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ABSTRACT 

USING REMOTE SENSING AND MODELING TECHNIQUES TO INVESTIGATE 

MALARIA PREVALENCE IN LORETO, PERU 

Aneela Mousam, M.S. 

George Mason University, 2016 

Thesis Director: Dr. Viviana Maggioni 

 

Peru is a country still working toward completely eliminating malaria. Between 2001 and 

2010 significant progress was made towards reducing the number of malaria cases, but 

the country saw an increase between 2011 and 2012. This work attempts to uncover the 

associations among various climate and environmental variables and malaria prevalence 

in the Peruvian region of Loreto, which is located in the Amazon basin. A Multilevel 

Mixed-effects Poisson Regression model is employed to investigate the relationship 

between malaria prevalence and climate and environmental conditions during 2009-2013. 

The results indicate that increase in elevation (β=0.78; 95% confidence interval (CI) 

0.75-0.81), soil moisture (β=0.0021; 95% CI 0.0019-0.0022), rainfall (β=0.59; 95% CI 

0.56-0.61) and normalized difference vegetation index (β=2.13; 95% CI 1.83-2.43) are 

associated with higher malaria prevalence, while increase in temperature (β=-0.0043; 

95% CI -0.0044, -0.0041) is associated with a lower malaria prevalence. The results from 
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this study are especially useful for healthcare workers in Loreto and have the potential of 

being integrated within malaria elimination plans.



1 

 

INTRODUCTION 

Malaria continues to be one of the most severe public health problems worldwide. 

According to the World Health Organization (WHO, 2015), 1.2 billion people are at a high 

risk of being infected with malaria and developing the disease and 214 million cases were 

reported in 2015. Malaria can be especially fatal in children under the age of 5, who account 

for 69% of all deaths. Globally, malaria transmission is ongoing in 96 countries and 

territories (WHO, 2015). In many of these places, malaria transmission does not necessary 

occur in all parts of the country because transmission can be impacted by various regional 

factors. In general, warmer regions close to the equator see a more intense transmission 

that occurs year-round (CDC, 2012). Figure 1 presents the triangle of Human Ecology for 

malaria (Mead and Emch, 2010). The triangle gives an overview of different risk factors 

associated with malaria and speakers to complexity of understanding this disease.  
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Figure 1. Triangle of Human Ecology for Malaria  

 

Malaria is caused by a parasite that is transmitted to people through the bite of an 

infected female Anopheles mosquito. The four main parasite species responsible for 

causing the disease in humans include: Plasmodium falciparum, Plasmodium vivax, 

Plasmodium malariae and Plasmodium ovale (WHO, 2015). In humans, the parasite grows 

and multiplies in the liver cell producing merozoites. The merozoites exit the liver cell and 

re-enter the bloodstream and invade the red blood cells. In the blood cell, the parasite grows 

and destroys the cell and releases daughter parasites. These parasites then invade other red 

blood cells continuing the cycle. The parasites are then picked up by a mosquito, when they 

feed on an infected human and the mosquito can continue spreading the infection, when 

they bite another human. Therefore, the mosquito acts as the vector through which the 

parasite is spread from human to human (CDC, 2012). The symptoms of the disease usually 

start appearing 10-15 days after the bite. The most common symptoms include fever, 

headaches, chills and vomiting. If the symptoms are not treated within 24 hours the disease 

may lead to a more severe condition and possibly cause death (WHO, 2015).  
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WHO states that malaria has an especially heavy burden on the poorest and most 

marginalized communities, primarily affecting low and lower-middle income countries. 

The high risk associated with malaria is primarily due to lack of effective services for 

prevention, diagnosis and treatment. Therefore, it is critical to control and eliminate 

malaria in order to improve public health and reduce poverty (WHO, 2015). Due to the 

impact of this disease, many countries have taken initiatives in an attempt to eliminate 

it completely. In 2010, 79 countries were successful in eliminating malaria. But there 

are still approximately 99 endemic countries from which, 67 are controlling malaria and 

32 are pursuing an elimination strategy (Feachem et al., 2010). The main approaches to 

elimination are killing the parasite with appropriate medication such as Primaquine and 

8-aminoquinoline tafenoquine, vector control technologies like insecticide treated nets 

and indoor residual spraying, reduction in infection importation, and cross regional 

initiatives (Moonen et al., 2010; Ferguson et al., 2010). 

Controlling and eliminating malaria can bring forth many benefits for a country. 

Moving from a high malaria burden to low can help in increasing productivity through 

increased human capital and increased productivity of factor such as land or capital 

(Modrek et al., 2012). Elimination can generate a boost in economic activities of a country 

by creating an environment that is open to foreign investment and tourism. Malaria 

elimination has also the potential to strengthen the components for health system, which in 

turn would improve public health (Sabot et al., 2010).  

Although the benefits of controlling malaria are wide range, there are many 

challenges being faced by countries that are trying to pursue an elimination strategy 

http://www.sciencedirect.com/science/article/pii/S0140673610612706
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(Feachem et al., 2010).  One ongoing threat to elimination is the resistance to chemical 

agents, such as DDT, which are used to target adult and larval stages of vectors (Moonen 

et al., 2010). There is also a presence of drug resistant parasites that are emerging such as 

artemisinin resistance in the Asia Pacific (Cotter et al., 2013). Even if a country has been 

successful in eliminating malaria, the occurrences of imported malaria cases can be a very 

critical threat to the achievement and maintenance of elimination. This threat is greatest for 

countries that are neighboring high endemic areas (Cotter et al., 2013; Moonen et al., 2010).  

The majority of the cases occur in Africa and South-East Asia, but transmission 

continues in several parts of South America as well (WHO, 2015), as shown in Figure 2. 

In 2012, approximately 25% of the malaria burden in South America was experienced by 

only 12 municipalities in Peru, Brazil, and Venezuela (Zaitchik et al., 2012). Figure 3 

below presents the most recent malaria distribution in South America. 

Peru is progressing towards controlling malaria but has not been able to completely 

eliminate the disease, thus making it the country with the second highest number of malaria 

cases in South America (WHO, 2015; Bautista et al., 2006). In 2015, Peru has an estimated 

population of 30,973,148, of which 12,165,089 have at least some risk of contracting 

malaria (WHO, 2015). 

 

http://www.sciencedirect.com/science/article/pii/S0140673610612706
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Figure 2. World Distribution of Malaria in 2014 

 

During the 1990s, there has been a 7-fold increase in malaria incidence in Peru, 

rising from 13 per 10,000 inhabitants in 1990 to a peak of 88 per 10,000 in 1996 (Roper 

et al., 2000). Specifically, over 60% of all malaria cases occurred in the Loreto Department 

of Peru (Zaitchik et al., 2012). Therefore, the Department of Loreto has been the major 

focus of the malaria control. In 1990, there were only 641 cases in Loreto, but reached 

121,268 cases by 1997 (Roper et al., 2000). Peru saw an overall decline in malaria cases 

from 2001-2010.  However the number of cases increased from 2011-2013, especially in 

Loreto. 
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Figure 3. Malaria Distribution in South America in 2014 

 

Peru has implemented various initiatives in an effort to control malaria. The 

Peruvian Malaria Program provides free antimalarial drugs under a Directly Observed 

Therapy (DOT) protocol (Chuquiyauri et al., 2012). In addition, regional efforts to improve 

malaria surveillance, early detection, prompt treatment, and vector management have been 

employed since 2000 (Herrera et al., 2012). Despite these efforts and increased funding for 

malaria control in the region, there are still gaps in understanding how different factors 

impact malaria transmission and elimination (Herrera et al., 2012). This brings into 

question the role of climate and environmental factors. 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Chuquiyauri%20R%5Bauth%5D
http://www.ncbi.nlm.nih.gov/pubmed/?term=Herrera%20S%5Bauth%5D
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Past studies clearly indicate that global climate variability already has and will 

continue to have an impact on malaria transmission, which will ultimately impact countries 

that are pursuing a malaria elimination strategy. Specifically, Patz et al. (2005) and Parham 

and Michael (2010) state that climatic variations and extreme weather events have a 

profound impact on infectious agents and their associated vector organisms. These two 

studies also show that vectors such as mosquitoes are devoid of thermostatic mechanisms, 

so their reproduction and survival rates are strongly impacted by fluctuations in 

temperature. Parham and Michaels (2010) show that environmental variables such as 

temperature, humidity, rainfall, and wind speed can affect the incidence of malaria by 

impacting the changes in the duration of the parasite’s life cycle and parasite behavior. 

Githeko and Ndegwa (2001) focus on the East African Highlands and argue that 

the underlying cause of the malaria epidemic is due to the changing climatic conditions in 

this normally cool area. An increase in temperature has also been shown to accelerate the 

rate of mosquito larval development and the frequency of bites on humans, as well as 

impact the time it takes for the malaria parasite to mature into the mosquito stage. Increases 

in rainfall can create additional habitats for mosquitoes to breed, thus increasing vector 

populations. Githeko and Ndegwa, (2001) conclude that in the past decade there has been 

an increase in the anomalies of mean monthly temperatures, which has a strong relationship 

with the number of malaria cases. 

Few past studies have attempted to identify the relationship between climate 

variables and malaria risk in Peru. Jones et al. (2004) proposes that environmental factors 

are responsible for changes in the mosquito population over time. This study focused on 
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Loreto, where a higher overall mosquito population is observed from October 1996 through 

March 1997, which corresponds to the rainy season (Jones et al., 2004). Aramburú Guarda 

et al. (2004) finds a positive correlation between malaria transmission periods and rainfall 

and higher temperatures near the Amazon River. Additionally, Aramburú Guarda et al. 

(1999) show that the two precipitation peaks in 1997 occurred three months and one month 

before the malaria cases reached their highest levels in Loreto. These studies take place in 

the Loreto region but fail to take into account a long time series of the climate and 

environmental data, which is critical to observe temporal trends.  

This work goes one step further, by investigating how remote sensing and modeling 

products can be used to analyze trends in malaria prevalence by expanding on these past 

studies to include a longer time series, a larger study area (i.e., the whole Loreto 

Department), and by looking at a more complete set of environmental variables.  Field 

observations in the region are limited, as the Loreto department comprises nearly one-

fourth of the land mass of Peru and has a low population density (Aramburú Guarda et al., 

1999), making it difficult to conduct field data collections of climate and environmental 

factors. Thus, remote sensing and modeling data are extremely valuable to obtain the 

necessary information of the current environmental and climate conditions of the region 

and to investigate the impacts of the factors on the malaria transmission.  

The yearly malaria prevalence rates from 315 health centers located in Loreto and 

environmental and climate variables such as temperature, humidity, soil moisture, 

vegetation index, and elevation are analyzed. All of the variables are entered into a 

Multivariate Poisson Regression Model to study the dependence of malaria prevalence on 
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environmental conditions and identify which regions of the department are suitable for 

malaria transmission based on the noted factors. Results from this study can be applied for 

surveillance purposes to target regions that are at a higher risk for elimination strategies.  
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 STUDY AREA AND DATASETS 

Study Area 

Loreto is one of the 25 departments in Peru, located in the Northeast region of the country. 

Loreto comprises one fourth of Peru’s land area and has a total area of approximately 

348,177 km2 (Griffing et al., 2013; Vittor et al., 2006). The region lies in the amazon 

rainforest basin and has ecological characteristics of the amazon lowlands (Aramburú 

Guarda et al., 1999). Loreto has high and low jungle and almost all of the area is covered 

by thick vegetation (National Geographic, 2015; CIA, 2015). The region has two distinct 

seasons: wet and dry. The rainy season is between November and May, although 

precipitation occurs year around. Loreto’s annual average temperature is 28°C and the 

region has a persistent, high relative humidity of more than 87% year around (Aramburú 

Guarda et al., 1999).  

The Loreto region only has one major paved road with small unpaved roads 

connecting villages. However, in practice, most of the movement in this region happens 

along the river networks (Kvist & Nebel, 2001; Abizaid, 2005; GOREL, 2006). As a result, 

majority of the population resides in close approximation of the river (Figure 4).  
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Figure 4. Health Center locations in the red and micro red network 

 

There are 315 health centers in Loreto. The health centers are nested in 8 “red” 

networks, which are based on the boundaries of the provinces in the region. Figure 4, 

displays a map of the health center locations, the rivers, and the boundaries of the reds. The 

figure shows the distribution of the health centers within each of the networks. Some reds 

have several health center clustered in the same area, while in other regions the health 

centers are more dispersed.  

Malaria Data 

The malaria data used for this study are obtained from the Loreto Ministry of Health for 

the 2009 - 2013 time period. The dataset includes yearly case counts for both Plasmodium 

Falciparum and Plasmodium Vivax cases at each of the 315 health centers. The two species 
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differ morphologically, immunologically, in their geographical distribution, and in their 

relapse and drug response (Tuteja, 2007). 

Data on the estimated population at each health center are used to determine the 

prevalence rate, as defined in equation 1 (SJSU, 2012). The population estimates per health 

center are obtained from the Loreto’s Ministry of Health for the year 2009. The population 

estimates for 2010-2013 are calculated based on linear interpolation from the 2009 

population assigned to each health center and the total population estimates of the 

department at each year.  

Equation 1 

Prevalence = ((
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑 𝑐𝑎𝑠𝑒𝑠 𝑑𝑢𝑟𝑖𝑛𝑔 𝑎 𝑡𝑖𝑚𝑒 𝑝𝑒𝑟𝑖𝑜𝑑

𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑑𝑢𝑟𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑝𝑒𝑟𝑖𝑜𝑑
) ∗ 1000)   

The total weekly malaria case count for the whole department is extracted for 2009 

- 2013 from the Loreto Ministry of Health’s weekly health bulletins. The results of the 

weekly malaria counts are presented in Figure 5. 

Climate and Environmental Variables 

Several satellite and modeling products are used to study climate and environmental 

variables at each health center for 2009 – 2013, including outputs from the NASA MERRA 

(Modern-Era Retrospective analysis for Research And Applications) model, precipitation 

data from the Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation 

Analysis (TMPA), vegetation products from the moderate-resolution imaging 

spectroradiometer (MODIS) instrument, and elevation data from the Advanced Spaceborne 

Thermal Emission and Reflection Radiometer (ASTER) Global Elevation Model (GDEM). 
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NASA MERRA Model 

The MERRA model provides historical time series of the hydrological cycle variables, 

such as precipitation, temperature, humidity, and surface pressure from 1979 to present 

(Reichle et al., 2011; Reinecker et al., 2011). MERRA incorporates information from 

remote sensing observations of the atmosphere from many modern satellites and provides 

estimates of surface meteorological data such as precipitation, radiation, air temperature, 

and humidity as well as land surface variables such as soil moisture and runoff. Data are 

available at hourly steps and at 1/2° × 2/3° spatial resolution in latitude and longitude. 

The climate variables obtained from MERRA include specific humidity at 2 m above the 

displacement height (QV2M), temperature at 2 m above the displacement height (T2M), 

and soil moisture content in the top soil layer (SFMC). 

Precipitation Data 

Precipitation data is obtained from the TRMM TMPA dataset (NASA, 2015). TMPA 

provides precipitation estimates by merging information from multiple satellite sensors and 

ground-based gauges (Huffman et al., 2007; Huffman et al., 2010). Specifically, this 

product combines the rainfall estimates of passive of several passive microwave sensors 

(PMW) that are onboard Low Earth Orbit Satellites and sensors that are on board platforms 

of the Defense Meteorological satellite products (DMSP) and NOAA (Mantas et al., 2015). 

TMPA estimates are produced by using the PMW rain rates for each sensor through the 

Goddard Profiling algorithm (Kummerow et al., 2011; Gopalan et al., 2010). TRMM data 

is available from latitude band 50°N–S from 1998-2014 for 3 hourly steps and 0.25° x 

0.25° resolution (Huffman et al., 2007). The TMPA rainfall products are available in two 
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versions: a real-time version (TMPA 3B42RT) and gauge-adjusted post real-time research 

version (TMPA 3B42). The main difference between the two products is the use of rain 

gauge data for bias adjustment and the date of release (Melesse, 2011). For this study, the 

TMPA 3B42V7 product is used, since it is reported to have better performance in terms of 

bias with respect to the real-time version (Habib et al., 2009; Maggioni et al., 2016). 

Vegetation Data 

Satellite based vegetation indices are obtained from the global 16-day composite of 

MODIS vegetation indices that provide spatial and temporal comparisons of vegetation 

conditions. The indices include the MODIS normalized difference vegetation index 

(NDVI) and the Enhanced Vegetation Index (EVI), which is more responsive to canopy 

structural variations. For this study, data is obtained from the MOD13C1 Product at a 0.05° 

resolution (Herring, 2000). NDVI is defined as follows 

Equation 2 

NDVI =
N−R

N+R
     

where N and R are the reflectance in the near-infrared (NIR) and red bands, respectively. 

EVI is defined as 

Equation 3 

EVI = G (
N−R

N+C1R−C2B+L
)    

where N, R, and B are atmosphere-corrected surface reflectance in near-infrared, red, and 

blue bands. G is a gain factor, C1, and C2 are coefficients of the aerosol resistance term. 

The coefficients used in the MODIS EVI algorithm are, L=1, C1=6, C2=7.5, and G=2.5 

(Jiang et al., 2008). 
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Elevation Data 

The ASTER GDEM model provides elevation data globally at a 30 meter resolution. The 

ASTER instrument is launched onboard NASA’s Terra Spacecraft and has the capability 

of using near infrared spectral band and nadir-viewing and backward-viewing telescopes 

to acquire stereo image data (Japan Space Systems, 2011; NASA, 2016). To produce the 

ASTER DEMs, the ASTER archive are processed through an automated method which 

includes, cloud masking, stacking all cloud-screened DEMs, removing bad values, and 

averaging selected data to create final pixel values. The ASTER GDEM is available for 

land surface regions between 83o N-S in 1° × 1° tiles (Japan Space Systems, 2011).  

 



16 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.  Weekly time series plots for weekly malaria cases and (a) mean weekly precipitation, (b) mean weekly humidity, (c) mean weekly soil moisture, (d) 

mean weekly temperature, (e) mean weekly normalized difference vegetation index (NDVI), and (f) mean weekly enhanced vegetation index (EVI) for the 

whole Loreto Department 
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Time Series 

The time series of the weekly average precipitation, temperature, humidity, NDVI, EVI 

and number of malaria cases from 2009 to 2013 for the entire area are shown in Figure 4. 

The time series for the climate and environmental factors indicate that there is a strong 

seasonality. In Figure 5, plot a, plot b, and plot d, the values begin increasing in the last 

few months of the year and the peak occurs in the beginning of the year, which lines up 

with wet season (November-May) in Loreto. For temperature (plot d), NDVI (plot e), and 

EVI (plot f), the peak occurs in the second half of each year between May to December. 

The peak malaria cases occur approximately in the middle of each year. The maximum 

weekly precipitation, temperature, and humidity average for the entire time period occur 

between 2010 and 2011, which align with the time when malaria cases begin to increase.
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METHODOLOGY 

Mixed Effects Poisson Regression Mode 

For this study, a mixed-effects Poisson regression model is used to study the relationship 

between malaria prevalence and climate and environmental variables. This type of model 

is a Poisson regression that contains both fixed effects and random effects. There are many 

advantages of using a mixed-effect model for this type of analysis. First, mixed-effect 

models can be applied to continuous and non-normally distributed outcomes (e.g., Poisson 

distribution). Second, this family of models is robust when handling missing data, time-

invariant and time varying covariates (Gibbons et al., 2010). Mixed-effects models also 

allow for modeling the correlation that might exist in grouped data and, therefore, the 

nesting of the groups can be treated as random effects within the model (Buckley et al., 

2003; Ren et al., 2015).   

A Poisson regression model is generally utilized when the response variable is a 

discrete number (n = 0, 1, 2, …,N). In comparison to ordinary regression models, this 

technique has the constraint that: 1) predicted values are non-negative numbers, and 2) the 

mean and the variance of the errors are equal to each other. Moreover, the Poisson 

regression model assumes that the probability distribution of the response follows a 

Poisson distribution (Gardner et al., 1995; Long, 1997): 

Equation 4 

Pr(yij  =  y|x𝑖𝑗 , u𝑗  )  =
(exp (−µ𝑖𝑗) ) µ𝑖𝑗

𝑦

y!
      



19 

 

where µij = exp (xij β + uj ),  j = 1, 2,  . . . , m clusters (reds), with cluster j consisting 

of i = 1, 2, …, nj (health centers). The responses are counts yij (malaria prevalence). The 

row vector xij corresponds to the covariates for the fixed effects, with the regression 

coefficients (fixed effects) β. The random effects are represented by uj (STATA, 2013). In 

this model, the fixed effects represent the climate and environmental variables and the 

random effect accounts for the correlation that might exist in the red networks.  

Poisson regression assumes that the logarithm of its expected value can be modeled 

by a linear combination of unknown parameters (Ahmed, 2014). The equation written as a 

generalized linear function is: 

Equation 5 

          log(µ𝑖𝑗 ) =  β0  +  β1xij  … +  β𝑛xij  + u𝑗                

The model outputs coefficient values for the constant (β0), the fixed effects (βn) and 

the random effects (uj). In Poisson regression, the response is conceptualized as a rate. 

Therefore, a positive coefficient indicates higher rate and a negative coefficient indicates a 

lower rate (Schofer, 2007).  

The coefficients can be exponentiated to determine the incidence rate ratio (IRR), 

which is computed as: 

Equation 6 

             𝐼𝑅𝑅 = 𝑒𝑥𝑝(𝛽𝑛)                                                         

 

The IRR can be converted to a percentage by using the following formula: 

Equation 7 

     𝐼𝑅𝑅(%)  =  𝐼𝑅𝑅 − 1 ∗ 100               
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The percentage can help to indicate the magnitude of the change of the fixed effects 

on the response (Schofer, 2007). 

Data Analysis  

In this study, the mixed-effects model is implemented using a Multilevel Mixed-effects 

Poisson Regression in STATA 13. The model includes malaria prevalence at each health 

center. The centers are clustered by red networks to take into consideration the shared, 

clustered-level random effects. The climate and environmental data are gridded, therefore 

it is necessary to determine in which grid each of the health center is located. To determine 

the conditions at each health center data, the nearest neighbor value of the climate and 

environmental data is used.   

All the climate and environmental variables are transformed in an attempt to better 

characterize the conditions throughout the year. For example, rather than simply 

considering the average yearly temperature, the number of days with temperature above a 

certain degree is considered. Due to the fact that malaria data is available on a yearly scale, 

numerous transformations for the variables in an attempt to test a broad range of potential 

representations of the variables. The full list of variable transformations is presented in 

Appendix D.  

Each of the climate and environmental variable transformation is examined in a 

univariate analysis to identify the transformation that will be included in the multivariate 

mode. Thus, the Akaike Information Criterion (AIC), which provides a measure of the 

relative quality of a model for a set of data, is computed. The AIC is defined as:  
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Equation 8 

             AIC =  −2 lnL +  2k                                        

where lnL is the maximized log-likelihood of the model, k is the number of parameters 

estimated (STATA, 2013).  

AIC criterion is used to estimate the quality of each model relative to other models. 

The AIC values give insight into the fitness of the model and help to select the best variable 

transformation. Given two models, the one with the smaller AIC indicates a better-fitting 

model (STATA, 2013).  

The AIC for each of the various transformations of all variables is calculated in 

order to test what is the best transformation for each variable to use for the multivariate 

model. The variable transformations with the lowest AIC value are then adopted in the 

multivariate analysis. The forward selection is used to determine the variables for the 

multivariate model. In this approach, each variable is added to the model one at a time 

starting with the one that is the most significant (i.e., lowest AIC) and assessing what effect 

adding a variable has on the AIC value. The variable that results in the lowest AIC for the 

model is included. 

Pearson’s correlation coefficients are also calculated for each of the variable to 

avoid multicollinearity. Multicollinearity can inflate the variance of one of the estimated 

regression coefficients and produce untrustworthy model results. A coefficient value 

greater than 0.5 or less than -0.5 corresponds to a high degree of correlation between the 

two variables, so one of the two variables would be eliminated. The multivariate analysis 

is applied first to the total malaria prevalence and then to the two types of malaria (P. 

Falciparum and P. Vivax) separately. 
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 RESULTS 

Sample Characteristics  

The total number of malaria cases for Loreto decreased from 2009 to 2010, then began 

increasing afterward, reaching 43,737 cases in 2013. The yearly number of malaria cases, 

population, and malaria prevalence for the entire department are presented in Table 1 for 

2009 to 2013.  

 

Table 1. Year malaria count and population for the whole department 

 
  2009 2010 2011 2012 2013 

Malaria Count 23,486 11,445 11,779 25,148 43,737 

Population 766,169 766,578 775,321 784,113 792,935 

Malaria Prevalence  30.7 14.9 15.2 32.1 55.2 

 

Table 2 shows the mean yearly malaria prevalence for the health centers in each of 

the eight red networks, as well as the number of health centers in each. In 2013, Maynas 

Ciudad, Datem Del Maranon and Maynas Periferia showed the highest malaria prevalence, 

whereas Ucayali recorded the lowest average prevalence among all the reds in 2013. As 

shown in Figure 4,  Maynad Ciudad and Maynas Periferia are located closer to the equator 

compared to the other reds. Datem Del Maranon is located in the western region of the 

department near the border with Ecuador. Ucayali is located at the southernmost part of the 

department and the furthest away from the Equator compared to the other reds. The 

distance from the equator is critical as areas closer to it experience hot climate with little 
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seasonal variations (National Geographic Society, 2011). Therefore, the environmental 

conditions are more favorable for malaria transmission.  

Another point to note in Table 2 is that the standard deviation of the prevalence is 

higher than the mean, which indicates high variability in malaria prevalence among the 

health centers in the each of the red networks.  
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                              Table 2. Mean and standard deviation of yearly prevalence per red network 

 

 No. of 

Health 

Centers 

2009 2010 2011 2012 2013 

 Mean SD Mean SD Mean SD Mean SD Mean SD 

Alto 

Amazonas 

52 26.5 41.8 18.3 28.4 18.7 29.6 18.8 45.2 43.0 99.06 

Datem 

Del 

Marañon  

45 59.2 107.6 32.9 63.0 33.5 64.7 65.1 143.7 143.3 319.8 

Loreto 27 52.4 78.1 21.3 28.6 21.6 29.2 43.6 85.4 80.4 140.6 

Maynas 

Ciudad 

45 64.3 141.4 36.5 81.1 36.5 82.7 171.6 525.5 201.3 407.1 

Maynas 

periferia 

57 115.9 254.9 51.7 95.2 52.3 96.36 65.9 138.6 131.2 299.2 

Ramon 

castilla  

21 58.8 52.2 17.9 16.1 18.0 16.4 60.1 89.1 120.2 208.23 

Requena 34 23.1 98.5 12.9 53.1 12.9 53.4 28.2 121.3 42.9 152.1 

Ucayali  34 0.0 0 0.03 .17 0.03 .171 0.09 .287 0.8 4.454 
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Univariate Analysis  

The AIC is used to determine which variable transformation to use in the multivariate 

analysis (Appendix A). First, the model is created for the total malaria prevalence including 

both the P. Vivax and P. Falciparum. According to the univariate analysis, the variable 

transformations with the lowest AIC value, which indicate a better model fit, are the P2 

(cumulative precipitation during the wet season (in m)), E2 (the elevation above 100 

meters), H4 (the number of days with humidity above 0.018 kgvapor × kgair
-1), SM4 (the 

number of days with soil moisture above 0.400m3/m3), T9(the number of days with 

temperature above 25°C), and NDVI (the yearly average normalized difference vegetation 

index).  

Next, a univariate analysis is conducted for the P. Falciparum and the P. Vivax 

prevalence independently to investigate if the two types of malaria are associated with 

different climate and environmental conditions. For P. Falciparum (Appendix B), the 

transformed variables with the lowest AIC value are the same as the one for the total 

malaria prevalence with exception of precipitation, where P7 (the number of days with 

rainfall over 15 mm) had the lowest AIC number rather verses the cumulative precipitation 

during the wet season. For the P. Vivax (Appendix C), the variables transformations with 

the lowest AIC values are the same as the ones for the total malaria prevalence.  

Multivariate Analysis  

The forward selection is used to determine the variables for the multivariate model. 

Additionally, the correlation coefficient is calculated for each of the variables to avoid 

multicollinearity, similarly to the univariate analysis. Table 3 indicates that the correlation 
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between the variables for each multivariate model is low (i.e., between -0.075 and 0.44). 

Five climate and environmental factors are included in the multivariate mixed effects 

model based on the univariate model for the total malaria prevalence (Table 4).  

 

Table 3. Correlation matrix of variables used in the multivariate analysis for the total and P. Vivax prevalence 

model 

 

  T9 E2 SM4 P2      NDVI 

T9 1         

E2 -0.075 1       

SM4 -0.26 -0.38 1     

P2 -0.13 0.0034 0.12 1   

NDVI 0.044 0.44 -0.32 -0.024 1 

 

Based on the results presented in Table 4, the incidence rate ratio (IRR) can be 

calculated for the fixed-effects variables. The IRR for T9 is 0.996 which corresponds to 

the 0.40% reduction in the malaria prevalence when the number of days in the year with 

temperature above 25°C increases by one day. Aramburú Guarda et al. (1999) also show a 

negative correlation with temperature and malaria cases though the study area is only 

limited to the Iquitos region. Due to the fact that mean temperature in the rainy season is 

still within optimal range for mosquito development, the temperature correlation might not 

have as much impact (Aramburú Guarda et al., 1999). 

The IRR value for E2 corresponds to a 118% increase in malaria with an increase 

in the number of health center having an elevation above 100m. This corroborates what 

presented by previous studies that showed that mosquito densities and parasite prevalence 

decrease with increasing altitude (Drakeley et al., 2005; Attenborough et al., 1997; Bødke 

et al., 2003; Akhwale et al., 2004). 
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Table 4. Multivariate analysis for total malaria prevalence 

 

Coefficient Estimate 95% CI IRR – Fixed Effects 

βo  -472.34 -482.66,   -462.03  

βT9 -0.0043 -0.0044,   -0.0041 0.996 

βE2  0.78 0.75,   0.81 2.18 

βSM4 0.0021 0.0019,   0.0022 1.002 

ΒP2 0.59 0.56,     0.61 1.797 

βNDVI 2.13 1.83,    2.43 8.448 

βyear  0.24 0.23,    0.24 1.265 

Random effects 3.29 1.23,    8.83   

 

In terms of the SM4 IRR, a 0.2% increase in malaria prevalence is observed when 

there is an increase in the number of days in the year with soil moisture above 0.400 m3/m3 

by one day. This is in line with a previous study conducted over Kenya, which concluded 

that soil moisture better predicts the biting rates compared to rainfall (Patz, et al., 1998).  

Finally, the increase in P2 and the NDVI are also associated with an increased in 

malaria prevalence. Since NDVI, and vegetation in general, are linked to temperature and 

precipitation, this result confirms that vegetation and precipitation are fundamental factor 

because they provide breeding sites for mosquitos (Cui et al., 2009; Hao et al., 2011).  

Similar analysis is conducted for the two types of malaria present in Peru 

separately, i.e., P. Falciparum and P. Vivax. The results of the correlation coefficients and 

multivariate analysis for the P. Falciparum prevalence are shown in Table 5 and Table 6.  
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Table 5. Correlation matrix of variables used in the multivariate analysis for the P. Falciparum model 

 

     T9 NDVI E2 SM1   P7 

T9 1         

NDVI 0.044 1       

E2 -0.075 0.44 1     

SM1 -0.4 -0.43 -0.36 1   

P7 -0.12 0.0005 -0.017 0.12 1 

 

Based on the coefficient estimates, the calculated IRR value for the P. Falciparum 

prevalence indicates that there is an increase in malaria prevalence associated with an 

increase in E2, P7, and NDVI. E7 and SM1 (yearly average soil moisture) are negatively 

associated with malaria prevalence.  

 

Table 6. Multivariate analysis for the P. Falciparum prevalence 

 

Coefficient  Estimate 95% CI IRR – Fixed Effects 

βo  -612.94 -639.12,   -586.77  

βT9 -0.0097 -0.010,   -0.0094 0.99 

βE2 0.69 0.59,    0.76 1.97 

βSM1 -1.79 -2.37,   -1.23 0.166 

ΒP7  0.0084 0.0069,      0.0098 1.008 

βNDVI 9.14 8.43,     9.84 9286.17 

βyear  0.3 0.29,    0.32 1.354 

Random effects  3.8 1.37,    10.52   

 

The results of the multivariate analysis and the correlation coefficients for the P. 

Vivax prevalence are shown in Table 7 and Table 3, respectively. Based on the coefficient 

estimates, the IRR value for the P. Vivax prevalence indicates that there is an increase in 

malaria prevalence associated with an increase in E2, SM4, P2 and NDVI. The number of 

days with temperature above 25°C is associated with a decrease in the malaria prevalence. 

These results are the same as what is observed for the total malaria prevalence multivariate 
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model, which demonstrates that it is sufficient to use total cases instead of the two separate 

values.  

 

Table 7. Multivariate analysis for the P. Vivax prevalence 

 

Coefficient Estimate 95% CI IRR – Fixed Effects 

βo  -442.64 -453.78,   -431.49  

βT9 -0.003 -0.0031,   -0.0028 0.997 

βE2 0.81 0.78,    0.85 2.254 

βSM4 0.003 0.0029,     0.0031 1.003 

βP2  0.63 0.60,    0.65 1.871 

βNDVI 0.5 0.16,   0 .83 1.642 

βyear  0.22 0.22,    0.23 1.247 

Random effects  3.11 1.16,   8.37   

 

However, the P. Falciparum and P. Vivax multivariate models have a difference in 

which variable transformation is included in the model. For the P. Falciparum cases, 

number of days with rainfall over 15 mm is included rather than cumulative rainfall in the 

wet season. Moreover, for the P. Falciparum model, average yearly soil moisture is 

included rather than the number of days with soil moisture above 0.400 m3/m3. 

The main difference between the two malaria types consists in the severity of the 

disease. P. Falciparum can cause more severe effects because it multiplies more rapidly in 

the blood, whereas P. vivax has dormant liver stages and can relapse several months after 

the infecting mosquito bite (CDC, 2015). In Peru, the majority of reported cases are P. 

vivax, but P. Falciparium transmission continues to occur. For this study, a multivariate 

model is created for the two malaria types and the only difference is for the P. Falciparum 

model, where a different transformation is used for precipitation and soil moisture. 
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Ultimately, it is concluded that since the climate and environmental factors have a more 

impact on the vector instead of the parasite, there is not a need to separately test the two 

malaria types. Specifically, higher temperature increases the number of blood meals, and 

number of eggs laid which increases the number of mosquitos in a given area. Rainfall 

creates the sites the mosquitoes need to breed so increase in rainfall can increase the 

number of mosquitos. The rainfall also relates to the vegetation index and the soil moisture 

which affects the mosquito breeding sites (Open Learn Works, 2016).  
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CONCLUSION 

In this study, we analyze malaria prevalence data from Health Center in the Loreto 

Department of Peru, located in the Amazon basin, to assess the association between malaria 

and various environmental and climate factors. This region has a low population density 

and a wide land area, making it difficult to directly collect high-resolution environmental 

data. Remote sensing and modeling techniques are particularly useful in remote areas like 

Loreto, providing temporally and spatially continuous information regarding the climate 

and environmental conditions. Results from this study indicate the climate and 

environmental conditions that increase malaria prevalence in Loreto include high NDVI 

(which corresponds to abundant and healthy vegetation), high precipitation amount in the 

wet season, elevation above 100m, and high soil moisture.  

Malaria transmission is extremely complex. It is impacted by many factors, 

including gender, age, housing conditions, weather conditions, distance to standing water 

and occupation and more (Ayele et al., 2012). This work solely focuses on understanding 

the role of climate and environmental factors, which is particularly useful, since this data 

is free and generally easy to access in any area of the world. Thus, similar analysis could 

be conducted in any other region where vector-borne disease data are available. Further 

studies would benefit by also incorporating other factors such as population age, 

occupation, access to healthcare, education, and distance from standing water. Future work 
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should also include information regarding the population distribution data to better 

characterize the environmental and climate conditions the population is exposed to. 

Because malaria prevalence is only available on a yearly scale, a lag analysis could 

not be performed. In a lag analysis, malaria cases are compared with the environmental or 

climate conditions that occurred in a certain past period, thus incorporating time for 

mosquitoes to breed and for malaria symptoms to show.   

Despite the limitations, results from this study are especially useful for healthcare 

workers in malaria endemic areas and have the potential of being integrated within a 

malaria elimination plan or of being used to create a risk map. This work contributes a 

further understanding of climate variability’s effect on malaria prevalence and has the 

potential to inform future efforts to develop a global framework for predicting and 

monitoring the spread of malaria, especially in relation to climate variables and their 

change over time. 
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 APPENDICES 

Appendix A: Univariate analysis for total cases  
 

Parameter Incidence rate ratio (95% CI) AIC 

P1 1.554854  1.532202,    1.577842  219412.8     

P2  2.09352    2.049979, 2.137986  218222     

P3  1.497786   1.452433,    1.544554  222214.4     

P4     .9929961    .9927128,    .9932795 220440.6     

 P5  1.012988  1.012498,    1.013478  220110.1     

P6  1.014243  1.01371,    1.014777  220088.8     

P7  1.017246  1.016641 ,   1.017852  219707.2     

P8  1.062489    1.059469,    1.065518  221169.8     

T1  .6835416   .6749167,    .6922767  219411.7     

T2  1.047394    1.034728,    1.060214  222804     

T3    .6881428    .6815615,    .6947877  216885.1     

T4  .9299462    .9267455,    .9331581  221102.7     

T5  .9008346  .896607,    .9050821  220892.3     

T6  .9229218  .912395,    .9335701  222675.9     

T7  .8212745  .8128405,     .829796  221505.7     

T8     .9983729  .9979627,    .9987834  222799.4     

T9   .9940594     .9939227,     .994196  215851.4     

T10  1.983345  1.815193,    2.167074    222701.3     

T11  1    222857.9       

T12    .8128269    .806065,    .8196456    220360     

T13  .8870561  .883481,    .8906456  219256.7     

H1  4.18e-63  1.11e-67 ,   1.58e-58  222143.3     

H2    1.5e-113  8.3e-119 ,   2.5e-108  221067.9     

H3    6.85e-25  3.48e-28  ,  1.35e-21  222652.3     

H4    .99591  .9957509,     .996069  220335.4     

H5    .997846    .9976571,    .9980348  222362.8     

H6    .9961877  .9959124,    .9964632  222121.2     

SM1  885.1863     706.5091,    1109.051  219376.1     

SM2     279.6238    221.4949,     353.008  220638.8     

SM3  803.9682    656.6941 ,   984.2708  218650.1     

SM4    1.003947     1.003837,    1.004057  218015.7     

SM5     .9981079    .9980063,    .9982095    221520.7     

EVI  1.246832     .8858714 ,   1.754871  222858.3     
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NDVI  1485.89    1148.576,    1922.267  219755.7     

E1  1.000073    .9999382,    1.000208  222858.8     

E2  2.725138     2.652726,    2.799526  216387.8     

E3  1.011736  .9918508,     1.03202  222858.6       

E4  .5680049  .5521997,    .5842626  221168.3     
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Appendix B: Univariate analysis for P. Falciparum  cases  
 

 Parameter Incidence rate ratio (95% CI) AIC 

P1  1.271951  1.2262,    1.319409  50210.91     

P2  1.505163    1.426906,    1.587712    50153.46      

P3  1.2508  1.158648,    1.350282  50343.34     

P4  1.001588    1.000933,    1.002244  50353.25      

 P5  1.006574     1.00538,     1.00777  50258.29     

P6  1.009415  1.008102,    1.010729  50176.48     

P7  1.011509    1.010025,    1.012997  50143.23     

P8  1.052478   1.045016,    1.059992  50182.13     

T1  .5160248  .5020682,    .5303694    48190.18     

T2  .7899309    .7698824,    .8105015  50059.08     

T3  .5466947    .5348352,    .5588172  47360.56     

T4    .9829511  .9750028,    .9909642 50358.36      

T5  .9451331    .9346797,    .9557034  50274.97     

T6  .7939135    .7731474,    .8152375  50101.46     

T7    .7994203  .7795686,    .8197776  50082.11     

T8  .9893658  .9884632 ,   .9902693  49837.17     

T9    .9896344  .9893101,   .9899587    46616.65      

T10  2.724164    2.343268,    3.166974  50273.01     

T11    1    50373.68     

T12    .8528462    .8360345,   .8699959  50119.94     

T13  .9697974     .9609156,    .9787613  50332.45      

H1  3.7e-140    6.1e-151,    2.3e-129  49720.31     

H2  2.4e-210      1.0e-222,    5.4e-198  49243.7     

H3  5.66e-70     1.03e-77,    3.11e-62  50062.14     

H4  .9912787    .9909074,    .9916503  48306.18     

H5  .9983938  .9979688,    .9988189    50321.11     

H6  .9947558      .994148,    .9953641  50088.89     

SM1  132.1643    79.19442,    220.5636  50029.02     

SM2  10.27684  5.97496,    17.67601    50305.45      

SM3  409.2887  258.3627,      648.38  49719.67     

SM4  1.000366      1.000084,    1.000648  50369.24     

SM5  .9978821  .9976551,    .9981092  50038.23     

EVI  65.62482    28.95229,    148.7487  50274.8     

NDVI  1217627      648592.3,     2285897  48441.68     

E1  1.000636  1.00035,    1.000922  50357.63     

E2  3.657058  3.381051,    3.955597  48988.77     

E3  1.19057     1.137488,    1.246129  50319.66     

E4  .4564128    .426369,    .4885737  49789.44     
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Appendix C: Univariate analysis for P. Vivax cases  
 

 Parameter Incidence rate ratio (95% CI) AIC 

P1  1.615027     1.589359,     1.64111  184574.5       

P2  2.22569       2.175368,    2.277175  183398.1     

P3  1.548607  1.497473,    1.601487  187353.1     

P4  .9911521  .9908377 ,   .9914666  184823.6     

 P5    1.014236     1.013699,    1.014773  185230.1     

P6  1.015167  1.014584,    1.015751  185358.8     

P7  1.018349    1.017687,    1.019012  185006.4     

P8  1.064313  1.061011,    1.067624  186487.5     

T1  .7345217     .7241225,    .7450701  186183.2     

T2  1.126282    1.110849,    1.141928    187698     

T3  .7264618    .7187523,     .734254  184456     

T4     .9189709        .915473,    .9224822  186029     

T5  .8915243  .8869055,    .8961671  186025.9     

T6    .95312    .9410716,    .9653228    187932.2     

T7  .8258267    .8165289,    .8352303    186922     

T8  1.000653     1.000193,    1.001112  187978.5       

T9  .9949669  .9948159,     .995118  183856.1     

T10  1.772129    1.587929,    1.977695  187910.2     

T11  1      187984.3     

T12  .8042731    .7969028,    .8117116  185704.4     

T13  .8697518    .8658423,     .873679     184008     

H1  1.22e-45    1.05e-50 ,   1.42e-40  187683.7     

H2  3.08e-91    4.82e-97,    1.97e-85  187047.8     

H3  1.65e-14    3.71e-18 ,   7.33e-11  187931.3     

H4  .9969136    .9967375,    .9970898  186813.3     

H5  .9976999    .9974889,    .9979108  187531.9     

H6  .9964989       .99619,    .9968079  187491.3     

SM1  1404.564    1092.356,    1806.005 184779.4     

SM2  601.7187    464.5387,    779.4085  185656.4     

SM3  954.1796    761.7007,    1195.297  184410.6     

SM4  1.004635    1.004515,    1.004755  182365.6     

SM5  .998161    .9980473,    .9982746  186975.8     

EVI  .5330091  .3658141,    .7766204  187975.5       

NDVI  396.5746    298.9542,    526.0721  186259.2     

E1     .9999342  .9997814,   1.000087    187985.6       

E2  2.607151  2.5334,     2.68305  182838.7     

E3  .9764676    .955138,    .9982736  187981.8     

E4  .5975844  .5793285,    .6164155  186838.3     
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Appendix D: Acronyms 
 

 Precipitation  

P1 Cumulative in the whole year (m) 

P2 Cumulative in the wet season (m) 

P3 Cumulative in the dry season (m) 

P4 Number of days without rainfall 

P5 Number of days with rainfall over 10 mm 

P6 Number of days with rainfall over 12 mm 

P7 Number of days with rainfall over 15 mm 

P8 Number of months with rainfall over 60 mm 

 Temperature  

T1 Average daily temperature in the whole year (°C) 

T2 Average daily temperature in the wet season (°C) 

T3 Average daily temperature in the dry season (°C) 

T4 Mean maximal temperature in the whole year (°C) 

T5 Mean maximal temperature in the wet season (°C) 

T6 Mean minimal temperature in the whole year (°C) 

T7 Mean minimal temperature in the dry season (°C) 

T8 Number of days with temperature above 30 °C 

T9 Number of days with temperature above 25 °C 

T10 Number of days with temperature under 20 °C 

T11 Number of days with temperature under 15 °C 

T12 Average temperature at night (6pm/6am) in the wet season (°C) 

T13 Average temperature at night (6pm/6am) in the dry season (°C) 

 Humidity  

H1 Average daily humidity in the whole year (kg vapor × kgair-1) 

H2 Average daily humidity in the wet season (kg vapor × kgair-1) 

H3 Average daily humidity in the dry season (kg vapor × kgair-1) 

H4 Number of days with humidity above 0.018 kg vapor × kgair-1 

H5 Number of days with humidity under 0.016 kg vapor × kgair-1 

H6 Number of days with humidity under 0.014 kg vapor × kgair-1 

 Soil Moisture 

SM1 Average daily soil moisture in the whole year (m3*m-3) 

SM2 Average daily soil moisture in the wet season (m3*m-3) 

SM3 Average daily soil moisture in the dry season (m3*m-3) 

SM4 Number of days with soil moisture above 0.400m3*m-3 

SM5 Number of days with soil moisture under 0.300m3*m-3 

 Vegetation Index 

EVI Enhanced vegetation index 

NDVI Normalized Difference Vegetation Index  

 Elevation 

E1 Elevation (m) 

E2 Elevation above 100 m 

E3 Elevation above 150 m 
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E4 Elevation above 200 m 
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