

Secure Data Aggregation in Wireless Sensor Networks

A dissertation submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy at George Mason University

By

Sankardas Roy
Master of Science

Indian Statistical Institute, 2001
Bachelor of Science

Bengal Engineering College, 1997

Co-director: Dr. Sushil Jajodia, Professor
Center for Secure Information Systems

Co-director: Dr. Sanjeev Setia, Associate Professor
Department of Computer Science

Fall Semester 2008
George Mason University

Fairfax, VA

Copyright c© 2008 by Sankardas Roy
All Rights Reserved

ii

Dedication

I dedicate this dissertation to my parents for their guidance and love throughout my life
and to my wife Tamali, who keeps on encouraging me.

iii

Acknowledgments

I would like to thank my advisors, Professor Sushil Jajodia and Professor Sanjeev Setia,
for their supervision, help, and encouragement in my successful completion of the work
described in this dissertation. Without any doubt, they deserve all the credit for cultivating
my interest in the sensor network security research field. I would also like to thank my other
Ph.D. committee members for their guidance and fruitful discussions.

Further, I would like to thank all my colleagues in the George Mason University, with
whom I enjoyed working and who have helped me with courses and research. Special thanks
go to Mauro Conti, Venkata Addada, Lei Zhang, Dr. Bo Zhu, Dr. Chao Yao, Dr. Shiping
Chen, and Dr. Sencun Zhu for valuable technical feedback, suggestions and proofreading
many drafts of my papers.

Finally, I would like to thank my family. Without their cooperation, this dissertation
would never have existed. I am deeply indebted to my parents, who were very supportive
and encouraging in everything I undertook. My son Ritodeep and wife Tamali have tolerated
many countless nights and weekends while I was doing research; their patience, love, and
sacrifice have turned this Ph.D. from a dream to a reality.

iv

Table of Contents

Page

List of Tables . viii
List of Figures . ix

Abstract . xi
1 Introduction . 1

1.1 Problem Statement . 3
1.2 Summary of Contributions . 4

1.3 Organization of the Dissertation . 6

2 Background and Related Work . 8

2.1 Security in WSNs . 8

2.2 Aggregation using Tree Topology . 10

2.2.1 Computing Count and Sum . 10

2.2.2 Computing Median . 11

2.2.3 Attacks . 13
2.3 Aggregation using Ring Topology . 13

2.3.1 Computing Count and Sum . 14

2.3.2 Computing Median . 16

2.3.3 Attacks . 16
2.4 Secure Aggregation Techniques . 17

2.4.1 Single Aggregator Algorithms . 17

2.4.2 Hierarchical Data Aggregation . 19

2.5 Other Related Work . 21
2.6 Difference between this Dissertation and Prior Work 22

3 Securely Computing Count and Sum . 24

3.1 Preliminaries: Synopsis Diffusion . 24

3.1.1 Count . 25
3.1.2 Sum . 28

3.2 Attacks on Synopsis Diffusion . 30

3.3 Problem Statement and Assumptions . 32

v

3.3.1 Problem Description . 32

3.3.2 Assumptions . 33

3.4 Verification Algorithm . 34

3.4.1 Background . 35

3.4.2 Protocol Overview . 35
3.4.3 Protocol Operation . 36

3.4.4 Correctness . 39
3.4.5 Protocol Analysis and Comparison 47

3.5 Computing Count and Sum Despite Attacks 49

3.5.1 Protocol Overview . 50
3.5.2 Protocol Operation . 51

3.5.3 Correctness . 56
3.5.4 Performance Analysis . 61

3.5.5 Security Analysis . 68

3.5.6 A Variant Protocol . 69
3.5.7 Comparing with Existing Approaches 70

3.6 Simulation Results . 72
3.6.1 Simulation Environment . 72
3.6.2 Results and Discussion . 73

3.7 Summary . 80

4 Securely Computing Median . 81

4.1 Preliminaries . 81
4.1.1 Greenwald et al.’s Approximate Median Algorithm 82

4.1.2 Chan et al.’s Verification Algorithm 83

4.1.3 GC Approach . 85

4.2 Assumptions and Problem Description . 86

4.3 Computing and Verifying an Approximate Median 89

4.3.1 A Histogram Verification Algorithm 90

4.3.2 Our Basic Protocol . 92
4.4 Security and Performance Analysis of Our Basic Protocol 95

4.4.1 Security Analysis . 95

4.4.2 Performance Analysis . 96

4.5 Attack-resilient Median Computation . 102

4.5.1 Geographical Grouping . 103

4.5.2 ID-based Grouping . 108

vi

4.5.3 Dynamic Grouping . 108

4.5.4 Error Bound without Intra-group Verification 109

4.6 Simulation Results . 110
4.6.1 Simulation Environment . 110
4.6.2 Results and Discussion . 111

4.7 Comparing Our Algorithms with Others . 113

4.8 Summary . 115

5 Conclusions . 116
5.1 Summary . 116

5.2 Future Work . 117
5.2.1 Secure Median Computation over the Ring Topology 117

5.2.2 In-network Filtering of False Data 118

Bibliography . 119

vii

List of Tables

Table Page

1.1 Definition of Aggregates . 2

2.1 Comparing this Dissertation with the Prior Schemes 23

3.1 Notations Used in Describing the Secure Sum Protocols 34

3.2 Comparing Our Verification Algorithm with Others 47

3.3 Notations Used in Describing the Attack-resilient Computation Protocol . . 53

3.4 Comparing the Attack-resilient Protocols 70

4.1 Notations Used in Describing the Secure Median Protocols 89

4.2 Comparing the Median Computation Protocols 114

viii

List of Figures

Figure Page

2.1 Aggregation Tree Computing Count . 11

2.2 Synopsis Diffusion over a Ring Topology . 15

3.1 Aggregation Phase of the Verification Algorithm 39

3.2 Two Possibilities with respect to Event Ek 41

3.3 Getting a Preliminary Estimate of r . 54

3.4 A High-level View of the Random Selection Procedure in MACs Forwarding 66

3.5 False Negative Rate of the Verification Protocol 75

3.6 Sent Byte Overhead per node in the Verification Protocol 75

3.7 Received Byte Overhead per node in the Verification Protocol 76

3.8 Average Number of MACs Forwarded by a Node in Phase Two of the Attack-

resilient Computation Protocol . 78

3.9 Impact of Network Size on Sent Byte Overhead per Node in the Attack-

resilient Computation Protocol . 78

3.10 Latency of Phase Two of the Variant Attack-resilient Computation Protocol 79

4.1 The Aggregation-commit Phase in Histogram Verification 91

4.2 Computing Histogram Boundaries . 94

4.3 Splitting the Bucket . 95

4.4 How Far Apart are Two Consecutive Elements in the Sample? 97

4.5 What is the Chance that γpN Elements will Fall within pS Sample Items,

where γ > 1, 0 < p < 1, and γp < 1? . 98

4.6 Betting on Median Position . 100

4.7 Geographical Grouping . 104

4.8 ID-based Grouping . 108

4.9 Dynamic Grouping . 109

4.10 Computing the Chance that We need to Collect more Sample Items 111

4.11 How the Chance of Our Algorithm Ending in One Iteration Varies with Dif-

ferent Numbers of Buckets . 112

ix

4.12 The Number of Iterations vs. the Number of Buckets 113
4.13 Proper Choice of δ Reduces the Number of Iterations Needed 114

x

Abstract

SECURE DATA AGGREGATION IN WIRELESS SENSOR NETWORKS

Sankardas Roy, PhD

George Mason University, 2008

Dissertation Co-director: Dr. Sushil Jajodia

Dissertation Co-director: Dr. Sanjeev Setia

Wireless sensor networks have proved to be useful in several applications, such as envi-

ronment monitoring and perimeter surveillance. In a large sensor network, in-network data

aggregation (i.e., combining partial results at intermediate nodes during message routing)

significantly reduces the amount of communication and energy consumption. Recently, the

research community has proposed a robust aggregation framework called synopsis diffusion

which combines multi-path routing schemes with duplicate-insensitive algorithms to accu-

rately compute aggregates (e.g., Count, Sum) in spite of message losses resulting from node

and transmission failures. However, this aggregation framework does not address the prob-

lem of false sub-aggregate values contributed by compromised nodes resulting in large errors

in the aggregate computed at the base station, which is the root node in the aggregation

hierarchy. This is an important problem since sensor networks are highly vulnerable to node

compromises due to the unattended nature of sensor nodes and the lack of tamper-resistant

hardware.

In this dissertation, we make the synopsis diffusion approach secure against attacks in

which compromised nodes contribute false sub-aggregate values. In particular, we present

two classes of algorithms to securely compute Count or Sum. First, we propose a lightweight

verification algorithm which enables the base station to determine if the computed aggregate

includes any false contribution. Second, we present attack-resilient computation algorithms

which can be used to compute the true aggregate by filtering out the contributions of com-

promised nodes in the aggregation hierarchy. Thorough theoretical analysis and extensive

simulation study show that our algorithms outperform other existing approaches.

This dissertation also addresses the security issues of in-network computation of Median

and presents verification algorithms and attack-resilient computation algorithms to securely

compute an approximate estimate of this aggregate. To the best of our knowledge, prior to

this dissertation there was no other work related to the security of in-network computation

of Median. We evaluate the performance and cost of our algorithms via both analysis and

simulation. The results show that our approach is scalable and efficient.

Chapter 1: Introduction

Wireless sensor networks (WSNs) are increasingly used in several applications [1–3], such

as wild habitat monitoring, forest fire detection, and military surveillance. After being

deployed in the field of interest, sensor nodes organize themselves into a multi-hop network

with the base station as the central point of control. Typically, a sensor node is severely

constrained in terms of communication bandwidth, computation capability, and energy

reserves. A straightforward method to collect the sensed information from the network is

to allow each sensor node’s reading to be forwarded to the base station, possibly via other

intermediate nodes, before the base station processes the received data. However, this

method is prohibitively expensive in terms of communication overhead, which prompted

active research to design an energy-efficient mechanism.

In large WSNs, computing aggregates in-network (i.e., combining partial results at inter-

mediate nodes during message routing) significantly reduces the amount of communication

and hence the energy consumed. An approach used by several data acquisition systems for

WSNs [4, 5] is to construct a spanning tree rooted at the base station, and then perform

in-network aggregation along the tree. Partial results propagate level-by-level up the tree,

with each node awaiting messages from all its children before sending a new partial result

to its parent.

The most important aggregates considered by the research community include Count,

Sum, Uniform Sample, and Median. We present the definitions of these aggregates in

Table 1, where vi denotes the sensed value of the i-th sensor node. A Count computation

algorithm can be extended to compute the cardinality of a subset of nodes in the network.

As an example, upon receiving a request from the base station to count the number of nodes

with sensed values lying between 100 and 200 units, if only the relevant nodes contribute to

the aggregate, the base station will receive the correct count. We can compute Average from

1

Table 1.1: Definition of Aggregates
Aggregate Definition

Count N = |{vi}|, where {vi} is the set of sensed values.

Sum S =
N∑

i=1

vi

Uniform U = {vi1 , vi2 , . . . , vik}, where these k values are
Sample randomly selected from the population set {vi}.

Median M =
{

vi s.t. rank(vi) = N+1
2 , N is odd

vi+vj

2 s.t. rank(vi) = N
2 and rank(vj) = N

2 + 1, otherwise

Count and Sum. A Sum algorithm can be also extended to compute Standard Deviation

and Statistical Moment of any order. We also note that a Uniform Sample can be used to

have an approximate estimate of several aggregates, including Most Frequent Items (i.e., a

subset of sensed values which are most common among all of the nodes).

Tree-based aggregation approaches are not resilient to communication losses resulting

from node and transmission failures, which are relatively common in WSNs [4–6]. Because

each communication failure loses an entire subtree of readings, a large fraction of sensor

readings is potentially unaccounted for at the querying node, leading to a significant error

in the query answer. To address this problem, the research community has proposed the

use of multi-path routing techniques for forwarding sub-aggregates [4]. For aggregates such

as Min and Max, which are duplicate-insensitive, this approach provides a fault-tolerant

solution. However, for duplicate-sensitive aggregates, such as Count and Sum, multi-path

routing leads to double-counting of sensor readings, resulting in an incorrect aggregate being

computed.

Recently, several researchers [7–9] have presented clever algorithms to solve the double-

counting problem associated with multi-path approaches. A robust and scalable aggregation

framework called synopsis diffusion has been proposed for computing duplicate-sensitive

2

aggregates, such as Count and Sum. There are two primary elements of this approach. First,

a ring topology is used instead of a tree topology for organizing the nodes in the aggregation

hierarchy. In a ring topology, a node may have multiple parents in the aggregation hierarchy,

unlike the tree topology. Second, each sensed value or sub-aggregate is represented by a

duplicate-insensitive bitmap called synopsis. The function to generate a synopsis or to

merge multiple synopses is based on Flajolet and Martin’s algorithm for counting distinct

elements in a multi-set [10].

The research community also observed that in-network computation of Median is a

harder problem than computation of Count or Sum. Using the Count algorithm within a

synopsis diffusion framework as a building block, Patt-Shamir [11] proposed a probabilistic

algorithm to compute an approximate Median. On the other hand, Greenwald et al. [12] and

Shrivastava et al. [13] proposed tree-based algorithms to compute an approximate Median.

Unfortunately, neither of the above algorithms included any provisions for security, which

constitutes the problem considered in this dissertation.

1.1 Problem Statement

The objective of this dissertation is to address the security issues of in-network data aggre-

gation in WSNs where a fraction of nodes may become compromised. Our goal is to design

protocols to securely compute the basic aggregates, such as Count, Sum, and Median.

Most of the existing in-network data aggregation algorithms [4,7,9,14] have no provisions

for security. As a result, an attacker can eavesdrop on the wireless communication in the

network and inject false data during the aggregation process, which results in a bogus

aggregate being computed at the base station with no alarm being raised.

A straightforward solution for preventing an unauthorized node from injecting false

messages is to augment the existing aggregation algorithms with the standard encryption

and authentication schemes [15–17]. However, this solution cannot counter attacks launched

by an insider node that has been compromised by the adversary, because an insider node

possesses the cryptographic secrets used in the encryption and authentication schemes. It

3

is important to design WSN protocols that are resilient to insider attacks because a fraction

of nodes may become compromised due to the unattended nature of WSNs and the lack of

tamper-resistant hardware.

A compromised node might attempt to thwart the aggregation process by launching

several attacks, such as eavesdropping, jamming, message dropping, message fabrication,

and so on. This dissertation focuses on a subclass of these attacks in which the goal of

the adversary is to cause the base station to derive an incorrect aggregate. By relaying

a false sub-aggregate to the parent node, a compromised node attempts to contribute a

large amount of error to the aggregate. As an example, during the Sum computation

algorithm [4,7,9,14], a compromised node X can inject an arbitrary amount of error in the

final estimate of Sum by falsifying X’s own sub-aggregate. We refer to this attack as the

falsified sub-aggregate attack.

In this dissertation, we aim to design algorithms to securely compute aggregates despite

the falsified sub-aggregate attack launched by compromised nodes. We have two goals: (i)

to enable the base station to verify if the computed aggregate is valid, and (ii) to empower

the base station to filter out the false contributions of the compromised nodes from the

aggregate. We call the algorithms which can achieve these goals the verification algorithms

and attack-resilient computation algorithms, respectively. In particular, for each of the

aggregates, Count, Sum, and Median, we will design verification algorithms and attack-

resilient computation algorithms. While meeting the above goals, we also will show how to

minimize the cost (i.e., the communication overhead and latency).

1.2 Summary of Contributions

The research presented in this dissertation addresses the problems discussed in Section 1.1.

We propose secure in-network aggregation protocols which can tolerate compromised nodes

present in the network.

To incorporate attack-resiliency into in-network aggregation algorithms, we use the stan-

dard security infrastructure widely accepted by the research community. In particular, we

4

assume that each node shares a key with the base station, and any two neighboring sen-

sor nodes possibly share a pairwise key. The sensor nodes have the ability to compute

a collision-resistant cryptographic hash function. We also assume that the basic security

services are available (e.g., µTesla [18]) for authentication of messages broadcast from the

base station.

We design verification algorithms and attack-resilient computation algorithms for the

basic aggregates, Count, Sum, and Median. Our verification algorithms enable the base

station to verify if the computed aggregate is valid; however, in the presence of the attacks

launched by compromised nodes, these algorithms do not guarantee the successful computa-

tion of the aggregate. To compute the aggregates in the presence of compromised nodes, we

design attack-resilient computation algorithms which incur comparatively larger overhead.

Below we summarize our contributions.

Securely Computing Count and Sum We analyze the vulnerabilities of the existing

in-network aggregation algorithms designed within the synopsis diffusion framework in the

presence of compromised nodes. Then, as the countermeasures, we design verification algo-

rithms and attack-resilient computation algorithms to securely compute Count and Sum.

The key observation behind the design of our algorithms is that to verify the correctness

of the final synopsis, which represents the Count or Sum of the whole network, the base

station does not need to receive authentication messages from all of the nodes. The main

challenge is to minimize the number of authentication messages transmitted (which is the

main source of the communication overhead), while guaranteeing the correctness of the

computed aggregate. The above challenge is addressed in this dissertation. The analytical

and simulation results show that our algorithms are effective and efficient. We show that the

per-node communication overhead in our verification algorithm is O(1) irrespective of the

network size, while that of the least expensive existing algorithm [19] is O(log S), where S

is the value of the aggregate, Count or Sum. The communication complexity of our attack-

resilient computation algorithm is O(t) if t compromised nodes are present in the network,

and this complexity does not grow with the network size. This algorithm costs much less

5

than the worst case overhead of the existing attack-resilient computation algorithm [20],

which is O(N), where N is the network size. We also show that the communication overhead

of our attack-resilient computation algorithm can be further reduced at the expense of

latency.

Securely Computing Median We design verification algorithms and attack-resilient com-

putation algorithms to compute an approximate Median, which are based on the tree topol-

ogy. The main idea employed in the proposed algorithms is to collect a sample of sensed

values from the network and then to find the value which is closest to the Median. We

design an iterative histogram verification algorithm which fine-tunes the search for an ap-

proximate Median within the collected sample. The key challenge is to minimize the number

of times we need to execute the histogram verification algorithm (over the network) while

guaranteeing the desired accuracy in the final estimate of the Median. We show that our

algorithms take O(1) iterations to complete and cost O(1
ε · log N) per-node communication

overhead, where ε is the desired error bound of the final estimate. We evaluate the proposed

algorithms via thorough theoretical analysis and extensive simulation study.

The above algorithms can be extended to compute other order-statistics besides Median.

The Uniform Sample of sensor readings collected from the network during our Median

algorithms is an important aggregate on its own and can be used to compute many other

aggregates, such as Most Frequent Items.

1.3 Organization of the Dissertation

The rest of this dissertation is organized as follows. Chapter 2 reviews the prior work

related to this dissertation, and provides a background on data aggregation protocols and

the state-of-the-art secure solutions. The contributions documented in this dissertation

are primarily grouped into two parts, either of which is dedicated to the security issues of

computing one particular class of aggregates. The first part discusses secure computation of

Count and Sum. Chapter 3 analyzes the vulnerabilities of synopsis diffusion algorithms and

6

proposes secure protocols to compute the aggregate. The second part, presented in Chapter

4, focuses on how to securely compute Median. Finally, Chapter 5 presents conclusions and

suggestions for further research.

7

Chapter 2: Background and Related Work

Several researchers have studied problems related to data aggregation in wireless sensor net-

works (WSNs). However, most of the existing work is driven by the performance efficiency

issues without considering the possibility of the presence of attacks. Only recently, have

several papers been published which address security issues of the aggregation protocols.

In Section 2.1, we discuss the security issues of WSNs in general. Then, in the rest of

this chapter, we present summaries of the existing body of work related to data aggregation

in WSNs. In Section 2.2, we review the tree-based aggregation protocols and analyze their

vulnerabilities in the presence of compromised nodes. Section 2.3 reviews the ring-based

aggregation protocols and analyzes their vulnerabilities against compromised nodes. In

Section 2.4, we discuss the existing algorithms which partially solve the security problems

in data aggregation. Section 2.5 presents the other body of work which also has some

relation to the security issues in data aggregation. Finally, in Section 2.6, we summarize

how our work differs from that of other researchers.

2.1 Security in WSNs

In general, an adversary may attempt to launch several attacks to thwart the normal func-

tionality of a WSN. Here, we briefly discuss the security issues of WSNs and the state-of-

the-art solutions. For more details, the reader can refer to the article [21] by Perrig et al.

and the book, ‘Wireless Sensor Network Security’ [22], edited by Lopez et al.

A WSN is especially vulnerable to outsider and insider attacks due its unique charac-

teristics, as follows. Typically, sensor nodes are severely constrained in terms of memory,

computation capability, communication bandwidth, and energy resources. Also, it is easy

8

for the attacker to physically access the sensor nodes because they are not built with tamper-

resistant hardware for cost-effectiveness and they must be deployed near the source of the

events. Moreover, the attacker can access the information exchanged among nodes because

the communication channel is wireless.

Due to the use of a wireless communication channel, an attacker node can launch mul-

tiple attacks in a WSN, such as eavesdropping, message modification, message relay, and

message injection. We can prevent an unauthorized node from injecting false messages by

employing the standard encryption and authentication schemes [15–17], but this solution

cannot counter attacks launched by a compromised node.

A WSN is also vulnerable to Denial-of-Service (DoS) attacks, which may take several

forms. The DoS attacker may attempt to prevent a particular section of the network

from receiving any broadcast message from the base station. It may also try to jam the

communication channel of a certain node to stop that node from sending or receiving any

message. Also, the attacker may repeatedly request packets from a benign node to deplete

its energy resource. We can partially defend against the jamming attack by employing

spread-spectrum communication [23]. A jamming-resistant network [24] may also be built

to counter this attack.

Karlof et al. [25] studied the vulnerabilities of routing protocols in a WSN in the presence

of compromised nodes. They demonstrated that to hinder normal message routing in a

WSN, several complex attacks can be designed, such as selective forwarding, wormhole

attack, sinkhole attack, hello flood attack, and acknowledgement spoofing. The scientific

community is involved in active research [26] with the goal of mitigating these attacks.

Furthermore, after compromising a few nodes, the adversary can exploit these nodes’

identity to launch the node replication attack. Mounting this impersonation attack on a

WSN, the adversary can paralyze some of the core protocols, such as routing. Recently, a

couple of schemes [27,28] have been proposed to detect the node replication attack.

This dissertation addresses insider attacks where the goal of the attacker is to cause the

base station to compute a false aggregate. To this end, our attacker node does not correctly

9

follow the data aggregation protocol, but it behaves normally in other ways.

2.2 Aggregation using Tree Topology

Several researchers, including Madden et al. [4] and Greenwald et al. [12], designed energy-

efficient in-network algorithms using a tree topology to compute aggregates, such as Count,

Sum, and Median. Typically, these algorithms construct a spanning tree rooted at the base

station and then perform in-network aggregation along the tree.

In a tree topology, nodes in the network form a tree with the base station as the root

during the aggregation request dissemination. Typically, the following tree construction

algorithm is used: the base station’s aggregation request is broadcast hop-by-hop, and each

node Y on any hop selects one node Z on the previous hop from which Y has received

the aggregation request, and node Y considers node Z as its parent. Once the aggregation

request reaches all of the nodes in the network, a spanning tree is formed with the base

station as its root.

In the aggregation phase, partial results propagate level-by-level up the tree, with each

node awaiting messages from all of its child nodes before sending a new partial result to its

parent. Finally, the base station computes the aggregate of interest from the messages it

receives from its child nodes on the tree.

Below we discuss the tree-based in-network aggregation algorithms present in the liter-

ature.

2.2.1 Computing Count and Sum

Madden et al.’s Algorithm [4] Madden et al. proposed a Tiny Aggregation Service

(TAG) to compute aggregates, such as Count and Sum. To compute Count, each node adds

the partial counts received from its child nodes, increments the result by one, and sends

this sub-aggregate to its parent node, which represents the total number of nodes present

in its sub-tree, and so on. In the example depicted in Figure 2.1, node Z’s sub-aggregate is

3, which indicates that there are 3 nodes in total in Z’s sub-tree. The Count computation

10

BS

X

C

D

E

Z

T

Y1

1
1

1

3

3

1

7

Figure 2.1: Aggregation Tree Computing Count—Partial counts propagate level-by-level up
the tree before reaching the base station (BS).

algorithm can be easily extended to compute Sum, where each node contributes its sensed

value to the aggregate. In these algorithms, each node needs to send only a single message

containing the partial Count or Sum. We note that Yao et al. [14] and Zhao et al. [5]

proposed similar in-network algorithms to compute Count and Sum.

2.2.2 Computing Median

Madden et al. [4] showed that an in-network aggregation algorithm does not reduce com-

munication in case of computing holistic aggregates, such as Median (order-statistics, in

general), compared with the simple approach of forwarding all of the sensor readings di-

rectly to the base station. To reduce the communication overhead, the research community

advocated computing an approximate estimate of holistic aggregates.

Recently, Greenwald et al. [12] and Shrivastava et al. [13] designed in-network aggrega-

tion algorithms to compute an approximate order-statistic (i.e., quantile) with low commu-

nication overhead. Given a positive number ε, 0 < ε < 1, as user input, these algorithms

11

return an approximate estimate, say ŷ, so that ŷ does not differ from the exact order-statistic

of interest, y, by more than εN positions on the sorted list of all of the sensor readings,

where N is the total number of sensor readings. We call ŷ an ε-approximate estimate of the

order statistic.

Greenwald et al.’s Algorithm [12] Greenwald et al. defined ε-approximate quantile

summary as a subset of sensed values from which we can derive an ε-approximate estimate of

any quantile. In Greenwald et al.’s algorithm, every node X sends an ε-approximate quantile

summary to its parent, which represents the sensed values of X and its descendant nodes.

Once a node Y receives the quantile summaries from its child nodes, Y does not necessarily

merge all of the received summaries. Arbitrary merging may result in the merged summary

not remaining an ε-approximate one. After determining which of the received summaries

can be merged without violating the ε-approximation criterion, node Y aggregates them by

a merging algorithm, while the other summaries of Y remain unmodified. Y then forwards

both the merged summary and the other ones to its parent node, and so on. After the

base station obtains the summaries from its child nodes, it computes the final quantile

summary, which can derive any order-statistic satisfying the ε error bound. In this scheme,

it is guaranteed that a node needs to transmit at most O(log 2N /ε) data values irrespective

of the network topology.

Shrivastava et al.’s Algorithm [13] Shrivastava et al. presented a distributed data

summarization technique called quantile-digest for computing approximate order-statistics.

In this algorithm, each node X sends a quantile-digest to its parent, which is a summary

of the data values of X and its descendant nodes. The key element of this technique is

to accurately preserve information about high frequency sensor readings while compressing

information about low frequency readings. If l is the size of the digest used, it is shown

that the error in the final estimate is at most O(log σ/l), where the sensed values are in the

range [1, σ].

Cox et al.’s Algorithm [29] Cox et al. proposed a lightweight algorithm to persistently

update the base station’s estimate over an order-statistic of the sensor readings, assuming

12

the sensor readings may change with time. In this scheme, the order-statistic of interest is

computed first, and later a validation protocol is periodically run to determine whether the

initial estimate is still valid. If not, a binary search is efficiently used to compute the new

estimate. This scheme uses in-network aggregation and transmission suppression to reduce

the communication overhead.

2.2.3 Attacks

The above algorithms do not include any provisions for security. A compromised node can

launch multiple attacks which can potentially corrupt the final result of the aggregation

query. Below we discuss these attacks in the context of Sum aggregate, which can be

extended to other aggregates.

A compromised node X can corrupt the aggregate value computed at the base station in

three ways. First, X can simply drop aggregation messages that it is supposed to forward to

its parent. If X is located at a relatively high position in the aggregation hierarchy, this has

the effect of omitting a large fraction of the set of sensor readings from being considered.

Second, X can falsify its own sensor reading with the goal of influencing the aggregate

value. We refer to this attack as the falsified local value attack. Third, X can falsify the

sub-aggregate which X is supposed to compute based on the messages received from X’s

child nodes. We refer to this attack as the falsified sub-aggregate attack.

Moreover, because each communication failure loses an entire subtree of readings, these

tree-based algorithms may incur large amounts of error in lossy network environments (i.e.,

they are inherently vulnerable to communication loss).

2.3 Aggregation using Ring Topology

Since packet losses and node failures are relatively common in WSNs, several studies

have investigated the design of robust aggregation algorithms. To this end, several re-

searchers [4, 7, 9] proposed to use a ring topology instead of a tree topology, where a node

13

on the aggregation hierarchy is allowed to have multiple parents. In a ring-based aggrega-

tion algorithm, an individual node’s contribution to the aggregate reaches the base station

possibly via multiple paths through the intermediate nodes.

Madden et al. [4] proposed a scheme to compute aggregates, such as Min and Max, where

each node forwards its sub-aggregate to multiple parents. For such duplicate-insensitive

aggregates, this approach provides a fault-tolerant solution. However, for duplicate-sensitive

aggregates, such as Count, Sum, and Median, this approach cannot be applied as it would

result in obtaining an incorrect estimate due to double counting of individual sensor values.

Below we discuss the ring-based algorithms present in the literature to compute aggre-

gates, such as Count, Sum and Median.

2.3.1 Computing Count and Sum

Nath et al.’s Algorithm [9] and Considine et al.’s Algorithm [7] Nath et al. designed

a robust and scalable aggregation framework called synopsis diffusion. This framework com-

bines the use of multi-path routing with clever algorithms that avoid double-counting of sen-

sor readings. Considine et al. independently proposed very similar algorithms to compute

Count and Sum. There are two primary elements of the synopsis diffusion approach—the

use of a ring topology for organizing the nodes in the aggregation hierarchy, and the use of

duplicate-insensitive algorithms for computing aggregates based on Flajolet and Martin’s

algorithm for counting distinct elements in a multi-set [10].

In the synopsis diffusion approach, nodes are classified into multiple rings determined

by their hop counts from the base station, illustrated in Figure 2.2. During the query

distribution phase, the base station’s aggregation request is broadcast hop-by-hop, and

each node X on any hop keeps track of the nodes on the previous hop from which X has

received the aggregation request, and node X considers all of them as its parents. Once the

aggregation request reaches all of the nodes in the network, ring construction is complete.

In the subsequent query aggregation phase, starting in the outermost ring, each node

generates a local synopsis (i.e., a summary bitmap) relevant to the query, and broadcasts it

14

Figure 2.2: Synopsis Diffusion over a Ring Topology—Rings Ri are constructed during the
query broadcast from the BS. A node may have multiple parents, e.g. X has 3 parents,
Y1, Y2, Y3. During the subsequent aggregation phase, each node X forwards its synopsis to
all of the parents, i.e. X’s contribution reaches the BS via multiple paths.

to its neighbors. A node in ring Ri will receive broadcasts from all of the nodes in its range

in ring Ri+1. It will then aggregate its own local synopsis with the synopses received from

its children, and then broadcast the updated synopsis. Thus, the fused synopses propagate

level-by-level until they reach the base station, which combines the received synopses to

derive the final aggregate. This approach is robust against communication loss because

each node’s contribution to the aggregate reaches the base station via multiple paths. One

limitation of the synopsis diffusion algorithms is that they output only an approximate

estimate of the aggregate.

Majhi et al.’s Algorithm [8] To reduce the approximation error present in the output

of the synopsis diffusion algorithms, Majhi et al. proposed a hybrid aggregation hierarchy,

called Tributary and Delta, which forms the tree topology in some parts of the network

while constructing the ring topology in other regions. The Tributary and Delta approach

aims to combine the advantages of the tree topology and ring topology in an efficient

way. For the nodes which are far away from the base station, trees are used for their zero

approximation error. For nodes close to the base station whose sub-aggregates account for

15

many nodes’ values, the multi-path approach is used due to its robustness property. The

challenge, addressed in [8], is how to dynamically adapt this hybrid aggregation hierarchy

to the current message loss rate.

2.3.2 Computing Median

Patt-Shamir’s Algorithm [11] Patt-Shamir proposed a probabilistic algorithm to com-

pute an approximate Median within the synopsis diffusion framework. The design of this

algorithm is based on a new definition of an (α, β)-approximate Median where parameter α

represents the desired error bound in terms of rank, and parameter β controls the allowed

error in terms of value.

Patt-Shamir’s algorithm performs a binary search over the whole range of sensor values

until it finds a value ŷ such that ŷ satisfies the two error bounds, α and β, with a high

probability. In each iteration of the binary search, the number of values smaller than ŷ

is computed using the Count algorithm, discussed in Section 2.3.1, in which only relevant

nodes participate.

Given a failure probability δ, this algorithm must invoke the Count algorithm O(log2 N/δ)

times, which indicates that the communication overhead of this algorithm can become pro-

hibitively expensive. The communication complexity becomes even higher if the difference

between the maximum and minimum sensed value is of the order higher than O(N).

The research community also proposed algorithms to compute aggregates such as Uni-

form Sample [9] and Most Frequent Items [8] within the synopsis diffusion framework.

2.3.3 Attacks

The synopsis diffusion aggregation framework does not include any provisions for security;

as a result, it is vulnerable to many attacks that can be launched by compromised nodes.

These attacks include insider attacks which can potentially corrupt the final result of the

aggregation query. In fact, all of the three attacks relevant to tree-based algorithms, dis-

cussed in Section 2.2.3, can be launched to corrupt the aggregate value computed in these

16

ring-based algorithms. However, the impact of these attacks on the ring topology can be

different, which we describe below in the context of Sum aggregate.

The attack in which a compromised node X drops aggregation messages that it is

supposed to relay does not have a significant impact on the synopsis diffusion approach,

because multi-path routing is used. However, a compromised node X can launch the falsified

local value attack and the falsified sub-aggregate attack to corrupt the aggregate computed

at the base station. We observe that even a single node can launch the second and third

attack with a high rate of success because the use of multi-path routing in the synopsis

diffusion approach makes it highly likely that the falsified synopsis will propagate to the

base station.

2.4 Secure Aggregation Techniques

Several secure aggregation algorithms have been proposed assuming that the base station

is the only aggregator node in the network, i.e., no in-network aggregation. Only recently,

the research community has paid attention to the security issues of hierarchical aggregation

where the presence of intermediate aggregators is considered.

2.4.1 Single Aggregator Algorithms

Wagner’s Algorithm [30] For the single-aggregator model, Wagner addressed the issue

of measuring and bounding malicious nodes’ contribution to the final aggregation result.

Wagner’s paper measures how much damage an attacker can inflict by taking control of a

number of nodes and using them solely to inject erroneous data values. Wagner also provides

guidelines for selecting resilient aggregation functions. As an example, in scenarios where

we expect that a few nodes might become compromised, Median is a preferred aggregate

over Average because the possible error in Median is bounded, while Average can contain

an arbitrary amount of error. Wagner also proposed a few outlier filtering techniques such

as truncation and trimming for achieving resilient aggregation.

Buttyan et al.’s Algorithm [31,32] and Mahimkar et al.’s Algorithm [33] Buttyan

17

et al. [31] proposed a technique of attack-resilient aggregation, where the aggregator an-

alyzes the received sensor readings before applying the aggregation function. They show

that, for computing Average, if the attacker wants to remain undetected, the maximum

error injected by the attacker in the final estimate of the aggregate has an upper bound.

Buttyan et al. also proposed another technique called RANBAR [32] for filtering outliers.

RANBAR is based on the use of RANSAC [34], a well-known algorithm used to estimate the

parameters of a mathematical model from a set of observed data which contains outliers.

Buttyan et al. show that compared to other resilient aggregation functions such as the

trimmed average and the Median, RANBAR results in smaller distortion, especially when

a large fraction of nodes is compromised.

Mahimkar and Rappaport [33] proposed an aggregation-verification scheme for the

single-aggregator architecture using a threshold signature scheme which ensures that at

least t of the nodes agree with the aggregation result.

Przydatek et al.’s Algorithm [35] In the schemes described above, it is assumed that

the aggregator is not compromised. Przydatek et al. [35] relaxed this assumption in the

design of their secure aggregation framework named Secure Information Aggregation (SIA).

SIA considers a WSN in which a large number of sensors are deployed in an area distant

from a home server (i.e., a user) and a base station is used as an intermediary between

the home server and the sensor nodes. After sensor nodes send their readings to the base

station, the base station performs the aggregation task and forwards the result to the home

server. The base station is the only aggregator node in the network.

SIA enables the user to verify that the answer given by the aggregator is a good ap-

proximation of the true value, where the aggregator and a fraction of the sensor nodes

might become corrupted. In particular, SIA aims to guarantee that if the user accepts an

aggregation result reported by the aggregator, then the reported result is close to the true

aggregation value with high probability; otherwise, if the reported value is significantly dif-

ferent from the true value due to the misbehavior of the compromised aggregator, the user

will detect the attack and reject the reported aggregate with high probability. SIA achieves

18

this goal by constructing efficient random sampling mechanisms and interactive proofs. Ag-

gregates such as Min, Max, Count, Average, and Median can be securely computed in this

approach.

2.4.2 Hierarchical Data Aggregation

Hu et al.’s Algorithm [36] As Wagner [30] observed, securing the hierarchical data

aggregation algorithms is a harder problem because the intermediate aggregator nodes may

falsify their sub-aggregates. The first attack-resilient hierarchical data aggregation protocol

was designed by Hu et al. [36]. This protocol secures in-network aggregation against a single

Byzantine adversary. In this protocol, each aggregator node X forwards its inputs (received

from X’s child nodes) to its parent nodes in the aggregation tree so that parent nodes can

verify if X has performed the aggregation correctly. This scheme is secure unless more than

one malicious nodes is present.

Secure Data Aggregation Protocol (SDAP) [20] Yang et al. [20] proposed SDAP to

compute Average, which can tolerate more than one compromised node. SDAP uses a novel

probabilistic grouping technique to dynamically partition the nodes in a tree topology into

multiple logical groups (subtrees) of similar sizes. An aggregate is computed within each

logical group using a standard hop-by-hop aggregation protocol. The leader of each logical

group transmits the group’s aggregate to the base station, along with a commitment that is

generated based on the contributions of each node in the group. After the base station has

collected all of the group aggregates, it uses an outlier detection algorithm to identify groups

whose contributions are potentially false. Finally, each group under suspicion participates

in an attestation process to prove the correctness of its group aggregate. The base station

discards any suspicious aggregates from groups that fail the attestation procedure. The

final aggregate is calculated over all of the group aggregates that have either passed the

outlier detection algorithm or the attestation procedure. As SDAP is a tree-based protocol,

it is vulnerable to link loss and node failures, which are relatively common in WSNs.

Chan et al.’s Algorithm [37] and Frikken et al.’s Algorithm [38] Chan et al. [37]

19

designed a verification algorithm by which the base station can detect if the final aggregate,

Count or Sum, is falsified. The algorithm is based on a novel method of distributing

the verification responsibility onto the individual sensor nodes. During the aggregation

process, the nodes construct a logical commitment structure (for authentication purposes)

as an overlay on the physical aggregation tree. A clever technique is used to guarantee that

a balanced commitment structure is formed, which ensures sub-linear congestion bounds.

The algorithm induces O(∆·log2N) node congestion, where ∆ is the maximum number of

neighbors of a node.

Recently, Frikken et al. [38] proposed a modification to Chan et al.’s [37] scheme that

reduces the maximum communication per node from O(∆·log2N) to O(∆·logN). The

modification mainly involves designing a new commitment structure for authentication,

which is used with the other components of Chan et al.’s scheme [37]. The idea behind

the communication overhead reduction in this new approach is that a few dummy logical

nodes are introduced to prevent nodes close in the physical aggregation tree from being

scattered throughout the logical commitment structure. This proves to be a significant gain

in performance for a large WSN. For example, in a 1000-node network this approach would

require a tenth of the communication of the scheme of [37] (ignoring constants).

Although Chan et al.’s [37] algorithm as well as Frikken et al.’s [38] algorithm prevent

the base station from accepting a false aggregate, they do not guarantee the successful

computation of the aggregate in the presence of the attack, which can be launched by a

single compromised node.

Garofalakis et al.’s Algorithm [19] Garofalakis et al. designed a verification algorithm

for computing Count and Sum within the synopsis diffusion approach. The main idea

underlying their algorithm is that to verify the final synopsis the base station needs to

receive only one authentication message (Message Authentication Code, also called MAC

in short) for each bit in the synopsis even if multiple nodes contribute to one particular bit.

Hence, it is sufficient for each node in the aggregation hierarchy to forward only one MAC

corresponding to each bit in the synopsis. As the length of the synopsis is O(log S) where

20

S is the upper bound of Count or Sum, the communication overhead per node is O(log S).

2.5 Other Related Work

We now discuss the other body of work present in the literature that also has some relation

to this dissertation. We briefly present some of the existing schemes related to gossip-based

aggregation, privacy-preserving aggregation, and false data injection prevention.

Jelasity et al. [39] proposed a robust gossip-based protocol for computing aggregates

over network components in a fully decentralized fashion. They assumed that nodes form

an overlay network where any pair of nodes can be considered to be neighbors, which makes

this protocol impractical for WSNs.

Several researchers also have studied the problem of privacy-preserving aggregation,

where we aim to keep the individual sensor readings secret from the intermediate aggre-

gators. Such algorithms have been proposed by Girao et al. [40], Castelluccia et al. [41],

and Cam et al. [42]. The main ideas of these algorithms are to maintain the end-to-end

confidentiality between sensors and the base station, and to perform in-network aggregation

of encrypted data. To allow the computation of the correct aggregate from the encrypted

data, in [40], a privacy homomorphism (PH) [43] technique is employed.

This dissertation is also related to the general problem of preventing false data injection.

Several solutions [44–46] have been proposed to prevent false data injection attacks in WSNs.

In a false data injection attack, an adversary injects false data into the network with the

goal of deceiving the base station or depleting the energy resources of the relaying nodes.

The Hop-by-Hop Authentication scheme proposed by Zhu et al. [46] counters this attack

in the following way assuming that the number of compromised nodes is below a threshold

number, t. First, the base station accepts a data report only if it is endorsed by at least

t + 1 different sensor nodes. Second, every node en route to the base station participates in

an interleaved hop-by-hop authentication scheme to filter out the false report, if any.

Du et al. [47] proposed a mechanism that allows the base station to check the aggregated

21

values submitted by several designated aggregators, based on the endorsements provided

by a certain number of witness nodes around the aggregators. Their scheme, however, does

not consider hop-by-hop aggregation.

2.6 Difference between this Dissertation and Prior Work

We now summarize how the prior work is different from this dissertation. First, the original

synopsis diffusion framework is robust to communication loss, but there is no provision

for security. This dissertation incorporates security into the synopsis diffusion framework,

and our algorithms are robust to communication loss as well as secure against attacks

launched by compromised nodes. Second, the verification protocols proposed by Chan et

al. [37], Frikken et al. [38], and by Garofalakis et al. [19] prevent the base station from

accepting a false aggregate, but they cannot compute the correct aggregate in the presence

of the attack. In addition to verification protocols, we designed attack-resilient computation

protocols which guarantee the successful computation of the aggregates even in the presence

of the attack. Third, to the best of our knowledge, we are the first to address the security

issues in an in-network computation of Median. More specifically, we design verification

algorithms and attack-resilient computation algorithms for Median. In addition to security,

our algorithms also gain in terms of performance efficiency compared to Greenwald et

al.’s [12] non-secure Median algorithms. Fourth, Hu et al.’s [36] aggregation technique

has limited provision for security – it cannot tolerate more than one compromised node. In

contrast, most of our algorithms can tolerate multiple compromised nodes.

We compare the security features of our schemes with those of the existing schemes

in Table 2.6. For each scheme, we indicate which aggregates the scheme computes and

how many compromised nodes against which it is secure. We also state if the scheme has

provisions to verify the computed aggregate and to compute the aggregate in the presence

of compromised nodes.

22

Table 2.1: Comparing this Dissertation with the Prior Schemes
Algorithms Aggregates number of Verification Attack-resilient

considered compromised computation
nodes

TAG [4] Count, Sum 0 None None

Synopsis Count, Sum,
Diffusion Median 0 None None

[7,9]

Greenwald Median 0 None None
et al. [12]

Hu et al. Count, Sum, 1 Count, Sum, None
[36] Median Median

Chan et al. Count, Sum ≥ 1 Count, Sum None
[37]

Garofalakis Count, Sum ≥ 1 Count, Sum None
et al. [19]

SDAP [20] Count, Sum ≥ 1 Count, Sum Count, Sum

This dissertation Count, Sum, ≥ 1 Count, Sum, Count, Sum,
Median Median Median

23

Chapter 3: Securely Computing Count and Sum

This chapter discusses the security issues of in-network aggregation algorithms to compute

Count and Sum when a fraction of nodes in the network have been compromised. Prior

research has addressed some of these security issues, but most of the existing schemes

are limited to tree-based aggregation. We analyze the vulnerabilities of the ring-based

aggregation within the synopsis diffusion framework. We also propose solutions for securely

computing Count and Sum within this framework. In particular, two secure algorithms, a

verification algorithm and an attack-resilient computation algorithm, are proposed in this

chapter. The goal of the verification algorithm is to detect whether an attack has been

launched, whereas the goal of the attack-resilient computation algorithm is to compute the

aggregate despite the presence of the attack.

Organization. This chapter is organized as follows. In Section 3.1, we present an overview

of the synopsis diffusion approach, which serves as the background. Then, we discuss the

vulnerabilities of the synopsis diffusion approach in the presence of compromised nodes in

Section 3.2. Section 3.3 describes the problem statement and the assumptions made in our

work. In Section 3.4, we discuss our verification protocol, while Section 3.5 describes our

attack-resilient protocol. We present simulation results in Section 3.6. Finally, we conclude

this chapter in Section 3.7.

3.1 Preliminaries: Synopsis Diffusion

We presented an overview of the synopsis diffusion approach in Section 2.3. In this section,

we provide more details about the synopsis diffusion algorithms, which build a background

for the present chapter.

24

As discussed in Section 2.3, the synopsis diffusion framework uses a ring topology. Dur-

ing the query distribution phase, nodes form a set of rings around the base station (BS)

based on their distance in terms of hops from BS (as illustrated in Figure 2.2). By Ti we

denote the ring consisting of the nodes which are i hops away from BS. In the subsequent

aggregation period, starting in the outermost ring, each node generates and broadcasts a

local synopsis SG(v), where SG() is the synopsis generation function and v is the sensor

value relevant to the query. A node in ring Ti will receive broadcasts from all of the nodes

in its communication range in ring Ti+1. It will then combine its own local synopsis with

the synopses received from its children using a synopsis fusion function SF () and then

broadcast the updated synopsis. Thus, the fused synopses propagate level-by-level until

they reach BS, which first combines the received synopses using SF () and then uses the

synopsis evaluation function SE() to translate the final synopsis to the answer to the query.

The functions SG(), SF (), and SE() depend upon the target aggregation function, e.g.

Count, Sum, etc. We now describe the duplicate-insensitive synopsis diffusion algorithms

for Count and Sum. These algorithms are based on Flajolet and Martin’s probabilistic

algorithm for counting the number of distinct elements in a multi-set [10].

3.1.1 Count

In this algorithm, each node X generates a local synopsis QX which is a bit vector of length

η > log N ′, where N ′ is the upper bound on Count. To generate QX , node X executes the

function CT (X, η) given below (Algorithm 1), where X is the node’s identifier. CT () can be

interpreted as a coin-tossing experiment (with a cryptographic hash function h(), modeled

as a random oracle whose output is 0 or 1, simulating a fair coin-toss), which returns the

number of coin tosses, say i, until the first head occurs or η + 1 if η tosses have occurred

with no heads occurring. In the synopsis generation function SGcount, the i-th bit of QX is

set to ‘1’ while all other bits are ‘0’. Thus, QX is a bit vector of the form 0(i−1)10(η−i) with

probability 2−i.

The synopsis fusion function SF () is the bitwise Boolean OR of the synopses being

25

Algorithm 1 CT (X, η)
i=1;
while i < η + 1 AND h(X, i) = 0 do

i = i + 1;
end while
return i;

combined. Each node X fuses its local synopsis QX with the synopses it receives from its

children.

Let B denote the final synopsis computed by BS by combining all of the synopses

received from its child nodes. We observe that B will be a bit vector of length η of the

form 1z−10[0, 1]η−z, where z is the lowest-order bit in B that is 0. BS can estimate Count

from B via the synopsis evaluation function SE(): The count of nodes in the network

is 2z−1/0.7735 [9]. The synopsis evaluation function SE() is based on Property 2 below.

Intuitively, the number of sensor nodes is proportional to 2z−1 since no node has set the

z-th bit while computing CT (X, η). We now present a definition which we repeatedly use

in this chapter.

Definition: The fused synopsis of a node X, BX , is recursively defined as follows. If X is

a leaf node (i.e., X is in the outermost ring), BX is its local synopsis QX . If X is a non-leaf

node, BX is the logical OR of X’s local synopsis QX with X’s children’s fused synopses.

If node X receives synopses BX1 , BX1 , . . . , BXd from d child nodes X1, X2, . . . , Xd, re-

spectively, then X computes BX as follows:

BX = QX ||BX1 ||BX1 || . . . ||BXd , (3.1)

where || denotes the bitwise OR operator. Note that BX represents the sub-aggregate of

node X, including its descendant nodes. We note that BBS is same as the final synopsis B.

Below we present a few important properties of the final synopsis B computed at BS.

The first three properties have been derived in [7,10], while Property 4 is documented from

our observation. Let B[i], 1 ≤ i ≤ η denote the i-th bit of B, where bits are numbered

26

starting from the left. Also, N is the number of nodes present in the network.

Property 1. For i < log2 N−2 log2 log2 N , B[i] = 1 with probability ≈ 1. For i ≥ 3
2 log2 N ,

B[i] = 0 with probability ≈ 1.

This result implies that for a network of N nodes, we expect that B has an initial

prefix of all ones and a suffix of all zeros, while only the bits around B[log2 N] exhibit

much variation. This provides an estimate of the number of bits, η, required for a node’s

local synopsis. In practice, η = log2 N ′ + 4 bits are sufficient to represent B with high

probability [10], where N ′ is the upper bound of Count. This result also indicates that the

length of the prefix of all ones in B can be used to estimate N . Let z = min {i|B[i] = 0},
i.e., z is the location of the leftmost zero in B. Then R = z − 1 is a random variable

representing the length of the prefix of all ones in the synopsis. The following results hold

for R.

Property 2. The expected value of R, E(R) ≈ log2 (φN), where the constant φ is approx-

imately 0.7735.

This result implies that R can be used as an unbiased estimator of log2 (φN), and it is

the basis for the synopsis evaluation function SE(), which estimates N as 2R/φ.

Property 3. The standard deviation of R, σR ≈ 1.1213.

This property implies that estimates of N derived from R will often be off by a factor of

two or more in either direction. To reduce the standard deviation of R, Flajolet et al. [10]

proposed an algorithm named PCSA, where m synopses are computed in parallel. The

single synopsis computation algorithm is extended to the PCSA algorithm [10] as follows:

In synopsis generation function SGcount, one synopsis out of m synopses is randomly chosen

before CT () is invoked and then, only the chosen synopsis is updated. The synopsis fusion

function SF() for each synopsis is bitwise Boolean OR as in the original algorithm. In

synopsis evaluation function SE(), the new estimator is the average of all individual R’s of

these synopses. Flajolet et al. [10] showed that for PCSA, the standard error in the estimate

of N , i.e., σN/N , is equal to 0.78/
√

m.

27

Property 4. If N nodes participate in Count algorithm, the expected number of nodes

that will contribute a ‘1’ to the i-th bit of the final synopsis B is N/2i. We call these nodes

contributing nodes for bit i of B.

This property is derived from the observation that each node X sets the i-th bit of its

local synopsis QX with probability 2−i. As an example, for bit r = E(R) = log2 (φN),

the expected number of contributing nodes is 1/φ ≈ 1.29. This result also implies that

the expected number of nodes that contribute a ‘1’ to the bits right to the i-th bit (i.e.,

bits j, where i < j ≤ η) is approximately N/2i. As an example, the expected number of

contributing nodes for bits j ≥ r + 1 is approximately 1/φ.

3.1.2 Sum

Considine et al. [7] extended the Count algorithm, described in Section 3.1.1, for computing

Sum. The synopsis generation function SG() for Sum is a modification of that for Count,

while the fusion function SF () and the evaluation function SE() for Sum are identical to

those for Count.

To generate the local synopsis QX to represent its sensed value vX , node X invokes the

function CT (), used for Count synopsis generation, vX times1. In the i-th, 1 ≤ i ≤ vX invo-

cation, node X executes the function CT (Xi, η) where Xi is constructed by concatenating

its ID and integer i (i.e., Xi =< X, i >), and η is the synopsis length. The value of η is

taken as log2 S′ + 4, where S′ is an upper bound on the value of Sum aggregate. Note that

unlike the local synopsis of a node for Count, more than one bit in the local synopsis of a

node for Sum may be equal to ‘1’. The pseudo code of the synopsis generation function,

SGsum(X, vX , η), is presented below (Algorithm 2).

Note that Count can be considered as a special case of Sum where each node’s sensor

reading is equal to one unit. Considine et al. [7] showed that Properties 1, 2, 3, and 4

described above for Count synopsis also hold for Sum synopsis, with appropriate modifica-

tions. Below we present these properties of Sum synopsis, which we will find useful in the
1Without loss of generality, each sensor reading is assumed to be an integer.

28

Algorithm 2 SGsum(X, vX , η)
QX [j] = 0 ∀j 1 ≤ j ≤ η;
i=1;
while i ≤ vX do

Xi =< X, i >;
j = CT (Xi, η);
QX [j] = 1;
i = i + 1;

end while
return QX ;

rest of this chapter. Let B[i], 1 ≤ i ≤ η denote the i-th bit of the final synopsis B, where

bits are numbered starting from the left. Furthermore, S is the Sum of the sensed values

of the nodes present in the network.

Property 1. For i < log2 S− 2 log2 log2 S, B[i] = 1 with probability ≈ 1. For i ≥ 3
2 log2 S,

B[i] = 0 with probability ≈ 1.

Property 2. Let R represent the length of the prefix of all ones in B, i.e., R = z−1 where

z = min {i|B[i] = 0}. The expected value of R, E(R) ≈ log2 (φS), where the constant φ is

approximately 0.7735.

Property 3. The standard deviation of R, σR ≈ 1.1213.

Unlike the above properties, Property 4 is not a straightforward extension of its coun-

terpart for Count synopsis. From the construction of the synopsis generation function,

SGsum() (Algorithm 2), we observe that if the Sum is S, then the function CT () is invoked

S times in total considering synopsis generation of all nodes. Each node X gets a chance

to set the i-th bit of QX , its local synopsis, vX times—each time with probability 2−i. So,

the expected number of contributing nodes for the i-th bit of B not only depends on the

total number of nodes N and the value of i but also on the distribution of sensor readings.

Property 4. The expected number of invocations of CT () that will contribute a ‘1’ to the

i-th bit of the final synopsis B is S/2i, where S is the value of Sum.

As an example, with r = E(R) = log2 (φS), the expected number of invocations of

CT () which set the r-th to ‘1’ is 1/φ ≈ 1.29. This result also implies that the expected

number of contributing nodes for bit r is less than 1/φ. Furthermore, the expected number

29

of invocations of CT () that contribute a ‘1’ to the bits right to the i-th bit (i.e., bits j, where

i < j ≤ η) is approximately S/2i. As an example, the expected number of invocations of

CT () that contribute a ‘1’ to the bits right to the r-th bit is approximately 1/φ, which

implies that the expected number of contributing nodes for the bits to the right of the r-th

bit is less than 1/φ.

Similarly, as in the case of Count, the PCSA algorithm [10] can be used to reduce the

standard deviation of the estimate for Sum, where m synopses are computed in parallel. The

single synopsis computation algorithm is extended to the PCSA algorithm [10] as follows:

In synopsis generation function SGsum, one synopsis out of m synopses is randomly chosen

before each invocation of CT () and only the chosen synopsis is updated after that particular

invocation of CT ().

3.2 Attacks on Synopsis Diffusion

As discussed before (ref. Section 2.3), the synopsis diffusion aggregation framework is

vulnerable to many attacks that can be launched by a compromised node. These attacks

include jamming at the physical or link layers, route disruption, message flooding, message

dropping, message modification, false data injection, and many others. In this dissertation,

we aim to defend against an important subclass of the insider attacks which can potentially

corrupt the final result of the aggregation query. In particular, the focus of this chapter is on

the falsified sub-aggregate attack against Count or Sum algorithm, in which a compromised

node falsifies the aggregate value it is relaying to its parents in the aggregation hierarchy.

Below we describe how this attack can be launched and its impact on the final result.

The Falsified Sub-Aggregate Attack. Since BS estimates the aggregate based on the

lowest-order bit z that is ‘0’ in the final synopsis, a compromised node C would need to

falsify its fused synopsis BC such that it would affect the value of z. It can accomplish this

quite easily by simply inserting ‘1’s in one or more bits in positions j, where z ≤ j ≤ η,

in BC which it broadcasts to its parents. Let B̂C denote the synopsis finally broadcast by

30

node C. Note that the compromised node C does not need to know the true value of z; it

can simply set some higher-order bits to ‘1’ with the expectation that this will affect the

value of z computed by BS.

Since the synopsis fusion function is a bitwise Boolean OR, the fused synopsis computed

at any node which is at the higher level than node C on the aggregation hierarchy will

contain the false contributions of node C. We observe that when a node X computes the

fused synopsis B̂X , X is not sure if B̂X contains any false ‘1’s contributed by a compromised

node lower in the hierarchy. The observation is true is for BS when it computes the final

synopsis B̂. Note that B̂X is the same as X’s true fused synopsis, BX if there is no false

‘1’ injection attack.

Let R̂ = ẑ − 1, where ẑ be the lowest-order bit that is ‘0’ in the received final synopsis

B̂. Also, let R = z−1, where z is the lowest-order bit that is ‘0’ in the correct final synopsis

B. Then BS’s estimate of the aggregate will be larger than the correct estimate by a factor

of 2R̂−R. It is easy to see that, with the above technique, the compromised node can inject

a large amount of error in the final estimate of BS.

We also observe that even a single node can launch this attack with a high rate of success

because the use of multi-path routing in the synopsis diffusion approach makes it highly

likely that the falsified synopsis will be propagated to BS. If α is the packet loss rate and

if each node has f parents in the aggregation hierarchy, then the probability of success for

this attack is (1− αf)g, if the compromised node is g hops away from BS. As an example,

if α = 0.1, f = 3, and g = 5, then the probability that the attack will succeed is 99.5%.

On the other hand, it is very hard to launch an attack which results in the aggregate

estimated at BS being lower than the true estimate. This is because a compromised node

C’s changing bit j in its fused synopsis, BC from ‘1’ to ‘0’ has no effect if there is another

node X that contributes a ‘1’ to bit j in its local synopsis QX and hence to bit j in the final

synopsis B. To make this attack a success, the attacker must compromise all of the possible

paths from node X to BS so that X’s ‘1’ cannot reach BS, which is hard to achieve. If there

31

is more than one node which contributes to the same bit, then it is even harder. As an

example, in Count algorithm, half of the nodes are likely to contribute to the leftmost bit

of the synopsis, one-fourth of the nodes contribute to the second bit, and so on. We note

that there are bits in the synopsis to which only one or two nodes contribute. However, it

is very hard to predict in advance which nodes will be contributing to these particular bits

if BS broadcasts, along with the query request, a random seed to be used with the hash

function in the synopsis generation function. Hence, we can safely assume that this attack

is extremely difficult to launch. In the rest of this chapter, we do not further discuss this

second type of attack (changing bit ‘1’ to ‘0’). We restrict our discussion to the first type

of attack (changing bit ‘0’ to ‘1’), which we call the false ‘1’ injection attack. From now on,

by ‘falsified sub-aggregate attack’ we will mean the ‘false ‘1’ injection attack’. That means

the goal of our attacker is only to increase the estimate of the aggregate.

3.3 Problem Statement and Assumptions

3.3.1 Problem Description

In a sensor network where a fraction of the nodes are potentially compromised, there are

three sources that contribute to the error in the estimate of the aggregate: (i) error due to

packets loss, (ii) error due to the approximation algorithm used, e.g., Flajolet and Martin’s

probabilistic counting algorithm [10], and (iii) error injected by compromised nodes.

The first two types of error are already addressed in the synopsis diffusion aggregation

framework. Our contribution is complementary to the previous work; our objective is to

detect and then filter out the third type of error.

In particular, our goal is two fold: (a) to detect the falsified sub-aggregate attack, and

(b) to enable BS to obtain the ‘true’ estimate of the aggregate even in the presence of the

falsified sub-aggregate attack. By ‘true’ estimate, we mean the estimate of the aggregate

which BS would compute if there were no compromised nodes. More specifically, goal (a)

is to detect if B̂, the synopsis received at BS is the same as the ‘true’ final synopsis B, and

32

goal (b) is to compute B from B̂.

Without loss of generality, we present our algorithms in the context of Sum aggregate.

As Count is a special case of Sum, where each node reports a unit value, these algorithms

are readily applicable to Count aggregate also.

3.3.2 Assumptions

We here discuss the system assumptions and the security model assumed in this chapter.

System Assumptions We assume that the sensor nodes form a multi-hop network with

BS as the central point of control. We also assume that sensor nodes are similar to the

current generation of sensor nodes, e.g., Mica2 motes [48], in their computational and

communication capabilities and power resources, while BS is a laptop class device supplied

with long-lasting power.

Security Assumptions We assume that BS cannot be compromised and it uses a protocol

such as µTesla [15] to authenticate its broadcast messages to the network nodes. We also

assume each node shares a pair-wise key with BS. Let the key of the node with ID X

be denoted as KX . To authenticate a message to BS, a node X sends a MAC (Message

Authentication Code) generated using the key KX . Some of our countermeasures (e.g., the

attack-resilient protocol in Section 3.5) further assume that each pair of neighboring nodes

has a pairwise key to authenticate its mutual communication.

We assume that if a node is compromised, all of the information it holds will also be

compromised. We conservatively assume that all malicious nodes can collude or can be

under the control of a single attacker. We use a Byzantine fault model, where the adversary

can inject any message through the compromised nodes. Compromised nodes may behave

in arbitrarily malicious ways, which means that the sub-aggregate of a compromised node

can be arbitrarily generated. The goal of the attacker is to launch a stealthy attack to cause

the querier to accept a false aggregate while remaining undetected as in [37].

Notation A list of notations used in this chapter is given in Table 3.1.

33

Table 3.1: Notations Used in Describing the Secure Sum Protocols
Symbol Meaning

N the total number of nodes
N ′ an upper bound on the total number of nodes
vX sensed value of node X
S the value of Sum aggregate
S′ an upper bound on the value of Sum aggregate
KX symmetric key shared between

node X and the BS
MAC(KX ,M) message authentication code of

message M computed using key KX

X → Y X sends a message to Y
X → ∗ X broadcasts a message to one hop neighbors

X →→ ∗ X broadcasts a message to the network
< a1 , a2 > concatenation of string a1 and a2

|| the bitwise OR operator
t number of compromised nodes
η the length of the synopsis

QX the local synopsis of node X

BX the fused synopsis of node X if no attack is in the network

B̂X the fused synopsis actually computed by node X

B the final synopsis at BS if no attack is in the network

B̂ the final synopsis actually computed by BS

R length of the prefix of all ‘1’s in B

R̂ length of the prefix of all ‘1’s in B̂

3.4 Verification Algorithm

Section 3.2 discussed how an adversary can launch the falsified sub-aggregate attack, in

which the adversary falsely sets one or more bits in the synopsis to increase BS’s estimate of

Sum. Here, we present an algorithm which enables BS to verify the received synopsis. First,

we present a naive solution that serves as the background but turns out to be prohibitively

34

expensive. Then, we present our verification algorithm.

3.4.1 Background

A straightforward solution to detect the falsified sub-aggregate attack is as follows. In the

query dissemination phase, BS broadcasts an aggregation query message which includes a

random value, Seed, associated to the current query. In the subsequent aggregation phase,

along with the fused synopsis B̂X , each node X also sends a MAC towards BS authenticating

its sensed value vX . Node X uses Seed and its own ID to compute its MAC. As a result,

BS is able to detect any false ‘1’ bits inserted in the final synopsis B by simulating the

execution of the synopsis generation function for each node X.

In particular, if node X contributes to bits i1, i2, . . . , iζ in its local synopsis QX , it

generates a MAC, M = MAC(KX , L), where the format of L is [X|vX |i1, i2, . . . , iζ |Seed]

and KX is the key that node X shares with BS. We observe that this approach requires each

node’s MAC to be forwarded to BS, which incurs O(N) per-node communication overhead,

and hence, this approach is not suitable for a sensor network. Our verification algorithm

presented below also uses similar MACs but reduces the total number of them.

In the following discussion, we present an overview of our verification protocol followed

by a description of the protocol operation. Then, we discuss the correctness of this protocol,

analyze its performance and security, and compare it with other existing protocols.

3.4.2 Protocol Overview

We observe that, in general, BS can verify the final synopsis if it receives one valid MAC

for each ‘1’ bit in the synopsis. In fact, to verify a particular ‘1’ bit, say bit i, BS does

not need to receive authentication messages from all of the nodes which contribute to bit

i. As an example, more than half of the nodes are likely to contribute to the leftmost bit

of the synopsis (Property 4 of Sum synopsis), while to verify this bit, BS needs to receive a

MAC only from one of these nodes. Hence, it is sufficient for each node in the aggregation

hierarchy to forward only one MAC corresponding to each ‘1’ bit in the synopsis.

35

Our verification algorithm further reduces the communication overhead per node. In

particular, each node forwards one MAC each for at most k bits in the synopsis, where k is

a small constant (e.g., 5). This ensures, as shown later, that BS will be able to authenticate

the rightmost k ‘1’ bits in the final synopsis. Then, as proven later, BS can securely compute

R with very high probability, where R is the length of the prefix of consecutive ‘1’s in the

final synopsis B. We remind the reader that R determines the value of the final aggregate.

The higher the value of k, the greater the probability that our scheme will detect a false ‘1’

bit in the final synopsis.

Our proposed protocol is executed simultaneously with the original synopsis diffusion

algorithm [7,9], i.e., BS can compute and verify the synopsis at the same time. In particular,

along with the fused synopsis, computed following the original synopsis diffusion algorithm,

each node in the aggregation hierarchy forwards k MACs.

3.4.3 Protocol Operation

The verification protocol runs concurrently with the original synopsis diffusion protocol [7,9]

as described below. We remind the reader that in the original protocol, m ≥ 1 synopses

are computed. However, for ease of exposition, we describe our verification protocol with

respect to one single synopsis. Each synopsis can be verified independently and hence our

algorithm is readily applicable for computing multiple synopses.

Query dissemination

In the query dissemination phase, BS broadcasts the name of the aggregate to compute and

verify a random number (Seed) and the chosen value of k. The query that BS broadcasts

is as follows:

BS →→ ∗ : 〈 Fagg, Seed, k 〉,

where Fagg is the name of the aggregate (e.g., ‘Sum’). During this phase, nodes form a

set of rings around BS based on their distance in hops from BS, as in the original synopsis

diffusion algorithm [7,9].

36

Aggregation phase

Each node executes the aggregation phase of the original synopsis diffusion protocol [7, 9]

along with sending some additional authentication messages. We recall from Section 3.2

that in the presence of the falsified sub-aggregate attack the fused synopsis, B̂X computed

at a node X can be different from node X’s true fused synopsis BX .

Algorithm 3 V erifiableAggregation(X, QX , k)

receive {< ˆBX1 , MX1 >,< ˆBX2 , MX2 >, . . . , < ˆBXd , MXd >} from d child nodes;
B̂X = QX || ˆBX1 || ˆBX2 || . . . || ˆBXd ; // aggregate received synopses with local one
IX
j = the index of the j−th rightmost ‘1′ bit in B̂X , for 1 ≤ j ≤ k;

generate one MAC for each bit IX
j in QX , for 1 ≤ j ≤ k;

construct the union M of the received MACs and the self−generated ones;
randomly select MX = {MIX

1
,MIX

1
, . . . , MIX

k
} from M;

broadcast < B̂X , MX > to parents;

We start the description of this phase by introducing the following notations. With MX
i

we denote the MAC, generated by node X, authenticating the i-th bit of its local synopsis

QX . Note that MX
i is required to be generated only if QX [i] = 1, i.e. there are no MAC

for ‘0’ bits. Furthermore, with Mi we indicate one arbitrary element of the following set:

{MX
i | QX [i] = 1}. As an example, if two nodes X1 and X2 set bit i to be ‘1’ in their local

synopses, then Mi corresponds to either MX1
i or MX2

i .

When a node X broadcasts B̂X to its parents, it also forwards one MAC for each of the

rightmost k ‘1’s in B̂X synopsis2. The corresponding message is as follows:

X → ∗ : 〈 B̂X , MX 〉,

where MX represents a set of k MACs, { MIX
1

,MIX
2

, . . . , MIX
k
} with IX

j denoting the index

of the j-th rightmost ‘1’ bit in B̂X . We remind the reader that the bits in the synopsis are
2We note that to reduce the message size, a source node generates one single MAC to authenticate all of

the bits to which it contributes, say, bit i and bit j. However, to help the exposition, our illustrations list
these MACs separately as Mi and Mj .

37

numbered from left to right. As an example, if B̂X = 1111110101000, IX
1 = 10 (the index

of the rightmost ‘1’ bit is 10), IX
2 = 8 (the index of the second rightmost ‘1’ bit is 8), and

so on.

It is worth noting that all of the k MACs in MX are not necessarily generated by node

X. In fact, X randomly selects these k MACs from the pool of MACs received from its child

nodes or generated by itself. In general, node X might have more than one MAC (received

from its child nodes or generated by itself) for one particular ‘1’ bit in B̂X . However, for each

of the rightmost k ‘1’ bits, node X forwards just one of these MACs (i.e., k MACs in total).

Later, we will see that k acts as a parameter which trades between the communication

overhead and the level of security. The pseudo code run by each node X is presented below

as the procedure V erifiableAggregation() (Algorithm 3).

Finally, after receiving the messages from its child nodes, BS computes the final synopsis

B̂ and verifies the received MACs. If it has received one valid MAC for each of the rightmost

k ‘1’s present in B̂, the verification succeeds and B̂ is accepted. Otherwise, the verification

fails.

An Example Figure 3.1 illustrates an example of the protocol operation where k = 5.

Assume that node P is in ring i and nodes X, Y and Z are in ring i + 1. Nodes X, Y

and Z send to P their fused synopses, B̂X = 111111010100, B̂Y = 111111100000, and

B̂Z = 111110001000, respectively. Node X also forwards one MAC each for the 4th, 5th,

6th, 8th and 10th bit, which are denoted as M4, M5, M6, M8, and M10, respectively.

Similarly, P receives MACs M3, M4, M5,M6, and M7 from node Y , and M2, M3, M4,

M5, and M9 from node Z. We note that the MACs received by P for the 4th bit may be

different depending on the MAC’s original source nodes. The same consideration applies for

other bits. Let the local synopsis of node P , QP be 00100000000. P fuses all of the received

synopses (B̂X , B̂Y , and B̂Z), including its local synopsis (QP) to compute its fused synopsis

(B̂P), and sends it to the parent nodes in ring i− 1. In this example, B̂P = 111111111100.

P also forwards the MACs for the five rightmost ‘1’ bits (M6, M7, M8, M9, and M10) to its

38

PB = 111111111100

10, MM 8

X Z

P

XB = 111111010100 YB = 111111100000
ZB = 111110001000

PQ = 001000000000

To P’s Parent Nodes

BX

BY
3, M

4, M
Z

2, M

Y

M 5 6, M

M 4 5, M

7, MM 6

M 5 9, M
4, MM 3

B

Figure 3.1: Aggregation Phase of the Verification Algorithm. Along with the fused synopsis,
nodes X, Y, and Z forward a set of MACs to parent node P. Node X forwards one MAC for
each of the five rightmost ‘1’s in its fused synopsis, so do nodes Y and Z. After fusing the
received synopses with the local synopsis, node P similarly forwards 5 MACs and drops the
others.

parent nodes.

3.4.4 Correctness

To prove the correctness of the above verification protocol, we need to answer the following

questions.

• If no attacker is present, does the verification process end with a ‘success’?

• If the false ‘1’s injection attack is launched, does this protocol detect it?

To answer the first question, we recall that in the absence of the attack, by definition

each node X’s fused synopsis B̂X is the same as BX , and BS receives the true final synopsis

B. That means each node X in the aggregation hierarchy forwards one MAC for each of

the rightmost k ‘1’s in its fused synopsis BX . To see if this ensures that BS will receive at

least one MAC for each of the rightmost k ‘1’s in the received final synopsis B, we present

Claim 3.4.1 below.

39

Claim 3.4.1. Let no attacker be present in the network. Let B̂X denote the fused synopsis

of node X. Let IX
j denote the bit index of the j-th rightmost ‘1’ in B̂X and Ij denote the

bit index of the j-th rightmost ‘1’ in B̂, j ≥ 1. For any node X which has one or more ‘1’

bits in B̂X , the following inequality holds: IX
j ≤ Ij.

Proof (by contradiction). As no attack is launched, by definition B̂X is same as BX and B̂ is

same as B. Assume that there is one node X for which this claim does not hold. That means

there exists one bit in BX , say the i-th bit, which is the j-th rightmost ‘1’ in BX , j ≥ 1, and

i = IX
j > Ij . This implies that the number of ‘1’s to the right of the (i− 1)-th bit in BX is

j, but that in B is less than j. That means there is at least one ‘1’ bit in BX which is reset

to ‘0’ in B. This contradicts the fact that the synopsis fusion function, SF (), is a bitwise

Boolean OR, i.e. B = SF (BX , BY1 , BY2 , . . . , BYn) = BX || BY1 || BY2 || . . . || BYn .

We assume that a node X’s message to one of its parents, P , can be lost due to commu-

nication failure but it cannot be partially or wrongly received—node-to-node authentication

and acknowledgement mechanisms can be used to enforce this property. It implies that if

BX reach P , all of the k MACs sent by X also reaches P .

In our verification protocol, each node X in the aggregation hierarchy forwards one MAC

for each of the rightmost k ‘1’s in its fused synopsis. Claim 3.4.1 implies that any other node

P , BS included, in the higher level of the hierarchy will receive at least one MAC for each

of the rightmost k ‘1’s in P ’s fused synopsis. This means that in the absence of the attack,

this protocol will end with a ‘success’. In the example illustrated in Figure 3.1, nodes X,

Y , and Z forward one MAC for each of the rightmost five ‘1’s in the corresponding fused

synopsis. This ensures that node P receives at least one MAC for each of the rightmost five

‘1’s in P ’s fused synopsis.

To answer the second question we recall that only the rightmost k ‘1’s in the final

synopsis B̂ are verified, i.e., BS does not check the validity of other ‘1’s in B̂. We need to

see whether the above check is sufficient for the BS to verify if there is any false ‘1’ bit in

40

...............1 1 1 1 1 1 01 1 0 1 0 0

rightmost
2ndk−th

rightmost
 1 1

rightmost
 1

R = R
^

(a) No ‘0’ occurs to the left of the k-th rightmost ‘1’ in the final synopsis B.

...............1 1 1 0 1 1 01 1 0 1 0 0

rightmost
2ndk−th

rightmost
 1 1

rightmost
 1

R
^

R

(b) A ‘0’ occurs to the left of the k-th rightmost ‘1’ bit in the final synopsis B.

Figure 3.2: Two Possibilities with respect to Event Ek

the final synopsis B̂.

Now, we introduce Ek, which denotes the following event: A ‘0’ bit appears to the left

of the k-th rightmost ‘1’ bit in B. Below we discuss the possibility of a false ‘1’ bit in B̂

not being detected considering both of the cases: (a) event Ek does not occur in synopsis

B, and (b) event Ek occurs in synopsis B. We discuss these two cases with an example

illustrated in Figure 3.2.

Case (a): No ‘0’ appears to the left of the k-th rightmost ‘1’, say bit i, in B. In this

case, the attacker can manage to change a bit from ‘0’ to ‘1’ only on the right of the k-th

rightmost ‘1’ bit in B. Then, the number of ‘1’s to the right of bit i increases from B to

B̂. Because BS will check the MACs of the k rightmost ‘1’ bits in B̂, the attacker will be

able to detect the injected false ‘1’. In fact, the attacker is not able to produce a valid

MAC corresponding to that bit. That means that, in this case, the attacker cannot falsely

increase the prefix length R̂ in B̂ from the true prefix length R in B. In the example shown

in Fig. 3.2(a), R̂ = R = Ik + 1 where Ij represents the index of j-th rightmost ‘1’.

41

Case (b): A ‘0’, say j-th bit, appears to the left of the k-th rightmost ‘1’, say bit i, in

B. From case (a) we know that the attack can be detected if it changes a bit (from ‘0’ to

‘1’) on the right of i. However, in this case the attacker can manage to change a ‘0’ to ‘1’

on the left of the i-th bit. Because BS will just check the MACs of the k rightmost ‘1’ bits

in B̂, this will result in the attack not being detected. In the example shown in Fig. 3.2(b),

bit (Ik − 2) is ‘0’ where Ij represents the index of j-th rightmost ‘1’. If the attacker falsely

injects a ‘1’ at bit (Ik − 2), the false ‘1’ would not be detected in our verification protocol.

As a result, BS overestimates the value of R: BS’s estimate would be R̂ = Ik + 1, while

R = Ik − 3.

We remind the reader that the aim of the attacker is to inject false ‘1’s in B while

being undetected. We are now interested in computing the probability for the attacker to

succeed. From cases (a) and (b), we observed that this can happen only if event Ek occurs.

So, the probability that the attacker can succeed is the same as the probability of event Ek

to occur. Below we study the probability of event Ek to occur.

To compute Ek, we will use the following Lemmas, Lemma 3.4.2 and Lemma 3.4.3.

Lemma 3.4.2. Let the value of Sum be S and r be the expected value of R in B. The

probability that B[i] = 0, with r − a ≤ i ≤ r + a and a ≥ 0, is:

Pr[B[i] = 0] ≈ e
− (1/φ)

(2i−r) ,

where φ = 0.7735.

Proof. From Property 2 of Sum synopsis (ref. Section 3.1.2), we see that r is log2 (φS). As

observed in Section 3.1.2, the function CT () in SGsum algorithm is invoked S times in total

considering synopsis generation of all nodes. A bit j in the final synopsis B is ‘0’ only if

none of the above S invocations of CT () returns j. So, we see that:

Pr[B[j] = 0] = (1− 1
2j

)S .

42

To calculate the probability of r-th bit3 being ‘0’, we substitute j with r = log2 (φS)

and we get:

Pr[B[r] = 0] = (1− 1
2r

)S = (1− 1
φS

)S ≈ e
− 1

φ .

In general, for the i-th bit where r − a ≤ i ≤ r + a, a ≥ 0, we get:

Pr[B[i] = 0] = (1− 1
2i

)S = (1− 1
2i−r2r

)S = (1− 1
2i−rφS

)S ≈ e
− (1/φ)

(2i−r) .

We observe from Lemma 3.4.2: The probability that B[j] = 0 is determined by only the

distance of the j-th bit from the r-th bit, where the value of r is log2 (φS). Furthermore, in

Lemma 3.4.3 below, we observe that the bits close (left or right) to bit r or far to the right

of bit r can be considered as independent.

Lemma 3.4.3. Let the value of Sum be S and r be the expected value of R in B. The value

(‘0’ or ‘1’) of any two bits j and j′ in B, with j ≥ (r − b), j′ ≥ (r − b), j 6= j′, b << log2S

are independent.

Proof. By construction of SGsum algorithm (ref. Section 3.1.2), we get the following two

relations:

Pr[B[j] = 0] = (1− 1
2j

)S (3.2)

Pr[B[j] = 0, B[j′] = 0] = (1− 1
2j
− 1

2j′)
S (3.3)

3Strictly speaking, as r is a real number, ‘r-th bit’ is not a well-defined bit. However, as we are making
an average case analysis, we refer to ‘bit r’ for ease of exposition.

43

Then, by basic rules of probability, we have:

Pr[B[j] = 0 | B[j′] = 0] =
Pr[B[j] = 0, B[j′] = 0]

Pr[B[j′] = 0]
=

(1− 1
2j − 1

2j′)
S

(1− 1
2j′)S

(3.4)

From Relation 3.2 and Relation 3.4, we get:

Pr[B[j] = 0|B[j′] = 0]
Pr[B[j] = 0]

=
(1− 1

2j − 1
2j′)

S

(1− 1
2j′)S(1− 1

2j)S
= (1− 1

(2j − 1)(2j′ − 1)
)S (3.5)

So, we have:

Pr[B[j] = 0|B[j′] = 0]
Pr[B[j] = 0]

≈ (1− 1
2j2j′)

S ≈ e
− S

2j2j′ ≤ e
− S

(
φS

2b
)(

φS

2b
) = e

− 22b

φ2S ≈ 1 (3.6)

Using Lemma 3.4.2 and Lemma 3.4.3, we establish the following Claim.

Claim 3.4.4. Pr[Ek] < 0.001, for k ≥ 5.

Proof. The main idea behind this proof is as follows. Lemma 3.4.2 shows that the probability

of a bit in the synopsis being ‘0’ (or ‘1’) depends on its closeness to the r-th bit: It rapidly

decreases (increases) for the bits to the left of the r-th bit and rapidly increases (decreases)

for the bits to the right of the r-th bit. That means it is very unlikely to find a ‘0’ far to the

left of bit r and a ‘1’ far to the right of bit r. However, for event Ek to occur, one ‘0’ has

to occur somewhere, say at bit j, and k ‘1’s have to occur to the right of bit j. Intuitively,

the most likely ‘place’ where the bit pattern associated to event Ek may occur is close to

r. We exploit the above intuition to establish the claim.

Let F k
j represent the event that k ‘1’s appear to the right of bit j in B, j ≥ 1. Moreover,

let Ek
j represent the event that bit j is ‘0’ and at the same time F k

j occurs. We can express

44

the probability of event Ek
j as follows.

Pr[Ek
j] = Pr[B[j] = 0] · Pr[F k

j | B[j] = 0] (3.7)

From Lemma 3.4.2, we see that for bits j < (r − 2), Pr[B[j] = 0] ≈ 0, so Pr[Ek
j] ≈ 0. So,

we need to evaluate Expression 3.7 only for bits j ≥ (r − 2).

Thanks to Lemma 3.4.3, for j ≥ r − 2 Expression 3.7 becomes:

Pr[Ek
j] = Pr[B[j] = 0] · Pr[F k

j]. (3.8)

Let pj denote Pr[B[j] = 1]. For a particular bit j, let us define the following groups of bits,

where η is the length of the synopsis:

g1 = (j + 1, j + k + 1, j + k + 2, . . . , η);

g2 = (j + 2, j + k + 1, j + k + 2, . . . , η);

.

gk = (j + k, j + k + 1, j + k + 2, . . . , η).

We observe that for event F k
j to occur at least one bit in each group gi, 1 ≤ i ≤ k has to be

‘1’. Let Gi denote the event that at least one bit in group gi is ‘1’. By Boole’s inequality4,

we get that for any i, 1 ≤ i ≤ k,

Pr[Gi] ≤ (pj+i + pj+k+1 + pj+k+2 + . . . + pη). (3.9)

4Boole’s inequality says that for any finite or countable set of events, the probability that at least one of
the events happens is no greater than the sum of the probabilities of the individual events.

45

Hence, by basic rules of probability we get the following inequality.

Pr[F k
j] ≤ (pj+1 + pj+k+1 + pj+k+2 + . . . + pη) · (pj+2 + pj+k+1 + pj+k+2 + . . . + pη)·

. . . ·(pj+k−1+pj+k+1+pj+k+2+. . .+pη)·(pj+k+pj+k+1+pj+k+2+. . .+pη) (3.10)

Substituting Expression 3.10 for Pr[F k
j] in Expression 3.8, we get an upper bound for Pr[Ek

j].

Also, by Boole’s inequality we get the following:

Pr[Ek] ≤
η−k∑

j=r−2

Pr[Ek
j], (3.11)

where η is the length of the synopsis. Finally, substituting Pr[Ek
j] in Inequality 3.11 by the

upper bound of Pr[Ek
j], we get an upper bound of Pr[Ek].

Now let k be 5. Using Lemma 3.4.2 and Expression 3.10 with j = r − 2, we get

F 5
r−2 ≤ 0.074, and then, from Expression 3.8, using Lemma 3.4.2, we get Pr[E5

r−2] ≤

0.00042. Similarly, we get Pr[E5
r−1] ≤ 0.00040 and Pr[E5

r] ≤ 0.00008. We also find that

Pr[E5
j] ≈ 0 for j > r. Substituting the above values of Pr[E5

j] in the Inequality 3.11,

we get Pr[E5] < 0.001. By definition of Ek, if k′ > k, then Pr[Ek′] ≤ Pr[Ek]. Hence,

Pr[Ek] < 0.001 for k ≥ 5.

Furthermore, similarly as k = 5 in Claim 3.4.4, we computed an upper bound of Pr[Ek]

for k = 4, 6, 7, which are as follows: Pr[E4] < 0.0085, Pr[E6] < 5.2× 10−5, and Pr[E7] <

1.5× 10−6.

46

3.4.5 Protocol Analysis and Comparison

Here, we analyze the performance and the security issues of our verification algorithm and

compare them with other existing algorithms. To the best of our knowledge, only three

other verification algorithms have been proposed: (i) by Chan et al. [37], (ii) by Yang et

al. [20], and (iii) by Garofalakis et al. [19].

Table 3.2 compares these four algorithms over latency, communication overhead, ap-

proximation error, robustness to communication loss, and security. We also discuss the

table entries for each of the considered features.

Table 3.2: Comparing Our Verification Algorithm with Others
Algorithms Latency Communi- Approx. Robust Deterministic

cation error to commu- attack
overhead in Sum nication detection

estimate loss
Our Verifi- 1 epoch O(mk) Yes Yes No
cation Algo

Algo by 2 epochs O(∆log2N) No No Yes
Chan et al. [37]

Algo by 1 epoch O(ng) No No No
Yang et al. [20]5

Algo by Garofa- 1 epoch O(m log S) Yes Yes Yes
lakis et al. [19]

• Latency: Our verification protocol completes within one epoch6, simultaneously with

the original synopsis diffusion algorithm. Chan et al.’s algorithm takes two epochs to

complete the verification, while Yang et al.’s and Garofalakis et al.’s algorithms take

one epoch.

• Communication Overhead: During our protocol in the worst case each node has to

forward k MACs for each synopsis. If m synopses are computed, then the worst case
6As defined in the prior work [4], an epoch represents the amount of time a message takes to reach BS

from the farthest node on the aggregation hierarchy.

47

per-node communication overhead is O(mk). We note that while for ease of exposi-

tion we presented our protocol to compute just one synopsis, our protocol computes

multiple synopses in practice. In Chan et al.’s algorithm, the worst case node conges-

tion is O(∆log2N) hash values, where ∆ is the number of neighbors of a node and N

is the total number of nodes in the network. Recently, Frikken et al. [38] proposed a

modification to Chan et al.’s scheme that reduces the maximum communication per

node to O(∆logN). In Yang et al.’s algorithm, a node needs to forward ng MACs in

the worst case, where ng is the number of groups formed in the the network. The

worst case node congestion in Garofalakis et al.’s algorithm is O(m log S), where m is

the number of synopses used and S is the value of the aggregate.

• Approximation Error: Our algorithm and Garofalakis et al.’s algorithm produce an

approximate estimate of the aggregate, where the amount of error is reduced if the

number of synopses used, m, is increased. On the other hand, Chan et al.’s and Yang

et al.’s algorithms return the exact estimate if no aggregation message is lost before

reaching BS.

• Robustness to Message Loss: Our algorithm and Garofalakis et al.’s algorithm are

robust against message loss because they use multi-path routing schemes to forward

nodes’ authentication messages to BS. In contrast, Chan et al.’s algorithm is very sen-

sitive to communication loss, and for the verification to succeed BS has to receive the

authentication message from each and every node in the network. As nodes construct

an aggregation tree, communication loss over any link may paralyze this algorithm. As

a tree-based topology is used for message routing, Yang et al.’s algorithm is also not

robust to communication loss which is a common phenomenon in a sensor network.

• Security: Theoretically, there is a chance that our algorithm may not detect the

falsified sub-aggregate attack, but we can make that probability approximately 0 by

properly choosing the value of k (Claim 3.4.4). Furthermore, if the attacker does

succeed to stealthily inject some ‘1’s in a synopsis, we have a further level of defense.

48

In fact, while for ease of exposition we presented the protocol to compute just one

synopsis, multiple synopses are computed in practice (ref. Section 3.4.3). The R value

of these synopses are highly correlated [10]. So, if the R value of one synopsis appears

to be an outlier compared to the others, that synopsis can be rejected.

Chan et al.’s algorithm and Garofalakis et al.’s algorithm deterministically detect

the falsified sub-aggregate attack, while Yang et al.’s algorithm achieves probabilistic

detection.

We also note that a compromised node might falsely increase its own sensed value,

which would cause some error in the final estimate of the aggregate. While countering

this type of attack is out of the scope of our verification protocol, we observe the

following: If there are t compromised nodes, the maximum injected error is upper

bounded by tvm, where vm is the upper bound of an individual sensed value. For

Chan et al.’s algorithm and Garofalakis et al’s algorithm, the same amount of error

can be present while remaining undetected in the final estimate of the aggregate. In

contrast, in Yang et al.’s algorithm, the amount of error injected by t compromised

nodes which falsify their own sensed value could be as high as tgvm, where g is the

number of sensor nodes present in one group.

3.5 Computing Count and Sum Despite Attacks

The verification protocol presented above guarantees that the adversary cannot fool BS to

accept a corrupted synopsis; however, this protocol cannot filter out the correct aggregate in

the presence of the attack when a compromised node inserts false ‘1’s and fabricated MACs

corresponding to these false ‘1’s. In this section, we propose an attack-resilient protocol

which enables BS to compute the aggregate despite the presence of the attack. First, we

give an overview of the protocol, then we discuss the protocol operation in detail, and finally

we present the performance and security analysis.

49

3.5.1 Protocol Overview

We recall that if BS receives one valid MAC from a source node for each ‘1’ bit in the final

synopsis, it is able to correctly compute the aggregate. Before presenting our protocol, we

describe a simpler protocol in which each node X executes the previous verification protocol

(ref. Section 3.4) with k = η, where η is the length of the synopsis. That is, each node X

forwards one MAC for each of the ‘1’ bits in B̂X . So, BS will verify all of the ‘1’s in the

received final synopsis B̂. Let there be a compromised node C which falsely injects a few

‘1’s in its fused synopsis B̂C and sends a false MAC for each of these false ‘1’ bit. Then,

with some probability, these false MACs may get selected at each hop before reaching BS.

If for a bit in final synopsis B, say bit j, BS does not receive a valid MAC but only

false MACs, then BS cannot determine the real state of bit j. In fact, this can be the

consequence of either of the following two scenarios: (i) B[j] = 0 and a false MAC has been

generated; (ii) a source node has sent a valid MAC for bit j (B[j] = 1, indeed), but this

MAC lost the race to false MACs in the random selection procedure.

However, we observe that the probability of this ‘undecidability’ problem to arise is not

the same for all of the bits. In fact, a false MAC is not equally likely to get selected for all

of the bits because the number of source nodes that contribute to a bit (hence, the number

of valid MACs) varies with the bit position. Property 4 of Sum synopsis (discussed in

Section 3.1.2) says that the number of source nodes increases exponentially from the right

to the left. As an example, approximately, 1/φ =1.27 nodes are expected to contribute to

bit r, 2/φ =2.54 nodes are expected to contribute to bit (r − 1), and so on, where r is the

expected length of the prefix of consecutive ‘1’s in the final synopsis B. So, if the number

of compromised nodes, t, is small compared to the total number of nodes, N , we expect

that BS will receive a valid MAC for the leftmost bits far from bit r, but may not receive

a valid MAC for the other bits.

Considering the above observation, we design an attack-resilient protocol having two

phases as follows:

50

• In phase one, we run the simple protocol described above. That is, each node X

forwards one randomly selected MAC for each ‘1’ bit in B̂X . At the end of this phase,

BS verifies the received MACs. The ‘1’s in B̂ for which no valid MACs have been

received by BS are reset to ‘0’. Let B̄ represent the final synopsis at BS after the

above filtering process is performed. Analyzing B̄, we make an estimate, r′ of the

expected prefix length, r of B.

• In phase two, nodes which contribute to bit r′ or to the bits to the right of bit r′ send

a MAC to BS. In this phase, no random selection technique is employed in forwarding

MACs—each node forwards all of the received MACs toward BS.

We will show later that, given a deviation of r′ from r to the left, the number of

MACs required in the second phase is exponential of this deviation. The main challenge is

how to get a good estimate, r′ in the first phase. We will show that in the presence of t

compromised nodes, the deviation can be kept within O(log2 t). In this case, the number

of MACs transmitted in the second phase will be O(t), i.e. proportional to the number of

compromised nodes, t.

3.5.2 Protocol Operation

Our attack-resilient protocol exploits the fact that in the synopsis diffusion approach [7,9],

m synopses are computed in parallel. Table 3.3 introduces a few additional notations which

we use to describe this protocol. In the synopsis diffusion approach, multiple synopses Bi,

1 ≤ i ≤ m are computed to reduce the approximation error in the estimate of the aggregate,

where a typical value of m is 20.

We recall that the single synopsis computation algorithm is extended to the PCSA

algorithm [10] as follows: In synopsis generation function SGsum, one synopsis out of m

synopses is randomly chosen before each invocation of CT () and only the chosen synopsis

is updated after that particular invocation of CT (). So, if the value of Sum is S, we expect

S/m invocations of CT () to update each synopsis Bi. Let r be the expected value of Ri in

51

the synopsis Bi. Then, r is log2 (φS
m) [10] (note that r = E(R1) = E(R2) = . . . = E(Rm)).

We also recall that the random variables Ri, 1 ≤ i ≤ m, may differ for these m synopses.

Flajolet et al. [10] showed that Ri values are highly correlated with one another, and with

more than 95% probability, Ri values are within ±2 of r.

In the query dissemination phase, BS broadcasts the name of the aggregate (i.e., ‘Sum’),

the chosen value of m, and another integer m′ ≤ m. With this, BS broadcasts a flag bit

which indicates that the attack-resilient computation protocol is to be followed. As in the

original synopsis diffusion algorithm, during the query distribution phase nodes arrange

themselves into a ring topology around BS. Upon receiving the query message, the nodes

aggregate their local synopses with their child nodes’ synopses and send some authentication

messages to BS in the following two phases.

Phase One

In phase one, nodes execute the aggregation algorithm of the original synopsis diffusion

approach, involving m synopsis, with additional transmission of some MACs. To reduce

the communication overhead, we propose to collect MACs only for a subset of synopses,

B1, B2, . . . , Bm′ in this phase. From the query message broadcast from BS, each node

becomes aware of which subset of synopses to be considered. Our analysis and simulation

results will show that m′ = 4 synopses are sufficient to get a preliminary estimate of r.

Each node X randomly selects one MAC for each ‘1’ bit in synopses B̂X
1 , B̂X

2 , . . . , B̂X
m′

from the MACs received from its child nodes (possibly including X’s own MAC). X forwards

the selected MACs to its parents. The message broadcast by X to its parent nodes is as

follows:

X → ∗ : 〈 B̂X
1 , B̂X

2 , . . . , B̂X
m , {Mi,j | B̂X

i [j] = 1, 1 ≤ i ≤ m′, 1 ≤ j ≤ η} 〉,

where B̂X
i represents the i-th fused synopsis at node X, Mi,j represents a MAC correspond-

ing to B̂X
i [j], and η is the length of each synopsis.

52

Table 3.3: Notations Used in Describing the Attack-resilient Computation Protocol
Symbol Meaning

η the length of each synopsis

m the number of the synopses computed parallelly using PCSA

BX
i the i-th fused synopsis of node X if no attack is launched

B̂X
i the i-th fused synopsis computed by node X

Bi the i-th final synopsis if no attack is launched

Bi,j the j-th bit in Bi

Bi[j] the value of the j-th bit in Bi

Ri the length of the prefix of all ‘1’s in Bi

r the expected value of Ri

r′ BS’s estimate of r after phase one

B̂i the i-th final synopsis received by BS in phase one

R̂i the length of the prefix of all ‘1’s in B̂i

B̄i the i-th final synopsis at BS after false MACs, if any are
filtered in phase one

R̄i the length of the prefix of all ‘1’s in B̄i

Bi
′ the i-th final synopsis at BS after phase two terminates

Ri
′ the length of the prefix of all ‘1’s in Bi

′

We require a restriction on the number of MACs that a node can forward. In fact, if

node X sends an aggregation message (synopses B̂X
i and corresponding MACs) to its parent

node Y , Y does not accept more than one MAC for each ‘1’ bit in BX
i . This assumption

53

1 1 1 1 0 0 0 0.........0 0

1 1 1 1 10 0 0 0.........0 0

1 1 1 1 0 0 0.........0 0

1 1 1 1 10 0 0 0 0.........0 0

1 1

1

1

0

0Bm

Bm−1

2

B1

B

r−th bit

Total number of 1s are greater than

2

Rm−1

Rm

R

m

R1

Figure 3.3: Getting a Preliminary Estimate of r—BS scans synopses B1, B2, . . . , B
′
m from

the right and reports the bit position j as the estimate r′ at which total number of ‘1’s
already scanned goes above m′.

can be enforced by employing authentication techniques in the communication procedure

among neighboring nodes.

After all of the MACs have been received by BS, for any ‘1’ bit, say bit B̂i,j , in the

synopses B̂1, B̂2, . . . , B̂m′ for which no valid MAC has been received, BS resets B̂i,j to ‘0’.

The resulting set of synopses after this filtering process has been performed are denoted by

B̄1, B̄2, . . . , B̄m′ , respectively. Now, BS makes an estimate of the expected length of prefix

of all ‘1’s, r using B̄1, B̄2, . . . , B̄m′ . First, we recall from Section 3.1 that approximately one

‘1’ bit is expected, on average, to appear to the right of bit r. This observation is exploited

to design the algorithm used by BS to estimate r (Algorithm 4). This algorithm outputs j

as the estimate of r, where j is the rightmost position for which the count of all of the ‘1’s

to the right of the j-th bit in the m′ synopses is more than m′. We denote this estimate of

r as r′. Figure 3.3 illustrates Algorithm 4 with an example.

During phase one, along with the MACs for the m′ synopses, each node also forwards

all of the m synopses following the original synopsis diffusion protocol. However, the rest

of the synopses, (m−m′) synopses, for which no MACs are computed in phase one are not

54

Algorithm 4 Estimate-Expected-Prefix-Length (B̄1, B̄2, . . . , B̄m′)
int j = η; // η is the length of each synopsis
int α = 0; // α is the total number of ‘1’s to the right of B̄i,j , 1 ≤ i ≤ m′

while α ≤ m′ and j > 1 do
j = j − 1;
α = α + B̄1[j] + B̄2[j] + . . . + B̄m′ [j];

end while
return j;

validated until phase two.

We observe that there are two factors which could possibly deviate the estimate r′,

which is derived only using m′ synopses, from r: (i) a pseudo random hash function is used

to generate the synopses; (ii) injection of false MACs by the adversary—which can cause

BS not receiving any valid MAC for a few ‘1’ bits near bit r in synopses Bi, 1 ≤ i ≤ m′.

We observe that the first factor could cause the estimate to deviate toward either side; the

second factor could contribute to a deviation to the left only, as shown later. In Claim 3.5.7,

we study the deviation of r′ from r, considering t compromised nodes: The deviation on

the right side is independent of t, while the deviation on the left side is at most log2 φt + 1,

with high probability.

Phase Two

In phase two, BS requests the nodes which contribute to bits j, j ≥ r′, in all of the m

synopses to send back the corresponding MACs. The message sent by BS is as follows:

BS →→ ∗ : 〈“PhaseTwo”, r′〉,

where “PhaseTwo” is a flag indicating that phase two is going to begin.

After receiving the request from BS, each node X broadcasts to its parents the MACs,

{Mi,j | 1 ≤ i ≤ m, r′ ≤ j ≤ η}. Unlike the first phase, now no MAC is dropped by the

intermediate nodes, i.e, each node X forwards to X’s parents all of the MACs X received

from its child nodes.

55

After BS receives the MACs, any bit Bi,j , 1 ≤ i ≤ m′, j ≥ r′ for which a valid MAC is

received is set to ‘1’. Also, any bit B̂i,j , m′ + 1 ≤ i ≤ m, j ≥ r′ for which no valid MAC is

received is reset to ‘0’. The resulting synopses are denoted by ¯̄Bi, 1 ≤ i ≤ m, respectively.

Then, depending on whether bit ¯̄Bi[r′] = 1 for all the synopses i (termination criteria), BS

proceeds as follows:

• If it is so, BS assumes that all of the bits to the left of r′ are also ‘1’ in all synopses,

i.e. assumes that the position of bit r is to the right of bit r′. We remind the reader

that all of the bits j, j ≥ r′ are now verified, indeed. So, BS knows the values of all

of the bits of every synopsis. Eventually, to get the final estimate of the aggregate,

BS applies on the resulting synopses the synopsis evaluation function, SE() (ref.

Section 3.1.2).

• Otherwise, if ¯̄Bi[r′] = 0 for some i, r might be smaller than r′. That is, BS needs to

further verify a few more bits to the left of bit r′. BS does this in an iterative way

using a sliding window of w bits. In each iteration, BS broadcasts a request for the

MACs of the next w bits to the left of the leftmost bit already verified (i.e., ¯̄Bi[j],

1 ≤ i ≤ m, r′ − w ≤ j < r′, in the first iteration). Nodes reply with MACs of the

requested bits.

3.5.3 Correctness

In this section, we prove the correctness of our protocol. In particular, we prove that phase

two in Section 3.5.2 always terminates. Also, we show that when phase two terminates, i.e.,

when the sliding window satisfies the termination criterion, with very high probability BS

can correctly infer the values of all of the bits in every synopsis.

First, we present Lemma 3.5.1 and Lemma 3.5.2, which we will use to obtain the sub-

sequent results. Lemma 3.5.1 and Lemma 3.5.2 are the counterparts of Lemma 3.4.2 and

Lemma 3.4.3, respectively, when m synopses are computed instead of a single synopsis.

56

Lemma 3.5.1. Let m synopses be computed using the PCSA algorithm [10], where S is

the value of the Sum. Let r be the expected value of Ri in the i-th synopsis Bi at BS. The

probability that Bi[j] = 0, with r − a ≤ i ≤ r + a and a ≥ 0, is:

Pr[Bi[j] = 0] ≈ e
− (1/φ)

(2i−r) ,

where φ = 0.7735.

Proof. We recall that for PCSA, in the synopsis generation function SGsum, one synopsis

out of m synopses is randomly chosen before each invocation of CT () and only the chosen

synopsis is updated after that particular invocation of CT (). So, for each invocation of

CT (), the probability that the bit Bi,j will be set to ‘1’ is 1
m2j . As a result, after all of the

S invocations of CT (), we have that:

Pr[Bi[j] = 0] = (1− 1
m2j

)S .

To calculate the probability of r-th bit being ‘0’, we substitute j with r = log2 (φS
m) and

we get:

Pr[B[r] = 0] = (1− 1
m2r

)S = (1− 1
φS

)S ≈ e
− 1

φ .

In general, for the i-th bit where r − a ≤ i ≤ r + a, a ≥ 0, we get:

Pr[B[i] = 0] = (1− 1
m2i

)S = (1− 1
m2i−r2r

)S = (1− 1
2i−rφS

)S ≈ e
− (1/φ)

(2i−r) .

We observe from Lemma 3.5.1: The probability that B[j] = 0 is determined by only the

distance of the j-th bit from the r-th bit, where the value of r is log2 (φS
m). Furthermore,

in Lemma 3.5.2 below, we observe that the bits in all of the synopses close to bit r (to the

57

left or to the right of it) or far to the right of bit r can be considered as independent.

Lemma 3.5.2. Let m synopses be computed using the PCSA algorithm [10], where S is

the value of the Sum. Let r be the expected value of Ri in the i-th synopsis Bi at BS. The

value (‘0’ or ‘1’) of any two bits Bi,j and Bi′,j′, with 1 ≤ i ≤ m, 1 ≤ i′ ≤ m, j ≥ (r − b),

j′ ≥ (r − b), (i, j) 6= (i′, j′), b << log2S are independent.

Proof. By the construction of Algorithm 2 extended with PCSA, we get the following two

relations:

Pr[Bi[j] = 0] = (1− 1
m2j

)S , for 1 ≤ i ≤ m, 1 ≤ j ≤ η (3.12)

Pr[Bi[j] = 0, Bi′ [j′] = 0] = (1− 1
m2j

− 1
m2j′)

S ,

for 1 ≤ i ≤ m, 1 ≤ j ≤ η, 1 ≤ i′ ≤ m, 1 ≤ j′ ≤ η, (i, j) 6= (i′, j′) (3.13)

So, by basic rules of probability we have:

Pr[Bi[j] = 0 | Bi′ [j′] = 0] =
Pr[Bi[j] = 0, Bi′ [j′] = 0]

Pr[Bi′ [j′] = 0]
=

(1− 1
m2j − 1

m2j′)
S

(1− 1
m2j′)S

(3.14)

From Relation 3.12 and Relation 3.14, we get:

Pr[Bi[j] = 0|Bi′ [j′] = 0]
Pr[Bi[j] = 0]

=
(1− 1

m2j − 1
m2j′)

S

(1− 1
m2j′)S(1− 1

m2j)S
= (1− 1

(m2j − 1)(m2j′ − 1)
)S (3.15)

So, we have:

Pr[Bi[j] = 0|Bi′ [j′] = 0]
Pr[Bi[j] = 0]

≈ (1− 1
m22j2j′)

S ≈ e
− S

m22j2j′ ≤ e
− S

(
φS

2b
)(

φS

2b
) = e

− 22b

φ2S ≈ 1 (3.16)

58

Using the above Lemmas we now show that phase two ends. This requires us to prove

that we can get a bit index u at which the termination criterion of phase two is satisfied.

We do it using the following claim.

Claim 3.5.3. For any m there exists a bit index u such that

Pr[Bi[u] = 1 ∀i, 1 ≤ i ≤ m] ≈ 1.

Proof. Using Lemma 3.5.1 and Lemma 3.5.2 we get that the probability of bit Bi[j] = 1 in

all of the m synopses is:

pj,m ≈ (1− e
− (1/φ)

(2j−r))m

= (1− e
− 2r−j

φ)m

(3.17)

From Relation 3.17, for j < r we get that pj,m ≈ (1−me
− 2r−j

φ). We observe that pj,m

increases if j is decreased. For any m, we can find a u such that pu,m ≈ 1.

We further observe that for m = 20, Pr[Bi[r − 2] = 1∀i, 1 ≤ i ≤ m] = 0.9, and

Pr[Bi[r − 3] = 1∀i, 1 ≤ i ≤ m] ≈ 1. That means if 20 synopses are used, phase two will

stop at bit r − 2 in 90% of the cases and at bit r − 3 in the rest of them.

Also, we remind the reader that if the termination criterion of phase two is satisfied at

bit u, BS already verified all of the bits Bi[j], j ≥ u for every synopsis. For the bits Bi[j],

j < u, BS exploits one of our assumptions, which is as follows: If bit Bi[u] = 1 for all i,

then Bi[j] = 1 for all i and all j < u. We now show that this assumption holds with high

probability. We introduce Em, which denotes the following event: For some bit j, 1 ≤ j ≤ η

59

at which Bi[j] = 1 for all i, 1 ≤ i ≤ m, a ‘0’ bit appears in one or more synopses to the left

of the j-th bit. We now show that Pr[Em] is very small for a practical value of m. Recall

that the typical value of m is 20 [7, 9].

Claim 3.5.4. Pr[Em] < 0.02, for m ≥ 20.

Proof. The main idea behind this proof is as follows. Lemma 3.5.1 shows that the probability

of a bit in the synopsis being ‘0’ (or ‘1’) depends on its closeness to the r-th bit: It rapidly

decreases (increases) for the bits to the left of r-th bit and rapidly increases (decreases) for

the bits to the right of the r-th bit. That means it is very unlikely to find a ‘0’ far to the

left of bit r and a ‘1’ far to the right of bit r. However, for event Em to occur, one ‘0’ has

to occur somewhere, say bit j, and simultaneously Bi[j′] = 1 for one j′ > j and for all i,

1 ≤ i ≤ m. Intuitively, the most likely ‘place’ where the bit pattern associated to event Em

may occur is close to r.

Let Em
j,j′ , j < j′ denote the following event: Bi[j′] = 1 for all i, 1 ≤ i ≤ m and ‘0’ bit

appears in one or more synopses at the j-th bit.

Using Lemma 3.5.1 and Lemma 3.5.2, we get that the probability that bit Bi[j] = 1 in

all of the synopses is:

pj,m ≈ (1− e
− (1/φ)

(2j−r))m, (3.18)

and the probability that bit Bi[j] = 0 in one or more synopses is:

qj ≈ 1− (1− e
− (1/φ)

(2j−r))m. (3.19)

As a result, we get the following:

Pr[Em
j,j′] ≈ (1− (1− e

− (1/φ)

(2j−r))m)× (1− e
− (1/φ)

(2j′−r))m (3.20)

From Relation 3.20, for m ≥ 20 we observe that Pr[Em
j,j′] ≈ 0 for all combinations of j

60

and j′ except j = r − 2 and j′ = r − 1. So, we have:

Pr[Em] ≈ Pr[Em
r−2,r−1] ≈ me

− 4
φ (1− e

− 2
φ)m (3.21)

Taking m = 20, we get Pr[Em] = 0.02. From Relation 3.21, we also observe that for

higher values of m, the value of Pr[Em] decreases.

We recall that if BS’s final estimate of Ri in m synopses are R1
′, R2

′, . . . , Rm
′, BS uses

R′ = (R1
′ + R2

′ + . . . + Rm
′)/m to evaluate the final Sum as 2R′/φ. From Claim 3.5.4, we

observe the following for m = 20: If the termination criterion of phase two is satisfied at bit

u, then our assumption that all of the bits Bi[j], 1 ≤ i ≤ 20, j < u are ‘1’ holds in 98% of the

cases. In these cases, BS gets the ‘true’ Sum. In the other 2% of the cases, BS overestimates

some Ri by 3 bits on average (Ri = r − 3 is overestimated as r). Hence, BS overestimates

the final Sum. We observe that for j < u the probability that Bi[j] = 0 for more than one

synopses is negligible and hence the error in the final Sum is (23/20− 1)× 100% ≈ 10%. We

also observe that for higher values of m, this error is reduced.

3.5.4 Performance Analysis

In this section, we evaluate our attack-resilient computation protocol in terms of commu-

nication overhead and latency.

The communication overhead of phase one does not depend on the number of compro-

mised nodes. The worst case per-node communication burden is to forward m′l MACs,

where l is the maximum number of ‘1’s in any synopsis. From property 1 of Sum synopsis

(Section 3.1.2), we know that l is approximately log2 S, S being the Sum. That means

the communication overhead per node is O(m′ log2 S). Also, phase one takes one epoch to

complete.

On the other hand, the communication overhead and latency of phase two are determined

61

by how close the estimate r′, obtained in phase one, is to the real value of r. In the following

discussion, first we assume no attack and we examine the possible deviation in this estimate

r′ in Claim 3.5.5 and Claim 3.5.6. In particular, Claim 3.5.5 determines the deviation of r′

to the right of r, while Claim 3.5.6 determines the deviation of r′ to the left of r. Lemma

3.5.1 and Lemma 3.5.2 serve as the basis for these two Claims. Furthermore, we remind the

reader that as observed in Section 3.5.2 a practical attack can only move the estimate r′ to

the left. So, Claim 3.5.5 also describes the deviation to the right in case of attack. Instead,

we present Claim 3.5.7 to describe the deviation to the left in case of attack.

Now, by Lemma 3.5.1 we know that Pr [Bi [j] = 1] is the same for each synopsis Bi and

Pr [Bi [j] = 1] ≈ 1−e
− (1/φ)

(2j−r) . Let pj denote this probability. Then, thanks to Lemma 3.5.2,

for any particular bit j, the random variable Zj =
∑m′

i=1 Bi[j] follows a binomial distribution:

Zj ∼ B(m′, pj).

Let Yj denote the total number of ‘1’s which appear to the right of bit j in all of the

synopses B1, B2, . . . , Bm′ , i.e., Yj = Zj+1 + Zj+2 + . . . + Zη, where η is the length of each

synopsis. We also observe that thanks to Lemma 3.5.2, Zj+j′ , 1 ≤ j′ ≤ η − j variables are

independent for j ≥ (r − b), where b << log2 S.

Claim 3.5.5. Let there be no false MAC injection attack in the network and r′ be the output

of Algorithm 4, which is an estimate of the position of bit r. Let Gj represent the event that

r′ > r + j, for j > 0. We have that: (i) Pr[Gj] does not depend on r; (ii) Pr[Gj] decreases

while j increases; (iii) We can find a γ > 0 such that Pr[Gγ] ≈ 0.

Proof. If event Gj occurs, it follows from the construction of Algorithm 4 that Yr+j is at

least m′ + 1. So, the probability of the event Gj is as follows:

Pr[Gj] = Pr[Yr+j ≥ m′ + 1] = Pr[(Zr+j+1 + Zr+j+2 + . . . + Zη) ≥ (m′ + 1)] (3.22)

Note that pr+j+j′ ≈ 1 − e
− (1/φ)

(2r+j+j′−r) = 1 − e
− (1/φ)

(2j+j′) . So, the probability distribution of a

62

general random variable, Zr+j+j′ in Expression 3.22 follows B(m′, 1 − e
− (1/φ)

(2j+j′)). That is,

the probability distribution of Zr+j+j′ is independent from r. So, also the probability for

the event Gj to occur is independent from r, that is the point (i) of the claim.

From the definition of Gj , it follows that if j1 < j2, then Pr[Gj1] > Pr[Gj2], that is

point (ii) of the claim.

The above expression of pr+j+j′ can be approximated as follows:

pr+j+j′ ≈ 1− e
− (1/φ)

(2j+j′) ≈ 1− (1− 1/φ

2j+j′) =
1/φ

2j+j′ (3.23)

We observe that the probability pr+j+j′ becomes one half if (j + j′) increases by one (i.e.,

if we move one bit to the right), and eventually becomes negligible for high value of j.

Also, from the property of binomial distribution we get that E(Zr+j+j′) = m′ · pr+j+j′ , and

V ar(Zr+j+j′) = m′ · pr+j+j′ · (1− pr+j+j′).

From the definition of Yj , we get the expected value and variance of Yr+j are as follows:

E(Yr+j) = E(Zr+j+1) + E(Zr+j+2) + . . . + E(Zη) ≈ 2 · E(Zr+j+1) (3.24)

V ar(Yr+j) = V ar(Zr+j+1) + V ar(Zr+j+2) + . . . + V ar(Zη) ≈ 2 · V ar(Zr+j+1) (3.25)

We observe that both E(Yr+j) and V ar(Yr+j) decrease while j increases and eventually

become 0 for the high value of j. So, from Chebyshev’s theorem, we get that there is a γ

for which Pr[Yr+γ > m′ + 1] ≤ ε for any ε > 0. That is, point (iii) of the claim is proved.

Further, we observe that for m′ ≥ 4 and j ≥ 2, Pr[Gj] ≈ 0. As an example, let us

compute the probability of Gj for m′ = 4 and j = 2. It is easier to compute the probability

of G2, if we first compute the probability of the complementary events. We compute that

Pr[Zr+3 +Zr+4 +Zr+5 +Zr+6 + . . . = 0] ≈ 0.2977, Pr[Zr+3 +Zr+4 +Zr+5 +Zr+6 + . . . = 1] ≈

63

0.3823, Pr[Zr+3+Zr+4+Zr+5+Zr+6+. . . = 2] ≈ 0.2218, Pr[Zr+3+Zr+4+Zr+5+Zr+6+. . . =

3] ≈ 0.0770, Pr[Zr+3+Zr+4+Zr+5+Zr+6+. . . = 4] ≈ 0.0178. From the above probabilities,

finally we get the probability of event G2 is 0.0034.

As the false MAC injection attack could only cause r′ to deviate to the left, we do not

need to consider this attack in the estimation of the upper bound on the deviation of r′ to

the right of r. The upper bound, γ computed assuming no false MAC injection attack is

still an upper bound under the presence of the attack.

Claim 3.5.6. Let there be no false MAC injection attack in the network and r′ be the output

of Algorithm 4, which is an estimate of the position of bit r. Let Fj represent the event that

r′ < r − j, for j > 0. We have that: (i) Pr[Fj] does not depend on r. (ii) We can find a

δ > 0 such that Pr[Fδ] ≈ 0

Proof. Let pj = Pr [Bi [j] = 1], where by Lemma 3.5.1 we know pj being the same for

each synopsis, pj ≈ 1 − e
− (2r−j)

φ . If event Fj occurs, it follows from the construction of

Algorithm 4 that Yr−j is at most m′. So, the probability of the event Fj is as follows:

Pr[Fj] = Pr[Yr−j ≤ m′] = Pr[(Zr−j+1 + Zr−j+2 + . . . + Zη) ≤ m′]. (3.26)

Note that pr−j+j′ ≈ 1 − e
− (2r−r+j−j′)

φ = 1 − e
− (2j−j′)

φ . So, the probability distribution of a

general random variable, Zr−j+j′ in Expression 3.26 follows B(m′, 1 − e
− (2j−j′)

φ). That is,

the probability distribution of Zr−j+j′ is independent from r. So, also the probability for

the event Fj to occur is independent from r, that is the point (i) of the claim.

From the definition of Yj , it follows that for j > 2,

Pr[Yr−j ≤ m′] < Pr[(Zr−j+1 + Zr−j+2 + . . . + Zr−2) ≤ m′]. (3.27)

From the above expression of pr−j+j′ , we get that the probability pr−j+j′ ≈ 1 for j− j′ > 2.

64

So, for j − j′ > 2, we get that E(Zr−j+j′) = m′ · pr−j+j′ ≈ m′, and V ar(Zr−j+j′) =

m′ · pr−j+j′ · (1− pr−j+j′) ≈ 0. Also, we have

E(Zr−j+1 + Zr−j+2 + . . . + Zr−2) = E(Zr−j+1) + E(Zr−j+2) + . . . + E(Zr−2) ≈ m′ · (j − 2),

(3.28)

and

V ar(Zr−j+1 + Zr−j+2 + . . . + Zr−2) = V ar(Zr−j+1) + V ar(Zr−j+2) + . . . + V ar(Zr−2) ≈ 0.

(3.29)

We observe that with the increment in j, the difference between E(Zr−j+1 +Zr−j+2 + . . .+

Zr−2) and m′ increases. So, from Chebyshev’s theorem, we get that there is a δ for which

Pr[Yr−δ ≤ m′] ≤ ε for any ε > 0. That is, point (ii) of the claim is proved.

Claim 3.5.7. Let r′ be the output of Algorithm 4, which is an estimate of the position of

bit r, and let t denote the number of compromised nodes in the network. There is a δa such

that Pr[r′ < (r − δa)] ≈ 0.

Proof. We now consider the attack in which compromised nodes inject false MACs in phase

one. Recall that we enforce a restriction on the number of MACs that a node can inject

into the network. In fact, if node X sends an aggregation message (synopses B̂X
i and

corresponding MACs) to node Y , Y does not accept more than one MAC for each ‘1’ bit

in BX
i .

Without loss of generality, we focus on one particular ‘1’ bit, say Bi,j i.e., the j-th bit in

synopsis Bi. Let us assume that there are s nodes in the network which contribute to this

bit and hence each of these s nodes sends a MAC toward BS. On the other hand, if there

are t compromised nodes present in the network, then there can be at most t injected false

MACs for this bit. We can consider that these s valid MACs and t false MACs compete with

one another in the random selection procedure at the intermediate hops, and finally, only

65

1 1 1 1 0 01 1..........1

..........

..........

2t

t t t t t

4/φ 2/φ 1/φt...................

.................... number of false MACs

number of valid MACs

r

1

φr − log(t)

Figure 3.4: A High-level View of the Random Selection Procedure in MACs Forwarding—
The number of contributing nodes and hence the number of valid MACs varies with the bit
position, while the number of false MACs is at most t for any ‘1’ bit in the presence of t
compromised nodes.

one MAC reaches BS. We assume that these s good nodes and t bad nodes are randomly

distributed in the network. So, we can consider that a valid MAC finally reaches BS with

probability s/(s + t).

Recall that the number of contributing nodes varies exponentially with the bit position—

for the r-th bit, the expected number of contributing nodes is 1/φ, for the (r − 1)-th bit

2/φ, and so on. Let ra = r − log (φt). For bit ra − j, the expected number of contributing

nodes is 2jt (as illustrated in Figure 3.4). Hence, the probability that a valid MAC reaches

BS for this bit is pra−j = (2jt)/(2jt + t) = (2j)/(2j + 1). We observe that this probability

is approximately 1 while j > 4.

Let Zj =
∑m′

i=1 Bi[j] and Yj = Zj+1 + Zj+2 + . . . + Zη, where η is the length of each

synopsis. From the definition of Yj it follows that for j > 4,

Pr[Yra−j ≤ m′] < Pr[(Zra−j+1 + Zra−j+2 + . . . + Zra−4) ≤ m′]. (3.30)

For j > 4, j′ ≥ 1 and j − j′ ≥ 4, we also have that

E(Zra−j+j′) = m′ · pra−j+j′ ≈ m′, and

V ar(Zra−j+j′) = m′ · pra−j+j′ · (1− pra−j+j′) ≈ 0.

66

So, we get that

E(Zra−j+1 + . . . + Zra−4) = E(Zra−j+1) + . . . + E(Zra−4) ≈ m′ · (j − 4), (3.31)

and

V ar(Zra−j+1 + . . . + Zra−4) = V ar(Zra−j+1) + . . . + V ar(Zra−4) ≈ 0. (3.32)

We observe that with the increment in j, the difference between E(Zra−j+1 + . . . + Zra−4)

and m′ increases. So, from Chebyshev’s theorem, we get that there is a δ′ for which

Pr[Yra−δ′ ≤ m′] ≈ 0. (3.33)

That means, there is a δa = log (φt) + δ′ for which

Pr[Yr−δa ≤ m′] ≈ 0. (3.34)

As a special case, we observe that for δa = log φt + 1, the value of the probability in

Expression 3.34 is less than 0.01. That is, even in the presence of the attack the estimate

r′ of phase one is no less than r − log φt + 1 with probability more than 0.99.

To make the performance analysis of phase two, we discuss the two opposite situations

that can occur in phase one: (i) r′ is to the left of r; (ii) r′ is to the right of r. In case (i), we

observed that with high probability (more than 0.99), the leftmost position is r− log2φt−1.

Recall that the termination criterion of phase two is likely to be satisfied for any bit j ≤ r−2

(ref. Section 3.5.3). It implies that if log2φt ≥ 1, phase two is likely to complete within

one epoch and by Property 4 of Sum synopsis (ref. Section 3.1.2) at most 4t MACs are

expected to be transmitted for each synopsis. If log2φt < 1, with the sliding window width

w, phase two is likely to complete within 2/w epochs and at most 8/φ = 10.34 MACs are

67

expected to be transmitted for each synopsis.

In case (ii), we observed that with high probability (more than 0.99) the rightmost

position of r′ is r + 2. In that case, BS will find that bit r′ is ‘0’ in some of the synopses.

This means that phase two will not end but will require more iterations. First, we note

that in the presence of an attack in phase one, this case is very unlikely to occur. However,

if this case does occur, BS will iterate phase two for another round during which MACs for

w (width of the sliding window) more bits to the left of bit r′ are collected. In the worst

case, we will need (r′ − r + 2)/w more rounds. The average number of MACs transmitted

per synopsis will be 8/φ = 10.34. As a special case, we observe that if w = 2, then with

high probability phase two completes within 3 epochs.

3.5.5 Security Analysis

As each node randomly selects the MACs to forward in phase one of this protocol, there is

a possibility that no valid MAC reaches BS corresponding to a few bits near bit r in the

synopses. So, there exists some room for the adversary to shift the estimate, r′ from the

true value of r. However, phase two examines this deviation by further validating the bits

near bit r′ to securely obtain the position of bit r. In phase two, nodes do not employ a

random selection procedure in forwarding MACs; each node forwards to its parent nodes

all of the received MACs. We assume that due to the use of multi-path routing, at least

one MAC for each bit will reach BS.

Below we observe that the above assumption holds in a practical network. Let α be the

packet loss rate and each node have at least f parents in the aggregation hierarchy. Then,

the probability of node X’s MAC to reach BS is greater than (1− αf)g, where node X is

g hops away from BS. As an example, if α = 0.1, f = 3, and g = 5, then this probability

is more than 99.5%. Furthermore, a compromised node C’s dropping a MAC generated

by node X which contributes a ‘1’ to bit Bi,j has no effect if there is another node Y

which also contributes a ‘1’ to bit Bi,j and hence sends its own MAC. To stop all of the

MACs corresponding to bit Bi,j from reaching BS, the attacker has to compromise all of the

68

possible paths from all of these contributing nodes to BS, which is hard to achieve. We note

that there are bits in the synopses to which only one or two nodes contribute. However,

it is very hard for the attacker to predict in advance which nodes will be contributing to

these particular bits. As a result, our protocol is secure against the falsified sub-aggregate

attack.

A compromised node can inject errors in the final estimate of the aggregate only by

falsely increasing its own sensed value. If there are t compromised nodes, then the injected

error is at most tvm, where vm is the upper bound of an individual sensed value.

3.5.6 A Variant Protocol

We observed that the worst case communication overhead of the attack-resilient computa-

tion protocol described above is proportional to the number of compromised nodes, t. To

keep the overhead within reasonable limits even when there are more compromised nodes, we

design a variant protocol which differs from the basic attack-resilient computation protocol

only in phase two.

Phase two in the variant protocol trades off communication overhead at the cost of

latency. In this protocol, phase two may take multiple epochs depending on the deviation

in the estimate r′ from r. Claim 3.5.7 says that the left bound deviation is likely to be

less than log2 (φt) + δ′ = ∆ bits, where δ′ is a small constant. In the basic attack-resilient

computation protocol, BS verifies the r′-th bit and all of the bits to the right of the r′-

th bit in one epoch. In contrast, this protocol verifies those bits using a sliding window

of appropriate width w′ bits in multiple epochs. A wider window results in fewer epochs

but higher communication overhead. In the first epoch in phase two, bits right to bits j,

j ≥ r′ + ∆ are checked; in the next epoch, bits j, r′ + ∆ − w′ + 1 ≤ j < r′ + ∆, and so

on. As soon as BS observes that bit r is reached (i.e., the termination criterion is satisfied),

it broadcasts a STOP message to terminate the protocol. It is assumed that BS has an

estimate of t (i.e., how many nodes may be compromised at most), and this estimate is

used to compute ∆.

69

We observe that during phase two of the variant protocol, no MACs for the bits to the

left of bit r − 2 are likely to be transmitted. As a result, the worst case communication

overhead on a node in phase two is equal to the expected number of nodes which contribute

to the bit r − 2 or to its right. Using Property 4 of Sum synopsis, we get that 8/φ ≈ 10.54

MACs per synopsis will be transmitted. The latency is at most ∆/w′ = (log2 (φt) + 1)/w′

epochs with high probability.

3.5.7 Comparing with Existing Approaches

In this section, we compare our attack-resilient protocols with the existing algorithms. We

note that the attestation phase in Yang et al.’s [20] SDAP algorithm can be used to filter

out the false sub-aggregates injected by the compromised nodes from the final aggregate.

To the best of our knowledge, this is the only work present in the literature which addresses

the problem of computing aggregates despite the attack.

Here, we present a comparative study of our basic attack-resilient computation protocol

(Section 3.5.2), our variant protocol (Section 3.5.6), and SDAP. Table 3.4 compares these

three protocols over latency, communication overhead, approximation error, and robustness

to communication loss. We explain the table entries for each of the considered features. We

also discuss the security issues of these three protocols.

Table 3.4: Comparing the Attack-resilient Protocols
Protocols Latency Communica- Approximate Robust

tion overhead estimate in to message
presence of attack loss

Our Basic 2 epochs O(mt) Yes Yes
Attack-resilient (w.h.p.)

Protocol
Our Variant O(log t) epochs O(m) Yes Yes

Attack-resilient (w.h.p.)
Protocol
SDAP by 2 epochs O(N) Yes No

Yang et al. [20] (worst case)

70

• Latency: With the attestation phase included, SDAP takes 2 epochs to compute the

final aggregate, while our basic attack-resilient protocol takes 2 epochs in most of the

cases. The worst case latency incurred in our variant protocol is O(log t), where t is

the number of compromised nodes.

• Communication Overhead: In SDAP, the communication overhead of the attestation

phase depends on the topology of the network; for an irregular network, the worst

case node congestion is O(N) hash values, where N is the network size. In our basic

protocol, a node needs to forward O(mt) MACs in the worst case, where t is the

number of compromised nodes in the the network and m is the number of synopses

used. The worst case node congestion in our variant protocol is O(m).

• Error in estimate: Our algorithm returns an approximate estimate of the aggregate

where the amount of error is reduced if multiple synopses are used. On the other hand,

Yang et al.’s SDAP returns an exact estimate if there is no attack and no message

is lost in the network. However, an attacker can inject some amount of error in the

estimate while remaining undetected.

• Robustness to Message Loss: As a tree-based topology is used for routing, communica-

tion loss over any link may disrupt Yang et al.’s algorithm. In contrast, our protocols

are robust against loss because they use multi-path routing schemes to forward nodes’

authentication messages to BS.

• Security: All of these algorithms are secure against the falsified sub-aggregate attack,

but they are not equally resilient to the falsified local value attack. For our algorithms,

the amount of error which can be present yet remain undetected in the final estimate

of the aggregate is upper bounded by tvm, where t is the number of compromised

nodes and vm is the upper bound of an individual sensed value. In contrast, in Yang

et al.’s algorithm, the amount of error injected by t compromised nodes which falsify

their own sensed value could be as high as tgvm, where g is the number of sensor nodes

present in one group. We note that nodes classify themselves into several groups in

71

Yang et al.’s scheme.

3.6 Simulation Results

In this section, we report on a detailed simulation study that examined the performance

and security of our verification algorithm and the attack-resilient computation algorithms

discussed in Sections 3.4 and 3.5, respectively. The simulation experiments examined our

schemes in terms of several metrics, such as false negative rate, communication overhead,

and latency.

3.6.1 Simulation Environment

Our simulations were written based on the TAG simulator developed by Madden et al. [4].

In particular, we added the security functionality to the source code provided by Considine

et al. [7], which simulates their multi-path aggregation algorithms in the TAG simulator

environment.

For our basic experimental network topology, we used a regular 30 × 30 grid with 900

sensor nodes, where one sensor is placed at each grid point and BS is at the center of the

grid, as in [7]. The communication radius of each node is
√

2 unit, allowing the nearest

eight grid neighbors to be reached. We assigned a unique ID to each sensor, and each sensor

reading was a random integer uniformly distributed in the range of 0 to 250 units. We used

the method of independent replications as our simulation methodology. If not mentioned

otherwise, each simulation experiment was repeated 200 times with a different seed. We

computed the 95% confidence intervals; unless shown in the reported plot, the confidence

intervals are within ±2% of the reported value.

We considered packet losses, which are relatively frequent in sensor networks. We used

a simple packet loss model in which packets are dropped with a fixed probability; if not

mentioned otherwise, the loss rate is assumed to be 10%.

72

3.6.2 Results and Discussion

We now present the results we obtained for the verification protocol followed by those for

the attack-resilient protocol. As Count can be considered as a special case of Sum, here we

discuss only the results related to Sum aggregate.

Verification Protocol

For the verification protocol, we studied the false negative rate, which is the complement of

the attack detection rate. We did not, however, study the false positive rate, where a false

positive occurs if the following holds: Although no attack is launched, BS does not receive

at least one valid MAC for each of the k rightmost ‘1’s in the final synopsis B̂. Recall that

using integrity checks in node-to-node communication, synopses and MACs in each node’s

aggregation message to its parents are bound in such a way that the following is ensured:

If no attack is launched, BS will receive at least one MAC for each of the k rightmost

‘1’s in the final synopsis B̂. In fact, a corrupted MAC that is a consequence of something

besides an attack (e.g., communication error) can reach the BS. However, we observe that

this problem is not protocol-dependent and it is out of the scope of our work. Finally, we

observe that the verification protocol completes in one epoch irrespective of the final result

being ‘a success’ or ‘a failure’. So, we did not further study the latency in our simulation.

Recall that we presented our verification protocol for a single synopsis which can be

extended for multiple synopses. Furthermore, this protocol works independently for each

of the synopses eventually used. So, we present the following results for a single synopsis.

False negative rate. In our simulation we considered the worst case attack scenario: The

attacker knows the network topology and the synopsis computed by each node. That is, the

attacker can compute the final synopsis received by BS. So, the attacker is able to check if

the following event, Ek (ref. Section 3.4.4), occurs in the final synopsis: k ‘1’s are present

to the right of a ‘0’ bit, say bit j. We remind the reader that the aim of the attacker

is to increase the value of Sum as much as possible while remaining undetected. So, the

attacker takes the following strategy: If Ek occurs, it changes all ‘0’s at positions ≤ j to

73

‘1’s; otherwise, it does nothing. In fact, if the attacker modifies a bit after the j-th bit, that

would be detected—the protocol verifies the MACs of the k rightmost ‘1’s. On the other

hand, the attacker knows that no bit to the left of j will be verified: For each ‘0’ there, the

attacker will change it to ‘1’.

Considering this worst case attack scenario, we assume that an attack is not detected

each time an event Ek occurs. In our simulation, we experimentally computed the proba-

bility for this event to occur, which we analytically studied in Section 3.4.4.

We extensively simulated the verification protocol for different values of network size

(20× 20, 30× 30, 40× 40, 50× 50 and 60× 60 grid sizes) and value of the parameter k (4,

5 and 6). For each combination of these parameters, we simulated the verification protocol

b = 100, 000, 000 times.

Figure 3.5 reports the ratio c/b, where c is the number of cases in which event Ek

occurred, i.e., the false negative rate. We observe that the network size does not affect the

attack detection rate. As we chose the sensed value uniformly distributed between 0 to 250

units, the expected value of Sum is 125 multiplied with the network size. So, from Figure

3.5, it follows that also Sum does not affect the detection rate. Furthermore, the probability

of Ek to occur decreases while k increases, as expected. For example, for k = 4 the false

negative rate is about 0.007 while it is about 4.5× 10−5 for k = 6.

Communication overhead. We compare the communication overhead of the verification

protocol to that of the original synopsis diffusion (SD) approach [9]. We recall that the

original synopsis diffusion approach does not have any provision for security, hence no

authentication message is transmitted. In contrast, while running our verification protocol,

each node needs to forward the synopsis along with at most k MACs.

Figure 3.6 plots the number of bytes a node transmits on average during the verification

protocol considering different network sizes. This figure also illustrates the per-node byte

overhead of the original synopsis diffusion approach. We assume that the size of a MAC is

4 bytes as used in [46] and the size of each synopsis is 2 bytes (compressed using run-length

coding as used in [9]). We observe that the verification protocol costs roughly 4k bytes

74

400 900 1,600 2,500 3,600
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Network Size

F
al

se
 N

eg
at

iv
e

R
at

e

k=4
k=5
k=6

Figure 3.5: False Negative Rate of the Verification Protocol

400 900 1600 2500 3600
0

5

10

15

20

25

30

35

Network Size

A
ve

ra
ge

 B
yt

e
S

en
t p

er
 N

od
e

SD
k=4
k=5
k=6

Figure 3.6: Sent Byte Overhead per node in the Verification Protocol

75

400 900 1600 2500 3600
0

10

20

30

40

50

60

70

80

90

Network Size

A
ve

ra
ge

 B
yt

e
R

ec
ei

ve
d

pe
r

N
od

e

SD
k=4
k=5
k=6

Figure 3.7: Received Byte Overhead per node in the Verification Protocol

of extra overhead for each node compared with the original synopsis diffusion approach.

We also observe that the byte overhead does not increase with the network size, which

illustrates the scalability of our approach.

As for the number of bytes received, we observe that this is proportional to the number

of bytes sent. This is because each parent node has more than one child node and each of

them sends at most k MACs. For example, if node X has c child nodes, then X receives at

most ck MACs. Figure 3.7 shows the average per-node byte overhead received.

Attack-resilient Protocol

We recall that the attack-resilient protocol exploits the correlation among the different

synopses eventually used. We present the following results for m = 20 synopses as used in

previous work [7,9]. We computed these 20 synopses in parallel using the PCSA algorithm

as in the experiments reported in [7, 9, 10].

We recall from Section 3.5 that the performance of the attack-resilient protocol primarily

depends on the looseness of the estimate, r′ obtained in phase one. Below we first study the

76

accuracy of the estimate r′ in different scenarios, and then report on the other performance

metrics, such as communication overhead and latency.

Error in estimate r′. We recall that in phase one MACs are generated only for m′

synopses. As discussed in Section 3.5, for a given m′, the maximum error in estimate r′

depends on how many compromised nodes participate in the false MAC injection attack

during phase one. The analysis in Section 3.5.4 predicts that with m′ = 4, the following

inequality holds with more than 99% probability, where t is the number of compromised

nodes, ALB stands for Approximate Lower Bound, and AUB stands for Approximate Upper

Bound of r′.

ALB = r − log2 φt− 1 ≤ r′ ≤ r + 2 = AUB (3.35)

To verify the lower bound of r′, we used m′ = 4 and varied t over 2,4,6,8, and 10. For

any particular value of t, we simulated the false MAC injection attack during phase one

1,000,000 times and reported the percentage of times r′ was lower than r− log2 φt− 1. We

observed that for each of t, r′ was lower than the corresponding ALB fewer than 0.5% of

the times.

We note that a false MAC injection attack can only lower the estimate r′, so we verified

the upper bound of r′ in the absence of the attack. We simulated phase one of the attack-

resilient protocol in the absence of the false MAC injection attack 1,000,000 times. We

observed that for each value of t, in fewer than 0.4% of times r′ was higher than the r + 2,

which confirms our analysis.

Communication overhead. For the communication overhead of phase one, we recall that

during this phase each node needs to forward at most η MACs per synopsis, where η is the

length of each synopsis. The communication overhead on a node in phase two depends upon

how many nodes contribute to bits to the right of bit r′ in the synopses because each of

these nodes send a MAC to BS. Our analysis in Section 3.5.4 shows that for each synopsis,

the total number of MACs sent in the network during phase two is likely to be less than 4t,

when t compromised nodes participate in the attack.

77

2 4 6 8 10
0

5

10

15

20

25

30

35

of Compromised Nodes

A
ve

ra
ge

 #
 o

f M
A

C
s

Figure 3.8: Average Number of MACs Forwarded by a Node in Phase Two of the Attack-
resilient Computation Protocol

400 900 1600 2500 3600
400

500

600

700

800

900

1000

Network Size

S
en

t B
yt

e
O

ve
rh

ea
d

pe
r

N
od

e

t=4
t=6

Figure 3.9: Impact of Network Size on Sent Byte Overhead per Node in the Attack-resilient
Computation Protocol

78

2 4 6 8 10

10
0.3

10
0.4

10
0.5

10
0.6

of Compromised Nodes

E
po

ch
s

of
 P

ha
se

 T
w

o

Figure 3.10: Latency of Phase Two of the Variant Attack-resilient Computation Protocol

Figure 3.8 plots the number of MACs sent per synopsis during phase two as a function

of the number of compromised nodes, t. In the above experiment, we used 30× 30 grid as

the network. We observe that the number of MACs increases linearly with t, which confirms

our analysis.

Effect of network size. In this experiment, we studied the impact of the network size

on the communication overhead of the attack-resilient protocol. Recall from Section 3.5

that the number of MACs sent in phase two depends on the number of compromised nodes,

t present in the network, but not on the network size. Figure 3.9 confirms our analysis;

we observe that for a particular value of t (4 or 6), the average sent byte overhead per

node is more or less constant as the network size increases. This figure thus illustrates the

scalability of our approach for attack-resilient aggregation.

Variant protocol. As discussed in Section 3.6.2, the worst case latency of phase two of the

variant protocol is determined by the upper bound of the number of compromised nodes,

t. It is interesting to note that the latency improves if the attack is successful to deviate

the estimate r′ in phase one, i.e., the protocol incurs the worst case latency when there is

79

no attack during phase one. Our simulation confirms this observation. So, in the following

we report the latency in the worst case scenario for the latency—a no-attack condition.

Figure 3.10 plots the number of epochs taken by phase two of the variant protocol as a

function of the upper bound of the number of compromised nodes with sliding window

width w′ = 2. The figure shows that the number of epochs increases at logarithmic scale

with the upper bound of the number of compromised nodes. However, we observed that

the byte overhead of phase two does not increase with t.

3.7 Summary

We discussed the security issues of in-network aggregation algorithms to compute two basic

aggregates, Count and Sum. We presented a verification algorithm which would enable the

base station (BS) to verify whether the computed aggregate, Count or Sum, was valid, and

we also proposed an attack-resilient computation algorithm which would guarantee the suc-

cessful computation of the aggregate even if a few nodes in the network were compromised.

Prior to this dissertation, researchers proposed a few secure aggregation algorithms to

compute Count and Sum, but these proposals were limited to tree-based aggregation. To

the best of our knowledge, most of the ring-based aggregation algorithms are vulnerable

to simple attacks, such as algorithms within the synopsis diffusion framework, which is the

focus of this chapter. We analyzed the vulnerabilities of the synopsis diffusion framework

in the presence of compromised nodes and proposed countermeasures.

80

Chapter 4: Securely Computing Median

This chapter discusses the security issues of in-network aggregation algorithms to compute

Median, which is an important aggregate besides Count and Sum. We design a verification

algorithm which enables the base station (BS) to verify whether the computed aggregate,

Median, is valid. Furthermore, we propose an attack-resilient computation algorithm which

guarantees the successful computation of the aggregate even if a fraction of nodes in the

network are compromised. To design these algorithms, we use the tree topology. Our

algorithms can be extended to compute other quantiles besides Median.

Organization. The rest of this chapter is organized as follows. In Section 4.1, we provide

the background for this chapter. Section 4.2 describes the problem statement and the

assumptions taken in this chapter. In Section 4.3, we present our basic protocol, whose

security and performance analysis is given in Section 4.4. Section 4.5 describes our attack-

resilient protocol and its security and performance analysis. We present the simulation

results in Section 4.6 and compare our proposed solutions with others in Section 4.7. Finally,

we conclude the chapter in Section 4.8 by presenting a summary.

4.1 Preliminaries

We observe that an in-network aggregation algorithm cannot cheaply compute the exact

Median, while the worst case communication overhead per node is Ω(N), where N is the

number of nodes in the network [4]. As a result, several researchers have advocated compu-

tation of an approximate Median. Greenwald et al. [12] and Shrivastava et al.[13] proposed

in-network aggregation algorithms to compute an approximate Median, which we briefly

discussed in Section 2.2.2.

81

Like the in-network Count or Sum computation algorithms, the above in-network Me-

dian algorithms [12, 13] are vulnerable to attacks. As discussed in Section 2.2.3, a com-

promised node in the aggregation hierarchy may attempt to change the aggregate value

computed at the BS by relaying a false sub-aggregate value to its parent. For example, in

Greenwald et al.’s approximate Median computation algorithm [12], a compromised node

in the aggregation hierarchy can corrupt the quantile summary to make the BS accept a

false Median which might contain a large amount of error.

A technique to compute and verify Sum and Count aggregates has been recently pro-

posed by Chan et al. [37], which we briefly presented in Section 2.4.2. Their scheme [37] can

also verify if a given value is the true Median, but they have not proposed any solution to

compute that value in the first place. To the best of our knowledge, there is no prior work

which securely computes Median using an in-network algorithm. However, researchers [30]

observed that Median is an important aggregate.

One might suggest an approach which runs Greenwald et al.’s algorithm [12] to compute

an approximate Median and then employs Chan et al.’s verification protocol [37] to verify

if the computed value is indeed a valid estimate. We refer to this approach as GC in the

rest of this chapter. Later we will compare our algorithms with the GC approach.

To provide a background for the rest of this chapter, we now discuss Greenwald et al.’s

Median computation algorithm and Chan et al.’s Sum verification algorithm. Next, we

present the ‘GC approach’.

4.1.1 Greenwald et al.’s Approximate Median Algorithm

This algorithm [12] is based on a summarization technique which represents a set of sensor

readings by a quantile summary. From a ε-approximate quantile summary, we can derive an

arbitrary quantile of the data set satisfying ε-approximation error bound. In particular, an

ε-approximate quantile summary for a data set A is an ordered set Q = {α1, α2, ..., αl} such

that (i) α1 ≤ α2... ≤ αl and αi ∈ A for 1 ≤ i ≤ l, and (ii) rank(αi+1)−rank(αi) < 2 ·ε · |A|.
Also, given two quantile summaries, Q1 and Q2, which represent two disjoint sets of

82

sensed values, A1 and A2, respectively, we can aggregate them into a single quantile sum-

mary Q which represents all the values in A = A1 ∪ A2. To aggregate two quantile sum-

maries, we need two operations: combine operation and prune operation. The output of

the combine operation from the quantile summaries Q1 and Q2 is a sorted list, Q′, which

is the union of Q1 and Q2. As a result, the size of Q′ is the sum of the sizes of the original

summaries Q1 and Q2. To keep the size of the quantile summary within limits, we apply the

prune operation on Q′ to determine a quantile summary Q of a constant size, say z. The

prune operation introduces an additional error to that contained in the original summary.

In particular, if ε′ is the error in Q′, then the error in Q will be ε′ + 1
2z .

The aggregation of individual quantile summaries is performed over a tree structure

with the BS as the root, which is formed in the query broadcast phase. A leaf node sends

its quantile summary, which is simply its sensed value, to its parent. Each non-leaf node X

first aggregates the quantile summaries it receives from its child nodes using the combine

operation, and finally X applies one prune operation to keep the size of the summary

constant. Due to the error introduced by the prune operation, the algorithm uses a concept

of delayed aggregation, where the number of prune operations is kept within limit to satisfy

the error bound ε in the final quantile summary. The authors design the protocol in such

a way that a single sensed value experiences at most log N number of prune operations on

its way to the BS. If we set the quantile size z = log N
ε , then the final error is bound to be ε

and the worst case node congestion is O(log2 N
ε).

4.1.2 Chan et al.’s Verification Algorithm

This scheme [37] is designed to compute and verify the Sum aggregate. The main idea

behind this scheme is to move the verification responsibility from the BS to individual

nodes that participated in the aggregation. Each node verifies if its own value is accounted

for in the final aggregate. The algorithm consists of four operations, each of which takes

83

one epoch1 to complete: (i) query dissemination, (ii) aggregation-commit, (iii) commitment-

dissemination, and (iv) result-checking.

In the first epoch, the BS broadcasts an aggregation request. As the query message

propagates through the network, an aggregation tree with the BS at the root is formed like

in TAG algorithm [4].

During the aggregation-commit epoch, while the Sum is computed over an aggregation

tree, nodes also construct a commitment structure similar to a Merkle hash tree [49] to

enable the verification in the next phase. While a leaf node’s message to its parent node

contains its sensed value, each internal node sends the sub-aggregate it computed using

the values received from its child nodes. In addition, each internal node, X, creates a

commitment (a hash value) of the messages received from its child nodes. Both the sub-

aggregate and the commitment are then passed to X’s parent, which acts as a summary of

X’s sub-tree. The fields in X’s message are < β, v, v̄, h >, where β is the number of nodes

in X’s sub-tree, v is the local sum, v̄ is the complement of the local sum (considering an

upper bound vbound for a sensed value), and h is an authentication field. In particular, a

leaf node X sets the fields in its message as follows: β = 1, v = vX , v̄ = vbound − vX , and

h = X. If an internal node X receives messages u1, u2, ..., ut from its t child nodes, where

ui =< βi, vi, v̄i, hi >, then X’s message, < β, v, v̄, h >, is generated as follows: β =
∑

βi+1,

v =
∑

vi + vX , v =
∑

v̄i + (vbound − vX), and h = H[β||v||v̄||u1||u2||...||ut], where H is a

hash function. Once the BS receives the final commitment, it verifies the coherence of the

final v, v̄ with the number of nodes in the network, N and the upper bound of the sensed

value, vbound. In particular, the BS performs the following sanity check: v + v̄ = vbound×N .

If this check succeeds, the BS initiates the next phase.

In the commitment-dissemination epoch, the final commitment C is broadcast by the

BS to the network. This message is authenticated using the µTesla protocol [18]. The aim

of the commitment dissemination phase is to let each single node know that its own value

has been considered in the final aggregate. To do so, each node X should receive all of the
1Similar to the prior work [4], an epoch represents the amount of time a message takes to traverse the

distance between the BS and the farthest node on the aggregation hierarchy.

84

off-path values up to the root node relative to X’s position on the commitment tree. These

values, together with X’s local commitment, allows X to compute a final commitment, C ′.

Finally, node X checks if C ′ = C. If the check succeeds, it means that X’s local value, vX ,

has been included in the final Sum received by the BS.

In the last epoch, each node X that succeeded in the previous check sends an authen-

tication code (MAC) up the aggregation tree toward the BS. These MACs are aggregated

along the way with the XOR function to reduce the communication overhead. When the BS

receives the XOR of all of the MACs, it can verify if all nodes confirmed that their values

had been considered in the final aggregate.

The main cost of this protocol is due to the dissemination of the off-path values to

individual nodes. The authors observed that this overhead is minimized if the commitment

structure is balanced. They proposed to decouple the commitment structure from the

physical aggregation tree, which enables the building of a balanced commitment forest as an

overlay on an unbalanced aggregation tree. That results in the worst case node congestion

in the protocol being O(∆ log2 N). To further reduce this overhead, Frikken et al. [50]

modified the commitment structure, which results in a total cost of O(∆ log N).

Finally, the authors show how the Sum computation protocol can be extended to com-

pute the cardinality of a subset of nodes (Count) in the network. In particular, to count

the elements in a given subset, we require each node to contribute 1 to the Sum aggregate

if it belongs to the subset and to contribute 0 otherwise.

4.1.3 GC Approach

One can suggest a scheme to securely compute an approximate Median using Greenwald et

al.’s Median computation algorithm [12] in conjunction with Chan et al.’s verification algo-

rithm [37], presented above. In the first phase of the GC approach, given the approximation

error bound ε, we can run Greenwald et al.’s algorithm to compute a quantile summary.

From the quantile summary, we can derive an approximate Median m̂ which is supposed

to satisfy ε error bound. In the next phase, we can verify the actual error present in the

85

estimate, m̂, which might have been falsified by an attacker in the previous phase. To verify

the error, Chan et al.’s verification algorithm can be applied to count the number of nodes

in the network whose value is no more than m̂.

The communication cost per node in this approach comes from the original protocols:

that is O(log2N
ε) for Greenwald et al.’s Median computation algorithm and O(∆ log N) for

Chan et al.’s verification scheme (considering Frikken et al.’s recent improvement [50]),

where N is the number of nodes in the network, ε is the approximation error bound, and

∆ is the number of neighbors of a node.

Later in this chapter, we propose an alternative approach to compute and verify an

approximate Median, which proves to be more efficient compared to the GC approach.

4.2 Assumptions and Problem Description

The goal of this chapter is to securely compute an approximate Median of the sensor readings

in a network where a few nodes might be compromised. Given a specified error bound, we

return an approximate Median which is sufficiently close to the exact Median. This section

describes our system model and design goals.

Network Assumptions We assume a general multi-hop network with a set of N sensor

nodes and a single BS. The BS knows the IDs of the sensor nodes present in the network.

The network user controls the BS, initiates the query, and specifies the error bound ε. In the

rest of the chapter, we consider the user and the BS as a single entity. We also consider that

sensor nodes are similar to the current generation of sensor nodes (e.g., Berkeley MICA2

motes [51]) in their computational and communication capabilities and power resources,

while the BS is a laptop-class device supplied with long-lasting power.

We assume that the in-network aggregation is performed over an aggregation tree which

is constructed during the query broadcast, similarly as in the TAG algorithm [4]. However,

our approach does not rely on a specific tree construction algorithm. The approximation

error ε in the estimated Median m̂ is determined by how many positions m̂ is away from

86

the exact Median m in the sorted list of all of the sensed values. For ease of exposition,

without loss of generality we assume that all of the sensed values are distinct. Note that we

could relax this assumption by defining an order on IDs of the nodes that have the same

sensed value. Also, for the ease of exposition, we assume that there is an odd number of

sensed values in total so that Median is one element of the population.

Security Model We assume that the BS cannot be compromised. The BS uses a protocol

such as µTesla [18] to authenticate broadcast messages. We also assume that each node X

shares a pairwise key, KX with the BS, which is used to authenticate the messages it sends

to BS.

In this chapter, we do not address outsider attacks—we can easily prevent unauthorized

nodes from launching attacks by augmenting the aggregation framework with authentication

and encryption protocols [16,18].

We consider that the adversary can compromise a few sensor nodes (i.e., insiders) with-

out being detected. If a node is compromised, all of the information it holds will also be

compromised. We use a Byzantine fault model, where the adversary can inject malicious

messages into the network through the compromised nodes.

We observe that a compromised node might launch multiple potential attacks against

a tree-based aggregation protocol, such as corrupting the underlying routing protocol, se-

lective dropping, or a Denial-of-Service attack to prevent other nodes from receiving the

messages from the BS.

However, in this chapter we address only false data injection attacks where the goal

of the attacker is to cause the BS to accept a false aggregate. To achieve this goal in an

in-network Median computation algorithm (e.g. [12]), a compromised node X could either

attempt to falsify its own sensed value, vX , or the sub-aggregate X is supposed to forward

to its parent. We note that as we are computing Median, by falsifying the local value a

compromised node can only deviate the final estimate by one position, i.e., the impact of the

falsified local value attack is very limited. Moreover, it is impossible to detect the falsified

local value attack without domain knowledge about what is an anomalous sensor reading.

87

On the other hand, the falsified sub-aggregate attack, in which a node X does not correctly

aggregate the values received from X’s child nodes, poses a large threat to an in-network

Median computation algorithm; a compromised node X forwards to its parent a corrupted

aggregate which falsely summarizes X’s descendants’ sensed values. We observe that by

launching this attack, a single compromised node, which is placed near the root on the

aggregation hierarchy, can deviate the final estimate of Median by a large amount (e.g., in

[12]).

Problem Description We aim to compute an approximate Median against the falsified

sub-aggregate attack. In particular, our goal is to design the following two algorithms.

• Median computation and verification algorithm: This algorithm either outputs a valid

approximate Median or it detects the presence of an attack. A value, m̂, is considered

to be a valid approximate Median if it is close to the exact Median, m, within the

bound specified by the user. In particular, if the user-specified relative error bound is

ε, the BS accepts an estimate m̂ which satisfies the following constraint:

|rank(m̂)− N + 1
2

| ≤ εN (4.1)

where rank(x) denotes the position of the value x in the sorted list of all the sensed

values (the population elements), and N is the size of the population.

• Attack-resilient Median computation algorithm: If the above verification fails, our

further aim is to compute an approximate Median in the presence of the attack.

We finally note that by launching a falsified local value attack, w compromised nodes

can deviate rank(m̂) in constraint (1) above by w positions, which makes the error bound

of the final estimate of Median to be (ε + w/N). However, given an upper bound on w, the

user could adjust his input ε to finally meet the required bound.

Notation A list of notations used in this chapter is given in Table 4.1.

88

Table 4.1: Notations Used in Describing the Secure Median Protocols
Symbol Meaning

N total number of nodes
(or total number of sensed values)

S sample size
Ei value of i-th item in the sorted sample
KX symmetric key shared between

node X and the BS
ε error bound for the approximate Median
qi bucket boundary in histogram

Bi ≡ [qi, qi+1] i-th bucket of the histogram
ci count of i-th bucket
vX sensed value of node X

MAC(KX ,M) message authentication code of
message M computed using key KX

VX = (X, vX ,MAC(KX , vX))
X → Y X sends a message to Y
X → ∗ X broadcasts a message

X =⇒ Y X sends a message to Y
via multiple paths

a1 || a2 concatenation of string a1 and a2

∆ the maximum degree
of the aggregation tree

g number of groups in
the attack-resilient algorithms

w number of compromised nodes

4.3 Computing and Verifying an Approximate Median

Our approach is based on sampling—a uniform sample of sensed values is collected from

the network to make a preliminary estimate of Median, which is verified and refined later.

In particular, the key elements of our approach are to compute a histogram of the sensor

readings and then derive an approximate Median from the histogram. The collected sample

of sensed values from the network is used to construct the histogram bucket boundaries.

We first present a histogram verification algorithm and then describe our basic scheme.

89

4.3.1 A Histogram Verification Algorithm

Our algorithm for computing and verifying a histogram of sensed values is adapted from

Chan et al.’s scheme [37] to compute and verify Sum aggregate.

Formally speaking, a histogram is a list of ordered values, {q0, q1, . . . , qi, . . .}, where

each pair of consecutive values (qi, qi+1) is associated with a count ci which represents the

number of population elements, vj , such that qi < vj ≤ qi+1. We refer to such an interval,

(qi, qi+1) as bucket Bi with boundaries qi and qi+1.

As noted in [37], the Sum scheme can be adapted to count the cardinality of a subset of

nodes. Here, we apply Sum aggregate to count how many sensor readings belong to each

histogram bucket. To do so, we require each node X to contribute 1 to the count of its

corresponding bucket (the bucket X’s sensed value, vX , lies within) in the histogram, while

we compute the total count for each bucket. Like Chan et al.’s scheme, the histogram ver-

ification scheme takes four epochs to complete: query dissemination, aggregation-commit,

commitment-dissemination, and result-checking.

After an aggregation tree is constructed in the query broadcast epoch, each node X’s

message in the aggregation-commit epoch looks like < β, c1, c2, ..., cb, h >, where β is the

number of nodes in X’s subtree, b is the number of buckets in the histogram, each ci

represents the count for the bucket Bi, i.e β =
∑

i ci, and h is an authentication field. Note

that for each bucket count cj , all of the other bucket counts together act as a complement,

i.e. cj +
∑

i6=j ci = β. A leaf node X whose sensed value, vX , lies within the bucket

Bj sets the fields in its message as follows: β = 1, cj = 1, ci = 0 for all i 6= j, and

h = X. If an internal node X whose value vX lies within the bucket Bj receives messages

u1, u2, ..., ut from its t child nodes, where uk =< βk, c
k
1, c

k
2, ..., c

k
b , hk >, then X’s message

< β, c1, c2, ..., cb, h > is generated as follows: β =
∑

βk + 1, c1 =
∑

ck
1, c2 =

∑
ck
2, ...,

cj =
∑

ck
j + 1, ..., cb =

∑
ck
b , and h = H[β||c1||c2||...||cb||u1||u2||...||ut], where H is a hash

function. The above messages along the aggregation hierarchy logically build a commitment

tree which enables the authentication operation in the next phase. Once the base station

90

Figure 4.1: The Aggregation-commit Phase in Histogram Verification: In this example, vX

lies in bucket B2, vY lies in bucket B1, and vZ lies in the last bucket Bb. While leaf nodes X
and Y set the corresponding bucket count to 1, the internal node Z aggregates the messages
MX and MY and generates its message MZ which also considers its own value vZ . The first
field in MZ is 3, which represents the number of nodes in Z’s sub-tree; the bucket counts are
aggregated accordingly; and the last field is the hash value for this aggregation operation.
For the remaining nodes, vT lies in bucket B1, and vC , vD, and vE lie within bucket Bb.

receives the final commitment, it verifies the coherence of the final counts, c1, c2,..., cb, with

the number of nodes in the network, N . In particular, the BS performs the following sanity

check:
∑

ci = N . A simplified version of the aggregation-commit phase is illustrated in

Figure 4.1 with an example of a small network.

The commitment-dissemination epoch and the result-checking epoch are straightforward

extensions of those in Chan et al.’s Sum scheme. During the commitment-dissemination

epoch, the final commitment is broadcast by the BS to the network. In addition, each node

X receives from its parent node all of the off-path values up to the root relative to X’s

position on the commitment tree. The aim of the commitment dissemination phase is to let

each single node know that its own value has been considered in the final histogram. The

message containing the off-path values received by a node is larger compared to that in the

Sum scheme because each off-path value contains b counts when a histogram with b buckets

is computed. In the result-checking epoch, the BS receives a compressed authentication

91

code from all of the nodes which enables to verify if each node confirmed that its value has

been considered in the final histogram.

As in Chan et al.’s Sum scheme, the main cost of this protocol is due to the dissemination

of the off-path values to individual nodes. To reduce this overhead, following the recent

improvement proposed by Frikken et al. [50], we use a balanced commitment tree as an

overlay on the physical aggregation tree. If a histogram with b buckets is considered, each

off-path message is b times larger than that in the Sum scheme, which makes the worst case

node congestion in this protocol to be O(b∆log N).

4.3.2 Our Basic Protocol

We now describe our basic protocol to compute and verify an approximate Median. The

basic protocol has two phases: sampling phase, and histogram computation and verification

phase. Below we discuss these phases in detail.

While collecting a sample of population values is highly energy-efficient compared to

collecting all of the values, we will later show that a sample can act as a good representative

of the whole population. Also, we will show that only the sample size determines the

performance of our algorithm, irrespective of the size of the population.

Sampling

In this phase, the BS collects a uniform sample of the sensed values from the network. To

do so, the BS broadcasts the following message:

BS → ∗ : 〈SAMPLE, seed〉.

The sample request coming from the BS is broadcast in a hop-by-hop fashion and the

nodes arrange themselves in a ring topology; nodes at the first hop from the BS belong to

the first ring and so on. A node X considers the previous hop nodes as parents from which

X has received the query message. Note that in the sampling phase, we do not use a tree

topology, which is, however, used in the histogram computation and verification phase.

92

We assume that there is a public hash function F : {ID, seed} → {0, 1, ..., t− 1}, where

ID represents the node identifier, seed is the nonce broadcast during the query, and t is

a positive integer which acts as a design parameter as discussed later. Each node, say X,

hearing the query message applies the hash function F (X, seed). If the resulting value is

0, then its sensed value, vX , is considered to be one element in the sample. In that case,

X computes MAC(KX , vX) and sends the message VX = (X, vX , MAC(KX , vX)) to its

parents. In addition to that, if X has child nodes, X also forwards the sample values and

corresponding MACs received from the child nodes, say VZ1 , ..., VZc . The whole message

from X looks as follows:

X → Parents(X) : 〈VX , VZ1 , ..., VZc〉.

When the BS receives all of these messages, it verifies the corresponding MACs and

outputs the list of values that are legal items of the sample. Note that the seed is used

in order to have different samples in different runs. Basically, the hash function is used to

uniformly divide all of the nodes among t groups; the nodes belonging to the first group (i.e.,

output of the hash function is 0) are considered to constitute the sample. If the required

sample size is S, one might set t = N/S. It is expected that this hash function uniformly

maps N elements into t groups. To increase the chance that finally a sample of size no less

than S will be collected, we could increase the number of groups from t to kt, and output

the sample from more than k groups (e.g., k + 1 groups).

Histogram computation and verification

Once the BS obtains the sample, it sorts the items in ascending order. Then, the following

steps are performed: (i) computing histogram boundaries, (ii) computing and verifying the

buckets’ counts, and (iii) estimating Median.

i) Computing histogram boundaries

We consider the number of buckets, b, as a parameter. In Section 4.4.2 we discuss how

93

Figure 4.2: Computing Histogram Boundaries: The histogram boundaries are computed
using the sample collected in the previous phase.

to choose this parameter. In this step, we equally divide the sample items into b buckets.

We denote the buckets as Bi = [qi, qi+1], 0 ≤ i ≤ b − 1, where q0 = −∞, qi = EdS
b
ei and

qb = +∞, as shown in Figure 4.2. Ej represents the value of j-th item in the sample sorted

according to the value, with j varying from 1 to S.

ii) Computing and verifying the buckets’ counts

To compute the bucket counts, the BS and the sensor nodes run the histogram verifica-

tion protocol described in Section 4.3.1. If there is no attack present in the network, at the

end of this step the BS knows the number of nodes that belong to each bucket in the his-

togram. However, an attacker node can cause this verification to fail, and in that case, the

protocol terminates, returning a message, “attack detected”. We discuss an attack-resilient

solution in Section 4.5.

iii) Estimating Median

Assuming that the verification in the previous step succeeds, we have the bucket counts

c0, . . . , cb−1 for the corresponding buckets. Our aim is now to find the bucket which contains

the Median. In particular, we find j such that the following three constraints are satisfied:

el + c0 + c1 + . . . + cj−1 <
N + 1

2
(4.2)

c0 + c1 + . . . + cj ≥ N + 1
2

(4.3)

cj ≤ 2εN (4.4)

94

Figure 4.3: Splitting the Bucket: If the bucket j, which contains Median, has more than
2εN elements, the bucket is split in order to meet ε approximation error bound.

where el is equal to 0 in the first iteration and updated as follows in other cases. We first

find j such that the first two inequalities are satisfied. Then, we check if the above j also

satisfies inequality (4.4). Note that if inequality (4.4) is satisfied, then it is guaranteed

that either qj or qj+1 is εN away from the exact Median, which is reported as our final

estimate. If the inequality (4.4) is not satisfied, we further split j-th bucket equally into b

sub-buckets. The new boundaries are updated as follows: q′0 = q0, q
′
1 = qj , . . ., q

′
b−1 = qj+1,

and q′b = qb. Bucket splitting is illustrated in Figure 4.3. The variable el is updated as

el = el +
∑j−1

i=0 ci. We iterate steps (ii) and (iii) until the inequality (4.4) is satisfied. During

the above iteration, if we reach a point where bucket j does not contain any sample items

to split further, we stop after returning a message, “more sample items to be collected”.

We note that when modifying the right-hand side of inequalities (2) and (3), other quantiles

besides Median can be approximately computed.

4.4 Security and Performance Analysis of Our Basic Protocol

4.4.1 Security Analysis

A node X which is selected in the sample sends an authentication code, MAC(KX , vX), to

the BS so that the BS can authenticate the sensed value vX , where KX is the pairwise key

95

of X shared with the BS. An attacker node that is not legally selected by the hash function

cannot inject a false value in the sample without being detected.

Moreover, because the multi-path routing scheme is used in the sampling phase, it is

highly likely that we will be able to collect a sample, even if a few compromised nodes do

not forward any messages. To establish the above observation, we consider a simplistic sce-

nario. Let us assume that there are w compromised nodes in total and they are randomly

distributed in the network. So, the probability of a randomly selected node to be compro-

mised is w/N , where N is the total number of nodes. We also assume that each node has

at least θ number of parents and the farthest node is d hops away from the BS. We assume

that unless all of the parents of a node X are not compromised, X’s message will reach

the next hop—the probability that this happens is (1 − (w/N)θ). So, in the presence of

the dropping attack by the compromised nodes, the probability that a sample item finally

reaches the BS is at least (1 − (w/N)θ)d. As an example, with N = 1000, w = 50, θ = 3,

and d = 15, this probability is 0.998.

Like Chan et al.’s scheme, our histogram computation protocol is able to detect the

falsified sub-aggregate attack, i.e., the attacker cannot modify the count of any bucket in the

histogram without being detected. So, given that the verification succeeds, it is guaranteed

that the final estimate is an ε-approximate Median.

4.4.2 Performance Analysis

In this section, we analyze the communication complexity of our basic protocol. In the first

phase (i.e., during the sampling phase), the worst case node congestion occurs when a node

(e.g., a node close to the BS) is required to forward all of the S samples coming from the

network. So, the maximum node congestion in the sampling phase is O(S). The cost of

the second phase, which computes and verifies the histogram, is O(b∆logN), where b is the

number of buckets, ∆ is the degree of the aggregation tree, and N is number of nodes in the

network. Note that our protocol iterates the second phase until the required approximation

error bound is met. Our goal is to minimize the total cost of all iterations.

96

Figure 4.4: How Far Apart are Two Consecutive Elements in the Sample?

The second phase goes to the next iteration if the bucket bj in which Median lies contains

more than 2εN population elements. We then further divide j-th bucket into b sub-buckets.

We observe that further division is not possible if bucket j no longer contains a sample

item, which is bound to happen within at most logb S iterations. If bucket j still contains

more than 2εN population elements, we cannot do anything further but collect more sample

items.

To make an estimate of the sample size, S, so that we do not need to perform an extra

sampling phase in most of the cases, we present the following lemma.

Lemma 4.4.1. The probability that more than pN population elements lie between two

consecutive items of a sorted uniform sample of size S is φ(S, p) = (1− p)S−1, where N is

the population size.

Proof. Let A and B be two consecutive items in the sample after the sample items are

sorted (as shown in Figure 4.4). What we want to compute is the probability of having

more than pN population elements between A and B. Once the sample item, A, is chosen,

we have other S − 1 population elements that remain to be chosen for the sample. To

obtain the above probability, none of these S − 1 sample items should be chosen from the

population interval which starts from A and is of length pN (i.e., the interval includes pN

population elements). For each of these S − 1 sample items, the probability to be chosen

not from that interval is (1 − p). So, the probability that none of the S − 1 items will be

there is (1− p)S−1.

97

Figure 4.5: What is the Chance that γpN Elements will Fall within pS Sample Items, where
γ > 1, 0 < p < 1, and γp < 1?

As an example, from Lemma 4.4.1, we see that φ(S, 2ε) < 2.95 × 10−5 for S ≥ 100

and ε ≥ 0.05. This implies that if the user requires ε ≥ 0.05 and we use b = 10 buckets

with S = 100, we require at most logb(S) = 2 iterations to report Median with probability

(1 − 2.95 × 10−5) ≈ 1. It is interesting to note that this result does not depend on the

population size, N .

Now, to measure the trade-off between the number of buckets, b, and the number of

iterations, which together determine the total cost of the algorithm, we present the following

lemma.

Lemma 4.4.2. The probability that more than γpN (γ > 1, 0 < p < 1, γp < 1) population

elements lie between the minimum and the maximum of pS consecutive sample items of a

sorted sample of size S is

ξ(S, p, γ) =
pS−1∑

i=0

(
S − 1

i

)
(γp)i(1− γp)S−1−i (4.5)

where N is the population size.

Proof. Let A and B be the maximum and the minimum item among a subset of pS con-

secutive items in the sample while the sample items are sorted, as shown in Figure 4.5. So,

the expected number of population elements lying between A and B is pN . We would like

to compute the probability of having more than γpN population elements lying between A

98

and B, where γ > 1 and γp < 1. Once the sample item, A is chosen, we have other S − 1

population elements remain to be chosen for the sample. To obtain the above probability,

not more than (pS − 1) items of these S − 1 sample items should be chosen from the pop-

ulation interval which starts from A and is of length γpN (i.e., the interval includes γpN

population elements). For each of these S − 1 sample items, the probability to be chosen

from that interval is γp. So, the probability that not more than (pS − 1) items among the

S − 1 items will be:

pS−1∑

i=0

(
S − 1

i

)
(γp)i(1− γp)S−1−i.

Number of buckets vs. number of iterations

If we use b = γ
2ε buckets, which is of O(1

ε), where γ is a constant greater than 1 and ε is the

required error bound, then each bucket contains 2ε
γ S sample items during the first iteration.

So, the expected number of population elements in one bucket is 2ε
γ N . In Lemma 4.4.2,

putting p = 2ε
γ , we can compute the probability that more than γ · 2ε

γ ·N = 2εN population

elements fall in a bucket. As Expression (4.5) is a decreasing function of γ, by choosing

the appropriate γ, we can make the above probability close to zero. As an example, for

γ = 2, we observe that with sample size S such that εS ≥ 5, (i.e., each bucket contains no

less than 5 sample items in the first iteration) the above probability is less than 0.02 for

all ε. That means, in this setting, our protocol ends in one iteration in 98% of the cases.

Finally, considering the cost of the histogram verification scheme, we see that the total cost

of all iterations per node, when b = O(1
ε), is O(1

ε ∆log N), where ∆ is the degree of the

aggregation tree.

On the other hand, if we use b = O(1) buckets and equally divide the sample items in b

buckets in each iteration, then, after logb (γ
2ε) iterations, each bucket will contain no more

99

Figure 4.6: Betting on Median position—We divide a small fraction of sample items in the
middle into (b−2) buckets and place the rest of the sample items at either end in one bucket
each.

than 2ε
γ S sample items. So, as shown above, with the appropriate γ chosen, it is almost

certain that our algorithm will end at this point. Thus, considering the cost to compute

and verify the histogram in each iteration, the total cost of all iterations, when b = O(1),

is O(logb
1
ε · b ·∆log N), where ∆ is the degree of the aggregation tree.

Betting on Median position

We observe that with the sorted sample items being equally divided into b buckets, the

probability of a bucket containing Median is not the same for all buckets. Median is more

likely to occur with the buckets which are in the middle of the sorted sample, compared to

buckets at either end. Here we establish the above observation and exploit it to set a better

trade-off between the number of buckets and the number of iterations.

Essentially, rather not dividing the whole set of sorted sample items into b buckets

equally, we take a greedy approach—we divide a small fraction of sample items in the

middle into (b − 2) buckets and place the rest of the sample items at either end into one

bucket each, as shown in Figure 4.6. If we are lucky, after one iteration we find that Median

lies in one of the smaller (b − 2) buckets and thus our algorithm converges faster with a

given number of buckets. We consider δ, 0 ≤ δ ≤ 1 as a design parameter, which represents

the probability that Median actually lies in one of the end buckets, i.e., with probability

(1− δ) that the Median falls in one of the (b− 2) buckets in the middle.

100

We can compute one positive integer r so that Median lies within r-th and s = (S−r+1)-

th item in the sorted sample with a high probability. In particular, for a given δ, r can be

found using the formula given in [52], which is as follows:

1− δ = 2−S
S−r∑

i=r

(
S

i

)
. (4.6)

Computing r using the above formula is closely related to the sign test, so the table by

MacKinnon [53] can be used. We can also simplify the above formula considering that

a binomial distribution can be approximated to a normal distribution. For S > 10, an

approximate formula would be

r =
S

2
− 1

2
uδ

√
S, (4.7)

where uδ is the upper 1
2δ significance point of a unit normal variate.

Finally, we construct the histogram with b buckets by dividing the sample items which

are in the interval [r, S − r + 1] into (b − 2) buckets and adding one bucket each to both

ends.

We observe that the larger the value we assign for δ, the faster we reduce the search

space to find Median (i.e., the number of sample items to consider in the next iteration),

if we are lucky. Of course, if we are unlucky, we need to consider one of the larger end

buckets in the next iteration. So, the question becomes what is the optimum value for δ

to use, so that our algorithm converges with the fastest speed on average. Our aim here is

to minimize the average search space after one iteration. If Median does lie within one of

the b − 2 central buckets, then the search space for the next iteration is the same as the

number of sample items in one central bucket, which is uδ

√
S

b−2 . This happens with probability

1 − δ; otherwise, we have to consider one of the larger end buckets (i.e., the leftmost or

the rightmost one) in the next iteration. The width of such an interval is S
2 − 1

2uδ

√
S. So,

the optimization goal is to minimize the following expression, which represents the average

101

search space after one iteration:

(1− δ)(
uδ

√
S

b− 2
) + δ(

S

2
− 1

2
uδ

√
S) (4.8)

Given S and b, we can numerically determine the value of δ for which the above expres-

sion attains the minimum value.

4.5 Attack-resilient Median Computation

Although our basic protocol, discussed in Section 4.3.2, detects falsified sub-aggregate attack,

it fails to output an estimate of Median in the presence of the attack. To address this

problem, here we propose an extended approach so that we can compute an approximate

Median even in the presence of a few compromised nodes.

We design the new approach based on the divide and conquer principle. We divide the

network into several groups of nodes, which introduces resilience against the above attack.

We run the verification algorithm individually for each group, which we call intra-group

verification. Basically, we localize the attacker nodes to specific groups, i.e. we detect

which groups are corrupted and which are not. Even if a few groups are corrupted, we

still compute an estimate of Median considering the valid groups. We do not assume that

the groups have similar data distribution, which is the assumption exploited in the outlier

detection algorithm used in SDAP [20].

We may employ different grouping techniques based on node’s geographic location or

node IDs. We may also use a grouping technique which is based on the nodes’ positions

on the aggregation tree. Once the group aggregate is computed, the group leader sends it

directly to the BS; to avoid having any node in the middle to drop group aggregates, we

use a multi-path routing mechanism.

Also, we may exploit the robustness property of Median computation to determine the

maximum amount of error that can be injected by a given number of corrupted nodes, even

if we do not perform the intra-group verification. In Section 4.5.4, we estimate this error

102

while we leave it to the network user to fix the tradeoff between the error bound and the

overhead due to intra-group verification.

4.5.1 Geographical Grouping

We assume that the BS has knowledge of the location of the nodes and each node knows its

own location. The network is divided into several rectangular regions, where each region

is identified by a pair of geographical points. The number of regions, g, and the location

of the regions are selected considering a few factors. As one criterion, the regions might

be chosen in such a way that an equal number of nodes belong to each group—if a region

has lower node density, it is likely that it will be of larger geographical size. In addition, if

the BS expects that a part of the network is more likely to be under attack, it may prefer

to form smaller regions in that area to better localize the attacker. Finally, g rectangular

regions are specified by g pairs of diametrically opposite points, (x1i, y1i), (x2i, y2i), where

1 ≤ i ≤ g. For each group i, BS also selects a node to be the group leader, GLi. An example

of this grouping is shown in Figure 4.7.

Once the histogram boundaries are computed using the collected sample (as in our basic

protocol), the BS initiates the histogram verification procedure. The BS sends a request

to the corresponding group leaders with the necessary information to identify the regions.

Receiving the request, a local aggregation tree is constructed which comprises of all of the

nodes in the region with GLi as the root. Then, the group histogram is computed locally

and sent to the BS. If compromised nodes are present in a few groups, the BS will be able

to identify the corrupted groups. The BS accepts aggregates from only those regions which

passed the verification. The BS may further split the region which contains an attacker node

and run the protocol again in the sub-regions. Eventually, this splitting can be iterated until

the attacker node is identified or the percentage of verified values satisfies the BS (e.g., when

the verified groups correspond to 95% of the nodes). Below we discuss the attack-resilient

histogram computation and verification algorithm.

103

Figure 4.7: Geographical Grouping: The network is divided into several regions where each
region has a group leader (GLi). The GLi sends the region aggregate to the BS by multiple
paths.

104

Algorithm description

The nodes in each region locally perform the histogram computation and verification pro-

tocol described in Section 4.3.1 with the group leader acting as an agent of the BS in the

corresponding group. To make the group leader GLi an eligible agent of BS for group i, we

need a few additional communications between GLi and the BS. Below we focus on these

additional messages, skipping the detailed description of the rest of the protocol, which can

be found in Section 4.3.1. The messages exchanged between GLi and the BS are authenti-

cated using their pairwise key. To improve readability, we do not show these authentication

fields in the messages below.

Query dissemination BS initiates the query by sending to each group leader GLi via

multiple paths the following message, which contains the coordinates of the corresponding

region:

BS =⇒ GLi : 〈(x1i, y1i), (x2i, y2i), GLi〉.

In each region, the group leader, GLi, broadcasts the received query message to its

neighbor nodes, which again broadcast the same message, and so on. It is a scoped broad-

cast, i.e., if a node whose coordinate is outside of the corresponding region receives the

message, it simply drops the message. During the query broadcast, a regional aggregation

tree is formed with GLi as the root, similarly as in the TAG [4] algorithm. The query

message also contains required µTesla information (not shown above) so that each node in

the region can authenticate the query.

After the query is disseminated, the nodes in each region locally perform the histogram

computation and verification protocol described in Section 4.3.1.

Aggregation-commit phase After the group leader GLi receives the aggregated value

from the nodes in group i, it forwards the following message to the BS:

GLi =⇒ BS : 〈GLi, aggi, commiti〉,

105

where aggi represents the computed histogram of group i, and commiti is the root of the

commitment tree of region i.

Commitment-dissemination phase The BS checks if the number of nodes in the com-

puted histogram of the group is same as the total number of nodes in that group. If

yes, it sends to GLi the µTesla authentication information, µT (commiti). So, when GLi

broadcasts commiti in group i, each node can authenticate the message.

BS =⇒ GLi : 〈GLi, µT (commiti)〉.

Result-checking phase Each node checks if its value is incorporated in the computed

histogram. If yes, node X sends a MAC over an “OK” message, MAC(KX , OK), which

gets XOR-ed with other nodes’ similar messages on their way to the group leader. Once

GLi receives the compressed OK message, say OKi, from the nodes in its group, it forwards

this message to the BS via multiple paths:

GLi =⇒ BS : 〈GLi, OKi〉.

As the BS knows which nodes belong to which group, it can verify OKi messages and

hence can identify valid group aggregates.

Security analysis

We recall from Section 4.4.1 that the histogram computation and verification protocol, when

executed on the whole network, can detect if there is any falsified sub-aggregate attack. That

means if a malicious node X fabricates the histogram of its sub-tree or if X simply does

not participate in the protocol, the BS can detect the attack and flag that the computed

histogram is corrupted. Our intra-group verification protocol is different from the basic

one only in the following aspects: (i) the histogram of the whole network is considered as

the aggregate of the group histograms and each group histogram is computed and verified

106

individually, and (ii) the group leader, GLi exchanges a few messages with the BS, discussed

in Section 4.5.1, which enable GLi to play the role of BS in group i.

The messages exchanged between GLi and the BS are routed via multi-paths so that

they reach the destination even if an attacker node in the middle drops these messages.

The communication between GLi and the BS is also authenticated with their pairwise key.

Moreover, GLi receives from the BS the µTesla authentication information for the messages

which are to be broadcast in the group, e.g., the query message and the commiti message.

So, assuming a node X knows its location, X can securely determine to which group it

belongs and the ID of the group leader, and X can also authenticate the query and the

commiti message endorsed by the BS.

After the BS receives the group histogram from group i (i.e., the aggi message), the BS

verifies if the number of nodes reflected in the group histogram is same as the number of

nodes in the group. Also, after receiving the OKi message from group i, the BS verifies if

this message correctly represents, in compressed form, the OK message of all the nodes in

group i. The above two checks enable the BS to correctly identify the corrupted groups, if

any.

Performance analysis

On average, the number of nodes in one group is N ′ = N
g , where the network is divided into

g groups. So, the worst case node congestion inside one group for running the histogram

verification algorithm is O(b ·∆ · log N ′), where b is the number of buckets in the histogram

and ∆ is the number of neighbors of a node on the aggregation tree. Considering the

analysis given in Section 4.4.2, with b = O(1
ε), the worst case communication overhead per

node is O(1
ε · ∆ · log N ′). In addition, a node needs to forward the messages exchanged

between the group leaders and the BS, which is of O(g) communication overhead in the

worst case.

107

Figure 4.8: ID-based grouping: The network is divided into several groups based on node
ID, e.g., the odd ID nodes [filled circles] form one group and the even IDs [empty circles]
form another. The aggregation is performed separately in each group.

4.5.2 ID-based Grouping

We now propose a different grouping technique which is based on the node’s ID instead

of the node’s location. In this scheme, no location information is needed for the nodes or

for the BS. The main idea is that the BS divides the set of node IDs into several subsets,

and the nodes belonging to a subset form an aggregation group. This technique assumes

that nodes in each subset are connected. The limitation of this scheme is that reducing

the size of a subset increases the probability that these nodes are not physically connected;

so, in that case, we cannot form a group which is connected by itself. We can address the

above problem by giving an overlay structure to a group, where two nodes in a group can

be connected via multiple paths which may possibly go through a few non-group nodes.

Except for the grouping criteria, this scheme works similarly as the geographical grouping

scheme described above. The level of security and the performance of the two schemes are

similar.

4.5.3 Dynamic Grouping

We may also design a dynamic grouping scheme which does not use pre-defined groups. All

of the nodes in the network perform the basic histogram verification algorithm described in

Section 4.3.2 with storing some additional information—each node X stores the aggregate

108

Figure 4.9: Dynamic Grouping: A single aggregation tree is constructed which covers all
of the network nodes. If the verification fails, the BS dynamically selects a few sub-trees.
The local aggregates are verified, where the root of the sub-tree (STLi) acts as the group
leader.

of its sub-tree and the compressed OK string which X has forwarded to the parent node.

We assume that the BS has the knowledge of the topology of the aggregation tree. If

the BS successfully verifies the OK message, no further action is taken. Otherwise, the

BS identifies some nodes on the aggregation tree and requests these nodes to send their

stored information (the aggregate and OK string). In this way, the BS can localize the

attacker node. Further verification can be performed using different aggregation points. Like

geographical grouping, the refinement can be achieved until the attacker node is identified

or the percentage of verified values satisfies the BS.

4.5.4 Error Bound without Intra-group Verification

Assuming that there can be at most w compromised nodes in the network, one might wish

to estimate the error bound in the final estimate of Median if intra-group verification is not

performed in our attack-resilient scheme. Then, one can decide if it is worth paying the

overhead for the intra-group verification to reduce the error. In this section, we compute

the error bound and leave it to the user to set a tradeoff between the error and the energy

overhead. Note that here we basically exploit the fact that one false value can deviate the

final Median only by one position.

Let us assume that the network is divided into g groups which are of the same size. To

109

make the maximum deviation in the Median estimate, the best strategy for the attacker will

be to compromise as many groups as possible—compromising one node each in w groups.

We assume that no intra-group verification is performed and the group leader sends the

local histogram to the BS in a authenticated way through multi-path. The BS can verify

these messages received from the group leaders. Also, for each group histogram, the BS

verifies that no extra nodes are present in the group. This guarantees that the maximum

deviation in Median that an attacker can inject by compromising one group is N
g . So,

with w compromised nodes, the worst case relative error in the final estimate of Median is

wN/g
N = w

g .

4.6 Simulation Results

In this section, we report on a simulation study that examined the performance of our basic

protocol discussed in Section 4.3. Recall that in the first phase, we collect a sample of sensed

values from the network, and the performance of the rest of the protocol depends on the

quality of this sample. The goal of the simulation experiments reported below is to study

the impact of the sample on the overall performance of the Median computation protocol.

In particular, we verify the results we obtained via analysis, in Section 4.4.2, about the

inter-relationship among parameters, such as error bound ε, sample size S, and the number

of buckets b in the histogram.

Through simulation we do not evaluate the overhead of in-network communications in

our protocol. The analytical results of the communication overhead of the sampling phase

and the histogram computation and verification phase are discussed in Section 4.4.2.

4.6.1 Simulation Environment

In our basic setup, the network size is 1,000 nodes. We also vary the network size to

show that it does not have a significant impact on our sampling-based approach. In our

simulation, the typical value we take for the ε error bound varies from 5% to 15%.

110

 0
 0.002
 0.004
 0.006
 0.008
 0.01
 0.012
 0.014

 40
 50

 60
 70

 80
 90

 100

 0.06 0.08 0.1 0.12 0.14

 0
 0.002
 0.004
 0.006
 0.008

 0.01
 0.012
 0.014

φ’(S,2ε)

S

ε

φ’(S,2ε)

Figure 4.10: Computing the Chance that We need to Collect more Sample Items: Given
an ε, we choose a sample size so that the probability that we need to redo the sampling is
close to zero.

Each node has one sensed value, while our goal is to compute an approximate Me-

dian. We use the method of independent replications as our simulation methodology. Each

simulation experiment was repeated no less than 1000 times with different seeds.

4.6.2 Results and Discussion

Here, we discuss the results obtained in our simulations. We observe that a 95% confidence

interval of all the quantities on the following plots is within 5% of the reported value.

What is the chance that one sampling phase is not enough? In Lemma 4.4.1,

we analytically compute this probability which we evaluate via simulation here. For each

pair (S, ε), we collect a sample of size S and we compute the number of times, τ there are

more than 2εN elements between the two consecutive sample items containing Median. The

total number of runs performed is 1,000,000. The resulting φ′(S, 2ε), which is the observed

approximation of φ(S, 2ε), is plotted in Figure 4.10. It is worth noticing that the value of

111

 40

 50

 60

 70

 80

 90

 100

 0 5 10 15 20 25 30 35

%
 ti

m
es

 e
nd

in
g

in
 th

e
fir

st
 it

er
at

io
n

Number of buckets (b)

ε = 0.05
ε = 0.10
ε = 0.15

Figure 4.11: How the Chance of Our Algorithm Ending in One Iteration Varies with Dif-
ferent Numbers of Buckets

φ′(S, 2ε) is less than 4 × 10−5 for ε > 0.05 when the sample size S is more than 95. In

fact, as expected, for a given ε, an increase of the value of S decreases φ′(S, 2ε). Finally,

we verify that φ′(S, 2ε) does not change significantly (not shown in the figure) even if the

population size, N , is larger.

Number of buckets vs. Number of iterations. In Section 4.4.2, we analyzed the

dependence of the number of iterations of our algorithm on the number of buckets chosen,

which we validate here via simulation. First, we estimate the number of buckets required to

end our protocol in one iteration in most cases. Figure 4.11 illustrates the percent of cases

our protocol ends in the first iteration. The figure confirms our analysis that, for γ = 2, if

we use more than 1
ε buckets (i.e., 20, 10, and 7 buckets for ε = 0.05, 0.10, 0.15, respectively),

it is highly likely that we need just one iteration. Finally, Figure 4.12 shows the average

number of iterations required using different number of buckets, where S = 100. This

validates our analysis that the average number of iterations is O(logb(1
ε)) when b buckets

112

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 5 10 15 20 25 30 35

A
ve

ra
ge

 n
um

be
r

of
 it

er
at

io
ns

Number of buckets (b)

ε = 0.05
ε = 0.10
ε = 0.15

Figure 4.12: The Number of Iterations vs. the Number of Buckets: if the number of buckets
is O(1

ε), it is highly likely that our algorithm ends in one iteration.

are used.

Betting on the Median position. In Section 4.4.2, we described an optimization

technique based on the observation that Median lies with higher probability in the buckets

that are in the center of the sorted sample. We studied how different choices of δ determines

the average number of iterations for a given number of buckets. Figure 4.13 shows the

average number of iterations for different values of δ while we use ε = 0.05 and S = 100.

4.7 Comparing Our Algorithms with Others

To the best of our knowledge, there is no prior work which securely computes Median using

an in-network algorithm. We compare our algorithms with Greenwald et al.’s insecure

algorithm and the GC approach presented in Section 4.1.3.

Table 4.2 compares our approach with other solutions on the basis of a few performance

and security metrics. We report node congestion as a metric for communication complexity,

113

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 0 0.25 0.5 0.75 1

A
ve

ra
ge

 n
um

be
r

of
 it

er
at

io
ns

δ

b = 4
b = 7
b = 10
b = 20

Figure 4.13: Proper Choice of δ Reduces the Number of Iterations Needed

Table 4.2: Comparing the Median Computation Protocols
Node Latency Verification Attack-resilient

congestion (epochs) computation
Greenwald et al.’s

protocol [12] O(log2N
ε) 2 No No

GC approach
(Section 4.1.3) O(log2N

ε) 6 Yes No
Our basic protocol

(Section 4.3.2) O(1
ε ∆logN) 6 w.h.p. Yes No

Our extended protocol
(Section 4.5) O(1

ε ∆logN) 6 w.h.p. Yes Yes

which represents the worst case overhead on a single node. We measure the latency of the

protocols in epochs. We observe that the latency of our protocol might increase in extreme

cases; here, we report the latency which our protocol incurs in most cases (i.e., with high

probability [w.h.p.]). To measure the security of the protocols, we consider the following

properties. We say that a protocol has a verification property if the protocol enables the

114

BS to verify whether the computed Median is false or not. Observe that this property

does not guarantee the computation of Median in the presence of an attack. Finally, an

attack-resilient protocol is so if it guarantees the computation of Median in the presence of

a few malicious nodes.

4.8 Summary

While researchers already addressed the problem of securely computing aggregates, such as

Sum, Count, and Average, to the best of our knowledge, there is no prior work on secure

computation of Median. However, it is widely considered that Median is an important

aggregate. In this chapter, we proposed a protocol to compute an approximate Median and

verify if it is falsified by an attack. Once the protocol is executed, the base station either

possesses a valid approximate Median or it has detected an attack. Further, we proposed

an attack-resilient algorithm to compute Median even in the presence of a few compromised

nodes. The evaluation via both analysis and simulation shows that our approach is efficient

and secure. Moreover, our algorithms can be extended to compute other quantiles besides

Median.

115

Chapter 5: Conclusions

5.1 Summary

In this dissertation, we presented secure in-network aggregation algorithms for wireless

sensor networks considering the possibility that a fraction of nodes might become compro-

mised. In particular, we designed verification algorithms and attack-resilient computation

algorithms to compute basic aggregates, such as Count, Sum and Median. Using a veri-

fication algorithm, the base station can verify the correctness of the computed aggregate,

while an attack-resilient computation algorithm guarantees the successful computation of

the aggregate despite the presence of attacks.

Our secure Count and Sum algorithms are designed within the synopsis diffusion frame-

work, which uses the ring topology. In the synopsis diffusion framework, the aggregate

(Count or Sum) is represented by a bitmap called synopsis. The proposed secure algo-

rithms exploit our observation that to verify the final synopsis, the base station does not

need to receive authentication messages from all of the nodes in the network. The per-node

communication overhead of our verification algorithm is O(1), which is more efficient than

O(log S) complexity of the existing verification algorithm [19] , where S is the value of the

final aggregate (Count or Sum). Like the existing algorithm, the latency incurred in our

verification algorithm is 2 epochs.

To the best of our knowledge, there is no algorithm proposed in the literature to compute

Count and Sum within the synopsis diffusion framework in the presence of a compromised

node, which is achieved by our attack-resilient computation algorithm. The per-node com-

munication overhead incurred in this algorithm is O(t), where t compromised nodes are

present in the network, and the latency is O(1) epochs. We also proposed a variant algo-

rithm which costs O(1) communication overhead per node but at the expense of greater

116

latency, which is O(log t).

Our secure Median algorithms are designed on the tree topology. We believe there is

no other work, prior to this dissertation, which addresses the security issues of in-network

computation of Median. Our Median verification algorithm costs O(1
ε · log N) node conges-

tion while taking 6 epochs to complete, where N is the network size and ε is the desired

error bound in the estimate of Median. To compute an approximate Median in the presence

of compromised nodes, our attack-resilient computation algorithm exploits the principle of

divide and conquer.

5.2 Future Work

There are some open issues related to this dissertation, which may be addressed in future

research. Below we discuss two of them.

5.2.1 Secure Median Computation over the Ring Topology

We recall that our Median algorithm, described in Chapter 4, is designed for the tree

topology. In each iteration of our algorithm, a histogram of sensor readings is computed

and verified. Also, the bucket in the histogram which contains the Median is refined more

and more over the iterations until the desired error bound is achieved. As a future research

topic, this scheme may be extended to the synopsis diffusion framework, which is based on

the ring topology.

As multi-path routing is used in the synopsis diffusion framework, the extended scheme

will become robust to the message loss problem. However, the extended scheme needs to use

a duplicate-insensitive counting algorithm, such as our secure Count algorithm, discussed

in Chapter 3, to compute the bucket counts in the histogram.

The remaining challenge is as follows. Like the original synopsis diffusion Count algo-

rithm, our secure Count algorithm outputs an approximate estimate. As a result, in any

iteration of the histogram computation algorithm, we cannot decide which bucket contains

the Median for sure—we can only predict which bucket is the most likely one. This requires

117

including a backtracking provision during the iterations of the histogram computation al-

gorithm. Also, the final estimate of the Median will be probabilistic in nature. The tradeoff

between the amount of error in the estimate of the Median and the communication overhead

may be studied in the future research.

5.2.2 In-network Filtering of False Data

In the proposed schemes, discussed in Chapters 3 and 4, authentication messages (MACs)

sent by individual nodes are propagated all the way to the base station before being verified

(and filtered, if false). In large-scale networks, it may be advantageous to do in-network

processing of these messages before they reach the base station. As an example, a parent

node X can easily detect if any of its child nodes, say Y , are falsifying the local value,

because sensor readings are correlated with location. To detect if any child node Y is

forwarding a false sub-aggregate, a parent node X may demand multiple descendant nodes

of Y to send an authentication message to X. The attack-resilient property of this kind of

schemes may be derived from an assumption that no more than k nodes among the one-hop

neighbors of a node can be compromised. The main challenge is to find the tradeoff among

several factors, such as attack-resiliency (the value of k), communication overhead, and

storage.

We may also explore a few other directions to achieve in-network filtration of false data.

For a large sensor network, we may study an alternative architecture which assumes multiple

trusted nodes deployed throughout the network, instead of just one trusted node as the base

station. In this architecture, only trusted nodes act as the aggregators, and other nodes

send their local values directly to the nearest trusted node. Each aggregator node securely

forwards its sub-aggregate to the aggregator in the next level in the hierarchy, and so on.

118

Bibliography

119

Bibliography

[1] Habitat Monitoring on Great Duck Island, http://www.greatduckisland.net/.

[2] The Firebug Project, http://firebug.sourceforge.net.

[3] James Reserve Microclimate and Video Remote Sensing, http://www.cens.ucla.edu.

[4] S. Madden, M. J. Franklin, J. Hellerstein, and W. Hong, “TAG: A tiny aggregation
service for ad hoc sensor networks,” in Proc. of 5th USENIX Symposium on Operating
Systems Design and Implementation, 2002.

[5] J. Zhao, R. Govindan, and D. Estrin, “Computing aggregates for monitoring sensor
networks,” in Proc. of the 2nd IEEE International Workshop on Sensor Network Pro-
tocols and Applications, 2003.

[6] J. Zhao and R. Govindan, “Understanding packet delivery performance in dense wire-
less sensor networks,” in Proc. of the 1st international conference on Embedded net-
worked sensor systems (SenSys), 2003.

[7] J. Considine, F. Li, G. Kollios, and J. Byers, “Approximate aggregation techniques for
sensor databases,” in Proc. of IEEE Int’l Conf. on Data Engineering (ICDE), 2004.

[8] A. Manjhi, S. Nath, and P. Gibbons, “Tributeries and deltas : Efficient and robust
aggregation in sensor network streams,” in Proc. of ACM International Conference on
Management of Data (SIGMOD), 2005.

[9] S. Nath, P. B. Gibbons, S. Seshan, and Z. Anderson, “Synopsis diffusion for robust
aggregation in sensor networks,” in Proc. of the 2nd international conference on Em-
bedded networked sensor systems (SenSys), 2004.

[10] P. Flajolet and G. N. Martin, “Probabilistic counting algorithms for data base ap-
plications,” Journal of Computer and System Sciences, vol. 31, no. 2, pp. 182–209,
1985.

[11] B. Patt-Shamir, “A note on efficient aggregate queries in sensor networks.” in PODC,
2004, pp. 283–289.

[12] M. B. Greenwald and S. Khanna, “Power-conservative computation of order-statistics
over sensor networks,” in PODS, 2004.

[13] N. Shrivastava, C. Buragohain, D. Agrawal, and S. Suri, “Medians and beyond : New
aggregation techniques for sensor networks,” in Proc. of the 2nd international confer-
ence on Embedded networked sensor systems (SenSys), 2004.

120

[14] Y. Yao and J. E. Gehrke, “The cougar approach to in-network query processing in
sensor networks,” ACM SIGMOD Record, vol. 31, no. 2, pp. 9–18, Sep. 2002.

[15] A. Perrig, R. Szewczyk, V. Wen, D. Culler, and J. D. Tygar, “SPINS: Security protocols
for sensor networks,” in Seventh Annual International Conference on Mobile Computing
and Networks (MobiCOM), 2001.

[16] S. Zhu, S. Setia, and S. Jajodia, “LEAP: Efficient security mechanisms for large-scale
distributed sensor networks,” in Proc. of the 10th ACM Conference on Computer and
Communications Security (CCS ’03), 2003.

[17] C. Karlof, N. Sastry, and D. Wagner, “Tinysec: a link layer security architecture for
wireless sensor networks,” in Proc. of the 2nd international conference on Embedded
networked sensor systems (SenSys), 2004, pp. 162–175.

[18] A. Perrig, R. Szewczyk, V. Wen, D. Culler, and J. D. Tygar, “SPINS: Security protocols
for sensor networks,” Wireless Networks, vol. 8, no. 5, pp. 521–534, Sep. 2002.

[19] M. Garofalakis, J. M. Hellerstein, and P. Maniatis, “Proof sketches: Verifiable in-
network aggregation,” in Proceedings of the 23rd International Conference on Data
Engineering (ICDE ’07).

[20] Y. Yang, X. Wang, S. Zhu, and G. Cao, “SDAP: A secure hop-by-hop data aggregation
protocol for sensor networks,” in Proc. of ACM MOBIHOC, 2006.

[21] A. Perrig, J. Stankovic, and D. Wagner, “Security in wireless sensor networks,” in
Communications of the ACM, vol. 47, no. 6, June 2004, pp. 53–57.

[22] J. Lopez and J. Z. (Eds.), Wireless Sensor Network Security. IOS Press., 2008.

[23] D. Adamy, A First Course in Electronic Warfare. Artech House Publishers, Norwood,
MA, 2001.

[24] A. D. Wood, J. A. Stankovic, and S. H. Son, “Jam: A jammed-area mapping service for
sensor networks,” in RTSS ’03: Proceedings of the 24th IEEE International Real-Time
Systems Symposium. IEEE Computer Society, 2003, p. 286.

[25] C. Karlof and D. Wagner, “Secure routing in wireless sensor networks: Attacks and
countermeasure,” in Ad-Hoc Networks, vol. 1, no. 2-3. Elsevier, September 2003, pp.
293–315.

[26] Y.-C. Hu, A. Perrig, and D. Johnson, “Packet leashes: a defense against wormhole
attacks in wireless networks,” in Proceedings of the INFOCOM 2003, vol. 3, pp. 1976–
1986.

[27] B. Parno, A. Perrig, and V. Gligor, “Distributed detection of node replication attacks
in sensor networks,” in SP ’05: Proceedings of the 2005 IEEE Symposium on Security
and Privacy. IEEE Computer Society, 2005, pp. 49–63.

[28] B. Zhu, V. G. K. Addada, S. Setia, S. Jajodia, and S. Roy, “Efficient distributed
detection of node replication attacks in sensor networks,” in Proceedings of the 2007
ACSAC, pp. 257–267.

121

[29] L. P. Cox, M. Castro, and A. Rowstron, “POS: practical order statistics for wireless
sensor networks,” in Proceedings of the 26th International Conference on Distributed
Computing Systems, 2006.

[30] D. Wagner, “Resilient aggregation in sensor networks,” in Proc. of ACM Workshop on
Security of Sensor and Adhoc Networks (SASN), 2004.

[31] L. Buttyan, P. Schaffer, and I. Vajda, “Resilient aggregation with attack detection in
sensor networks,” in Proc. of 2nd IEEE Workshop on Sensor Networks and Systems
for Pervasive Computing, 2006.

[32] L. Buttyán, P. Schaffer, and I. Vajda, “Ranbar: Ransac-based resilient aggregation in
sensor networks,” in SASN, 2006, pp. 83–90.

[33] A. Mahimkar and T. Rappaport, “SecureDAV: A secure data aggregation and verifi-
cation protocol for sensor networks,” in Proceedings of the IEEE Global Telecommuni-
cations Conference, 2004.

[34] M. A. Fischler and R. C. Bolles, “Random sample consensus: a paradigm for model
fitting with applications to image analysis and automated cartography,” pp. 726–740,
1987.

[35] B. Przydatek, D. Song, and A. Perrig, “SIA: Secure information aggregation in sensor
networks,” in Proc. of the 1st international conference on Embedded networked sensor
systems (SenSys), 2003.

[36] L. Hu and D. Evans, “Secure aggregation for wireless networks,” in Proc. of Workshop
on Security and Assurance in Ad hoc Networks., 2003.

[37] H. Chan, A. Perrig, and D. Song, “Secure hierarchical in-network aggregation in sen-
sor networks,” in Proceedings of ACM Conference on Computer and Communications
Security (CCS), 2006.

[38] K. B. Frikken and J. A. Dougherty, “An efficient integrity-preserving scheme for sensor
aggregation,” in Proc. of Wisec, 2008.

[39] M. Jelasity, A. Montresor, and O. Babaoglu, “Gossip-based aggregation in large dy-
namic networks,” ACM Transactions on Computer Systems, vol. 23, no. 3, pp. 219–252,
2005.

[40] J. Girao, M. Schneider, and D. Westhoff, “CDA: concealed data aggregation in wireless
sensor networks,” in Proceedings of the ACM Workshop on Wireless Security, 2004.

[41] C. Castelluccia, E. Mykletun, and G. Tsudik, “Efficient aggregation of encrypted data
in wireless sensor networks,” in Proceedings of The Second Annual International Con-
ference on Mobile and Ubiquitous Systems, 2005.

[42] H. Cam, S. Ozdemir, P. Nair, D. Muthuavinashiappan, and H. O. Sanli, “Energy-
efficient secure pattern based data aggregation for wireless sensor networks,” Computer
Communications, vol. 29, pp. 446–455, 2006.

122

[43] J. Domingo-Ferrer, “A provably secure additive and multiplicative privacy homomor-
phism,” in Proceedings of the 5th International Conference on Information Security
(ISC ’02). Springer-Verlag, 2002, pp. 471–483.

[44] F. Ye, H. Luo, S. Lu, and L. Zhang, “Statistical en-route filtering of injected false data
in sensor networks,” in Proc. of IEEE Infocom, 2004.

[45] W. Zhang and G. Cao, “Group rekeying for filtering false data in sensor networks:
A predistribution and local collaboration-based approach,” in Proc. of IEEE Infocom,
2005.

[46] S. Zhu, S. Setia, S. Jajodia, and P. Ning, “An interleaved hop-by-hop authentication
scheme for filtering injected false data in sensor networks,” in Proc. of IEEE Symposium
on Security and Privacy, 2004.

[47] W. Du, J. Deng, Y. S. Han, and P. Varshney, “A pairwise key pre-distribution scheme
for wireless sensor networks,” in Proc. of the 10th ACM Conference on Computer and
Communications Security (CCS ’03), 2003.

[48] Mica Motes, http://www.xbow.com.

[49] R. C. Merkle, “A digital signature based on a conventional encryption function,” in
CRYPTO ’87: A Conference on the Theory and Applications of Cryptographic Tech-
niques on Advances in Cryptology, 1988, pp. 369–378.

[50] K. Frikken, “An efficient integrity-preserving scheme for hierarchical sensor aggrega-
tion,” in WiSec ’08: Proceedings of the First ACM Conference on Wireless Network
Security, to appear.

[51] http://www.xbow.com, “Crossbow technology inc.” 2008.

[52] H. A. David and H. N. Nagaraja, Order Statistics, 3rd Edition. John Wiley & Sons
Inc., 2003.

[53] W. J. MacKinnon, “Table for both the sign test and distribution-free confidence in-
tervals of the median for sample sizes to 1,000,” Journal of the American Statistical
Association, vol. 59, no. 307, pp. 935–956, 1964.

123

Curriculum Vitae

Sankardas Roy was born in India in 1974. He completed his Bachelor of Engineering in
Electrical Engineering from the Bengal Engineering College, West Bengal, India, in 1997
and his Master of Technology in Computer Science from the Indian Statistical Institute,
Kolkata, India, in 2001. During a brief period, he worked as an assistant professor at the
Institute of Engineering and Management, Kolkata, India. In the fall of 2002, he began
studies in the George Mason University, Fairfax, Virginia to pursue a PhD. His research
interests include sensor network security, ad hoc network security, and network security in
general.

124

