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ABSTRACT 

MICROBIOME ANALYSIS IN COLORECTAL CANCER 

Ezzat Dadkhah, Ph.D. 

George Mason University, 2017 

Dissertation Director: Dr. Patrick Gillevet 

 

Colorectal cancer (CRC) results from a complex interplay between genes and the 

environment. Recent studies have focused on the gut microbial population (the microbiota) 

and its aggregate genome (the microbiome) as one of the environmental players in 

colorectal tumorigenesis. High-throughput sequencing techniques have added a new 

dimension to the mining of gut microbiome for biomarkers of CRC and therapeutic targets. 

Current approaches to microbiome analysis include quantifying the relative abundancies 

and diversities of microbial populations along with the identification of disease-specific 

biomarkers. 

In this project, the 16S rRNA sequences of bacteria present in stool samples of 

patients with CRC, pre-cancerous adenomatous polyps, and non-cancer controls were 

analyzed using three different operational taxonomic units (OTUs) identification 

techniques - UPARSE, UPGMA, and UCLUST. UPARSE was the fastest algorithm and 

identified the lowest number of OTUs while UPGMA required the largest amount of 



xv 
  

memory. UCLUST was the slowest and identified the highest number of OTUs. The 

patterns of alpha diversity (diversity within a sample) and beta diversity (diversity between 

samples) obtained by each of these algorithms were not substantially different. 

In this dissertation, we report the analysis of samples collected from subjects that 

have undergone routine colonoscopy to detect the presence of polyp(s). Various 

nonparametric statistics and classification techniques were utilized to identify the 

microbiota characteristics capable of discriminating between disease states and from 

healthy colon. OTUs significantly different in their relative abundance between subjects 

with polyp (polyp-Y group) and without polyp (polyp-N group) were used to build 

classifying predictors for the presence or absence of polyps.  

The predictive power to discriminate between polyp-N and polyp-Y groups was 

highest when the model was built using OTUs preselected for statistically significant 

differences in their relative abundance. In conclusion, we showed that 16S rRNA 

microbiome analysis could be utilized to generate OTU abundance-based feature sets for 

further development into the predictive models. Eventually, these models will improve the 

power of CRC diagnostics and aid in defining the dynamic interface between the gut and 

residing microbiota. 
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1 AIM OF STUDY 

Colorectal cancer (CRC) has recently been reported to be the second leading cause 

of cancer death in the United States, and the number of deaths due to CRC are estimated 

to be about 50,000 annually (Siegel et al., 2017). There is an extensive, diverse microbial 

population in the gut which plays a significant role in the maintenance of health and 

immunity (Guarner & Malagelada, 2003; Salminen et al., 1998). Growing evidence 

suggests that the gut microbiome contributes to colorectal carcinogenesis (Keku et al., 

2015). In particular, experiments where the stool samples of mice with colon cancer or 

stool of a human patient with CRC were transplanted to germ-free animals are indicative 

of that (Zackular et al., 2013; Baxter et al., 2014). Furthermore, some studies have linked 

the gut microbiome composition to the development of colon polyps and adenomas (Ahn 

et al., 2013; Keku et al., 2015; Dulal & Keku, 2014).  

In this study, we investigate the gut microbiome differences in individuals who 

underwent a colonoscopy and were categorized into two groups of subjects, those with 

polyp (polyp-Y) and those without polyps (polyp-N). In addition to the polyp dataset 

analysis, we analyze raw 16S rRNA sequences from previously published studies using the 

three classic sequencing analysis approaches, UPARSE, UPGMA, and UCLUST, which 

are currently the most used OTU selection approaches of microbiome analysis. The aim of 
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using different approaches is to find out which would be optimal for analysis of these 

datasets.  

In previous studies, changes in abundance for some of the bacterial taxa were seen 

when cancer or adenoma patients were compared to control subjects. These taxa included 

the phyla Bacteroidetes and Firmicutes; the genera Proteobacteria, Fusobacterium, 

Blautia, Bifidobacterium, and Roseburia as well as Bacteroides spp. (Chen et al., 2013; 

Brim et al., 2013; Goedert et al., 2015; Shen et al., 2010; Mira-Pascual et al., 2015; Nugent 

et al., 2014; Zackular et al., 2014). We hypothesize that at the Phylum level, there is a 

significant difference in the abundance of Firmicutes and Bacteroidetes OTUs in the 

subjects with polyps or cancer in both the public datasets and in our polyp dataset, and at 

the genus level, there is a significant difference in the abundance of Fusobacterium, 

Bacteroides, Blautia, Bifidobacterium, and Roseburia in subjects with cancer and polyps 

in both the public dataset and our polyp dataset.  

Moreover, we aim to evaluate the performance of various statistical tests to improve 

the feature selection, followed by application of machine learning approaches to 

discriminate disease versus healthy state based on abundancies of various 16S rRNA 

sequences, ultimately producing models for the prediction of the disease. Thus, we propose 

that the preselection of features using statistical tests will improve the classification 

performance to assist in the prediction of the presence of the disease in naïve patients who 

have not had a colonoscopy based diagnosis of colon carcinoma or benign polyp.  
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Public health officials, doctors, and the public at large are still looking for reliable 

noninvasive screening methods for CRC. This study could be a step forward to utilize the 

microbiome as a suitable screening method for adenoma and CRC. 
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2 BACKGROUND 

2.1	Colorectal	cancer	(CRC)	
Colorectal cancer (CRC) is the third most common cancer and fourth most common 

cause of cancer death in the world (Ferlay et al., 2015). More than 1.2 million new cases 

of CRC occur annually, most of which are sporadic and result from an accumulation of 

mutations and epigenetic alterations in a variety of genes. The sequential accumulation of 

genetic mutations in tumor suppressors or oncogenes happens over time and causes a 

sequential transition of the normal mucosa to pre-malignant polyps, to adenoma, and 

eventually to CRC (Sears et al., 2014). This transition is often described as the “adenoma-

carcinoma sequence” (Vogelstein et al., 2013). 

Most colon neoplasms are adenocarcinomas that originate from epithelial cells of 

the mucosa. These adenocarcinomas usually arise from polyps (Stewart 2006). The two 

precursors of CRC are conventional adenomas and serrated polyps. The “conventional” 

pathway to CRC starts with adenomatous polyposis coli (APC) mutation, followed by 

chromosomal instability, and the hypermethylation of CpG islands associated with tumor-

suppressor genes. About 60% of CRC cases arise from the conventional pathway. Serrated 

polyps are categorized into three subtypes: sessile serrated adenomas/polyps, traditional 

serrated adenomas, and hyperplastic polyps. Recent findings suggest that progression 

through the serrated pathway may be responsible for 20% to 30% of sporadic CRCs (Peters 

et al., 2016). 
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2.1.1	CRC	risk	factors	
Colorectal malignancies are associated with both genetic and environmental risk 

factors. Family history is one of the well-known genetic risk factors for CRC. Positive first- 

and even second- and third-degree family histories are associated with an increased risk 

for CRC (Taylor et al., 2010). Other host and environmental risk factors associated with 

CRC include high body mass index (BMI), obesity, diabetes, polyps, consumption of red 

and processed meats, beer drinking (≥ 2 drinks/day), and smoking (Shaukat et al., 2017; 

Renehan et al., 2008; Larsson et al., 2005; Strum 2016; Larsson et al., 2006; Zhang et al., 

2015; Giovannucci et al., 2002). On the other hand, physical and recreational activities, 

post-menopausal hormone therapy, as well as the consumption of milk, calcium, vitamin 

D, and aspirin are all negatively associated with CRC (Samad et al., 2005; Grodstein et al., 

1999; Cho et al., 2004; Ma et al., 2011; Dube et al., 2007). Recently, it has been suggested 

that altered composition of the gut microbiome (termed “dysbiosis”) could be another risk 

factor for CRC (Wang et al., 2017).  

Three genetic models for the development of CRC are summarized in Figure 1 

(Fearon, 2011). In the model shown in Figure 1a, CRC originates with adenomatous 

polyps. The order of the mutations is not always as represented here, but these mutations 

are strongly associated with specific stages of CRC progression. 

The other two models are shown in Figure 1b in which CRCs originate from 

inherited (top model) and sporadic (bottom model) mismatch repair gene (MMR) defects 

that have been reported to be responsible for 15% of CRCs (Fearon, 2011).   
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Figure 1 The three genetic models of colorectal cancer (CRC) progression.  

(a) Most CRCs are developed as the result of APC mutations followed by subsequent genetic alterations. (b) The 
other two models start with somatic or epigenetic inactivation of mismatch repair (MMR) genes, which lead to 
high microsatellite instability (MSI-H). The following mutations ultimately promote cells to develop cancer 
phenotype. Abbreviations: APC, adenomatous polyposis coli; CIN, chromosome instability; DCC, deleted in 
colorectal carcinoma; DPC4, deleted in pancreatic carcinoma, locus 4; HNPCC, hereditary nonpolyposis 
colorectal cancer; CIMP, CpG island hypermethylation phenotype; SSA, sessile serrated adenomas. (Ref: Fearon, 
2011). 

 

The adenomatous polyposis coli (APC) gene encodes a tumor suppressor and is one 

of the earliest genes that mutates in CRC. Its product is a pleiotropic protein with versatile 

functions in apoptosis, cell cycle regulation, intercellular adhesion, and in the Wnt 

signaling pathway that modulates cell fate determination, cell migration, cell polarity, 

neural patterning, and organogenesis. Some of these APC mutations enable the cell to grow 

faster than normal. Other tumor suppressor genes that are commonly mutated in CRC are 
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the β-catenin gene (CTNNB1), the Deleted in CRC gene (DCC), and the P53 gene (TP53). 

Additionally, KRAS mutations support clonal cell division as this oncogene participates in 

G protein-mediated signal transduction and regulates cellular proliferation and 

differentiation (Fearon et al., 1990). These events can be followed by further mutations in 

PIK3CA (phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha), 

SMAD4, TP53, and BRAF (B-Raf proto-oncogene, serine/threonine kinase) mutations, all 

of which potentiate malignancy. Tracking the specific pathological and genetic 

characteristics of adenomas can be helpful in predicting their potential to become 

malignant, as not all adenomas transform into malignancies (Mclean et al., 2011). 

2.1.2	CRC	screening		
It is well accepted that increased participation in screening programs leads to earlier 

CRC diagnosis and helps to prevent the disease by the timely removal of polyps 

(Narayanan, 2014). Available screening methods for CRC include the guaiac fecal occult 

blood test (gFOBT), fecal immunochemical test (FIT), flexible sigmoidoscopy (FSIG), 

colonoscopy, colon-capsule endoscopy, and computed tomography (CT)-colonography. 

Typically, gFOBT and FIT techniques, which are the least expensive ones, are utilized by 

population-wide screening programs, while colonoscopy, CT-colonography, and FSIG are 

used in symptomatic patients (Narayanan, 2014). Additionally, a variety of molecular tests 

are available to diagnose CRC by utilizing blood, stool, or urine samples (Kuipers et al., 

2013, Kuipers et al., 2014). 

The guaiac fecal occult blood test (gFOBT): the blood vessels on the surface of 

colorectal polyps and cancers are fragile and easily break by the passage of stool. The small 
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amount of blood that is released from these vessels is rarely noticed by the subject but can 

be detected by the gFOBT test. This is a convenient and noninvasive method that can 

reduce the CRC-related mortality rate (Faivre et al., 2004). The gFOBT is a fecal test, 

which detects the presence of blood by the use of a paper impregnated with the chemical 

reagent guaiac. After a small amount of stool is smeared to a test card and hydro-peroxidase 

added, the heme will oxygenize the guaiac leading to the appearance of blue coloration. 

This standard qualitative (positive/negative) gFOBT test includes three paper cards that 

have two panels each and requiring sampling from three separate bowel movements. This 

test may be done with or without rehydration by adding water to the card before processing 

the sample. Rehydration method has higher sensitivity but results in larger amount of false-

positive test results (Tinmouth et al., 2015).  

Importantly, the gFOBT test cannot determine whether the bleeding is from the 

colon or other parts of the digestive tract such as the stomach. Therefore, positive tests are 

followed by a colonoscopy to determine if there is a polyp, tumor, or other problems such 

as hemorrhoids, ulcers, inflammatory bowel disease (colitis), or diverticulitis (i.e., small 

pouches in the colon wall). Additionally, the sensitivity of the test in detecting minor or 

non-bleeding CRC cases is poor. However, it has been shown that by repeating the fecal 

sampling and rerunning the test, the detection rate could improve from 9-12% to 52.6% 

(Lieberman et al., 2001). In fact, the timely administration of gFOBT may reduce CRC 

mortality rate by as much as 33% (Levin et al., 2008). Still, the sensitivity and specificity 

of a gFOBT are highly variable depending on the brand and the particular type of the test 

kit, specimen collection method, number of stool samples profiled per test, rehydration, 
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interpretation, and screening interval (Levin et al., 2008). The sensitivity of gFOBT for the 

presence of CRC varies from 12.9% to 79.4% and the specificity varies from 86.7% to 

97.7% (Mandel et al., 1993; Hardcastle et al., 1996; Kronborg et al., 1996; Lieberman, 

2009; Ahlquist et al., 1993; Ahlquist & Shuber, 2002; Allison et al., 1996; Imperiale et al., 

2004). Therefore, a positive gFOBT test necessitates confirmation with other screening 

methods (Kuipers et al., 2013). 

The fecal immunochemical test (FIT) has several advantages over the gFOBT. 

The FIT is quantitative; it detects intact hemoglobin rather than heme, and, therefore, is 

more specific. In this context, partially degraded hemoglobin can be present in the stool if 

bleeding originates in the upper gastrointestinal tract, while the presence of intact 

hemoglobin indicates lower gastrointestinal tract bleeding (Rockey, 1999). Thus, the major 

disadvantage of this method is its insensitivity in detecting proximal CRC as in this case 

the hemoglobin degrades before it reaches the distal colon and will not be present in the 

stool (Narayanan 2014).  

In asymptomatic individuals with average risk for CRC, the overall sensitivity of 

FIT test is at 0.79 (95%CI: 0.69-0.86), and the specificity is at 0.94 (95%CI: 0.92-0.95) for 

FIT test (Allison et al., 1996; Lee et al., 2014; Allison et al., 2007; Cheng et al., 2002; 

Nakama et al., 1999; Nakama et al., 1996; Parra-Blanco et al., 2010; Chiu et al., 2013; 

Chiang et al., 2011; Sohn et al., 2005; Levi et al., 2011; Levi et al., 2007; Morikawa et al., 

2005; Launoy et al., 2005; Itoh et al., 1996; Nakazato et al., 2006; Park et al., 2010; de 

Wijkerslooth et al., 2012; Brenner & Tao, 2013). Due to cost-efficiency of the FIT test, 
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this approach is the most commonly-used method for CRC screening (Song & Yu-Min, 

2016). 

The flexible sigmoidoscopy (FSIG): the FSIG is the endoscopic examination of 

the lower one-third of the colon lumen. The FSIG procedure is administered by trained 

non-physicians, requires less preparation for both patients and examiners than 

colonoscopy, and does not require sedation. FSIG is also less expensive than a colonoscopy 

and causes fewer complications. Case-control studies showed that FSIG leads to a 60-80% 

reduction in colon cancer mortality (Selby et al., 1992; Newcomb et al., 1992). The 

protective effect lasts from 5 to 10 years depending on the skill of the endoscopist, the 

quality of examination, and results of other annual screening tests such as gFOBT and FIT. 

The main drawback of FSIG is that the examined area is limited to the rectum, sigmoid and 

descending colon.  

Colonoscopy: This approach is the best method for early detection and prevention 

of CRC as the entire colon is examined. If performed by experienced professionals, the 

sensitivity and specificity to diagnose advanced adenomas and cancer are as high as 100% 

(Garborg et al., 2013). 

Colonoscopy is often performed as a follow-up to other positive CRC screening 

tests such as gFOBT and FIT, but randomized trials for colonoscopy screening are lacking. 

However, population-based case-control studies performed in Canada, Germany, and the 

United States, as well as a follow-up study of the National Polyp Study cohort suggest that 

colonoscopy may have, in fact, already reduced CRC incidence by 67-77% and CRC 

mortality rate by 31-65% (Baxter et al., 2009; Brenner et al., 2011; Kahi et al., 2009; Zauber 
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et al., 2012; Garborg et al., 2013). However, colonoscopy is invasive, time-consuming, 

expensive, associated with some complications and some discomfort, and requires a 

significant bowel preparation. Therefore, it is not widely accepted as a screening approach 

(Garborg et al., 2013).  

Molecular markers: Molecular genetic markers are being developed for CRC 

screening from either fecal samples or the blood (Narayanan et al., 2014). Adenoma and 

carcinoma cells shed DNA into the large bowel lumen, and this DNA is then excreted in 

the stool where it remains relatively stable. Typically, human cells in the fecal samples 

undergo evaluation for the presence of DNA alterations previously identified as 

contributors to the adenoma-carcinoma sequence of colorectal carcinogenesis. To improve 

sensitivity, a panel of DNA alterations may be analyzed in a multiplexed test (Levin et al., 

2008). In one study, a multi-target DNA test that detects mutations in KRAS (Kirsten rat 

sarcoma), aberrant methylated NDRG4 (N-Myc Downstream-Regulated Gene 4 Protein), 

BMP3 (Bone Morphogenetic Protein 3), β-actin, and a hemoglobin immunoassay was used 

to profile stool samples of about 10,000 participants with average CRC risks. The assay’s 

sensitivities to detect CRC and advanced precancerous lesions were reported to be 92.3 

and 42.4%, respectively (Imperiale et al., 2014). 

In 2014, the United States Food and Drug Administration (FDA) approved a DNA-

based CRC test, Cologuard (Exact Sciences Corporation, Madison, WI, United States) 

which is now commercially available and can detect both altered DNA and blood in the 

stool. Cologuard tracks aberrant methylated BMP3 and NDRG4 (a mutant form of KRAS), 

beta-actin, and hemoglobin (Narayanan et al., 2014). 
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DNA methylation biomarkers have been under study for years, and several 

biomarkers have been introduced as potential markers for CRC screening. In particular, 

methylation events in AGTR1, WNT2, and SLIT2 genes were validated in stool DNA of 

CRC cases with a detection sensitivity of 78% (Carmona et al., 2013). Moreover, the 

determination of methylated Septin 9 (mSEPT9) in plasma has shown a remarkable 

sensitivity and specificity for colorectal cancers but not for adenomas (Toth et al., 2014; 

Nian et al., 2017). Recently, DNA methylation-based biomarkers entered into the clinical 

practice of noninvasive CRC diagnostics. Subsequently, a mSEPT9 assay (also referred as 

the Epi proColon®) received FDA approval for CRC screening in April 2016. The assay 

for mSEPT9 relies on qualitative detection of the methylated cytosines in Septin 9 gene-

associated CpG island by Real-Time PCR in patients’ blood (Issa & Noureddine, 2017).  

2.2	Gut	microbiome		
A majority of past studies of the interaction between microbes and humans 

concentrated mainly on single pathogens based on Koch’s postulates. Recently, global 

changes in the composition of microbiota (dysbiosis) were associated with the presence of 

certain human conditions (Schwabe et al., 2013; Turnbaugh et al., 2006; Smith et al., 2013). 

The microbiome is being described as the “forgotten organ” of the human body (O’Hara et 

al., 2006). The microbiota is estimated to comprise about one kilogram of the average 

adult's body weight (Savage, 1977), with about 99% of the microbiota inhabiting the 

gastrointestinal (GI) tract (Schwabe et al., 2013). Additionally, the human body contains 

about 3.72 × 1013 cells (Bianconi et al., 2013) while there are some 1014 bacteria cells in 

the human microbiome (Savage, 1977). Thus, the number of bacterial cells in the gut is 
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almost 10-fold greater than the number of our own cells. The gut microbiota genomes carry 

about 4 million genes (Qin et al., 2010), which is about 150-fold more than that in the 

human genome (Wu et al., 2013). 

There are two bacterial communities in the colon, one is located in the lumen, while 

the other resides in the epithelial and cryptal regions as a mucosal biofilm that is resistant 

to the hydrodynamic shear forces of the colon. It has been hypothesized that dysbiosis of 

the mucosal communities of colon contribute to the development of inflammatory bowel 

disease and CRC as they are more stable than luminal communities (Savage, 1977, 

Sonnenburg et al., 2004) and are in direct communication with the immune system. 

In 2007, The National Institutes of Health (NIH) formed the Human Microbiome 

Project (HMP) to characterize microbial organisms at human body sites known to have 

commensal bacteria and to provide reference datasets of bacterial relative abundancies and 

bacterial genome sequences in an attempt to define their mutual relationship in health and 

disease (Turnbaugh et al., 2007). 

The dietary composition has an essential effect on the gut microbiota. The changes 

in the fecal microbiota are detectable as early as a few days after changing diets. One study 

showed that specific bacterial groups increased rapidly after a dietary change, but then 

these changes may quickly reverse upon return to previous diet (Walker, 2011). Even the 

short-term consumption of animal or plant diets changes microbial community structure, 

thus, pointing at the rapid response of the gut microbiome to dietary changes (David et al., 

2014).  
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Different regions of the colon have dissimilar microbiota as transit time, pH, 

nutrient availability, oxygen exposure, host secretions, such as bile and digestive enzymes, 

mucosal surfaces, and interactions with the immune system vary in different parts of GI 

tract (Flint, 2012). 

2.3	The	microbiome	and	human	health	
After a decade of research in the field of the human microbiome, there are 

thousands of human-associated microbial strains identified allowing detailed investigations 

into the contribution of microbes to human health. Since 1995, associations between 

bacterial communities and human diseases have been studied using in vitro culture-based 

methods. Currently, these studies utilize more efficient NextGen sequencing approaches. 

Conventional culture-based methods detect about 30% of bacterial species (Fraher et al., 

2012) while next-generation sequencing methods allow scientists to overcome this 

limitation.  

Metabiomic research (the systems biology of the human ecosystem) is now 

underway to increase our understanding of the relationship between the microbiome and 

disease. Microbiome studies provide information about the microbiome changes related to 

diseases (whether it is the cause or the effect). Particularly, one can monitor the dynamics 

of the microbiome’s diversity, relative abundance, community structure, and changes in 

metabolic pathways, at the metabolite, protein, and RNA levels (Morgan et al., 2014). 

The microbiome is in a state of homeostasis with the human body under normal 

physiology and aids the host metabolic pathways, especially with respect to carbohydrate 

digestion, vitamins K and B production, and modulation of immunity (Dulal et al., 2014). 
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As such, it is now well established that microbial communities play significant roles in 

human health and development (De Filippo et al., 2010; Dethlefsen & Relman, 2011; 

Spencer et al., 2011; Dominguez-Bello et al., 2010; Koenig et al., 2011). However, 

imbalances of bacterial communities, known as dysbiosis, have been related to many 

chronic conditions, including obesity, type 2 diabetes, and autoimmune diseases such as 

rheumatoid arthritis, allergy, autism, and inflammatory bowel disease in addition to 

adenomas and CRC (Turnbaugh et al., 2009; Le Chatelier et al., 2013; Ley et al., 2006; Qin 

et al., 2012; Vaahtovuo et al., 2008; Russell et al., 2012; De Angelis et al., 2013; Kang et 

al., 2013; Wang et al., 2013; Collins et al., 2014; Kostic et al., 2014; Hold et al., 2014; 

Manichanh et al., 2012; Shen et al., 2010; Sobhani et al., 2011; Marchesi et al., 2011; 

Castellarin et al., 2012; Chen et al., 2012; Kostic et al., 2012; Sanapareddy et al., 2012; Wu 

et al., 2013; Geng et al., 2013; McCoy et al., 2013; Ahn et al., 2013; Brim et al., 2013; 

Ohigashi et al., 2013; Ohigashi et al., 2013; Weir et al., 2013; Kostic et al., 2013; Zackular 

et al., 2014; Zeller et al., 2014; Burns et al., 2015; Mira-Pascual et al., 2015). At least some 

of these associations are causal as associated phenotypes transfer with fecal transplantation 

experiments in germ-free mice (Carvalho et al., 2012; Turnbaugh et al., 2009, Zackular et 

al., 2013; Wong et al., 2017). Some studies suggest that the changes in gut microbiome 

could induce phenotype changes in mice (Heijtz et al., 2011; Koren et al., 2012; Smith et 

al., 2013). Through modulation of inflammation, apoptosis, and DNA damage, the 

microbiota is also involved in the etiology of many cancers (Louis et al., 2014).  
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2.3.1	Gut	microbiota,	adenoma,	and	colorectal	cancer	
Microbiome analysis is a potential screening method for CRC (Zackular et al., 

2014; Eklof et al., 2017). As mentioned above, the densest and most metabolically active 

microbial community in healthy adults is localized in the colon. The bacterial density in 

the colon is about 1012 cells/ml while the density in the small intestine is about 102 cells/ml, 

and correspondingly, the cancer risk in the colon is almost 12 times greater than that of the 

small intestine (Proctor et al., 2011; Jemal et al., 2009). Many studies have reported gut 

microbiome dysbiosis as a factor in the etiology of adenoma and CRC. Some of these 

studies are summarized in Table 1. 
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Table 1 A summary of CRC and adenoma microbiome studies since 2010. 
There are many structural differences among these studies including sample type (tissue, stool, and rectal swab), 

population (various genetic background, different geography), and technical differences (Sequencing method, 
16S rRNA primer); these differences can be one of the reasons that the results of these reports are not readily 

comparable. N/A: not available. 
Study Type of 

samples 
disease Population Sample size  Method Variable 

region 
Shen et al. 
2010  

Mucosal 
biopsy 

Adenoma USA 21 adenoma, 23 
control 

Terminal restriction 
fragment length 
polymorphism, 
clone sequencing 
and fluorescent in-
situ hybridization 
analysis of the 16S 
rRNA genes  

N/A 

Marchesi et al. 
2011 

Tumor/ 
adjacent 
normal 
tissue 

CRC Netherlands 6 CRC Roche 454 GS FLX 
pyrosequencing 

V1-V3 

Castellarin et 
al. 2012 

Tumor/ 
adjacent 
normal 
tissue 

CRC Canada 11 CRC Illumina GAIIx, 
RNA seq 

N/A 

Chen et al. 
2013 

Intestinal 
lumen, 
mucosa 
(rectal 
swabs), fecal 
samples, 
tumor/ 
matching 
normal 
tissue 

CRC China 46 CRC, 56 
control 

Roche 454 GS FLX 
pyrosequencing 

V1-V3 

Kostic et al. 
2012 

Tumor/ 
adjacent 
normal 
tissue 

CRC USA & 
Vietnam 

95 CRC Roche 454 GS FLX 
pyrosequencing 

V3-V5 

Sanapareddy 
et al. 2012 

Rectal 
mucosa 
biopsy  

Adenoma USA 33 adenoma, 38 
control 

Roche 454 GS FLX 
pyrosequencing 

V1-V2 

Geng et al. 
2013 

Tumor/ 
adjacent 
normal 
tissue 

CRC China 8 CRC Roche 454 GS FLX 
pyrosequencing 

V1-V2 

McCoy et al. 
2013  

Rectal 
mucosa 
biopsy  

Adenoma USA 48 CRC, 67 
control 

Roche 454 GS FLX 
pyrosequencing 

V1-V3 

Zeller et al. 
2014 

Tumor/ 
adjacent 
normal 
tissue 

CRC Germany 38 CRC llumina MiSeq  V4 

Burns et al. 
2015 

Tumor/ 
adjacent 

CRC USA 44 CRC Illumina MiSeq  V5-V6 
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Study Type of 
samples 

disease Population Sample size  Method Variable 
region 

normal 
tissue 

Mira-Pascual 
et al. 2015 

Fecal and 
biopsy 

CRC & 
adenoma 

Spain 7 CRC, 11 
tubular 
adenoma, 10 
control 

Roche 454 GS FLX 
pyrosequencing  

N/A 

Nakatsu et al. 
2015 

Biopsy CRC & 
adenoma 

China 52 
Tumor/adjacent,  
47 adenoma/ 
adjacent, 61 
control 

Roche 454 GS FLX 
pyrosequencing 

V1-V4 

Thomas et al. 
2016 

Biopsy CRC Brazil 18 rectal cancer, 
18 control 

Ion-torrent PGM 
platform 

V4-V5 

Xu & Jiang 
2017 

Biopsy CRC & 
adenoma 

China 52 cancer, 47 
adenoma, 61 
control 

Roche 454 GS FLX 
pyrosequencing 

V1-V4 

Gao et al. 2017 Tumor/ 
adjacent 
normal 
tissue 

CRC China 65 CRC Illumina MiSeq V4 

Yoon et al. 
2017 

Biopsy CRC & 
adenoma  

Korea 6 CRC, 6 
conventional 
adenoma, 6 
sessile serrated 
adenoma, 6 
control 

Roche 454 GS FLX 
pyrosequencing 

V1-V3 

Hale et al. 
2017 

Fecal Adenoma USA 233 adenoma, 
547 control 

Illumina MiSeq N/A 

 
 

Bacterial dysbiosis, the state of increased abundance of unfavorable 

(allochthonous) and decreased abundance of beneficial (autochthonous) bacteria, has been 

associated with adenoma and CRC in all of these studies (Keku, 2015). Moreover, it has 

been revealed that in CRC patients, the compositions of the microbial community of the 

gut are stage-specific (Kinross et al., 2017). 

No specific bacterial species can be used as a universal biomarker for CRC. One 

possible reason for the lack of specific microbiome biomarkers is the complexity and 

dynamics of the system which is heavily influenced by diet, inflammation, host genetics, 

and the unique microbiome structure in each individual. However, an uncommon phylum, 
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Fusobacterium, particularly, the Fusobacterium nucleatum, has been detected more often 

in CRC patients than in controls (Zackular et al., 2014; Kinross et al., 2017). It is suggested 

that the abundance of F. nucleatum may be helpful in predicting clinical outcomes in 

patients with CRC. A significant association between the abundance of F. nucleatum and 

the size and stage of CRC was reported. Moreover, the survival of patients with CRC 

correlates negatively to the abundance of this species (Yamaoka et al., 2017).  

The hope is that with improved data analysis approaches that examine all the 

disease factors, we can distinguish healthy, adenoma, and CRC associated microbial 

communities. 

2.4	16S	rRNA	analysis	for	microbial	studies	
Currently, Small Subunit rRNA (SSU rRNA) gene sequencing is performed to 

detect and compare bacterial populations in environmental and human samples including 

blood, serum, tissue, and stool. The SSU rRNA is alternatively known as 16S rRNA in 

bacteria. The approach allows one to identify the structure and diversity of the microbiome 

by determining the abundance, phylogeny, and taxonomy of samples from complex 

microbiomes in environmental samples. 

16S rRNA sequences are essential in studies of microbial ecology and evolution. 

In 1987, Carl Woese founded the field of molecular evolution when he started sequencing 

the small subunit rRNA genes (SSU rRNA) to determine evolutionary distances. Using this 

method, he developed the revised tree of life with a newly identified domain named 

“Archaea” (Woese, 1987). Currently, the 16S rRNA gene is the standard used to determine 

phylogenetic relationships for bacteria, to assess diversity in the environment, and to detect 
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and quantify specific bacterial populations (Acinas et al., 2004). The original reason for 

choosing 16S rRNA was that it was the easiest nucleic acid molecule to purify. One merely 

spun down the ribosomes and extracted the RNA. Fortuitously, this molecule has a number 

of unique features that make it ideal for evolutionary studies. The length of the 16S rRNA 

gene is 1550bp (Clarridge, 2004) which is a suitable length for diversity analysis as it has 

been suggested that 500-700 bp are sufficient to allow sequence assignments at the species 

level (Clarridge, 2004). The conserved and variable regions in the 16S rRNA sequences 

facilitate the computational aspects of studying diversity and evolution (Van de peer et al., 

1996; Jonasson et al., 2002; Acinas et al., 2004). The nine variable loop regions are located 

between the conserved helical regions and the conserved helical regions are good targets 

for primer design while the variant loop regions, V1-V9, provide the signal to differentiate 

species diversity (Lane et al., 1985). Additionally, the 16S rRNA gene is present in all 

prokaryotes on the planet and has the same function in all cells. It carries both fast- and 

slow-evolving regions that give us the opportunity to find closely and distantly related 

species and strains. The helical regions are sufficiently conserved to allow accurate 

alignments among all species and the variable loops allow evolutionary and diversity 

studies. Finally, 16S rRNA genes are good targets for evolutionary studies because 

horizontal gene transfer rarely or never affects these genes (Acinas et al., 2004). In addition, 

many reference databases are available for 16S rRNA sequences that make taxonomy 

studies feasible. The main limitation of 16S rRNA sequencing is that this molecular 

approach will detect both live and dead cells and there is not a direct correspondence 

between taxonomic identity and functionality. 
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Despite these limitations of the16S rRNA analysis, it is the most popular method 

for microbiome analysis because it is convenient, fast, and cost-effective (Preheim et al., 

2013). As noted above, the rRNA gene sequencing is the most common technique used for 

most studies in the Human Microbiome Project (www.hmpdacc.org), the Earth 

Microbiome Project (www.earthmicrobiome.org), and many other individual projects 

worldwide. 

The most challenging and time-consuming step in the 16S rRNA analysis starts 

after sequencing, when bioinformatics and statistical analyses are used to extract pertinent 

information from large numbers of sequences or reads (Ju and Zhang, 2015). The 

processing of 16S rRNA gene sequences in most software pipeline can be divided into 

three steps: preprocessing, selection of Operational Taxonomic Units (OTUs), statistical 

analysis and visualization. The preprocessing step includes de-multiplexing which is the 

process of assigning reads to the corresponding barcoded samples and removing the sample 

barcodes (Gillevet et al., 2008), quality filtering, denoising, chimera removal, and data 

normalization. After preprocessing, the resulting “clean” or “effective” reads are then used 

for selecting representative sequences that define OTUs. At the next step, representative 

sequences are aligned to reference databases for taxonomic assignment. A phylogenetic 

tree of the OTUs is made at the end of this step. The final step is advanced data analysis 

and visualization, including calculations of alpha and beta diversity, ordination analysis, 

clustering and classification, and data visualization which includes heatmaps, principal 

coordinates analysis plots, and networks (Ju and Zhang, 2015). These steps of 16S rRNA 

analysis will be discussed in details in following sections. 
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2.4.1	Sequencing	16S	rRNA	genes	
The first step in a 16S rRNA survey is to construct a library of DNA fragments and 

sequence them. Several sequencing systems with different technologies are available for 

sequencing studies including the Roche 454 GS FLX (based on pyrosequencing technique), 

Illumina (based on sequencing by synthesis), Applied Biosystems SOLiD (sequencing by 

ligation), Pacific Biosciences (single-molecule real-time (SMRT) sequencing by 

synthesis), Ion Torrent (semi-conductor sequencing), Helico (single-molecule sequencing 

by synthesis), and Oxford Nanopore (single strand sequencing). These methods differ 

based on their technology, runtime, read length, sequencing yield, coverage, accuracy, and 

cost (Kuczynski et al., 2012; Rees et al., 2012; Oulas et al., 2012; Liu et al., 2013; Rizzo et 

al., 2012; Weirather et al., 2017). The 454 technology is no longer supported by the 

manufacturer. However, there are still many datasets produced by this technology that are 

available online and used by researchers in meta-analyses. A summary of the 

characteristics, advantages, and disadvantages of these systems is provided in Table 2. 
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Table 2 A summary of 16S rRNA sequencing technologies, their characteristics (Table 2A), advantages, and 
disadvantages (Table2b).  

These technologies differ in many aspects such as accuracy, read length, and duration of runs. 
Table 2A         

Sequencing 
platform 

Technology Year 
released 

Paired
-end 

Read 
length 

Accuracy 
(single 

read not 
consensus) 

Read/ 
run 

Sequenc
e yield 

per run 

Time 
per 
run 

Sanger 
sequencing 

PCR; 
dideoxy 

chain 
termination 

1997; 
automate

d 
version: 

2003 

No 400 to 
900 bp 

99.999%  96 1.9-84kb 3 h 

454 GS FLX Emulsion 
PCR; 

pyrosequenc
ing 

454 
(2005-
2014) 

Yes 700-
1000 bp 

99.90% 10^6 0.7G 10-24 
h 

Illumina_Sol
exa 

  2007       3x10^
6 

    

SOLiD 
sequencing 

Emulsion 
PCR; 

ligation and 
two-base 
coding 

2008   50+35 
or 

50+50 
bp 

99.9% 
(99.94%) 

10^8 120G 7-14 
days 

Ion Torrent 
sequencing 

Emulsion 
PCR; ion 

semiconduct
or 

2010 Yes up to 
400 bp 

98% 1.5-
3x10^

6 

20-50 
Mb on 

314 chip, 
100-200 
Mb on 

316 chip, 
1Gb on 

318 chip 

2-4 h 

Illumina-
MiSeq 

Bridge 
PCR; 

sequencing 
by synthesis  

2011 Yes 300 bp 
x 2 

99.9% 
(Phred30) 

25x10
^6 

1.5-15G 1 to 
11 

days, 
depen

d 
upon 
seque
nce & 
read 

length 
Illumina-

HiSeq 
Bridge 
PCR; 

sequencing 
by 

synthesis(re
verse 

terminator) 

2012 Yes 125bp 
x2 

99.9%  3x10^
9 

600-
1000G 

3(sing
le 

end)-
10 

(pair 
end) 
days 

Helico No 
amplificatio

2012   55bp ~100% 
accuracy 

21-
35G 

  8d 
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Table 2A         
Sequencing 

platform 
Technology Year 

released 
Paired
-end 

Read 
length 

Accuracy 
(single 

read not 
consensus) 

Read/ 
run 

Sequenc
e yield 

per run 

Time 
per 
run 

n; single-
molecule 

sequencing 
(sequencing 

by 
synthesis) 

Pacific 
Biosciences 

No 
amplificatio

n; single-
molecule 
real-time 

sequencing 
(sequencing 
by synthesis 

2012   10,000 
bp to 

15,000 
bp avg 
(14,000 
bpN50); 
maximu
m read 
length>
40,000 
bases 

87% single-
read 

accuracy  

  50,000 
per 

SMRT 
cell, or 
500–
1000 

megabas
es 

30min
- 4h 

Oxford 
Nanopore 
(GridIon) 

No 
amplificatio
n; label-free 

single 
molecule 
real-time 

sequencing 

2012   10000b
p 

  100G   5h 
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Table 2B   
Sequencing 
platform  

Advantages Disadvantages 

Sanger sequencing Long individual reads, high 
quality, useful for many 
applications 

Low throughput, more expensive and impractical 
for larger sequencing projects, this method also 
requires the time-consuming step of plasmid 
cloning or PCR 

454 GS FLX Long read size, fast run Expensive runs, high reagent cost, homopolymer 
errors, low throughput, prone to base insertion 
and deletion errors during base calling but rare 
chance of substitution errors, no longer supported  

SOLiD sequencing Low cost per base, accuracy Slower than other methods (long run), has issues 
in sequencing palindromic sequences, short read 
assembly 

Ion Torrent 
sequencing 

Less expensive equipment, fast Homopolymer errors, higher quality than 454 
especially when sequencing homopolymers 

Illumina-Miseq Potential for high sequence yield, 
depending upon sequencer model 
and desired application 

Expensive equipment, requires high 
concentrations of DNA, higher substitution error 
rates, lagging strand dephasing causes sequence 
quality deterioration towards the end of read 

Illumina-Hiseq High throughput Short read assembly, long run time, all samples 
on flow cell sequenced at same read length, 
higher substitution error rates, lagging strand 
dephasing causes sequence quality deterioration 
towards the end of read 

Helico No amplification bias, shorter 
preparation time, expensive 

Machine not widely used; sequencing service 
available through company  

Pacific Biosciences Long read length, fast, detects 
4mC, 5mC, 6mA 

Moderate throughput, equipment can be costly, 
high error rate 

Oxford Nanopore 
(GridIon) 

Potentially sequence entirely intact 
DNA strands/polymers, eliminate 
erroneous sequencing caused by 
shotgun metagenomics and 
exclude the need for the error-
prone assembly step during data 
analysis 

Low throughput; high error rate  
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Two of the most popular systems in the last few years were the Roche 454 GS-FLX 

and the Illumina (Oulas et al., 2015). The 454 pyrosequencing utilizes emulsion PCR where 

DNA library fragments are immobilized on beads, then amplified in oil droplets. The 

clonally amplified beads are then spun into wells on a picotiter plate and sequencing by 

synthesis is performed. Specifically, the four nucleotides are added sequentially and 

iteratively in a cyclic manner and pyrophosphate (PPi) is released after incorporation of 

each nucleotide. The released PPi reacts with adenosine 5´phosphosulfate (APS) in the 

presence of ATP sulfurylase to produce ATP. The ATP is then utilized by luciferase-

mediated conversion of luciferin to oxyluciferin to produce light that is detected by a 

charged-coupled device (CCD) camera. The intensity of the light is proportional to the 

number of nucleotides incorporated (up to detector saturation) (Mardis, 2008; Ronaghi, 

2001). Thus, the pyrosequencing method relied on the released pyrophosphates to detect 

an incorporation event, in contrast, the fluorescent chain-terminating dideoxynucleotides 

utilized in the Sanger method. This was one of the first commercially implemented 

NextGen technologies. However, the Roche pyrosequencing machines are no longer 

supported by the manufacturer as the bead size is relatively large. This technology has been 

replaced by the emulsion-based Ion Torrent technology where incorporation events are 

detected by the proton released using a semi-conductor chip. 

The Illumina technology uses a sequencing-by-synthesis approach as well. 

However, at the beginning of the process, DNA is purified and then tagmented (tagging of 

the double-stranded DNA with a universal overhang) by transposons which randomly cut 

DNA into short pieces. Sequencing adapters and sample barcodes are then added on either 
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side of the DNA fragments by PCR. Sequencing begins with pairing DNA molecules to 

complementary oligonucleotide adapters attached to a slide. Bridge amplification of 

fragments occurs on this oligo-derivatized surface via DNA polymerase producing 

multiple DNA copies that form clusters or polonies (polymerase colonies). This process 

occurs in a machine called a “cluster station.” Each cluster contains about one million 

copies of the original DNA fragment. Sequencing by synthesis is performed using four 

nucleotides that are fluorescently labeled and bound to a blocking group. They are added 

simultaneously to the flow cell channels and, after each nucleotide is incorporated, a laser 

excites the dyes and the CCD camera photographs the incorporation event. Then the 

incorporated base in each cluster is identified after color deconvolution. Subsequently, the 

3’ terminal blocks are removed and the next nucleotide is added to the sequence. The 

process continues until all the fragments are sequenced (Oulas et al., 2015). 

Illumina offers a variety of sequencing instruments for different applications 

including MiSeq and HiSeq. The Miseq instrument was developed for longer reads (about 

300 bp) but the output is lower (25 million paired-end sequencing reads of 300 bp in length 

or 15 GB) than other instruments. The HiSeq platform is suitable for sequencing up to 125 

bp but its output is much higher (1,000 GB per run). The reagent cost of Illumina 

sequencing is less than the 454 pyrosequencing but the runtime is longer. The sample 

preparation size is 20 ng of DNA for both pyrosequencing and Illumina technology. The 

shorter reads in Illumina (300 bp compared to 700 bp in pyrosequencing) may increase the 

time of analysis as more noise removal algorithms are necessary. On the other hand, 
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Illumina has lower sequencing error rates reportedly. Currently, Illumina is more popular 

than the ion torrent technology (Oulas et al., 2015). 

2.4.2	Preprocessing	the	sequences	
After obtaining the sequencing reads, preprocessing of the reads is performed. 

Methodological artifacts such as polymerase and sequencing errors, chimeras, and primers 

and barcodes must be removed from the sequences in order to have high quality reads for 

OTU selection. All raw barcoded sequences are demultiplexed, labeled with samples 

identifiers, and then removed. The next step of this preprocessing is quality filtering where 

sequences with poor quality bases or mismatches are removed to prevent the confounding 

of downstream analyses. Factors that are considered for quality filtering are minimum 

average quality scores, the maximum number of ambiguous bases, minimum and 

maximum sequence lengths, maximum lengths of homopolymers, and maximum 

mismatches in primers or barcodes (Ju and Zhang, 2015). Noise in the sequence data due 

to errors that occur during PCR amplification such as sequencing errors, PCR single base 

substitutions, and PCR chimeras should be removed as these can inflate estimates of alpha 

diversity in microbial communities (Reeder and Knight, 2010; Quince et al., 2011). 

Chimeras are hybrid PCR products that result from copying multiple parent sequences that 

can be falsely interpreted as novel organisms (Haas et al., 2011). Software tools are 

available for noise and chimera removal such as Denoiser (in QIIME), AmpliconNoise 

(including PyroNoise and SeqNoise), Acacia, Pre.cluster (in Mothur), ChimeraSlayer, 

UCHIME, Perseus, and DECIPHER (Quince et al., 2011; Bragg et al., 2012; Haas et al., 

2011; Edgar et al., 2011; Quince et al., 2011; Wright et al., 2012). These methods differ on 
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the algorithm they use to find the chimeras, speed, and sensitivity. In this project, UCHIME 

was used for chimera detection. UCHIME algorithm looks for a 3-way alignment of a query 

sequence with two parent sequences where one of the parent sequences is more similar to 

one region of the query, and the other parent is similar to another region as illustrated in 

Figure 2. A score is calculated for each alignment and a higher score indicates a stronger 

chimeric signal (Edgar et al., 2011). 

 

 
Figure 2 A region from a chimeric alignment by UCHIME.  

A 3-way alignment of a query sequence with two parent sequences. “Diffs” show the different bases between 
query and parents. Votes are yes (+), no(!), and abstain (0). The “Model” shows the final pattern of chimera 

detected. Ref: Edgar et al. (2011). 
 

Sequencing depth, i.e., the number of clean (preprocessed) sequences obtained for 

each sample, can vary among different barcoded samples due to initial sample pooling 

inconsistencies. As such, different numbers of reads for different samples will affect the 

diversity estimation in downstream analyses. Therefore, data normalization is 

recommended. Various methods are available to normalize the reads including rarefaction, 

relative abundance, and Z-score (Ju and Zhang, 2015). Rarefaction is the random selection 

of an equal number of sequences from each sample, and this number is chosen as the 

minimum sequence count for all samples. Relative abundance is read counts of a taxon 

against the total sample read counts (Goodrich et al., 2014). In the Z-score method, a score 
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is calculated as the difference between the observed and mean values divided by the 

standard deviation (Oswald et al., 2011). 

2.4.3	Creating	Operational	Taxonomic	Units	(OTUs)	
The next step in the analytical process is to generate Operational Taxonomic Units 

(OTUs). We define an OTU as a distinct taxonomic entity. However, it may not have a 

known taxonomic name. One method of OTU identification is the “de novo OTU selection” 

method in QIIME. In this approach, OTUs are created based on the similarity of reads to 

each other. Another method, known as the “close-reference method,” is to align the reads 

to a 16S rRNA reference database such as “GreenGenes”(	http://greengenes.lbl.gov) and 

designate OTUs based on the similarities of reads to known taxa. This latter approach is 

quick and convenient. However, novel OTUs may be disregarded. An alternative is the 

“open-reference method,” in which the de novo and close-reference methods are combined 

(Preheim et al., 2013). The benefit of the de novo OTU selection method is that all reads 

are clustered and no sequences are lost. A drawback is the computational speed as it can 

be too slow to apply to large datasets (e.g., more than 10 million reads). However, if a 

reference database is not available for the desired sequences, this method should be used. 

This method is not applicable when comparing non-overlapping amplicons such as the V2 

and V4 regions of the 16S rRNA and does not recommend for the processing of the large 

datasets.  

As mentioned above, the closed-reference approach is much faster than the de novo 

algorithm, and the trees and taxonomy results of this approach will be more accurate. In 

addition, since all OTUs are produced from a standard reference, closed-reference data 
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may be compared with the results generated in other studies. The disadvantage of the 

closed-reference method is the loss of novel diversity as all non-matched reads are 

discarded. An open-reference method is preferable to de-novo and closed-reference 

because it has the advantages of both methods (Rideout et al., 2014) as the open-reference 

OTU selection algorithm runs de novo clustering on the sequences that failed to match with 

the reference database and adds them to the analysis. This approach decreases the runtime 

and the open-reference OTU selection method can be applicable to billions of reads 

(Rideout et al., 2014). 

There are many de novo approaches available. In this study, we used the UPARSE, 

UPGMA, and UCLUST algorithms. These methods are the default methods of the most 

commonly used 16S rRNA sequencing pipelines such as QIIME (UCLUST), Mothur 

(UPGMA) and USEARCH (UPARSE) (Caporaso et al., 2010; Schloss et al., 2009; Edgar, 

2013). The aim of using these three methods was to compare them for their accuracy in 

OTU selection and determine which pipeline was the most effective for classification of 

subjects. 

UPARSE: The UPARSE pipeline was developed by Edgar (Edgar, 2013) and uses 

a “de novo” clustering method that is claimed to work faster and more accurate than other 

commonly used OTU clustering methods for microbial studies. It starts with quality-

filtering the reads and trimming them to a fixed length. The singletons can be optionally 

discarded, and the remaining reads are used for clustering. The clustering algorithm is 

called “UPARSE-OTU” which is a ‘greedy’ algorithm that performs simultaneous chimera 

filtering and OTU clustering. UPARSE is highly robust with respect to variations in the 



47 
 
 
 

input data order and can be successfully applied to a wide range of marker genes and 

sequencing technologies. 

The goal of UPARSE-OTU is to identify a set of representative sequences (OTUs) 

satisfying the following criteria as shown in Figure 3.  

• All pairs of sequences in an OTU should have at least 97% pair-wise 

sequence identity. 

• Chimeric sequences should be discarded. 

• All non-chimeric input sequences should match at least one OTU with ≥ 

97% identity (Edgar, 2013). 

 

 
Figure 3 UPARSE-OTU clustering criteria. 

All pairs of OTU sequences have at least 97% pair-wise sequence identity. Chimeric sequences are discarded. 
All non-chimeric input sequences match at least one OTU with ≥ 97% identity.  

Ref: http://drive5.com/usearch/manual/uparseotu_algo.html 
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UPGMA (Unweighted Pair Group Method with Arithmetic Mean): The 

UPGMA method is an agglomerative "bottom-up" clustering method that creates 

hierarchical clusters. It begins with the creation of one cluster for each of the input reads. 

Then the closest two clusters are identified and joined into a higher-level cluster as showed 

in Figure 4. In the UPGMA method, the average linkage will be calculated as the distance 

between clusters when one of those clusters has more than one sequence. 

 

 
Figure 4 UPGMA algorithm. 

This algorithm is a bottom-up clustering method that creates one cluster for each of the input reads. Then the 
closest two clusters joined. This process continues until one single cluster remains. Ref: 

http://drive5.com/usearch/manual/agg.html 
 

UCLUST: The UCLUST method clusters the sequences into OTUs based on their 

identities. Each cluster has a centroid or representative sequence and the sequences in a 

cluster have similarities greater than or equal to a defined identity threshold while 

sequences out of the cluster have similarities less than that identity threshold as depicted 

in Figure 5. Thus, centroids have similarities to each other that are less than the threshold. 

However, the order of the input sequences is critical in UCLUST as the sequences are put 
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into the clusters in the order in which they appear in the sequence file. Specifically, the 

first sequence is the first centroid. If the next sequence has an identity greater than the 

threshold of the first one, it will be placed in the same centroid. Otherwise, it becomes a 

new centroid. 

 

 
Figure 5 UCLUST algorithm.  

UCLUST make clusters based on the identity of sequences to each other. Ref: 
http://drive5.com/usearch/manual/uclust_algo.html 

 

USEARCH (Edgar, 2010): An additional function of UCLUST is to find the 

similarities of input sequences with the centroids identified so far. This function is 

performed by the USEARCH algorithm where identity is defined as the number of 

identities in each alignment column divided by the total number of alignment columns 

which is similar to the identity score used in the BLAST (Edgar, 2010). The USEARCH 

algorithm searches sequences for high-identity hits to one or more sequences ("targets") as 
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shown in Figure 6. USEARCH is effective in detecting identities greater than about 75% 

for nucleotides. For lower-identity alignments, the local search UBLAST is used. 

 

 
Figure 6 USEARCH algorithm.  

USEARCH exploits the fact that similar sequences tend to have several short words in common, and uses the 
word count to prioritize the database search. 

 Ref: http://www.drive5.com/usearch/manual/usearch_algo.html 
 

Choosing the OTU selection method depends on the dataset and the aim of the 

study.  

2.4.4	Assigning	taxonomy	to	OTUs		
Labeling the OTUs with a taxonomic identity is the next step of the analysis 

pipeline. The Ribosomal Database Project (RDP), GreenGenes (DeSantis et al., 2006), 

SILVA, (Quest et al., 2013), and GEBA are the references databases that can be used for 

assigning taxonomy to the OTUs. 

The Ribosomal Database Project (RDP) (https://rdp.cme.msu.edu) provides 

quality-controlled, aligned, and annotated bacterial and archaeal 16S rRNA sequences as 
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well as fungal ITS and 28S rRNA sequences for Bayesian Classification, annotation, and 

alignment (Cole et al., 2014). 

GreenGenes (http://greengenes.lbl.gov) is a bacterial and archaeal 16S rRNA 

sequence database that provides annotated, chimera-checked, full-length 16S rRNA gene 

sequences in standard alignment formats which allows researchers to use this database as 

a reference for the taxonomic identification of OTUs and distinguish chimeras (DeSantis 

et al., 2006). 

SILVA (http://www.arb-silva.de) is a comprehensive online resource that consists 

of fully aligned and regularly updated small (16S/18S, SSU) and large (23S/28S, LSU) 

subunit rRNAs of Bacteria, Archaea, and Eukarya. SILVA can be used to check the quality 

of the reads and for the taxonomic identification of OTUs (Pruesse et al., 2007; Quast et 

al., 2013). 

The Genome Encyclopedia of Bacteria and Archaea (GEBA) 

(http://www.jgi.doe.gov/programs/GEBA/) is mostly used to fill in the taxonomic gaps for 

bacterial and archaeal databases. These taxonomic gaps emerge because of the highly 

biased phylogenetic distribution in the available genome sequences when compared to the 

extent of the total environmental microbial diversity known today. The GEBA group is 

trying to provide genomes for all bacterial and archaeal groups (Wu et al., 2009). 

2.4.5	Finding	Phylogenetic	relationships	among	OTUs	
To visualize the phylogenetic relationships between OTU sequences, they are first 

preprocessed and then trimmed to the same length which is defined as the most frequent 

length of the population. Duplicates are removed, and the trimmed sequences are aligned 
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to each other. In this study, mafft (Katoh et al., 2002) was used for sequence alignment as 

the CPU time is reduced dramatically with this algorithm while it has comparable accuracy 

to other methods (Katoh et al., 2002). The next step is producing a phylogenetic tree. A 

phylogenetic tree is a branching diagram showing the inferred evolutionary relationships 

among various OTUs based on their sequence similarities. Thus, the taxa that are 

descended from a common ancestor will be connected in the cladogram (Ju and Zhang, 

2015). In the present study, FastTree (Price et al., 2009; Price et al., 2010) was used for 

constructing the phylogenetic trees. There are two versions of FastTree, FastTree1 and 

FastTree2. FastTree 1 employs nearest-neighbor interchanges (NNIs) and the minimum-

evolution criterion to improve the tree while FastTree 2 adds minimum-evolution subtree-

pruning-regrafting (SPRs) and maximum likelihood NNIs. FastTree 2 uses heuristics to 

restrict the search for better trees and estimates a rate of evolution for each iteration. For 

large alignments, FastTree 2 is 100–1,000 times faster than FastTree1. The phylogenetic 

tree produced at this step is used for downstream beta diversity analyses such as UniFrac 

(Lozupone et al., 2005) as described below. 

2.4.6	Alpha	and	beta	diversity	analyses	
Alpha diversity: Estimating the alpha diversity (α diversity), which is the diversity 

within samples, is the first step of community analysis as it is crucial in describing the 

structure, function, and evolutionary patterns within communities. To determine the α 

diversity, species richness (i.e., the number of species) and the relative abundancies of the 

different species are measured (Ju and Zhang, 2015). 
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The accuracy of diversity measurement is dictated by the depth of sequencing (i.e., 

the number of reads per sample). The sequencing depth dictates the diversity within a 

sample as the higher number of reads in the sample will detect higher diversity. Because 

sequencing depth varies between barcoded samples due to sample pooling artifacts, 

rarefaction or other standardization methods should be applied before samples are 

compared to each other. Thus, rarefaction analysis is necessary to capture the total diversity 

within the sample. 

Many metrics are available to estimate community diversity, such as Shannon, 

Simpson, invSimpson, and sobs indices (Hill et al., 1973), all of which measure both 

richness and evenness. The number of species per sample is a measure of richness and, 

thus, the more species present in a sample, the 'richer' the sample. Evenness is a measure 

of the normalized relative abundance of the different species. The Simpson's diversity 

index can be thought of as the probability that upon randomly choosing an OTU from a 

sample, the OTU has already been observed. Therefore, higher Simpson’s diversity index 

indicates less diversity. The invSimpson index is the inverse of the classical Simpson’s 

diversity index. The Simpson-based metrics are not affected by sampling effort while the 

Shannon index is. Observed species or observed OTUs metric (sobs) is a simple metric that 

just counts the number of OTUs that are present in the given sample, as abundance is not 

considered in this metric. Samples with the same sobs value have a similar richness and 

samples with higher sobs value have higher richness. 

Beta diversity: Beta diversity is the diversity between communities. β-diversity 

metrics can be categorized into two types; qualitative where only the species diversity is 
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used (e.g., unweighted-UniFrac) (Goodrich et al. 2014) and quantitative where abundance 

is also included in the diversity measurement (e.g., Bray-Curtis and weighted-UniFrac 

metrics). 

UniFrac: Unique Fraction (UniFrac) is a β-diversity metric that employs 

phylogenetic information to compare microbial communities. Accompanied with standard 

multivariate statistical approaches such as principal coordinates analysis (PCoA), UniFrac 

can describe differences between microbial communities. The UniFrac metric measures 

the difference between two communities based on the amount of unique evolutionary 

history found in the two communities. Two versions of this program exist; weighted and 

unweighted. In the weighted version, the relative abundancies of sequences are taken into 

account along with the phylogenetic similarities (shared branch length) to calculate how 

similar the communities are. The unweighted version only uses the tree topology to 

calculate the metric (Lozupone et al., 2007). 

The UniFrac distance between a pair of samples is the sum of the branch length that 

was observed in one sample (the unique branch length) divided by the sum of the branch 

length that was observed in either sample (the observed branch length). The unweighted 

UniFrac distance between a pair of samples A and B is defined as follows: 

 

UAB= 𝒖𝒏𝒊𝒒𝒖𝒆
𝒐𝒃𝒔𝒆𝒓𝒗𝒆𝒅

 
 

Equation 1 Unweighted UniFrac distance between a pair of samples A and B 
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where “unique” is the unique branch length, or branch length that only leads to 

OTU(s) observed in sample A or sample B, and observed is the total branch length observed 

in either sample A or sample B. 

The UniFrac metric can determine whether the phylogenetic lineages between 

samples are different and can be used to cluster samples via multivariate statistical 

methods. UniFrac is integrated into the QIIME and Mothur microbial analyses pipelines 

(Ju and Zhang, 2015). 

Bray-Curtis: Bray-Curtis metric (Bray & Curtis, 1957) is a quantitative non-

phylogenetic based β-diversity metric that quantifies the compositional dissimilarity 

between two different samples based on counts at each of sample. The Bray-Curtis 

dissimilarity between a pair of samples, j and K, is defined as follows: 

 

BCjk= 𝑿𝒊𝒋.𝑿𝒊𝒌𝒊

𝑿𝒊𝒋0𝑿𝒊𝒌𝒊
 

Equation 2 Bray-Curtis dissimilarity 
 

i: feature (e.g., OTUs) 

Xij: frequency of feature i in sample j 

Xik: frequency of feature i in sample k 

The calculations are performed for each pair of samples, and a dissimilarity matrix 

containing all pairwise distances is made. Bray-Curtis dissimilarity matrix can be used to 

compare community dissimilarity based on OTU abundance. 
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Principal component analysis (PCA) and Principal coordinates analysis 

(PCoA): The PCA algorithm uses an Eigen analysis to find new sets of dimensions that 

capture the data variability. The first dimension is chosen in a way that captures the 

maximum possible variance of the data while the second dimension is chosen orthogonal 

to the first dimension to capture as much of the remaining variance as possible. The Eigen 

analysis transforms potentially correlated features into fewer components known as 

“principal components” or “Eigen vectors.” Each axis has an eigenvalue that is related to 

the amount of variance explained by the axis. Thus, the first Eigen vector has the highest 

Eigen value and this axis explains the greatest fraction of the variance of the data. The 

second Eigen vector has the second highest Eigen value and this axis explains the next 

greatest fraction of variance (Tan et al., 2006). In this way, the dimensionality of the 

features (e.g. OTUs) is reduced and projected along Eigen vectors representing the largest 

the variance of the features. To visualize the PCA results, usually, only two PCA axes are 

plotted as the third axis is usually less informative than the first two. The PCA plot allows 

rotation the cloud of data points to visually inspect the clustering. 

PCoA is a similar ordination technique that employs an appropriate distance matrix. 

As above, it plots samples along Eigen vectors reducing dimensionality while preserving 

their distance relationships as much as possible. Thus, PCoA can be employed in 

microbiome studies to visualize similarities or dissimilarities of microbial communities 

using a suitable distance matrix instead of the covariance matrix used by PCA (Kindt et 

al., 2005). 
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2.5	Statistical	analysis	of	microbiome	data	
The high throughput nature of next-generation sequencing allows the parallel 

sequencing of a large number of barcoded samples. Non-parametric statistical approaches 

can be used to find the association of OTUs with metadata and to determine any association 

between bacterial species and clinical or other variables. Many statistical tests are available 

to find the significant differences between two groups or classes (e.g., healthy and cancer). 

Some examples are the Wilcoxon signed-rank test, Kruskal–Wallis test, and the Mann-

Whitney U test for non-parametric data.  

MetaStats (White et al., 2009) is a statistical approach designed to identify 

differentially abundant features in metagenomic and 16S rRNA sequence datasets. This 

program utilizes the nonparametric t-test, Fisher’s exact test, and the false discovery rate 

(FDR) to provide users with a prioritized list of remarkable features that define differences 

between two classes (e.g., healthy vs. ill). 

The analysis of variance (ANOVA) test is used to measure significant differences 

between means of multiple independent samples with normally distributed data and equal 

variance. If the data are not normal, other nonparametric tests, such as the Kruskal-Wallis 

test or PerANOVA can be used (Ju and Zhang, 2015). The Kruskal–Wallis test uses a rank-

ordered One-way ANOVA and is a method for testing whether samples originate from the 

same distribution. It is used for comparing two or more independent samples of equal or 

different sample sizes. It extends to the Mann–Whitney U test when there are more than 

two groups. A significant Kruskal-Wallis test indicates that at least one sample 

stochastically dominates over at least one other sample. The test does not identify where 

this stochastic dominance occurs or how many pairs of groups contribute to the stochastic 
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dominance. Dunn's test can be used to analyze specific sample pairs for stochastic 

dominance. For example, if the researcher can make the less stringent assumptions of an 

identically shaped and scaled distributions for all groups, except for any difference in 

medians, then the null hypothesis is that the medians of all groups are equal and the 

alternative hypothesis is that at least one population median of one group is different from 

the population median of at least one other group. 

The Linear discriminative analysis effect size (LEfSe) (Segata et al., 2010) is an 

algorithm for high-dimensional biomarker discovery and detection of genomic features 

such as genes, pathways, and taxa that can characterize the differences between two or 

more biological classes. This algorithm is helpful to identify differentially abundant 

features that are also consistent with biologically meaningful categories (classes) by taking 

into account both statistical significance and biological relevance. It first detects 

statistically different features using the non-parametric Kruskal-Wallis sum-rank test and 

then using another pairwise test (Wilcoxon) to determine whether the detected differences 

are consistent with biological behavior. To estimate the biological effect of each 

differentially abundant feature, they used a linear discriminant analysis (LDA).  

The indicator metric is another statistically-based tool developed to find the 

indicator species (e.g. OTUs) that define a distinctive aspect or characteristic of an 

environment. Indicator combines the species relative abundance with the relative frequency 

of occurrence in various classes. When all the individuals of a species are represented in 

one group, and all the species appear in all the samples of that group, the indicator index is 

defined as high. A randomization method is used to find the statistical significance of the 



59 
 
 
 

metric. The indicator index for each species is independent of the other species relative 

abundance and is independent of classification approaches (Dufrene et al., 1997; McCune 

et al., 2002). 

2.6	Data	mining	and	machine	learning	for	microbiome	data	
The development of next-generation sequencing has led to a significant decrease in 

the cost of sequencing (Sboner et al., 2011) and this reduction in cost has facilitated large-

scale studies. However, the corresponding amount of data produced from these studies is 

so enormous that interpreting the data has become slow, confounded, and challenging. 

With the estimation of data doubling every few months, novel techniques should be 

developed in order to utilize the overwhelming amount of data efficiently. Data mining is 

a method to find previously unknown information patterns in data resources (Witten et al., 

2005). Data mining extracts patterns and finds solutions to problems in large datasets. The 

process must be automatic or semiautomatic, should be inexpensive, and the discovered 

pattern should present a meaningful result (Witten et al., 2005). Data mining is a part of 

the knowledge discovery process that analyzes data and applies algorithms to generate 

patterns or models (Fayyad et al., 1996) as shown in Figure 7. 
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Figure 7 Data mining process.  

Data mining is a part of the knowledge discovery process that analyzes data and applies algorithms to generate 
patterns or models. Ref: Fayyad et al., 1996. 

 

Data mining procedures can be either “unsupervised,” in which the “class” is 

unknown or undiscovered, or “supervised” for which the “class” is known a priori. 

Classification and regression are two examples of supervised predictive modeling tools. 

Machine learning involves the study of algorithms that can extract useful 

information automatically. Some of these procedures may include the ideas derived from 

or inspired by, classical statistics. 

Statistical learning methods are currently in use to identify associations in the 

metadata. In statistical learning, machine learning methods are applied to find a predictive 

pattern based on the input data. These techniques have some advantages over statistical 

approaches as they can detect nonlinear associations between metadata and microbiome 

species or OTUs. 

Clustering and classification are two statistical mining methods that are widely used 

in taxonomic and functional studies of microbiome data (Ju and Zhang, 2015). Using the 
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clustering approach, taxa or samples can be partitioned based on their similarities and 

dissimilarities. Clustering is a form of unsupervised learning that divides data into 

meaningful groups, or clusters, based on the information found in the dataset. Similar or 

related objects are inserted into the same clusters, and dissimilar or unrelated objects are 

inserted into different clusters. The desire is to get greater intra-class (within the clusters) 

similarities and inter-class (between the clusters) dissimilarities.  

In supervised classification methods, a model is built based on a “training set” 

which is data from a predefined class. New examples can then be inserted into these 

predefined groups based on various computational models. The difference between 

classification and clustering is that in classification objects are inserted into predefined 

classes based on known information, while in clustering, objects are divided into clusters 

based on the given data. Three examples of unsupervised clustering algorithms are 

hierarchical clustering, K-means, and principal coordinate analysis and some examples of 

supervised classification methods are decision trees, nearest neighbor, naïve Bayes, and 

support vector machines (Tan et al., 2006). 

Both 16S rRNA taxonomy data (composition) and functional gene markers 

(function) can be used for classification. Functional properties have been proposed to be 

more discriminatory than compositional properties (Xu et al., 2014), as some communities 

with the same functions have different compositions. Phylogenetic Investigation of 

Communities by Reconstruction of Unobserved States (PICRUSt) is a tool to predict the 

function of taxa present in a microbiome (Langille et al., 2013). 
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There are some software packages that have been developed for performing 

machine learning on big data. Two examples are Weka and Orange. The Waikato 

environment for knowledge analysis (Weka) is a suite of machine learning algorithms 

developed at the University of Waikato, New Zealand. Weka is a workbench with many 

visualization tools, data analysis algorithms, and predictive modeling. Weka supports 

many standard data mining tasks including data preprocessing, clustering, classification, 

regression, visualization, and feature selection (Witten et al., 2011). Orange is another open 

source machine learning, data mining, and analysis software platform maintained and 

developed by the Bioinformatics Laboratory of the Faculty of Computer and Information 

Science at the University of Ljubljana, Slovenia (Demsar et al., 2013). It has a visual 

programming front-end for explorative data analysis and visualization. The Orange 

components are called widgets and are modules for data visualization, subset selection, 

preprocessing, empirical evaluation of learning algorithms, and predictive modeling. 

Widgets offer additional functionalities such as data visualizing tools, feature selection, 

training predictors, comparing learning algorithms (Demšar 2013). 

2.6.1	Supervised	classifiers	
Supervised classification uses examples that are assigned to predefined classes. 

Two types of datasets are used in supervised classification, training datasets and test 

datasets. A training dataset is a set of data with known class labels and a testing dataset 

consists of data with unknown class labels. 

Many different classifiers, such as decision trees, nearest neighbor, naïve Bayes, 

artificial neural networks, and support vector machines (SVM) are in general use. Each 
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classifier recruits a learning algorithm to make a model that is the best fit for the attribute 

(e.g. OTU) set. The model performance can be evaluated by preparing a confusion matrix 

that shows correctly and incorrectly classified data. To compare models, performance 

metrics, such as accuracy and error rate, are used. Accuracy is the percent of correct 

predictions of the model, and the error rate is the percent of incorrect predictions of the 

model. Thus, models with relatively high accuracies and low error rates are desired. 

Two types of errors can occur using the above classification methods, training and 

generalization errors. Training errors are the number of misclassified errors in the training 

data and generalization errors are the errors seen on previously unseen data during testing. 

A good model has low rates of both training and generalization errors. If a model works 

well on training data, but not on test data, it is overfitted. “Overfitting” occurs when a model 

weights the attributes on just the training data rather than learning to generalize from it. 

There are various techniques to avoid overfitting, for example using cross-validation. 

The performance of different classifiers can be compared to determine which 

classifier works best for the desired dataset. Using only the accuracy to compare different 

classifiers may not be reliable because, based on the size of the dataset, the differences 

observed between the classifiers may not be statistically significant. Therefore, other 

parameters, such as the receiver operating characteristic (ROC) curve can be used to 

compare classifiers (Tan et al., 2006).  

We describe some of the many classification methods that can be used for 

microbiome data below. 



64 
 
 
 

Decision tree: the decision tree classifier is a hierarchical structure that consists of 

nodes and edges. “Hunt’s algorithm” which is a greedy algorithm1 is the basis of many 

decision tree induction algorithms such as ID3, CD4.5, and CART. In this algorithm, 

training datasets are recursively partitioned into successively purer subsets as shown in 

Figure 8. A decision tree is a popular method to create and visualize predictive models and 

algorithms, as it is uncomplicated, easy to understand, and usually effective (Tan et al., 

2006). 

  

                                                   
1 Greedy learner: use training data to make a classification model before receiving test 
data. 
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Figure 8 Decision tree and its nodes.  

It has a hierarchical structure. 
 

Nearest-neighbor: this approach is a lazy learner2 as it finds all the training 

examples that are relatively similar to the test dataset examples (nearest neighbors) and 

uses this metric to determine the class label. The algorithm computes the distance or 

similarity between each of the records of the test dataset and all examples of the training 

dataset to detect the nearest neighbor list. After finding the nearest neighbors, the class 

label of the test examples is introduced. In this algorithm, the outlying training examples 

have less effect in the class assignment of the test set. 

In the k-nearest neighbor approach, k examples of the training dataset are 

considered for finding the nearest neighbor. Therefore, choosing a very small k increases 

                                                   
2 Lazy algorithm: store training data and do not start making classification model until it 
receives test data. 
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the chance of overfitting while choosing a large k can cause misclassification due to the 

presence of very far neighbors. 

Lazy learners, such as the nearest neighbor, do not require model building but 

merely need a proximity measure to find the similar neighbors and assign the class label. 

However, this method can be expensive because of the need to check the proximity of each 

test example with all training examples. On the other hand, because greedy algorithms, 

such as the decision tree algorithm, spend much time on model making, the classifying step 

itself is relatively rapid. Choosing a suitable proximity measure and data preprocessing are 

necessary for the nearest neighbor learner. Otherwise, incorrect predictions may be 

introduced (Tan et al., 2006). 

Bayesian classifier: the naïve Bayes classifiers are built according to Bayes’ 

theorem with independent assumptions between predictors and are especially useful when 

the input dimensionality is high (Tan et al., 2006). Despite the simplicity of this classifier, 

it often outperforms other more sophisticated classification approaches. Naïve Bayesian is 

called “naïve” because it assumes that attributes are conditionally independent of each 

other. This means that the impact of an attribute value on a specified class is not dependent 

on the values of the other attributes. This assumption reduces computational costs (Tan et 

al., 2006). 

Bayes’ theorem is a statistical principle for merging prior knowledge of classes with 

new evidence that is gathered from input data. This theorem is a useful tool for calculating 

conditional probabilities. Bayes’ theorem is a way of understanding how the probability 

that a theory is true is affected by new evidence. 
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The Bayes’ theorem formula is:  

 

P(T|E) = 1 𝐸 𝑇 ×1 5
1 𝐸 𝑇 ×1 5 01 𝐸 ¬𝑇 ×1 ¬5

 
Equation 3 Bayes’ theorem formula 

 

Where: 

T = the theory (hypothesis) that we want to analyze 

E = the new piece of evidence that appears to confirm or reject the theory  

P(T) is defined as the prior probability of T: our best estimate of the probability of 

the theory we are analyzing before taking into account the new piece of evidence. 

P(T|E) is the probability that T is true given that E is true. It is the posterior 

probability of T. P(T|E) represents the probability that is assigned to T after considering 

the new piece of evidence, E. 

To calculate P(T|E), in addition to the prior probability P(T), we require two further 

conditional probabilities indicating how probable our piece of evidence depends on 

whether our theory is true (P(E|T)) or not true (P(E|~T)), where ~T is the proposition that 

T is false. 

We want to determine whether the probability that T is true assuming the new piece 

of evidence is true. This is called conditional probability, the probability that one 

hypothesis is true provided another be true. For example, when a random card is drawn 

from a deck of 52, the probability that the card is a jack, P(J) is 4/52 because four jacks are 

on the deck. However, if we know the card is a face card, the probability the card is a jack 
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will be 4/12 because 12 face cards are on the deck. This is an example of conditional 

probability as P(J|F), meaning the probability the card is a jack given that it is a face card. 

A naïve Bayes classifier estimates the class-conditional probability by assuming 

the conditional independence of attributes. The conditional independence assumption can 

be presented as below when the attribute set X consists of d attributes (X = {X1, X2, …, 

Xd}: 

 P(X|Y = y) = 𝑃(𝑋𝑖|𝑌 = 𝑦)@
ABC  

By assuming conditional independence, we just calculate the conditional 

probability of each Xi, given Y instead of estimating the class conditional probability for 

every combination of X. This method is practical because it does not need a large training 

dataset to get an accurate estimate of probability. 

To classify a test record, this classifier will calculate the posterior probability for 

each class Y: 

P(Y/X) =	1(E) 1(FA|E)G
HIJ
1(F)

 

Since P(X) is fixed for every Y, it is sufficient to select the class that maximizes 

the term, 𝑃(𝑌) 𝑃(𝑋𝑖|𝑌)@
ABC  (Tan et al., 2006). 

Artificial neural network (ANN): the development of this classifier was 

influenced by the biological neural system. However, it is simpler than the neural network 

of a biological system (Sayad, 2011). Many interconnected nodes are found in this type of 

classification, similar to what we see it in the brain. An ANN includes artificial neurons or 

so-called nodes and these nodes are connected to each other with different levels of strength 

or weighting. Stronger connections are given a higher weight value than weaker 
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connections. A transfer function is built into each node’s design. Three types of nodes exist 

in the ANN model; input, hidden, and output nodes. The input nodes are the starting nodes 

that bring in the attribute information in the numeric form. The nodes have numbers that 

reflect their activation levels and a node with more activation has a bigger number than a 

node with less. This information transfers through the nodes of the network until it reaches 

the output node and is then presented in a meaningful way to the user (Sayad, 2011). Many 

ANN models are used for classification. Two examples are the perceptron and multilayer 

artificial neural networks. 

Perceptron: The perceptron is the simplest ANN model, consisting of two types 

of nodes, input nodes, which code for the input attributes, and output nodes, which 

represent the output of the model as depicted in Figure 9.  

 

 
Figure 9 Perceptron model.  

This model has input and output nodes that are connected by a weighted link. 
https://andynor.net/blog/archive/2013/2/ 
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The input node is connected to the output node by a weighted link which imitates 

the synaptic connection strength between neurons in the biological system. Training of a 

perceptron model is similar to what happens in a real biological system which amounts to 

adapting the weight of the links until they optimize the input-output relationships of 

underlying data. The weight parameters are adjusted until the output data of the model is 

consistent with the output of the training examples. 

Multilayer artificial neural network: The structure of this model is more 

complicated than a perceptron in many ways. These include having intermediary layers, 

also called hidden layers, hidden nodes, and uses more complicated functions as depicted 

in Figure 10.  

 

 
Figure 10 Multilayer artificial neural network.  

This model has hidden layers and hidden nodes, and it uses activation functions such as linear, sigmoid, or 
hyperbolic tangent. http://mines.humanoriented.com/classes/2010/fall/csci568/portfolio_exports/lguo/ann.html 
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The time-consuming portion of the ANN method is the training set processing, 

mainly when the number of hidden nodes is large. However, the classification of testing 

examples is fast (Tan et al., 2006). 

Support vector machine (SVM): SVM originated from statistical learning theory 

and is effective in many aspects and it handles high-dimensional data well. This approach 

represents decision boundaries using examples of a training dataset to determine support 

vectors (hyperplanes). 

Many possible hyperplanes separate two high dimensional datasets from each other 

to form separate classes. The classifier should choose one of these hyperplanes as the 

separator based on its effect on the testing dataset. Even if the hyperplane separates the 

training data entirely, we cannot be sure it will work well on the test dataset. Each decision 

boundary is associated with a pair of parallel hyperplanes that touch the closest examples 

of each of the classes. The distance between these two parallel hyperplanes is called the 

margin. The longer the margin, the better the generalization error for that classifier. The 

classifiers with short margins are more prone to overfitting than those with longer margins 

and generalize weakly on test datasets as shown in Figure 11. 

 



72 
 
 
 

 
Figure 11 Support vectors scheme.  

Support vectors are examples from the dataset that define boundaries between classes. A hyperplane with more 
extended margin will represent a better classifier.  

Ref: http://rsif.royalsocietypublishing.org/content/9/73/1934 
 

Linear SVM: Linear SVM, or maximal margin classifier, is a classifier that seeks 

a hyperplane that gives the longest possible margin. 

Soft margin approach: The soft margin approach is a method that looks for a 

model that can tolerate small training errors. Therefore, even if two classes are not linearly 

separable, this method allows the SVM to make linear decision boundaries by accepting 

some training errors. The learning algorithm should take into account the tradeoff between 

the margin distance and the number of training errors to make a boundary decision. 

Nonlinear SVM: The easiest way to separate two groups is to use linear decision 

boundaries, including a straight line (one dimension), a flat plane (two dimensions), or an 

N-dimensional hyperplane. However, for some datasets, a nonlinear SVM may 

differentiate two groups more efficiently than a linear SVM.  
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 In this method, the SVM will transform the original data from its original 

coordinate space into a new space using a nonlinear kernel function in such a way that a 

decision boundary can be defined to separate classes in the new space (Tan et al., 2006) as 

illustrated in Figure 12. This is called the “kernel trick,” which means that a nonlinear 

function transforms the data to a higher-dimensional level to make linear separation 

possible (Sayad, 2011). 

 

 
Figure 12 Nonlinear support vector machines.  

The data will transform to a higher dimensional level to make linear SVM possible. 
 Ref: http://www.intechopen.com/books/air-pollution/artificial-neural-networks-for-pollution-forecast 

 

Ensemble methods: to increase the accuracy of classification, the predictions of 

several classifiers may be combined as shown in Figure 13. This approach is called the 

ensemble classifier or classifier combination. It makes a series of individual base classifiers 

from the training dataset, and then by taking a vote on the resulted predictions, performs 

the classification. 
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Figure 13 Ensemble classifier.  

It is a combination of several classifiers.  
Ref: http://bioinformatics.oxfordjournals.org/content/22/14/1717/F2.expansion.html 

 

Many ways exist to make ensemble classifiers, including manipulating the training 

dataset, input features, class labels, and learning algorithm (Tan et al., 2006). 

Random forest: The Random forest classifier is an ensemble method specific for 

decision tree classifiers. It aggregates the predictions produced by different decision trees. 

The differences between the decision trees depend on the values of their random vectors. 

As shown in Figure 14, the random vectors could be generated from a fixed probability 

distribution (Tan et al., 2006). 
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Figure 14 Random forest classifier.  

It aggregates the predictions produced by different decision trees. 
 Ref: http://stackoverflow.com/questions/17031056/using-c4-5-classifier-with-multiple-outcomes 
 

2.6.2	Classification	validation	and	classifier	performance	evaluation	
There are many methods to compare the performance of a classifier including the 

holdout method, random subsampling, cross-validation, and bootstrap. In this study, the 

results of cross-validation were reported. In the cross-validation approach, the input data is 

partitioned into several segments with equal size. For each run, one of the portions is 

employed as the test dataset while the others are used as the training dataset and this process 

continues until all of the partitions are used precisely once for testing. The training dataset 

is used to generate the classification model and the test dataset is used to evaluate the 

classifier performance. The portion of the data that is selected for each of the training and 

test datasets is at the discretion of the user. For example, it can be divided into a 3-fold 

cross validation set or 2 3 training to 1 3 test data. The sum of the errors from each run is 

the total error of this method and the accuracy is calculated based on the result of applying 
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this classifier on all the test datasets. For the test dataset, each record is recruited only once, 

and the remaining data is used for training as demonstrated in Figure 15. There are many 

advantages for this method including a) using the maximum possible data for the training 

dataset; b) the test dataset uses the whole dataset, and c) the training and test datasets are 

mutually exclusive. The disadvantages can be the high variance of the performance and the 

high computational expenses. 

 

 
Figure 15 Cross-validation. 

The input data is partitioned into k segments with equal size. For each run, one of the portions is employed as 
the test dataset, other are used as the training, and this process continues until all of the partitions is used 

exactly once for testing. Ref: http://scott.fortmann-roe.com/docs/MeasuringError.html 
 

Another performance measure for classification problems is error rate or accuracy. 

However, higher accuracy does not necessarily imply better performance on target data 

and it is recommended to use multiple measurements to check the performance of a 
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classifier, such as an accuracy, sensitivity, specificity, and area under ROC curve as no 

single measure is a perfect evaluator of a classifier. Sensitivity is a measure of how well a 

binary classifier correctly detects a condition or	probability of correctly labeling a target 

class member. Low sensitivity indicates a high false-negative rate and is a weak classifier 

to rule out the disease class. On the other hand, specificity is the statistical measure of how 

well a binary classifier correctly detects the negative cases.  

The receiver operating characteristic curve (ROC) is a graphical plot to illustrate 

the performance of a classifier and represents the trade-off between true positive rate (TPR) 

and false positive rate (FPR). The ROC curve is made by plotting TPR (y-axis) against 

FPR (x-axis) as shown in Figure 16. The TPR is also called sensitivity, and 1-FPR is also 

known as the specificity. Each point on the curve belongs to one of the models that are 

produced by the classifier. 
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Figure 16 The receiver operating characteristic curve (ROC). 

The ROC curve is a graphical plot to illustrate the performance of a classifier and represent the trade-off 
between true positive rate (TPR) and false positive rate (FPR).  

Ref: http://www.unc.edu/courses/2010fall/ecol/563/001/docs/lectures/lecture22.htm 
 

 

A good classifier is located on the upper left as much as possible. A model that is 

close to the main diagonal is a model that makes a random guess and not a useful model.  

The ROC curve is very helpful for comparing classifiers to each other and 

differentiating their relative performance. In addition, the area under the ROC curve (AUC) 

can also be used for comparing classifiers. A perfect model will show AUC=1 and a model 

with random guess will represent AUC=0.5. Therefore a better model will have a higher 

AUC (Tan et al., 2006). A rough guide for classifying the accuracy of a diagnostic test is 

the traditional academic point system: 
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• 0.90-1 = excellent 

• 0.80-0.90 = good 

• 0.70-0.80 = fair 

• 0.60-0.70 = poor 

• 0.50-0.60 = fail 

2.7	Application	of	classification	in	microbiome	studies		
In the last few years, there have been attempts to use classification to extract useful 

information from microbiome data. Some studies have used SVM, ANN, or ensemble 

classification methods for microbiome analyses and we discuss them below. 

Nakano et al. reported that SVM, ANN, and a decision tree helped them to classify 

the oral microbiota and malodor microbiome in saliva and these classification methods 

proved to be useful for screening saliva for oral malodor before visits to specialist clinics 

(Nakano et al., 2014). 

Yemin’s group combined SVM classification with functional feature selection to 

identify age-related functional characteristics in metagenomes collected from the human 

gut. They showed that the combination of feature selection with SVM yields biologically 

meaningful results and simplified age classification of new human gut metagenomes 

(Yemin et al., 2013). 

Wisittipanit et al. used SVM and KNN classification to distinguish samples from 

patients with Crohn’s disease and ulcerative colitis from healthy control samples. Using 

these methods, the authors reported OTUs or microbial species that were differentially 
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abundant between patients and healthy controls at specific intestinal locations (Wisittipanit 

et al., 2015). 

Schubert et al. reported microbiome alterations that potentiated Clostridium 

difficile infections after antibiotic use. They built a random forest regression model to 

predict C. difficile colonization levels based on microbial relative abundance data. Using 

this model, they identified C. difficile-related bacteria that were colonization resistant. 

Interestingly, they were unable to find these distinctive bacterial groups using other 

correlation approaches (Schubert et al., 2015). 

In a mouse model, a random forest regression modeling approach predicted the 

number of tumors present at the end of the study based on the original bacterial composition 

of the mouse microbiome (Zackular et al., 2015). 
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3 MATERIALS & METHODS 

3.1	Metadata	and	datasets	
Metadata and 16S rRNA sequence datasets from previously published studies were 

used in this project, and they were analyzed by three OTU selection approaches. Two 

studies were selected as benchmarks for preliminary hypothesis analysis: Zackular et al. 

2014 (referred here as Benchmark-1) and Wu et al. 2013 (referred here as Benchmark-2). 

A summary of these selected studies on CRC and adenoma microbiome are listed in Table 

3. They were chosen as they were publicly available and similar in design to our own study 

(MBO1) which compared specimens collected from subjects with colorectal cancer, benign 

adenomas, and normal colonoscopy results. In addition to the raw sequences, we needed 

the clinical metadata to define the disease states. For other similar studies, this information 

was not available, and request for this information from the corresponding authors was 

unsuccessful.  

There were also a few studies that were available with the necessary information 

for assigning samples, but the quality of the reads was very low as most of the reads were 

discarded at the preprocessing steps. As such, we decided not to include them as the low 

quality of the sequences could severely affect the OTU clustering and classification 

methods. Additionally, there were also some studies with insufficient numbers of subjects 

that we did not use because of the reduced reliability of results due to the small sample 

size. 
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The DNA sequencing technology used and the variable region analyzed for these 

two benchmarks were different. Benchmark-1 used the Illumina MiSeq platform and V4 

variable region of 16S rRNA, whereas Benchmark-2 utilized the 454 Roche 

(pyrosequencing) technology and V3 variable region. On the other hand, the sequencing 

method for the MBO1 polyp data was the Ion-Torrent PGM and the primers of V1-V2 were 

selected for analysis. As the technology and primers used in these studies are different from 

each other, we tried to choose parameters for the sequence analysis pipeline that can work 

efficiently for all of these methods. For example, with the 454 (pyrosequencing) and Ion-

Torrent systems there is a high chance of homopolymer errors, whereas, with the Illumina 

system, the rate of ambiguous bases is greater. Therefore, in the preprocessing steps, we 

checked sequences for both of these errors to make sure that the pipeline worked well for 

all of these datasets. 
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Table 3 Information of the two studies selected as benchmarks.  
Information about their subjects, DNA extraction, and sequencing technology are summarized here. 

 
 

The MBO1 polyp and healthy control dataset was collected for a clinical trial study 

sponsored and funded by Metabiomics Corp. (Sterling, VA, USA) and conducted at the 

Metropolitan Gastroenterology Group (Chevy Chase, MD, USA) and George Mason 

University, Microbiome Analysis Center (Manassas, VA, USA) under an IRB approved 

clinical trial protocol described on clinicaltrials.gov (ID# NCTO2141945). The biopsy 

(BS), rectal swabs (SS), and home stool swabs (HS) were collected from subjects that had 

undergone routine colonoscopy for polyp detection. In total, 552 samples were collected, 

including both polyp positive (n=316) and polyp negative (n=236) subjects. Some of the 

 Benchmark-1: Zackular et al., 2014 Benchmark-2: Wu et al., 2013 

Type of 
samples 

Fecal sample Fecal sample 

Disease CRC & Adenoma CRC  

Population Canada-USA  China 
Sample size 30 CRC, 30 adenoma, 30 healthy 

controls  
20 CRC, 20 healthy controls 

DNA 
extraction 

Power- Soil-htp 96 Well Soil DNA 
Isolation Kit 

QIAamp DNA Stool Mini Kit  

Sequencing 
machine 

Illumina MiSeq Genome Sequencer FLX System (Roche) 
pyrosequencing  

rRNA 
variable 
region 
amplified 

V4 V3 

Number of 
reads 

12,180,024  727,860 

Data 
depository 

http://www.mothur.org/MicrobiomeBio
markerCRC 

https://www.ncbi.nlm.nih.gov/sra/ 
SRX152609[accn] 
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subjects did not submit all types of specimens, which resulted in the collection of 231 rectal 

swabs (SS), 183 home stool swabs (HS) and 138 Biopsies (BS) that were used as material 

inputs for sequencing (Table 4). Samples were kept at -20°C in RNALater until DNA 

samples were extracted using FastDNA Spin Kit for Soil (MP Biomedicals, Solon, CA, 

USA). The sequencing was performed using V1-V2 bacterial primers and Ion Torrent 

Personal Genome Machine (Life Technologies, USA) located at the Microbiome Analysis 

Center, George Mason University. The number of reads collected from the machine for the 

552 samples was 12,646,278. 

A summary of polyp metadata information is shown in Table 4. The average age of 

subjects was 62 years old and average BMI was 27. Participants were 131 (60%) male and 

87 (40%) females. The ethnicity of subjects was African-American (21, 10%), Caucasian 

(192, 88%), and Asian-American (4, 2%). Based on colonoscopy results, subjects were 

categorized into two groups: polyp-negative (polyp-N) and polyp-positive (polyp-Y). 

  



85 
 
 
 

Table 4 MBO1 polyp dataset information.  
All of the 552 samples were collected in Washington DC metro area. Three type of samples were collected. 

However, not all of the subjects have all three samples. After the colonoscopy, subjects were divided into two 
groups of polyp-Y (ones with detected polyp) and polyp-N (ones without polyps). DNA extracted from all 

samples with the same DNA extraction kit and sequenced in Microbiome Center of George Mason University.  
 

3.2	Sequence	analysis	
There are many different parameters that can be selected for the 16S rRNA 

sequencing analysis pipelines. For example, preprocessing steps can be very different. 

Decisions made for selecting preprocessing parameters, clustering criteria, and sample 

depth cut-offs all affect downstream analyses. There should be a balance between removing 

low-quality sequences and keeping enough sequences for a statistically significant depth 

of coverage. Highly conservative preprocessing may remove real sequences and highly 

permissive processing may let noisy data distort or overwhelm real community patterns. 

The steps of the optimized pipeline are preprocessing, OTU clustering, and construction of 

an OTU abundance table. This is then followed by alpha and beta diversity analysis, the 

performance of statistical tests to find significant OTUs, and finally classification and 

classification validation. For the polyp dataset, an additional prediction step was performed 

in which we used the best performing classifier to predict the class of naïve unknown 

Polyp Study  

Type of samples Rectal swab (SS), home stool swab (HS), biopsy (BS) 

Disease status Patients with colon polyps and healthy control individuals  

Population USA  
Groups Polyp positive (polyp-Y) and polyp negative (polyp-N) 

Sample size polyp-Y (316); polyp-N (236) 
[231 swabs, 183 stool samples, 138 biopsies] 

DNA extraction FastDNA Spin Kit for Soil (MP Biomedicals) 

Sequencing approach Ion Torrent Personal Genome Machine 

rRNA variable region V1-V2  

Number of reads 12,646,278 
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samples. We developed a unique pipeline to accommodate the different sources of data 

used in the study which is summarized in Figure 17. The details of each step are presented 

below. 

Preprocessing: preprocessing is the first step of sequence analysis and the results 

can be very different based on the parameters that are applied. In this study, sequences 

were processed based on the following criteria: 

1- The maximum number of ambiguous bases was 5. 

2- The maximum number of homopolymers was 8. 

3- All chimeric reads were found and removed using UCHIME. The reference 

database for chimera removal was RDP.gold (https://rdp.cme.msu.edu) 

(Release 11, Update 4; May 26, 2015). 

4- All undesirable lineages (Mitochondria-Chloroplast-Eukaryotes-Archaea) were 

removed by using the Naïve Bayes classifier (Wang et al., 2007). 

5- Reads with the low-quality score were removed. 

6- Singletons (reads that appear just once) were discarded. 

7- Reads were trimmed at a fixed length for the UPARSE and UPGMA method. 

For UCLUST method, reads were sorted based on length. 

For Illumina sequences, there was a preliminary step of merging paired-end reads. 

As there were forward and reverse pair reads, the read pairs were merged to make one read. 

The merging was performed according to the method described in Edgar & Flyvbjerg 2015. 

OTU selection: OTU selection was performed using three methods, UPARSE, 

UPGMA, and UCLUST. After finding OTUs or centroids, all the reads were mapped to 
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OTUs using an identity threshold of 97%. Thus, any read with the identity of 97% or higher 

to a given OTU would be inserted into that OTU cluster. Otherwise, they were assigned to 

another cluster. An abundance table was constructed that included all the OTUs and their 

abundance for each sample. 

The OTUs were aligned to 16S reference sequence database GreenGenes 

(http://greengenes.lbl.gov) using the RDP classifier (Wang et al., 2007), and a taxonomic 

ID was generated for each OTU.  
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Figure 17 Sequence analysis pipeline optimized for this study. 

After preprocessing the sequences and removing unwanted reads, three OTU clustering methods were 
performed, and three abundance tables were made. Downstream analysis including alpha and beta diversity 

analysis, finding significant OTUs, machine learning, and prediction is conducted afterward. 
 

PREPROC
ESSING

• Removing Chimeric reads and undesireable lineages
• Removing reads that contain ambiguous nucleotides and homopolymers 
• Removing reads that contain low quality phred score and singletons
• Truncate reads at most common length/ sort reads based on length

CLUSTERI
NG

• De novo OTU picking methods
• UPARSE (OTU centroids tend to be selected from the more abundant reads)
• UPGMA (Distance matrix-Average Neighbor clustering)
• UCLUST (OTU centroids are selected based on input order)

MAKING 
OTU 

TABLE

• Mapping all reads to OTUs at 97% identity
• Create abundance table
• Predict taxonomy

ALPHA 
DIVERSITY

• Rarefaction curve plot
• Analysing diversity, richenss and evenness using alpha diversity indices

BETA 
DIVERSITY

• Construct distance matrix
• Unifrac, Bray-Curtis
• Principal Component Analysis

OTU 
RANKING

• MetaStats
• LEfSe
• Indicator
• Kruskal-Wallis

MACHINE 
LEARNING

•Naïve Bayesian classification
•Decision tree, Random Forest classification
•Neural network, logistic regression
•Nearest Neighbor classification

CLASSIFICA
TION 

VALIDATIO
N

•Cross validation
•Accuracy, sensitivity, specificity

• Area under ROC curve

PRDICTION
• Use constructed classifier to predict the class of samples from an unknown test dataset
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3.3	Alpha	and	beta	Diversity	analyses	
After generating abundance tables, several statistical methods were performed such 

as alpha diversity measurements of richness and evenness and the identification of the 

presence or absence of specific taxa (i.e., indicator). Rarefaction curves were drawn to 

analyze the sequencing depth and then alpha diversity indices such as Shannon, Simpson, 

invSimpson, and observed species (sobs) were calculated for all of the samples. 

Beta diversity was analyzed by generating a phylogenetic tree and this was 

followed by UniFrac and PCoA analysis. Specifically, the processed reads were aligned 

using UPGMA algorithm and a phylogenetic tree was produced using FastTree 

(http://microbesonline.org/fasttree/) (Price et al., 2009; Price et al., 2010) which makes an 

approximate-maximum-likelihood phylogenetic tree. Then weighted and unweighted 

UniFrac metrics were calculated using the tree and the results were visualized using 

principal coordinate analysis. 

3.4	Statistical	analysis	tests	
We used Kruskal-Wallis, Metastats, LEfSe, and Indicator to find significantly 

different OTUs between groups. 

1. Kruskal-Wallis (KW) finds OTUs with a significantly different mean rank between 

groups. 

2. LEfSe discovers OTUs with significantly different abundance and biological 

relevance among groups. 

3. MetaStats determines OTUs with significantly different mean proportion and 

variance among groups. 

4. Indicator detects the indicator species of each group. 
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3.5	Classification	methods	
Several methods were used to build classification models for all three benchmarks: 

1. The naïve Bayesian algorithm that classifies based on posterior probability. 

2. The decision tree algorithm that performs a recursive partitioning. 

3. The random forest algorithm that aggregates the predictions produced by different 

decision trees. 

4. K-nearest neighbor algorithm that detects the class of test example based on nearest 

neighbors in the training set. 

5. The neural network algorithm that is a multilayer perceptron. 

6. Support vector machine algorithm that finds the best hyperplane to separate two 

groups. 

The process of data mining was performed using Orange data mining tool, V. 2.7 

(http://orange.biolab.si/), and the pipeline is shown in Figure 18. The classification was 

performed under two different conditions: once with all detected OTUs as classification 

features (or attributes) and once with only significant OTUs that were detected by the above 

statistical methods. The trained classifier obtained using the significant OTUs was then 

used on test datasets to analyze the performance of the classifier on naïve samples. 
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Figure 18 Classification pipeline in Orange data mining tool.  

OTU abundance table was uploaded as the input file. The data was partitioned into training and test dataset 
using 5-fold cross-validation. Training data was used for making the classifier. The resulted classifier then 

applied to test data to check the performance. 
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3.6	Classifier	validation	
The cross-validation method was used as the method of choice for evaluating the each of 

the classifiers and their classification accuracy, sensitivity, specificity, and area under the 

curve. Sensitivity, specificity, and classification accuracy were calculated as follows: 

Sensitivity= 51
510NO

= 51
1

 

Specificity= 5O
5O0N1

= 5O
O

 

Classification accuracy= 5105O
5105O0N10NO

 

Where T= True; F=False; P=Positive; N=Negative. 

Orange data mining tool was used for validation as depicted in Figure 18. 

3.7	Predictions	
The next step is checking the classifier on a separate naïve test dataset to assess the 

predictive power of these classifiers. A WEKA module was used to generate these naïve 

test sets along with corresponding training sets. Then the predictions were performed 

utilizing the orange prediction pipeline shown in Figure 19. 
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Figure 19 Prediction pipeline in Orange data mining tool. 

Classifiers were constructed based on training data, and then they were used to predict the class of a separate 
test dataset. 
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4 RESULTS 

4.1	Benchmark-1	results	
The sequences from Benchmark-1 were preprocessed according to the steps and 

parameters described in the methods section (Figure 17), and OTUs were clustered using 

three methods: UPARSE, UPGMA, and UCLUST. The number of OTUs produced by each 

method were 2560, 4340, and 303184 for UPARSE, UPGMA, and UCLUST, respectively. 

Thus, UPARSE detected the lowest number of OTUs and UCLUST the highest. 

4.1.1	Benchmark-1	rarefaction	
The rarefaction plots for the UPARSE analysis of Benchmark-1 are shown in 

Figure 20. Based on the rarefaction curves, sequencing depth is adequate for all three 

groups of healthy control, adenoma, and cancer samples. The sequencing depth is adequate 

as the plots reached a plateau which means that the number of detected species or OTUs 

would not increase by increasing the number of sequences per sample. As UPARSE 

generally had better results in our study, only the results of UPARSE are shown here. 
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Figure 20 The rarefaction plots of Benchmark-1, UPARSE method.  

The sequencing depth is good because all plots reached a plateau which indicates that by increasing the number 
of sequences the number of detected species would not change. 
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4.1.2	Benchmark-1	alpha	diversity	
Alpha diversity results of Benchmark-1 are shown in Table 5. The results of 

different diversity indices for the three methods of clustering is summarized in this table. 

Higher Shannon index indicates a more diverse community with a higher richness and 

evenness. A lower Simpson index means a higher diversity (evenness). The higher the 

Simpson index is, the less diverse the sample will be. Higher sobs index indicates a higher 

richness. 

 

Table 5 The Benchmark-1 alpha diversity results.  
For each diversity index, the average in that group has been shown. In all three methods, the average diversity 
of the healthy control group is higher than either the adenoma and cancer groups. nseq: number of sequences. 

  UPARSE UPGMA UCLUST 
Diversity 

index 
Average in each group Average in each group Average in each group 

Groups Adenoma Cancer Healthy Adenoma Cancer Healthy Adenoma Cancer Healthy 

nseq 55950 65286 67443 56466 65977 74511 103159 128326 132240 

Shannon 3.35 3.34 3.53 3.4 3.4 3.6 4.4 4.4 4.7 

Simpson 0.08 0.08 0.06 0.08 0.08 0.06 0.05 0.05 0.04 

invSimpson 15.85 16.68 18.66 16.2 17.02 19 24 25.5 28.4 

sobs 292 289 321 391.5 396 464.4 5405.2 6707 7387 

 
 

For all the indices (Shannon, Simpson, invSimpson, and sobs), the average 

diversity of the healthy control group is higher than either the adenoma and cancer groups. 

Specifically, the higher Shannon, invSimpson, sobs and lower Simpson in healthy control 

compared to cancer and adenoma indicates the richness and evenness decreased in the 

adenoma and cancer groups compared to the healthy control subjects. The reason for lower 
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diversity in the disease state may be a shift of the bacterial population from a normal diverse 

community to a few allochthonous bacteria in response to the disease state. 

4.1.3	Benchmark-1	beta	diversity	
To compute differences between microbial communities, the phylogenetic UniFrac 

metric was used and visualized with PCoA plots. The PCoA plots show that UniFrac metric 

did not discriminate between groups. Specifically, there was no clear separation between 

the samples in each group using the first three principal components as shown in Figure 

21, Figure 22, and Figure 23. This means that this metric could not differentiate healthy 

and disease state from each other. 
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Figure 21 The Benchmark-1 UniFrac PCoA visualization for adenoma and cancer. 

Neither unweighted UniFrac (top) nor weighted UniFrac (bottom) was successful in differentiating binary 
groups from each other. The axes are principal components. 
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Figure 22 The Benchmark-1 UniFrac PCoA visualization for adenoma and healthy. 

Neither unweighted UniFrac (top) nor weighted UniFrac (bottom) were successful in differentiating binary 
groups from each other. The axes are principal components. 
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Figure 23 The Benchmark-1 UniFrac PCoA visualization for cancer and healthy. 

Neither unweighted UniFrac (top) nor weighted UniFrac (bottom) were successful in differentiating binary 
groups from each other. The axes are principal components. 
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A Bray-Curtis metric was used as a quantitative non-phylogenetic β-diversity 

metric. The calculations were performed for the relative abundance of each pair of samples. 

The PCoA based on the Bray–Curtis dissimilarity matrix revealed that the clustering of 

intestinal microbiota between each group was similar as showed in Figure 24. 
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Figure 24 The Benchmark-1 Bray-Curtis PCoA plots. 

A: Adenoma(red)-Cancer(yellow), B: Healthy (red)-Cancer (yellow), C: Healthy (red)-Adenoma (yellow). PCoA 
based on the Bray–Curtis dissimilarity matrix of species abundance revealed that the structure of intestinal 

microbiota between each of these two groups was similar. The axes are principal components. 
 

A 

C 

B 
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4.1.4	Benchmark-1	significant	OTUs	
We utilized a Kruskal-Wallis, MetaStats, LEfSe, and Indicator to find bacterial 

species that are significantly different between binary comparisons of the groups of this 

study. The significance level was 0.05 for all of the tests. Each method enumerated the 

bacterial species, genera, orders, and families that were differentially present in one group 

compared to the other. Some of the differentiating taxa were found with more than one of 

these methods, while some were found by only one of the tests. The Kruskal-Wallis 

identified more differentiating OTUs than did the other tests. The significant OTUs found 

by any method were combined into one feature set. As some OTUs were found significant 

by more than one method, just one of them was kept after combination. The collection of 

these common significant OTUs (“filtered” OTUs) was used for classification. The filtered 

OTUs for each of the two groups using UPARSE method are presented in tables below. 

Table 6 shows the 52 OTUs that resulted from all four statistical tests that were 

significantly different between the adenoma and cancer groups. Table 7 lists the 62 

significantly detected OTUs between the healthy control and adenoma groups. Table 8 

shows the 56 significant OTUs between the healthy control and cancer groups. Most of the 

significant OTUs for each of these binary comparisons belonged to the Firmicutes and 

Bacteroidetes phyla. As these two are the most abundant phyla of the gut microbiome, it is 

not unexpected that most of the significant OTUs are from these two phyla. There are some 

OTUs that have the same taxonomy but clustered as different OTUs which indicates that 

these are probably subtaxa (i.e., species or strains). 
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Table 6 The 52 significantly different OTUs between adenoma and cancer groups of Benchmark-1. 
Forty-Six OTUs are from Firmicutes and Bacteroidetes phyla. The most observed order is Clostridiales. Just a 

few OTUs are wholly classified up to species level. P: phylum; o: order; f: family; g: genus; s: species. 
No. OTU 

Number 
GreenGenes 
ID 

Taxonomy 

1 1 OTU3 GG850870 p_Bacteroidetes;c_Bacteroidia;o_Bacteroidales;f_Bacteroidaceae;g_Bacteroides; 

2 2 OTU427 GG207615 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Lachnospiraceae; 

3 3 OTU56 GG848088 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Lachnospiraceae;g_Coprococcus; 

4  OTU53 GG1105904 p_Proteobacteria;c_Betaproteobacteria;o_Burkholderiales;f_Alcaligenaceae;g_Sutterella; 

5  OTU300 GG207994 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Ruminococcaceae;g_Ruminococcus; 

6  OTU1518 GG199710 p_Firmicutes;c_Clostridia;o_Clostridiales; 

7  OTU884 GG343989 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Lachnospiraceae; 

8  OTU291 GG211212 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Lachnospiraceae; 

9  OTU341 GG974203 p_Actinobacteria;c_Actinobacteria;o_Actinomycetales;f_Actinomycetaceae;g_Actinomyc
es; 

10  OTU100 GG988932 p_Firmicutes;c_Clostridia;o_Clostridiales; 

11  OTU1762 GG335523 p_Bacteroidetes;c_Bacteroidia;o_Bacteroidales;f_Bacteroidaceae;g_Bacteroides;s_ovatus 

12  OTU788 GG298592 p_Fusobacteria;c_Fusobacteriia;o_Fusobacteriales;f_Fusobacteriaceae; 

13  OTU204 GG368448 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Lachnospiraceae; 

14  OTU602 GG198839 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Ruminococcaceae; 

15  OTU555 GG358112 p_Firmicutes;c_Clostridia;o_Clostridiales; 

16  OTU240 GG358185 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Ruminococcaceae;g_Ruminococcus; 

17  OTU165 GG308072 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Lachnospiraceae; 

18  OTU356 GG796473 p_Bacteroidetes;c_Bacteroidia;o_Bacteroidales;f_Prevotellaceae;g_Prevotella; 

19  OTU40 GG998587 p_Bacteroidetes;c_Bacteroidia;o_Bacteroidales;f_Porphyromonadaceae;g_Porphyromonas
; 

20  OTU453 GG182797 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Ruminococcaceae; 

21  OTU24 GG841108 p_Bacteroidetes;c_Bacteroidia;o_Bacteroidales;f_Bacteroidaceae;g_Bacteroides; 

22  OTU139 GG851797 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Lachnospiraceae;g_Clostridium;s_bolteae 

23  OTU756 GG573053 p_Firmicutes;c_Clostridia;o_Clostridiales; 

24  OTU1 GG1104433 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Lachnospiraceae;g_Blautia; 

25  OTU255 GG386273 p_Proteobacteria;c_Epsilonproteobacteria;o_Campylobacterales;f_Campylobacteraceae;g_
Campylobacter;s_ureolyticus 

26  OTU1365 GG4329459 p_Bacteroidetes;c_Bacteroidia;o_Bacteroidales;f_Bacteroidaceae;g_Bacteroides;s_fragilis 

27  OTU713 GG512682 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Lachnospiraceae;g_Blautia; 

28  OTU1381 GG534926 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Lachnospiraceae;g_Anaerostipes; 

29  OTU150 GG692756 p_Bacteroidetes;c_Bacteroidia;o_Bacteroidales;f_Porphyromonadaceae;g_Porphyromonas
; 

30  OTU63 GG214651 p_Firmicutes;c_Clostridia;o_Clostridiales; 

31  OTU392 GG215097 p_Proteobacteria;c_Betaproteobacteria;o_Burkholderiales;f_Alcaligenaceae;g_Sutterella; 

32  OTU752 GG167730 p_Bacteroidetes;c_Bacteroidia;o_Bacteroidales;f_Barnesiellaceae; 

33  OTU231 GG259772 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Lachnospiraceae;g_Coprococcus; 
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No. OTU 
Number 

GreenGenes 
ID 

Taxonomy 

34  OTU723 GG338730 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Ruminococcaceae; 

35  OTU205 GG365160 p_Firmicutes;c_Clostridia;o_Clostridiales; 

36  OTU523 GG206523 p_Firmicutes;c_Clostridia;o_Clostridiales; 

37  OTU1027 GG174893 p_Actinobacteria;c_Coriobacteriia;o_Coriobacteriales;f_Coriobacteriaceae;g_Collinsella;s
_aerofaciens 

38  OTU384 GG198720 p_Firmicutes;c_Clostridia;o_Clostridiales; 

39  OTU95 GG363214 p_Firmicutes;c_Clostridia;o_Clostridiales; 

40  OTU116 GG620319 p_Firmicutes;c_Clostridia;o_Clostridiales; 

41  OTU197 GG864573 p_Firmicutes;c_Bacilli;o_Lactobacillales;f_Lactobacillaceae;g_Lactobacillus; 

42  OTU19 GG590945 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Lachnospiraceae; 

43  OTU607 GG566233 p_Actinobacteria;c_Actinobacteria;o_Actinomycetales;f_Actinomycetaceae;g_Actinomyc
es; 

44  OTU298 GG114284 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Ruminococcaceae; 

45  OTU229 GG362576 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Lachnospiraceae; 

46  OTU1937 GG312882 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Ruminococcaceae; 

47  OTU34 GG589710 p_Firmicutes;c_Clostridia;o_Clostridiales; 

48  OTU482 GG193868 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Lachnospiraceae; 

49  OTU219 GG535601 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Lachnospiraceae; 

50  OTU551 GG358112 p_Firmicutes;c_Clostridia;o_Clostridiales; 

51  OTU115 GG591825 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Ruminococcaceae; 

52  OTU1179 GG302746 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Lachnospiraceae; 
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Table 7 The 62 significantly different OTUs between adenoma and healthy control groups of Benchmark-1. 
Fifty-six OTUs are from the Firmicutes and Bacteroidetes phyla. The most observed order is Clostridiales. Just 

a few OTUs are entirely classified up to species level. P: phylum; o: order; f: family; g: genus; s: species. 
N
o. 

OTU 
Number 

GreenGene
s ID 

Taxonomy 

1  OTU10 GG581094 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Lachnospiraceae;g_Blautia; 

2  OTU113 GG367091 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Ruminococcaceae;g_Oscillospira; 

3  OTU1146 GG366735 p_Firmicutes;c_Clostridia;o_Clostridiales; 

4  OTU115 GG591825 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Ruminococcaceae; 

5  OTU1175 GG4004998 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Lachnospiraceae; 

6  OTU1179 GG302746 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Lachnospiraceae; 

7  OTU1194 GG555623 p_Bacteroidetes;c_Bacteroidia;o_Bacteroidales;f_Bacteroidaceae;g_Bacteroides;s_ovatus 

8  OTU1233 GG838703 p_Firmicutes;c_Clostridia;o_Clostridiales; 

9  OTU1275 GG178708 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Lachnospiraceae; 

10  OTU1374 GG198044 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Lachnospiraceae; 

11  OTU1392 GG839512 p_Bacteroidetes;c_Bacteroidia;o_Bacteroidales;f_Bacteroidaceae;g_Bacteroides;s_eggerthii 

12  OTU1410 GG182469 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Lachnospiraceae; 

13  OTU1422 GG196664 p_Bacteroidetes;c_Bacteroidia;o_Bacteroidales;f_Bacteroidaceae;g_Bacteroides;s_uniformis 

14  OTU1478 GG276149 p_Bacteroidetes;c_Bacteroidia;o_Bacteroidales;f_Porphyromonadaceae;g_Parabacteroides; 

15  OTU1564 GG767952 p_Firmicutes;c_Bacilli;o_Lactobacillales;f_Lactobacillaceae;g_Lactobacillus;s_zeae 

16  OTU1888 GG180042 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Lachnospiraceae; 

17  OTU189 GG358483 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Lachnospiraceae; 

18  OTU20 GG369922 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Ruminococcaceae; 

19  OTU2011 GG192963 p_Verrucomicrobia;c_Verrucomicrobiae;o_Verrucomicrobiales;f_Verrucomicrobiaceae;g_A
kkermansia;s_muciniphila 

20  OTU205 GG365160 p_Firmicutes;c_Clostridia;o_Clostridiales; 

21  OTU224 GG4336947 p_Proteobacteria;c_Deltaproteobacteria;o_Desulfovibrionales;f_Desulfovibrionaceae; 

22  OTU24 GG841108 p_Bacteroidetes;c_Bacteroidia;o_Bacteroidales;f_Bacteroidaceae;g_Bacteroides; 

23  OTU244 GG827743 p_Firmicutes;c_Clostridia;o_Clostridiales; 

24  OTU249 GG299441 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Ruminococcaceae; 

25  OTU28 GG470168 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Lachnospiraceae;g_Dorea; 

26  OTU290 GG848284 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Ruminococcaceae; 

27  OTU318 GG536167 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Lachnospiraceae; 

28  OTU346 GG519490 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Lachnospiraceae;g_Coprococcus; 

29  OTU368 GG349351 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Lachnospiraceae; 

30  OTU38 GG316761 p_Bacteroidetes;c_Bacteroidia;o_Bacteroidales;f_Bacteroidaceae;g_Bacteroides;s_eggerthii 

31  OTU380 GG157772 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Ruminococcaceae;g_Oscillospira; 
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32  OTU384 GG198720 p_Firmicutes;c_Clostridia;o_Clostridiales; 

33  OTU386 GG230405 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Christensenellaceae; 

34  OTU396 GG538344 p_Proteobacteria;c_Gammaproteobacteria;o_Pseudomonadales;f_Pseudomonadaceae;g_Pseu
domonas;s_veronii 

35  OTU410 GG217109 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Christensenellaceae; 

36  OTU439 GG4410369 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Lachnospiraceae;g_Coprococcus; 

37  OTU44 GG198044 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Lachnospiraceae; 

38  OTU447 GG2941399 p_Synergistetes;c_Synergistia;o_Synergistales;f_Synergistaceae;g_Synergistes; 

39  OTU46 GG846409 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Lachnospiraceae; 

40  OTU464 GG342105 p_Firmicutes;c_Clostridia;o_Clostridiales; 

41  OTU478 GG290465 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Ruminococcaceae; 

42  OTU481 GG360653 p_Bacteroidetes;c_Bacteroidia;o_Bacteroidales;f_Bacteroidaceae;g_Bacteroides;s_ovatus 

43  OTU5 GG470690 p_Euryarchaeota;c_Methanobacteria;o_Methanobacteriales;f_Methanobacteriaceae;g_Metha
nobrevibacter; 

44  OTU520 GG174885 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Ruminococcaceae; 

45  OTU536 GG550814 p_Bacteroidetes;c_Bacteroidia;o_Bacteroidales;f_Bacteroidaceae;g_Bacteroides; 

46  OTU551 GG358112 p_Firmicutes;c_Clostridia;o_Clostridiales; 

47  OTU555 GG358112 p_Firmicutes;c_Clostridia;o_Clostridiales; 

48  OTU577 GG185927 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Lachnospiraceae; 

49  OTU591 GG349876 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Christensenellaceae; 

50  OTU67 GG291420 p_Firmicutes;c_Erysipelotrichi;o_Erysipelotrichales;f_Erysipelotrichaceae;g_Eubacterium;s
_biforme 

51  OTU709 GG273967 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Lachnospiraceae; 

52  OTU711 GG276158 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Lachnospiraceae; 

53  OTU713 GG512682 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Lachnospiraceae;g_Blautia; 

54  OTU714 GG246717 p_Proteobacteria;c_Epsilonproteobacteria;o_Campylobacterales;f_Campylobacteraceae;g_C
ampylobacter; 

55  OTU721 GG182512 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Lachnospiraceae; 

56  OTU760 GG178238 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Lachnospiraceae;g_Coprococcus; 

57  OTU788 GG298592 p_Fusobacteria;c_Fusobacteriia;o_Fusobacteriales;f_Fusobacteriaceae; 

58  OTU818 GG266621 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Lachnospiraceae;g_Coprococcus; 

59  OTU942 GG444962 p_Firmicutes;c_Bacilli;o_Bacillales;f_Planococcaceae; 

60  OTU953 GG320156 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Lachnospiraceae;g_Dorea; 

61  OTU96 GG591635 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Ruminococcaceae;g_Ruminococcus; 

62  OTU99 GG523919 p_Bacteroidetes;c_Bacteroidia;o_Bacteroidales;f_Bacteroidaceae;g_Bacteroides; 
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Table 8 The 56 significantly different OTUs between healthy control and cancer groups of Benchmark-1.  
Fifty-Two OTUs are from the Firmicutes and Bacteroidetes phyla. The most observed order is Clostridiales. 
Just a few OTUs are wholly classified up to species level. P: phylum; o: order; f: family; g: genus; s: species. 

N
o. 

OTU 
Number 

GreenGene
s ID 

Taxonomy 

1  OTU1094 GG323818 p_Firmicutes;c_Clostridia;o_Clostridiales; 

2  OTU1141 GG364582 p_Firmicutes;c_Clostridia;o_Clostridiales; 

3  OTU1146 GG366735 p_Firmicutes;c_Clostridia;o_Clostridiales; 

4  OTU1147 GG546876 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Lachnospiraceae; 

5  OTU123 GG848492 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Lachnospiraceae; 

6  OTU139 GG851797 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Lachnospiraceae;g_Clostridium;s_bolteae 

7  OTU1392 GG839512 p_Bacteroidetes;c_Bacteroidia;o_Bacteroidales;f_Bacteroidaceae;g_Bacteroides;s_eggerthii 

8  OTU1533 GG364334 p_Verrucomicrobia;c_Verrucomicrobiae;o_Verrucomicrobiales;f_Verrucomicrobiaceae;g_A
kkermansia;s_muciniphila 

9  OTU17 GG579112 p_Bacteroidetes;c_Bacteroidia;o_Bacteroidales;f_Bacteroidaceae;g_Bacteroides;s_caccae 

10  OTU1730 GG581554 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Ruminococcaceae; 

11  OTU174 GG336761 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Lachnospiraceae;g_Blautia; 

12  OTU189 GG358483 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Lachnospiraceae; 

13  OTU19 GG590945 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Lachnospiraceae; 

14  OTU219 GG535601 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Lachnospiraceae; 

15  OTU2195 GG4225004 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Lachnospiraceae;g_Dorea; 

16  OTU224 GG4336947 p_Proteobacteria;c_Deltaproteobacteria;o_Desulfovibrionales;f_Desulfovibrionaceae; 

17  OTU229 GG362576 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Lachnospiraceae; 

18  OTU2368 GG183852 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Lachnospiraceae;g_Blautia; 

19  OTU244 GG827743 p_Firmicutes;c_Clostridia;o_Clostridiales; 

20  OTU2497 GG1105984 p_Bacteroidetes;c_Bacteroidia;o_Bacteroidales;f_Bacteroidaceae;g_Bacteroides; 

21  OTU2517 GG484304 p_Actinobacteria;c_Actinobacteria;o_Bifidobacteriales;f_Bifidobacteriaceae;g_Bifidobacteri
um; 

22  OTU2524 GG179905 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Lachnospiraceae; 

23  OTU253 GG293869 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Lachnospiraceae;g_Dorea; 

24  OTU263 GG33987 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Ruminococcaceae; 

25  OTU29 GG172962 p_Bacteroidetes;c_Bacteroidia;o_Bacteroidales;f_Prevotellaceae;g_Prevotella; 

26  OTU291 GG211212 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Lachnospiraceae; 

27  OTU298 GG114284 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Ruminococcaceae; 

28  OTU300 GG207994 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Ruminococcaceae;g_Ruminococcus; 

29  OTU318 GG536167 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Lachnospiraceae; 

30  OTU340 GG350666 p_Firmicutes;c_Clostridia;o_Clostridiales; 

31  OTU37 GG538796 p_Firmicutes;c_Clostridia;o_Clostridiales; 

32  OTU373 GG175654 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Lachnospiraceae; 

33  OTU38 GG316761 p_Bacteroidetes;c_Bacteroidia;o_Bacteroidales;f_Bacteroidaceae;g_Bacteroides;s_eggerthii 
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34  OTU40 GG998587 p_Bacteroidetes;c_Bacteroidia;o_Bacteroidales;f_Porphyromonadaceae;g_Porphyromonas; 

35  OTU419 GG4341119 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Ruminococcaceae; 

36  OTU421 GG313524 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Ruminococcaceae; 

37  OTU427 GG207615 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Lachnospiraceae; 

38  OTU474 GG594304 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Lachnospiraceae; 

39  OTU536 GG550814 p_Bacteroidetes;c_Bacteroidia;o_Bacteroidales;f_Bacteroidaceae;g_Bacteroides; 

40  OTU56 GG848088 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Lachnospiraceae;g_Coprococcus; 

41  OTU57 GG368969 p_Bacteroidetes;c_Bacteroidia;o_Bacteroidales;f_Prevotellaceae;g_Prevotella; 

42  OTU577 GG185927 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Lachnospiraceae; 

43  OTU602 GG198839 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Ruminococcaceae; 

44  OTU65 GG586680 p_Firmicutes;c_Clostridia;o_Clostridiales; 

45  OTU67 GG291420 p_Firmicutes;c_Erysipelotrichi;o_Erysipelotrichales;f_Erysipelotrichaceae;g_Eubacterium;s
_biforme 

46  OTU714 GG246717 p_Proteobacteria;c_Epsilonproteobacteria;o_Campylobacterales;f_Campylobacteraceae;g_C
ampylobacter; 

47  OTU721 GG182512 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Lachnospiraceae; 

48  OTU752 GG167730 p_Bacteroidetes;c_Bacteroidia;o_Bacteroidales;f_Barnesiellaceae; 

49  OTU768 GG2963287 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Christensenellaceae; 

50  OTU788 GG298592 p_Fusobacteria;c_Fusobacteriia;o_Fusobacteriales;f_Fusobacteriaceae; 

51  OTU85 GG368350 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Lachnospiraceae;g_Blautia;s_producta 

52  OTU866 GG177911 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Lachnospiraceae;g_Ruminococcus; 

53  OTU913 GG291518 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Ruminococcaceae; 

54  OTU95 GG363214 p_Firmicutes;c_Clostridia;o_Clostridiales; 

55  OTU961 GG365456 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Lachnospiraceae; 

56  OTU982 GG192741 p_Firmicutes;c_Clostridia;o_Clostridiales; 
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Some OTUs were commonly detected in all three comparisons. Among these OTUs 

were the family of Fusobacteriaceae, the order of Clostridiales, and the genus of Blautia. 

One could hypothesize that these OTUs may stimulate the malignant progression of the 

disease, but this concept would have to be validated by functional experiments. In samples 

collected from CRC patients, some of these OTUs were increased in their abundance, and 

some were decreased. The bar plots of the normalized abundance of each binary group of 

Benchmark-1 are depicted in Figure 25, Figure 26, and Figure 27. 
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Figure 25 Change of significantly different OTUs between adenoma and cancer groups in Benchmark-1.  

The abundance of some bacterial taxa decreased, and some increased at cancer state compared to adenoma. O: 
order; f: family; g: genus; s: species. 
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Figure 26 Change of significantly different OTUs between healthy control and cancer groups in Benchmark-1. 

The abundance of some bacterial taxa decreased, and some increased at cancer state compared to healthy 
control. O: order; f: family; g: genus; s: species. 
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Figure 27 Change of significantly different OTUs between adenoma and healthy control groups in Benchmark-

1. 
The abundance of some bacterial taxa decreased, and some increased at adenoma state compared to healthy 

control. O: order; f: family; g: genus; s: species. 
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4.1.5	Benchmark-1	classification	
The classification was performed using the OTU abundance table of each OTU 

selection method. The classification was performed once with the all of the OTUs as 

classification features (referred to as the “raw feature set”), and once with significant OTUs 

found by statistical tests as classification features (referred to as the “filtered feature set”). 

Several classification methods were employed including Naïve Bayes, Random forest, K 

Nearest Neighbor (KNN), Classification tree, Logistic regression, and Neural Network. 

4.1.6	Benchmark-1	classification	validation	
After applying different classifiers, classification validation was performed with 

the 10-fold cross-validation method. At the next step, trained classifiers were evaluated on 

test datasets. Results from the UPARSE method are shown in Table 9. As the classification 

results on UPARSE OTUs showed better specificity, sensitivity, and accuracy compared 

to other methods, we will just describe the results of UPARSE here. 

The classification accuracy (CA), sensitivity (Sens), specificity (Spec), and area 

under the ROC curve (AUC) were different for each classification method and is 

summarized in Table 9. The first three raw tables are the validation results of classifiers 

that are made by using all OTUs as features (raw feature set). The second set of tables show 

validation results when the significant OTUs used as features (filtered feature set). The last 

tables show the performance of the classifiers produced by significant features on the three 

different test dataset each of which is 20% of the dataset. 
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Table 9 The UPARSE-guided validation of the Benchmark-1 classification. 
The top tables show the validation results of the classifiers produced using all OTUs. The middle tables are the 

results of just significant OTUs as classification features. Bottom tables are the results of applying the classifiers 
produced by significant OTUs on test datasets. Classifiers’ performance improved for all binary groups when 
significant OTUs were used as classification features instead of all OTUs. CA: classification accuracy; Sens: 

sensitivity; Spec: specificity; AUC: area under the curve, KNN: K nearest neighbor. 
Benchmark-1_UPARSE 

Raw_Adenoma_Cancer         Raw_Healthy_Adenoma         Raw_Healthy_Cancer         

Classification method CA Sens Spec AUC   
Classification 
method CA Sens Spec AUC   Classification method CA Sens Spec AUC 

Naïve Bayes 0.60 0.87 0.33 0.57   Naïve Bayes 0.68 0.46 0.91 0.68   Naïve Bayes 0.51 0.48 0.52 0.53 
Random Forest 0.60 0.57 0.63 0.62   Random Forest 0.60 0.67 0.52 0.67   Random Forest 0.48 0.52 0.43 0.48 
kNN 0.58 0.52 0.63 0.61   kNN 0.54 0.92 0.13 0.66   kNN 0.56 0.83 0.30 0.56 
Classification Tree 0.68 0.70 0.67 0.68   Classification Tree 0.58 0.58 0.57 0.58   Classification Tree 0.50 0.48 0.52 0.49 
Logistic regression 0.62 0.70 0.54 0.72   Logistic regression 0.64 0.71 0.57 0.62   Logistic regression 0.60 0.74 0.48 0.65 
Neural Network 0.64 0.70 0.58 0.73   Neural Network 0.64 0.71 0.57 0.62   Neural Network 0.61 0.78 0.43 0.66 

SVM 0.47 0.26 0.67 0.50   SVM 0.51 0.75 0.26 0.50   SVM 0.48 0.22 0.74 0.50 

                                

Filtered_Adenoma_Cancer         Filtered_Healthy_Adenoma         Filtered_Healthy_Cancer         

Classification method CA Sens Spec AUC   
Classification 
method CA Sens Spec AUC   Classification method CA Sens Spec AUC 

Naïve Bayes 0.90 0.87 0.92 0.98   Naïve Bayes 0.90 0.88 0.91 0.95   Naïve Bayes 0.87 0.91 0.83 0.93 
Random Forest 0.89 0.87 0.92 0.97   Random Forest 0.70 0.83 0.57 0.81   Random Forest 0.76 0.83 0.70 0.89 
kNN 0.85 0.83 0.88 0.91   kNN 0.87 1.00 0.74 0.96   kNN 0.80 0.83 0.78 0.84 
Classification Tree 0.84 0.96 0.71 0.84   Classification Tree 0.62 0.67 0.57 0.64   Classification Tree 0.61 0.61 0.61 0.62 
Logistic regression 0.89 0.87 0.92 0.94   Logistic regression 0.94 0.96 0.91 0.99   Logistic regression 0.87 0.83 0.91 0.94 
Neural Network 0.89 0.87 0.92 0.95   Neural Network 0.96 1.00 0.91 1.00   Neural Network 0.91 0.87 0.96 0.95 

SVM 0.62 0.39 0.83 0.72   SVM 0.74 0.50 1.00 0.87   SVM 0.37 0.43 0.30 0.35 

                 

On test data        On test data        On test data         

Classification method CA Sens Spec AUC  
Classification 
method CA Sens Spec AUC  Classification method CA Sens Spec AUC 

Naïve Bayes 1 1 1 1  Naïve Bayes 0.91 1 0.83 0.83  Naïve Bayes 0.91 0.83 1 0.94 
Random Forest 0.83 0.66 1 0.94  Random Forest 0.66 1 0.33 0.97  Random Forest 0.83 1 0.66 1 
kNN 1 1 1 1  kNN 0.83 0.83 0.83 0.88  kNN 0.75 0.83 0.66 0.72 
Classification Tree 0.83 0.66 1 0.83  Classification Tree 0.33 0.5 0.16 0.33  Classification Tree 0.66 0.83 0.5 0.65 
Logistic regression 1 1 1 1  Logistic regression 0.91 0.83 1 1  Logistic regression 0.75 1 0.5 0.88 
Neural Network 1 1 1 1  Neural Network 0.91 0.83 1 1  Neural Network 0.75 1 0.5 0.97 

SVM 0.75 0.5 1 1  SVM 0.75 0.5 1 0.88  SVM 0.58 0.33 0.83 0.58 
 

 

The classifiers with reasonably good to excellent CA, sensitivity, and specificity 

are the Naïve Bayes, the neural network, the K-nearest neighbor, the logistic regression, 

and the random forest. 
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ROC curves of Benchmark-1 study are shown in Figure 28, Figure 29, and Figure 

30. The curves of the five above classifiers with higher areas under the curve are shown. 

For this dataset, the classifiers with the highest area (higher than 80%) were Naïve Bayes 

(red), Random Forest (orange), kNN (light green), Logistic regression (green), Neural 

Network (blue). Neural network and Naïve Bayes were the best performings in this dataset. 

 

 
Figure 28 The Benchmark-1 ROC curve, Adenoma-Cancer. 

The straight line represents the null model. Naïve Bayes (red), Random Forest (orange), kNN (light green), 
Logistic regression (green), Neural Network (blue). The x-axis is the true positive rate, and the y-axis is the false 

positive rate. Naïve Bayes is the best performing classifier in this binary group with AUC= 0.98. 
 



117 
 
 
 

 
Figure 29 The Benchmark-1 ROC curve, Healthy-Adenoma. 

The straight line represents the null model. Naïve Bayes (red), Random Forest (orange), kNN (light green), 
Logistic regression (green), Neural Network (blue). The x-axis is the true positive rate, and the y-axis is the false 

positive rate. The neural network is the best performing classifier in this binary group with AUC= 1. 
 

 
Figure 30 The Benchmark-1 ROC curve, Healthy-Cancer. 

The straight line represents the null model. Naïve Bayes (red), Random Forest (orange), kNN (light green), 
Logistic regression (green), Neural Network (blue). The x-axis is the true positive rate, and the y-axis is the false 

positive rate. The neural network is the best performing classifier in this binary group with AUC= 0.95. 
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4.2	Benchmark-2	results	
The sequences from Wu et al. 2013 study were preprocessed with the same 

parameters and three OTU selection methods as Benchmark-1. Table 10 shows that the 

number of original reads for this benchmark was 727,860. After preprocessing, removing 

noises, removing undesirable lineages, and low-quality reads, 523,931 reads remained for 

the UPARSE and UPGMA methods and 709,713 reads remained for the UCLUST method. 

The number of detected OTUs were 1208, 6,975, and 33,533 OTUs for UPARSE, 

UPGMA, and UCLUST, respectively. As in Benchmark-1, UPARSE gave us the lowest 

number of centroids and UCLUST returned the highest number of centroids. 

 

Table 10 Comparing three OTU selection methods using Benchmark-2. 
The UPARSE returned the lowest number of OTUs while UCLUST found the highest. 

 UPARSE UPGMA UCLUST 

No. of original reads (for alignment) 727,860 727,860 727,860 

No. of reads for clustering 523,931 523,931 709,713 

No. of detected OTUs 1208 6975 33533 

 
 

4.2.1	Benchmark-2	rarefaction	
As in Benchmark 1, rarefaction curves were prepared to check the sequencing depth 

which is shown in Figure 31. For both healthy control and CRC groups, rarefaction plots 

showed good sequencing depth as the curves were almost parallel to the x-axis. Therefore, 
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we can be confident that the depth of coverage was sufficient to identify the true number 

of OTUs in the samples. 

 

 
Figure 31 The rarefaction plots of Benchmark-2. 

The plots have reached a plateau then the sequencing depth is enough. 
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4.2.2	Benchmark-2	alpha	diversity	
The average alpha diversity indices for each group of healthy control and CRC 

subjects were summarized in Table 11. The pattern of alpha diversity is the same for all 

methods although the absolute values are different. In all three methods, the diversity of 

the CRC group is higher than the healthy control group. 

 

 

Table 11 Benchmark-2 alpha diversity. 
The pattern of alpha diversity is the same for all three methods although the absolute values are different. The 

diversity of the CRC group is higher than the healthy control group. 

 UPARSE UPGMA UCLUST 

Diversity index Average in group Average in group Average in group 

Group CRC Healthy CRC Healthy CRC Healthy 

nseq 19206 16504 19514 16754 19595 16797 

Shannon 3.5 3 4.09 3.68 4.89 4.53 

Simpson 0.07 0.13 0.04 0.06 0.02 0.04 

invSimpson 17.69 10.94 33.30 20.68 55.62 37.97 

Sobs 228 203 301 250 950 743 

 
 

4.2.3	Benchmark-2	beta	diversity	
As in Benchmark 1, phylogenetic Unifrac and nonphylogenetic Bray-Curtis metrics 

were used to analyze beta diversity. The PCoA visualization plots indicated that UniFrac 
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was not successful in discriminating cancer and healthy control groups as shown in Figure 

32.  
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Figure 32 The Benchmark-2 UniFrac PCoA plots.  

Neither unweighted (top) nor weighted (bottom) UniFrac were successful in discriminating healthy control and 
cancer groups. The axes are principal components. 
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Similarly, the PCoA visualization in Figure 33 reveals that Bray-Curtis metric did 

not produce significant clustering between the healthy control and the CRC groups either. 

 

 
Figure 33 The Benchmark-2 Bray-Curtis PCoA plot.  

There is no clear separation between CRC and healthy control groups using the first three principal 
components. The axes are principal components. 

 

4.2.4	Benchmark-2	significant	OTUs	
As in Benchmark-1, Kruskal-Wallis, MetaStats, LEfSe, and Indicator methods 

were applied on UPARSE OTU table to find significant OTUs. Significant OTUs detected 

by each of these methods were combined and represented in Table 12. In summary, 94 

significant OTUs were detected, and the vast majority of them were from Firmicutes and 

Bacteroidetes phyla. Only 16 OTUs were identified at species level. Figure 34 shows the 

direction of the bacterial change in the cancer group compared to the healthy control group. 

Some of the significant taxa increased in the disease state and some decreased.   
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Table 12 The significantly different OTUs between healthy control and cancer groups of Benchmark-2.  
From Ninety-Four significant OTUs that have been detected, Eighty-Four OTUs are from Firmicutes and 
Bacteroidetes phyla. There are some OTUs that have the same taxonomy but categorized in different OTU 

groups which means they are subtaxa. O: order; f: family; g: genus; s: species. 
N
o. 

OTU 
Number 

GreenGenes 
ID 

Taxonomy 

1  OTU1 GG332588 p_Bacteroidetes;c_Bacteroidia;o_Bacteroidales;f_Bacteroidaceae;g_Bacteroides; 

2  OTU1020 GG320395 p_Bacteroidetes;c_Bacteroidia;o_Bacteroidales;f_Bacteroidaceae;g_Bacteroides; 

3  OTU1029 GG181644 p_Firmicutes;c_Clostridia;o_Clostridiales; 

4  OTU1032 GG298535 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Ruminococcaceae;g_Ruminococcus; 

5  OTU1058 GG901875 p_Proteobacteria;c_Gammaproteobacteria;o_Pasteurellales;f_Pasteurellaceae;g_Haemophil
us;s_parainfluenzae 

6  OTU11 GG4091929 p_Bacteroidetes;c_Bacteroidia;o_Bacteroidales;f_Bacteroidaceae;g_Bacteroides;s_fragilis 

7  OTU1113 GG254021 p_Firmicutes;c_Bacilli;o_Lactobacillales;f_Leuconostocaceae;g_Leuconostoc; 

8  OTU1118 GG4363660 p_Firmicutes;c_Clostridia;o_Clostridiales; 

9  OTU1132 GG533847 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Ruminococcaceae;g_Oscillospira; 

10  OTU1135 GG3667016 p_Bacteroidetes;c_Bacteroidia;o_Bacteroidales;f_Bacteroidaceae;g_Bacteroides;s_uniformi
s 

11  OTU1143 GG928652 p_Firmicutes;c_Bacilli;o_Gemellales;f_Gemellaceae;g_Gemella; 

12  OTU1163 GG175535 p_Bacteroidetes;c_Bacteroidia;o_Bacteroidales;f_Bacteroidaceae;g_Bacteroides; 

13  OTU12 GG1055711 p_Bacteroidetes;c_Bacteroidia;o_Bacteroidales;f_Porphyromonadaceae;g_Porphyromonas; 

14  OTU120 GG521718 p_Firmicutes;c_Clostridia;o_Clostridiales; 

15  OTU128 GG4309698 p_Fusobacteria;c_Fusobacteriia;o_Fusobacteriales;f_Fusobacteriaceae;g_Fusobacterium; 

16  OTU136 GG801964 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Veillonellaceae;g_Dialister; 

17  OTU139 GG289318 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Ruminococcaceae; 

18  OTU14 GG1055711 p_Bacteroidetes;c_Bacteroidia;o_Bacteroidales;f_Porphyromonadaceae;g_Porphyromonas; 

19  OTU142 GG358016 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Lachnospiraceae; 

20  OTU154 GG178743 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Ruminococcaceae;g_Faecalibacterium;s_praus
nitzii 

21  OTU156 GG523357 p_Bacteroidetes;c_Bacteroidia;o_Bacteroidales;f_Prevotellaceae;g_Prevotella;s_copri 

22  OTU161 GG692756 p_Bacteroidetes;c_Bacteroidia;o_Bacteroidales;f_Porphyromonadaceae;g_Porphyromonas; 

23  OTU163 GG1896087 p_Fusobacteria;c_Fusobacteriia;o_Fusobacteriales;f_Fusobacteriaceae;g_Fusobacterium; 

24  OTU167 GG342788 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Ruminococcaceae; 

25  OTU18 GG4091929 p_Bacteroidetes;c_Bacteroidia;o_Bacteroidales;f_Bacteroidaceae;g_Bacteroides;s_fragilis 

26  OTU180 GG621651 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Mogibacteriaceae; 

27  OTU183 GG762699 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Ruminococcaceae; 

28  OTU187 GG216599 p_Bacteroidetes;c_Bacteroidia;o_Bacteroidales;f_Rikenellaceae; 

29  OTU196 GG692756 p_Bacteroidetes;c_Bacteroidia;o_Bacteroidales;f_Porphyromonadaceae;g_Porphyromonas; 

30  OTU202 GG848615 p_Firmicutes;c_Clostridia;o_Clostridiales; 
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31  OTU208   

32  OTU225 GG621651 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Mogibacteriaceae; 

33  OTU232 GG422136 p_Bacteroidetes;c_Bacteroidia;o_Bacteroidales;f_Prevotellaceae;g_Prevotella;s_intermedia 

34  OTU247 GG536098 p_Actinobacteria;c_Actinobacteria;o_Bifidobacteriales;f_Bifidobacteriaceae;g_Bifidobacte
rium; 

35  OTU264 GG848615 p_Firmicutes;c_Clostridia;o_Clostridiales; 

36  OTU266 GG359809 p_Proteobacteria;c_Betaproteobacteria;o_Burkholderiales;f_Alcaligenaceae;g_Sutterella; 

37  OTU272 GG368781 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Ruminococcaceae;g_Oscillospira; 

38  OTU278 GG183869 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Ruminococcaceae; 

39  OTU284 GG1095801 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Ruminococcaceae; 

40  OTU294 GG4318033 p_Firmicutes;c_Bacilli;o_Lactobacillales;f_Carnobacteriaceae;g_Granulicatella; 

41  OTU295 GG333642 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Ruminococcaceae; 

42  OTU299 GG4357682 p_Bacteroidetes;c_Bacteroidia;o_Bacteroidales;f_Prevotellaceae;g_Prevotella;s_copri 

43  OTU315 GG368781 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Ruminococcaceae;g_Oscillospira; 

44  OTU333 GG178743 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Ruminococcaceae;g_Faecalibacterium;s_praus
nitzii 

45  OTU335 GG15712 p_Firmicutes;c_Erysipelotrichi;o_Erysipelotrichales;f_Erysipelotrichaceae;g_Clostridium;s
_ramosum 

46  OTU336 GG187668 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Clostridiaceae;g_Clostridium; 

47  OTU342 GG190649 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Ruminococcaceae; 

48  OTU347 GG4455436 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Veillonellaceae;g_Dialister; 

49  OTU360 GG752584 p_Proteobacteria;c_Gammaproteobacteria;o_Enterobacteriales;f_Enterobacteriaceae; 

50  OTU363 GG849362 p_Bacteroidetes;c_Bacteroidia;o_Bacteroidales;f_Odoribacteraceae;g_Butyricimonas; 

51  OTU364 GG744068 p_Cyanobacteria;c_Chloroplast;o_Streptophyta; 

52  OTU365 GG918720 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Tissierellaceae;g_Parvimonas; 

53  OTU373   

54  OTU386 GG4478840 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Clostridiaceae; 

55  OTU394 GG362968 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Ruminococcaceae;g_Faecalibacterium;s_praus
nitzii 

56  OTU424 GG2855173 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Ruminococcaceae; 

57  OTU427 GG953126 p_Firmicutes;c_Bacilli;o_Gemellales;f_Gemellaceae; 

58  OTU445 GG508875 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Lachnospiraceae; 

59  OTU452 GG4412317 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Ruminococcaceae; 

60  OTU471 GG367215 p_Firmicutes;c_Erysipelotrichi;o_Erysipelotrichales;f_Erysipelotrichaceae;g_Holdemania; 

61  OTU478 GG540055 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Ruminococcaceae; 

62  OTU514 GG574200 p_Proteobacteria;c_Betaproteobacteria;o_Neisseriales;f_Neisseriaceae;g_Eikenella; 

63  OTU517 GG189338 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Mogibacteriaceae; 

64  OTU520 GG840788 p_Proteobacteria;c_Betaproteobacteria;o_Burkholderiales;f_Alcaligenaceae;g_Sutterella; 

65  OTU524 GG469852 p_Actinobacteria;c_Actinobacteria;o_Bifidobacteriales;f_Bifidobacteriaceae;g_Bifidobacte
rium;s_bifidum 
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66  OTU534 GG446135 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Ruminococcaceae;g_Oscillospira; 

67  OTU558 GG516733 p_Bacteroidetes;c_Bacteroidia;o_Bacteroidales;f_Bacteroidaceae;g_Bacteroides; 

68  OTU578 GG4387109 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Lachnospiraceae;g_Ruminococcus; 

69  OTU592 GG582284 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Clostridiaceae; 

70  OTU602 GG533579 p_Bacteroidetes;c_Bacteroidia;o_Bacteroidales;f_Porphyromonadaceae;g_Parabacteroides; 

71  OTU614 GG850329 p_Bacteroidetes;c_Bacteroidia;o_Bacteroidales;f_Bacteroidaceae;g_Bacteroides;s_caccae 

72  OTU63 GG523118 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Ruminococcaceae;g_Faecalibacterium;s_praus
nitzii 

73  OTU640   

74  OTU670 GG3426658 p_Bacteroidetes;c_Bacteroidia;o_Bacteroidales;f_Bacteroidaceae;g_Bacteroides; 

75  OTU675 GG213178 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Veillonellaceae;g_Megamonas; 

76  OTU696 GG369741 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Ruminococcaceae;g_Faecalibacterium;s_praus
nitzii 

77  OTU700 GG198814 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Ruminococcaceae; 

78  OTU720 GG583117 p_Bacteroidetes;c_Bacteroidia;o_Bacteroidales;f_Bacteroidaceae;g_Bacteroides; 

79  OTU737 GG3073894 p_Fusobacteria;c_Fusobacteriia;o_Fusobacteriales;f_Fusobacteriaceae;g_Fusobacterium; 

80  OTU749 GG366987 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Ruminococcaceae;g_Faecalibacterium;s_praus
nitzii 

81  OTU756 GG4404434 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Lachnospiraceae; 

82  OTU769 GG180830 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Ruminococcaceae;g_Faecalibacterium;s_praus
nitzii 

83  OTU78 GG2388088 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Lachnospiraceae; 

84  OTU793 GG846373 p_Bacteroidetes;c_Bacteroidia;o_Bacteroidales;f_Bacteroidaceae;g_Bacteroides; 

85  OTU816 GG365319 p_Firmicutes;c_Clostridia;o_Clostridiales; 

86  OTU826 GG363450 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Lachnospiraceae;g_Blautia; 

87  OTU836 GG577294 p_Bacteroidetes;c_Bacteroidia;o_Bacteroidales;f_Porphyromonadaceae;g_Parabacteroides;
s_distasonis 

88  OTU853 GG367489 p_Bacteroidetes;c_Bacteroidia;o_Bacteroidales;f_Bacteroidaceae;g_Bacteroides; 

89  OTU888 GG357046 p_Bacteroidetes;c_Bacteroidia;o_Bacteroidales;f_Rikenellaceae; 

90  OTU90 GG289318 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Ruminococcaceae; 

91  OTU903 GG31573 p_Firmicutes;c_Clostridia;o_Clostridiales; 

92  OTU91 GG4473506 p_Proteobacteria;c_Betaproteobacteria;o_Burkholderiales;f_Alcaligenaceae;g_Sutterella; 

93  OTU920 GG368776 p_Bacteroidetes;c_Bacteroidia;o_Bacteroidales;f_Bacteroidaceae;g_Bacteroides;s_caccae 

94  OTU928 GG4390211 p_Bacteroidetes;c_Bacteroidia;o_Bacteroidales;f_Bacteroidaceae;g_Bacteroides;s_uniformi
s 
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Figure 34 Change of significant OTUs between healthy control and cancer groups in Benchmark-2. 

Some taxa increased, and some decreased in the cancer state compared to the healthy control. O: order; f: 
family; g: genus; s: species. 

0 200 400 600 800 1000

GG368781;*g_Oscillospira

GG367215;*g_Holdemania

GG4363660;*o_Clostridiales

GG2855173;*f_Ruminococcaceae

GG533847;*g_Oscillospira

GG582284;*f_Clostridiaceae

GG516733;*g_Bacteroides

GG366987;s_prausnitzii

GG4318033;*g_Granulicatella

GG357046;*f_Rikenellaceae

GG574200;*g_Eikenella

GG621651;*f_Mogibacteriaceae

OTU640;Unclassified

GG692756;*g_Porphyromonas

GG4309698;*g_Fusobacterium

GG918720;*g_Parvimonas

GG1055711;*g_Porphyromonas

GG621651;*f_Mogibacteriaceae

GG540055;*f_Ruminococcaceae

GG1896087;*g_Fusobacterium

GG4478840;*f_Clostridiaceae

GG692756;*g_Porphyromonas

GG446135;*g_Oscillospira

GG4455436;*g_Dialister

GG189338;*f_Mogibacteriaceae

GG846373;*g_Bacteroides

GG1055711;*g_Porphyromonas

GG953126;*f_Gemellaceae

GG368776;s_caccae

GG533579;*g_Parabacteroides

GG928652;*g_Gemella

GG422136;s_intermedia

GG298535;*g_Ruminococcus

GG801964;*g_Dialister

GG216599;*f_Rikenellaceae

OTU208;Unclassified

GG198814;*f_Ruminococcaceae

GG523357;s_copri

GG15712;s_ramosum

OTU373;Unclassified

GG850329;s_caccae

GG583117;*g_Bacteroides

GG3667016;s_uniformis

GG849362;*g_Butyricimonas

GG3426658;*g_Bacteroides

Normal

Patient



129 
 
 
 

 

4.2.5	Benchmark-2	classification	
The classification was performed using the OTU abundance table produced by each 

of the three OTU selection methods, and different methods of classification were applied 

to the data as described for Benchmark-1, the classification was performed with all of the 

OTUs as classification features (raw feature set) and with significant OTUs detected by 

Kruskal-Wallis, MetaStats, LEfSe, and Indicator (filtered feature set). 

4.2.6	Benchmark-2	classification	validation	
After utilizing the different classifiers, classification validation was executed with 

a 10-fold cross-validation method and then classifiers were validated on the test datasets. 

UPARSE results were better than UPGMA and UCLUST with respect to the sensitivity, 

specificity, and classification accuracy and only results from the UPARSE method are 

shown in Table 13. Classifier performance improved when we used significant OTUs to 

build classifiers. Among these classification methods, Naïve Bayes has the highest 

accuracy, sensitivity, and specificity for this dataset. 
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Table 13 The Benchmark-2 classification validation results. 
The top table shows validation results of the classifiers produced using all OTUs. The middle table used just 

significant OTUs as classification features. The bottom is the results of applying the classifiers made by 
significant OTUs on the test dataset. Classifiers’ performance improved when significant OTUs used as 

classification features instead of all OTUs. CA: classification accuracy; Sens: sensitivity; Spec: specificity; AUC: 
area under curve. 

Benchmark-2_UPARSE     
Raw_Healthy_Cancer       
Classification method CA Sens Spec AUC 
Naïve Bayes 0.75 0.69 0.81 0.78 
Random Forest 0.79 0.69 0.88 0.90 
kNN 0.62 0.38 0.88 0.73 
Classification Tree 0.50 0.44 0.56 0.55 
Logistic regression 0.68 0.63 0.75 0.70 
Neural Network 0.68 0.63 0.75 0.65 
SVM 0.37 0.25 0.50 0.50 
          
Filtered_Healthy_Cancer       
Classification method CA Sens Spec AUC 
Naïve Bayes 0.97 1.00 0.94 1.00 
Random Forest 0.91 0.88 0.94 0.95 
kNN 0.86 0.81 0.88 1.00 
Classification Tree 0.66 0.69 0.63 0.63 
Logistic regression 0.94 1.00 0.88 1.00 
Neural Network 0.94 1.00 0.88 1.00 
SVM 0.43 0.25 0.63 0.40 

     
On test data       
Classification method CA Sens Spec AUC 
Naïve Bayes 1 1 1 1 
Random Forest 0.875 0.75 1 1 
kNN 0.875 0.75 1 1 
Classification Tree 0.625 0.5 0.75 0.625 
Logistic regression 1 1 1 1 
Neural Network 0.875 0.75 1 1 
SVM 0.5 0 1 0.25 

 

The ROC curve from the UPARSE significant OTUs is shown in Figure 35. For 

this dataset, five classifiers with the highest area under the curve were the Naïve Bayes 

(red), Random Forest (orange), kNN (light green), Logistic regression (green), Neural 
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Network (blue). Based on the ROC curve, the Naïve Bayes, logistic regression, and neural 

network are the best performing classifier in this dataset with AUC=1. 

 

 

 
Figure 35 Benchmark-2 ROC curve for healthy-cancer using five classifiers. 

Naïve Bayes (red), Random Forest (orange), kNN (light green), Logistic regression (green), Neural Network 
(blue). The straight line represents the null model. The x-axis is the false positive rate, and the y-axis is the true 

positive rate. Naïve Bayes classifier performed the best on this dataset (AUC=1). 
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4.3	MBO1	polyp	dataset	
Polyp dataset sequences from the polyp-N and polyp-Y groups were preprocessed 

and OTU selection methods of UPARSE, UPGMA, and UCLUST were performed. Table 

14 shows a summary of the preprocessing time, the resulting reads, and the number of 

identified OTUs for polyp dataset. The number of OTUs are 2631, 16971 and 100467 for 

UPARSE, UPGMA, and UCLUST respectively. As in the prior benchmarks, UPARSE 

returned the lowest number of OTUs and UCLUST found the highest number of OTUs for 

this dataset. With respect to CPU time, UPARSE is faster than the other two methods and 

UCLUST is significantly slower. As time is a main issue in analyzing sequences, this is 

one significant advantage of UPARSE. Additionally, the number of detected centroids 

(OTUs) are less in the UPARSE method which decreases the chance of having spurious 

OTUs. It is claimed that UPARSE generates OTUs that are superior to other methods 

including QIIME and mothur on mock community tests where the identified OTU are more 

accurate predictions of biological sequences and the number of OTUs are much closer to 

the number of known species in the community (Edgar, 2013). 

 

Table 14 Comparing three OTU selection methods using the polyp dataset.  
The UPARSE was the fastest and generated the lowest number of OTUs. UCLUST was the slowest and 

produced the highest number of OTUs. 
 UPARSE UPGMA UCLUST 

Preprocessing and clustering time (using 30 processors) 3h40m 60h  7days 

No. of original reads (for alignment) 12,646,278 12,646,278 12,646,278 

No. of reads for OTU clustering 4,377,359 4,377,359 4,830,116 

No. of detected OTUs 2631 16971 100467 
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4.3.1	MBO1	polyp	dataset	rarefaction	
As in the prior two benchmarks, rarefaction plots were produced separately for each 

of three datasets to assess the sequencing depth. In Figure 36, rarefaction plots for biopsy 

(BS), stool swabs (HS), and rectal swabs (SS) datasets are presented. As all the curves 

reached a plateau, sequencing depth is acceptable, and the reads should adequately identify 

the number of species that are in the samples. 

 

 
Figure 36 Polyp dataset rarefaction plots for biopsy (BS), stool (SS), and rectal swabs (HS) samples. 

Sequencing depth is suitable for all as the plots have reached a plateau. 
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4.3.2	MBO1	polyp	dataset	alpha	diversity	
The next step in the pipeline was to analyze the diversity within samples. Several 

diversity indices for richness and evenness were used to investigate diversity. Each of 

biopsy (BS), stool swabs (HS), and rectal swabs (SS) datasets were analyzed separately. 

Biopsy samples alpha diversity: Alpha diversity of biopsy dataset for the polyp-

Y and polyp-N groups are summarized in Table 15. The pattern of diversity is the same for 

the three methods, despite different absolute values. We observed higher Shannon and 

invSimpson as well as lower Simpson’s diversity in the polyp-N group compared to the 

polyp-Y which indicates higher diversity in the polyp-N group. In contrast, the Sobs index 

shows a higher number of species in the polyp-N group using the UPARSE method. 

However, it is lower in the UPGMA and UCLUST method. Overall, the polyp-N group 

showed a higher diversity compared to the polyp-Y which may be due to shifting the 

bacterial composition of the colon from a healthy diverse population to a less diverse 

community as it responds to the disease state. 

 

Table 15 The alpha diversity analysis of the polyp biopsy dataset using three OTU selection methods.  
The pattern of diversity is the same for the three methods, despite different absolute values. Overall, the polyp-N 

group has a higher diversity compared to the polyp-Y. 

 UPARSE UPGMA UCLUST 

Diversity index Average in group Average in group Average in group 

Group Polyp_Y Polyp_N Polyp_Y Polyp_N Polyp_Y Polyp_N 

nseq 17715 16799 20994 18063 21979 19294 

Shannon 3.4 3.6 4.84 4.96 4.85 5.06 

Simpson 0.11 0.08 0.03 0.03 0.06 0.04 

invSimpson 13.7 18.14 46 56.3 29.47 39.6 

Sobs 242 251 1065 1025 1808 1729 
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Stool samples alpha diversity: Alpha diversity analysis for the home stool swabs 

is shown in Table 16. There is a very little change in the diversity of the polyp-Y and polyp-

N groups based on the Shannon, Simpson and invSimpson indices. The two groups show 

a similar diversity pattern as we only see lower diversity in the polyp-N group compared 

to the polyp-Y for the sobs index. 

 

Table 16 The alpha diversity analysis of the polyp stool dataset using three OTU selection methods.  
There is a slight change in the diversity of polyp-Y and polyp-N groups. 

 UPARSE UPGMA UCLUST 

Diversity index Average in group Average in group Average in group 

Group Polyp_Y Polyp_N Polyp_Y Polyp_N Polyp_Y Polyp_N 

nseq 22136 20495 25922 22394 27259 23493 

Shannon 3.5 3.48 4.84 4.82 4.95 4.94 

Simpson 0.08 0.09 0.03 0.03 0.04 0.04 

invSimpson 16.9 16.3 50 49.9 39.38 39.17 

Sobs 242 230 1112 983 1944 1715 
 

 

Rectal Swab alpha diversity: The alpha diversity results for the rectal swabs 

dataset is shown in Table 17. The diversity pattern is the same for all three OTU selection 

methods. The diversity in the polyp-N and polyp-Y groups is similar to the stool dataset 

where no change in diversity was seen based on the Shannon, Simpson, and invSimpson 

metrics. There is a lower sobs index in the polyp-N group compared to the polyp-Y group.  
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Table 17 The alpha diversity analysis of the rectal swabs using three OTU selection methods.  
There is a slight change in the diversity of the polyp-Y and polyp-N groups. 

 UPARSE UPGMA UCLUST 

Diversity index Average in group Average in group Average in group 

Group Polyp-Y Polyp-N Polyp-Y Polyp-N Polyp-Y Polyp-N 

nseq 22136 20495 25922 22394 27259 23493 

Shannon 3.5 3.48 4.84 4.82 4.95 4.94 

Simpson 0.08 0.09 0.03 0.03 0.04 0.04 

invSimpson 16.9 16.3 50 49.9 39.38 39.17 

Sobs 242 230 1112 983 1944 1715 

 

4.3.3	MBO1	polyp	dataset	beta	diversity	
As described for the prior Benchmarks, the phylogenetic UniFrac metric and 

nonphylogenetic metric Bray-Curtis was used for beta diversity analysis. It is evident from 

UniFrac PCoA plots in Figure 37, Figure 38, and Figure 39 in addition to Bray-Curtis 

PCoA in Figure 40 that neither the UniFrac nor the Bray-Curtis metrics successfully 

separated the polyp-Y and polyp-N groups from each other. 
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Figure 37 UniFrac PCoA plots of the biopsy (BS) dataset.  

Neither unweighted (top) nor weighted (bottom) UniFrac were successful in discriminating polyp-Y and polyp-N 
groups. The axes are principal components. 
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Figure 38 UniFrac PCoA plots of the stool swabs (HS) dataset. 

Neither unweighted (top) nor weighted (bottom) UniFrac were successful in discriminating polyp-Y and polyp-N 
groups. The axes are principal components. 
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Figure 39 UniFrac PCoA plots of the rectal swabs (SS) dataset. 

Neither unweighted (top) nor weighted (bottom) UniFrac were successful in discriminating polyp-Y and polyp-N 
groups. The axes are principal components. 
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Figure 40 Bray-Curtis PCoA plots of the biopsy (BS), stool samples (HS), and rectal swabs (SS) from the polyp 

dataset. 
No dissimilarity detected between the polyp-Y and polyp-N groups using this metric. The axes are principal 

components. 
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4.3.4	MBO1	polyp	dataset	significant	OTUs	
In a comparison of the polyp-Y and polyp-N groups, significantly different OTUs 

(P< 0.05) were detected with Kruskal-Wallis, MetaStats, LEfSe, and Indicator analysis. 

We retained all significant OTUs and used them for classification as in Benchmark-1 and 

Benchmark-2. Table 18 shows the number of retained significant OTUs for the polyp 

dataset. Similar to the number of OTUs, the number of significant OTUs was also the 

lowest with the UPARSE method, and the significant OTUs was highest with UCLUST.  

 

Table 18 Number of significant OTUs detected in each clustering method for any of the specimen types in the 
polyp dataset. 

The number of significant OTUs are lower when the number of total OTUs are lower. 
 Specimen UPARSE UPGMA UCLUST 

No. of total OTUs all 2631 16971 100467 

No. of significant OTUs Biopsy 109 291 449 

No. of significant OTUs Stool 59 254 358 

No. of significant OTUs Swab 92 396 584 

 

Significant OTUs with the biopsy, rectal swabs, and stool samples are listed in 

Table 19, Table 20, and Table 21, respectively. There are significant OTUs at each 

taxonomic level and, as these OTUs are significantly different between the polyp-Y and 

polyp-N, we can use them as classification features to improve the classifiers’ performance. 

Bar plots of the normalized abundance of the significant OTUs are presented in Figure 41, 

Figure 42, and Figure 43 for biopsy, swab, and stool samples, respectively. As in the 
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previous benchmarks, some taxa are enriched while others are depleted in the polyp-Y 

group. However, some OTUs have the same pattern of change in all three sample types. 

For example, Bacteroides is enriched in the polyp-Y group in the biopsy, stool, and swab 

samples. In contrast, there are some OTUs with a different pattern in different sample types. 

For instance, Blautia shows enrichment in the polyp-Y stool and swab samples and 

depletion in the polyp-Y biopsies. As biopsy samples are representing mucosal microbes, 

it is not surprising that the OTUs and the direction of their disease associations differ with 

biopsies. There were some OTUs that show different trends between swab and stool 

samples, such as Faecalibacterium which is increased in the polyp-Y swabs and decreased 

in the polyp-Y stool samples. Sampling confounders could be responsible for this 

difference. For example, the date of sample collection may play a role as biopsies, stool 

samples, and rectal swabs were not necessarily collected on the same day, e.g., the 

microbiome could change between samplings due to recent dietary changes. Another 

parameter that could be responsible is the collection site of the samples, as stool is the 

representative of the luminal bacteria from the entire colon while swab samples may carry 

both luminal and mucosal bacteria from the last segment of colon. There is also a chance 

that there are technical processing errors that may cause the problem. For example, 

difficulties in sample preparation, sequencing, and sequence analysis may have 

confounded the results.  
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Table 19 The significantly different OTUs between the polyp-Y and polyp-N groups in the biopsy samples. 
From 109 OTUs, 83 of them belong to Firmicutes phylum, and 12 OTUs were classified as Bacteroidetes 

Phylum. Ten OTUs have taxonomies up to species level. P: phylum; c: class; o: order; f: family; g: genus; s: 
species. 

No
. 

OTU 
Number 

GreenGenes 
ID 

Taxonomy 

1  OTU1005 GG349067 p_Firmicutes;c_Clostridia;o_Clostridiales; 

2  OTU102 GG1067865 p_Proteobacteria;c_Betaproteobacteria;o_Burkholderiales;f_Burkholderiaceae;g_Burkhol
deria; 

3  OTU1062 GG4315468 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Ruminococcaceae; 

4  OTU1063 GG1522739 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Clostridiaceae; 

5  OTU1066 GG214036 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Mogibacteriaceae; 

6  OTU1075 GG739971 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Ruminococcaceae;g_Oscillospira; 

7  OTU1130 GG213870 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Ruminococcaceae; 

8  OTU115 GG359930 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Lachnospiraceae;g_Blautia;s_obeum 

9  OTU1177 GG517201 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Ruminococcaceae; 

10  OTU1202 GG4367656 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Lachnospiraceae;g_Moryella; 

11  OTU1206 GG183845 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Ruminococcaceae; 

12  OTU1226 GG174752 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Ruminococcaceae; 

13  OTU1237 GG3940440 p_Bacteroidetes;c_Bacteroidia;o_Bacteroidales;f_Bacteroidaceae;g_Bacteroides; 

14  OTU124 GG198054 p_Firmicutes;c_Erysipelotrichi;o_Erysipelotrichales;f_Erysipelotrichaceae;g_Eubacteriu
m;s_dolichum 

15  OTU13 GG366744 p_Bacteroidetes;c_Bacteroidia;o_Bacteroidales;f_Bacteroidaceae;g_Bacteroides; 

16  OTU133 GG181572 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Lachnospiraceae; 

17  OTU1330 GG189667 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Lachnospiraceae;g_Dorea; 

18  OTU1363 GG338730 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Ruminococcaceae; 

19  OTU1387 GG265234 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Ruminococcaceae; 

20  OTU140 GG3199564 p_Bacteroidetes;c_Bacteroidia;o_Bacteroidales;f_Odoribacteraceae;g_Odoribacter; 

21  OTU1421 GG4316515 p_Firmicutes;c_Clostridia;o_Clostridiales; 

22  OTU1439 GG194172 p_Firmicutes;c_Clostridia;o_Clostridiales; 

23  OTU147 GG584978 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Ruminococcaceae;g_Ruminococcus; 

24  OTU1490 GG608244 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Ruminococcaceae;g_Ruminococcus; 

25  OTU1519 GG589032 p_Bacteroidetes;c_Bacteroidia;o_Bacteroidales;f_Bacteroidaceae;g_Bacteroides; 

26  OTU1520 GG187741 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Ruminococcaceae; 

27  OTU1533 GG520827 p_Bacteroidetes;c_Bacteroidia;o_Bacteroidales;f_S24-7; 

28  OTU154 GG332027 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Christensenellaceae; 

29  OTU1546 GG296589 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Ruminococcaceae; 

30  OTU155 GG313166 p_Bacteroidetes;c_Bacteroidia;o_Bacteroidales;f_Bacteroidaceae;g_Bacteroides; 

31  OTU1550 GG4436120 p_Firmicutes;c_Clostridia;o_Clostridiales; 

32  OTU156 GG4144206 p_Firmicutes;c_Erysipelotrichi;o_Erysipelotrichales;f_Erysipelotrichaceae; 
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No
. 

OTU 
Number 

GreenGenes 
ID 

Taxonomy 

33  OTU1595 GG225338 p_Proteobacteria;c_Gammaproteobacteria;o_Pasteurellales;f_Pasteurellaceae;g_Aggregat
ibacter; 

34  OTU1612 GG297160 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Ruminococcaceae;g_Ruminococcus; 

35  OTU1644 GG216862 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Ruminococcaceae; 

36  OTU1649 GG3804871 p_Proteobacteria;c_Gammaproteobacteria;o_Enterobacteriales;f_Enterobacteriaceae; 

37  OTU1662 GG210793 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Ruminococcaceae; 

38  OTU1681 GG849346 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Ruminococcaceae; 

39  OTU1700 GG1098709 p_Firmicutes;c_Bacilli;o_Bacillales;f_Staphylococcaceae;g_Staphylococcus; 

40  OTU173 GG4321260 p_Bacteroidetes;c_Bacteroidia;o_Bacteroidales;f_Paraprevotellaceae;g_Prevotella; 

41  OTU1743 GG2924870 p_Proteobacteria;c_Gammaproteobacteria;o_Enterobacteriales;f_Enterobacteriaceae; 

42  OTU1747 GG725212 p_Firmicutes;c_Clostridia;o_Clostridiales; 

43  OTU177 GG195088 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Ruminococcaceae;g_Ruminococcus; 

44  OTU1802 GG573969 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Lachnospiraceae; 

45  OTU1813 GG210303 p_Bacteroidetes;c_Bacteroidia;o_Bacteroidales;f_Odoribacteraceae;g_Odoribacter; 

46  OTU1886 GG320055 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Lachnospiraceae; 

47  OTU1950 GG331253 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Lachnospiraceae;g_Blautia; 

48  OTU1975 GG519882 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Ruminococcaceae; 

49  OTU198 GG988932 p_Firmicutes;c_Clostridia;o_Clostridiales; 

50  OTU2020 GG229348 p_Firmicutes;c_Clostridia;o_Clostridiales; 

51  OTU2058 GG4311934 p_Firmicutes;c_Clostridia;o_Clostridiales; 

52  OTU2185 GG560873 p_Firmicutes;c_Clostridia;o_Clostridiales; 

53  OTU2194 GG1064335 p_Actinobacteria;c_Actinobacteria;o_Actinomycetales;f_Actinomycetaceae;g_Actinomy
ces; 

54  OTU241 GG256015 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Clostridiaceae; 

55  OTU252 GG198118 p_Firmicutes;c_Clostridia;o_Clostridiales; 

56  OTU2522 GG194097 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Ruminococcaceae; 

57  OTU257 GG366987 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Ruminococcaceae;g_Faecalibacterium;s_pra
usnitzii 

58  OTU271 GG4387453 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Clostridiaceae; 

59  OTU284 GG184217 p_Firmicutes;c_Clostridia;o_Clostridiales; 

60  OTU318 GG2617854 p_Bacteroidetes;c_Bacteroidia;o_Bacteroidales;f_Rikenellaceae; 

61  OTU320 GG1097287 p_Firmicutes;c_Bacilli;o_Bacillales;f_Staphylococcaceae;g_Staphylococcus;s_epidermidi
s 

62  OTU334 GG181826 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Ruminococcaceae; 

63  OTU366 GG516265 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Lachnospiraceae;g_Ruminococcus; 

64  OTU384 GG16274 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Clostridiaceae;g_Clostridium; 

65  OTU394 GG198085 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Ruminococcaceae;g_Faecalibacterium;s_pra
usnitzii 

66  OTU398 GG192155 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Lachnospiraceae; 

67  OTU404 GG308631 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Ruminococcaceae; 
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68  OTU415 GG324015 p_Firmicutes;c_Clostridia;o_Clostridiales; 

69  OTU436 GG1024958 p_Actinobacteria;c_Actinobacteria;o_Actinomycetales;f_Micrococcaceae;g_Rothia;s_aer
ia 

70  OTU444 GG204236 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Ruminococcaceae;g_Faecalibacterium;s_pra
usnitzii 

71  OTU449 GG198937 p_Firmicutes;c_Erysipelotrichi;o_Erysipelotrichales;f_Erysipelotrichaceae;g_Holdemania
; 

72  OTU461 GG359359 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Ruminococcaceae; 

73  OTU474 GG330439 p_Bacteroidetes;c_Bacteroidia;o_Bacteroidales;f_Prevotellaceae;g_Prevotella;s_stercorea 

74  OTU475 GG354574 p_Proteobacteria;c_Deltaproteobacteria;o_Desulfovibrionales;f_Desulfovibrionaceae;g_B
ilophila; 

75  OTU51 GG1003657 p_Proteobacteria;c_Gammaproteobacteria;o_Enterobacteriales;f_Enterobacteriaceae;g_Kl
ebsiella; 

76  OTU514 GG848116 p_Proteobacteria;c_Betaproteobacteria;o_Burkholderiales;f_Alcaligenaceae;g_Sutterella; 

77  OTU550 GG2134456 p_Proteobacteria;c_Gammaproteobacteria;o_Enterobacteriales;f_Enterobacteriaceae; 

78  OTU553 GG1135793 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Peptococcaceae;g_Peptococcus; 

79  OTU555 GG199350 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Ruminococcaceae; 

80  OTU567 GG585220 p_Firmicutes;c_Erysipelotrichi;o_Erysipelotrichales;f_Erysipelotrichaceae;g_cc_115; 

81  OTU571 GG187802 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Mogibacteriaceae; 

82  OTU576 GG218102 p_Firmicutes;c_Clostridia;o_Clostridiales; 

83  OTU6 GG1111141 p_Proteobacteria;c_Gammaproteobacteria;o_Enterobacteriales;f_Enterobacteriaceae; 

84  OTU600 GG2042960 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Tissierellaceae;g_Peptoniphilus; 

85  OTU612 GG531950 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Ruminococcaceae; 

86  OTU647 GG1007247 p_Firmicutes;c_Bacilli;o_Lactobacillales;f_Carnobacteriaceae;g_Granulicatella; 

87  OTU649 GG353631 p_Firmicutes;c_Clostridia;o_Clostridiales; 

88  OTU65 GG305288 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Clostridiaceae;g_Clostridium; 

89  OTU655 GG4315787 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Ruminococcaceae; 

90  OTU659 GG176104 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Ruminococcaceae;g_Oscillospira; 

91  OTU662 GG179815 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Lachnospiraceae;g_Ruminococcus;s_gnavus 

92  OTU697 GG4303851 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Ruminococcaceae;g_Ruminococcus; 

93  OTU723 GG230405 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Christensenellaceae; 

94  OTU737 GG4470076 p_Bacteroidetes;c_Bacteroidia;o_Bacteroidales;f_Prevotellaceae;g_Prevotella;s_nigresce
ns 

95  OTU76 GG851704 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Tissierellaceae;g_Parvimonas; 

96  OTU761 GG358030 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Ruminococcaceae; 

97  OTU791 GG4453550 p_Firmicutes;c_Erysipelotrichi;o_Erysipelotrichales;f_Erysipelotrichaceae;g_RFN20; 

98  OTU812 GG191100 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Ruminococcaceae; 

99  OTU82 GG192424 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Lachnospiraceae;g_Blautia; 

100  OTU83 GG882886 p_Bacteroidetes;c_Bacteroidia;o_Bacteroidales;f_Bacteroidaceae;g_Bacteroides;s_fragili
s 

101  OTU838 GG20310 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Mogibacteriaceae; 
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102  OTU844 GG4440820 p_Fusobacteria;c_Fusobacteriia;o_Fusobacteriales;f_Leptotrichiaceae;g_Leptotrichia; 

103  OTU85 GG843886 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Ruminococcaceae; 

104  OTU861 GG4329995 p_Proteobacteria;c_Deltaproteobacteria;o_Desulfovibrionales;f_Desulfovibrionaceae; 

105  OTU874 GG932843 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Tissierellaceae;g_Anaerococcus; 

106  OTU899 GG105514 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Ruminococcaceae; 

107  OTU905 GG575852 p_Proteobacteria;c_Gammaproteobacteria;o_Enterobacteriales;f_Enterobacteriaceae;g_Ci
trobacter; 

108  OTU914 GG1835985 p_Firmicutes;c_Clostridia;o_Clostridiales; 

109  OTU969 GG574988 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Ruminococcaceae; 
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Table 20 The significantly different OTUs between the polyp-Y and polyp-N groups in the stool samples. 
From 59 significant OTUs, 42 of them belong to Firmicutes phylum, 7 OTUs to Bacteroidetes, phylum. The 

taxonomy of Five OTUs is clear up to species level. P: phylum; c: class; o: order; f: family; g: genus; s: species. 
No
. 

OTU 
Number 

GreenGenes 
ID 

Taxonomy 

1  OTU1002 GG915327 p_Firmicutes;c_Bacilli;o_Lactobacillales;f_Carnobacteriaceae;g_Granulicatella; 

2  OTU1159 GG295456 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Lachnospiraceae;g_Blautia;s_producta 

3  OTU1166 GG727205 p_Firmicutes;c_Bacilli;o_Lactobacillales;f_Lactobacillaceae;g_Lactobacillus;s_zeae 

4  OTU12 GG260579 p_Bacteroidetes;c_Bacteroidia;o_Bacteroidales;f_Rikenellaceae;g_Alistipes;s_putredinis 

5  OTU125 GG3443119 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Ruminococcaceae; 

6  OTU126 GG3902153 p_Bacteroidetes;c_Bacteroidia;o_Bacteroidales;f_Barnesiellaceae; 

7  OTU1353 GG1904686 p_Firmicutes;c_Erysipelotrichi;o_Erysipelotrichales;f_Erysipelotrichaceae;g_Eubacteriu
m;s_dolichum 

8  OTU1374 GG4332878 p_Actinobacteria;c_Coriobacteriia;o_Coriobacteriales;f_Coriobacteriaceae;g_Slackia; 

9  OTU1387 GG265234 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Ruminococcaceae; 

10  OTU147 GG584978 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Ruminococcaceae;g_Ruminococcus; 

11  OTU1476 GG851812 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Eubacteriaceae;g_Anaerofustis; 

12  OTU1520 GG187741 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Ruminococcaceae; 

13  OTU1576 GG121873 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Dehalobacteriaceae;g_Dehalobacterium; 

14  OTU1608 GG234447 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Christensenellaceae; 

15  OTU1774 GG260691 p_Firmicutes;c_Erysipelotrichi;o_Erysipelotrichales;f_Erysipelotrichaceae;g_Allobaculu
m; 

16  OTU1899 GG348215 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Ruminococcaceae; 

17  OTU1942 GG197249 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Lachnospiraceae;g_Coprococcus; 

18  OTU2022 GG2782816 p_Actinobacteria;c_Actinobacteria;o_Actinomycetales;f_Actinomycetaceae;g_Actinomy
ces; 

19  OTU2159 GG4366089 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Ruminococcaceae;g_Oscillospira; 

20  OTU2221 GG240240 p_Bacteroidetes;c_Bacteroidia;o_Bacteroidales;f_Paraprevotellaceae;g_Prevotella; 

21  OTU2427 GG198720 p_Firmicutes;c_Clostridia;o_Clostridiales; 

22  OTU243 GG362380 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Lachnospiraceae; 

23  OTU2495 GG198122 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Lachnospiraceae; 

24  OTU2525 GG2990918 p_Actinobacteria;c_Coriobacteriia;o_Coriobacteriales;f_Coriobacteriaceae;g_Collinsella;
s_stercoris 

25  OTU258 GG198569 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Lachnospiraceae;g_Blautia; 

26  OTU2637 GG1079013 p_Actinobacteria;c_Actinobacteria;o_Actinomycetales;f_Corynebacteriaceae;g_Coryneba
cterium; 

27  OTU274 GG1083336 p_Actinobacteria;c_Actinobacteria;o_Actinomycetales;f_Micrococcaceae;g_Rothia;s_mu
cilaginosa 

28  OTU305 GG197517 p_Bacteroidetes;c_Bacteroidia;o_Bacteroidales;f_Barnesiellaceae; 

29  OTU319 GG4397094 p_Firmicutes;c_Erysipelotrichi;o_Erysipelotrichales;f_Erysipelotrichaceae; 

30  OTU324 GG4327303 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Lachnospiraceae;g_Lachnospira; 

31  OTU327 GG3708846 p_Firmicutes;c_Clostridia;o_Clostridiales; 

32  OTU346 GG1658654 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Lachnospiraceae;g_Epulopiscium; 

33  OTU35 GG851668 p_Bacteroidetes;c_Bacteroidia;o_Bacteroidales;f_Prevotellaceae;g_Prevotella; 
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34  OTU352 GG246930 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Veillonellaceae;g_Dialister; 

35  OTU389 GG208088 p_Bacteroidetes;c_Bacteroidia;o_Bacteroidales;f_Odoribacteraceae;g_Butyricimonas; 

36  OTU409 GG1667433 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Lachnospiraceae;g_Dorea; 

37  OTU434 GG966508 p_Proteobacteria;c_Gammaproteobacteria;o_Pasteurellales;f_Pasteurellaceae;g_Haemoph
ilus; 

38  OTU440 GG177310 p_Firmicutes;c_Clostridia;o_Clostridiales; 

39  OTU443 GG198453 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Ruminococcaceae; 

40  OTU453 GG2986828 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Lachnospiraceae; 

41  OTU517 GG535901 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Veillonellaceae;g_Dialister; 

42  OTU535 GG195807 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Lachnospiraceae;g_Blautia; 

43  OTU560 GG804624 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Peptostreptococcaceae;g_Peptostreptococcus
; 

44  OTU576 GG218102 p_Firmicutes;c_Clostridia;o_Clostridiales; 

45  OTU593 GG434992 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Peptostreptococcaceae; 

46  OTU636 GG4336939 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Ruminococcaceae; 

47  OTU647 GG1007247 p_Firmicutes;c_Bacilli;o_Lactobacillales;f_Carnobacteriaceae;g_Granulicatella; 

48  OTU675 GG893214 p_Actinobacteria;c_Actinobacteria;o_Actinomycetales;f_Actinomycetaceae;g_Mobiluncu
s; 

49  OTU733 GG1050844 p_Actinobacteria;c_Actinobacteria;o_Actinomycetales;f_Micrococcaceae;g_Micrococcus
;s_luteus 

50  OTU747 GG560336 p_Bacteroidetes;c_Bacteroidia;o_Bacteroidales;f_Bacteroidaceae;g_Bacteroides; 

51  OTU785 GG192465 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Lachnospiraceae;g_Coprococcus; 

52  OTU786 GG951711 p_Actinobacteria;c_Actinobacteria;o_Actinomycetales;f_Actinomycetaceae;g_Actinomy
ces; 

53  OTU790 GG560873 p_Firmicutes;c_Clostridia;o_Clostridiales; 

54  OTU808 GG4314545 p_Actinobacteria;c_Actinobacteria;o_Actinomycetales;f_Actinomycetaceae;g_Actinobac
ulum; 

55  OTU819 GG4364747 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Clostridiaceae; 

56  OTU847 GG370809 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Lachnospiraceae; 

57  OTU96 GG609964 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Tissierellaceae;g_Peptoniphilus; 

58  OTU960 GG298995 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Ruminococcaceae; 

59  OTU964 GG352914 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Ruminococcaceae;g_Faecalibacterium;s_pra
usnitzii 
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Table 21 The significantly different OTUs between the polyp-Y and polyp-N groups in the swab samples.  
From 92 significant OTUs, 69 OTUs belong to Firmicutes, and 12 OTUs belong to Bacteroidetes Phyla. The 

taxonomy of 10 OTUs is clear up to species level. P: phylum; c: class; o: order; f: family; g: genus; s: species. 
N
o. 

OTU 
Number 

GreenGenes 
ID 

Taxonomy 

1  OTU1001 GG4456576 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Lachnospiraceae; 

2  OTU1014 GG178478 p_Bacteroidetes;c_Bacteroidia;o_Bacteroidales;f_Bacteroidaceae;g_Bacteroides; 

3  OTU1033 GG189606 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Ruminococcaceae; 

4  OTU106 GG366515 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Veillonellaceae;g_Dialister; 

5  OTU1071 GG174885 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Ruminococcaceae; 

6  OTU1098 GG4388068 p_Tenericutes;c_Mollicutes;o_RF39; 

7  OTU112 GG187668 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Clostridiaceae;g_Clostridium; 

8  OTU116 GG314996 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Ruminococcaceae; 

9  OTU1164 GG994357 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Mogibacteriaceae;g_Mogibacterium; 

10  OTU1167 GG359788 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Ruminococcaceae; 

11  OTU117 GG963388 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Lachnospiraceae; 

12  OTU122 GG248563 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Clostridiaceae; 

13  OTU1298 GG213870 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Ruminococcaceae; 

14  OTU1453 GG146086 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Lachnospiraceae; 

15  OTU149 GG1057169 p_Bacteroidetes;c_Bacteroidia;o_Bacteroidales;f_Prevotellaceae;g_Prevotella; 

16  OTU1513 GG3940412 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Ruminococcaceae; 

17  OTU154 GG332027 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Christensenellaceae; 

18  OTU1558 GG269455 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Ruminococcaceae; 

19  OTU158 GG776472 p_Firmicutes;c_Bacilli;o_Lactobacillales;f_Enterococcaceae;g_Enterococcus; 

20  OTU1584 GG185066 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Ruminococcaceae; 

21  OTU1611 GG3326658 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Ruminococcaceae; 

22  OTU1633 GG948369 p_Firmicutes;c_Bacilli;o_Lactobacillales;f_Streptococcaceae;g_Streptococcus; 

23  OTU1700 GG1098709 p_Firmicutes;c_Bacilli;o_Bacillales;f_Staphylococcaceae;g_Staphylococcus; 

24  OTU1707 GG208377 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Ruminococcaceae; 

25  OTU1732 GG4387706 p_Firmicutes;c_Clostridia;o_Clostridiales; 

26  OTU175 GG4409213 p_Proteobacteria;c_Betaproteobacteria;o_Burkholderiales;f_Alcaligenaceae;g_Sutterella; 

27  OTU1781 GG358342 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Lachnospiraceae; 

28  OTU193 GG367113 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Ruminococcaceae; 

29  OTU1942 GG197249 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Lachnospiraceae;g_Coprococcus; 

30  OTU198 GG988932 p_Firmicutes;c_Clostridia;o_Clostridiales; 

31  OTU1992 GG190299 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Lachnospiraceae;g_Lachnospira; 

32  OTU2 GG588308 p_Bacteroidetes;c_Bacteroidia;o_Bacteroidales;f_Bacteroidaceae;g_Bacteroides; 

33  OTU2001 GG526682 p_Actinobacteria;c_Actinobacteria;o_Actinomycetales;f_Actinomycetaceae;g_Actinomyce
s; 
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34  OTU2068 GG527988 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Eubacteriaceae;g_Anaerofustis; 

35  OTU226 GG358265 p_Firmicutes;c_Clostridia;o_Clostridiales; 

36  OTU2283 GG348006 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Lachnospiraceae;g_Ruminococcus;s_lactaris 

37  OTU2378 GG364516 p_Bacteroidetes;c_Bacteroidia;o_Bacteroidales;f_Rikenellaceae; 

38  OTU2413 GG3898650 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Lachnospiraceae;g_Blautia; 

39  OTU2447 GG312677 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Ruminococcaceae;g_Faecalibacterium;s_praus
nitzii 

40  OTU2536 GG1072223 p_Firmicutes;c_Bacilli;o_Lactobacillales;f_Streptococcaceae;g_Streptococcus;s_infantis 

41  OTU2565 GG589032 p_Bacteroidetes;c_Bacteroidia;o_Bacteroidales;f_Bacteroidaceae;g_Bacteroides; 

42  OTU27 GG4389944 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Tissierellaceae;g_ph2; 

43  OTU272 GG363830 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Ruminococcaceae;g_Faecalibacterium;s_praus
nitzii 

44  OTU286 GG199668 p_Bacteroidetes;c_Bacteroidia;o_Bacteroidales;f_Rikenellaceae; 

45  OTU304 GG369970 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Lachnospiraceae;g_Ruminococcus; 

46  OTU31 GG213810 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Lachnospiraceae;g_Roseburia; 

47  OTU318 GG2617854 p_Bacteroidetes;c_Bacteroidia;o_Bacteroidales;f_Rikenellaceae; 

48  OTU325 GG1028501 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Veillonellaceae;g_Dialister; 

49  OTU328 GG50025 p_Actinobacteria;c_Actinobacteria;o_Bifidobacteriales;f_Bifidobacteriaceae;g_Bifidobacte
rium;s_adolescentis 

50  OTU329 GG214031 p_Bacteroidetes;c_Bacteroidia;o_Bacteroidales;f_Rikenellaceae; 

51  OTU331 GG368448 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Lachnospiraceae; 

52  OTU336 GG62513 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Lachnospiraceae;g_Moryella;s_indoligenes 

53  OTU362 GG966186 p_Actinobacteria;c_Actinobacteria;o_Actinomycetales;f_Actinomycetaceae;g_Varibaculu
m; 

54  OTU366 GG516265 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Lachnospiraceae;g_Ruminococcus; 

55  OTU368 GG204093 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Ruminococcaceae;g_Oscillospira; 

56  OTU398 GG192155 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Lachnospiraceae; 

57  OTU436 GG1024958 p_Actinobacteria;c_Actinobacteria;o_Actinomycetales;f_Micrococcaceae;g_Rothia;s_aeria 

58  OTU444 GG204236 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Ruminococcaceae;g_Faecalibacterium;s_praus
nitzii 

59  OTU449 GG198937 p_Firmicutes;c_Erysipelotrichi;o_Erysipelotrichales;f_Erysipelotrichaceae;g_Holdemania; 

60  OTU45 GG581003 p_Firmicutes;c_Clostridia;o_Clostridiales; 

61  OTU453 GG2986828 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Lachnospiraceae; 

62  OTU454 GG2202001 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Ruminococcaceae; 

63  OTU457 GG358613 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Ruminococcaceae;g_Oscillospira; 

64  OTU469 GG383714 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Tissierellaceae;g_Anaerococcus; 

65  OTU470 GG1052809 p_Actinobacteria;c_Actinobacteria;o_Actinomycetales;f_Actinomycetaceae;g_Varibaculu
m; 

66  OTU473 GG192210 p_Firmicutes;c_Clostridia;o_Clostridiales; 

67  OTU496 GG342947 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Ruminococcaceae; 
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68  OTU5 GG368935 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Lachnospiraceae; 

69  OTU50 GG529744 p_Firmicutes;c_Erysipelotrichi;o_Erysipelotrichales;f_Erysipelotrichaceae;g_Bulleidia;s_m
oorei 

70  OTU51 GG1003657 p_Proteobacteria;c_Gammaproteobacteria;o_Enterobacteriales;f_Enterobacteriaceae;g_Kle
bsiella; 

71  OTU520 GG659221 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Tissierellaceae; 

72  OTU53 GG367044 p_Firmicutes;c_Clostridia;o_Clostridiales; 

73  OTU550 GG2134456 p_Proteobacteria;c_Gammaproteobacteria;o_Enterobacteriales;f_Enterobacteriaceae; 

74  OTU555 GG199350 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Ruminococcaceae; 

75  OTU59 GG577294 p_Bacteroidetes;c_Bacteroidia;o_Bacteroidales;f_Porphyromonadaceae;g_Parabacteroides;
s_distasonis 

76  OTU6 GG1111141 p_Proteobacteria;c_Gammaproteobacteria;o_Enterobacteriales;f_Enterobacteriaceae; 

77  OTU628 GG2047910 p_Bacteroidetes;c_Bacteroidia;o_Bacteroidales;f_Porphyromonadaceae;g_Parabacteroides; 

78  OTU63 GG363343 p_Firmicutes;c_Clostridia;o_Clostridiales; 

79  OTU632 GG217047 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Tissierellaceae;g_Anaerococcus; 

80  OTU672 GG362765 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Ruminococcaceae;g_Ruminococcus; 

81  OTU686 GG327149 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Lachnospiraceae;g_Blautia; 

82  OTU720 GG175910 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Ruminococcaceae; 

83  OTU739 GG303794 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Lachnospiraceae;g_Blautia; 

84  OTU768 GG1820776 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Ruminococcaceae; 

85  OTU77 GG1985 p_Bacteroidetes;c_Bacteroidia;o_Bacteroidales;f_Bacteroidaceae;g_Bacteroides;s_ovatus 

86  OTU772 GG363467 p_Firmicutes;c_Clostridia;o_Clostridiales; 

87  OTU846 GG186654 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Ruminococcaceae; 

88  OTU849 GG190226 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Lachnospiraceae; 

89  OTU872 GG561595 p_Actinobacteria;c_Coriobacteriia;o_Coriobacteriales;f_Coriobacteriaceae;g_Collinsella;s_
aerofaciens 

90  OTU889 GG320321 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Ruminococcaceae; 

91  OTU929 GG216010 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Mogibacteriaceae; 

92  OTU966 GG536281 p_Firmicutes;c_Clostridia;o_Clostridiales;f_Lachnospiraceae;g_Coprococcus; 
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Figure 41 Change of bacterial taxa in the polyp-Y and polyp-N in biopsy samples (BS). 

Some taxa increased, and some decreased in the polyp-Y group compared to the polyp-N.  
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Figure 42 Change of bacterial taxa in the polyp-Y and polyp-N in home stool samples (HS). 
Some taxa increased, and some decreased in the polyp-Y group compared to the polyp-N.  
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Figure 43 Change of bacterial taxa in the polyp-Y and polyp-N in rectal swabs (SS). 

Some taxa increased, and some decreased in the polyp-Y group compared to the polyp-N. 
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4.3.5	MBO1	polyp	dataset	classification	
The relative abundance tables from each method were rarefied and used for data 

mining using the orange data mining pipeline. Classification methods were performed 

separately for the biopsy, stool, and rectal swabs datasets. Using the 5-fold cross-validation 

method, 80% of samples were chosen as the training set, and the rest were used as the test 

set. The same data mining procedure was done for both abundance tables with all features 

(raw) and significant features (filtered) as described above for Benchmark-1 and 2.  

4.3.6	MBO1	polyp	dataset	classification	validation	
The classifiers were validated using 10-fold cross-validation method. Results of 

validation for the UPARSE method are shown in Table 22. In all specimen types (biopsy, 

rectal swab, and stool samples), the classification accuracy, sensitivity, specificity, and area 

under ROC curve improved by using significant OTUs for classification instead of all 

OTUs. This demonstrates that statistically significant features can be more informative for 

predicting classes (polyp-N or polyp-Y).  

  



158 
 
 
 

Table 22 The classification validation results of MBO1 polyp dataset. 
The top tables show validation results of the classifiers produced using all OTUs. The middle tables used just the 
significant OTUs as classification features. The bottom is the results of applying the second classifier on the test 

dataset. Classifiers are performing better when significant OTUs are used as classification features. 
Polyp_UPARSE                 

Raw_BS         Raw_HS         Raw_SS         

Classification method CA Sens Spec AUC   Classification method CA Sens Spec AUC   Classification method CA Sens Spec AUC 

Naïve Bayes 0.43 0 1 0.59   Naïve Bayes 0.40 0 1 0.57   Naïve Bayes 0.44 0 0.98 0.57 

Random Forest 0.63 0.77 0.44 0.66   Random Forest 0.55 0.78 0.23 0.56   Random Forest 0.59 0.69 0.47 0.65 

kNN 0.55 0.66 0.39 0.61   kNN 0.58 0.87 0.16 0.52   kNN 0.49 0.73 0.21 0.57 

Classification Tree 0.56 0.66 0.41 0.57   Classification Tree 0.59 0.67 0.49 0.55   Classification Tree 0.54 0.55 0.53 0.55 

Logistic regression 0.56 0.59 0.51 0.57   Logistic regression 0.52 0.59 0.41 0.52   Logistic regression 0.56 0.55 0.57 0.56 

Neural Network 0.56 0.63 0.46 0.57   Neural Network 0.50 0.60 0.36 0.53   Neural Network 0.55 0.57 0.52 0.56 

SVM 0.57 1 0 0.50   SVM 0.59 1 0 0.5   SVM 0.54 1 0 0.49 

                                

Filtered_BS         Filtered_HS         Filtered_SS         

Classification method CA Sens Spec AUC   Classification method CA Sens Spec AUC   Classification method CA Sens Spec AUC 

Naïve Bayes 0.77 0.78 0.74 0.85   Naïve Bayes 0.75 0.73 0.78 0.83   Naïve Bayes 0.72 0.71 0.73 0.80 

Random Forest 0.73 0.80 0.62 0.79   Random Forest 0.72 0.88 0.49 0.83   Random Forest 0.69 0.76 0.60 0.81 

kNN 0.72 0.87 0.51 0.76   kNN 0.66 0.81 0.45 0.70   kNN 0.61 0.63 0.60 0.66 

Classification Tree 0.56 0.63 0.46 0.50   Classification Tree 0.64 0.69 0.56 0.62   Classification Tree 0.57 0.61 0.51 0.57 

Logistic regression 0.76 0.80 0.69 0.81   Logistic regression 0.79 0.86 0.69 0.81   Logistic regression 0.70 0.71 0.68 0.77 

Neural Network 0.74 0.80 0.65 0.81   Neural Network 0.77 0.84 0.67 0.81   Neural Network 0.67 0.69 0.65 0.76 

SVM 0.6 0.98 0.09 0.69   SVM 0.70 0.73 0.65 0.74   SVM 0.60 0.88 0.26 0.68 

                 

On test data        On test data        On test data         

Classification method CA Sens Spec AUC  Classification method CA Sens Spec AUC  Classification method CA Sens Spec AUC 

Naïve Bayes 0.88 1 0.72 0.91  Naïve Bayes 0.85 0.85 0.85 0.94  Naïve Bayes 0.69 0.69 0.7 0.72 

Random Forest 0.6 0.71 0.45 0.72  Random Forest 0.76 0.9 0.57 0.90  Random Forest 0.67 0.69 0.65 0.71 

kNN 0.68 0.85 0.45 0.75  kNN 0.67 0.95 0.28 0.73  kNN 0.58 0.56 0.6 0.63 

Classification Tree 0.48 0.5 0.45 0.44  Classification Tree 0.67 0.7 0.64 0.70  Classification Tree 0.62 0.56 0.7 0.61 

Logistic regression 0.88 1 0.72 0.95  Logistic regression 0.91 0.9 0.92 0.94  Logistic regression 0.60 0.65 0.55 0.65 

Neural Network 0.84 1 0.63 0.95  Neural Network 0.91 0.9 0.92 0.94  Neural Network 0.58 0.65 0.5 0.67 

SVM 0.52 0.92 0 0.69  SVM 0.61 0.75 0.42 0.76  SVM 0.58 0.86 0.25 0.58 

 
 

The ROC curves for biopsy, stool, and swab datasets are shown in Figure 44, Figure 

45, and Figure 46, respectively. The different classifiers are shown in different colors. The 

classifier that is closer to the upper left corner of the graph is better, as the area under the 

curve is higher. The naïve Bayes is the best performing classifier. 
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Figure 44 The polyp biopsy dataset ROC curve for the polyp-Y and polyp-N using five classifiers. 

Naïve Bayes (red), Random Forest (orange), kNN (light green), Logistic regression (green), Neural Network 
(blue). The straight line represents the null model. The x-axis is the false positive rate, and the y-axis is the true 

positive rate. The best performing classifier is Naïve Bayes with AUC= 0.85. 
 

 

 
Figure 45 The ROC curve of stool dataset for the polyp-Y and polyp-N using five classifiers. 

Naïve Bayes (red), Random Forest (orange), kNN (light green), Logistic regression (green), Neural Network 
(blue). The straight line represents the null model. The x-axis is the false positive rate, and the y-axis is the true 

positive rate. The best performing classifiers are Naïve Bayes and random forest with AUC= 0.83. 
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Figure 46 The ROC curve polyp rectal swab dataset for the polyp-Y and polyp-N using five classifiers. 

Naïve Bayes (red), Random Forest (orange), kNN (light green), Logistic regression (green), Neural Network 
(blue). The straight line represents the null model. The x-axis is the false positive rate, and the y-axis is the true 

positive rate. The best performing classifiers are the random forest with AUC=0.81 and Naïve Bayes with AUC= 
0.80. 
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4.3.7	MB01	polyp	dataset	predictions	
Using the prediction pipeline described in method section (Figure 19), we tested 

the prediction power of constructed classifiers from the UPARSE method. The separate 

test datasets were produced using Weka dataset generator (Weka V. 3.8.0) and used for 

analyzing the prediction power of each classifier. 

Biopsy prediction results: From a total of 125 biopsy samples, 90% (n=112) were 

used for the training set and 10% (n=13) for test dataset. The training set was used to make 

classifiers and the resulting trained classifier was applied to the test dataset to predict 

classes. From 13 samples, eight of them (61.5%) were predicted correctly as showed in 

Table 23.  

 

Table 23 Polyp prediction using the biopsy dataset. 
Correctly classified biopsy test samples are 61.5% of the samples. 

Sample Actual Class Predicted class using Naïve Bayes classifier 

BS_9 BS_Polyp_Y BS_Polyp_Y 

BS_419 BS_Polyp_Y BS_Polyp_Y 

BS_353 BS_Polyp_Y BS_Polyp_N 

BS_431 BS_Polyp_Y BS_Polyp_N 

BS_436 BS_Polyp_Y BS_Polyp_Y 

BS_405 BS_Polyp_Y BS_Polyp_Y 

BS_351 BS_Polyp_Y BS_Polyp_Y 

BS_389 BS_Polyp_Y BS_Polyp_Y 

BS_57 BS_Polyp_N BS_Polyp_Y 

BS_517 BS_Polyp_N BS_Polyp_Y 

BS_330 BS_Polyp_N BS_Polyp_N 

BS_344 BS_Polyp_N BS_Polyp_Y 

BS_421 BS_Polyp_N BS_Polyp_N 
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Stool samples prediction results: From the total of 168 stool samples, 90% 

(n=151) were used for training and 10% (n=17) for test dataset. From 17 predictions, 12 

were correct (82.3%) as showed in Table 24. 

 

Table 24 Polyp prediction using the stool dataset. 
Correctly classified stool test samples are 82.3% of the samples. 

Sample Actual Class Predicted class using Naïve Bayes classifier 

HS_458 HS_Polyp_N HS_Polyp_N 

HS_20 HS_Polyp_N HS_Polyp_N 

HS_396 HS_Polyp_N HS_Polyp_N 

HS_370 HS_Polyp_N HS_Polyp_N 

HS_399 HS_Polyp_N HS_Polyp_N 

HS_511 HS_Polyp_N HS_Polyp_N 

HS_2 HS_Polyp_N HS_Polyp_Y 

HS_314 HS_Polyp_Y HS_Polyp_Y 

HS_62 HS_Polyp_Y HS_Polyp_Y 

HS_391 HS_Polyp_Y HS_Polyp_Y 

HS_303 HS_Polyp_Y HS_Polyp_Y 

HS_311 HS_Polyp_Y HS_Polyp_Y 

HS_318 HS_Polyp_Y HS_Polyp_Y 

HS_518 HS_Polyp_Y HS_Polyp_Y 

HS_449 HS_Polyp_Y HS_Polyp_Y 

HS_6 HS_Polyp_Y HS_Polyp_N 

HS_23 HS_Polyp_Y HS_Polyp_N 

 
 

 Rectal swab samples prediction results: From the total of 211 rectal swab 

samples, 90% (n=189) were used for training set to constructed classifiers. Predictions are 
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performed on the 10% (n=22) test set. Class predictions were correct for 18/22 of the 

samples (81.8%) as showed in Table 25. 

Table 25 Polyp prediction using the rectal swab dataset. 
Correctly classified rectal swab test samples are 81.8% of the samples. 

Sample Actual Class Predicted class using Naïve Bayes classifier 

SS_3 SS_Polyp_N SS_Polyp_N 

SS_31 SS_Polyp_N SS_Polyp_N 

SS_469 SS_Polyp_N SS_Polyp_N 

SS_429 SS_Polyp_N SS_Polyp_N 

SS_24 SS_Polyp_N SS_Polyp_N 

SS_5 SS_Polyp_N SS_Polyp_N 

SS_302 SS_Polyp_N SS_Polyp_Y 

SS_25 SS_Polyp_N SS_Polyp_N 

SS_457 SS_Polyp_N SS_Polyp_N 

SS_57 SS_Polyp_N SS_Polyp_N 

SS_51 SS_Polyp_Y SS_Polyp_Y 

SS_347 SS_Polyp_Y SS_Polyp_N 

SS_516 SS_Polyp_Y SS_Polyp_Y 

SS_352 SS_Polyp_Y SS_Polyp_Y 

SS_34 SS_Polyp_Y SS_Polyp_Y 

SS_420 SS_Polyp_Y SS_Polyp_Y 

SS_362 SS_Polyp_Y SS_Polyp_N 

SS_16 SS_Polyp_Y SS_Polyp_Y 

SS_328 SS_Polyp_Y SS_Polyp_N 

SS_8 SS_Polyp_Y SS_Polyp_Y 

SS_53 SS_Polyp_Y SS_Polyp_Y 

SS_356 SS_Polyp_Y SS_Polyp_Y 

 
 

Based on these prediction results, the prediction for stool and swab samples have a 

higher accuracy than biopsy samples. This could be due to the larger sample size of these 

two datasets which results in a larger training dataset. It should be noted that with respect 
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to the noninvasive diagnostic aims, the swab and stool samples are preferred to biopsy as 

the former are noninvasive. 
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5 DISCUSSION 

5.1	OTU	clustering	methods	
As noted above, several algorithms have been developed for assigning 16S rRNA 

gene sequences to OTUs. However, these different clustering methods lead to different 

biodiversity estimates (Bachy et al., 2013) and, therefore, it is essential to understand the 

advantages and disadvantages of these methods to be able to decide which one to use for a 

given dataset. These methods are different in many aspects including user-friendliness, 

accuracy, memory requirement, and speed. Thus, choosing an appropriate clustering 

method can be challenging for researchers. Critical limitations of the OTU-based methods 

are that clustering algorithms are computationally intensive, relatively slow, and may need 

a considerable amount of memory (Schloss & Handelsman, 2005; Schloss et al., 2009; Sun 

et al., 2009). 

Most de novo clustering algorithms (i.e., without using reference sequences) utilize 

either a hierarchical or greedy heuristic approach to generate clusters (Sun et al., 2012). In 

the hierarchical approach, a distance matrix is first calculated by measuring the difference 

between each pair of sequences and then the standard hierarchical clustering is employed 

to define OTUs at a particular level of sequence similarity (Chen et al., 2013). However, 

greedy heuristic algorithms perform fewer pairwise comparisons in order to estimate 

optimal clustering parameters that will improve computational efficiency (Sun et al., 2012). 

The hierarchical clustering methods may not be suitable for large sequencing datasets due 
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to their intrinsic computational complexity. Thus, greedy heuristic algorithms have been 

developed which can significantly reduce the time and space complexity (Chen et al., 2013; 

Li & Godzik, 2006; Sun et al., 2009; Edgar, 2010; Edgar, 2013). There is a trade-off 

between complexity and accuracy of the hierarchical and heuristic clustering methods. The 

heuristic clustering algorithms have a lower complexity at the cost of less biological 

accuracy (Cai & Sun, 2011; Ghodsi et al., 2011). 

Some of the available hierarchical clustering methods are the nearest neighbor, 

furthest neighbor, weighted neighbor, and average neighbor (UPGMA) algorithms 

(Legendre P. & Legendre L., 1998). Among these, the average neighbor algorithm (i.e., 

UPGMA) is reported to perform better than the rest (Schloss & Westcott, 2011). 

In the present study, we compared three de novo OTU clustering methods from 

both hierarchical and heuristic approaches that are commonly used to assign sequences into 

OTUs based on the similarity of sequences. Specifically, we used the greedy heuristic 

algorithms of UCLUST and UPARSE in addition to the hierarchical clustering algorithm 

UPGMA. The UPGMA algorithm takes a multiple sequence alignment as input, and after 

making a distance matrix of all pairwise comparisons of sequences, it starts generating 

clusters (Schloss et al., 2009). Before putting the alignments into the UPGMA pipeline in 

Mothur, we performed multiple sequence alignments with default settings in MAFFT 

v7.150b (Katoh and Standley, 2013) as Bachy et al., 2013 and Flynn et al., 2015. For 

UCLUST, the sequences were first sorted by length and then serially clustered which 

means the longest read in the file was the first OTU. For UPARSE, sequences were sorted 

based on abundance, and they were used to assign OTUs in the order of decreasing 
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abundance (Edgar, 2013). Among these three approaches, UPARSE was much faster than 

the other two methods when applied to the datasets we have analyzed. Alpha and beta 

diversity results of these three methods were different with respect to the diversity values 

due to the difference in the number of detected OTUs by each method. However, the pattern 

of diversity was the same, which indicates that all methods detected the same trends of 

diversity in the datasets. In the classification methods, classifiers that were produced from 

the UPARSE method performed better than UCLUST and UPGMA with respect to the 

accuracy, sensitivity, specificity, and area under ROC curve. 

In a study done by Edgar (Edgar, 2013), the results of OTU selection using 

UPARSE, Mothur (UPGMA), and QIIME (UCLUST) on artificial (‘16S mock’) 

communities of known composition were compared. In all 16S mock datasets, the vast 

majority of UPARSE OTUs were classified as identical to the input biological sequences 

with less than 1% errors. On the other hand, from 41 to 71% of the Mothur OTUs and 23 

to 67% of the QIIME OTUs were chimeric. In his analysis, QIIME detected more OTUs 

than UPARSE and Mothur, in addition to returning a large number of chimeric OTUs. The 

number of OTUs plus contaminants detected by UPARSE corresponded with real species 

and contaminants in the mock data. The strongest correlation between the number of reads 

and the number of OTUs were reported for QIIME, which means that the number of OTUs 

produced by QIIME tends to increase with respect to the number of reads, albeit because 

of artifactual OTUs as this pipeline lacks filtering (Edgar, 2013). 

Flynn and colleagues tested Mothur, UCLUST, and UPARSE on a mock 

community and a natural community of zooplankton species. They reported that Mothur 



168 
 
 
 

gave them comparable results to UCLUST regarding OTU number and precision. 

However, Mothur required more time and computational resources than UCLUST and 

UPARSE. In their research, UPARSE showed the highest precision and the number of 

OTUs detected by this method was closest to the species number they used as the input. 

They recommended UPARSE as the method of choice for clustering among these three 

algorithms (Flynn et al., 2015). Although similar work from another group (Sun et al., 

2012) had shown that hierarchical clustering produced better results for bacterial 16S 

sequences, they also reported that greedy heuristic clustering has a comparable accuracy to 

hierarchical clustering.  

In this study, among UPARSE, UPGMA, and UCLUST, we suggest that UPARSE 

is our choice as preprocessing and clustering took significantly lower time and the 

classifiers that were produced by UPARSE OTUs performed better in the classifiers. 

5.2	Feature	selection	to	improve	classification	
We introduced feature selection as an optional step for classification and this was 

performed to find a combination of feature subsets that would lead to better classifiers. We 

found that feature selection resulted in significant improvement in the classification of the 

above datasets as there were a large number of features (OTUs) in a microbiome abundance 

table that far outnumbered the samples. In the field of machine learning, it is recommended 

that the number of samples be three times the number of features for accurate classification. 

Therefore, by choosing an informative subset of features, we significantly improved the 

classifiers’ performance. Feature screening also improved prediction accuracy and led to 

generating more easily interpretable models (Knights et al., 2011). Many approaches have 
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been introduced for feature selection including filter methods, wrapper methods, and 

embedded methods. Filter approaches are the most straightforward method in which 

features are selected on the basis of statistical properties and are performed before 

classification. A univariate test such as the t-test or a multivariate test like linear classifier 

test is conducted to select the features that have a score above a predefined threshold (e.g., 

0.05 significance level). Filter methods have a number of advantages including low 

computational complexity and ease of implementation (Knights et al., 2011), while 

wrapper methods are computationally intensive. Like filter methods, the wrapper methods 

treat the classifier as a black box. However, this approach uses a classifier to select a subset 

of features. As the classifier needs to examine all the feature subsets in order to find the 

one with the lowest validation error, this method is considered computationally intensive 

(Knights et al., 2011). Embedded approaches are an integral part of the machine learning 

process as these methods run an integrated search over the joint space of model parameters 

and feature subsets. The advantage of this approach is that it can look for globally optimal 

parameters (Knights et al., 2011). 

In our study, we used independent nonparametric statistical tools to find significant 

features between binary groups in order to select OTUs that are associated with a shift from 

normal state to disease state to decrease the complexity of the analysis. 

MetaStats (White et al., 2009) was used to find OTUs that have significantly 

different mean proportion and variance among groups using Kruskal-Wallis, which is a 

non-parametric t-test. MetaStats combines statistical analysis with biomarker discovery 
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based on repeated Kruskal-Wallis and Fisher's exact tests on random permutations (Segata 

et al., 2011).  

The Kruskal-Wallis test is a non-parametric statistical approach that tests whether 

samples originate from the same distribution. This test does not require the data to be 

normal but rather uses the rank of the data values instead of the actual data values for the 

analysis. OTUs that have a significantly different mean rank between groups will be 

distinguished by this test.  

Another approach, LEfSe (Segata et al., 2011), starts with a non-parametric 

factorial Kruskal-Wallis sum-rank test to find features that have a significant difference in 

abundance between classes and then performs a series of pairwise tests among subclasses 

using unpaired Wilcoxon rank-sum test to find significant biological features. It finally 

applies Linear Discriminant Analysis to measure the effect size of each differentially 

abundant feature. 

The final tool that we used was Indicator which uses relative abundance and the 

relative frequency of occurrence to detect OTUs that are distinctive features (OTUs) of 

each of the groups under study. Using these four approaches, we identified significant 

features between groups and used them for training classifiers. We demonstrated that using 

statistically significant OTUs instead of all OTUs as classification features considerably 

improves classification accuracy, sensitivity, and specificity. 

5.3	Classification	and	data	mining	in	microbiome	studies	
Microbiome analyses are generally restricted to measuring taxon relative 

abundancies, analyzing alpha and beta diversity, exploring beta diversity patterns using 
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unsupervised learning techniques such as clustering and PCoA, and performing classical 

hypothesis testing. However, these methods are not able to classify unknown or unlabeled 

data or to extract noticeable features from highly complex or sparse datasets (Knight et al., 

2011). Supervised machine learning methods are useful for finding patterns in highly 

complex datasets like human microbiota surveys and help in finding predictive features to 

find the class for unlabeled data (Wisittipanit 2015). OTU abundance tables produced from 

the sequencing data and upstream bioinformatics analysis pipelines can be used as input 

training data for supervised machine learning methods to develop predictive models. In 

microbiome studies, the training data consists of the relative abundance of OTUs and a 

categorical variable that denotes the correct classification of that data (e.g., cancer and 

healthy disease states). The purpose of supervised classification is to derive a model from 

the training data with known classes and use it for assigning the correct class or category 

labels to new samples with unknown classes and identifying the features (OTUs) that can 

discriminate between classes (Knights et al., 2011). The classification model should neither 

be very general, as it would not be able to incorporate subtle but critical information 

(underfitting) nor too complicated, as it would be accurate for that particular dataset and 

not useful for a novel dataset (overfitting) (Knights et al., 2011). 

The study by Beck and Foster is one of the examples of using machine learning 

methods to make models of classification for a disease (Beck & Foster, 2014). They used 

eight different classifiers on bacterial vaginosis (BV) sequencing datasets. They found that 

classification models which were produced using genetic programming, random forests, 

and logistic regression can classify microbial communities into BV categories with an 
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accuracy of 80 to 90%. They tried to deconstruct classifier models to find out which 

features are essential for the accuracy but they observed different features for each 

classifier (Beck & Foster, 2014). Therefore, they designed another study to determine the 

critical features by adding the features sequentially to the models. In this study, they only 

used random forests and logistic regression classifiers. They showed that the models that 

are generated by logistic regression and random forests approaches perform the same and 

the main features that were detected were very similar. They concluded that only a few 

features were required for obtaining high accuracy and that most of the features were 

redundant (Beck & Foster, 2015). 

We undertook a comparison of eight classification methods -- four feature selection 

approaches and four accuracy metrics -- for three different datasets from different 

sequencing platforms. We focused on supervised classification methods, as unsupervised 

methods like clustering are designed to reveal the structure of the data to provide visual 

summaries and to help quality control, but they are not suitable for predictions and 

assigning naïve data to a specific class (Dupuy et al., 2007; Simon et al., 2003). We first 

performed classification with the complete relative abundance OTU table using all OTUs 

and then with relative abundance tables of just the significant OTUs. For all three datasets 

and all three OTU selection methods, the accuracy of classification, sensitivity, and 

specificity of classification as well as the area under the curve were improved by using the 

significant features demonstrating that most of the OTUs were redundant and removing 

them from the beginning improved the model performance. Furthermore, we could 



173 
 
 
 

conclude that decreasing the number of OTUs reduces the complexity of classification, 

leading to better-performing models. 

5.4	Bacterial	shifts	in	CRC	and	Adenoma	
Intestinal microbiota starts to develop before birth, and it will continue to evolve 

and increase the diversity by 3-5 years of age. Many factors are contributing to form the 

microbial structure such as genetics, delivery mode, diet, however, when it settles, the 

composition will not change dramatically unless an intervention like infection or antibiotics 

occurs. Any microbial shift will enhance the chance of disease development (Rodriguez et 

al., 2015). There are two bacterial compartments in the colon, the luminal and the mucosal. 

The luminal microbiota is thought to be transient, changes with diet, and is not 

representative of the localized epithelial and cryptal microbiota (Savage, 1977). On the 

other hand, the mucosal microbiota adheres to the surface-associated polysaccharide 

matrices of the colon and are resistant to colonic movement. Our findings show that the 

microbial structure of the intestinal lumen differs from the biopsies as reported in a number 

of previous studies (Chen et al., 2012; Mira-Pascual et al., 2015). 

Comparing detected bacterial taxa from different studies is challenging as they 

differ in important aspects such as sample collection and storage, DNA extraction methods, 

sequencing technology, chosen 16S variable region, and sequence analysis pipelines. 

Additionally, the 16S rRNA reference databases are different in many cases and these 

differences need to be considered when comparing the results of these studies. All of these 

aspects can affect the bacterial species that are identified in these various studies. In 

addition to this lack of standardization, the nature of the gut microbiome is inherently 
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dynamic and can differ among people based on their genetic background, host immune 

system, diet, age, geography, and use of antibiotics and other medications (Goodrich et al., 

2014; Hooper et al., 2012; Turnbaugh et al., 2008; Yatsunenko et al., 2012). Thus, different 

studies with different participants and methods may produce dissimilar results. 

Additionally, it is not clear whether changes in a few bacteria lead to altering health status 

or that the disease state changes a specific taxonomic group of bacteria or that changes the 

whole microbiota (i.e., dysbiosis) to induce disease. Therefore, studying the microbial 

changes in different health status becomes complex and sometimes confounded. 

Although bacterial dysbiosis has been reported in virtually all CRC/ adenoma 

microbiome studies as well as our research, the microbial features that have been found to 

differ significantly are not the same, or in some cases, are contradictory. Even for taxa that 

were shown to differ in the disease state, the direction of the shift is different in various 

studies. In addition, the bacterial abundance changes in different states of the disease have 

been reported to be different as reported in our study. 

5.4.1	Comparing	alpha	diversity	results	with	other	CRC/	adenoma	studies		
A summary of alpha diversity results from this study and seventeen other CRC and 

adenoma studies along those phyla significantly changed are summarized in Table 26. 

Six of these seventeen studies reported higher alpha diversity in adenoma or cancer 

groups, four studies observed lower diversity in the adenoma or cancer group, and three 

studies indicated no significant change in the diversity of the cancer or adenoma group 

compared to healthy control subjects (Shen et al., 2010; Sanapareddy et al., 2012; McCoy 

et al., 2013; Mira-Pascual et al., 2015; Chen et al., 2013; Ahn et al., 2013; Goedert et al., 
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2015; Hale et al., 2017). In our polyp study, alpha diversity was lower in biopsies from 

people with a polyp compared to those without a polyp as shown in Table 26. This lack of 

agreement among different studies could be attributed to the variability in study designs 

and technical differences or could be due to confounding clinical factors such as genetic 

background, diet, lifestyle, and medications. Additionally, the lack of internal standards for 

microbiome studies could contribute to variability among these various studies. 

5.4.2	Comparing	the	changes	of	bacterial	communities’	composition	at	phylum	
level	

The most commonly reported significant differences of microbe abundancies 

among healthy control, adenoma, and CRC samples are for Firmicutes, Bacteroidetes, and 

Proteobacteria phyla. Therefore, we compared abundancies of these three phyla in our 

polyp dataset and in seventeen other cohorts of patients described in the literature. 

Firmicutes and Bacteroidetes are the predominant phyla in the healthy human gut 

(Jandhyala et al., 2015). Reportedly, Firmicutes enhance energy harvest from the diet, 

while Bacteroidetes are involved in interactions with the mucosa (Costello et al., 2010; Ley 

et al., 2006; Turnbaugh et al., 2006; Joly et al., 2010). Proteobacteria directly interact with 

intestinal cells through bacterial secretion systems T2SS or T3SS (Beeckman & 

Vanrompay, 2010; Brown & Finlay, 2010).  

Some studies have shown increased abundance of Firmicutes in adenoma/ CRC 

samples while other studies reported relative depletion of this phylum (Sanapareddy et al., 

2012; Brim et al., 2013; Marchesi et al., 2011; Kostic et al., 2012; Wu et al., 2013; Ahn et 

al., 2013; Hale et al., 2017; Goedert et al., 2015). However, one study reported no 
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significant changes of abundance of this phylum in adenoma biopsies (Shen et al., 2010) 

as seen in Table 26. 

Reports of changes in Bacteroidetes abundance in disease states are also 

confounded. A number of reports described an increase in abundance of Bacteroidetes in 

patients with adenoma/ CRC while others reported a decrease in abundance of this phylum 

(Marchesi et al., 2011; Sanapareddy et al., 2012; Wu et al., 2013; Ahn et al., 2013; Mira-

Pascual et al., 2015; Goedert et al., 2015; Shen et al., 2010; Kostic et al., 2012; McCoy et 

al., 2013; Brim et al., 2013). These studies are summarized in Table 26. In our polyp 

dataset, Bacteroidetes and Firmicutes phyla were significantly more abundant in the polyp-

Y samples (Figure 47, Figure 48, and Figure 49). 
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Table 26 Comparison of the alpha diversity and the change of taxa abundance at phylum level in different 
adenoma and CRC studies. 

There is no consensus among various studies in the alpha diversity and bacterial abundance at phylum level for 
Bacteroidetes, Firmicutes, and Proteobacteria. In most of the studies, alpha diversity increased in the adenoma 

and cancer group. Proteobacteria has been reported to increase in the adenoma/ CRC state in most of the 
studies. Ad: Adenoma; CRC: colorectal cancer; H: Healthy; N/A: not available; N/S: not significant. 

Study Samples Disease 
state 

Alpha 
diversity 

Firmicutes Bacteroidetes Proteobacteria 

Shen et al. 
2010 

Mucosal biopsy Adenoma Ad>H N/S Ad<H Ad>H 

Marchesi et 
al. 2011 

Tumor/adjacent 
normal tissue 

CRC N/A CRC<H CRC>H N/A 

Chen et al. 
2012 

rectal swabs, 
fecal samples, 

tumor/ 
matching normal 

tissue 

CRC Tissue: 
Tumor< 
normal 

No change Tumor> 
normal 

Tumor< normal 

Swab: CRC<H No change CRC<H 
Stool CRC<H No change CRC>H 

Kostic et al. 
2012 

Tumor/matching 
normal 

CRC N/A Tumor< 
normal 

Tumor< 
normal 

N/A 

Sanapareddy 
et al. 2012 

Rectal mucosa 
biopsy 

Adenoma Ad>H Ad>H Ad>H Ad>H 

Wu et al. 
2013 

Fecal CRC N/S CRC<H CRC>H N/S 

McCoy et al. 
2013 

Rectal mucosa 
biopsy 

Adenoma CRC>H N/A CRC<H N/A 

Brim et al. 
2013 

Fecal Adenoma N/A Ad>H Ad<H Ad>H 

Ahn et al. 
2013 

Fecal CRC CRC<H CRC<H CRC>H N/A 

Zackular et 
al. 2014 

Fecal CRC & 
adenoma 

N/A N/A N/A N/A 

Mira-Pascual 
et al. 2015 

Fecal and biopsy CRC & 
adenoma 

CRC>Ad>H N/A Biopsy: CRC 
& Ad>H 

N/A 

Goedert et al. 
2015 

Fecal CRC & 
adenoma 

No change Ad<H Ad>H Ad>H 

Thomas et 
al., 2016 

Biopsy CRC CRC>H N/A CRC>H CRC<H 

Xu and Jiang 
2017 

Biopsy CRC & 
adenoma 

Ad<H (N/S) 
CRC>H 

(N/S) 
 

Ad<H 
(N/S) 

CRC>H 
 

N/A CRC<H 
Ad>H 

Gao et al. 
2017 

Tumor/matching 
normal 

CRC No 
significant 

change 

Tumor< 
normal 

Tumor> 
normal 

Tumor> normal 

Yoon et al. 
2017 

Biopsy CRC & 
adenoma 

CRC<H 
Ad<H 

CRC<H 
Ad>H 

CRC<H 
Ad>H 

CRC>H 
Ad<H 

Hale et al. 
2017 

Fecal Adenoma No change Ad<H Ad>H N/A 

Our polyp 
dataset 2016 

Fecal/ rectal 
swab/ biopsy 

Polyp Biopsy: 
Polyp-

Y<polyp-N 

polyp-
Y>Polyp-N 

polyp-
Y>Polyp-N 

polyp-Y<Polyp-
N 

Swab: No 
change 

polyp-
Y>Polyp-N 

polyp-
Y>Polyp-N 

polyp-Y>Polyp-
N 
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Study Samples Disease 
state 

Alpha 
diversity 

Firmicutes Bacteroidetes Proteobacteria 

stool: No 
change 

polyp-
Y>Polyp-N 

polyp-
Y>Polyp-N 

polyp-Y>Polyp-
N 

 
 

 

 
Figure 47 Bacterial changes at phylum level in the polyp biopsy (BS) samples. 

The dominant phyla of the colon, Bacteroidetes, and Firmicutes are increased in the polyp-Y group compared to 
the polyp-N group. 
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Figure 48 Bacterial changes at phylum level in the polyp stool (HS) samples. 

The most dominant phyla of the colon, Bacteroidetes, Firmicutes, and Proteobacteria are increased in the polyp-
Y group compared to the polyp-N group. 
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Figure 49 Bacterial changes at phylum level in the polyp swab (SS) samples. 

The most dominant phyla of the colon, Bacteroidetes, Firmicutes, and also Proteobacteria are increased in the 
polyp-Y group compared to the polyp-N group. 

 

Among the seventeen studies of adenoma/ CRC listed in Table 26, eight datasets 

contained information on Proteobacteria. Speaking generally, observations on 

Proteobacteria abundance in the adenoma studies are somewhat more consistent than that 

for Bacteroidetes. In five out of six adenoma studies which reported Proteobacteria 

abundance, this phylum was represented at higher levels in the adenoma state (Shen et al., 

2010; Sanapareddy et al., 2012; Goedert et al., 2015; Brim et al., 2013, Xu & Jiang, 2017). 

Only one, relatively small study reported lower Proteobacteria abundance in the adenoma 

state (Yoon et al., 2017). Among six CRC studies reporting the Proteobacteria abundancies 
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there was no consensus. Two studies detected higher Proteobacteria abundance with CRC, 

and two datasets reported lower abundance with CRC (Thomas et al., 2016; Xu & Jiang, 

2017; Gao et al., 2017; Yoon et al., 2017). In one study that analyzed three types of samples 

-- tumor, swab, and stool -- an increase of Proteobacteria abundance in the stool of the CRC 

group and a decrease of this phylum in both the tumor and swab samples were reported 

(Chen et al., 2012).  

In our own polyp dataset, analysis of both rectal swabs and stool samples revealed 

an increase in Proteobacteria abundance. However, in biopsies of the polyps, the abundance 

of Proteobacteria was paradoxically lower compared to the normal colon biopsies (Figure 

47).  

There is no consensus on the Firmicutes and Bacteroidetes changes with CRC when 

compared to the healthy state. As it is shown in Table 26, previous studies do not agree 

with each other. As mentioned before, one of the main reasons for this discrepancy could 

be the lack of standards for microbiome analysis or some unaccounted intrinsic differences 

between the microbiome of these cohorts. Another factor could be the sample size, as some 

of these studies recruited a low number of subjects. This observation is also true for other 

taxonomic levels. For example, in a study performed on CRC and adenoma samples, it has 

been shown that there are many genera, like Blautia and Prevotella, that were absent in 

healthy control subjects and present with polyps or tumors (Mira-Pascual et al., 2015). 

However, in our biopsy samples, both genera were present in both groups, and they were 

lower in polyp-Y compared to polyp-N, as shown in Figure 41. 
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5.4.3	Comparing	the	changes	of	bacterial	communities’	composition	at	the	
genus	level	

In previous CRC/ adenoma studies, significant changes in abundance between 

disease and healthy control groups were reported for some genus-level taxa. A few 

examples of this kind are Fusobacterium, Bacteroides, Blautia, Bifidobacterium, 

Roseburia, and Faecalobacterium (Marchesi et al., 2011; Chen et al., 2012; Kostic et al., 

2012; Wu et al., 2013; Ahn et al., 2013; Mira-Pascual et al., 2015; Zackular et al., 2014; 

Shen et al., 2010; Brim et al., 2013; Goedert et al., 2015; Nugent et al., 2014; Chen et al., 

2013). Table 27 shows the direction of change in abundance for these taxa in the studies 

cited above and in the MBO1 polyp dataset. 
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Table 27 Comparison of the frequently reported genera between our polyp dataset and seventeen previous 
adenoma/ CRC studies.  

For most of these taxa, no consensus conclusion of enrichment or depletion can be deduced from these studies. 
Fusobacterium showed enrichment in all CRC groups, however, in adenoma, it showed mostly depletion than 
enrichment in the disease state. Bifidobacterium reported to significantly decrease in the CRC and adenoma 

groups in two studies. However, other studies have not reported these taxa as a significant feature. Ad: 
adenoma; CRC: colorectal cancer; H: healthy; N/A: not available; N/S: not significant. 

Study Samples Diseas
e state 

Fusobacter
ium 

Bacteroi
des 

Blauti
a 

Bifidobacte
rium 

Rosebu
ria 

faecalobacte
rium 

Shen et 
al. 2010 

Mucosal 
biopsy 

Adeno
ma 

N/A Ad<H N/A N/A N/A Ad>H 

Marchesi 
et al. 
2011 

Tumor/adja
cent normal 

tissue 

CRC Tumor> 
normal 

N/A N/A N/A Tumor
> 

normal 

CRC>H 

Chen et 
al. 2012 

tumor/ 
matching 
normal 
tissue 

Intestinal 
lumen, 
mucosa 
(rectal 
swabs), 

fecal 
samples, 

CRC Tissue: 
N/A 

Tumor> 
normal 

Tumor
< 

normal 

N/A Tumor
< 

normal 

CRC>H 

Swab: 
CRC>H 

N/A CRC<
H 

CRC<H N/A CRC<H 

Stool: N/A N/A N/A N/A N/A N/A 

Kostic et 
al. 2012 

Tumor/matc
hing normal 

CRC Tumor> 
normal 

N/A N/A N/A N/A N/A 

Sanapare
ddy et al. 

2012 

Rectal 
mucosa 
biopsy 

Adeno
ma 

N/A N/A N/A N/A N/A N/A 

Wu et al. 
2013 

Fecal CRC CRC>H CRC>H CRC>
H 

N/A CRC<
H 

CRC<H 

McCoy et 
al. 2013 

Rectal 
mucosa 
biopsy 

Adeno
ma 

Ad>H N/A N/A N/A N/A N/A 

Brim et 
al. 2013 

Fecal Adeno
ma 

N/A Ad<H N/A N/A No 
change 

Ad>H 

Ahn et al. 
2013 

Fecal CRC CRC>H N/A N/A N/A N/A N/A 

Zackular 
et al. 
2014 

Fecal CRC 
& 

adeno
ma 

CRC>H Ad<H 
CRC<H 

Ad>C
RC 

N/A N/A N/A 

Mira-
Pascual 

et al. 
2015 

Fecal and 
biopsy 

CRC 
& 

adeno
ma 

Mucosal: 
CRC>H 

Stool: 
CRC>H 

Biopsy
: 

Ad>H 

Stool: 
Ad<H 

CRC<H 

N/A N/A 
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Study Samples Diseas
e state 

Fusobacter
ium 

Bacteroi
des 

Blauti
a 

Bifidobacte
rium 

Rosebu
ria 

faecalobacte
rium 

CRC>
H 

Goedert 
et al. 
2015 

Fecal CRC 
& 

Adeno
ma 

Ad<H Ad<H 
Ad>H 

Ad<H 
Ad>H 

N/A N/A N/A 

Thomas 
et al., 
2016 

Biopsy CRC CRC>H CRC>H N/A N/A CRC>
H 

N/A 

Xu and 
Jiang 
2017 

Biopsy CRC 
& 

adeno
ma 

CRC>H 
Ad<H 

CRC>Ad
>H 

CRC<
H 

N/A N/A CRC<H 

Gao et al. 
2017 

Tumor/matc
hing normal 

CRC Tumor> 
normal 

Tumor> 
normal 

N/A N/A N/A Tumor< 
normal 

Yoon et 
al. 2017 

Biopsy CRC 
& 

adeno
ma 

N/A CRC<H 
Ad>H 

CRC<
H 

Ad>H 

N/A N/A CRC<H 
Ad>H 

Hale et 
al. 2017 

Fecal CRC No 
enrichment 
in adenoma 

N/A N/A N/A N/A N/A 

Our 
polyp 

dataset 
2016 

Fecal/ swab/ 
biopsy 

Polyp Biopsy: 
polyp-

Y<polyp-N 
(N/S) 

polyp-
Y> 

polyp-N 

polyp-
Y< 

polyp-
N 

No change polyp-
Y< 

polyp-
N 

(N/S) 

polyp-Y< 
polyp-N 

Swab: 
polyp-Y< 
polyp-N 

(N/S) 

polyp-
Y> 

polyp-N 

polyp-
Y> 

polyp-
N 

No change polyp-
Y> 

polyp-
N 

(N/S) 

polyp-Y> 
polyp-N 

Stool: 
polyp-Y< 
polyp-N 

(N/S) 

polyp-
Y> 

polyp-N 

polyp-
Y> 

polyp-
N 

No change polyp-
Y> 

polyp-
N 

(N/S) 

polyp-Y< 
polyp-N 

 
 

Fusobacterium: Ten of seventeen studies summarized in Table 27 reported an 

increase of Fusobacterium abundance in cancer patients compared to healthy control 

subjects (Marchesi et al., 2011; Chen et al., 2012; Kostic et al., 2012; Wu et al., 2013; Ahn 
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et al., 2013; Zackular et al., 2014; Mira-Pascual et al., 2015; Thomas et al., 2016; Xu & 

Jiang, 2017; Gao et al., 2017). Among nine adenoma studies listed in Table 27, only three 

reported associations of adenomatous growth with Fusobacterium (McCoy et al., 2013; 

Goedert et al., 2015; Xu & Jiang, 2017). McCoy et al., observed that Fusobacterium 

abundance was significantly higher in adenomas as compared to non-adenoma samples. In 

their study, a high level of Fusobacterium increases the chance of finding adenoma by 3.5 

fold. Moreover, a positive correlation between Fusobacterium presence and cytokine levels 

was reported in the adenoma cohort. Specifically, a significant association between the 

levels of TNF-α, a cell signaling protein involved in systemic inflammation, and the 

abundance Fusobacterium level was reported (McCoy et al., 2013). On the other hand, the 

other two studies reported a lack of Fusobacterium enrichment in the adenoma group 

(Goedert et al., 2015; Xu & Jiang, 2017). Another recent study also reported no significant 

change in the abundance of Fusobacterium in the advanced and non-advanced adenoma 

group as compared to colonoscopically healthy control adults (Amitay et al., 2017). 

 In the MBO1 polyp cohort, Fusobacterium only showed a marginal decrease of its 

abundance in the biopsy, stool, and rectal swabs. It is possible that the pathways of 

polypogenesis are different from that of carcinogenesis and may depend on the 

invasiveness of the polyps which may, in turn, be reflected in observed discrepancies of 

association of Fusobacterium abundance. Additionally, the different experimental and 

analytical pipelines among the studies could be confounding this observation. 

Kostic et al. showed that Fusobacterium changes the tumor immune 

microenvironment in a way that could induce inflammation and tumorigenesis which, in 
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turn, may promote adenoma and CRC (Kostic et al., 2012). They suggested that early 

somatic mutations might generate an optimal environment for Fusobacterium spp. to 

colonize the mucosa, while the subsequent progression of colonization could promote 

myeloid cell-mediated immune responses capable of activating inflammatory pathways 

and stimulating further progression of the tumor (Kostic et al., 2013). The products 

generated by Fusobacteria, such as formyl-methionyl-leucyl-phenylalanine and short 

chain fatty acids, are also reported as myeloid cell chemoattractants. In turn, the expansion 

of myeloid-derived immune cell types can promote tumor progression (Qian and Pollard, 

2010). The abundance of Fusobacterium species has also been shown to be correlated with 

inflammatory bowel diseases (IBD), including both ulcerative colitis and Crohn’s disease 

(Neut et al., 2002; Ohkusa et al., 2002; Strauss et al., 2011). Notably, ulcerative colitis is 

considered as one of the most important risk factors for colorectal cancer.  

Bacteroides: Bacteroides species are gram-negative, anaerobic, bile-resistant, non-

spore-forming butyrate-producing bacteria. Butyrate is a short chain fatty acid that has been 

shown to be effective in preventing inflammation through regulatory T-cells and controls 

proinflammatory cytokine expression (Cushing et al., 2015; Furusawa et al., 2013; Chang 

et al., 2014). This short chain fatty acid is also a histone deacetylase inhibitor and has a 

role in preventing colonic tumors and promoting normal cell proliferation, differentiation, 

and apoptosis. Additionally, butyrate modulates the Wnt signaling pathway involved in the 

development of colorectal cancer (Malcomson et al., 2015). Many Bacteroides species 

have been isolated from human stool. Bacteroides fragilis (B. fragilis) is the most common 

Bacteroides species found in clinical specimens, and it has been reported to have virulent 
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properties in some instances. Bacteroides becomes a part of the intestinal microbiota early 

in life as it can pass from mother to the child during the vaginal birth (Reid, 2004). B. 

fragilis is generally considered to be a beneficial bacterium, but it can be pathogenic if it 

escapes from the gut to other body sites such as the abdomen, brain, liver, and lungs 

(Wexler, 2007). 

Among the studies listed in Table 27, there are reports of both decrease and increase 

of this genus in the CRC and adenoma cohorts with respect to the control groups. The 

number of studies detecting a higher abundance of Bacteroides in the cancer states are 

higher than the number of studies observing lower abundance of this genus (Chen et al., 

2012; Wu et al., 2013; Zackular et al., 2014; Mira-Pascual et al., 2015; Thomas et al., 2016; 

Xu & Jiang et al., 2017; Gao et al., 2017; Yoon et al., 2017). However, for the adenoma 

cohorts, almost half detected enrichment and half reported depletion of Bacteroides in the 

adenoma state (Shen et al., 2010; Brim et al., 2013; Zackular et al., 2014; Yoon et al., 

2017). There is even one study that reported both decrease and increase of Bacteroides taxa 

in the adenoma state which can be because of the differences in the subtaxa (Goedert et al., 

2015). In the three datasets we studied, there was more than one OTU classified as 

Bacteroides, and there was no consistent pattern of decrease or increase in the adenoma 

and cancer groups compared to healthy control samples. In our polyp dataset, all detected 

Bacteroides genera were higher in the polyp-Y group than polyp-N. However, in 

Benchmark-1, there were 3 OTUs assigned as Bacteroides that either decreased or 

increased in adenoma compared to the healthy control group. Between the healthy control 

and the cancer groups, there was a decrease of Bacteroides in the cancer group compared 
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to the healthy control group. Benchmark-2 had more than one OTU assigned as 

Bacteroides, and their abundance either decreased or increased in the cancer group 

compared to the healthy control. As many different species and strains with potentially 

different functionalities can exist in the same genus, it is not that surprising that some of 

the Bacteroides taxa were decreased while others were increased in the disease state. 

Enterotoxigenic Bacteroides fragilis: Enterotoxigenic B. fragilis (ETBF) is a 

virulent bacterium that produces a toxin named fragilysin or B. fragilis toxin (BFT). BFT 

can stimulate both inflammatory responses and cell proliferation. The inflammatory effect 

of BFT occurs through activating the nuclear factor kappa B which stimulates 

inflammatory mediators. These mediators promote inflammation which is a risk factor for 

CRC (Sears et al., 2009; Shiryaev et al., 2013). The proliferation effect of ETBF occurs 

through activating the Wnt/ β-catenin signaling pathway which increases cell proliferation 

(Sokol et al., 1999). In the APC minus mouse model3, Wu et al., showed that ETBF could 

promote tumorigenesis and increases the chance of colon adenoma and tumor formation in 

mice colonized with ETBF compared to control mice (Wu et al., 2009). Tumorigenesis 

effect of ETBF can also occur through other pathways such as activating STAT3, inducing 

IL-17 cytokine, and inducing spermine oxidase-dependent reactive oxygen species (ROS) 

production which causes DNA damage (Tosolini et al., 2011; Goodwin et al., 2011). These 

studies suggest that there is a link between bacterial antigens, virulence factors, colon 

adenomas, and CRC. 

                                                   
3 Multiple intestinal neoplasia mouse that carries a truncation mutation at codon 850 of 
the Apc gene. The Min mouse can develop up to 100 polyps in the small intestine in 
addition to colon tumors. 
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In Benchmark-1, B. fragilis abundance was higher in cancer compared to adenoma. 

In Benchmark-2, there was a significantly higher abundance of B. fragilis in the cancer 

group compared to the healthy control group. However, in MBO1 polyp dataset, the level 

of B. fragilis showed a reduction in the polyp-Y group. Thus, our study does not support 

B. fragilis playing a role in the polypogenesis pathway. 

Blautia: Blautia is a butyrate-producing bacterium that belongs to the Firmicutes 

phylum and Clostridial order. Most butyrate producers in the human colon belong to the 

Firmicutes phylum and in particular the clostridial clusters IV and XIVa (Louis and Flint, 

2009; Van den Abbeele et al., 2013; Vital et al., 2014). Blautia is known to digest complex 

carbohydrates, and an abundance of these bacteria is a strong indication of a healthy gut. 

As such, it is usually reported that the abundance of Blautia decreases in colorectal cancer 

patients as compared to the healthy control individuals (Chen et al., 2012; Goedert et al., 

2015; Xu & Jiang, 2017; Yoon et al., 2017). However, there are also reports of an increased 

abundance of this genus in the disease state (Wu et al., 2013; Mira-Pascual et al., 2015; 

Goedert et al., 2015 Yoon et al., 2017). 

In the Benchmark-1, the abundance of two Blautia OTUs was low in the CRC group 

when compared to the healthy control group. However, there was another Blautia OTU 

that was increased in the adenoma group compared to the healthy control. In Benchmark-

2, the genus Blautia was significantly lower in the cancer group compared to the healthy 

group. 

In the polyp dataset, two different OTUs were assigned as Blautia in the biopsy 

samples that were significantly lower in the polyp-Y group compared to the polyp-N group. 
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In stool samples and rectal swabs, there were two OTUs classified as Blautia, and they 

were higher in the polyp-Y group. Based on these observations, Blautia was decreased in 

the CRC state, but in the adenoma state either increases or decreases can be seen. 

Differential abundance may depend on whether the adenoma is benign or aggressive 

suggesting that the potential effect of strains of this genus on the polyposis or 

carcinogenesis pathways may be different. As we did not have additional detailed clinical 

information about the patients with the polyps, we could not further clarify the reason 

behind this pattern in different sample types. 

Bifidobacterium: Members of the genus Bifidobacterium are gram-positive 

anaerobic bacteria that are part of the gastrointestinal tract, vagina, and mouth microbiota 

(Duranti et al., 2016). This genus is one of the main genera of Actinobacteria that makes 

up the colon microbiota in mammals. In infants, Bifidobacterium may constitute 95% of 

the fecal microbiota of breastfed babies, but after weaning and exposure to food-derived 

and environmental microorganisms, the relative abundance of Bifidobacterium is reduced. 

In adults, Bifidobacterium makes up about 3–6% of all bacteria. Bifidobacterium is known 

to produce short-chain fatty acids that decrease the gut pH, form biological barriers, and 

secrete anti-microbial compounds that attenuate harmful bacteria (Bottacini et al., 2016; 

Liao et al., 2016). Chen et al. and Mira-Pascual et al. have shown Bifidobacteria depletion 

in the cancer and adenoma patients (Chen et al., 2013; Mira-Pascual et al., 2015). However, 

in other studies and in our polyp dataset, there was no significant change for this genus 

possibly because the abundance levels were too low for detection. 
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Roseburia: Roseburia spp. are commensal bacteria that produce short-chain fatty 

acids, particularly butyrate which affects colonic motility and immunity maintenance and 

has anti-inflammatory properties. Depletion in Roseburia spp. abundance may affect 

various metabolic pathways and be associated with several diseases including irritable 

bowel syndrome, obesity, Type 2 diabetes, nervous system conditions, and allergies. 

Roseburia spp. could also serve as probiotics for the restoration of a beneficial microbiota 

(Tamanai-Shacoori et al., 2016). As Roseburia produces large amounts of butyrate by 

fermenting dietary carbohydrates, it may be critical for the control of inflammatory 

processes, especially in the colon (Louis et al., 2010; Louis et al., 2014; Pryde et al., 2002; 

Tamanai-Shacoori et al., 2016). 

Two of the seventeen studies reported enrichment of Roseburia in CRC samples, 

and two other studies showed depletion of this taxon in the cancer group (Marchesi et al., 

2011; Thomas et al., 2016; Chen et al., 2012; Wu et al., 2013). None of the adenoma studies 

we investigated showed changes in Roseburia taxa. In MBO1 polyp dataset, we did detect 

a decrease in the abundance of this taxon in biopsy samples and an increase in abundance 

in the swab and fecal samples of the polyp-Y group, although these changes were not 

statistically significant. 

Faecalibacterium: Faecalibacterium is commonly present in the gastrointestinal 

tract and is recognized as a commensal bacterium. Faecalibacterium prausnitzii (F. 

prausnitzii) is a dominant species of the Clostridium leptum group and is one of the most 

abundant anaerobic bacteria in the human gut (Arumugam et al., 2011). F. prausnitzii plays 

a key role in maintaining intestinal health and providing energy to the colonocytes (Louis 
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& Flint, 2009). It has also been shown that F. prausnitzii levels were decreased in IBD 

patients compared with healthy control controls (Yang et al., 2008). Three of the studies 

listed in Table 27 found that Faecalibacterium spp. were increased in adenoma subjects 

(Shen et al., 2010; Brim et al., 2013; Yoon et al., 2017) and Marchei et al. reported an 

increase of this genus in CRC cases (Marchesi et al., 2011). Chen et al. reported an increase 

of Faecalibacterium in CRC tissue while they found a decrease of this taxon in the swab 

samples (Chen et al., 2012). Four other studies demonstrated a decrease of 

Faecalibacterium in the CRC group (Wu et al., 2013; Xu & Jiang, 2017; Gao et al., 2017; 

Yoon et al., 2017). In our polyp dataset, biopsies and stool samples had a higher abundance 

of F. prausnitzii. However, the swabs showed a lower abundance of this taxon. Thus, we 

did not find a consistent pattern for the change of F. prausnitzii with respect to adenoma 

and CRC based on these studies. 

5.5	Finding	common	OTUs	among	three	datasets	
In our analysis of two benchmarks and MBO1 polyp dataset, there were some 

OTUs that showed a significant change in all three datasets such as genera Bacteroides, 

Blautia, Oscillospira, Ruminococcus, and Suterrella at the genus level. At the species level, 

we observed that Bacteroides fragilis was significantly different between the groups in all 

three datasets as showed in Table 28, however, the direction of change was not the same 

as it showed in Table 29. We discussed the function of Bacteroides and Blautia in the 

previous section and more information will be provided about the rest of these ubiquitous 

genera here. The direction of changes of these taxa is shown in Table 29. 
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Table 28 The OTUs that showed a significant change in all three datasets of Benchmarks 1, 2, and MBO1 polyp 
dataset. 

One OTU at the species level, seven at the genus level, two at the family level, and one at the order level were 
detected. 

No. OTU taxonomy 

1  p_Firmicutes;c_Clostridia;o_Clostridiales; 

2  p_Firmicutes;c_Clostridia;o_Clostridiales;f_Lachnospiraceae; 

3  p_Firmicutes;c_Clostridia;o_Clostridiales;f_Ruminococcaceae; 

4  p_Bacteroidetes;c_Bacteroidia;o_Bacteroidales;f_Bacteroidaceae;g_Bacteroides; 

5  p_Bacteroidetes;c_Bacteroidia;o_Bacteroidales;f_Bacteroidaceae;g_Bacteroides;s_fragilis 

6  p_Firmicutes;c_Clostridia;o_Clostridiales;f_Lachnospiraceae;g_Blautia; 

7  p_Firmicutes;c_Clostridia;o_Clostridiales;f_Ruminococcaceae;g_Oscillospira; 

8  p_Firmicutes;c_Clostridia;o_Clostridiales;f_Ruminococcaceae;g_Ruminococcus; 

9  p_Firmicutes;c_Clostridia;o_Clostridiales;f_Lachnospiraceae;g_Ruminococcus; 

10  p_Proteobacteria;c_Betaproteobacteria;o_Burkholderiales;f_Alcaligenaceae;g_Sutterella; 

11  p_Bacteroidetes;c_Bacteroidia;o_Bacteroidales;f_Porphyromonadaceae;g_Parabacteroides; 

 

Oscillospira: Oscillospira is an anaerobic bacterial genus from Clostridial cluster 

IV that has been detected in gut microbiota in several recent 16s rRNA studies and was 

associated with some traits like leanness (Makivuokko et al., 2010). This genus is less 

abundant in patients with inflammatory bowel disease compared to healthy control 

individuals (Walters et al., 2014). Oscillospira species are butyrate producers, and some of 

these species may digest glucuronate common in a meat-based diet and also produced by 

human cells. Some of the Oscillospira species may also digest host glycans and produce 

butyrate. In type II diabetes, a reduction in butyrate-producing bacteria has also been 

reported (Qin et al., 2012; Karlsson et al., 2013). Butyrate may also be critical in metabolic 

diseases (Arora and Backhed, 2016) and it has been reported to be reduced in several 
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inflammatory diseases (Zhu et al., 2013; Walters et al., 2014). Thus, as a butyrate producer, 

Oscillospira may be very important to human health (Gophna et al., 2017). 

In Benchmark-1, Oscillospira was significantly lower in adenoma than healthy 

control individuals, but the difference between the cancer group and the healthy control 

group was not significant. In contrast, this genus showed a significant increase in the cancer 

group compared to the healthy control group in Benchmark-2. In the biopsy and stool 

samples collected from patients of the polyp-Y cohort, Oscillospira abundance was 

significantly reduced, however, in rectal swabs taken from the same cohort, one 

Oscillospira OTU decreased while another increased. Again, there is no consistent pattern 

for this genus. 

Ruminococcus: Ruminococcus is a gram-positive bacterium that resides in the 

human gut and can digest resistant starches and complex carbohydrates in high fiber foods 

like lentils, beans, and unprocessed whole grains (Ze et al., 2012). Ruminococcus bromii 

is found to be increased in abundance in the microbiome of individuals with resistant starch 

diet (Walker et al., 2011; Ze et al., 2012). The slow digestion of these particular 

carbohydrates by Ruminococcus has been associated with numerous health benefits such 

as reversing infectious diarrhea, reducing the risk of diabetes, and preventing colon cancer 

(Ramakrishna et al., 2000; Niderman-Meyer et al., 2010; Robertson et al., 2005; Young et 

al., 2005; Le Leu et al., 2009). One species of Ruminococcus has been associated with 

increased severity of irritable bowel syndrome, but most species are vital and necessary for 

healthy digestive function (Malinen et al., 2010). 
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In the Firmicutes phylum, the genus Ruminococcus has a very high phylogenetic 

diversity (Rajilic-Stojanovic & De Vos, 2014) and there are many misclassified species in 

this genus. Some Ruminococcus species were recently reclassified as the genus Blautia 

(Liu et al., 2008). 

We observed that there was a reduction of Ruminococcus in cancer and adenoma 

samples compared to the healthy control group in Benchmark-1, whereas in Benchmark-2, 

this genus showed an increase in the cancer group. In biopsy samples of the polyp study, 

there were four Ruminococcus OTUs that were higher in the polyp-Y group and one OTU 

with a lower abundance in the polyp-Y group. However, in stool and rectal swab samples, 

Ruminococcus was higher in the polyp-Y group. Therefore, the pattern of change is not the 

same in all of these datasets. 

Sutterella: Sutterella species are Gram-negative, anaerobic or microaerophilic 

rods, are bile-resistant, and are asaccharolytic, (Wexler, 2005). In some individuals, 

Sutterella is a normal part of the microbiota. However, Sutterella has also been detected in 

intestinal biopsy and stool of patients with Crohn’s disease and ulcerative colitis (Mangin 

et al., 2004; Gophna et al., 2006). In a comprehensive study on adenoma, Sutterella has 

been reported to be a significantly enriched taxon in the adenoma group and it was 

proposed as one of the four taxa that can predict adenomatous polyps (Hale et al., 2017). 

In contrast, another study reported a lower abundance of Sutterella wadsworthia in 

adenoma stool samples compared to the healthy control group (Brim et al., 2013). The 

genus Sutterella was higher in the cancer group compared to the adenoma group in 

Benchmark-1. However, in Benchmark-2, Sutterella was lower in the cancer state with 
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respect to the healthy control subjects. In polyp dataset, biopsies showed a higher 

abundance of Sutterella in the polyp-Y group while rectal swabs had a lower abundance of 

this genus in the polyp-Y group. Again, there is lack of consistency in the observations 

among different studies. 

 
Table 29 The direction of change for common significant OTUs among three studies. 

It is hard to find a regular pattern of change for these taxa as different studies are not the same regards to the 
technical aspects and recruited population. H: Healthy; Ad: Adenoma; Ca: Cancer; PY: polyp-Y; PN: polyp-N. 

 Benchmark-1 Benchmark-
2 

MBO1 polyp dataset 

Groups Ad-H Ca-H Ad-Ca Ca-H Biopsy Stool swabs 
Bacteroides Ad<H 

Ad>H 
Ca<H Ca>Ad Ca<H 

Ca>H 
PY>PN PY>PN PY>PN 

Bacteroides fragilis N/S N/S Ca>Ad Ca>H PY<PN N/S N/S 
Blautia Ad>H Ca<H Ca<Ad Ca<H PY<PN PY>PN PY>PN 
Oscillospira Ad<H N/S N/S Ca>H PY<PN PY<PN PY>PN 

PY<PN 
f_Ruminococcaceae; 
g_Ruminococcus 

Ad<H Ca<H Ca<Ad Ca>H PY<PN 
PY>PN 

PY>PN PY>PN 

f_Lachnospiraceae; 
g_Ruminococcus; 

N/S N/S N/S Ca>H PY<PN N/S PY>PN 

Sutterella N/S N/S Ca>Ad Ca<H PY>PN N/S PY<PN 
Parabacteroides Ad<H N/S N/S Ca>H N/S N/S PY>PN 

 
 

5.6	Strengths	and	weaknesses	of	this	study	
Like any research project, there are strengths and weaknesses for this study. This 

study was a clinical trial with human subjects that brings up several limitations to keep 

everything as planned and ultimately collect all type of sample and clinical information.  
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A few notable strengths are: 

1. Large sample size: compared to other CRC/ adenoma microbiome studies, we had 

a superior number of participants (218 subjects in total which may have reduced 

the rate of type II errors (incorrectly retaining a false null hypothesis). 

2. Three different sample types: biopsy, stool, and rectal swabs were collected from 

the subjects. We were able to show that if the sample type is different, the diversity 

and abundance patterns may not be the same. 

3. Using three OTU clustering approaches: the most widely used OTU clustering 

approaches that are available in QIIME, Mothur, and USEARCH were used in this 

study, and the results were compared to each other. We determined that USEARCH 

was the preferred method. 

4. Four statistical tests were used in this study to help to extract statistically significant 

OTUs for downstream analysis. As many of the OTUs were not significantly 

changed between disease and healthy states, removing them from the further 

analysis reduced the computational expense and improved the accuracy of 

classification and identification of bacteria that are associated with the disease 

condition. 

5. More than one classification approach was used. Therefore, we determined which 

of these classification methods could make better performing classifiers. 
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Some of the limitations of this project are: 

1. The clinical information about our subjects was not complete. We did not have diet 

information so we could not assess the effects of diet on the microbiome disease 

associations. 

2. The design was cross-sectional, which precludes analysis of temporality and 

conclusions about etiology rather than mere associations. 

3. More statistical tests and machine learning methods are available that could be used 

to find efficient OTUs in polypogenesis and predict classifiers for unknown 

samples. 
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6 CONCLUSIONS 

In this dissertation, two published studies of colorectal cancer and adenoma, as well 

as a dataset from our polyp study were analyzed using three fundamentally different 

analytic pipelines: UPARSE, UPGMA, and UCLUST. These pipelines differ from each 

other with respect to their speed, memory usage, the number of detected OTUs, and the 

taxonomy of the OTUs. In addition, the number of significant OTUs detected by each 

pipeline was different. Among these three clustering approaches, UPARSE was faster than 

the other two methods, and UCLUST was the slowest. In addition, UPARSE returned the 

lowest number of OTUs and UCLUST the highest. Alpha and beta diversity outputs of the 

pipelines differed by actual diversity values, but adequately described general diversity 

trends. Use of OTUs identified by the UPARSE algorithm allowed the derivation of better-

performing classifiers as compared to OTUs extracted using either UCLUST or UPGMA.  

In conclusion, each of these analytic approaches has its advantages and 

disadvantages. Therefore, researchers should select an appropriate analytic pipeline 

depending on the nature of their datasets and the study aims. In general, UPARSE is the 

preferable clustering algorithm of three algorithms compared. Moreover, our study 

supports the current understanding that UCLUST outputs are more or less stochastic. 

We hypothesized that prior feature selection would improve classification accuracy 

using machine learning. When only OTUs that significantly changed between binary 
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groups were used as inputs, the machine-learning algorithms generated classifiers that 

performed better than those generated using all detected OTUs without pre-selection. 

Therefore, we recommend adding statistical preselection steps to the 16S analytic 

pipelines. In this way, the number of features is reduced to the most informative OTUs. As 

an added benefit, an analysis of reduced dataset would require less computational power.  

Three different types of samples were collected for the polyp malignancy study: the 

biopsy, the rectal swab, and the stool. When individuals with polyps were compared to 

ones with normal colonoscopy results, their microbial profiles were different in all three 

types of the specimens. Even for the same individual, the microbial profiles of their biopsy, 

stool, and rectal swabs differed. These observations confirm ones made in previous studies 

(Chen et al., 2012; Mira-Pascual et al., 2015). 

We expected to see that the comparison of OTUs (i.e., taxa) reported in previously 

published studies and those identified in our own work would have many common species 

and they would change their abundance along with the appearance of polyps. Indeed, some 

bacterial taxa highlighted by our study were previously reported to be associated with 

adenoma/CRC. These include the Firmicutes, Bacteroidetes, and Proteobacteria phyla, 

Bacteroides, Roseburia, Bifidobacterium, Faecalibacterium, and Blautia genera, as well 

as Bacteroides fragilis and Faecalibacterium prausnitzii species. However, the direction 

of change was not collinear between in all the studies. One possible explanation for this 

phenomenon is the difference in species and strain composition between study populations 

and partial overlap between the biochemical functions of particular microbes. Another 

possible explanation is the presence of certain clinical confounders (e.g., the differences in 
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BMI, age, and medications), ethnic backgrounds, dietary habits, or last, but not least, by 

the differences in the sequencing methods employed, 16S variable region analyzed, and 

analytic pipelines which heavily influence the study outputs. Even more peculiar, the 

patterns of observed changes differed depending on kind of collected sample: the biopsy, 

the rectal swab, or stool.  

Roseburia, Bifidobacterium, Faecalibacterium, and Blautia are commensal 

bacteria that produce short-chain fatty acids, particularly the butyrate. Speaking generally, 

these bacteria are beneficial for the body as they play a role in colonic motility, immunity 

maintenance and anti-inflammatory responses (Tamanai-Shacoori et al., 2017). In the 

studies of CRC and adenoma cohorts, there is no consensus on enrichment or depletion of 

these microorganisms. On one hand, the progression of a polyp toward becoming 

malignant may be accompanied by genuine shifts in abundance of these beneficial bacterial 

taxa. On the other hand, the gut microbiome may shift to increase the number of beneficial 

bacteria in order to maintain homeostasis in the failing mucosal barrier, thus explaining 

disease associated increases in abundance of these beneficial genera in the disease state 

reported in some of the studies. In MBO1 polyp data set, the abundancies of 

Bifidobacterium, Faecalibacterium, and Blautia are decreased in polyp biopsies as 

compared to normal colon mucosa, while in the rectal swabs and stool samples of the 

patients with polyps, their abundance (except for Faecalibacterium) were higher than that 

in patients with healthy colons. Possibly, the polyp-associated gut microbiota shifts relative 

abundancies toward more harmful bacteria, while beneficial bacteria are displaced into the 

lumen and gradually shed with the stool. 
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In our study, in patients with the polyps, pathogens like Fusobacterium nucleatum 

and Bacteroides fragilis did not show enrichment. It seems that in our cohort the 

polypogenesis was not associated with these two pathogens, enriched in many other CRC 

datasets. As the origin and etiology of CRC may be different based on the tumor location 

(Lee et al., 2015; Petere et al., 2016), it is possible that Fusobacterium nucleatum and 

Bacteroides fragilis contribute to the development of the polyps or malignant 

transformations of adenomatous polyps in some locations, but not others. Another 

confounding factor is that some of the patients in our study were so-called “polyp 

producers” which were monitored annually for a removal of new polyps. Due to the 

possible genetic component, the etiology of the polyps in this group probably differed that 

in the general population. 

The differences in the spectrum of observed OTUs reported in the literature may be 

explained by many possible reasons including technical and populational variability and 

the sample size. Some previously published studies had an insufficient number of subjects 

that may lead to spurious results. For example, Marchesi et al. 2011 analyzed only six pairs 

of CRC and the adjacent normal tissues, and Mira-Pascual et al. 2015 had fecal and biopsy 

samples collected from seven patients with CRC, 11 with tubular adenomas, and ten were 

healthy control subjects. Clearly, there are few studies with statistically confirmed power 

to detect the difference in abundancies in these pathologies. It should also be noted that 

assigning OTUs to the same taxa does not mean those OTUs necessarily have the same 

function, while the differences in relative taxa abundancies do not necessarily mean that 

the microbial communities are functionally different. Because we chose 97% identity as 
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the threshold for assigning reads into OTUs, we should consider that even two reads that 

fall in the same category are not 100% similar and could be different strains. Even if they 

are 100% similar with respect to the 16S rRNA, we cannot be sure that they are functionally 

the same. Sometimes a single species may have two 16S genes with less than 97% 

similarity, or two different species may have 16S sequences with more than 99% similarity 

(Navas-Molina et al., 2013).  

In any case, microbiome studies of human adenomas and CRC reveal useful 

information about the bacterial structure of the intestinal microbiome and its changes along 

with the progression of the disease. However, this field is very far form maturing into a 

clinical diagnostic and/or prognostic approach. The most crucial step is standardizing the 

process of microbiota assessment, starting from sample collection and storage, nucleic acid 

extraction, sequencing parameters, and post-sequencing analytics for processing the reads 

and selecting OTUs-based predictors. Thus, the continued evolution of microbiome 

analysis field would proceed along with further development of sequencing technology and 

data processing algorithms. It is also likely that much larger cohorts would be required in 

order to account for clinical confounders and ethnic differences in abundancies of various 

microbial species.  

In summary, this dissertation focused on the comparative investigation of the 

statistical analysis and machine learning methods applicable in colorectal microbiome 

studies. By optimizing analytic pipeline, we were able to improve extraction of informative 

OTUs, thus, also improving the predicting power of resultant classifier models in sorting 

out the condition of the human colon. It is possible that the best classifying features are 
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also important in the etiology of colorectal cancer. However, before microbiome-based 

classifiers could be introduced to clinical practice, further validation in independent cohorts 

should be performed. 
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