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Abstract

SCALABLE METHODS FOR MODELING DYNAMIC SPATIO-TEMPORAL DATA

Yu-Lin Hsu

George Mason University, 2022

Thesis Director: Dr. Seiyon (Ben) Lee

Hierarchical spatio-temporal models have been developed to model complex datasets ex-

hibiting spatio-temporal (ST) autocorrelation; however, many of these models are purely de-

scriptive and do not explicitly model the underlying dynamic processes. Animal movement

or general movement behaviors are examples of such dynamic processes; that is, animals, or

agents, move from one place to another over time, and their migration behavior can change

with time and as well as their current (and past) locations. The motivating example for this

thesis aims to model the spatio-temporal movement of the Eurasian collared-dove within

the continental United States from 2001-2010. Existing studies have modeled animal move-

ment using a reaction-diffusion equation or other systems of differential equation. Recently,

dynamic spatio-temporal models (DSTMs) have incorporated these physical processes into

a Bayesian hierarchical modeling framework. While DSTMs are extremely flexible, they

can be computationally costly to fit and do not scale well to high-dimensional observations.

In this thesis, I propose a computationally-efficient method to fit DSTMs to large space-

time count-valued datasets. The proposed scalable DSTM utilizes spatial basis functions

to summarize the high-dimensional data as well as a spatial interpolator to assimilate ob-

servations at irregularly-spaced locations.



I demonstrate the approach on simulated examples as well as a real-world dataset that

tracks the prevalence of the Eurasian collared dove. Through a comparative analysis, the

proposed approach is evaluated against a competing method with respect to goodness-of-fit

and uncertainty quantification. In addition, I compare the model-fitting walltimes to assess

the associated computational costs. The thesis concludes with a summary of the main

contributions, discussion of key limitations, and directions for future research.



Chapter 1: Introduction

Spatio-temporal (ST) datasets are characterized by a collection of observations indexed

at specific geographic locations and time points. ST data is prevalent across many fields

such as epidemiology [1], criminology [2], transportation [3], and ecology [4]. There are

several types of ST data; for example, discrete events occurring at distinct locations and

times [5], movement bodies’ trajectory [6], point-referenced [7], and rasters [8]. Modern

spatio-temporal analyses include spatio-temporal clustering [9], detecting anomalous data

[10], uncovering spatio-temporal patterns and changes [8, 11], creating scalable methods to

analyze large datasets [12], and developing complex statistical models for dynamic spatio-

temporal data [13].

One salient characteristic of ST data is the spatio-temporal correlation between the ob-

servations; that is, observations are correlated with nearby observations in space or/and

time [8]. Neglecting this dependence may result in improper inference and inaccurate pre-

dictions [14]. Another property of ST data is heterogeneity or non-stationarity [15], where

the spatio-temporal dependence structures vary across regions and time.

Movement data among animal populations can be characterized as ST data because the

individual agents or animals move from location-to-location across time. There are many

motivating factors driving animal movement. Animal species may traverse regions or exhibit

movement in order to obtain resources, avoid predators and competitors, and look for mates

[16–18]. Building animal movement models can help us understand their ecology, life history

and behavior, as well as aid conservation efforts [19]. To account for spatial or temporal

animal movement trends, one can fit a species distribution model to the ST data [20]. For

example, [21] applied process convolution models to simulate the migration routes of greater

white-fronted geese and sandhill cranes. To manage and conserve wildlife habitats, a past
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study [22] analyzed the preferred habitat of a whooping crane by an inhomogeneous Poisson

point process model. Owing to the small size of pygmy rabbits, [23] used rabbits’ burrows

to predict their spread via hierarchical spatial models.

In ther literature, there exists a variety of species distribution models such as profile

techniques [24], machine learning methods [25], and statistical regression models [26,27]. In

this thesis, I employ the general class of spatial regression-based species distribution models,

which will be discussed in Chapter 2. More specifically, I will focus on dynamic spatio-

temporal models (DSTMs), a special class of statistical spatio-temporal models developed

to understand population-level movement for individual species. Due to the complexity of

the model, a large number of model parameters, missing data, and the possibility of non-

convex objective functions, I have chosen to implement the DSTMs within the Bayesian

framework using a sampling-based inference (e.g. Markov Chain Monte Carlo (MCMC)).

To understand the migration behavior of the Eurasian collared doves (ECD), I build

upon the work in [28] to develop a computationally-efficient method to fit hierarchical

dynamic spatio-temporal Bayesian models. The computational speedup is facilitated by the

use of spatial basis functions embedded within a dynamic auto-regressive spatio-temporal

model. More specifically, I utilize the class of eigenvector basis extension method. The

key benefits of using spatial basis functions are: (1) basis functions can approximate the

spatial processes by inferring fewer unknown parameters, as opposed to the ‘gold standard’

models; (2) basis functions can drastically reduce correlation among the unknown model

parameters, which results in faster mixing MCMC algorithm [29]; and (3) bypasses very

large matrix operations (e.g. Cholesky decompositions, inverses, and determinants).

The thesis is structured as follows. In Chapter 2, I will introduce common spatial and

spatio-temporal geostatistical models. Chapter 3 will provide an overview of Bayesian in-

ference and details of the MCMC algorithm. Next, I will discuss commonly-used spatial

and spatio-temporal basis functions in Chapter 4. In Chapter 5, I will discuss the dynamic

spatio-temporal models developed in Hooten and Wikle (2008) [28] and introduce our pro-

posed method. In Chapters 6 and 7, experiments with simulated and real-world data are
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presented, respectively, as well as comparisons with a competing approach. I conclude the

thesis with a summary and directions for future research in Chapter 8.
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Chapter 2: Statistical Spatial and Spatio-Temporal Models

Datasets consisting of spatio-temporally correlated observations, such as species distribu-

tion, can be modeled with a wide array of geostatistical spatial and spatio-temporal models.

In this chapter, I introduce a commonly-used subset of these models, including the spatial

generalized linear mixed models (SGLMMs) [29,30], separable models, basis function mod-

els, and dynamic spatio-temporal models. To begin, I will introduce a simple geostatisical

model for spatial observations - the spatial linear mixed model.

2.1 Spatial linear mixed model (SLMM):

Let Z ≡ (Z(s1), ..., Z(sn))
′ be a set of n observations at fixed spatial locations, Y ≡

(Y (s1), ..., Y (sn))
′ be the processes. Let si be a spatial location observed in some spatial

domain Ds ⊆ Rd, a subset of d-dimensional Euclidean space. The data Z(si) consists of

latent space processes Y (si) and measurement errors τ2, and is given by:

Z(si)|Y (si), τ
2 ∼ N(Y (si), τ

2).

Let x(si) be a p-dimensional vector of covariates with the associated fixed effects β, and η =

(η(s1), ..., η(sn)) be the unobserved spatial random effect to capture the spatial dependence.

Define the linear mixed model with spatial random effect as follows:

Y (si) = x(si)
′β + η(si).

For the continuous spatial domain, η|θθθ can be modeled as a Gaussian process with the

covariance function ΣS(θθθ) and covariance function parameters θθθ = (σ2, ρ, ν). Here, ΣS(θθθ)
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generates a symmetric positive definite covariance matrix where the point-wise covariance

decays over longer distances. One example of covariance function ΣS(θθθ) is the Matérn class

[31], which generates the following isotropic and stationary covariance matrix:

ΣS(σ
2, ρ, ν; d) = σ2 2

1−ν

Γ(ν)

(√
2ν

d

ρ

)ν
Kν

(√
2ν

d

ρ

)
, (2.1)

where ρ and ν are parameters of the covariance, Kν is a Bessel function, and d is the

Euclidean distance between locations.

For areal data, conditional autoregressive (CAR) [32] and simultaneous autoregressive

(SAR) models [33] can be used to model the spatial random effects η. Instead of a co-

variance function 2.1, the CAR model will typically use a precision matrix based upon the

neighborhood structure of the areal units. Please see [33] and [34] for additional details on

areal models.

2.2 Spatial generalized linear mixed model (SGLMM):

The SGLMM is the extension of the SLMM with non-Gaussian responses. Let Z ≡

(Z(s1), ..., Z(sn))
′ be a set of n observations at fixed spatial locations, Y ≡ (Y (s1), ..., Y (sn))

′

be the processes. Let si be a spatial location observed in some spatial domain Ds ⊆ Rd, a

subset of d-dimensional Euclidean space. The data Z(si) consists of latent space processes

Y (si) and measurement errors τ2, and is given by:

Z(si)|Y (si), τ
2 ∼ F(Y (si), τ

2).

Let x(si) be a p-dimensional vector of covariates with the associated fixed effects β, and η =

(η(s1), ..., η(sn)) be the unobserved spatial random effect to capture the spatial dependence.

Define the generalized linear mixed model with spatial random effect as follows:
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E(Z(si)|Y (si)) = g−1(x(si)β + η(si)), (2.2)

where g(.) is a link function. For example, binary responses can use a probit and logit link

function and count responses use a log link function. Similar to the SLMM, the spatial

random effects η|θθθ are modeled as a Gaussian process with the covariance functions ΣS(θθθ).

SGLMMs can make inference about the regression coefficients and predict at unobserved

locations. However, SGLMMs are not suitable for time dependence or space-time interaction

data. Besides, the models may have spatial confounding between fixed and random effects,

which possible to inflate the variance [35]. Finally, the high-dimensional spatial random

effects can be computational demanding to model [31,36].

Spatio-temporal models can capture both spatial and temporal processes simultane-

ously to account for the spatial and temporal interaction. Spatio-temporal models can be

descriptive [37] or dynamic [38,39].

2.3 Generalized linear mixed model with Spatio-Temporal

random effect:

Let Z ≡ (Z(s1; t1), ..., Z(sn; tm))′ be a set of n×m observations,Y ≡ (Y (s1; t1), ..., Y (sn; tm))′

be the processes. Let si be a spatial location observed in some spatial domain Ds ⊆ Rd, a

subset of d-dimensional Euclidean space, and tj be a temporal location observed in some

temporal domain Dt, the one-dimensional real line. The data Z(si; tj) consists of latent

space-time processes Y (si; tj) and measurement errors τ2, and is given by:

Z(si; tj)|Y (si; tj), τ
2 ∼ F(Y (si; tj), τ

2).
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Let x(si; tj) be a p-dimensional vector of covariates for the fixed effects, and η = (η(s1; t1), ...,

η(sn; tm))′ is the random effect to capture the spatio-temporal dependence. Define the gen-

eralized linear mixed model with spatio-temporal random effect as follows:

E(Z(si; tj)|Y (si; tj)) = g−1(x(si; tj)
′β + η(si; tj)). (2.3)

The random effects η|θθθ are modeled as a Gaussian process with the covariance functions

ΣST (θθθ). The random effects of descriptive spatio-temporal models have several types of

valid spatial–temporal covariance functions [40,41].

There are four classes of spatio-temporal covariance functions ΣST (θθθ) = Cov(Y (si; tj),

Y (si′ ; tj′)). First, separable in space and time covariance functions [42, 43] can make the

computation much easier, but scientists only can use this when no interaction across time

and space. I will talk more about the model in the subsection and apply it to simulated and

real data experiments, for comparing with our model. The third one is sums-and-products

formulation which can easily prove that the covariance function is non-negative-definite

[44]. A special case of it is the separable model. Fourth, a sophisticated spatial and

temporal interaction could be modeled by a valid non-separable covariance function [45].

Last, stochastic partial differential equation approaches can simulate the random spatio-

temporal dynamic processes [46].

The last two covariance functions are flexible and can show spatial and temporal interac-

tion [13]. However, the model would be hard to implement because of the high-dimensional

spatio-temporal random effects [47]. In addition, the covariance functions are difficult to

scientifically interpret, or even unrealistic [48, 49]. Due to these limitations, alternative

spatio-temporal models have been developed such as spatio-temporal basis expansions [13]

and dynamic spatio-temporal models [50].
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2.3.1 Separable spatio-temporal covariance function

The separable spatio-temporal covariance, mentioned in Wikle’s book [39], is a spatio-

temporal model, but it doesn’t have interaction across space and time. The covariance

function can be written as:

Cov(Y (si; tj), Y (si′ ; tj′)) = RS ⊗RT .

RS and RT are the spatial and temporal covariance matrices, respectively. These two

covariance matrices can be interpreted with the Matérn covariance function with ν = 1/2:

RS = σ2
Sexp(−

1

aS
||h||),

RT = σ2
T exp(−

1

aT
|τ |).

Here, ||h|| is the distance between si and si′ , and |τ | is the lag between tj and tj′ . The

parameters aS and aT represent spatial- and temporal-dependence, and the parameters σ2
S

and σ2
T are the variance.

To obtain the likelihood function, the inverse of the covariance matrix should be calcu-

lated. However, the matrix is really large, if we have S locations and T time points, it is

a ST × ST matrix. Fortunately, instead of computing a large inverse covariance matrix,

it is possible to compute R−1
S ⊗ R−1

T , namely the S × S and T × T matrices, respectively.

Therefore, the separable spatio-temporal covariance function is still used.
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2.4 Random Effects with Spatio-Temporal Basis Functions:

Another popular method is the SGLMM that incorporates spatio-temporal basis functions

to model the spatio-temporal random effects:

E(Z(si; tj)|Y (si; tj)) = g−1(x(si; tj)
′β + η(si; tj)) (2.4)

= g−1(x(si; tj)
′β +

K∑
k=1

ϕk(si; tj)αk + ν(si; tj)) (2.5)

where ϕk(si; tj) is a spatio-temporal basis function, αk is a random effect, ν(si; tj) is a

small-scale spatio-temporal random effect not captured by the basis functions. The spatio-

temporal basis functions Φ ≡ [ϕ1, ..., ϕK ] can account for non-separable spatio-temporal

dependence.

Basis representation methods are a computationally efficient, yet flexible approach to

modeling spatio-temporal data. However, these models are primarily descriptive [51], mean-

ing that the data is modeled based on only observations and omit any of the scientific

processes such as diffusion or repulsion.

2.5 Dynamic Spatio-Temporal Models (DSTMs):

Alternatively, dynamic modeling is a conditional probability distribution. The evolution of

spatial processes can be discovered in the real world over time [52]. Instead of considering

the high-dimensional spatio-temporal covariance functions, the dependence of the dynamic

model is incorporated with the evolution of processes from physics, chemistry, biology, and

economics [13]. The processes are specifically interpretable because the model considers the

Markov chain of the first or more order [52]. The model is more like a time series rather

than a spatial process [39]. However, there is a curse of dimensionality in the model [52].

That is, dynamic models will be over-parameterized [52].
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For spatio-temporal observations Zt = (Zt(s1), Zt(s2), ..., Zt(snt))
′:

Zt = Ht(Yt(s),θt, ϵt(s)), t = 1, ..., T (2.6)

where Zt is the data at time t, Yt(s) is the latent spatio-temporal process at time t, and

Ht can be an independent, linear or nonlinear function to provide the relationship between

the data and the latent process, θt are spatially and/or temporally data-model parameters,

and ϵt are the measurement errors.

The process evolution model:

Yt(s) = M(Yt−1(s), θ̃t, ηt(s)), (2.7)

whereM is an linear or nonlinear evolution function, and θ̃t are evolution model parameters,

and ηt is a spatial white-noise process.

The are two assumption of independence in DSTMs:

First, Zt are independent conditional on Yt(s) and θt, so it yields

[{Zt}Tt=1|{Yt(s)}Tt=1, {θt}Tt=1] =
T∏
t=1

[Zt|Yt(s),θt] (2.8)

To illustrate the evolution of spatial process in time, I can decompose the process model

Yt(s) to be multiple conditional distributions,

[Y0(s), Y1(s), ..., YT (s)] = [YT (s)|YT−1(s), YT−2(s), ..., Y0(s)]×

[YT−1(s)|YT−2(s), YT−3(s), ..., Y0(s)]× ...× [Y1(s)|Y0(s)]× [Y0(s)]

The second assumption is Markov property. First-order Markov property means that the

current state (t) which conditional on past states (t-1, t-2,..., 1) only depends on the last

10



time in past (t-1), not all the past state. Hence, I have

[Y0(s), Y1(s), ..., YT (s)|{θ̃t}Tt=1] =

T∏
t=1

[Yt(s)|Yt−1(s), θ̃t])[Y0(s)|θ̃0] (2.9)
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Chapter 3: Bayesian statistics and Markov Chain Monte

Carlo

Bayesian statistics [53,54] appears earlier than Frequentist statistics, but is less popular than

Frequentist statistics. The reason is that there is no method to deal with an integration

problem that has high dimensional parameters in Bayesian statistics. However, the Markov

Chain Monte Carlo (MCMC) algorithm is introduced to finally make the Bayesian statistics

work.

In order to explain why Bayesian statistics are suitable for ecologists, I will give an

overview of Bayesian Statistics. Next, I will talk about the two common algorithms of

MCMC—Metropolis-Hastings and Gibbs sampling.

3.1 Overview of Bayesian Statistics

In Bayesian inference, there are three major components - the likelihood function, prior

distribution, and the posterior distribution. First, a likelihood function and prior distribu-

tion (for the unknown parameters) are specified. Prior distributions may be informed using

domain-area expertise. Second, a posterior distribution is computed using the likelihood

function and prior distribution. Finally, the posterior distribution is either calculated, or in

the majority of cases, approximated using sampling-based methods such as Markov Chain

Monte Carlo [55] or variational methods [56].

The goal of Bayesian statistics is to gain information on the posterior distribution of

the unknown (and sometimes unobserved) model parameters θ given the observed data

Z. The posterior distribution can be obtained using sampling or variational methods such

that we have approximations of the posterior distribution of θ, which is p(θ|Z). Then, the

12



posterior median or mean distribution would be the ‘best guess’ point estimate of our pa-

rameters θ. Furthermore, the posterior predictive distribution p(Z̃|Z) can also be obtained

because p(Z̃|Z) =
∫
p(Z̃|θ)p(θ|Z)dθ. Here, p(Z̃|Z) represents the posterior distribution of

predictions at unobserved locations of covariate values.

Bayesian statistics does not require large dataset [55], but requires prior knowledge

of the unknown parameters through a prior distribution p(θ). In other words, the prior

distribution contains one’s beliefs about the unknown parameters, and these prior can be

subjective or objective. Once we specify a prior distribution p(θ) and data distribution

(also called likelihood function) p(Z|θ), the posterior distribution can be obtained by using

the Bayes’ rule:

p(θ|Z) =
p(Z,θ)

p(Z)
=

p(Z|θ)p(θ)
p(Z)

.

The Bayesian modeling framework provides a flexible approach to fit complex statistical

models, while also integrating expert knowledge of the unknown model parameters. The

Bayesian framework infers the entire distribution of an unknown model parameter, given the

observed data; hence, it also provides uncertainty quantification. The Bayesian framework is

also amenable to hierarchical models that incorporate scientific knowledge, such as physical

or biological concepts; so, the model is closer to the real world.

The parameters θ are unknown and considered random variables in a Bayesian setting.

The posterior distribution of parameters is directly related to a probability statement. To

illustrate, the 95% credible interval means that the parameter has a 95% probability of

being within the interval, given the observed data.

Due to the absence and presence of animal species, ecologists will not have large data

at certain times and in certain places. Moreover, dynamic spatio-temporal models may in-

clude high-dimensional spatio-temporally correlated parameters, and the typical Frequentist

framework via maximum likelihood may not be feasible. Therefore, Bayesian inference is

suitable for ecology analysis [57]. Furthermore, the posterior distribution (also known as the

target distribution) can be approximated, regardless of its shape or distributional family.
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As long as we have prior knowledge and a data model (likelihood), the posterior distribution

can be generated [58].

Prior distributions are only applied in Bayesian inference, not Frequentist inference.

Prior distributions can be informative and non-informative. Informative priors mean that

some previous experiments provide us with specific knowledge about the parameters. In

contrast, non-informative priors indicate knowing nothing about the knowledge, so a uni-

form distribution is usually applied. Research into non-informative prior distributions is an

ongoing and robust research area [59].

3.2 Markov chain Monte Carlo (MCMC) algorithms

Typically, the posterior distribution of the unknown model parameters p(θ|Z) may not be

available in closed form due to the intractable normalizing constant p(Z). Suppose we have

observed data Z and parameters θ of interest, then the posterior distribution is written as,

p(θ|Z) =
p(Z|θ)p(θ)

p(Z)
=

p(Z|θ)p(θ)∫
θ p(Z|θ)p(θ) dθ

,

where p(Z|θ) is the likelihood function of θ, p(θ) is the prior distribution, and p(Z) is

the marginal likelihood function (also called integrated likelihood). When θ are high-

dimensional, the integrated likelihood
∫
θ p(Z|θ)p(θ) dθ is generally intractable and not

available in analytical form. To bypass these issues, sampling or simulation-based ap-

proaches such as MCMC algorithms have been widely used. Here, one can approximate the

posterior distribution via sampling; thereby bypassing issues with the intractable integrated

likelihood.

In MCMC algorithms, samples from the posterior distribution are drawn, but note that

we only need to know the posterior distribution up to the normalizing constant p(Z):

p(θ|Z) ∝ p(Z|θ)p(θ).
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Since p(Z) is merely a normalizing constant, its general purpose is to ensure that the

posterior distribution fully integrates to 1, and it does not affect the overall spread of the

posterior distribution. The MCMC algorithm draws samples from the posterior distribution

p(θ|Z). In general, the integral likelihood will be canceled out in the MCMC algorithms, it

is actually drawing samples from the likelihood times the prior distribution p(Z|θ)p(θ).

3.2.1 Metropolis-Hasting Algorithm

The Metropolis-Hasting Algorithm [60] is one of the commonly used MCMC algorithms.

For Metropolis Hasting, a likelihood function and prior distribution for the parameters of

interest are needed. In addition, a proposal density (also called transition kernel) must

be specified by the user. One example of a transition kernel is the random-walk kernel

where the proposal density q(x∗|x) is a conditional probability of moving from x to x∗ via

a random walk. If the proposal density is symmetric, then q(x∗|x) = q(x|x∗). To illustrate

the algorithm, I give an example of θ = (θ1, θ2, θ3) as following:

(i.) Set a start value for θ
(0)
1 = ϑ1, θ

(0)
2 = ϑ2, θ

(0)
3 = ϑ3.

(ii.) Set a proposal density for each parameter.

For t=1...T iteration,

(iii.) first, get a candidate θ∗1 via its proposal density, which can be normal distribution.

That is, θ∗1 = θ
(t−1)
1 +N(0, σ2

θ1
), where σ2

θ1
is an selected arbitrary value. Then, calculate

α
(
θ
(t−1)
1 , θ∗1

)
= min

(
1,

p(θ∗1|Z)q(θ
(t−1)
1 |θ∗1)

p(θ
(t−1)
1 |Z)q(θ∗1|θ

(t−1)
1 )

)
= min

(
1,

p(θ∗1|Z)

p(θ
(t−1)
1 |Z)

)

= min

(
1,

p(Z|θ∗1)p(θ∗1)/p(Z)

p(Z|θ(t−1)
1 )p(θ

(t−1)
1 )/p(Z)

)
= min

(
1,

p(Z|θ∗1)p(θ∗1)
p(Z|θ(t−1)

1 )p(θ
(t−1)
1 )

)
.

Here, if the likelihood function or prior of θ
(t−1)
1 and θ∗1 includes other parameters θ2 or θ3,

the values of θ
(t−1)
2 or θ

(t−1)
3 should be plug into the function. Accept the candidate θ

(t)
1 =

θ∗1 with the probability α
(
θ
(t−1)
1 , θ∗1

)
; otherwise, reject the candidate with the probability
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1− α
(
θ
(t−1)
1 , θ∗1

)
, which means stay in the same value θ

(t)
1 = θ

(t−1)
1 .

Furthermore, update θ2 and θ3 one-by-one with the same steps as θ1 above. Note that

if the likelihood function or prior of θ
(t−1)
2 and θ∗2 contains parameters θ1 or θ3, the values

of updated θ
(t)
1 or not upgraded θ

(t−1)
3 will be plugged into the function. And so on, apply

updated θ
(t)
1 or θ

(t)
2 to the likelihood function or prior of θ

(t−1)
3 and θ∗3.

The algorithm should run until all Markov chains have arrived to the stationary distribu-

tion, which, in our case, is the posterior distribution p(θ|Z). Convergence diagnostics such

as the Gelman-Rubin diagnostic [61], batch means standard error [62], or visual inspection

of the individual trace plots may help determine convergence to the stationary distribution.

Once we arrive at the stationary distribution (i.e. run as many iterations until conver-

gence) an estimate (mean or median) of the parameters from the posterior distribution can

be obtained.

3.2.2 Gibbs sampling

The Gibbs sampling algorithm is one of the most well-known methods for implementing

Bayesian statistics. Gelman (1992)[61] found that Gibbs sampling is a specialization of the

Metropolis-Hasting concept. For Gibbs sampling, we must have a conditional distribution.

I will illustrate the algorithm with the same example as above (θ = (θ1, θ2, θ3)) as follows:

(i.) Set a start value for θ
(0)
1 = ϑ1, θ

(0)
2 = ϑ2, θ

(0)
3 = ϑ3.

For t=1...T iteration,

(ii.) Sample θ
(t)
1 from p(θ1|θ(t−1)

2 , θ
(t−1)
3 , Z). Furthermore, draw θ

(t)
2 from p(θ2|θ(t)1 , θ

(t−1)
3 , Z).

Last, take sample θ
(t)
3 from p(θ3|θ(t)1 , θ

(t)
2 , Z).

Similar to Metropolis Hasting, we run the Gibbs Sampler until the resulting Markov

Chain converges to the stationary distribution. However, unlike the Metropolis-Hastings

algorithm, the Gibbs sampling has an acceptance probability of 1 because we sample from

the full conditional distribution p(θk|θ−k).
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Chapter 4: Basis Functions

In this thesis, I address a key limitation for dynamic spatio-temporal models (DSTMs)

- high computational costs for model-fitting. As previously discussed, high-dimensional

spatio-temporal processes ut can be difficult for model-fitting due to large matrix opera-

tions, slow mixing, and over-parameterization. Over-parameterization means that there are

usually more parameters than observations. Model-fitting can be computationally expen-

sive because many parameters should be estimated. Furthermore, mixing in the Markov-

chain Monte Carlo (MCMC) algorithm can be slow due to the very large autocorrelation

in the spatio-temporal random effects ut [63]. Slow mixing in MCMC represents that the

Monte Carlo would be slow to converge to the stationary distribution. To overcome the

high-dimensional problem, spatial or spatio-temporal basis expansions can provide a com-

putationally efficient way to summarize the high-dimensional space-time data.

In our application, I perform a linear basis expansion of spatial/spatio-temporal basis

functions ϕi(x), which are weighted by a basis coefficient (weights) w. A linear basis function

model: Y (x) =
∑n

i=1wiϕi(x), where Y (x) is any function that depends on x, wi is a

value of weight and ϕi(x) is a basis function. That is, linear combinations of (a set of)

basis functions can form any kind of function. Note that this model is linear in the basis

coefficients (weights) wi, rather than the non-linear basis functions ϕi(x). In the following

subsections, I provide a general overview of some popular basis functions.

4.1 Polynomial Basis Functions

Polynomial basis functions can be constructed from a single set of covariates x. The covari-

ates are transformed by taking various polynomials of the original covariate x. For example,

we can construct the following polynomial basis functions: {ϕ0(x) = 1, ϕ1(x) = x, ϕ2(x) =
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x2, ϕ3(x) = x3, ...}. Note that we can preserve the original covariate by including ϕ1(x) = x

into our model. The other polynomial basis functions can be specified by the user.

4.2 Wavelets

Wavelets can be applied to signal or image processing [64], and also be used to solve partial

differential equations [65]. Through the dilation and translation of a mother wavelet, we

can obtain basis functions from the mother wavelet [66]. Consider a popular set of discrete

wavelet transformations - the Haar wavelet. The mother wavelet of Haar transform is

written as

Φ(x) =


1 if 0 < x < 1/2

−1 if 1/2 < x < 1

0 otherwise

,

and its basis functions are {ϕ0(x) = 1, ϕ1(x) = Φ(x), ϕ2(x) =
√
2Φ(2x), ϕ3(x) =

√
2Φ(2x−

1), ϕ4(x) = 2Φ(4x), ϕ5(x) = 2Φ(4x − 1), ϕ6(x) = 2Φ(4x − 2), ϕ7(x) = 2Φ(4x − 3), ...}.

The Haar wavelet family generates rectangular ‘boxes’ as the basis functions. There are

other kinds of wavelet, such as Meyer wavelet and Daubechies wavelet [67]. Both Meyer

wavelets and Daubechies wavelets are orthogonal [68]. Meyer wavelets are symmetric, while

Daubechies wavelets can be asymmetric [69].

4.3 Radial Basis Functions

Similar to wavelets, radial basis functions are another example of localized spatial basis

functions. A radial basis function approximation can be written as f(x) =
∑

k wkΦ(||x −

xk||), where Φ is radial basis function R+ → R, xk ∈ Rn is the grid point, and ||.|| is the

Euclidean distance [70]. Assume that the tuning a shape parameter c; there are some kinds
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of radial basis function, including Gaussian Φ(r) = e−(cr)2 , multiquadric Φ(r) =
√
1 + (cr)2,

inverse quadratic Φ(r) = 1
1+(cr)2

, thin plate spline Φ(r) = r2ln(r), and so on.

4.4 Fourier Basis Functions

Fourier 1807 [71] proposed that a function can be expressed by a linear combination of an

infinite number of sinusoids. Fourier basis functions are global basis functions, so each basis

function covers the entire range of the domain [39].

All Fourier basis functions are sine and cosine,

ϕj(x) =


1 if j=0

cos(πxj) if j is odd

sin(πxj) if j is even

.

The Fourier basis is the most suitable basis for periodic functions, such as various peri-

odic and seasonal patterns [72]. But it is especially hard for fitting non-stationary functions,

such as functions with strong local features [73]. Furthermore, we cannot implement an in-

finite number of the term of basis functions in practice, so we should balance the accuracy

and the time-consuming [73].

Figure 4.1: Different types of Basis Functions.
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4.5 Eigenvector basis functions

There is an eigenvector basis function, which can solve the spatial autocorrelation problem.

For the spatial dependence data W , we can construct a Matérn covariance matrix Σ(θ, d).

The covariance matrix Σ(θ, d) is a positive definite covariance matrix and d is the distance.

The way to do this is to transform the spatial dependence variable into independent variables

via adding eigenvector basis functions in the regression, so we can write as Σ(θ, d) =

UAU ′, where U are eigenvectors and A is a diagonal matrix with eigenvalues element.

It is appropriate to select only the first m eigenvectors, because the first eigenvector with

correspondingly large eigenvalues can explain broad variation [74]. Hence, it can be written

as W ≈ UmAm
1/2γ, where γ ∼ N(0, I). UmAm

1/2 is the eigenvector basis functions [31].

Eigenvector basis functions (or eigenvector spatial filters) are orthogonal [75] and can be

shown in maps to see different patterns. The transformation can help to reduce spatial

autocorrelation and speed up the models.

Figure 4.2: The eigenvector basis functions are extracted by the covariance matrix of the
real-world ECD data.

20



Chapter 5: Dynamic Spatio-temporal Models for Animal

Movement

In this thesis, I will be extending the model from Hooten and Wikle (2008) [28] to the high-

dimensional spatio-temporal setting. The main objective in [28] was to infer the spread

of invasive Eurasian collard doves (ECD). This study employed a hierarchical space-time

Bayesian model that incorporates the components of a reaction-diffusion PDE. In my thesis,

I will expand upon this model by summarizing the high-dimensional spatio-temporal random

effects through a basis expansion. Then, the basis approximations will be incorporated into

reaction-diffusion PDE of the hierarchical space-time Bayesian model.

In the following section, I will first introduce the model from [28]. Then, I will propose

our computationally-efficient basis-expansion approach.

5.1 Hierarchical Dynamic Spatio-Temporal Bayesian model:

The hierarchical dynamic spatio-temporal model from [28] consists of a: (1) data model; (2)

process model for the latent space-time processes; (3) process model for the diffusion rate;

and (4) prior distributions (models) for the unknown model parameters. The hierarchy

represents a top-down structure of conditional distributions where values from the lower

stages feed into the models in the upper stages. The hierarchical dynamic spatio-temporal

model is outlined as so:

1. Data Model:

• Zsi,t|λsi,t ∼ Poisson(λsi,t), where Zsi,t is the count of ECD within different space

(i=1,...,N) and time (t=1,...,T), and λsi,t is the intensity process.
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• log(λt) = Ktut + ϵt, where Kt is an incidence matrix based on grid connectivity

and ut = (us1,t, ..., usN ,t)
′ is a latent spatio-temporal process at all location at time

t, and ϵt is a measurement error.

2. Process Model for the latent spatio-temporal process:

• A reaction-diffusion PDE models the latent spatio-temporal process usi,t.

∂usi,t
∂t

=
∂

∂x

(
δ(si)

∂usi,t
∂x

)
+

∂

∂y

(
δ(si)

∂usi,t
∂y

)
+ γ0usi,t

(
1− usi,t

γ1

)
, (5.1)

where si ∈ R2, x and y are the longtitude and latitude of location si, γ0 is the

ECD population growth rate, γ1 is the carrying capacity of ECD, and δ(si) is the

spatially varying diffusion rate (see process model #3).

• The PDE can be solved by discretization,

ut(x, y) = ut−∆t(x, y)

[
1− 2δ(x, y)

(∆t

∆2
x

+
∆t

∆2
y

)]

+ ut−∆t(x−∆x, y)

[
∆t

∆2
x

{
δ(x, y)−

(
δ(x+∆x, y)− δ(x−∆x, y)

)
/4
}]

+ ut−∆t(x+∆x, y)

[
∆t

∆2
x

{
δ(x, y) +

(
δ(x+∆x, y)− δ(x−∆x, y)

)
/4
}]

+ ut−∆t(x, y +∆y)

[
∆t

∆2
y

{
δ(x, y) +

(
δ(x, y +∆y)− δ(x, y −∆y)

)
/4
}]

+ ut−∆t(x, y −∆y)

[
∆t

∆2
y

{
δ(x, y)−

(
δ(x, y +∆y)− δ(x, y −∆y)

)
/4
}]

+ ut−∆t(x, y)γ0 − u2t−∆t
(x, y)

[
γ0
γ1

]
.

With assuming ∆t = 1, the form of ut can be written as:

ut = H(δ)ut−1 + α0ut−1 − α1u
2
t−1 + ηt, (5.2)

22



where α0 = γ0 and α1 = γ0/γ1 are the ECD growth parameters, H is a propagator

matrix, and ηt is the i.i.d error.

• Incorporating (2.10) equation into an MCMC algorithm can be difficult due to the

long-range time-dependence (across time points). Instead, a second-order Markov

condition can be used to improve computational efficiency.

ut = H(δ)ut−1 + α0ut−1 − α1diag(ut−1)ut−2 + ηt, (5.3)

where the full conditional distribution of ut can be derived.

3. Process Model for the diffusion rate:

• The diffusion rate, which depends on space, can be shown as below.

δ = Xβ + ξ, (5.4)

where ξ|σ2
δ , θ ∼ N(0, σ2

δR(θ)), and X includes the intercept and human population

density with the associated β.

• The spatial correlation matrix R depends on the distance (||d|| : the Euclidian

distance between two points) and the spatial range parameter (θ).

R(θ, d) = exp(−θ||d||), (5.5)

which is a Matérn covariance function with σ2 = 1, ν = 1/2 and ρ = 1/θ.

4. Parameter model:

• Priors for bivariate parameters α, β.

log(α) ∼ N
((

0.001
0.001

)
,
(
10 2
2 10

))
and β ∼ N

((
0
0

)
,
(
10 0
0 10

))
.
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• Priors for univariate parameters σ2
ϵ , σ

2
η, σ

2
δ , θ.

σ2
ϵ ∼ IG(2.3, 0.4), σ2

η ∼ IG(2, 2), σ2
δ ∼ IG(2, 1000) and θ ∼ Unif(0, 10).

• At initial time, prior for spatio-temporal process u0.

u0 ∼ N(0, 10I), and u−1 = −10× I.

5. Other parameters:

• In data model, ϵt|σ2
ϵ ∼ N(0, σ2

ϵ I), t = 1, ..., T .

• In process ut model, ηt|σ2
η ∼ N(0, σ2

ηI).

• In process δ model, ξ|σ2
δ , θ ∼ N(0, σ2

δR(θ)).

One limitation of this hierarchical DSTM [28] is that it doesn’t provide exact inference.

This approach artificially imposes a second-order Markov structure in the spatio-temporal

random effects, such that temporal dependencies exist for two adjacent timepoints only.

Hooten and Wikle (2008) [28] impose the second-order Markov structure because the high-

dimensional random effects are hard to update in Metropolis-Hastings algorithm, a Markov

chain Monte Carlo (MCMC) method. Another limitation focuses on the negative diffusion

rate around New York City. The authors proposed that the human population density in

the area around New York is an outlier, so this flexible linear model makes the associated

diffusion rate negative. Next, the posterior means of the Poisson intensity processes of

ECD in some places will decrease at a certain starting time because there may be some

Allee effects [76]. The Allee effect occurs when the population growth rate reduces with low

population densities [77]. Finally, this model is capable of forecasting into the future, but

there exist so much uncertainty in the forecasts.

In my thesis, I will focus on the computational aspects of the dynamic hierarchical

spatio-temporal model. Given the large number of locations and time points, the original

24



model may not scale to even moderate number of sites and times. The other methodological

issues remain an open problem in the literature, and these may be an exciting avenue for

future research.

5.2 Our Proposed Method

To make the computation efficient, I apply a basis expansion method to reduce estimated

parameters and deal with spatial autocorrelation. Below, I provide a concise overview of

how the proposed approach differs from [28]. In Section 6, I provide additional details on

the proposed hierarchical model such as the hierarchical structure, data and process models,

prior distributions, and formulation of the diffusion rate.

5.2.1 Dimension-Reduction via Basis Representation

The spatial random effect is the product of the basis function and the re-parameterized

spatial random effect [51]. In the dynamic spatio-temporal model, the spatio-temporal

random effects are modeled as:

ut = H(δ)ut−1 + α0ut−1 − α1u
2
t−1 + ηt.

It may be computationally expensive, when the dimensions of ut are moderately large. I

propose approximating ut using a basis expansion ũt = Φγt, where the dimensions of γt

are much smaller than those of ut.

I reconstruct the process model (reaction-diffusion PDE) using temporally correlated

basis coefficients γt,

ũt = Φγt = H(δ)Φγt−1 + α0Φγt−1 − α1(Φγt−1)
2 + ηt.

Here, the basis coefficients γt can be modeled using a vector auto-regressive (VAR) process

or another temporally-correlated multivariate process. Due to dim(γt) << dim(ut), I only
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need to estimate fewer parameters than Hooten’s paper. Φ is the matrix of eigenvector

basis functions. Each column ϕi represents the multiplication of eigenvector ei with the

square root of its corresponding eigenvalue λi.

5.2.2 Spatial and Spatio-temporal Correlation

As previously mentioned, adding basis functions is a way to deal with the spatial autocor-

relation problem. Here, δ exists spatial dependent,

δ = Xβ + ξ, where ξ ∼ N(0, σ2
δR(θ)).

When running an MCMC algorithm, the covariance matrix is expensive to compute and

parameters are hard to converge. I rebuild the process model with basis expansion,

δ = Xβ +Φγδ, where γδ ∼ N(0, σ̃2
δI).

Elements of γδ are the value of weights and their variances are i.i.d σ̃2
δ . Here, Φ is the same

eigenvector basis function matrix as constructing ũt = Φγt. I create Φ by selecting the

first m eigenvectors of the covariance matrix from a distance matrix.
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Chapter 6: Simulation Study

6.1 Design

I set up a regularly squared spatial domain with N = 225 (= 152) grid points for 1 time

point; that is, there are s1, ..., s225 for every timing. The spatial domain is restricted to the

unit square D = [0, 1]2, so each si is two-dimensional coordinate in D. In our simulated

data, I set T = 10 time points to demonstrate the temporal dynamics. The diffusion matrix

H is based on the formulation from [78]. For the featured model parameters, I chose the

median estimated parameters of the posterior distribution from Wikle and Hooten (2008),

and then used the median estimates to generate the simulated dataset at N = 225 locations

and T = 10 time points.

I generate the initial spatial random effect u0 ∼ N(0,Σ0), where the covariance matrix

Σ0 = 2 ∗ exp(−||d||/0.2), with the distance matrix ||d||. Then, I have time-varying spatial

random effects ut ∼ N(H(δ)ut−1 + α0ut−1 − α1u
2
t−1, σ2

ηI), where t = 1, ..., 10, with α0 =

0.005, α1 = 0.001, and σ2
η = 1.1. Here, δ comes from N

(
Xβ, 0.0005 ∗ exp(−||d||/20)

)
,

with β = (β0, β1)
′ = (0.1,−0.0002)′. The first column of X is intercept, and the second

column is the longitude coordinate of space si. Because there are N=225 space grid points,

each time-varying spatial random effect ut is composed by (us1,t, us2,t, ..., us225,t)
′. Finally,

generate each count nsi,t ∼ Poisson(exp(usi,t)) in space si and time t.

6.2 Implementation

I generate the posterior samples via the Metropolis-Hastings algorithm (MCMC). To gen-

erate the estimates, I employ two different methods: (1) my proposed method; and (2) a

separable spatio-temporal model from Section 2.3.1.
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6.2.1 Proposed Method

The first approach is our proposed method—spatial random effects ũt with basis expansions

as following:

Data Model:

Zsi,t|λsi,t ∼ Pois(λsi,t), where log(λsi,t) = ũsi,t

Process Model:

• Latent Spatio-temporal process:

ũt = Φγt = H(δ)(Φγt−1) + α0(Φγt−1)− α1(Φγt−1)
2 + η

η|σ2
η ∼ N(0, σ2

ηI)

γt ∼ N(0, σ2
γI), where σ2

γ is fixed

• Diffusion rate:

δ = Xβ +Φγδ

γδ ∼ N(0, σ̃2
δI)

Parameter Model:

ũ0 = Φγ0 ∼ N(0, 10I)

σ̃2
δ , σ2

η ∼ IG(2, 2)

β =
(

β0

β1

)
∼ N

((
0
0

)
,
(
10 0
0 10

))

log(α) =
(

log(α0)
log(α1)

)
∼ N

((
0.001
0.001

)
,
(
10 2
2 10

))
Here, ut = (us1,t, us2,t, ..., us225,t)

′, and γt = (γ1,t, γ2,t, ..., γ50,t)
′. To construct the eigenvec-

tor basis functions Φ, I extract eigenvectors from the covariance matrix Σ0, and choose the
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first 50 eigenvector basis functions for our model. Hence, Φ is an N × 50 eigenbasis matrix

and each column is an eigenvector times the squared roots of its corresponding eigenvalue.

6.2.2 Separable Spatio-temporal Generalized Linear Mixed Model (Sep-

arable SGLMM)

The second approach models the simulated data using the separable spatio-temporal gener-

alized linear mixed model (separable SGLMM) from Section 2.3.1. The hierarchical spatio-

temporal modeling framework is as follows:

Data Model:

Zsi,t|λsi,t ∼ Pois(λsi,t),where log(λsi,t) = ṽsi,t

Process Model:

• Latent Spatio-temporal process ṽt = (vs1,t, vs2,t, ..., vs225,t)
′:

ṽt = Xβ +wt

W = (vec(w1,w2, ...,wT ))
′ ∼ N(0, RS ⊗RT ),

where RS = σ2
S exp(− 1

aS
||h||), RT = σ2

T exp(− 1

aT
|τ |),

Parameter Model:

β ∼ N
((

0
0

)
,
(
10 0
0 10

))
,

σ2
S , σ

2
T ∼ IG(2, 2), aS ∼ Unif(0,

√
2), aT ∼ Unif(0, 10).

Here, ⊗ is the kronecker product, so RS ⊗RT is a N × t matrix. ||h|| is the spatial distance

matrix and ||τ || is the time distance matrix.
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6.3 Results

I use the Metropolis-Hasting method to fit our proposed model and separable model to

the simulated data. After running MCMC, the posterior distributions of the parameters

are obtained. Figure 6.2 shows the parametric trace plots (left), trace plots after burn-in

(middle) and posterior distribution plots (right) of the MCMC results. For spatial random

effects, maps allow us to visualize the mean estimated parameters of the posterior distribu-

tion over time. That is, for i=1,...,225 and t=0,...,10, I take the average of each estimated

spatial random effect γsi,t and perform matrix multiplication Φγt to be the estimated ũt.

Also, taking the mean of parameters β and wt yields the estimated ṽt. Figure 6.1 is a map

showing the generated data ut and estimated ũt. I list the number of iterations to perform

MCMC, mean and 95% credible interval of parameter, model-fitting walltimes, as well as

mean squared error.
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Figure 6.1: A series of maps of generated data ut versus estimated ũt = Φγt from our
model from time 0 (the initial condition) to 10.
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For maps, low values are blue, and high are red. The generated data ut is spatially and

temporally correlated, and it is easy to visualize the pattern on a series of maps in Figure

6.1 (first and third rows). Most nearby grid points will have similar colors on a map, which

is spatial-dependent. Looking at a grid point of the map for a time point, it will be similar

in color to the previous time point and the next time point, which is temporal dependent.

In Figure 6.1, the estimated ũt from our model also shows a similar major pattern to the

generated data ut. The upper right has higher values (red), and over time, more grid points

in the upper right and middle right become red on the estimated and generated maps.

Figure 6.2: Trace plots and posterior distribution of parameters σ2
δ , β0, β1, σ

2
η, log(α0),

log(α1) of simulated data.
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Table 6.1: Parameter estimation of simulated data by our model.

Parameter Mean (95% CI)

σ2
δ 0.084 (0.055, 0.118)

β0 0.083 (-0.182, 0.313)

β1 0.029 (-0.367,0.308)

σ2
η 0.243 (0.222,0.266)

log(α0) -2.023 (-2.423, -1.666)

log(α1) -3.471 (-4.078, -2.986)

Each parameter estimation from our model is shown in Figure 6.2 and Table 6.1. The plot

from the posterior distribution gives us the mean (blue line) of the parameters in Figure

6.2 (right column). The mean of β0 and β1 are close to the true value (red line). Yet, both

of them are not significant. The mean of log(α0) and log(α1) are larger than the generated

values (red line). I believe that there is spatial confounding between latitude variables and

spatial random effects; therefore, the 95% credible interval does not include the true value.

Spatial confounding will cause the variance inflation of the regression coefficients [36]. As

we can see the estimated σ2
η is smaller than the generated value. It is because the γt tends

to be closer to the mean and each other than observed ut.

Figure 6.3: The estimated diffusion coefficient δ of simulated data using our model.
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The diffusion coefficient through the map of δ in Figure 6.3. The spatial dependence can

be seen in the diffusion map. Most diffusion coefficients are positive values, with only eight

grid points (blue) being negative. Larger positive diffusion coefficients (red) indicate faster

diffusion, while smaller positive values (green or cyan) indicate slower diffusion. Negative

diffusion coefficients will be explained in the real data experiment.

Each sampler is run for 100,000 iterations with a burn-in of 50,000 iterations. Our model

takes about 1959 seconds (32 minutes) to fit the simulated data.

6.4 Comparison
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Figure 6.4: A series of maps of generated data ut versus estimated ṽt = Xβ + wt from
separable model from time 1 to 10.
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The separable model is applied to simulated data for comparison with our proposed model.

The estimated pattern of ṽt closely resembles the generated data ut on the maps in Figure

6.4. Unlike ũt in Figure 6.1, the ṽt is only from t = 1, ..., 10. Since the separable model is

not a dynamic model, there is no ṽ0. Figure 6.5 and Table 6.2 are the results of MCMC of

each parameter estimation from the separable model.

Figure 6.5: Trace plots and posterior distribution of parameters σ2
S , aS , σ

2
T , aT , β0, β1 of

simulated data.

Table 6.2: Parameter estimation of simulated data by separable model.

Parameter Mean (95% CI)

σ2
S 1.394 (0.313, 2.578)

aS 0.083 (-0.182, 0.313)

σ2
T 0.007 (0.00002, 0.014)

aT 1.098 (0.979, 1.227)

β0 -0.295 (-0.393, -0.181)

β1 2.284 (2.186, 2.385)
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Table 6.3: Results of simulated data by our model.

Time 1 Time 2 Time 3 Time 4 Time 5 Time 6 Time 7 Time 8 Time 9 Time 10

SD of λt 0.6900 0.6417 0.5730 0.5452 0.6041 0.5745 0.5923 0.6724 0.9567 1.1057

RMSE of ũt 1.249 1.423 1.470 1.545 1.645 1.762 1.866 1.897 1.942 1.995

RMSE of λt 15.573 17.452 25.824 43.907 33.547 30.135 38.297 30.364 29.234 54.556

Table 6.4: Results of simulated data by separable model.

Time 1 Time 2 Time 3 Time 4 Time 5 Time 6 Time 7 Time 8 Time 9 Time 10

SD of λt 0.8347 0.9092 0.7559 0.8185 0.8571 0.7941 0.9548 0.9242 0.9406 1.0000

RMSE of ṽt 1.286 1.287 1.210 1.242 1.124 1.167 1.194 1.275 1.225 1.165

RMSE of λt 12.253 17.818 25.369 41.115 26.709 14.109 14.339 13.930 10.196 16.409

For both our proposed model and separable model, I run MCMC for 100,000 iterations

and get the posterior distribution after 50,000 burn-ins. Again, I only spend about 1959

seconds (32 minutes) fitting our model to the simulated data. The separable model takes

16708 seconds (4 hrs 40 minutes). Our model is more computationally efficient than the

separable model.

I calculate the standard deviation and RMSE for each year to evaluate model fitting in

Figures 6.3 and 6.4. The RMSE from separable model is lower (better) than our model.

Since there are no basis functions in the separable model, the separable model is not over-

smoothed and has high accuracy. But the drawback is that it takes 8.5 times longer than

our model to fit the data.
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Chapter 7: Real World Example

7.1 Eurasian collared dove Prevalence from 2001-2010

The Eurasian collared dove is an invasive species in the United States with some negative

effects on other birds and humans. They drive native North American doves away from food,

make obvious noise, and even their excrement will cause indeterminate diseases in human

beings [79]. The real-world Eurasian collared dove data and the latitude and longitude

coordinates of the routes the doves were spotted on were obtained from the North American

Breeding Bird Survey (BBS) website [80]. BBS website collects large numbers of bird data

each year during bird breeding months in United State and Canada from 1966 to 2019. A

bird expert will count the birds he/she hears or sees on a randomly chosen route. Each

route has 50 stops and a bird expert will spend 3 minutes counting doves at each stop. The

total count for all 50 stops for each route will be of interest.

Over time, Eurasian collared doves are increasingly found in the US field. The data only

records dove counts when the route has doves, so there are no zero or negative values

on the route in the dove dataset. I only focus on the United States (except Hawaii and

Alaska), so the latitude and longitude coordinates of the doves’ routes are in the range

[−124.25◦W,−75.27◦W] and [24.60◦N, 48.85◦N], respectively. The observed route ktj is

time-variant based on the observed dove data. I fit the models on dove data from 2001 to

2010.

7.2 Models

Models that fit real-world Eurasian collared doves are very similar to models that fit simu-

lated data, with few differences. Data model has some changing as following:
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Data Model:

nsi,t|λsi,t ∼ ZTP (λsi,t), where log(λt) = K̃tũt.

We use zero-truncated Poisson (ZTP) distribution because dove data only contains positive

integers. As we know the probability mass function (pmf) of Poisson distribution is p(x;λ) =

Pr(X = x) = λxe−λ

x! , where, λ > 0 and x = 0, 1, 2, .... The pmf of ZTP distribution can be

written as:

p̃(x;λ) = Pr(X = x|X > 0) =
p(x;λ)

1− p(0;λ)
=

λxe−λ/x!

1− e−λ
=

λx

(eλ − 1)x!
.

The mean of ZTP distribution is E(X) = λ
1−e−λ and the variance is V ar(X) = λ+λ2

1−e−λ −

λ2

(1−e−λ)2
= E(X)(1 + λ− E(X)).

K̃t is an Mt × 225 inverse-distance weighting matrix for time t. Mt is the total number of

the routes over time t. Inverse-distance weighting is a kind of interpolation method. The

weights are computed by the distance between grid points si and the observed route ktj at

time t. I set the weighting matrix (K̃t)ij =
w(si,k

t
j)∑225

i=1 w(si,ktj)
, where w(si, k

t
j) = 1/d(si, k

t
j)

2. I

apply the time-invariant square space domain with the same 152 grid points si. But the

domain is on the US map ([−124.25◦W,−75.27◦W] and [24.60◦N, 48.85◦N]).

Another difference from the simulated experiment is the eigenvector basis functions Φ. I

extract the first m=50 eigenvectors from the covariance matrix Σ = exp(−3 ∗ ||d||
||d||max∗0.6),

where ||d|| is the distance matrix between the longitude-latitude coordinates of each two

routes on the US map.
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7.3 Results

Figure 7.1: A series of maps of log(λt) and λt, estimated by our model, versus the observed
dove counts from 2001 to 2010.

Similar to the simulated example, I fit our proposed model to the real-world data via

Metropolis-Hasting technique. Figure 7.2 provides trace plots of our MCMC samples for

all 500,000 iterations (left) of the algorithm. Next, I removed the first 100,000 samples for

burnin and provide the trace plots (middle) and the density of the posterior distribution

(right) of parameter. I also estimate the mean of γt and obtain a series of maps from 2001

to 2010 in Figure 7.1.

In Figure 7.1, the first and fourth rows are the results of estimated log(λt) = K̃tũt =

K̃tΦγt, which shows spatial random effects with weights on each observed route. The

second and fifth rows are the results of estimated λt = exp(K̃tũt) = exp(K̃tΦγt), and the

third and last rows are the observed bird data. There are more places where doves can

be observed in the US, but a series of maps of estimated λt and the observed dove do not
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vary by much. Note that most places are dark blue, which indicates that there are very few

counts in those regions. However, the log intensity maps of log(λt) are able to display the

spatial patterns well.

For the maps of log(λt), spatial random effects become smaller from south to north. It

is reasonable because the doves were spread from the southern United States. Over time,

the routes with red, orange and yellow became more numerous on the map, as the doves

spread out and increased. On the estimated λt map, there are some lighter blues around

the US South (every year) and the US Midwest (2009 and 2010), which means the areas

have higher estimated counts. When looking closely at the map, we can also see that the

bird data has sporadic different colors in these regions (e.g. red, yellow, green, etc., which

means a large number of doves).

Figure 7.2: Trace plots and posterior distribution of parameters σ2
δ , β0, β1, σ

2
η, log(α0),

log(α1) of ECD data.
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Table 7.1: Parameter estimation of real data by our model.

Parameter Mean (95% CI)

σ2
δ 0.025 (0.015, 0.035)

β0 0.027 (-0.195, 0.271)

β1 -0.001 (-0.003, 0.002)

σ2
η 0.0006 (0.0006, 0.0007)

log(α0) -2.305 (-2.438, -2.177)

log(α1) -3.301 (-3.440, -3.189)

In Figure 7.2 and Table 7.1, both β0 and β1 are insignificant, while log(α0) and log(α1) are

significant. The estimated growth rate coefficient α0 can be expressed as exp(−2.305) =

0.0998. Since α1 = α0
carrying capacity , and we have α1 is exp(−3.301) = 0.0368 and α0 is

exp(−2.305) = 0.0998, so we have the carrying capacity is about 2.7.

Figure 7.3: The estimated diffusion coefficient δ of ECD data using our model.

A map of δ shows the diffusion coefficient for each location in Figure 7.3. Most diffusion

coefficients are negative or close to zero. In fact, diffusion coefficient should be positive.

Initial conditions lead to the emergence of negative diffusion coefficients. A negative diffu-

sion coefficient (blue) exists in the Midwest. The place didn’t have any observed counts in

2001, but over time there were more doves, so that is the reason why there is no positive
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diffusion coefficient in this area.

I expect a positive diffusion coefficient in the southern United States, where the birds stayed

in 2001, but here the diffusion coefficient is about zero. Because I didn’t set the grid points

on the sea surface as boundaries, the diffusion couldn’t go into the sea, so it offsets the

diffusion coefficient. In future work, I will eliminate this problem by taking grid points on

the sea surface as boundaries.

7.4 Comparison

Figure 7.4: A series of maps of log(λt) and λt, estimated by separable model, versus the
observed dove counts from 2001 to 2010.

As I did in the simulation experiment, I also fit the separable model to real data for com-

parison with our proposed model. As mentioned above, when building our proposed model

on real data, only the data model differs from the simulation, and so does the separable

model. The changing part of the model is as following:
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Data Model:

Zsi,t|λsi,t ∼ ZTP (λsi,t), where log(λt) = K̃tṽt.

In Figure 7.4, the first and fourth rows are the results of log(λt) = K̃tṽt, which shows

spatial random effects with weights on each observed route. The second and fifth rows

are the results of λt = exp(K̃tṽt), and the third and last rows are the observed dove. As

mentioned above, it’s hard to see a pattern of a series of λt and the observed dove over

time (blue dots in most places). The pattern of K̃tṽt is different from K̃tũt, because in

the separable model, the ṽt only depends on the intercept and latitude covariate.

Figure 7.5: Trace plots and posterior distribution of parameters σ2
S , aS , σ

2
T , aT , β0, β1 of

ECD data.
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Table 7.2: Parameter estimation of real data by separable model.

Parameter Mean (95% CI)

σ2
S 0.002 (0.002, 0.003)

aS 54.374 (53.796, 54.657)

σ2
T 0.002 (0.002, 0.003)

aT 9.886 (9.656, 10.000)

β0 2.829 (2.694, 2.963)

β1 0.011 (0.009, 0.012)

The parameters in the separable model are shown in Figure 7.5 and Table 7.2. The param-

eters aS and aT are significant; the spatial dependence coefficient aS is 54.374, indicating

that the spatial process is highly dependent, and the time dependence coefficient aT is 9.886,

representing that the temporal process is also highly dependent.

Table 7.3: Results of real data by our model.

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

SD of λt 0.3677 0.2949 0.2994 0.2935 0.2683 0.2859 0.2760 0.2858 0.2933 0.3156

RMSE of log(λt) 1.101 1.137 1.143 1.116 1.048 1.100 1.052 1.022 1.086 1.050

RMSE of λt 13.066 14.582 9.533 10.633 8.271 7.350 7.057 8.511 7.383 7.558

Table 7.4: Results of real data by separable model.

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

SD of λt 0.0012 0.0012 0.0011 0.0012 0.0011 0.0012 0.0011 0.0012 0.0012 0.0012

RMSE of log(λt) 1.208 1.259 1.244 1.189 1.164 1.175 1.134 1.113 1.131 1.103

RMSE of λt 14.089 15.446 10.074 11.104 8.676 7.674 7.505 9.090 7.834 8.045

43



I run my proposed model for 500,000 iterations (burn-in 100,000). It only takes about 7191

seconds (2 hours). On the other hand, the separable model is more expensive to compute, so

I only run 300,000 iterations (burn-in 100,000). It takes for about 42614 seconds (11 hours

50 minutes), which is six times slower than our proposed model. The standard deviation

and RMSE are calculated in Tables 7.3 and 7.4. The total RMSE of separable model is

9.14, while our model is 8.62. Since the separable model is not dynamic like our model, it

may ignore the important underlying dynamic processes.
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Chapter 8: Discussion

In this thesis, I propose a computationally efficient method to model dynamic non-Gaussian

spatio-temporal datasets with an application to a Eurasian collared dove prevalence study.

In this chapter, I summarize the proposed method and provide a brief overview of the

simulation study and real-world application. In addition, I include a discussion of some

caveats for this study and directions for future research.

8.1 Summary of Conclusions

Dynamic spatio-temporal models (DSTMs) can be used to model complex spatio-temporal

datasets by incorporating scientific knowledge of physical processes. DSTMs can capture

the evolution of spatial processes across space and time; however, it is difficult to extend

these models to high-dimensional (large) datasets. In this thesis, I propose a scalable

DSTM model that exploits the spatial basis expansions and temporal correlation in the

corresponding basis coefficients.

I demonstrate the method on a simulated example as well as a real-world dataset. In

the simulated example, the competing method performs slightly better than my proposed

method in terms of the RMSE. However, the proposed method is computationally efficient;

the computational walltimes reduce by a factor of 8.5 compared to the competing approach

(separable model). In the real world example, the proposed method outperforms the com-

peting method in both goodness-of-fit and computational efficiency. Here, the descriptive

spatio-temporal model may not capture the underlying dynamic processes of the real-world

dataset.
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8.2 Caveats and Directions for Future Research

This thesis proposes a novel approach to model dynamic count-valued spatio-temporal ob-

servations using a functional representation of the underlying spatio-temporal processes.

However, it is subject to key limitations, which can be addressed in subsequent studies.

First, our dynamic spatio-temporal is subject to spatial confounding [35, 36, 81], particu-

larly in the diffusion rate δ. In this study, I set δ = Xβββ +Φγδ where the design matrix X

includes the corresponding longitude (x-direction) coordinates. Since X includes the same

spatial information as those contained in Φγδ, there may be identifiability issues borne out

of confounding between the fixed effects βββ and random effects Φγδ. For a future study, I

plan on addressing the confounding issue by extending the restricted spatial models from

existing studies [35, 36, 81] to the scalable dynamic spatio-temporal modeling framework.

In my thesis, I had only considered an intercept term and observation locations as covari-

ates. Future studies may also include environmental variables (e.g. vegetation, elevation,

humidity, or others) to improve accuracy for the real world example.

The choice of spatial basis functions remains an open question in this study. While I used

a subset of the leading 50 eigenvectors of a Matérn correlation function, using fewer basis

functions may potentially lead to over-smoothing of the underlying spatial surfaces. In

future studies, I aim to examine variable selection approaches to choose the appropriate

number of spatial basis functions. Moreover, this will lead to a closer examination of the

tradeoff between prediction accuracy and computational costs. Finally, from an application

point-of-view, we aim to modify our approach to model both Gaussian and non-Gaussian

spatio-temporal observations in the climate sciences. These include remotely-sensed ob-

servations of cloud mask [82], water vapor [83], and ocean temperatures via ARGO floats

[84].
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