).

The method is based on genetic programming and evolves populations of candidate

query expressions. The fitness constraint driving the evolution is geared towards increased

accuracy in generating the desired extension as well as being concise in terms of expression

size. The initial population is not random and is seeded with individuals more likely to
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contain selection predicates with comparisons to values that are more selective towards the

target extension, using the näıve Bayes model.
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Chapter 8: Experimental Results

In this chapter I will describe the experimental validation performed on the methods dis-

cussed thus far, in terms of both the accuracy of the methods and the time requirements.

I will, for each suite of experiments, also discuss the variation of accuracy and time perfor-

mance with respect to factors relevant to each experiment.

Section 8.1 will describe experiments performed on the conditional random field la-

belling approach for query sequences. Section 8.2 will explain the experimental analysis

of the minimal consolidation generation and ranking method defined in Chapter 4, with

particular attention to the differences in accuracy and performance of the exact and sam-

pling variants of the method. Section 8.3 will validate the association analysis approach for

finding likely global selection constraints to the join plans. Finally, Section 8.4 will analyze

the experimental results of the genetic programming based re-encapsulation approach.

8.1 Sequence Labeling and Segmentation

I performed a suite of experiments on the CRF labelling approach in order to validate its ac-

curacy and examine its behavior. Two widely publicly available benchmark databases,TPC-

H [89] and Mondial [90], were used for their schemata. Of these, TPC-H is the simulated

database of a business, including supplier and customer information, invoices, orders and

so forth. It has 8 tables. These 8 tables, for the purposes of this experiment, are treated

as different data sources. Furthermore, the larger tables have been vertically sliced into

smaller parts, each one as a different source. This allows one to simulate the vertically

distributed data in a virtual database environment. Therefore, with the subdivisions the

TPC-H test scenario simulates 17 different sources in a global virtual database schema.
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Table 8.1: Sizes of Generated Query Sequences

Sequence Length Mondial TPC-H
Minimum 1 1
Median 10 7

Maximum 36 23

The second test platform, the Mondial database, has a larger schema and is populated

with real-world geopolitical data from several resources (e.g., the CIA World Fact Book).

Originally it has 23 tables, the larger of which were likewise vertically subdivided in order

to obtain 30 simulated data sources.

Some parts of the subdivided tables were given binding limitations (e.g., the Countries

table in Mondial can only be searched by setting name of the country)

In order to create training and test data for the CRF, I generated 500 query sequences

for each. This was done by first creating a universal relation for each database. Random

views of these universal relations were then set as targets and a query plan (i.e., a query

sequence) was generated for each target, along with the labels for each of the components.

Due to the differences of the schemas and the random nature of the target selection, the

lengths of the query sequences are distributed over a range of values. Table 8.1 summarizes

these distributions.

The 500 sequences where randomly concatenated into groups of 10, each group becoming

a simulated query log for one user. The time stamps on the queries were simulated with a

Poisson process, with the rate, λτ , being simulated for different inter-query gaps. The rate

parameters, λ, were set in a ratio of 1:2:4, for gaps between component queries of composite

subgoals, gaps between goals, and gaps between goals, respectively. The time constant of

the process, τ , was the kept the same throughout.

The CRF was trained with 49 groups and tested with the remaining one using leave-

one-out cross-validation. Therefore, each database scenario was run 50 different times with

a different training partition of 1:49.

Three different CRF scenarios were experimented with. The CRF experiment is the basic
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approach with all the possible features. The PrunedCRF experiment is the CRF scenario

trained with gain-based pruning of attributes during training. Finally, the ContentCRF

scenario is a control test where extra features were added based on the actual content

of the databases. The training and testing programs were implemented in Java and the

experiments were run on a 2.2 MHz Athlon 64 system with 1 GB of memory operating under

FreeBSD 6. Each cross-validation experiment (i.e., 50 runs) was completed in times ranging

from 1 to 32 hours, on this platform, depending on the number of features. The training

is by far the larger time-consumer while labeling of the average test group took around 1.5

seconds. Figure 8.1 shows the progression of the optimization of the log-likelihood for the

various experiments with respect to amount of training time. Table 8.1 shows the number

of active features per clique for each scenario.
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Figure 8.1: Log-Likelihood vs. Training Time

The training was done using gradient ascent, particularly the L-BFGS [60] method. To

avoid overfitting, the likelihood function was regularized with a Gaussion prior with variance
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Table 8.2: Number of Features for the CRF Experiments

Method Mondial TPC-H
CRF 12,278 12,278

PrunedCRF 1,065 983
ContentCRF 150,271 132,055

5. After each round of training with 49 groups the remaining test group was labelled and

the labels were compared to the true labels which were decided during the generation of

the query sequences. The accuracy of a test is defined as the percentage of labels that are

the same with the correct labels.

The robustness of the CRF method to noise was also tested during these experiments.

For each cross-validation run, after the training of the CRF, the test sequence was tested for

accuracy initially as it was. Subsequently the test cases were each “corrupted” by inverting

the values of random observation features in the test sequence. For example, if the one

query was actually joinable with another, the noise induction might flip the value showing

the queries as non-joinable. By this method, I aim to simulate user and observation errors.

The tests were run at noise levels of 5, 10, and 15%, relating to that fraction of observation

features being corrupted. Table 8.1 shows the results.

Table 8.1 presents the average accuracy of each cross-validation run, per scenario and

per noise level.

The results are encouraging in that even at relatively high noise levels the feature pruned

CRF and the content enriched CRF are still reasonably accurate (on average above 95%

accuracy at 1-in-20 error in observation). The basic CRF seems to suffer immediately from

the noise. This is undoubtedly due to the tendency of the unpruned features to over-fit the

training data. Therefore, it is clear that pruned feature spaces have the additional benefit

of lower generalization errors, even in the case of noisy input. The content enriched feature

set tends to perform best in high noise situations. However, this slight gain in accuracy

arguably does not offset the fact that the feature rich model is larger, slower and less flexible.

As a subset of the preceding analysis, I have also investigated the boundary detection
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Table 8.3: Labeling Accuracy Results

Test Accuracy (% Correct)
Noise Level Method TPC-H Mondial

0 %
CRF 94.6 91.2

PrunedCRF 96.3 95.4
ContentCRF 99.2 98.4

5 %
CRF 86.3 88.1

PrunedCRF 95.2 92.3
ContentCRF 96.7 94.1

10 %
CRF 73.2 70.6

PrunedCRF 82.8 79.5
ContentCRF 83.2 81.4

15 %
CRF 60.3 65.1

PrunedCRF 68.6 69.3
ContentCRF 73.6 75.9

capabilities of each model. This is purely to test whether the system segments the sequences

correctly, regardless of the correct labeling of these segments. I test the accuracy of this in

terms of precision and recall. The precision of boundary detection is defined as the ratio of

correct segment boundaries the recognized to the total number of boundaries it detected.

In other words, it is the inverse ratio of false positives. In contrast, the recall of boundary

detection is the ratio of correctly detected boundaries to the number of actual boundaries

that existed in the sequence. Likewise, this is an inverse measure of false negatives. One

commonly used combination of precision and recall into a single accuracy measure is the

F1 measure:

F1 =
2PR
P +R

where P is precision and R is recall. The results analogous to the labeling results are

given in Table 8.1. The segmentation behavior of the CRF is much better than the more

complicated task of labeling, with very high accuracies up to very high noise levels. As with

the labeling task, the basic, unpruned CRF suffers as noise increases, for the same reasons.

In the segmenting task the difference in accuracy for the content enriched model is even less
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Table 8.4: Segmentation Accuracy Results

Test Accuracy (F-1)
Noise Level Method TPC-H Mondial

0 %
CRF 99.2 99.7

PrunedCRF 99.9 99.9
ContentCRF 99.8 99.9

5 %
CRF 98.4 97.3

PrunedCRF 98.7 98.2
ContentCRF 99.7 99.9

10 %
CRF 97.1 97.1

PrunedCRF 98.2 98.8
ContentCRF 99.1 99.3

15 %
CRF 91.2 90.3

PrunedCRF 93.8 96.2
ContentCRF 96.4 97.7

pronounced, making it even less useful from a cost-reward perspective.

8.2 Generation and Ranking of Minimal Consolidations

I have implemented the ideas explained in Chapter 4 in order to validate the approach and

to better understand the behavior of individual variantes. I analyze the results in terms of

both accuracy and performance along with their variations with respect to different factors.

All experimentation was done on a 2.33 GHz x86 workstation with 2 GB of memory

and running OS X 10.4.9. While the processor used was a dual-core model, all processing

was locked to a single core. The DBMS used was MySQL 5.0 and, when used, the server

process of the DBMS was operated on the other core. The implementation was done in

Ruby for most of the code. There are several exceptions, such as the bitmaps used for rapid

item counting and the DBMS adapter which were natively compiled extensions written in

C for the purposes of speed and memory optimization. The absolute time performance will

obviously be highly variable with respect to factors such as the hardware used, paralleliza-

tion, the use of native code and software optimizations. I provide the test system details

merely so that when absolute time values are reported (e.g., in seconds) later on, the reader
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may have an idea of the machinery involved. All such time values are thread CPU times as

opposed to wall-clock time.

8.2.1 Building of Candidate Joins

The query consolidation starts with the forming a join graph for joining the relations that

embody the results of each local query. One would like to see how well the discovery and

ranking of possible joins works. To this end I use the Mondial database [90].

To see the way experimentation is conducted, I will go through an example run with

four relations to be joined. In this example the input relations are Country, Organization,

IsMember and City. The system initially selects a set of attributes from each of these

relations that are suitable for use as join attributes. In the experiments the class of join

attributes are defined as either text attributes of less than 20 characters or integer attributes.

So the attributes considered for each of the relations in the example are:

Country Name, Code, Capital

City Name, Country

IsMember Country, Organization, Type

Organization Abbreviation, City, Country, Province

The primary keys of each relation are underlined for the benefit of the reader. The

joining system does not have any information as to which attribute is key or the relationship

between relations.

After the relations are input, the system checks the pairwise overlap between attributes

of pairs of relations in order to find out which attributes are compatible (cf. Sec. 4.1

Eqn. 4.1).

This information is used by the program to build a join graph. The edges in the graph

are weighted with respect to the information gain of each attribute on the target relation

(c.f. Eqns. 4.3 thru 4.6). Figure 8.2 shows the join graph generated for the example case.

134



City

Country

Is Member

Organization

City.Name = Country.Capital
Weights:1.0 - 1.0

City.Country = Country.Code
Weights: 1.0 - 0.889

City.Country = IsMember.Country
Weights: 0.888 - 0.589

Org.Name = IsMember.Org
Weights: 0.679 - 1.0

Country.Code = IsMember.Country
Weights: 0.589 - 1.0

City.Name = Org.City
Weights:  0.9963 - 0.966

Figure 8.2: Weighted Join Graph
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Each node in the graph is a relation and the edges each denote one possible join. The edges

are all labeled with callouts detailing the join attributes involved in the joins. Each callout

also contains the information gain of each side of the join.

The system then generates the top-k spanning trees of the join graph using the algorithm

described in [46]. As mentioned before, each edge is weighted with the maximum of the pair

of information gains. Ties are resolved by prioritizing edges with higher second weight. For

example, in Figure 8.2 the edge labeled ”City.Name = Country.Capital” has information

gains {1.0,1.0}. The maximum is 1.0 so the weight of that edge is 1.0 (i.e., maximum of 1.0

and 1.0). However, ”City.Country = Country.Code” has a gain vector of {1.0,0.889} leading,

again, to a weight of 1.0. When building a spanning tree, these two edges are mutually

exclusive since they form a cycle. Therefore, each spanning tree having the former edge

has an alternative spanning tree that uses the latter (e.g., Fig.8.3 parts (a) and (b) ). All

else being equal, both spanning trees would have the same total weight. However, spanning

tree having the former edge higher than the latter is ranked higher since the minimum of

its information gain vector is greater (i.e., 1.0 > 0.889).

Figure 8.3 shows the first six highest ranked join plans out of 13 possible for the example

join graph. The natural language explanations of these joins are:

Join (a): countries each with information on its capital city and information on organiza-

tions it is a member to.

Join (b): cities each with information on the country it belongs to and the organizations

that country is member to.

Join (c): organizations which are headquartered in a capital city, information on the host

country along with country codes of members.

Join (d): organizations with information on the host city and country along with country

codes of members.
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Figure 8.3: Span Tree Ranking
Ranking is in letter order. Trees a and b have the same weight (3.0). Trees c, d, e and f

have the same weight (2.96)
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Join (e): countries with any organizations they host in their capitals along with abbrevi-

ations of organizations they belong to.

Join (f): countries with any organizations they host in any of their cities along with ab-

breviations of organizations they belong to.

One can see that each of these joins are meaningful in some way, hence the requirement of

ranking a set of possible explanations rather than coming up with a single answer. However,

due to the ranking scheme, joins that are simpler to express and thus more probable are

ranked higher than others.

I have run a number of such trials with different portions of the Mondial schema and

varying number of relations to be joined in each case. A totally objective way of measuring

accuracy does not exist, given that a number of relations can be joined multiple ways and

still make sense. I therefore adopt the following method.

The whole schema of Mondial contains 28 relations, ranging from two to six attributes

each. Each iteration of the experiment takes a random subgraph of n relations of the whole

schema. The key relationships are known from the schema so a target join is created from

the this path between the n relations. For example, in the example above, the target join

selected would be:

Country ./Cap.=Name City ./Code=Country IsMember ./Org.=Abbr. Organization (8.1)

This target join is stored and the relations are given, as is, to the system. The system

creates a join plan and ranks possible joins. I then search for the target join within the

ranking. The rank at which the target join is found determines the success of the approach.

The system was run on subgraphs ranging from 3 to 8 relations with 20 random sub-

graphs for each complexity level. Table 8.5 summarizes the results. The algoritm, as

expected, performs very well in simple cases (e.g., joins involving 3,4 or 5 relations) where
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Table 8.5: Join Inference Accuracy with respect to Join Complexity

Number Number of Joins Ranking of Target
of Relations Mean Median Min. Max. Mean Median Highest Lowest

3 3.65 2.5 1 12 1.45 1 1 6
4 5.65 5 1 13 1.7 1 1 9
5 12.4 5.5 1 88 2.65 1 1 12
6 33.8 18.5 1 148 4.05 2 1 17
7 55.95 21 2 285 7.95 5 3 29
8 176.5 53.5 5 1089 20.8 10 2 109

the target join is ranked on top more than half of the time. Even in joins with 8 relations,

in more than half of the runs, the target join is within first 10 ranked explanations.

8.2.2 Comparison of Exact and Approximate Join Inference

The TPC-H [89] benchmark database was used for testing both the time performance of the

exact method as well as testing the accuracy and performance of the approximate (sampling)

variant.

The exact method runs off of a database management system (MySQL 5.0). The ap-

proximate method starts off with randomly sampling a small subset of each relation into

memory and subsequently works totally in memory. The random sampling requires one scan

of the table and thus the database access (i.e., disk access) for the approximate method is

only linearly dependent on the size of the original relation. On the other hand, the ex-

act method uses the DBMS extensively while calculating domain overlap and subsequently

during testing the plausibility of edges (i.e., while weighting the possible join candidates).

Performance

The exact method was tested for performance by analyzing a possible join of a table1 from

the TPC-H database with itself. This is a worst-case test of the method since when a

table is joined with an identical copy, every column matches at least one other column in

the counterpart. I have tested with various horizontal and vertical subsets of the table,
1the LineItem table, which is the largest, both in the number of rows and columns
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including subsets with 100, 500, 1000, 1500, 2000, 2500 and 3000 rows each with 2, 3

and 4 joinable attributes. Each of the 21 scenarios were run 20 times each to average the

time required. The DBMS query cache was flushed after each run to avoid erroneously

fast performance. The times required to generate the weighted join graph (in this case a

bipartite graph since the test invloves two relations) between the two tables are given in

Figure 8.4. Each point represents the mean run time of the 20 runs at each configuration

and the error bars represent standard deviation.
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Figure 8.4: Running Times of the Exact Method

It is clear from the figure that the exact method is too costly to use in any situation

where either the arity or the size of the relations involved is considerable. Recall from

Sec. 4.2.4 that the growth with respect to relation size is weaker (i.e., N log N). However,

the growth with respect to the average arity (i.e., P) is cubic in the worst case. Notice

that, since I am experimenting with join plans involving two identical tables, the number of
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relations (K) is fixed at two and recall that the exact method will present quadratic growth

with increasing numbers of relations involved.

Alternatively, the approximate method is several orders of magnitude faster and scales

much more favorably with respect to all these parameters. In order to test this, I have per-

formed the same experiment with the approximate method albeit with different sizes. The

original table was again LineItem, with a total of 100,000 rows. I have run the experiments

with sampling rates of 0.001, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4 and 0.52. Each point was run a

total of 100 times. Figure 8.5 gives the mean runtimes for each scenario. The data points

were fit with functions of the form a+bx log(cx) in order to verify the expected scaling with

respect to sample size. These fits are shown as well in Fig. 8.5.

An approximate method run starts by a pseudo-random sampling of the original table

for the required sample size. A the MT19937 variant of the Mersenne Twister PRNG is

used and the generator is seeded with the system timer at the beginning of each run. The

rest of the operation is conducted completely in memory. This includes finding domain

matches through the induction of simple pattern matching DFAs and the calculation of

the conditional entropy of the relation given each attribute. For the purposes of Figure

8.5, the effective arity (P) of the relation was 6. Although the relation has 16 columns,

only 6 of them satisfy the requirement that equi-join attributes be either integers or short

strings. Of these candidates, some were removed in order to test the effect of the arity.

Each level is shown as a different curve in Fig. 8.5. Notice that, with even large sample

sizes (e.g., 10000 rows) the operation is quick enough to be completed within a second on

modest hardware. In a production setting this may be cut down considerably with the

use of parallel processing. It is possible to do the calculations of each attribute separately

from each other on multiple processors giving the operation a virtually linear speedup hence

allowing online operation. A sample of 10000 rows for this example relates to a sample rate

of 0.1 on the original relation which has 100000 rows.
2Corresponding to sample sizes of 100, 1000, 5000, 10000, 20000, 30000, 40000 and 50000 rows, respec-

tively
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Figure 8.5: Running Times of the Sampling Method

The scaling of the computation time with respect to the number of candidate attributes

was also further investigated. The approximate method is expected to scale quadratically

with the number of possible join attributes. None of the tables of the TPC-H benchmark

database contain more than 16 attributes. In order to test the worst case scaling of the

method, a synthetic table of 50000 tuples and 100 attributes was generated to simulate

the worst case. The table is such that every attribute is a key and each is domain-wise

compatible with every other attribute in the table. Hence the method is forced to consider

a complete join graph in a scenario where this test table is joined with itself.

Figure 8.6 shows the results of this simulation. The simulation was run once for various

projections of different arity. The resulting data was fitted with a quadratic function, which

is shown as well. As expected, the approximate method scales quadratically with respect

to the number of candidate join attributes. Notice however, that the quadratic nature is

not very pronounced for arities less than 10. Therefore, for relations of arity less than
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Figure 8.6: Running Times of the Sampling Method with Respect to Number of
Join Attributes

10, the performance should not be affected. Due to database normalization and the human

attention span3 it is uncommon for relations to have many attributes and the join candidate

attributes will be fewer still.

Accuracy

I test the accuracy of the approximate method taking the exact method as a standard. The

exact method takes into consideration all the tuples involved and tests pairs of relations

against each other while scoring the plausability of each possible join. The exact method

also is able to find the exact domain overlap by actually intersecting the complete tables with

each other. The approximate method aims to estimate the same by using only a fraction of

the tuples from each relation. Furthermore, the calculation on each relation is self-contained.
3The human cognitive channel limits the number of items that can be retained by the average user at

about 7 [68]
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While this is the reason the approximate method scales favorably it also requires that the

degree to which it correctly approximates the full calculation be investigated.

The weights assigned by the approximate method to each edge in the join graph consist

of two distinct terms. The first is the extent to which the domains of the attributes at

each end of the edge match each other. This is determined by classifying the domain of one

sampled attribute with a DFA trained on the domain of the other. The second factor is the

extent to which either attribute serves as a key on its own relation. This determination is

made by calculating the prior entropy of the sampled relation and the conditional entropy

of same given the attribute and calculating the relative change (i.e., finding the information

gain). Since the idea is to estimate this statistic based on a sample of the original population

(i.e., the whole relation) it makes sense that the accuracy of the method depends primarily

on the relative size of the sample.
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Figure 8.7: Error in Weights Assigned by the Sampling Method with Respect to
the Exact Method
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In order to investigate the effects of varying sample size on accuracy, the experiment is

performed in a bottom up fashion, starting with the error in individual edge weights and

working up to the ranking of join plans. Figure 8.7 shows the error in weighting of edges

with varying sampling rates. The weighting error for any edge < A1, A2 > is defined as:

E(A1, A2) =
|wexact(A1, A2)− wapprox(A1, A2)|

wexact(A1, A2)

Each point in the figure is thus the mean weighting error for all edges in pairwise join

inferences between tables in the TPC-H database. The error bars represent the standard

deviation in the weighting error. This variance is negligible in cases where the sample size

is more than 5% of the total relation. Hence, as long as the sample size is within an order of

magnitude of the original relation, the behavior of the approximate method is stable enough

to be considered to be deterministic.

Figure 8.8 shows the effects of the weighting error on ranking. The LineItem table in

the TPC-H was experimented on in order to be able to consistently compare ranking of the

exact method and the approximate variant. The experiments were done on a pair of tables.

Since the method is locally optimized, if the links between every pair of tables is weighted

correctly the whole join graph is assumed to be correctly weighted. Therefore, without

loss of generality the focus of the experimentation is pairwise weighting between tables. In

this case, there are 12 possible edges in the join graph and the original relation has 100000

rows. The exact method was run once to find the benchmark ranking. Subsequently, the

approximate method was run 20 times each at various sample sizes and made to rank the

same 12 edges. The figure shows the mean ranking error as the sample size increases. The

error bars represent the standard deviation. Even at samples of 70 rows (i.e., a sample less

than 1% of the original.), the ranking of the approximate method stabilizes at a ranking

error of 2 (i.e., each edge is ranked on average two places away from their position in the

benchmark ranking). As the sample size becomes large enough to comprise a fraction of the

original relation (e.g., 20% of the whole) the ranking of the approximate method converges
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to that of the exact method.
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Figure 8.8: Average Error in Candidate Join Rank of the Sampling Method with
respect to the Exact Method

Therefore, for normally or uniformly distributed tables, the approximate method is able

to pick out distinctly better join plans and rank them at the top, even when the sample

taken is one hundredth of the total population. However, it is difficult for the method

to differentiate the more ‘mediocre’ join plans without more information. This is clearly

seen in 8.8 the initial inflection at around a sample size of 50 represents the point where

the most promising joins have settled in the top ranks. This is where the most plausible

join is discovered. As the sample size, and hence the information available to the method,

increases even the lower rankings converge to the correct ranking. This is seen as the

second inflection in the figure at around a sample size of 2000 (i.e., a 20% sample). Figure

8.9 further illustrates this effect. At the former inflection, the top join plan has stabilized

and is thereon consistently found as the top join. After the second inflection, all rankings
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are consistently the same with the benchmark ranking (denoted as the percentage of ‘perfect

rankings’ in the figure). Therefore, the approximate method can consistently find the top

ranked join plans at 1% sample size and is virtually the same as the exact method for

sample sizes above 20%.
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Figure 8.9: Accuracy of the Total Ranking of the Sampling Method with Respect
to the Exact Method

8.3 Association of Projections and Constraints

In order to analyze the behavior and performance of the association analysis method de-

scribed in section 6.2 I have implemented the MAFIA algorithm descirbed in [20] in Ruby

with the added optimizations discussed in said section.

The system works by creating and storing the occurrence of each single item in the

training set of queries by building a compact and fast bit vector stored in memory. Itemsets
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larger than 1 item thus do not require one to rescan the training set. Any occurences

of a k-itemset can be obtained by intersecting the bit vector of its parent (i.e., a (k-1)-

itemset) with the bitvector of the item to be added to the set. These bitvector classes

were implemented in C and compiled natively in order to preserve memory and prevent an

unnecessary performance drag. The remainder of the system, including tree-traversal and

mathematical calculations are pure Ruby.

The training set used was obtained from the Sloan Digital Sky Survey [87] and is a set of

SQL queries on the SDSS SkyServer database. The SkyServer is an online database housing

the most extensive astronomical survey to date. It contains visual, geometric and spectro-

graphic information on millions of astronomical bodies such as stars, galaxies, clusters &c.

This set was chosen because, due to the nature of the subject, the queries contain an abun-

dance of comparisons between attributes such as declination, right ascension, velocities and

colors of objects.

These queries were parsed and the projected attribute names and comparisons in each

were into a flat file containing ordered pairs. Each pair is organized as {Set of Projected

Attributes, Set of Comparisons}. During parsing any nested queries were extracted and

added as separate queries.

The association analysis was run using three-fold cross-validation. After training, for

each of the rules derived, the test set was filtered for pairs having the whole antecedent

of the rule in their projection set. The filtered set was then counted for pairs having the

consequent of the rule in their set of comparisons. The proportion of the pairs having

both the required projection and the comparison to those having only the projection is the

confidence of the rule with respect to the test set.

I measure the prediction error of a rule i as follows:

EPrediction
i = (CTest

i − CTraining
i )2 (8.2)

The average error of a cross-validation fold is defined as the square root of the mean of

the errors of all rules in that fold. The average error is the mean error over all three folds of
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cross-validation. Table 8.6 presents the experimental results for training done at different

levels of minimum support.

Table 8.6: Prediction Errors with Respect to Support and Confidence Thresholds

Support Confidence Number of Prediction Error
Threshold Threshold Rules Found Mean St. Dev.

0.05
0 11 0.08 0.03

0.5 7 0.08 0.035

0.1
0 4 0.09 0.06

0.5 2 0.05 0.04

0.2
0 2 0.03 0.02

0.5 1 0.04 0.03

The results confirm that the method does not particularly over- or under-estimate the

confidence of a rule. The decision to rank rules, and the comparisons they suggest, with

respect to their confidences is therefore justified. The error rates do not seem to be sensitive

to the minimum support threshold. Although higher thresholds seem to have the effect of

lowering the mean error rate, the variance between runs of cross-validation within the same

group are higher than the difference in mean errors. This has been indepedently verified

with ANOVA. The p-value of the F-test turns out to be 0.454, so one can say that the error

rate is not dependent on the support threshold.

Likewise, there seems to be no relationship between the confidence of a rule and its

prediction error. This is shown in the table where the error statistics are repeated for the

subset of rules above %50 confidence, in each case.

Hence, one can then say that while training, the support threshold should be set as

low as possible while still keeping the resulting number of training samples statistically

significant, as explained in Sec. 6.2.

That being said, decreasing the support threshold will cause a significant time cost

during training. As the support threshold drops, the number of candidate itemsets that can

be pruned out also drops dramatically. While this may lead to the discovery of more rules,

the time required to train the system will rise exponentially. This is shown in Figure 8.10

part (a), where the run times of the analysis was recorded for various support thresholds.
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(a) (b)

Figure 8.10: Time Performance of Association Rule Mining
(a) with respect to the minimum support threshold selected (b) with respect to the size of

the training set

The effect of increasing training set sizes was also investigated by running the analysis

on larger and larger sets, keeping the support threshold constant. The larger sets in this

case were created by duplicating samples in the original set. The results of this experiment

is seen in Figure 8.10 part (a), confirming that the analysis scales linearly with the size of

the training set (i.e., the repository of previous queries).

While the time performance of the analysis is important, it is not critical to the online

operation of the system. The analysis of previous queries will be done periodically and only

the rules derived will be used in day to day operation. Therefore, the online processing

cost of adding constraints to a joined relation is that of looking up relevant rules from a

rulebase. This can be done in many ways such as using a hash index. Regardless of the

implementation details, the time cost of processing is essentially only dependent on the

number of rules in the rulebase, which in turn will, more than anything, depend on the

application domain.
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8.4 Candidate Re-encapsulation

The genetic programming approach described in Chapter 7 has been implemented as a

prototype using Common Lisp with PostgreSQL as the DBMS. The system was tested

on the TPC-H [89] benchmark database. The original TPC-H database is a synthetic

database composed of 9 relations and describes the inventory control and sales database of

a manufacturing operation. Since the initial assumption is a universal single relation, 7 of

these 9 relations were joined over their foreign keys. The resulting join was projected so

as to remove the unique attributes and attributes which were semantically redundant. The

resulting relation is composed of 25 attributes 12 of which are nominal, 9 numeric and 3

are text attributes. The TPC-H benchmark allows the generation of databases of arbitrary

size. Relations of size 10 MB and 100 MB were synthesized in order to study scaling.

The targets to be answered intentionally were initially generated as queries. Each query

was generated by selecting random attributes and random values for those attributes using

equal probabilities. The query trees were generated using the Probabilistic Tree Creation

(PTC2) algorithm [62]. The PTC2 algorithm allows the generation of random queries with

precisely defined size. One of the factors examined in the experiments performed was the

effect of the complexity of the original query on the accuracy of the intensional answering.

Queries ranging from single predicate selections up to combinations of 5 predicates were

generated. These queries were in turn converted into targets by executing them on the

database and feeding the resulting extensions as target extensions to the system. Table 8.7

gives the number of observations (i.e., runs with different random targets) performed for

each factor.

Table 8.7: Breakdown of Experiments

Number of Targets
Query Complexity

DB size Population Size 1p 2p 3p 4p 5p
10MB 40 200 200 200 200 200
100MB 40 200 200 200 200 200
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8.4.1 Accuracy of Answers

Table 8.8: Overall Error in Ranking

Mean 0.946
1st Quartile 0.972
2ndQuartile 1.0

Variance 0.01
Minimum 0.45

Table 8.8 summarizes the characteristics of fitnesses obtained as a whole. Note that

the fitness is defined as the complement e-measure (E
′
) which equals unity for the perfect

answer. As can be seen from the summary, for more than half of all targets, the system

found the perfect intensional answer, with a mean accuracy of 94.6 %.

The complexity of the original query that generated the target extension seems to have

a significant effect on the success of the system. More complex targets result in a noticeable

decrease in accuracy of the intensional answers. The mean accuracies for 1 through 5

predicate queries can be seen in Table 8.9 and the distributions of accuracy as a function

of complexity are given in Figure 8.11.

Table 8.9: Analysis of Accuracy and Concision with respect to Target Complexity

Target Complexity Mean E
′

% Less concise % Equally Concise % More Concise
1 Predicate 0.998 1.21 98.79 N/A
2 Predicate 0.969 2.34 84.21 13.45
3 Predicate 0.950 9.03 78.61 12.36
4 Predicate 0.928 17.84 56.48 25.68
5 Predicate 0.877 17.56 47.52 34.92

The other interesting result shown in Table 8.9 is that the system manages to generate

intensional answers that are most of the time as concise as the original query that generated

the target extension. Especially for more complex targets there is an increasing chance that

the system will actually improve on the original in terms of the concision. Remember that
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Figure 8.11: Answer Accuracies for Targets of Various Complexities
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the system doesn’t see the original queries but works only with the extensional forms of

those queries.

8.4.2 Time Complexity and Speed

R
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Figure 8.12: Time vs. DBMS File Activity

The primary bottleneck for the system is predictably the DBMS. Especially the disk I/O

portion of the process seems to dominate the rate at which the system operates. Figure

8.12 plots each of the experiments performed with respect to the time it took to finish

the run against the number of blocks retrieved by the DBMS during the run. There is

a definite linear proportion between the time it takes to retrieve the data required from

the disk and time it takes to finish a run. As added evidence, since each disk block in

question is 4 KB, the slope of the line in Figure 8.12 can be found to be 23.7 MB/s. This
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is incidentally the approximate average disk I/O throughput for the commodity PC4 used

during the experiments.

 1  3  5  7   9

10

20

30

40

50

 2  4  6  8  10

Number of Generations

P
e
rc

e
n
t 

o
f 

R
u
n
s

Figure 8.13: Distribution of Runs in Terms of Generations Required

Figure 8.13 describes the distribution of the performed runs with respect to the number

of generations they require to converge. The mean number of generations required is 2.339.

This information, along with the amount of time required per generation can be used

to compute the time required for an average run. The average run time for the 10 MB

database is 3.76 seconds whereas the average for the 100 MB database is 61.32 seconds.

The relationship of the average run times with respect to number of generations is given in

Figure 8.14.

Note that the time required as a function of number of generations is actually a weak

quadratic. Logically one would expect the relationship to be linear. However, as mentioned

in the previous section, the individuals grow larger as generations advance. Therefore,

although the number of individuals processed per generation is identical the processing

done for later generations is actually longer due to the larger and more complex individuals

involved. So, theoretically the square term would start to dominate after 20 generations.

Since one never gets that far in reality, the behavior can be regarded as linear in practice.
4The machine in question is a 1.8 Ghz AthlonXP CPU with 256MB RAM running FreeBSD on an 80

GB IDE drive with ReiserFS
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It should be noted that the primary reason for weakness of the square term is the caching

of intermediate results as explained in Section 3.6. This simple optimization removes a

significant load off the DBMS especially for larger queries.
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Chapter 9: Conclusion

9.1 Summary of the Dissertation

In this dissertation I have introduced and discussed the problem of query consolidation

which is a reversal of the well known query decomposition problem. The problem is: Given

a set of queries which are the result of the decomposition of a global query across multiple

independent databases, can we recreate the global query from these pieces?

I have shown that the problem has no unique answer, even with rather limiting as-

sumptions on the query language used and the way the decomposition is done. I have,

however, developed an approach which will generate a number of guesses, ranked in order

of likelihood, to explain this set.

This is done by first joining these fragments into a view of the user’s general information

request. By the nature of the problem, it is demonstrated that there are usually multiple

joins to each set of queries. I therefore attempt to prune the immense number of possible

explanations and further rank them by a scheme which is designed to prioritize more likely

explanations.

Additionally, I have optimized the ranking and generation of candidate explanations

so that the process can be executed very efficiently, allowing the incoming queries to be

extracted and consolidated in real time, as they arrive. Therefore, the approach can nec-

essarily be used in the intermediate steps of the processing of a global query, evolving the

scenario as each new piece arrives.

The dissertation also investigates the problem of isolating sets of queries denoting in-

dependent user goals from a continuous sequence, either in real time or from a log. The

complexities involved can be classified into two categories. The first category of difficul-

ties is defining the boundaries of a goal. The second difficulty is the determination of the
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individual parts within a goal, regarding their function in forming the goal. An approach

based on conditional random fields was introduced that will label individual queries in the

sequence according to their functions. The method also labels the initial queries of each

distinct set of queries that constitutes a ‘task’ of the user. The labels can be decoded very

efficiently as each query arrives, presenting a new label sequence with each update. Along

with the fast join inference method mentioned above, this allows one to evaluate the most

likely information goals of a querying agent as they ask each new question, reevaluating the

scenario and coming up with likely solutions as each new query arrives.

I also provide three methods to further enhance the generated consolidations. The first

of these is a rule base of associations from previous experience that refines the candidate

consolidations with likely constraints, given the information they retrieve (i.e., attributes

projected). The second is a chase algoritm that will expand the projections of the possible

consolidations with implied information, based on the functional dependency information

available in the global schema. Finally, a query re-encapsulation method is introduced

that will return to the extension of a consolidation and attempt to ‘evolve’ a more concise

expression that will define the same extension. The re-encapsulation, along with the other

two enhancements will allow the person monitoring the query set of a user a different and

possibly simpler insight on the actual intent of the user.

All of these methods discussed above have been validated with detailed experimentation

on real and synthetic data. The result show that the methods proposed are viable in terms

of accuracy. The optimized methods (i.e., join inference and enhancement with global

selections) are all shown to be efficient enough to work in real-time. The re-encapsulation,

due to the computationally intensive nature of genetic programming, has very good accuracy

but is not especially fast. However, the re-encapsulation method is very amenable to parallel

computation and with the advent of multiple core processors and clustering, could soon be

viable for real time operation as well.
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9.2 Contributions

In this dissertation I make the following contributions:

1. The introduction and initial treatment of the problem of query consolidation.

2. An analysis on the bounds of the number of extensions that can be built using a

known number of views with known arity, given the binary operations possible.

3. A join inference method that enumerates and ranks, by likelihood, the possible join

plans given a set of views.

4. An ad-hoc key inference method that is computationally economical and independent

of schema information (i.e., dependent only on the data)

5. A method for segmenting and tagging continuous sequences (i.e., logs) of queries into

cliques of related queries using conditional random fields.

6. The application of association analysis to discover relationships between projection

sets and selection constraints in queries.

7. A method of encapsulating database subsets with intensional expressions based on

genetic programming and Bayesian inference.

9.3 Future Work

There are several avenues of research that would benefit the understanding of the problem

and improve the methods described in this dissertation. The schema agnostic join inference

method in Sec. 4.2, in its current state, is optimized with assumption that keys are composed

of single attributes. While it is generalizable to multiple attribute keys, it does not scale

well in such cases. Being that the main advantage of the method is its speed and scalability,

a redesign or improvement of the basic algorithm is needed for the more general case.

The sequence analysis (Sec. 5) does not handle interleaved query sequences. The queries

are segmented with assumption that two individual goals arrive separated chronologically
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and do not share components. This assumption is made in order to be able to handle the

sequence segmentation problem in a simple and unambiguous manner. While not unjus-

tified, it may indeed need to be relaxed. The possibility of a sequence analysis that can

separate interleaved query sequences is a worthwhile research topic. Initially, this could

be attempted by a mixture model whereby the log-likelihood of a label sequence may be

generated by a mixture of more than one CRF, or similar probabilistic model.

As mentioned in the previous section, the query encapsulation method is not as efficient

as the alternatives in literature. The main contender being decision tree classifiers, a genetic

programming approach was taken as it better captures small disjuncts in the data [24].

In the case of the present problem, this corresponds the ability to capture the intensional

explanation of recursive query plans or the collection of data from many sources. A different

encapsulation paradigm may be researched possibly using a boosting approach with several

fast but not necessarily very accurate classifiers.

Finally, during this research I have mostly demurred from using explicit semantics. In

other words, most of the proposed research does not depend on a wealth of metadata or

markup. Almost all of the metadata required is within the underlying global schema G and

consists of information limited to that of a DBMS catalog (e.g. attribute names, types and

referential constraints). Furthermore, the approach was designed to estimate the semantics,

when not available, from its latent effects on the data itself and thus to require as little

human intervention as possible. Over the half decade the present research has been going

on however, a good deal of development has been done on semantic enrichment of data

sources. Furthermore, metadata is being increasingly added to repositories in real life.

Therefore, the independence of the current system from metadata may be relaxed. The

use of ontologies and the associated logical inference mechanisms in a query consolidating

system should probably be researched, as these will undoubtedly help in eliminating some

of the solution multiplicity, enhance the estimation of likelihood of a given consolidation

and possibly aid the discovery of simpler intensional explanations.
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