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An Application of Constructive Induction to Engineering Design

Abstract

The paper presents a method for applying constructive inductive learning to conceptual engineering
design. The method allows a problem-oriented transformation of the representation space spanned over
the initially given attributes. This process involves a generation of new more problem-relevant
attributes, and an abstraction or removal of the less relevant ones. The search for new attributes is
based on the analysis of iteratively generated hypotheses, hence the method is called hypothesis-driven
constructive induction, or HCL The applicability of the method to engineering problems is illustrated
by the problem of learning design rules for wind bracings in tall buildings. The developed program,
AQ17-HCI, was used for learning four different types of rules: design recommendation rules, standard
rules, avoidance rules and infeasibility rules. The learned rules achieved an average predictive accuracy

96.7% on unseen examples. An analysis of the rules by a domain expert has also indicated their high

comprehensibility. The results obtained indicate a great promise of the method for the investigated
application and engineering design in general.
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Introduction

At present, the development of various knowledge-based design tools is considered crucial in
engineering to improve the design and manufacturing productivity. However, the development of these
tools for practical purposes requires the acquisition of knowledge about complex, often not completely
understood problems. Traditional methods of manual knowledge acquisition are inadequate in
engineering, and machine learning is the solution to the present knowledge acquisition bottleneck.

However, most existing machine learning inductive methods search for a hypothesis in a description
space defined by a priori given attributes. The produced hypothesis thus involves only attributes
selected from the original ones. If the original attributes are insufficiently relevant to the problem at
hand, then it is not possible to produce a high quality hypothesis, measured as empirical error rate. In
contrast to such selective induction methods, a constructive induction method performs a problem-
oriented transformation of the original description space (Michalski 1978; Rendell 1985; Utgoff 1986;
Muggleton 1987; Matheus 1989; Pagallo & Haussler 1990; Wnek & Michalski 1991). Such a

transformation aims at generating new, more problem-relevant attributes, and producing a description
space in which it is possible to determine a high quality inductive hypothesis.

Constructive induction methods may employ different strategies for constructing new descriptors
(attributes, relations, functions used for characterizing given entities). Based on the way new
descriptors are generated, existing systems can be divided into four categories: data-driven (DCI),
hypothesis-driven (HCI), knowledge-driven (KCI), and multistrategy (MCI) (Wnek & Michalski
1993b). The DCI methods analyze and explore input data, specifically, interrelationships among
attributes, examples, concepts, etc., in order to determine new descriptors. The HCI methods
determine new descriptors by analyzing recursively generated inductive hypotheses. The KCI methods
apply expert-provided domain knowledge to construct and/or verify new descriptors. Finally, the MCI
methods combine different approaches and methods for constructing new descriptors.

The method presented here belongs to the class of HCI methods. Other HCI methods include BLIP
(Morik 1989; Wrobel 1989), FRINGE (Pagallo & Haussler 1990). HCI methods are often a part of
multistrategy constructive induction methods that combine HCI with other methods. For example,
STABB combines DCI & HCI (Utgoff 1986). Other systems, such as, Duce (Muggleton 1987),
CITRE (Matheus 1989), CLINT (De Raedt & Bruynooghe 1991), involve HCI & KCIL.

The proposed method uses a rule representation of the generated descriptors and hypotheses. An
earlier version of the method implemented in AQ17-HCI was successfully applied to several DNF-type
problems and compared with other systems in terms of prediction accuracy, convergence to a desired
accuracy, and complexity of descriptions (Thrun et al. 1991; Wnek & Michalski 1991, 1993ab). It
consistently outperformed symbolic selective methods implemented in AQ15 and C4.5 (ID3),
backpropagation and a genetic algorithm based classifier system, as well as constructive induction
methods such as FRINGE, GREEDY?3, and GROVE.

The earlier version of AQ17-HCI used only the rule agglomeration operator for constructing new
attributes. The operator performed a selection of the best rules from a hypothesis and assembled them
into a description of a new attribute. This paper presents a substantial extension of this method, which
involves five operators: condition agglomeration, value agglomeration, rule agglomeration, attribute
extraction, and value extraction. :

The HCI method was applied to a conceptual design domain exemplified by the problem of
learning design rules for wind bracings in tall buildings. Conceptual design is an early stage in the
design process whose objective is to analyze needs, limitations, and available knowledge to produce
one or several feasible abstract descriptions of the engineering system being designed. Some work has
already been done on the application of machine learning to conceptual design knowledge acquisition



(Gero 1988, 1992; Arciszewski & Rossman 1992) but the application of a rule learning system based
on constructive induction is a novel one.

The method was evaluated from two perspectives: 1) machine learning, to show its advantages
over selective methods, and 2) engineering design, to show its applicability in structural design
knowledge acquisition. The first evaluation involves a comparison with the C4.5—decision tree and
AQ15—decision rule learning systems using two empirical error rates, the second one, involves
interpretation of the acquired knowledge, along with changes in the representation space, by a human
expert.

Hypothesis-Driven Constructive Induction: HCI

The hypothesis-driven constructive induction (HCI) method combines an inductive rule learning
algorittm AQ with a procedure for iteratively transforming a representation space. In each iteration, the
method changes the representation space by adding new attributes, removing insufficiently relevant
attributes, and/or agglomerating values of some attributes into larger units. The quality of the
hypothesis generated in each iteration is evaluated by applying the hypothesis to a subset of training
examples. The set of training examples prepared for a given iteration is split into the primary set (the P
set), which is used for generating hypotheses, and the secondary set (the S set), which is used for
evaluating the prediction accuracy of the generated hypotheses. Figure 1 presents a diagram illustrating
the HCI method. ‘

In the implemented system, AQ17-HCI, the input consists of training examples of one or more
concepts, and background knowledge about the attributes used in the examples (which specifies their
types and legal value sets). For the sake of simplicity, let us assume that the input consists of positive
examples, E* and negative examples, E-, of only one concept. If there are several concepts to learn,
examples of each concept are taken as positive examples of that concept, and the set-theoretical union
of examples of other concepts is taken as negative examples of that concept.

The method consists of two phases. Phase 1 determines the representation space by a process of
iterative refinement. In each iteration, the method prepares training examples, produces rules, evaluates
their performance, modifies the representation space, and then projects the training examples into the
new space. This phase is executed until the Stopping Condition is satisfied. This condition requires
that the prediction accuracy of the learned concept descriptions exceeds a predefined threshold, or there
is no improvement of the accuracy over the previous iteration. Phase 2 determines final concept
descriptions in the acquired representation space from the complete set of training examples. The
output consists of concept descriptions, and definitions of attributes constructed in Phase 1. Below is a
detailed description of both phases, and the basic modules of the method.

Phase 1 consists of six modules. The first, "Split of Examples" module, divides positive and
negative training examples into the primary set, P, and the secondary set, S (in the experiments the
split was according to the ratios 2/3 and 1/3, respectively). The set of primary positive (negative)
examples is denoted P+ (P-), and the set of secondary positive (negative) examples is denoted S* (S°).
Thus P =P+ UP-, and S = St U S~. The primary training set, P, is used for initial rule learning, the
secondary set, S, for an evaluation of intermediate rules, and total set, P U S, is used for the final rule
learning (in Phase 2).
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Figure 1. Hypothesis-driven constructive induction learning algorithm.

The "Rule Learning" module induces a set of decision rules for discriminating P+ from P-, i.e., a
cover COV (P*/P-) of positive primary examples against negative primary examples. This is done by
employing the AQ15 inductive learning program (Michalski et al., 1986). The program is based on the
Ad algorithm for solving general covering problem (Michalski, 1973).

The "Rule Evaluation" module estimates the prediction accuracy of the rules by applying them to the
secondary training set, S. The accuracy of the rules in classifying the examples from S is determined
by the ATEST procedure implemented in the AQ15 program (Reinke, 1984). If the Stopping
Condition criterion is not satisfied, the control passes to the "Rule Analysis" module, otherwise, it
passes to Phase 2.

The "Rule Analysis" module determines an admissible ruleset, i.e. the set of rules that have
sufficient strength according to rule strength measure (Wnek 1993). The HCI method works
iteratively. Each iteration generates a complete and consistent set of rules, i.e., a ruleset that covers all
positive examples and none of the negative examples. In order to speed up the process of determining
strong patterns, and avoid searching through rules that are weak and/or have low validity, the method
selects the admissible ruleset.



The "Representation Space Transformation” module analyzes the rules in this ruleset to determine
desirable changes in the representation space. It removes redundant or insignificant attributes, modifies
existing attributes (by attribute value agglomeration), and generates new attributes. This involves
detecting and evaluating patterns according to pattern strength measure. After patterns are selected,
new attributes can be defined. A new attribute definition consists of a name, a defining expression, and
a similarity measure for assigning values. The attribute is assigned a unique name after the concept it
was created from. The defining expression is the related pattern. The measure can result in assigning
real or discrete values from the closed interval O to 1. In the simplest case, value 1 is assigned if the
pattern is satisfied, and value O otherwise. More sophisticated measures may express the distance
between an instance and a pattern in real values. For example, Bala, Michalski & Wnek (1992) use
rule pattern attributes with a real-valued similarity measure for the task of texture recognition.

The "Example Reformulation" module projects all training examples into the new representation
space, and the whole inductive process is repeated.

In Phase 2, for each concept learned, the final ruleset is determined by applying the "Rule Learning"
module to all training examples projected into the final representation space determined in Phase 1.

The transformation of an attribute set is done through its reduction or expansion. Representation
space reduction can be accomplished in three ways: (1) elimination of an attribute value, (2) elimination
of an attribute, (3) elimination of a part of the representation space. The first two ways are self-
explanatory and are implemented as attribute and value extraction operators. The third way assumes
that the part of the representation space may be considered irrelevant. The representation space
reduction simplifies the learning process or at least leads to a simplification of the descriptions learned.

Another kind of change in the representation space is performed by adding new attributes or
extending the domains of existing attributes. This is done through three operators: value
agglomeration, condition agglomeration, and rule agglomeration. The application of a particular
operator involves a search for one of three types of patterns in learned rules: condition-pattern, rule-
pattern, and rule/set-pattern. Condition-pattern is detected if the analyzed hypothesis contains
conditions that repeatedly involve the same values of a single attribute. The value agglomeration
operator than combines those values into a single value and adds it to the domain of the attribute. Rule-
pattern is searched among conjunctions of conditions (rules). After detecting such a pattern, the
condition agglomeration operator creates new attribute and uses the pattern in attribute definition.
Ruleset-pattern is a selection of the best performing rules from a hypothesis.

Structural Design Domain

Domain of conceptual design of wind bracings in steel skeleton structures of tall buildings is described
by eight attributes. The description of the design problem and the wind bracing itself was developed by
Mustafa (1989). The attributes used are sufficient to describe various types of flat frame, truss, and
truss-frame bracings which are appropriate for buildings in the six to thirty-story height range. These
attributes are based on a general description of wind bracings in tall buildings proposed by
Arciszewski (1985). The attributes can be divided into three major components: 1) a description of the
building for which a given bracing is intended (design case or design requirements), 2) a description of
the wind bracing structural system, and 3) an evaluation of the structural worth of a given wind
bracing for the design case considered. Each instance in this domain relates the design requirements to
the selection of components of a wind bracing structural system and the structural worth of this
system.

The attributes, Number of Stories, Bay Length, and Importance Factor (the effect of wind zone on
structural design), describe the design case (design requirements) considered. Attributes, Joints,
Number of Bays, Number of Vertical Trusses, Number of Horizontal Trusses, describe the structural



system of wind bracing itself. The decision attribute, Unit Steel Weight, identifies the nominal value of
the relative unit weight of the steel structural system of a wind bracing described by the other seven
attributes.

Decision rules are generated according to the four values of the decision attribute Unit Steel
Weight. Values of the unit weight are high, average, low, and infeasible. Therefore, the decision rules
which specify designs with low unit weights are called Recommendation Rules. Similarly, decision
rules which produce average unit weights are called Standard Rules, and rules which produce high unit
weight are called Avoidance Rules. Rules producing infeasible wind bracings are called Infeasibility
Rules.

Examples of the structural designs were prepared by Mohamad Mustafa (1989) as part of his
doctoral research on an engineering methodology of automated knowledge acquisition. All detailed
design assumptions regarding loads, dimensions, steel grade, etc., were determined in cooperation
with practicing structural designers.

Induction of Decision Rules

The learning system conducted a multi-stage knowledge acquisition process. In the first stage, decision
rules were generated in the original representation space. The analysis of the rules revealed that the
Importance Factor attribute plays insignifficant role in the description and therefore the attribute was
eliminated from the training set. This result was not entirely unexpected, because wind intensity,
represented by Importance Factor, is rarely a decisive factor in the structural shaping of wind bracings.
In the next stage of knowledge acquisition, the system constructed three new attributes: two of which
were constructed using condition agglomeration operator and one using value agglomeration operator.
These new attributes were defined by the system as follows:

IF (Number of Stories IS 6) &
(Number of Vertical Trusses IS 0)

THEN c¢l1=1 ELSEcl=0

——

IF (Number of Stories IS 12..24) &
(Joints ARE Rigid or Mixed)

THEN c2=1 ELSEc2=0

IF (Number of Vertical Trusses IS 1..3)
THEN c¢3=1 ELSEc3=0

In the third stage of knowledge acquisition, the system constructed one new attribute with five
values using rule agglomeration operator. Each value is in a standard normal form, i.e., in the form of
a disjunct of several complexes (decision rules). This new attribute is defined as follows:

IF cl=1)&
(Number of Bays IS 1or 2) &
(Number of Horizontal Trusses IS 0..2)
OR
(cl=1)&
(Bay Length IS 30) &
(Number of Horizontal Trusses IS 0..2)
OR
ci=1)&
(Bay Length IS 30) &
(Number of Bays IS 1 or 2) &
THEN c4=1




IF (Number of Stories IS 12..30) &
(Number of Bays IS 3) &
(Number of Vertical Trusses IS 0) &
(Number of Horizontal Trusses IS 0..2)
OR
2=1)&
(Joints ARE rigid or mixed) &
(Number of Bays IS1or 2) &
(Number of Horizontal Trusses IS 0 or 2 or 3)

OR

(Number of Stories IS 18 or 24) &
(Joints ARE mixed) &

(Number of Horizontal Trusses IS 1 or 3)

THEN c4=2

IF c3=1)&
(Number of Stories IS 6..24) &
(Number of Bays IS 2 or 3)
OR
(Number of Stories IS 12..30) &
(Joints ARE hinged) &
(Number of Horizontal Trusses IS 1..3)

THEN c4=3

IF (Number of Stories IS 30) &
(Joints ARE rigid or mixed) &
(Number of Bays IS 1)

THEN c4=4

IF (none of the above formulas is satisfied)
OR
(more than one formula is satisfied)

THEN c4=5

All values of the constructed attribute (c4) have a clear structural engineering meaning and can be
interpreted in the terms of structural shaping of wind bracings. For example, the value 1, (c4 = 1) can

be interpreted in the following way:

In order to obtain a low unit weight for a six-story building,
avoid designing a wind bracing as a rigid frame

and the following three combinations of structural attributes:

(1)  a single one-bay or two one-bay structural system
with or without one or two horizontal trusses

OR

(2) with awide bay and

with or without one or two horizontal trusses

OR

(3) with awide bay and

as a single one-bay or two one-bay structural system

(Number of Stories IS 6) &
(Number of Vertical Trusses IS 0)

(Number of Bays IS 1 or 2) &
(No H. Trusses IS O or 1 or 2)

(Bay Length IS 30) &
(No H. Trusses IS @ or 1 or 2)

(Bay Length IS 30) &
(Number of Bays IS 1 or 2)

In the fourth stage of learning, the system produced four classes of decision rules, including five
Avoidance Rules, five Standard Rules, three Recommendation Rules, and one Infeasibility Rule. As
an example, Avoidance Rules are presented and their domain interpretation provided:




Avoidance Rules (AR):

ARL IF (c41S 1)
THEN a high unit weight of bracing should be expected ‘

| The interpretation is given above as the explanation of the constructed attribute c4 1
AR2: IF (Number of Bays IS 1 or 3) &

(Number of Vertical Trusses IS 0) &
(Number of Horizontal Trusses IS 1) &
(c4ISNOT2) &
(c4ISNOT 4)

THEN a high unit weight of bracing should be expected.

Avoid designing a one- or three-bay wind bracing in the form of a rigid frame, use one horizontal truss
and make sure that the value of constructed attribute c4 is neither two nor four.

AR3: IF (Number of Stories IS 12) &

(Bay Length IS 20) &

(Joints ARE mixed) &

(Number of Bays IS 2) &

(Number of Horizontal Trusses IS 3)
THEN a high unit weight of bracing should be expected.

Avoid designing twelve-story buildings with a narrow bay with wind bracings in the form of two one-
bay rigid frames and three horizontal trusses.

AR4: IF (Number of Stories IS 18) &
(Number of Vertical Trusses IS 0) &
(Number of Horizontal Trusses IS 0) &
(c4ISNOT 2)

THEN a high unit weight of bracing should be expected.

Avoid designing eighteen-story buildings with wind bracings in the form of rigid frames and make
sure that the constructed attribute c4 is not equal two.

ARS: IF (Number of Stories IS 18) &
(Joints ARE mixed) &
(Number of Bays IS 1) &
(c4ISNOT 2)

THEN a high unit weight of bracing should be expected.

Avoid designing eighteen-story buildings with wind bracings in the form of a single one-bay rigid
frame with horizontal truss or trusses and make sure that the constructed attribute c4 is not equal two.

Performance Analysis

The previous section analyzed the method from the viewpoint of comprehensibility and usefulness of
acquired rules. In this section, the performance accuracy of constructive induction-based learning
system in the area of structural design knowledge acquisition is analyzed. The performance can be
formally measured by various empirical error rates, which are determined through tests. In each test, a
learning system uses a given body of examples to make predictions about other known examples
which have not been included in its input. Each test can then be compared to a real-life situation, when
a designer uses a decision support system to predict the structural worth of a wind bracing to minimize
its weight. Therefore, empirical error rates are highly relevant to both machine learning research,
which is concerned with the performance of learning systems, and to structural design, which is
concerned with the optimal decision making.



Two empirical error rates were used: 1) the reclassification error rate, and 2) the leaving-one-out
error rate (Duda & Hart 1973; Weiss & Kulikowski 1991; Arciszewski, Dybala & Wnek 1992). The
reclassification error rate, sometimes called the apparent error rate, is calculated on all training
examples. Since any unknown example is tested, the error rate is usually too optimistic, but it provides
lower limit for other types of empirical error rates. It also gives a fast evaluation of the available data,
especially when learning from real-world data.

The leaving-one-out is a preferred method for testing on relatively small samples of data
(Lachenbruch & Mickey 1968; Efron 1982; Weiss & Kapouleas 1989). For a sample size (n), a
classifier is trained on (n-1) examples and tested on the remaining one. This is repeated (n) times for a
given sample.

In our experiment, the sample size (n) was 336. The error rates were determined for selective
induction, C4.5 decision tree learning system and AQ15 decision rule learning system, and
hypothesis-driven constructive induction AQ17-HCI decision rule learning system. Individual error
rates are shown in the Table 1.

Table 1. Comparison of Empirical Error Rates for Decision Trees and Decision Rules.

Reclassification Leaving-One-Out
Method Error Rate % Error Rate %
C4.5 (unpruned) 1.8 10.6
C4.5 (pruned) 10.7 11.0
AQl5 0.0 4.5
AQ17-HCI 0.0 3.3

Both, unpruned and pruned decision trees as constructed by C4.5 do not fit data completely.
Therefore, small 1.8% (6 examples out of 336) reclassification error rate made by an unpruned
decision tree assures the quality of data and sets a benchmark for this kind of learning. Relatively large
error rate of the pruned decision tree, 10.7%, suggests that pruning does not improve performance
accuracy in this domain. Both AQ15 and AQ17-HCI do not generate any reclassification errors. It
means that data is consistent, and moreover, it assures that the changes in the representation space, do
not lead to inconsistency in the domain description.

The leaving-one-out testing method yields higher but more realistic error rates than the
reclassification error rate method. There is a significant improvement in performance (more than 300%
percent) between the system based on selective induction represented by C4.5 and AQI1S, and the
system based on constructive induction.

Conclusions

The presented method of constructive induction changes the problem representation space by analyzing
and abstracting inductive hypotheses, rather than by directly combining different attributes or applying
expert-provided knowledge to construct new attributes. This way the search for new attributes is very
efficient, although it is limited by the representational formalism in which the method is implemented.



The performance analysis shows that constructive induction method is more effective in terms of
empirical error rates than traditional selective induction based on the C4.5 learning algorithm. An
approximately 300 percent decrease of the error rate is quite significant for such applications as civil
engineering. It would be desirable to produce and analyze learning curves for empirical error rates for
both systems, to learn more about their performance in a multistage automated knowledge acquisition
process, and this work is planned.

The results presented in this paper show that the use of constructive induction in structural design
knowledge acquisition is feasible. The decision rules produced are relatively simple and their structural
interpretation is possible, although not always easy, particularly when complex constructed attributes
are used. The changes in the representation space are acceptable to human experts. These changes are
similar to those associated with the growing human understanding of a given domain, and therefore
can also stimulate the process of human learning.

The application of the HCI method is one of many stages in a long process of structural design
knowledge acquisition. In this process, the knowledge representation stage was particularly difficult. It
required extensive study and the cooperation of experts. The identification of relevant attributes and
their nominal values began in the early seventies, and these attributes have undergone numerous
changes and modifications before a final acceptable set was produced.

The agglomeration and extraction operators used by the HCI method contribute to a fast evaluation
of the quality of attributes used in problem description and suggest possible modifications. For
example, the attribute extraction operator eliminated the Importance Factor attribute and domain experts
fully agree with it. The value agglomeration operator suggests simplification of the Number of Verical
Trusses attribute by combining three values into one.

The feasibility study was conducted in the area of structural design knowledge acquisition, and
therefore all conclusions produced are valid only in this area. However, it could be inferred by analogy

that similar results, in terms of clarity of decision rules, good performance, and proposed changes in
representation should be expected in other areas of civil engineering.

Machine learning research has already reached a fair level of maturity, and has resulted in various
experimental and commercial learning systems. These systems could be used in civil engineering to
improve productivity in knowledge acquisition and the development of knowledge-based decision
support systems. However, the application of learning systems is currently delayed by the lack of a
methodology of their use, and the development of this methodology is becoming crucial for further
progress. This paper provides some initial methodological results, but much more needs to be done.
Any work on the methodology of applying learning systems to civil engineering will be difficult, but
this is a challenge which must be met.
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