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Abstract

A TWO-STAGE COVARIATE-ADJUSTED RESPONSE-ADAPTIVE ENRICHMENT
DESIGN

Li Yang, PhD

George Mason University, 2019

Dissertation Directors: Dr. William F. Rosenberger and Dr. Guoqing Diao

With the rapid development in genomic and genetic research, precision medicine

has gained more attention in modern clinical trials. Molecularly targeted therapies

are likely to only work with a subgroup of patients. However, the subgroup often

will not be identified until after a large scale clinical trial. Clinical trials are often

designed under the assumption of no treatment-by-covariate interaction effect and

enroll all comers. This makes many patients go through unnecessary treatment and

may decrease the efficiency of the trial.

In this dissertation, we propose a novel two-stage enrichment design which uses

covariate-adjusted response-adaptive (CARA) randomization and a Monte Carlo test

to evaluate the interaction effect in the interim analysis for binary and continuous

outcomes. A pre-defined alpha level is used as the threshold to decide whether a

subgroup will be identified and recruited in the second stage. If a below-threshold

interaction effect is found, a regression model will be fitted and the stratum with the

largest treatment effect will be chosen as the best stratum. The trial will continue to

the second stage with patients from the best stratum only. If the p-value from the



interim analysis is above the threshold, the trial continues with all patients. The

primary aim is to test the treatment effect between treatment groups. Different

CARA procedures are compared in terms of type I error rates, power, and ethical

considerations. The CARA procedure that balances better between efficiency and

ethics is used in the proposed two-stage enrichment design.



Chapter 1: Introduction and Literature Review

1.1 General Definition of CARA

A clinical trial refers to any research study that prospectively assigns human subjects

to one or more interventions to evaluate the effects on health outcomes. Partici-

pants in clinical trials are typically randomly assigned to one of those interventions.

Randomization promotes comparability with respect to both known and unknown

covariates among groups (Rosenberger and Lachin, 2015).

Hu and Rosenberger (2006) describe five classes of randomization procedures:

complete randomization, restricted randomization, covariate-adaptive randomization,

response-adaptive randomization, and covariate-adjusted response-adaptive (CARA)

randomization. Consider a clinical trial with n patients, each of whom is randomly

assigned to one of K groups.

A randomization sequence is a matrix T = (T1, · · · ,Tn)′, where Ti = ej, j =

1, · · · , K, i = 1, · · · , n and ej is a vector with 1 in the j-th position and all other

zeros. A response sequence is a matrix X = (X1, · · · ,Xn)′. Let Z1, · · · ,Zn be a set

of covariates, let Tn = σ{T1, · · · ,Tn} be the sigma-algebra generated by the first n

treatment assignments, let Xn = σ{X1, · · · ,Xn} be the sigma-algebra generated by

the first n responses, and let Zn = σ{Z1, · · · ,Zn} be the sigma-algebra generated by

the first n covariates vectors. Let Fn = Tn ⊗Xn ⊗Zn+1.

For two treatment group trials, complete randomization is simple coin tossing.

The treatment assignments T1, · · · , Tn are independent and identically distributed
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Bernoulli variables with Pr(Tj = 1) = 1/2. When the sample size is small or moder-

ate, Rosenberger and Lachin (2015) showed the imbalance can be significant. There-

fore complete randomization is rarely used in practice. Restricted randomization cal-

culates the allocation probability based on previous assignments, φn = E(Tn|Fn−1) =

E(Tn|Tn−1). Because restricted randomization generates equal or nearly equal num-

bers of patients in each group, this method is widely used in many clinical trials.

Sometimes known covariates play a significant role in the outcome. For example,

males and females may have very different responses to the tested treatment. In order

to minimize covariate imbalances, covariate-adaptive randomization is used to calcu-

late the allocation probability based on previous assignments and all past and cur-

rent covariate information, φn = E(Tn|Fn−1) = E(Tn|Tn−1,Zn). Response-adaptive

randomization changes the allocation probability according to previous treatment

assignments and responses, φn = E(Tn|Fn−1) = E(Tn|Tn−1,Xn−1). The main goal

is to assign more patients into superior treatment and maximize the power of the

test of the treatment effect. CARA randomization procedures calculate the alloca-

tion probability based on the previous responses, treatment assignments, covariates

and the current patient’s covariates, φn = E(Tn|Fn−1) = E(Tn|Tn−1,Xn−1,Zn). A

CARA procedure assigns more patients to the superior treatment group based on

patients’ characteristics. It takes into consideration patient heterogeneity to achieve

both ethical and efficiency goals.

1.2 CARA in the Literature

Rosenberger et al. (2012) review four approaches to CARA randomization. The first

approach is a treatment effect mapping. Patients are randomized with probabilities
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proportional to the current estimate of the treatment difference, adjusting for covari-

ates. The second approach is based on specifying a target randomization function

to calculate the desired proportions of patients for different treatment groups and

covariate values. The third approach is a weighted optimality approach. Under this

approach, treatment allocation probabilities are sequentially calculated by maximiz-

ing some utility function that combines ethical and inferential criteria. The fourth

approach is a Bayesian approach. Randomization probabilities for any incoming pa-

tient are based on some criteria that favor the best treatment group and accommodate

the posterior distribution of the parameters and covariates of the new patient.

1.2.1 Treatment Effect Mapping

Rosenberger et al. (2001b) first introduced the concept of CARA. They used a treat-

ment effect mapping approach, which map the current treatment effect (treatment dif-

ference between two treatment groups) to pn ∈ [0, 1]. The incoming patient is assigned

to the treatment A with this mapped probability pn. For a two groups logistic regres-

sion model with covariate-treatment interaction: logit(p1) = α+βTi+γZ
′
i+δTiZ

′
i, the

proposed allocation mapping is given by pi+1 = {1+exp(−β̂i+ δ̂iZ
′
i+1)}−1. Staggered

entry and delayed response mechanism are used in the simulations. the proposed

method has similar power as equal allocation and fewer treatment failures.

Bandyopadhyay and Biswas (2001) considered a CARA procedure for two treat-

ment group continuous responses. The proposed allocation rule for testing the treat-

ment effect is:

πi+1(θi, Zi) = Φ

(
µ̂Ai − µ̂Bi

G

)
,

where µ̂Ai − µ̂Bi is the estimated treatment effect and G is a tuning parameter. This
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design does not incorporate current patient’s covariate information in the random-

ization function. Simulation studies show that more patients are assigned to better

treatment group as the treatment difference increases. When there is no treatment

difference, patients are allocated to two groups with equal probability. When there is

a treatment difference, the smaller the G value, the more the allocation is skewed, but

the standard deviation of the allocation proportion is also larger. The power for test-

ing the treatment difference is lower than equal randomization procedures when the

sample size is small. The confidence interval for the estimated treatment difference

is also wider than for equal allocation randomization procedures.

Zhu et al. (2013) studied a binary treatment-by-covariate interaction effect. They

proposed an optimal allocation rule for testing a binary covariate by two group in-

teraction effect. Simulation studies compared their procedure with other traditional

methods when covariates are correlated, when one of the covariates changes over time,

and when the model is misspecified. The results show that the proposed method has

higher power than traditional methods under all scenarios.

1.2.2 Target Allocation Approach

Rosenberger et al. (2001a) derived the optimal allocation between two treatments for

binary response trials. The proposed optimal allocation rule is given by

π1,i+1 =

√
p1,i

√
p1,i +

√
p2,i

,

where π1,i+1 is the randomization probability to the group 1 for the i + 1th patient,

p1,i is the success rate in the group 1 based on all i patients, p2,i is the success rate in

the group 2 based on all i patients. This procedure minimizes the expected number
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of threatment failures subject to the fixed variance of the test statistic. The proposed

design is compared with the randomized play-the-winner rule, Neyman allocation,

and equal allocation procedures. There are situations in which the proposed CARA

dssign will result in fewer treatment failures without a sacrifice in power.

Chambaz et al. (2014) focused on a group-sequential CARA randomized controlled

trial incorporating more flexible techniques to model the response. They choose

the marginal treatment effect between two treatment groups as their parameter of

interest. The parameters are estimated using targeted minimum loss estimation on

top of the least absolute shrinkage and selection operator methodology. The targeted

optimal design is Neyman allocation. They show that under mild assumptions, the

resulting randomization sequence converges to a limiting design and the minimum

loss estimation estimator is consistent and asymptotically normal with an estimable

asymptotic variance.

Zhu (2015) discussed the conditional independence and distribution of allocated

responses for two groups CARA procedure. They proposed a new CARA procedure

allowing common parameters. Suppose for a given covariate Z, the response Xk of

the treatment k = 1, · · · , K has a distribution in the exponential family under the

generalized linear model

fk(Xk|Z,θk,θ0) = exp{(Xkµk − αk(µk))/ψk + bk(Xk, ψk)},

where θk = (θk1, · · · , θkd) are the parameters specific to the treatment k, θ0 =

(θ01, · · · , θ0d0) are the common parameters for all groups. Assume the scale parameter

ψk is fixed. Let Zi = (Zi0,Zis). Zi0 are the covariates corresponding to the common

parameters, and Zis are the covariates corresponding to the group specific param-

eters. The link function is µk = hk(Zi0θ
′
0 + Zisθ

′
kI(Ti,k = 1)). Simulation studies

5



for testing interaction effect in two groups were run to compare the performance of

Zhang et al.’s (2007) CARA, complete randomization, and the proposed procedure.

All covariates are assumed to have a Bernoulli distribution. For the two CARA pro-

cedures, 10 percent of the total sample size is assigned in the initial stage with equal

allocation. The allocation rule for the proposed procedure is given by

π1 = Φ

(
θ̂11(i) + θ̂12(i)Z(i+1)2 − θ̂21(i)− θ̂22(i)Z(i+1)2

γ

)
.

The same allocation rule is used for Zhang et al.’s (2007) procedure:

π1 = Φ

(
θ̂1

01(i)Z(i+1)1 + θ̂11(i) + θ̂12(i)Z(i+1)2 − θ̂2
01(i)Z(i+1)1 − θ̂21(i)− θ̂22(i)Z(i+1)2

γ

)
,

(1.1)

where γ is the tuning parameter to set the desired skewing proportion. Compared

with Zhang et al.’s (2007) procedure, the proposed procedure demonstrates higher

power in linear and logistic regression.

1.2.3 Weighted Optimality Approach

Zhang and Hu (2009) proposed a covariate-adjusted doubly adaptive biased coin

design. Write

ρ̂m =

∑m
i=1 π1(θ̂m,Zi)

m

and

π̂m = π1(θ̂m,Zm+1).

The randomization function to assign the (m + 1)th subject to treatment 1 is given
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by

φm+1,1 =
π̂m

(
ρ̂m

Nm1/m

)γ
π̂m

(
ρ̂m

Nm1/m

)γ
+ (1− π̂m)

(
1−ρ̂m

1−Nm1/m

)γ ,
where γ ≥ 0 is a constant controlling the degree of randomness. The asymptotic

properties are derived. Zhang et al.’s (2007) design is a special case of Zhang and

Hu’s (2009) with γ = 0 which has the largest variability.

Biswas et al. (2012) developed a optimal CARA procedure using the log odds ratio

for two-group longitudinal binary outcomes within Bayesian framework. Treatment-

by-covariate interactions are not considered in this procedure. Different covariance

correlation structures (constant correlation, zero correlation, AR(1), and AR(2) type

structures) are considered in the simulation studies. The proposed procedures are

compared to covariate incorporated longitudinal randomized play the winner design.

The proposed procedures assign more patients to the better treatment group. The

correlation between responses do not impact the allocation proportions, but affect

the testing power. Misspecification of the correlation matrix significantly decrease

the allocation proportions toward the better treatment.

Antognini and Zagoraiou (2012) described optimal designs for inference and ethics

issues and proposed the reinforced doubly-adaptive biased coin design that included

both continuous and discontinuous randomization functions. Simulation studies were

run to compare the proposed continuous randomization with Zhang et al. (2007)

CARA procedure and the discontinuous procedure to covariates-adjusted version of
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Hu et al.’s (2009) efficient randomized adaptive design (ERADE), which is defined as

φERADE,m+1 =



απ̂m,1, if Nm,1/m > π̂m,1

π̂m,1, if Nm,1/m = π̂m,1

1− α(1− π̂m,1) if Nm,1/m < π̂m,1,

where the constant α ∈ [0, 1) controls the degree of randomness. Compared with

Zhang et al. (2007) CARA and extended ERADE procedures, both proposed pro-

cedures balance the variability of the allocation proportions better among different

population strata. In general, discontinuous randomization functions perform better

than continuous ones.

Sverdlov et al. (2013) proposed CARA randomization procedures for survival out-

comes with two treatment groups when the outcome follows an exponential regression

model. They used two approaches for a survival trial: CARA randomization proce-

dures with a target and weighted optimality CARA randomization procedures. The

simulation studies compare two balanced procedures, six CARA procedures, and two

response-adaptive randomization procedures. They find that the proposed CARA

procedures have similar power and type I error rates, fewer events compared with the

balanced randomization procedures, and are robust to model misspecification. De-

layed responses have a significant impact on convergence to the target allocations for

all CARA and response-adaptive procedures. The ethical gains of CARA procedures

with delayed responses are smaller than in the case of no delay.

Chang and Park (2013) used Bandyopadhyay et al.’s (2007) design and proposed

a sequential estimation scheme. The proposed sequential estimation is based on a

martingale estimating equation and the stopping rule depends on the observed Fisher
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information. They show that, under the proposed stopping function, the asymp-

totic properties of the allocation function are the same as those in the non-sequential

scenario. Simulation studies were conducted with binary responses, two treatment

groups, and one continuous covariate. They find that the stopping time is very unsta-

ble when the initial sample size is too small. Compared to complete randomization

with the same stopping rule, most of the CARA designs allocate more responsive

patients to the better treatment group. Since the stopping rule is based on the esti-

mate of the minimum eigenvalue, the required sample size increases as the number of

covariates increasing. Highly correlated covariates also require a larger sample size.

Cheung et al. (2014) pointed out that Zhang et al.’s (2007) work does not con-

sider the distribution theorems on the estimation of parameters in a reduced model.

They developed the theorems needed and ran simulations under a logistic regression

model. The treatment effect was tested by the likelihood ratio test. Three CARA

procedures with different allocation rules and the complete randomization proce-

dure were compared: CARA1 with allocation rule as π1 = (p1/q1)
/

(p1/q1 + p2/q2);

CARA2 with allocation rule as π2 =
√
p1/(
√
p1 +

√
p2); CARA3 with allocation rule

as π3 = (q2
√
p2)/(q1

√
p1 + q2

√
p2). All CARA procedures have lower failure rates and

power comparable to the complete randomization procedure. The CARA2 procedure

has the highest power and the lowest success rate among three CARA procedures.

The CARA3 procedure has slightly higher power than CARA1 when there is no

treatment-by-covariate interaction effect.

Hu et al. (2015) proposed CARA procedures based on efficiency and ethics for

two treatment groups. They denoted the efficiency and ethics measurements of the

two treatments as d(Z, θ) = (d1(Z, θ), d2(Z, θ)) and e(Z, θ) = (e1(Z, θ), e2(Z, θ)). The
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randomization function to assign the (m+ 1)th subject to treatment 1 is given by

πm+1(Zm+1, θ̂(m)) =
e1(Zm+1, θ̂(m))dγ1(Zm+1, θ̂(m))

e1(Zm+1, θ̂(m))dγ1(Zm+1, θ̂(m)) + e2(Zm+1, θ̂(m))dγ2(Zm+1, θ̂(m))
,

where γ ≥ 0 is a tuning parameter that balanced the efficiency and ethics compo-

nents. They used the D−optimality criteria as the efficiency measurement dk and

study various choices of ek and γ. The simulation studies were performed for binary

and normal covariates and outcomes. The design was compared with the complete

randomization design and other three adaptive design. It performs better in case of

type I error rate, power, and success rate under different choices of ek and γ. Type I

error rate and power are found based on the likelihood ratio test on the differential

covariate effect (interaction effect).

Biswas and Bhattacharya (2016) considered the location and variability of the

response distribution for CARA randomization. For a two groups clinical trial with

continuous treatment outcomes, the proposed randomization function is given by

πAγ (θA, θB, z) = (γ1 − γ̄2)P (YB − YA < ∆(z)|z) + (γ1 − γ2)P (Y 2
A < Y 2

B|z) + γ̄1,

where ∆(z) = µA(z)− µB(z), γ̄1 = 1− γ1, γ̄2 = 1− γ2. γ1 and γ2 are the weights to

balance between ethics and variability. For the continuous outcome XA(XB), YA(YB)

is defined as the difference between XA(XB) and the mean µA(µB). Simulation studies

with different parameter values show that the proposed procedure not only assigns a

higher proportion of subjects to the better treatment group, but also detects a small

departure in treatment effectiveness with high probability, although a loss of power

is also observed.
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1.2.4 Bayesian Adaptive Randomization Methods

Bayesian adaptive randomization procedures are selection designs. Research has been

done for binary, continuous, and survival outcomes. Biswas and Angers (2002) pre-

sented a Bayesian formulation of an adaptive design for clinical trial with contin-

uous responses, two treatment groups, some prognostic covariate factors. Cheung

et al. (2006) proposed exact and approximate Bayesian response-adaptive randomiza-

tion procedures with and without covariate adjustment based on suvival outcomes.

The simulations show that the approximate Bayes method with covariate adjust-

ment seems to be robust to link misspecification. They assume that there is no

treatment-by-covariate interaction effect. Yuan et al. (2011) proposed a Bayesian

response-adaptive covariate-balanced randomization procedure for multi-arm clinical

trials. The idea is to incorporate a covariate-adaptive randomization scheme into a

Bayesian response-adaptive randomization. The updating of the posterior mean of

the estimated parameters can be done continuously after each patient or after each

group of patients. The simulation studies are run under the logistic regression model

with two treatment groups and three covariates. The proposed procedure is com-

pared with a procedure with equal allocation and three other response-adaptive or

covariate-adaptive procedures. The proposed procedure successfully skews the alloca-

tion probablity to superior treatment group like response-adaptive procedures and has

similar performance in balancing the covariates like covariate-adaptive procedures.

1.2.5 Non-parametric CARA Procedures

Bandyopadhyay and Bhattacharya (2012) developed an urn-based CARA procedure

for binary responses trials with ordinal covariates. They compared the proposed
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randomization with the stratified randomized play-the-winner rule in a hypotheti-

cal clinical trial for testing the treatment effect between groups with and without

treatment-by-covariate interaction. Both the urn-based CARA and the stratified

randomized play-the-winner procedures skew the randomization probabilities toward

the desired direction. The urn-based CARA procedure has higher randomization

probabilities with no more than 2 percent loss in power.

Aletti et al. (2018) proposed a class of CARA designs based on a new functinal urn

model. This class of designs only requires independent but non-identically distributed

covariates for all patients. The distribution of the responses conditioned on covariates

is estimated nonparametrically. The urn is represented by a multivariate function of

covariates and each patient is assigned by sampling from the urn given his or her own

covariate profile. The entire functional urn composition will be updated after each

allocation. In the context of precision medicine, this allow the investigation to choose

optimal treatments based on the covariate model, even when there is insufficient

information for a particular covariate profile

1.3 Properties of the GLM Approach to CARA

Zhang et al. (2007) lay out a framework for general CARA procedures for K(≥ 2)

treatment groups. The asymptotic properties are studied and apply to generalized

linear models (GLM).

1.3.1 General CARA Procedure Framework and Asymptotic

Properties

Based on the notation in Section 1.1, assume a patient with covariate vector Z is

assigned to treatment k, k = 1, · · · , K, the observed response is Xk, and the response
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and covariate vector satisfy:

E(Xk|Z) = pk(θk, Z), θk ∈ Θk, k = 1, · · · , K,

where pk(., .), k = 1, · · · , K, are some known functions. θk, k = 1, · · · , K, are

unknown parameters, and Θk ⊂ Rd is the parameter space of θk. Denote θ =

(θ1, · · · , θK) and Θ = Θ1× · · · ×ΘK . As in Section 1.1 , let Tm = (Tm1, · · · , TmK) be

the treatment assignment of the m−th patient. {Xmk, k = 1, · · · , K, m = 1, 2, · · · }

be the responses and {Zm,m = 1, 2, · · · } be the corresponding covariates. Assume

that {Xm1, · · · , XmK , Zm),m = 1, 2, · · · } is a sequence of i.i.d. random vectors, and

the distribution s are the same as (X1, · · · , xK ,Z).

The CARA procedure starts with assigning m0 subjects to each treatment through

restricted randomization. Assume that m(m ≥ Km0) subjects have been assigned to

treatments. The responses {Xj, j = 1, · · · ,m} and corresponding covariates {Zj, j =

1, · · · ,m} are observed. Let θ̂ = (θ̂1, · · · , θ̂m) be the estimator of θ = (θ1, · · · , θm).

For each k = 1, · · · , K, θ̂mk = θ̂mk(Xjk, Zj : Tjk = 1, j = 1, · · · ,m) is the estimator

of θk based on observed Nmk - sized sample (Xjk, Zj). We then assign the (m+ 1)th

subject with covariate Zm+1 to treatment k with a probability of :

φm+1,k = E(Tm+1,k|Fm,Zm+1) = E(Tm+1,k|Xm, Tm,Zm+1) = πk(θ̂m, Zm+1), (1.2)

k = 1, · · · , K, where πk(·, ·), k = 1, · · · , K are some given functions. Given Fm and

Zm+1, the response Xm+1 of the (m+ 1)-th subject is assumed to be independent of

its assignment Tm+1 . Define π(·, ·) = π1(·, ·), · · · , πK(·, ·)) to be the randomization

function that satisfies π1 + · · · + πK ≡ 1. Let gk(θ
∗) = E[πk(θ

∗, Z)], from (1.3.1), it
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follows that

Pr(Tm+1,k = 1|Xm, Tm,Zm) = gk(θ̂m), k = 1, · · · , K. (1.3)

Different choices of π(·, ·) generate different class of randomization functions. We

can take πk(θ,Z) = Rk(θ1Z
′, · · · ,θKZ ′), k = 1, · · · , K. Here 0 < Rk(z) < 1, k =

1, · · · , K are real functions that are defined on RK with

K∑
k=1

Rj(z) = 1, and Ri(z) = Rj(z) wheneverzi = zj. (1.4)

Assume that Z and θk, k = 1, · · · , K have the same dimensions. In practice, the

functions Rk can be defined as

Rk(z) =
G(zk)

G(z1) + · · ·+G(zK)
, k = 1, · · · , K,

where G is a smooth positive real function that is defined in R.

Define g(θ∗) = (g1(θ∗), · · · , gK(θ∗)) and let vk = gk(θ) = E[πk(θ,Z)], k = 1, · · · , K

and v = (v1, · · · , vK) . Assume 0 < vk < 1, k = 1, · · · , K. For the randomization

function π(θ∗, z), we assume the following conditions:

Condition A. Assume that parameter space Θk is a bounded domain in Rd, and the

true value θk is an interior point of Θk, k = 1, · · · , K. For each fixed z, πk(θ
∗, z) > 0

is a continuous function of θ∗, k = 1, · · · , K; for each k = 1, · · · , K, πk(θ∗,Z) is

differentiable with respect to θ∗ under the expectation, and there exists a δ > 0 such

that

gk(θ
∗) = gk(θ) + (θ∗ − θ)(

∂gk
∂θ∗
|θ)T + o(||θ∗ − θ||1+δ),
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where ∂gk/∂θ
∗ = (∂gk/∂θ

∗
11, · · · , ∂gk/∂θ∗Kd).

Condition B. Suppose that for k = 1, · · · , K,

θ̂nk − θk =
1

n

n∑
m=1

Tmkhk(Xmk,Zm)(1 + o(1)) + o(n−1/2) a.s. (1.5)

where hk are K functions with E[hk(Xk,Z)|Z] = 0, k = 1, · · · , K.

THEOREM 1. If E||hk(Xk,Z)||2+ε < ∞ for some ε > 0, k = 1, · · · , K, then

under condition A and B, we have for k = 1, · · · , K,

Pr(Tnk = 1)→ vk; Pr(Tnk = 1|Fn−1,Zn = z)→ πk(θ, z) a.s. (1.6)

and

Nn

n
− v = O

(√
log log n

n

)
a.s.; θ̂n − θ = O

(√
log log n

n

)
. (1.7)

Further, let V = diag(V1, · · · ,VK), where

Vk = E{πk(θ,Z)(hk(Xk,Z))′hk(Xk,Z)}, k = 1, · · · , K,

Σ1 = diag(v)− v′v, Σ2 =
K∑
k=1

∂g

∂θk
Vk

(
∂g

∂θk

)′
, and Σ = Σ1 + 2Σ2.

Then,

√
n(Nn/n− v)→ N(0,Σ) and

√
n(θ̂n − θ)→ N(0,V ) (1.8)

in distribution.

Theorem 1 gives the asymptotic properties of the overall allocation proportions

Nn/n. Sometimes, we may want to know the allocation proportions for a given set
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of covariates. For a given set of covariate vector z, the allocation proportion to

treatment k is : ∑n
m=1 TmkI{Zm = z}∑n
m=1 I{Zm = z}

:=
Nn,k|z

Nn(z)
,

where Nn,k|z is the number of subjects with covariate z that is randomized to treat-

ment k, k = 1, · · · , K in n trials. Let Nn(z) be the total number of subjects with

covariate z and let Nn|z = (Nn,1|z, · · · , Nn,K|z). Theorem 2 below gives the asymp-

totic properties of the conditional proportions.

THEOREM 2. Given a set of covariates z, assume that Pr(Z = z) > 0. Under

conditions A and B, we have

Nn,k|z/Nn(z)→ πk(θ, z) a.s. k = 1, · · · , K, (1.9)

and √
Nn(z)(Nn|z/Nn(z)− π(θ, z))→ N(0,Σz), (1.10)

where

Σz = diag(π(θ, z))− π(θ, z)′π(θ, z) + 2
K∑
k=1

∂π(θ, z)

∂θk
Vk

(
∂π(θ, z)

∂θk

)′
Pr(Z = z).

Detailed proofs of Theorem 1 and Theorem 2 can be found in the Appendix of Zhang

et al. (2007).

1.3.2 Generalized Linear Model

The general results in Section 1.3.1 can be applied to the generalized linear model.

Suppose for a given covariate Z, the response Xk of the treatment k = 1, · · · , K has
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a distribution in the exponential family under the GLM:

fk(Xk|Z,θk) = exp{(Xkµk − αk(µk))/ψk + bk(Xk, ψk)}, (1.11)

with the link function µk = hk(Zθ
′
k), where θk = (θk1, · · · , θkd), k = 1, · · · , K. As-

sume the scale parameter ψk is fixed. Under this model, E(Xk|Z) = α′(µk), Var(Xk|Z) =

α′′(µk)ψk. The first and second derivatives for log likelihood function are:

∂logfk(Xk|Z,θk)
∂θk

=
1

ψk
(Xk − a′k(µk))h′k(Zθ′k)Z

and

∂2logfk(Xk|Z,θk)
∂θ2

k

=
1

ψk
{−a′′k(µk))[h′k(Zθ′k)]2 + [Xk − a′k(µk)]h′′k(Zθ′k)}Z ′Z.

For a given covariate Z, the conditional Fisher’s information matrix is given by

Ik(θk|Z) = −E
[
∂2logfk(Xk|Z,θk)

∂θ2
k

∣∣∣∣Z] =
1

ψk
a′′k(µk)[h

′
k(Zθ

′
k)]

2Z ′Z.

For the observations up tp m, the likelihood function is given by

L(θ) =
m∏
j=1

K∏
k=1

[fk(Xjk|Zj,θk)]
Tjk =

K∏
k=1

m∏
j=1

[fk(Xjk|Zj,θk)]
Tjk :=

K∏
k=1

Lk(θk),

where log Lk(θk) ∝
m∑
j=1

Tjk(Xjk − ak(µjk)), µjk = hk(θ
′
kZj), k = 1, · · · , K. The

maximum likelihood estimator θ̂m = (θ̂m,1, · · · , θ̂m,K) maximizes L(θ) over θ ∈ Θ1×
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· · · ×ΘK . And θ̂mk maximizes Lk over θk ∈ Θk, k = 1, · · · , K.

Corollary 1. Let vk = E[πk(θ,Z)], Ik = Ik(θ) = E[πk(θ,Z)Ik(θk|Z)], k =

1, · · · , K. Suppose that a′′k, h
′′
k are continuous, Z is bounded, matrices Ik, k = 1, · · · , K,

are nonsingular, and the MLE θ̂m is unique, then under Condition A, we have (1.3.5),

(1.3.6), and (1.3.7) with Vk = I−1
k , k = 1, · · · , K; and if Pr(Z = z) > 0 for a given

covariate z, then (1.3.8) and (1.3.9) also hold. For logistic regression model, we have

Ik = E[πk(θ,Z)pkqkZ
′Z], k = 1, · · · , K. For normal linear regression model, we

have Ik = E[πk(θ,Z)Z ′Z]/σ2
k, k = 1, · · · , K

When the distribution of Z and the true value of θ are unknown, we obtain the

estimates as follows:

(a) Estimate Ik by Înk =

(
n∑

m=1

Tnk

)−1 n∑
m=1

TnkIk(θ̂nk|Zm), k = 1, · · · , K, and V by

V̂n = diag(Î−1
n1 , · · · , Î−1

nK).

(b) Estimate Σ1 by Σ̂1 = diag

(
Nn

n

)
−
(
Nn

n

)′
Nn

n
, and

∂g

∂θk
by

∂̂g

∂θk
=

1

n

n∑
m=1

∂π(θ∗,Zm)

∂θ8
k

|θ∗=θ̂n

(c) Estimate Σ̂ = Σ̂1 + 2
K∑
k=1

∂̂g

∂θk
V̂k

(
∂̂g

∂θk

)′

(d) For a given covariate z , Σz is estimated by Σ̂z = diag(π(θ̂n, z))−π(θ̂n, z)′π(θ̂n, z)+

2
K∑
k=1

(
∂π(θ∗, z)

∂θ∗k
|θ∗=θ̂n

)
V̂k

(
∂π(θ∗, z)

∂θ∗k
|θ∗=θ̂n

)′
#{m ≤ n : Zm = z}

n
.

To test the homogeneity among the treatments, that is,

H0 : θ1 = θ2 = · · · = θK versus H1 : not all θk are equal.
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We define

θc = (θ1 − θK , · · · ,θK−1 − θK), θ̂c = (θ̂n,1 − θ̂n,K , · · · , θ̂n,K−1 − θ̂n,K)

and

V c = diag(I−1
1 , · · · , I−1

K−1) + 1′1⊗ I−1
K , V̂ c = diag(Î−1

1 , · · · , Î−1
K−1) + 1′1⊗ Î−1

K .

By (1.3.7), we have
√
n(θ̂c − θc) → N(0,V c) in distribution. Therefore, for testing

the homogeneity of the treatments, a natural test statistic is nθ̂c(V̂ c)−1(θ̂c)′. The

asymptotic distribution is X 2
(K−1)d under H0 and X 2

(K−1)d(ϕ) under H1 with the non-

centrality parameter ϕ = nθc(V c)−1(θc)′. This test is asymptotically equivalent to

the likelihood ratio test.

1.4 General Definition of Adaptive Enrichment De-

sign

With the rapid development in genomic and genetic research, precision medicine has

gained more attention in modern clinical trials. Molecularly targeted therapies are

likely to only work with a subgroup of biomarker-positive patients. Many clinical

trial procedures have been developed to incorporate the biomarkers. An enrichment

design, also called a targeted design, was first studied by Simon and Maitournam

(2004), Maitournam and Simon (2005). In this single stage design, patients are

screened and selected by their biomarker status such that only biomarker-positive

patients are enrolled and randomized to treatment groups. Only one null hypothesis

of no treatment effect in the biomarker-positive subgroup can be tested.
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An adaptive design is defined as a multistage study design that uses accumu-

lating data to decide how to modify aspects of the study without undermining the

validity and integrity of the trial (Dragalin, 2006). In order to expand the testable

hypotheses and/or deal with no clearly defined subgroup at the beginning of the

trial, several adaptive enrichment designs have been proposed and studied. One of

the first biomarker-based, adaptive enrichment designs was introduced by Wang et al.

(2007). The proposed two-stage adaptive enrichment design randomizes all subjects

to treatment or control groups in stage I. If the treatment effect reaches a futility

boundary in the biomarker-negative group at the interim analysis, the recruitment of

the biomarker-negative subjects is terminated at the second stage, and the remaining

sample size is re-allocated to biomarker-positive patients. In this case, the primary

hypothesis is to test the treatment effect in the biomarker-positive subgroup. Other-

wise, if the futility threshold is not reached in the biomarker-negative group at the

interim analysis, the trial continue for all patients, and both overall and subgroup-

specific tests are performed. The sample size is calculated based on the non-adaptive

approach and kept unchanged at the interim analysis.

However, in practice, there may not be a clearly defined subgroup at the beginning

of the phase III trial. The biomarker may be continuous with no known cutpoint or

no clear single biomarker available to define a subgroup. Simon and Simon (2013)

proposed a phase III adaptive enrichment design which begins with all patients in

the trial, and sequentially restricts entry in an adaptive manner. This enrichment

approach does not require a predefined subgroup. The primary null hypothesis is

that no subgroup benefits more from treatment over control. Adaptive enrichment

designs may largely increase test power, especially when only a small subset of patients

benefit from the treatment.
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1.5 Adaptive Enrichment Designs in the Litera-

ture

Simon (2015) discusses the application of and challenges for adaptive enrichment de-

signs under three common scenarios: a single categorical biomarker, a single continu-

ous biomarker with unknown cut point, and multidimensional biomarkers/combining

multiple candidate biomarkers. Strata-based designs are effective for simple categor-

ical biomarkers, but they often cannot control type I error rate well. For univariate

continuous biomarkers, strata-based designs need a pre-defined strata and not lever-

age the ordering of the categories; model-based designs do not require pre-defined

strata, but they can only test a single null hypothesis of no subgroup benefits more

from treatment over control. Model-based designs are more effective for multivariate

biomarkers.

1.5.1 Strata-Based Adaptive Enrichment Design

Strata-based adaptive enrichment designs have clearly defined subgroup characteris-

tics at the design stage. Russek-Cohen and Simon (1997) proposed a two-stage proce-

dure to investigate whether males and females respond differently to treatments. The

proposed procedure tests for a gender by treatment interaction at the first stage. If no

significant interaction is found, the study will be terminated and an overall treatment

effect will be computed. If a significant interaction is found, the probability of going to

the second stage for one or both genders will be calculated. When a strong gender-by-

treatment interaction exists, it is more likely that the gender which is not benefitting

from the treatment will go to the second stage. The two-stage adaptive enrichment

design proposed by Wang et al. (2007) randomizes all subjects to treatment or control

groups in stage I. If the treatment effect reaches the futility boundary in the known
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biomarker-negative group at the interim analysis, the recruitment of the biomarker-

negative subjects is terminated at the second stage and the remaining sample size

is re-allocated to biomarker-positive patients. In this case, the primary hypothesis

is to test the treatment effect in the biomarker-positive subgroup. Otherwise, if the

futility threshold is not reached in the biomarker-negative group at the interim anal-

ysis, the trial continues for all patients and both overall and subgroup-specific tests

are performed. The sample size is calculated based on the non-adaptive approach

and kept unchanged at the interim analysis. The performances of the proposed de-

sign with different α allocation rules are compared with the fixed design and Freidlin

and Simon’s (2005) adaptive signature design. The findings show that the proposed

adaptive design outperforms the fixed design when the biomarker can predict which

patient subgroup benefits from the treatment. In the latter work, Wang et al. (2009)

expand the framework to nested patient subsets when multiple predefined categorical

markers are presented.

Mehta and Gao (2011) proposed an adaptive enrichment design, where adaptive

modification is made of an ongoing group sequential trial based on an interim analysis.

The modifications include adaptations in the number, spacing, and information times

of subsequent interim analyses, as well as population enrichment.

In order to evaluate the overall treatment effect in both biomarker-positive and

biomarker-negative patients in enrichment designs, Yang et al. (2015) proposed an

enrichment design with patient population augmentation. Specifically, after suffi-

ciently powering the biomarker-positive subgroup, biomarker-negative patients are

enrolled to assess the overall treatment benefit. A weighted statistic is used to cor-

rect for the disproportionality of biomarker-positive and biomarker-negative groups

under the enriched trial setting. Screening is needed to obtain the information on

the weight determination. Simulation results showed that the proposed design can
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safeguard the power for biomarker-positive subgroup with a slightly larger sample

size when there is misspecification on the treatment effect in the biomarker-negative

subgroup at the design stage.

1.5.2 Model-Based Adaptive Enrichment Design

Model-based adaptive enrichment designs are two-stage designs where the complete

specification of subgroup characteristics are only available at the end of the first stage,

based on the interim analysis. Simon and Simon (2013) developed a very general

model and statistical significance tests for eligibility modification. They illustrate

the framework in the setting of adaptive threshold enrichment of a single continuous

biomarker with no known cut-off at the beginning of the trial. Renfro et al. (2014)

proposed a two-stage adaptive enrichment phase II design incorporating prospective

continuous marker threshold selection, possible early futility stopping, possible mid-

trial accrual restriction, and final marker and treatment evaluation in marker-positive

patients. The proposed design assumes time-to-event endpoints, unequal allocation

in the first stage, possible cutoff point within the range of 25% to 75%, and treatment

effect in monotone non-decreasing function on the continuous biomarker variable. The

cutoff is selected by minimizing the p-value of the interaction between the treatment

effect and the dichotomized biomarker. Simulation studies demonstrated that type I

error rates are in the acceptable range. The power is highly depend on the successful

classification of the true predictive biomarker at the interim analysis. This critical

classification of the biomarker depends not only on the biomarker prevalence and

effect size, but also on the timing of the interim analysis.

Spencer et al. (2016) proposed a continuous biomarker-adaptive threshold trial

design, which both selectively recruits from the start of the trial and also modifies

the eligibility criteria to a targeted subgroup that will have a statistically significant
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response rate. All subjects are used in the final test for efficacy, even if the eligibility

criteria is changed at the interim. This design aims to demonstrate that there is a

subgroup in which the treatment is effective and estimate the most appropriate value

of the biomarker threshold to define the boundary of this subgroup. The basic study

design contains a single arm, which is typical for early stage phase II oncology trials

to test efficacy, but it can be modified to include a control arm. They describe a

single-arm trial design for a treatment with a binary outcome and assume that the

treatment effect is a monotone non-decreasing function on the continuous biomarker

variable. The total and stage specific sample sizes are fixed before the study begins. A

preliminary threshold is chosen based on prior knowledge at stage I and is updated at

stage II based on the results from the first stage. The single continuous biomarker is

converted to its estimated quantiles and assumed to follow uniform (0, 1) distribution.

A binomial exact test using all subjects recruited to the trial to test whether the

response rate exceeds a pre-defined reference rate. Simulation studies comparing the

adaptive design and the fixed design showed that both methods have conservative

type I error rates in the overall simulated studies. The adaptive design has higher

power in both overall and completed studies when the true threshold value is above

the 0.3 quantile. The estimated bias of the threshold value can be obtained through

the simulation studies even if the hypothesis test is non-significant.

Ohwada and Morita (2016) proposed a Bayesian adaptive design using a four-

parameter change-point model to stop enrollment of insensitive patients at the interim

analysis, in a setting of a phase II two-group randomized clinical trial with a time-to-

event outcome and a single continuous biomarker. They also assume that the treat-

ment effect is a monotone non-decreasing function on the continuous biomarker vari-

able. Two or three interim analyses are planned. For the jth patient with biomarker
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level of zj, the proportional hazard model for hazard at time t is assumed:

ln(hj(t|Tj, zj)) = ln(H0(t)) + Tjf(zj),

where h0(t) is the baseline hazard function and f(zj) is a function representing the

relationship between the biomarker level and treatment effect. A four-parameter

change-point model is proposed as:

f(x) = β1I(z < ξ1) +

(
β2 − β1

ξ2 − ξ1

(z − ξ1) + β1

)
I(ξ1 ≤ z ≤ ξ2) + β2I(z ≥ ξ2),

where β1, β2, ξ1 and ξ2 are parameters with constraints β1 > β2 and ξ1 > ξ2. Within a

Bayesian framework, the model is updated using all accumulated data at the interim

analysis and the final analysis. Markov chain Monte Carlo is used for posterior

computation with the following assumed non-informative priors:

β1 ∼ N(0, 1000),

δ = β1 − β2 ∼ Γ(0.001, 0.001),

and ξ1, ξ2 follow a uniform distribution with a probability density function of (ξ∗U −

ξ∗L)2/2 when ξ∗L < ξ1 < ξ2 < ξ∗U and 0 otherwise, where ξ∗L and ξ∗U are predefined

lower and upper limits of the biomarker, respectively. Simulation studies demon-

strated that, compared with the standard no restriction approach, the proposed ap-

proach reduces the number of enrolled patients from the insensitive subgroup, with

mild reduction in the probability of reaching a correct decision and identifying the

sensitive subgroup. Additionally, the non-enrichment four-parameter change-point

model perform better over a wide range of simulation scenarios than a commonly
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used dichotomization non-enrichment approach.

Diao et al. (2018) introduced a biomarker threshold adaptive design with survival

outcomes. In the first stage, based on historical or pilot studies, some subgroups

are identified such that patients in these subgroups benefit the most from the new

treatment. In the second stage, only patients from the subgroups determined in the

first stage are recruited and randomly allocated to the treatment or control group.

1.6 Simon’s Adaptive Enrichment Design

Simon and Simon (2013) introduce a phase III adaptive enrichment design which

begins without restricting entry and sequentially restricts entry based on candidate

biomarkers.

1.6.1 Adaptive Enrichment Design for Two Group Binary

Outcome

Based on the notation in Section 1.1, assume that we want to compare a new treat-

ment with control and start with equiprobable allocation. Let Ti = 1 for the new

treatment and Ti = 0 for control. Let Xi = 1 for response and Xi = 0 for non-

response.

After the first m patients, the recruitment is restricted to those patients who will

benefit from the treatment. Let f(Z) be the map from the covariate space to {0, 1}:

f(Z) = I{pT (Z) > pC(Z)}, (1.12)

where pT (Z) and pC(Z) are the probabilities of response for a patient with covariate

vector Z under treatment and control. For each patient i, let f̂i(Z) be the estimate of
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f(Z). f̂i(Z) is computed based on all previous i−1 patients’ responses, assignments,

and covariates information. After the first m patients, for each i > m, we find f̂i(Z)

from previous i − 1 patients, the entry into the clinical trial will be restricted to

patients with f̂i(Z) = 1 only. This process is repeated until a total of n patients have

been enrolled. The null hypothesis is that no subgroup benefits more from treatment

than control:

pT (Z) = pC(Z), for all Z.

In order to preserve the type I error rate, the number of successes on the treatment

plus the number of failures on the control is used as the test statistic. Under the null

hypothesis, S ∼ binomial(n, 0.5). Regardless of the classification methods used for

modifying enrollment criteria, comparing S with the tails of this binomial is a valid

test that preserves the type I error rate.

Assume patients are accepted and randomized in pairs, one to each treatment

arm, and the enrollment criteria f̂ is updated no more frequently than after each

pair, then the test statistic proposed above is equivalent to:

S̃ =
n∑
i=1

(I{Xi,T > Xi,C} − I{Xi,T < Xi,C}) , (1.13)

where Xi,C and Xi,T are the outcomes for the control subject and treatment subject in

the ith pair. For a pre-specified number u of untied pairs, under the null hypothesis,

McNemars test is used to control the type I error rate.
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1.6.2 Adaptive Threshold Enrichment Design

When a single candidate predictive biomarker is available but no cutpoint has been

determined at the beginning of phase III trials, the method described above can be

applied. Assume that the treatment effect pT (z)−pC(z) for a patient with biomarker

value z is either 0 or δ and that the treatment effect is monotone non-decreasing in z

with a jump only at one of the candidate cutpoints. Let ξ1, · · · , ξK be a discrete set

of candidate cutpoints, pC(z) = p0 for all z, pT (z) = p0 for z ≤ ξk, and pT (z) = p1

for z > ξk, where p0 ≤ p1. At the interim analysis, the candidate cutpoint ξk at which

the log-likelihood is maximized is taken as an estimate of the true cutpoint, z∗ and

subsequent accrual is restricted to patients with biomarker values greater than that ξk.

Simulation studies with different choices of p0, p1, K, and z∗ show that the adaptive

design using statistic (1.6.1) has much higher power than equiprobable procedure

for most conditions. Type I error rates are preserved even when the response rates

change from pre- to post-interim analysis. Compared with equiprobable approach,

the adaptive enrichment design is most powerful when only a small subset of patients

benefit.

1.6.3 Group Sequential Analysis

When a group sequential analysis is needed, there are other strategies that preserve

the type I error rate. For each block k, let sk be some statistic based on the data in

that block and nk be the sample size in the kth block. When the distribution of each

sk is known and independent of Fk−1 under the null, we may choose any function G

and construct a valid test that preserves the type I error rate.

28



For continuous data, the proposed adaptive t-test statistic is given by

1√
n

∑
k≤K

√
nk

 x̄(T,k) − x̄(C,k)√
σ̂2

(T,k)/(nT,k − 1) + σ̂2
(C,k)/(nC,k − 1)

 , (1.14)

where x̄(T,k), x̄(C,k), σ̂
2
(T,k), σ̂

2
(C,k), nT,k, and nC,k denote the treatment and control sam-

ple means, variances, and sample sizes in the kth block, respectively. Under the null

hypothesis, for each sufficiently large nk, the test statistic is asymptotically standard

normal distributed. Simon and Simon (2013) show that this adaptive t-test statistic

has the same limiting distribution as regular t statistic for full-population alternatives

(i.e. all subgroups have the same distribution under the null, and identical change un-

der the alternative). A block MannWhitneyWilcoxon test could be used if asymptotic

normality is not assumed. The test statistic is given by

u =
∑
k≤K

wkuk,

where uk is the MannWhitney statistic for kth block and wk is a predefined weight.

Under the null, the ranking of variables within any block is equally probable.

For binary data, the proposed adaptive design test statistic is given by

z =
1√
n/2

∑
k≤K

√
nk/2

(
p̂(T,k) − p̂(C,k)

2
√
p̂(pool,k)(1− p̂(pool,k))/nk

)
, (1.15)

where p̂(T,k) and p̂(C,k) are treatment and control sample success proportions in kth

block, respectively, and p̂(pool,k) = (p̂(T,k) + p̂(C,k))/2.

For survival data, let `k(β) be the log-likelihood of the Cox model for the kth
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block where β is the coefficient for the treatment indicator, with the first and second

derivatives `′k and `′′k respectively. The proposed adaptive design test statistic is given

by

S =
∑
k

wk
`′k(0)√
−`′′k(0)

, (1.16)

where wk are pre-specified non-negative weights. This test statistic is asymptotically

N(0,W ), where W is the sum of the squares of the weights.

1.7 Randomization Tests

Randomization not only promotes comparability among the study groups, but also

provides a distributional assumption-free basis for statistical inference. Rosenberger

and Lachin (2015) thoroughly discuss the concept and method of performing ran-

domization tests for assessing whether a treatment has any effect on the responses of

the n patients randomized in the study. The null hypothesis of a randomization test

is that the treatment assignments are unrelated to the responses of the n patients

randomized in the study. An appropriate measure of the treatment effect is then

used as the test statistic, which could be a difference of means or proportions, a non-

parametric rank test, or a covariate-adjusted treatment effect measure (Parhat et al.,

2014). One calculates the two-sided p-value as the proportion of the more extreme

test statistics from the reference set than the observed test statistic. Let Ω be the

reference set, which is the set of all possible permutations of randomization sequences

and the associated probabilities. Define Sl to be the test statistic for a sequence l,

l = 1, · · · ,Ω and Sobs to be the observed test statistic. Let L record realizations of
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specific randomization sequences. The p-value is given by

p =
Ω∑
l=1

I(|Sl| ≥ |Sobs|)Pr(L = l).

We use Monte Carlo simulation to calculate the two-sided p value estimator as

p̂ =

∑Ls

l=1 I(|Sl| ≥ |Sobs|)
Ls

,

where Ls is the total number of realizations. This technique cannot be used to test

an interaction directly since under the null hypothesis of no interaction effect, there

still might be overall treatment effect.

Randomization tests have been studied as assumption-free alternatives or comple-

ments to the traditional population model-based analyses. Rosenberger et al. (2019)

discussed the advantages of randomization tests and the application of the random-

ization tests in testing the primary outcome and sequential monitoring. Other studies

have tested the treatment effect among groups using randomization tests (Galbete

and Rosenberger, 2016, Parhat et al., 2014, Plamadeala et al., 2012). Parhat et al.

(2014) show that, under model misspecification, randomization tests preserve the

size and power well for generalized linear regression, survival, and longitudinal mod-

els, while population model-based tests have inflated type I error rates and reduced

power. Still and White (1981) showed the application of the randomization test in

assessing the interaction effect in the analysis of variance settings. However, the effect

and application of using randomization-based tests to examine the interaction effect

in the generalized linear model setting when we have multiple covariates strata or

categorical outcomes remain unclear and unstudied.
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1.8 Contribution and Outline of the Thesis

In this thesis, we compare different CARA procedures in terms of efficiency and

ethics consideration. We recommend the CARA procedures that balance efficiency

and ethics better for binary and continuous outcomes. The efficiency is measured by

the testing power and ethics is measured by the overall success rate. We then propose

a Monte Carlo test for testing the treatment-by-covariate interaction effect that can

preserve the type I error rate and maintain power under model misspecification.

At the end, we propose a two-stage CARA enrichment design which uses a CARA

procedure in the first stage to allocate patients and a Monte Carlo test in the interim

analysis to test the treatment-by-covariate interaction effect. The proposed design

can preserve the type I error rate, maintain testing power, and have higher overall

success rate compared to a standard non-enrichment design under different testing

scenarios.

This thesis is structured as follows. In Chapter 2, we compare different CARA

procedures for testing treatment-by-covariate interaction effect in terms of efficiency

and efficacy. We choose the CARA procedures that balance better between efficiency

and ethics. In Chapter 3, we propose a nonparametric simulation-based Monte Carlo

test to test the treatment-by-covariate interaction effect. We compare the proposed

test to the population model-based tests under different scenarios for binary and

continuous outcomes. In Chapter 4, we propose a two-stage enrichment design which

uses the selected CARA procedure to allocate patients in the first stage and the Monte

Carlo test in the interim analysis. General conclusions and remarks are included in

Chapter 5.
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Chapter 2: Comparison of Different CARA

Procedures

2.1 Binary outcomes in logistic regression models

In this section, we compare the performance of different CARA procedures in testing

the interaction effects. First, we consider a binary outcome with two treatment groups

and one categorical covariate. Let Xi = 1 if a patient’s response is a success, and

Xi = 0 if a patient’s response is a failure. Let pi = Pr(Xi = 1|Z = z) be the

probability of success for a given covariate matrix z (which includes the intercept

term zi1 = 1 and group indicators zi2 = Ti) and qi = 1 − pi. The logistic regression

model is given as

logit(pi) = ziβ, i = 1, · · · , n, (2.1)

where β is a p× 1 vector of model parameters. Notice that p = 4 when there are two

covariate strata and p = 8 when there are four covariate strata.

Three target allocation rules are considered:

• Rosenberger et al.’s (2001b) target allocation CARA1:

πm+1,1|zm+1 =
p1(zm+1)/q1(zm+1)

p1(zm+1)/q1(zm+1) + p2(zm+1)/q2(zm+1)
.
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• Covariate-adjusted version of Rosenberger et al.’s (2001a) allocation CARA2:

πm+1,1|zm+1 =

√
p1(zm+1)√

p1(zm+1) +
√
p2(zm+1)

.

• Covariate-adjusted version of Rosenberger and Sverdlov’s (2008) optimal allo-

cation CARA3:

πm+1,1|zm+1 =
q2(zm+1)

√
p2(zm+1)

q1(zm+1)
√
p1(zm+1) + q2(zm+1)

√
p2(zm+1)

. (2.2)

CARA1 target allocation is proportional to the covariate-adjusted odds ratio.

CARA2 minimizes the expected number of treatment failures subject to the fixed

asymptotic variance of the test statistic. CARA3 is the optimal allocation which

minimizes expected treatment failures subject to the fixed asymptotic variance of the

log-odds ratio.

In order to decrease the variability and preserve the randomness of those adaptive

procedures which depend on unknown parameters p1(z) and p2(z), doubly-adaptive

biased coin design (DBCD) (Hu et al., 2004) and efficient randomized adaptive design

(ERADE) (Hu et al., 2009) are used for each target allocation. Covariate-adjusted

DBCD allocation rule is defined as:

φm+1,1|zm+1 =
π̂m+1,1|zm+1(

π̂m+1,1|zm+1

Nm+1,1|zm+1

)γ

π̂m+1,1|zm+1(
π̂m+1,1|zm+1

Nm+1,1|zm+1

)γ + (1− π̂m+1,1|zm+1)(
1−π̂m+1,1|zm+1

Nm+1,2|zm+1

)γ
,

where Nn,k|z is the number of patients with given covariate z in group k and γ is

the tuning parameter that controls the variability of the procedure. As γ increases,
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the procedure becomes less variability and more deterministic. When γ = 0, this

procedure reduces to the sequential MLE CARA procedure.

ERADE allocation rule is defined as:

φm+1,1|zm+1 =



απ̂m+1,1|zm+1 , if Nm+1,1|zm+1/m|zm+1 > π̂m+1,1|zm+1

π̂m+1,1|zm+1 , if Nm+1,1|zm+1/m|zm+1 = π̂m+1,1|zm+1

1− α(1− π̂m+1,1|zm+1) if Nm+1,1|zm+1/m|zm+1 < π̂m+1,1|zm+1 ,

where α ∈ [0, 1]. The authors recommend choosing a α between 0.4 and 0.7.

Simulations are programmed in C with 5, 000 replications. Different covariate

profiles, such as equally distributed two and four strata and unequally distributed

(with ratios of 2 : 8 and 8 : 2) two strata are considered in the simulation. Given

covariates zi, the response Xi is generated from a Bernoulli distribution with success

probability pi. Under the permuted block randomization (PBR), all cases are equally

allocated to two groups with block size of 10. Under CARA procedures, the first

100 cases are allocated using PBR with block size of 10. The likelihood based Wald

test and Zhang et al.’s (2007) test in Chapter 1.7 are used to compare the operating

characteristics of CARA randomization procedures. The parameter of interest is the

treatment-covariate interaction.

For binary outcomes, two treatment groups, and two covariate strata scenarios,

the following hypotheses are tested:

H0 : β4 = 0 versus H1 : β4 6= 0.
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The parameter values used are: β1 = 0.5, β2 = 0, β3 = 0.5, and β4 = 0 under the

null hypothesis, and β1 = 0.5, β2 = 0, β3 = 0.5, and β4 = 0.9 under the alternative

hypothesis. The sample size of 1, 000 is chosen so that the equal allocation rule PBR

reaches at least 80% power.

For the four covariate strata scenarios, the following hypotheses are tested:

H0 : β6 = β7 = β8 = 0 versus H1 : Not all three equal to 0.

The parameter values used are: β1 = 0.5, β2 = 0, β3 = 1, β4 = 0.5, and β5 = β6 =

β7 = β8 = 0 under the null hypothesis, and β1 = 0.5, β2 = 0, β3 = 1, β4 = 0.5, β5 = 0,

and β6 = β7 = β8 = 0.9 under the alternative hypothesis. The sample size of 1, 500

is chosen so that PBR achieves at least 80% power.

Due to the higher variability of certain CARA procedures, some scenarios end up

having zero success or fail rates during the sequential allocation process. Therefore,

Zhang et al.’s (2007) test statistics cannot be calculated and a larger size of the

initial allocation is required. In our simulation, under those circumstances, the first

200 or 400 cases are randomized using PBR for two and four covariate strata scenarios

respectively.

Table 2.1 shows type I error rates from Wald and Zhang et al’s tests for two

equally distributed covariate strata and binary outcomes. All allocation procedures

preserve type I error rates around the nominal level of 0.05. Simulations are also run

under skewed covariate strata scenarios (2 : 8 and 8 : 2 distributed) and all type I

error rates are found to be around the nominal level of 0.05.

Table 2.2 presents the allocation ratios to the treatment group, overall success

rates, and power from Wald and Zhang et al’s tests for two equally distributed co-

variate strata and binary outcomes. Both the sequential MLE and DBCD (γ = 1, 2)
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procedures have higher overall success rates than PBR, while the two DBCDs have

smaller variances than the sequential MLE. DBCD procedures also allocate more pa-

tients to the better treatment effect group. CARA1 target has higher variability than

CARA2 and CARA3. All ERADE procedures allocate more patients to the supe-

rior group but have lower power than PBR and DBCD procedures. Under the same

effect size, unequally distributed covariates have lower powers across all procedures

(Fig.2.1). Similar results are found under the four equally distributed covariate strata

situations. When only a small portion of patients benefit more from the treatment, a

larger effect size or increased sample size is desired to reach a similar power as in the

equally distributed covariate strata scenarios. The parameters used for Table 2.3 are

β1 = 0.5, β2 = 0, β3 = 0.5, and β4 = 1.2. Powers from ERADE procedures are further

reduced. Under the sequential MLE and the two DBCD procedures, CARA1 has the

least power, highest success rates, and skews the allocation the most; CARA2 has

the highest power, lowest success rates, and is closest to the balance design; CARA3

is in the middle. Overall, DBCD(γ = 2) with target CARA3 has a better balance

between ethics and efficiency considerations.
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Table 2.1: Type I error rates from different randomization designs for two equally
distributed covariate strata and binary outcomes

Randomization Procedure Target Allocation Wald Error Rate Zhang Error Rate
PBR 0.048 0.048
DBCD(γ = 0) CARA1 0.054 0.047

CARA2 0.054 0.045
CARA3 0.053 0.045

DBCD(γ = 2) CARA1 0.050 0.049
CARA2 0.054 0.053
CARA3 0.054 0.053

DBCD(γ = 1) CARA1 0.051 0.050
CARA2 0.055 0.055
CARA3 0.052 0.052

ERADE(α = 0.5) CARA1 0.046 0.045
CARA2 0.049 0.048
CARA3 0.046 0.045

ERADE(α = 0.6) CARA1 0.049 0.047
CARA2 0.050 0.050
CARA3 0.049 0.049

ERADE(α = 0.7) CARA1 0.049 0.046
CARA2 0.053 0.053
CARA3 0.049 0.049
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Figure 2.1: Power from different CARA procedures, 5000 runs, n = 1000
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Table 2.2: Power, allocation ratios, and overall success rates from different randomization designs

for two equally distributed covariate strata and binary outcomes

Randomization Target Allocation Wald Power Zhang Power SR1(var*N) AR2(var*N)
PBR 0.861 0.860 0.712(0.206) 0.500(0.000)
DBCD(γ = 0) CARA1 0.838 0.842 0.725(0.220) 0.594(1.766)

CARA2 0.849 0.849 0.713(0.207) 0.510(0.268)
CARA3 0.840 0.838 0.721(0.221) 0.569(0.836)

DBCD(γ = 2) CARA1 0.840 0.833 0.726(0.217) 0.605(1.489)
CARA2 0.848 0.849 0.713(0.205) 0.511(0.085)
CARA3 0.846 0.839 0.722(0.219) 0.576(0.591)

DBCD(γ = 1) CARA1 0.841 0.841 0.726(0.217) 0.603(1.592)
CARA2 0.850 0.850 0.713(0.205) 0.511(0.123)
CARA3 0.845 0.840 0.722(0.219) 0.576(0.655)

ERADE(α = 0.5) CARA1 0.738 0.719 0.734(0.203) 0.772(0.592)
CARA2 0.784 0.783 0.728(0.202) 0.730(0.183)
CARA3 0.749 0.740 0.732(0.206) 0.759(0.316)

ERADE(α = 0.6) CARA1 0.768 0.753 0.732(0.206) 0.737(0.760)
CARA2 0.812 0.811 0.725(0.202) 0.686(0.207)
CARA3 0.786 0.775 0.730(0.208) 0.721(0.398)

ERADE(α = 0.7) CARA1 0.806 0.791 0.730(0.209) 0.701(0.966)
CARA2 0.836 0.836 0.722(0.203) 0.642(0.232)
CARA3 0.815 0.806 0.728(0.211) 0.683(0.491)

1 success rate
2 allocation ratio
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2.2 Continuous outcomes in linear regression mod-

els

We then consider continuous normal outcomes with two treatment groups and one

categorical covariate. Suppose responses follow a linear regression model with ho-

moscedastic variance

Xi = Ziβ + ε, (2.3)

where ε ∼ N(0, σ2), Xi is a n × 1 vector of responses, Zi is a n × p covariate

matrix (including the intercept zi1 = 1 and group indicators zi2 = Ti), and β is a

p× 1 vector of model parameters. Assuming that larger responses are desirable, the

target allocation which is based on Zhang et al.’s (2007) CARA design is calculated

as:

πm+1,1|zm+1 = Φ

(
Zm+1β̂1 −Zm+1β̂2

G

)
, (2.4)

where βk are the parameter estimators for the kth group (k = 1, 2) and G is a tuning

parameter. The smaller the T value, the more the allocation is skewed. We compare

G = 2 and 6 in our simulations.

For continuous outcomes, two treatment groups, and two covariate strata scenar-

ios, the following hypotheses are tested:

H0 : β4 = 0 versus H1 : β4 6= 0.

The parameter values used are: β1 = 0.5, β2 = 0, β3 = 0.5, and β4 = 0 under the

null hypothesis, and β1 = 0.5, β2 = 0, β3 = 0.5, and β4 = 0.6 under the alternative

hypothesis. For the four covariate strata scenarios, the following hypotheses are
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Table 2.3: Power, allocation ratios, and overall success rates from different random-

ization designs for two unequally (2 : 8) distributed covariate strata and binary
outcomes

Randomization Target Allocation Wald Power SR1(var*N) AR2(var*N)
PBR 0.830 0.661(0.225) 0.500(0.000)
DBCD(γ = 0) CARA1 0.759 0.670(0.237) 0.551(1.779)

CARA2 0.822 0.662(0.227) 0.505(0.284)
CARA3 0.809 0.668(0.232) 0.530(0.655)

DBCD(γ = 2) CARA1 0.761 0.671(0.233) 0.556(1.456)
CARA2 0.826 0.662(0.225) 0.505(0.099)
CARA3 0.816 0.668(0.231) 0.541(0.438)

DBCD(γ = 1) CARA1 0.764 0.671(0.233) 0.555(1.594)
CARA2 0.823 0.662(0.225) 0.505(0.136)
CARA3 0.812 0.668(0.230) 0.540(0.491)

ERADE(α = 0.5) CARA1 0.682 0.673(0.225) 0.749(0.615)
CARA2 0.762 0.669(0.230) 0.728(0.192)
CARA3 0.703 0.672(0.226) 0.743(0.285)

ERADE(α = 0.6) CARA1 0.722 0.672(0.226) 0.708(0.779)
CARA2 0.784 0.668(0.224) 0.683(0.217)
CARA3 0.742 0.671(0.227) 0.702(0.345)

ERADE(α = 0.7) CARA1 0.751 0.671(0.226) 0.668(0.973)
CARA2 0.807 0.666(0.224) 0.639(0.242)
CARA3 0.758 0.670(0.228) 0.661(0.420)

1 success rate
2 allocation ratio
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tested:

H0 : β6 = β7 = β8 = 0 versus H1 : Not all three equal to 0.

The parameter values used are: β1 = 0.5, β2 = 0, β3 = 1, β4 = 0.5, and β5 = β6 =

β7 = β8 = 0 under the null hypothesis, and β1 = 0.5, β2 = 0, β3 = 1, β4 = 0.5, β5 = 0,

and β6 = β7 = β8 = 0.8 under the alternative hypothesis. Different covariate profiles,

such as equally distributed two and four strata and unequally distributed (with ratios

of 3 : 7 and 7 : 3) two strata are considered in the simulation. Given covariates zi, the

response Xi is generated from the equation 2.3. The residuals are generated from a

N(0, 1) distribution. Ten percent of outliers are randomly generated from a N(−5, 4)

distribution and used in the outlier scenarios.

Under Wald tests, with or without outliers, all DBCD and ERADE procedures

preserve type I error rates when there are two covariate strata. Conservative type

I error rates are observed when Wald tests are used to test the interaction effect

for four covariate strata. When there are outliers in four strata scenarios, tuning

parameter of 2 produces Inflated type I error rates in DBCD procedures as well.

Zhang et al’s tests have inflated type I error rates under all scenarios when outliers

are presented. Table 2.4 shows type I error rates from Wald and Zhang et al’s tests for

four equally distributed covariate strata and 10% outliers. Power and allocation ratios

for four equally distributed covariates are presented in Table 2.5. Zhang et al’s tests

have higher power from all allocations rules. Sequential MLE and the two DBCD

procedures allocate more patients to the superior group. All ERADE procedures

allocate more patients to the superior group but have lower powers. DBCD(γ = 2)

targeting CARA(T = 6) has the smallest variability and highest power. Outliers

significantly reduce testing powers for both Wald and Zhang et al’s tests under all

allocation rules. Procedures with smaller tuning parameters allocate more patients to
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the treatment group, but also have higher variabilities. Overall, DBCD(γ = 2) with

a tuning parameter of 6 performs the best among all the procedures compared. Table

2.6 presents power and allocation ratios to the treatment group from Wald and Zhang

et al’s tests for four equally distributed covariate strata with 10% outliers. As shown

in figure 2.2, under the same effect size, for all DBCD procedures, testing powers are

significantly higher when there are no outliers and covariates are equally distributed.
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Table 2.4: Type I error rates from different randomization designs for four equally
distributed covariate strata and continuous outcomes with 10% outliers

Randomization Procedure Target Allocation Wald Error Rate Zhang Error Rate
PBR 0.039 0.544
DBCD(γ = 0) CARA(T=6) 0.043 0.541

CARA(T=2) 0.060 0.540
DBCD(γ = 2) CARA(T=6) 0.045 0.536

CARA(T=2) 0.074 0.556
DBCD(γ = 1) CARA(T=6) 0.043 0.537

CARA(T=2) 0.070 0.547
ERADE(α = 0.5) CARA(T=6) 0.046 0.533

CARA(T=2) 0.055 0.532
ERADE(α = 0.6) CARA(T=6) 0.046 0.530

CARA(T=2) 0.056 0.543
ERADE(α = 0.7) CARA(T=6) 0.046 0.537

CARA(T=2) 0.055 0.542

2.3 Conclusion

We use numerical studies to compare the performance of different CARA randomiza-

tion procedures for testing the treatment-by-covariate interaction effect. All proce-

dures preserve type I error rates when there are no model misspecification. Inflated

type I error rates and reduced testing power are observed when there are outliers

in the linear regression models. ERADE procedures allocate more patients to the

superior group, therefore have higher success rates than PBR and DBCD procedures.

However, the powers from ERADE procedures are generally lower than PBR and

DBCD procedures as well.

For binary outcomes, DBCD (γ = 2) targeting CARA3 is chosen since it has

a better balance between the power and the overall success rate. For continuous

outcomes, DBCD (γ = 2) targeting the CARA procedure with a tuning parameter of
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Table 2.5: Power and allocation ratios from different randomization designs for four

equally distributed covariate strata and continuous outcomes

Randomization Target Allocation Wald Power Zhang Power AR1(var*N)
PBR 0.684 0.835 0.500(0.000)
DBCD(γ = 0) CARA(T=6) 0.667 0.824 0.530(0.198)

CARA(T=2) 0.654 0.809 0.587(0.296)
DBCD(γ = 2) CARA(T=6) 0.667 0.832 0.539(0.071)

CARA(T=2) 0.648 0.817 0.614(0.221)
DBCD(γ = 1) CARA(T=6) 0.670 0.827 0.537(0.100)

CARA(T=2) 0.646 0.814 0.608(0.243)
ERADE(α = 0.5) CARA(T=6) 0.551 0.756 0.702(0.138)

CARA(T=2) 0.532 0.744 0.731(0.152)
ERADE(α = 0.6) CARA(T=6) 0.587 0.779 0.668(0.156)

CARA(T=2) 0.564 0.769 0.702(0.182)
ERADE(α = 0.7) CARA(T=6) 0.614 0.799 0.633(0.170)

CARA(T=2) 0.601 0.783 0.673(0.212)
1 allocation ratio

Table 2.6: Power and allocation ratios from different randomization designs for four equally

distributed covariate strata and continuous outcomes with 10% outliers

Randomization Procedure Target Allocation Wald Power Allocation Ratio (var*N)
PBR 0.256 0.500(0.000)
DBCD(γ = 0) CARA(T=6) 0.255 0.529(0.237)

CARA(T=2) 0.254 0.585(0.640)
DBCD(γ = 2) CARA(T=6) 0.251 0.539(0.126)

CARA(T=2) 0.273 0.612(0.747)
DBCD(γ = 1) CARA(T=6) 0.253 0.537(0.153)

CARA(T=2) 0.271 0.605(0.729)
ERADE(α = 0.5) CARA(T=6) 0.214 0.702(0.148)

CARA(T=2) 0.222 0.730(0.233)
ERADE(α = 0.6) CARA(T=6) 0.224 0.668(0.170)

CARA(T=2) 0.242 0.702(0.299)
ERADE(α = 0.7) CARA(T=6) 0.244 0.633(0.190)

CARA(T=2) 0.251 0.673(0.376)
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Figure 2.2: Power from different DBCD procedures, 5000 runs, n = 400

6 is chosen since it has the higher power with moderately low allocation variability.
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Chapter 3: Monte Carlo Tests of Interaction Effect

Based on the findings from previous chapters, population-based tests encounter in-

flated type I error rates and reduced power under model misspecification. Random-

ization tests preserve the size and power under model misspecification for testing

treatment effects (Parhat et al., 2014). In this chapter, we try to find a similar

application to test the interaction effect.

When testing the interaction effect, under the null hypothesis, there still might

be overall treatment effects. In this case, we cannot assume that the treatment

allocation is unrelated to the outcome, therefore, permuting the treatment allocation

to run a randomization test is not applicable. Another commonly used simulation-

based test is the permutation test. It assumes exchangeability and can be used

for both randomized and non-randomized data sets. Under a permutation test, the

probability of each permuted sequence is the same. Since we generally cannot assume

the exchangeability condition under a CARA procedure, permutation tests are not

applicable as well.

Here, we consider a generalized linear model (GLM) setting for two groups. Sup-

pose for a given covariate Z, the response Xk of the treatment k = 1, 2 has a distri-

bution in the exponential family under the GLM:

fk(Xk|Z,θk) = exp{(Xkµk − αk(µk))/ψk + bk(Xk, ψk)},

with the link function µk = hk(Zθ
′
k), where θk = (θk1, · · · , θkd), k = 1, 2. Assume

the scale parameter ψk is fixed. Under this model, E(Xk|Z) = α′(µk), Var(Xk|Z) =
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α′′(µk)ψk. The first and second derivatives for log likelihood function are:

∂logfk(Xk|Z,θk)
∂θk

=
1

ψk
(Xk − a′k(µk))h′k(Zθ′k)Z

and

∂2logfk(Xk|Z,θk)
∂θ2

k

=
1

ψk
{−a′′k(µk))[h′k(Zθ′k)]2 + [Xk − a′k(µk)]h′′k(Zθ′k)}Z ′Z.

After using a CARA procedure to allocate all n patients to the two treatment

groups and collecting the responses, a generalized linear regression model is fit. The

score test statistic for testing the interaction effect based on the observed dataset is

calculated as the observed test statistic. The score test only involves the restricted

maximum likelihood estimation and the test statistic is calculated as:

Sn = [L1(θ,Xn)′(−L2(θ,Xn)−1L1(θ,Xn)]θ=θ̃,

where L1(θ,Xn) is the first derivative of the log likelihood function and L2(θ,Xn) is

the second derivative of the log likelihood function.

While keeping the treatment allocation and the covariate strata status fixed, we

regenerate Ls sequences of the interaction terms using Monte Carlo simulation and

the score test statistics are calculated for each set of permutations. The two-sided

p-value is calculated as

p̂ =

∑Ls

l=1 I(|Sl| ≥ |Sobs|)
Ls

.

The value of L at 2, 500 will bound the mean squared error of the p-value at 0.0001

. In order to estimate very small p-values accurately, Rosenberger and Lachin (2015)
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suggest 20, 000 sequences. Galbete and Rosenberger (2016) demonstrate that 15, 000

sequences produce tests that are almost identical to exact tests. This test has no

validity under a randomization or permutation world, however, it will preserve the

type I error rate. We refer to this test as a ”Monte Carlo test”.

3.1 Binary responses

Simulations are run to compare the performance of population model-based ap-

proaches and the proposed Monte Carlo test for both binary and continuous outcome

variables. First we consider a binary outcome with two treatment groups in a logistic

regression model (equation 2.1).

Let the group by covariate interaction Yi = TiZi. A total of 15, 000 permutations

of Yi are generated with fixed covariates, responses, and group allocations. Score test

statistics are calculated from the observed and permuted data sets and the corre-

sponding p-values are then calculated. Based on the findings from Chapter 2, DBCD

(γ = 2) with target CARA3 (equation 2.2) is used in the simulation. The parameter

values used in the two covariate strata scenarios are: β1 = 0.5, β2 = 0, β3 = 0.5,

and β4 ranging from 0 to 0.7. The sample size of 1, 000 is chosen so that the Wald

test achieves at least 80% power when β4 = 1.2 and there are more patients from

the worse responsive stratum (8 : 2 covariate ratio). Figure 3.1 presents the results

from simulations. All three tests have similar rejection rates. Zhang et al’s tests

under both CARA and PBR have slightly lower powers when only a small portion of

patients benefit from the treatment under the CARA allocation.

The parameter values used in the four covariate strata scenarios are: β1 = 0.5, β2 =

0, β3 = 1, β4 = 0.5, β5 = 0, and β6− β8 ranging from 0 to 1. The sample size of 1, 500

is chosen so that the Wald test achieves at least 80% power when β6 = β7 = β8 = 1.
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Figure 3.1: Two covariate strata, two treatment groups, and binary outcomes

Zhang et al’s test also shows slightly lower power under the CARA allocation (Figure

3.2), while Wald and Monte Carlo tests have similar power under both CARA and

PBR allocations.
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Figure 3.2: Four covariate strata, two treatment groups, and binary outcomes

3.2 Continuous responses

We now consider a continuous outcome with two treatment groups in a linear regres-

sion model (equation 2.3). Based on the findings from Chapter 2, DBCD (γ = 2)

with target CARA (T = 6) (equation 2.4) is used in the simulation. The parameter

values used in the two covariate strata scenarios are: β1 = 0.5, β2 = 0, β3 = 0.5, and
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β4 ranging from 0 to 1.2. The residuals are generated from a N(0, 1) distribution.

Ten percent of outliers are randomly generated from a N(−5, 4) distribution and used

in the outlier scenarios. The sample sizes are chosen so that the Wald test achieves

at least 80% power. Figure 3.3 presents the results of simulations. All three tests

have similar rejection rates when no outliers are presented. To reach the same power

level, unequally distributed covariates require larger sample sizes. Wald tests have

slightly lower power under both PBR and CARA allocations. Zhang et al’s tests

have inflated type I error rates when outliers are presented. Although both Wald and

Monte Carlo tests preserve type I error rates around the nominal level, Monte Carlo

tests consistently have higher power than Wald tests.

The parameter values used in the four covariate strata scenarios are: β1 = 0.5, β2 =

0, β3 = 1, β4 = 0.5, β5 = 0, and β6− β8 ranging from 0 to 1.5. All three tests preserve

type I error rates under the no outlier scenario, and Wald test has lower power than

the other two tests. Zhang et al’s test has inflated type 1 error rates and Wald test

has lower power when outliers are presented (figure 3.4).

3.3 Conclusion

Population model-based and the proposed Monte Carlo tests perform equally well

when there are two strata and no misspecified data. However, when there are mul-

tiple responsive covariate strata or outliers, inflated type I error rates and reduced

power are observed under the population model-based tests. Although the score test

statistics are used in calculating the p-values, the procedure itself is nonparametric

since it is based on the randomization distribution induced b the particular sequence.
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Chapter 4: A two-stage Enrichment Design using

Monte Carlo Tests

Despite of the existence of treatment-by-covariate interaction effect in many situa-

tions, clinical trials are often designed under the assumption of no such effect. Ayan-

lowo and Redden’s (2008) two-stage adaptive design examines the interaction effect

and a trial moves to the second stage only if a significant interaction effect is detected

at the interim analysis. The second stage is non-enriched, but stratified based on

covariate strata. Simon and Simon’s (2013) design selects the responsive patients in

the second stage. If some but not all sub-groups respond to the treatment, it is an en-

richment design. If all cases benefit from the treatment, it becomes a non-enrichment

design. Freidlin et al. (2010) summarized the characteristics for randomized clinical

trials with biomarkers. They noted that one of the main limitations of the classical

enrichment design is that the biomarker might not be able to identify the subgroup

of patients who benefit with reasonable accuracy. In this chapter, we propose a two-

stage enrichment design which uses the Monte Carlo test to evaluate the interaction

effect in the interim analysis. Similar to Simon and Simon’s (2013) design and Diao

et al.’s (2018) design, our design does not adaptively adjust the total sample size after

the first stage. The enrichment in the second stage is expected to increase power for

hypothesis testing using either data from the second stage alone or combined data

from both stages.

We still consider a generalized linear model setting for two groups. Suppose for

a given covariate Z, the response Xk of the treatment k = 1, 2 has a distribution in
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the exponential family under the model:

fk(Xk|Z,θk) = exp{(Xkµk − αk(µk))/ψk + bk(Xk, ψk)},

with the link function µk = hk(Zθ
′
k), where θk = (θk1, · · · , θkd), k = 1, 2. For binary

outcomes, let p1 be the success rate for the treatment group and p2 the success rate

for the control group. The treatment effect size ∆ is defined by the relative risk

p1/p2. Similarly, in each stratum g, let p1g be the success rate for the treatment

group and p2g the success rate for the control group. The effect size of the gth

subset is ∆g = p1g/p2g. For continuous outcomes, let µ1 be the mean response of the

primary efficacy outcome for the treatment group and µ2 the mean response for the

control group. Assume that the response variable in the treatment and the control

groups has an equal variance denoted by σ2. The treatment effect size ∆ is defined

by ∆ = (µ1 − µ2). Similarly, in each stratum g, let µ1g be the mean response for the

treatment group, µ2g the mean response for the control group, and σ2
g be the common

variance. The effect size of the gth subset is ∆g = (µ1g − µ2g).

The proposed two-stage adaptive enrichment design uses the Monte Carlo test

described in Chapter 3 to test the interaction effect at the interim analysis. A pre-

defined alpha level is used as the threshold to decide whether a subgroup will be

identified and recruited in the second stage. If a significant interaction effect is found,

a regression model will be fitted and the stratum with the largest treatment effect will

be chosen as the best stratum. The trial will continue to the second stage with patients

from the best stratum only. The response-adaptive randomization (RA) version of

DBCD (γ = 2) with CARA3 will be used to allocate the rest of the patients. If the

p-value from the interim analysis is above the threshold, the trial continues with all

patients. The primary aim is to test the treatment effect between treatment groups.
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4.1 Binary responses

For a binary outcome with two treatment groups in a logistic regression model (equa-

tion 2.1), simulations are run to compare the proposed design with the traditional

non-enrichment design and Simon and Simon’s enrichment design (Simon and Si-

mon, 2013). Wald test and randomization test are used in the final analysis for

the proposed design. The parameters used in the two covariate strata scenarios are:

β1 = 0.5, β2 = 0, β3 = 0.5, and β4 ranging from 0 to 1.1. The sample size of 1, 000 is

chosen so that the non-enrichment design achieves at least 80% power when β4 = 1.1.

Table 4.1 shows the results from two equally distributed covariate strata. All four

designs preserve type I error rates. Under the null hypothesis (β4 = 0) or effect sizes

are small (β4 = 0.3), Simon and Simon’s enrichment designs could end up with smaller

sample sizes since neither covariate strata meets the inclusion criterion (equation

1.12), therefore it could be less powerful than the standard non-enrichment design.

As the effect size gets larger (β4 = 0.5, 0.7), Simon and Simon’s enrichment design

becomes more powerful than the non-enrichment design. The overall success rates in

Simon and Simon’s enrichment designs are always higher than non-enrichment designs

due to the biased sampling in the second stage. The two Monte Carlo enrichment

designs consistently have higher powers than non-enrichment and Simon and Simon’s

enrichment designs under different effect sizes. Monte Carlo enrichment designs with

non-enriched second stages have lower overall success rates than Simon and Simon’s

enrichment designs, but those with enriched second stages have higher overall success

rates. When there are only a small portion of patients who would benefit from

the treatment (Table 4.2), the two Monte Carlo enrichment designs with enriched

second stages (β4 = 0.7) have much higher power than non-enrichment and Simon

and Simon’s enrichment designs. The two Monte Carlo enrichment designs have
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similar powers under all scenarios. A larger threshold increases the probability of a

enriched second stage. The variances of the success rates under Simon and Simon’s

enrichment designs are consistently higher than the other designs.

The parameter values used in the four covariate strata scenarios are: β1 = 0.5, β2 =

0, β3 = 1, β4 = 0.5, β5 = 0, and β6−β8 ranging from 0 to 0.7. The sample size of 1, 500

is chosen so that the non-enrichment design achieves at least 80% power when β6 =

β7 = β8 = 0.5. When there are four equally distributed strata and three of the four

strata have higher success rates in the treatment group (Table 4.3), non-enrichment

designs have higher power than Simon and Simon’s enrichment designs when the effect

sizes are small. As the effect sizes increase, Simon and Simon’s enrichment designs

become more powerful than non-enrichment designs. Monte Carlo enrichment designs

have higher power than non-enrichment designs, however the overall success rates are

lower since the third covariate group is chosen and enriched based on the interim

analysis results. Although as noted in Diao et al. (2018), using the best group only in

the final analysis leads to inflated type I error rates, type I error rate inflation is not

observed in our simulations. Since the power of a test depends on both the sample

size in the final analysis and the effect size, for the selected parameters, under the

equal allocation, using all data is more powerful than using the second stage data.

Using second stage data only is more powerful than using all data when there is only

a small portion of the patients who respond better to the treatment (Fig 4.1).
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Table 4.1: Power and overall success rates from different designs for two

equally distributed covariate strata and binary outcomes

Beta Design Threshold Rejection Rate SR1(var*N)
(0.5, 0, 0.5, 0) NED2 0.051 0.677(0.222)

SED3 0.041 0.677(0.578)
MCED14 0.2 & 0.4 0.057 0.677(0.223)
MCED25 0.2 & 0.4 0.057 0.677(0.222)

(0.5, 0, 0.5, 0.3) NED 0.159 0.690(0.215)
SED 0.151 0.705(0.628)
MCED1 0.2 0.215 0.692(0.221)
MCED2 0.2 0.217 0.692(0.216)
MCED1 0.4 0.374 0.726(0.203)
MCED2 0.4 0.371 0.726(0.204)

(0.5, 0, 0.5, 0.5) NED 0.327 0.698(0.210)
SED 0.401 0.721(0.575)
MCED1 0.2 0.491 0.702(0.218)
MCED2 0.2 0.485 0.702(0.216)
MCED1 0.4 0.750 0.742(0.198)
MCED2 0.4 0.757 0.742(0.201)

(0.5, 0, 0.5, 0.7) NED 0.517 0.705(0.207)
SED 0.715 0.732(0.555)
MCED1 0.2 & 0.4 0.947 0.757(0.193)
MCED2 0.2 & 0.4 0.956 0.757(0.197)

1 success rate
2 non-enrichment design
3 Simon and Simon’s enrichment design
4 Monte Carlo enrichment design using Wald test
5 Monte Carlo enrichment design using randomization test

4.2 Continuous responses

For a continuous outcome with two treatment groups in a linear regression model

(equation 2.3), simulations are run to compare non-enrichment designs, Monte Carlo

enrichment designs, and Simon and Simon’s enrichment design. Since there are no

explicit test statistics given by Simon and Simon (2013) for continuous outcomes in a

sequential enrollment scenario, the group sequential analysis method with block size
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Table 4.2: Power and overall success rates from different designs for two

unequally (2 : 8) distributed covariate strata and binary outcomes

Beta Design Threshold Rejection Rate SR1(var*N)
(0.5, 0, 0.5, 0) NED2 0.052 0.645(0.223)

SED3 0.048 0.649(0.585)
MCED14 0.2 & 0.4 0.050 0.644(0.231)
MCED25 0.2 & 0.4 0.052 0.644(0.231)

(0.5, 0, 0.5, 0.3) NED 0.069 0.650(0.231)
SED 0.062 0.668(0.983)
MCED1 0.2 0.087 0.650(0.231)
MCED2 0.2 0.082 0.650(0.230)
MCED1 0.4 0.283 0.705(0.207)
MCED2 0.4 0.276 0.705(0.209)

(0.5, 0, 0.5, 0.5) NED 0.091 0.653(0.230)
SED 0.156 0.681(1.129)
MCED1 0.2 & 0.4 0.141 0.654(0.232)
MCED2 0.2 & 0.4 0.135 0.654(0.231)

(0.5, 0, 0.5, 0.7) NED 0.121 0.656(0.229)
SED 0.332 0.695(1.217)
MCED1 0.2 & 0.4 0.855 0.730(0.201)
MCED2 0.2 & 0.4 0.859 0.730(0.203)

1 success rate
2 non-enrichment design
3 Simon and Simon’s enrichment design
4 Monte Carlo enrichment design using Wald test
5 Monte Carlo enrichment design using randomization test
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Table 4.3: Power and overall success rates from different designs for four equally dis-

tributed covariate strata and binary outcomes

Beta Design Threshold Rejection Rate SR1(var*N)
(0.5, 0, 1, 0.5, 0, 0, 0, 0) NED2 0.049 0.698(0.219)

SED3 0.034 0.698(1.172)
MCED14 0.2 & 0.4 0.058 0.698(0.209)
MCED25 0.2 & 0.4 0.053 0.698(0.219)

(0.5, 0, 1, 0.5, 0, 0.3, 0.3, 0.3) NED 0.409 0.719(0.206)
SED 0.380 0.725(0.816)
MCED1 0.2 0.514 0.720(0.203)
MCED2 0.2 0.513 0.720(0.200)
MCED1 0.4 0.653 0.689(0.215)
MCED2 0.4 0.656 0.689(0.218)

(0.5, 0, 1, 0.5, 0, 0.5, 0.5, 0.5) NED 0.806 0.731(0.200)
SED 0.831 0.740(0.509)
MCED1 0.2 0.892 0.735(0.203)
MCED2 0.2 0.891 0.735(0.198)
MCED1 0.4 0.966 0.709(0.216)
MCED2 0.4 0.964 0.709(0.213)

(0.5, 0, 1, 0.5, 0, 0.7, 0.7, 0.7) NED 0.970 0.741(0.195)
SED 0.983 0.753(0.345)
MCED1 0.2 & 0.4 0.999 0.730(0.215)
MCED2 0.2 & 0.4 0.999 0.730(0.213)

1 success rate
2 non-enrichment design
3 Simon and Simon’s enrichment design
4 Monte Carlo enrichment design using Wald test
5 Monte Carlo enrichment design using randomization test
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Figure 4.1: Powers using different types of data for binary outcomes

two is used in this section. The test statistic is calculated based on equation 1.14

with K = 2. The parameters used in the two covariate strata scenarios are: β1 =

0.5, β2 = 0, β3 = 0.5, and β4 ranging from 0 to 0.7. The sample size of 400 is chosen

so that non-enrichment design achieves at least 80% power when β4 = 0.7. All four

designs preserve type I error rates (Table 4.4 and Table 4.5). Outliers reduce testing

powers under all designs. Simon and Simon’s enrichment designs are consistently

more powerful than non-enrichment designs. Both Monte Carlo enrichment designs

are generally more powerful than Simon and Simon’s enrichment designs with the

exception when there is a relatively small effect size and Monte Carlo enrichment

designs using a tighter threshold of 0.2. In this case, since Monte Carlo enrichment

designs continue to the second stage with all comers, Simon and Simon’s enrichment

design is more powerful. A looser threshold of 0.4 leads to an enrichment in the

second stage, and thus a higher power.

The parameter values used in the four covariate strata scenarios are: β1 = 0.5, β2 =
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0, β3 = 1, β4 = 0.5, β5 = 0, and β6 − β8 ranging from 0 to 0.8. The sample size of

400 is chosen so that the non-enrichment design reaches at least 80% power when

β6 = β7 = β8 = 0.8 with 10% outliers. All designs preserve type I error rates (Table

4.7 and Table 4.6). The non-enrichment design is consistently less powerful than the

other three designs even under Monte Carlo enrichment designs without enrichment in

the second stage since Monte Carlo enrichment designs use CARA randomization and

assign more patients from the responsive strata to the treatment group. Simon and

Simon’s enrichment design has higher power when Monte Carlo enrichment designs

do not enrich in the second stage under no outliers scenarios. An enriched second

stage in a Monte Carlo enrichment design guarantees a higher power. The two Monte

Carlo enrichment designs have similar powers under all scenarios. Similar to binary

outcomes, using any three types of data preserve type I error rates (Figure 4.2). Using

all data yields higher powers than the other two types of data when three out of four

strata benefit from the treatment. The power differences are larger when there are

outliers and larger effect sizes.
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Table 4.4: Type I error rates and powers from different de-

signs for two equally distributed covariate strata and con-
tinuous outcomes

Beta Design Threshold Rejection Rate
(0.5, 0, 0.5, 0) NED1 0.048

SED2 0.050
MCED13 0.2 & 0.4 0.047
MCED2 4 0.2 & 0.4 0.050

(0.5, 0, 0.5, 0.2) NED 0.160
SED 0.201
MCED1 0.2 0.173
MCED2 0.2 0.172
MCED1 0.4 0.324
MCED2 0.4 0.316

(0.5, 0, 0.5, 0.4) NED 0.462
SED 0.673
MCED1 0.2 & 0.4 0.854
MCED2 0.2 & 0.4 0.853

(0.5, 0, 0.5, 0.6) NED 0.778
SED 0.945
MCED1 0.2 & 0.4 0.994
MCED2 0.2 & 0.4 0.994

1 non-enrichment design
2 Simon and Simon’s enrichment design
3 Monte Carlo enrichment design using Wald test
4 Monte Carlo enrichment design using randomization test

4.3 Redesigning an existing trial

The National Surgical Adjuvant Breast and Bowel Project (NSABP) B-35 is a phase

III trial to compare anastrozole versus tamoxifen in postmenopausal women with

hormone (estrogen and/or progesterone) receptor positive ductal carcinoma in situ

undergoing lumpectomy plus radiotherapy. The qualified patients were enrolled and

randomly assigned (1 : 1) to receive either oral tamoxifen 20 mg per day or oral

anastrozole 1 mg per day for 5 years. Margolese et al. (2016) reported the primary

results from this study. A total of 3104 patients were enrolled between Jan 1, 2003
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Table 4.5: Type I error rates and powers from different de-

signs for two equally distributed covariate strata and con-
tinuous outcomes with 10% outliers

Beta Design Threshold Rejection Rate
(0.5, 0, 0.5, 0) NED1 0.047

SED2 0.047
MCED13 0.2 0.051
MCED24 0.2 0.048
MCED1 0.4 0.050
MCED2 0.4 0.047

(0.5, 0, 0.5, 0.1) NED 0.053
SED 0.064
MCED1 0.2 & 0.4 0.068
MCED2 0.2 & 0.4 0.068

(0.5, 0, 0.5, 0.3) NED 0.110
SED 0.161
MCED1 0.2 & 0.4 0.222
MCED2 0.2 & 0.4 0.237

(0.5, 0, 0.5, 0.5) NED 0.248
SED 0.373
MCED1 0.2 & 0.4 0.535
MCED2 0.2 & 0.4 0.544

(0.5, 0, 0.5, 0.7) NED 0.431
SED 0.630
MCED1 0.2 & 0.4 0.816
MCED2 0.2 & 0.4 0.826

1 non-enrichment design
2 Simon and Simon’s enrichment design
3 Monte Carlo enrichment design using Wald test
4 Monte Carlo enrichment design using randomization

test
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Table 4.6: Type I error rates and powers from different designs for four

equally distributed covariate strata and continuous outcomes

Beta Design Threshold Rejection Rate
(0.5, 0, 1, 0.5, 0, 0, 0, 0) NED1 0.050

SED2 0.058
MCED13 0.2 & 0.4 0.040
MCED24 0.2 & 0.4 0.043

(0.5, 0, 1, 0.5, 0, 0.2, 0.2, 0.2) NED 0.275
SED 0.314
MCED1 0.2 & 0.4 0.285
MCED2 0.2 & 0.4 0.280

(0.5, 0, 1, 0.5, 0, 0.4, 0.4, 0.4) NED 0.766
SED 0.845
MCED1 0.2 0.827
MCED2 0.2 0.826
MCED1 0.4 0.916
MCED2 0.4 0.923

(0.5, 0, 1, 0.5, 0, 0.6, 0.6, 0.6) NED 0.978
SED 0.993
MCED1 0.2 & 0.4 0.999
MCED2 0.2 & 0.4 0.999

1 non-enrichment design
2 Simon and Simon’s enrichment design
3 Monte Carlo enrichment design using Wald test
4 Monte Carlo enrichment design using randomization test
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Table 4.7: Type I error rates and powers from different designs for four

equally distributed covariate strata and continuous outcomes with 10%
outliers

Beta Design Threshold Rejection Rate
(0.5, 0, 1, 0.5, 0, 0, 0, 0) NED1 0.048

SED2 0.053
MCED13 0.2 & 0.4 0.048
MCED24 0.2 & 0.4 0.042

(0.5, 0, 1, 0.5, 0, 0.2, 0.2, 0.2) NED 0.108
SED 0.127
MCED1 0.2 & 0.4 0.143
MCED2 0.2 & 0.4 0.152

(0.5, 0, 1, 0.5, 0, 0.4, 0.4, 0.4) NED 0.334
SED 0.377
MCED1 0.2 & 0.4 0.450
MCED2 0.2 & 0.4 0.472

(0.5, 0, 1, 0.5, 0, 0.6, 0.6, 0.6) NED 0.627
SED 0.713
MCED1 0.2 & 0.4 0.790
MCED2 0.2 & 0.4 0.808

(0.5, 0, 1, 0.5, 0, 0.8, 0.8, 0.8) NED 0.856
SED 0.915
MCED1 0.2 & 0.4 0.959
MCED2 0.2 & 0.4 0.965

1 non-enrichment design
2 Simon and Simon’s enrichment design
3 Monte Carlo enrichment design using Wald test
4 Monte Carlo enrichment design using randomization test
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Figure 4.2: Powers using different types of data for continuous outcomes

and Jun 15, 2006 and 3077 patients had disease-free endpoint data by Feb 28, 2015.

Anastrozole was found superior to the tamoxifen in the younger than 60-year-old

group, but not in the 60 and older group. For those who are younger than 60 years

old, 34 out of 724 (4.7%) in the anastrozole group and 63 out of 723 (8.7%) in

the tamoxifen group had recurrent breast cancer events. For those who are 60 and

older, 56 out of 815 (6.9%) in the anastrozole group and 59 out of 815 (7.2%) in the

tamoxifen group had recurrent breast cancer events. Consider a logistic regression

model for two treatment groups and one binary covariate with interaction effect:

logit(pi) = β1 + β2Ti + β3Zi + β4TiZi, i = 1, · · · , n,

where Ti = 1 when a patient is in the anastrozole group, Ti = 0 when a patient is

in the tamoxifen group, Zi = 1 when a patient is younger than 60-year-old (47%),

Zi = 0 when a patient is 60 and older (53%), the outcome Xi = 1 when a patient

has no recurrent breast cancer events, and Xi = 0 when a patient has any recurrent
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Table 4.8: Success rates and p-value from different designs

based on NSABP trial

Design p-value Overall SR1 < 60 SR >= 60 SR
NED2 0.053 0.933 0.931 0.935
SED3 0.082 0.927 0.924 0.932
MCED4(0.2) 0.208 0.939 0.943 0.935
MCED(0.4) 0.018 0.939 0.941 0.936
1 success rate
2 non-enrichment design
3 Simon and Simon’s enrichment design
4 Monte Carlo enrichment design

breast cancer events. The parameters used in the simulation are: β1 = 2.5564, β2 =

0.0458, β3 = −0.2055, and β4 = 0.6129. Under the non-enrichment design, all 3104

patients are equally allocated to the two treatment groups using PBR with block

size of 16. Under Simon and Simon’s enrichment design, the first 1552 patients are

equally allocated using PBR with block size of 16, the enrollment and allocation in

the second stage are sequentially performed based on the criterion (equation 1.12).

Under the Monte Carlo enrichment design, patients are allocated using DBCD (γ = 2)

with CARA3. A Monte Carlo test with 15, 000 permutations is used after the first

1552 patients are enrolled. Two thresholds (0.2 and 0.4) are tested. A Wald test

is used in the final analysis. The Monte Carlo enrichment design with a threshold

of 0.4 leads to an enriched second stage with the highest overall success rate and is

able to detect a significant treatment effect between two drug groups (p = 0.0176).

Since both age groups have higher success rates in the anastrozole group, Simon and

Simon’s enrichment design is enriched after 2070 patients. Monte Carlo enrichment

design (0.4) is enriched after 1552 patients. CARA randomization and the enriched

second stage lead to 60.3% of patients who are younger than 60 and 54.6% of patients

who are 60 and older be allocated to the anastrozole group.
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4.4 Conclusion

The proposed two-stage CARA enrichment design using all data from both stages

is more powerful and have higher success rate than the traditional non-enrichment

design and Simon and Simon’s enrichment design when the enrichment is implemented

in the second stage. A higher threshold at the interim analysis increases the chance

of an enriched second stage. Using a Wald test or a randomization test in the final

analysis in the proposed two-stage enrichment design yields similar power levels. Since

randomization tests involve much more computation, Wald tests are recommended in

the final analysis to test the treatment effect.
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Chapter 5: Conclusions and Future Work

In this dissertation, a two-stage enrichment design is proposed. First we use numerical

studies to evaluate the performance of different CARA allocation rules for testing the

interaction effect. The performance is measured in terms of the testing power and

overall success rate. DBCD(γ = 2) targeting CARA2 is the most powerful with the

lowest overall success rate among all the CARA procedures compared. DBCD(γ = 2)

targeting CARA1 skews the allocation the most in the price of a reduced power.

DBCD(γ = 2) targeting CARA3 is chosen since it has a better balance between the

power and the overall success rate.

We then propose a Monte Carlo test which uses Monte Carlo resampling of the

interaction terms based on regression models to examine the interaction effect. Al-

though the observed and generated score test statistics are used in calculating the

p-values, the procedure itself is nonparametric since it is based on the randomization

distribution induced by the particular sequence. Population model-based and the

proposed tests perform equally well when there are two strata and no misspecified

data. However, when there are multiple strata or outliers, the proposed test performs

better. It preserves the type I error rate under all scenarios for both binary and

continuous outcomes, while inflated type I error rates are observed in the population

model-based tests under some situations. It has higher power than the population

model-based tests when outliers are presented.

We then use the Monte Carlo test in the interim analysis and develop a two-

stage enrichment design. The proposed design is compared with the traditional non-

enrichment design and Simon and Simon’s design. The proposed design using all
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data from both stages is more powerful than the traditional non-enrichment design

and Simon’s design when an enrichment is implemented in the second stage. Simon’s

design is more powerful than the proposed design in the scenarios wherein an en-

richment is not implemented. A looser threshold increases the chance of an enriched

second stage. Simon’s design is less powerful than the traditional non-enrichment

design when the majority of the patients benefit from the treatment and the effect

size is relatively small. Updating the randomization rule with each patient in Simon’s

binary outcome scenarios potentially leads to reduced sample size and power. Using

a randomization test or a Wald test in the final analysis in our design yields similar

power levels. A Wald test involves much less computation and is recommended. Al-

though our simulations did not find inflated type I error rates while using the data

from the best subgroup only, as discussed in Diao et al. (2018), selecting a best sub-

group in the second stage induces biased sampling and leads to an inflated type I

error rate if only the best subgroup data are used in the final analysis. Moreover,

when multiple subgroups benefit from the treatment, using all data in both stages

increases the power.

The proposed design allocates each patient based on patient’s covariate profile

and all previous patients’ responses. In real clinical trials, this could be very costly

and practically impossible. A group sequential approach could be considered in the

future. When no significant interaction effect is found in the interim analysis, an

overall treatment effect could be tested and a futility boundary could be considered

to stop the trial earlier. Different numbers of covariate strata can be incorporated

into the C code and similar analyses can be performed. However, multiple treatment

arms, continuous covariates, survival, and longitudinal outcomes are not addressed.

Although in practice, continuous covariates are often being re-categorized into cate-

gorical variables.
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We reiterate the contribution of this thesis here:

• Compare different CARA procedures and select the CARA procedures that

balance efficiency and ethics better for binary and continuous outcomes.

• Propose a Monte Carlo test for testing the treatment-by-covariate interaction

effect which can preserve the type I error rate and maintain power under model

misspecification.

• Propose a two-stage CARA enrichment design that can preserve the type I

error rate, have higher power, and allocate more responsive patients to the

better treatment group.
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