INDUCTIVE LEARNING SYSTEM
AQl5c:
The Method and User's Guide

Janusz Wnek, Kenneth Kaufman
Eric Bloedorn, Ryszard S. Michalski

MLI 95-4

March 1995

Date primted: 12020003

INDUCTIVE LEARNING SYSTEM AQ15c¢:
The Method and User's Guide

Janusz Wnek

Ken Kaufman

Eric Bloedorn
Ryszard S. Michalski

Machine Learning and Inference Laboratory
George Mason University
Fairfax, VA 22030

October 1995

[}

INDUCTIVE LEARNING SYSTEM AQ15c:
The Method and User's Guide

Abstract

AQI5c is a system for acquiring decision or classification rules from examples and
counterexamples and/or from previously learned decision rules. When learning rules, AQ15c uses
1) background knowledge in the form of rules (input hypotheses), 2) the definition of descriptors
and their types and 3) a rule preference criterion that evaluates competing candidate hypotheses.
Each training example characterizes an object, and its class-label specifies the correct decision
associated with that object. The generated decision rules are expressed as symbolic descriptions
involving relations between objects’ attribute values. Rule generation is guided by a user-defined
rule-preference criterion. The user-defined criterion ranks the importance and tolerance of a
number of measures of rule quality including rule complexity, cost and coverage. AQIl5c is a C
language re-implementation of AQ15 (Hong, Mozetic, Michal=¥i, 192) written in Pascal. This
version can handle larger datasets, is more robust and portable. Versions of AQ15¢ have so far
been compiled for the Sun Solaris (1.1), IBM-compatible (DOS 6.0), and Apple (MacOS 7.5)
p%atfcm;s. In addition the testing facilities have been expanded to include three different measures
of match.

Key words: Concept learning, Inductive inference, Learning from examples, Constructive
induction

Acknowledgements

The authors thank Jim Ribeiro and Witold Szczepanik for their help with the ANSI C
implementation. Witold also contributed to Appendix describing the new data structures for
AQl5c.

This research was conducted in the Machine Learning and Inference Laboratory at George Mason
University. The research is supported in part by the National Science Foundation under the grants
No. IRI-9020266 and CDA-9309725, in part by the Advanced Research Projects Agency under
the grant No. N00014-91-J-1854, administered by the Office of Naval Research, and under the
grant No. F49620-92-J-0549, administered by the Air Force Office of Scientific Research, and in
part by the Office of Naval Research under the grant No. NO00O14-91-J-1351.

ted

Table of Contents

L INTRODUCTION. cccimianisnsrsmmsasasssmmsssssssrsmsstssstasanssnsssussssssess

| | CONCEPT LEARNING BY INDUCTION ...vcuuuuecevrmrsssssmmssesssssssssssssssssssssss s sposssssssssossiss s sssseesss
| 2 CONCEPT REPRESENTATION .vvvssesssssssasassessssssisosssesssssssisssssssnssssessssssmmssssssssssssssssanissstssssssensss
1’3 AQISC IMPLEMENTATION.p-crsssssessssssss2se s sss e 88 o s 5 5
| 4 EXAMPLE: CONCEPTUAL DESIGN OF WIND BRACINGS ..ccccocoovvmmmssvssumssssmmmmmmnssssssmimmnssns e

2. KNOWLEDGE REPRESENTATION..ccconssssmiasnisinns ST OO, ||

;
I= ST S

3. LEARNING ALGORITHMS...cccrnrreesssansanianass ET—— |

4. USER'S GUIDE

4.1 GETTING STARTED: A SIMPLE LEARNING PROBLEMcooviiimmmmmieasissnaninmmnssssstmnrsesssassssesaaanss 13
4.1.1 Input to the Learning MOAUIeooummrmvcmimmnsimmissimisnsrmm i
4.1.2 Ouput from the Learning MOUIE...........oocvvvviivuisiismmmminnin i s s e’
4.1.3 An example using the Testing MOdule ... 15

4,1.3.1 Input to AQI5C With (ESHNG EVENLS...o.oovuriesrrsirmssmss st s
4.1.3.2 Output from AQ15c with testing resulls....

4.2 AQISC INPUT TABLES ..cocvvrrerestsitmmsss s ssss s st a0 s s s
A.2.] COMIIENES ...ovvvnaaeessssssssssnrnrmssssemmmssssssssnmmnsssstiasaaasassns .
4.2.2 The parameters 1ble...........ccovivinimmiisissminisin
4.2.3 The CriteriG 1ABLESc.ccsiemussrsrerensassssssssssissssie et a0
4.2.4 The domaintypes 1ADIEcocowuiiiiiinininnsicsrit i e

2.5 The variables table.........cccovinnencicssininncnneas R RN s SR NER e b

2.6 The names tables....... ORISR S TP TEEELEC 26

2.7 The SErUCIUFe IADIES.cceunissiassasasermeisss s N o e 27
.8

R R T o —————— SRR S R 28
2.9 The event and tevent tables S L S S e TR TP 29
4.2.10 The children tables........cc.....c DT USSP AT TPREREe TPTP S 30

5. TESTING RULES P PR SR ST | |

5] INTRODUCTION ...oeiereeeeaerssnserssmses e sssnassas st 8 amaa s s ss s reb b ra e g 12451008 220 a e m e r s n et
5.2 TESTING METHODS.....ccocoremmmmmmmmiiinmmms SRRSO ST PPPPPPPPPPTE ST T 31

6. CONCEPT LEARNING USING AQ15C: EXAMPLES 2

6.1 LEARNING AND VISUALIZING THREE CONCEPTS IN THE ROBOTS DOMAIN USING VARIOUS

PARAMETER SETTINGScuuamueruersssrsrsssesssorcanmnass s ssssssastssnnsss st LRSS 32
6.1.1 AQI35c - input file for Robots example.............couuiimiiessinssimsiss s i3
6.1.2 AQ15c - ARNOIAted OUIPUL file.......vv.cviveuretisisiesinssssssassnsssssssscsins s 15

6.2 LEARNING EXAMPLE1 PROBLEM BY LARSON AND MICHALSKI (1973)........... AP R 47

7. REFERENCES SO RTOTP PP PRt S AP PR 53

APPENDIX: PROGRAMMER’S GUIDE TO DATA STRUCTURES At |

A1 INTRODUGCTIONvoieistssssssmnmmsassssensnssorsss sosssssssssss ssas smamas sessasmessssisisnsst st Habsast s s st sssinsanannras s 55
A7 NEW DATA TYPES....ococmmmrmmmsntminnisss s s sasssassnnssans A i R A S s 55
A3 NEW GLOBAL VARIABLES........oooociiiimmnmnssssssnmnnsnnns AP E NPT P P 56
A4 NEW FUNCTIONS....oovrnens TP PR S T L LR L 57

b d e d

1:; Introduction
1.1 Concept Learning by Induction

Among the fundamental characteristics of intelligent behavior are the abilities to pursue goals and to
plan future actions. To exhibit these characteristics, an intelligent system - human or machine -
must be able to classify objects, behaviors as equivalent for achieving given ¢ s, and some
others as differing. For example, to satisfy hunger, an animal must be able to classify some
objects as edible, despite the great variety of their forms and despite the changes they undergo in
the environment. Thus, an intelligent system must be able to form concepts, that is, classes of
entities united by some principle. Such a principle might be a common use or goal, the same role
in a structure forming a theory about something, or just similar perceptual characteristics. In order
to use the concepts, the system must also develop efficient methods for recognizing concept
membership of any given entity. The question then is how concept recognition methods are
developed.

The study and computer modeling of processes by which an intelligent system acquires. refines
and differentiates concepts is the subject matter of concepr learning (Michalski, 1986). In research
on concept learning, the term concept is usually viewed in a more narrow sense, namely, as an
equivalence class of entities, such that it can be comprehensibly described by a small set of
statements. The description must be sufficient for distinguishing this concept from other concepts.
Individual entities in this equivalence class are called instances of the concept.

In any learning process a learner applies the knowledge already possessed to information obtained
from a source, e.g., a teacher, in order to derive new useful knowledge. This new knowledge is
then stored for subsequent use. Learning a new concept can proceed in a number of ways,
reflecting the type of inference the leamer performs on the information supplied. For example, one
may learn the concept of a friend by being given a description of him/her, by generalizing examples
of specific people, by constructing this concept in the process of observing and analyzing different
types of people, or by some other method. The type of inference performed by the learner on the
information supplied defines the straregy of concept learning, and constitutes a useful criterion for
classifying learning processes.

One basic concept leaming strategy is learning by induction. In this strategy, the learner acquires a
concept by drawing inductive inferences from supplied facts or observations. Depending on what
is provided and what is known to the learner, two differeni forms of this strategy can be
distinguished: learning from examples and leaming from observation and discovery. In learning
from examples, the learner induces a concept description by generalizing from provided examples
and counter-examples of the concept. It is assumed that the concept is already known to the
teacher. The task for the learmer is to determine a general concept description by analyzing
individual concept examples.

1.2 Concept Representation

A concept learning task is strongly dependent on the concept representation space and the
representational formalism. A concept representation space is the set of all descriptors used in
describing the concept. A representational formalism defines ways (syntax) of con tructing
descriptions from descriptors. An example of a concept representation space is the feature space,
in which descriptors are attributes with predefined sets of values. Considering attributes as
dimensions spanning a multidimensional space, concept instances map to points in this space. An
example of a representational formalism is predicate calculus with its set of logical operators.

AQ15c is a program that learns concept descriptions from examples. It uses the Variable-Valued
Logic system VL1 as its representational formalism which defines representation spaces in terms of

th

attribute sets (the attributes may have multiple, discrete values). The representation space and the
set of concepts for learning have to be defined by a teacher.

Quinlan (1993) lists some of the elements that are required by systems such as AQI15¢c and
Quinlan’s C4.5 in order to perform learning from examples. These include:

e Attribute-value descriptions, in which each example is described in terms of a set of anributes
that is identical throught the example set.

e Predefined classes, by which the goal concepts are known and the training examples can be
classified prior to learning.

e Discrete classes, implying that for any possible example, an oracle can determine with certainty
whether or not it belongs to a particular class.

e Sufficient data to allow the leaming mechanism to detect significant patterns and to discount
much of what is likely noise.

e “Logical” classification models, in which output knowledge may describe concepts in terms of
sets of attributes and values.

Another important aspect of intelligent learning systems is a set of preference criteria that can be
evaluated and compared, such that the leamer can choose wisely from among the many concept
descriptions that are equally consistent with the input examples. AQ15¢ is equipped both with a set
of default criteria that should ensure satisfactory performance in many learning tasks and the
capacity for the user to enter different sets of criteria custom-designed for a given application.

1.3 AQIl5c Implementation

AQ15¢ acquires decision or classification rules from examples and counter-examples and/or from
previously learned decision rules. When learning rules, AQI5¢c uses 1) background knowledge in
the form of rules (input hypotheses), 2) the definition of descriptors and their types and 3) a rule
preference criterion that evaluates competing candidate hypotheses. Each training example
characterizes an object, and its class-label specifies the correct decision associated with that object.
The generated decision rules are expressed as symbolic descriptions involving relations between
objects’ attribute values. The program performs a heuristic search through a space of logical
expressions, until it finds a decision rule that best satisfies the preference criterion while covering
all positive examples, but no negative examples. The program implements the STAR method of
inductive learning (Michalski, Larson 1983). It is based on the AQ algorithm for solving the
general covering problem (Michalski, 1969).

The AQI5c program is an immediate descendent of AQ15 (Hong, Mozetic, Michalski, 1986). The
program AQ15 was written in Pascal as an enhancement of the GEM (Generalization of Examples
by Machine) program written by Bob Stepp and Mike Stauffer. GEM was written from scratch on
the Cyber 175; it was not a modified version of the AQ7-AQl1 series of programs (Michalski
1969; Michalski and Larson 1975, 1978, 1983).

AQ15c includes a number of new features that extend the functionality of previous versions. One
change from previous versions is the language in which it is written. AQI5c has been ported to
ANSI-C. The most important advantage of this change is that it reduces the need for limiting,
system-defined data structures. In particular, the Pascal set structure, which under Sun Pascal was

limited to a cardinality of 58, was very restrictive as it forced upon the programmers a complex
way of handling sets. and limited attributes in the data sets to 58 values. The ANSI-C version has
no preset limitations on the number of variables, the number of values per variable, or the number
of classes. In addition, the ANSI-C version is on average six times faster than the previous
implementation, and provides better error diagnostics.

Another important result of the port from Pascal to ANSI-C was the ability to easily port the
program (o different platforms. The current AQ15¢ version has been ported to Sun Solaris. [BM-
compatible (DOS 6.0), and Apple (MacOS 7.5) platforms. More platforms can be supported in the
future with no change in the underlying source code because of the use of ANSI-C.

One new constraint in AQ15c is the requirement that the declarations of types and variables precede
input examples and rules. This requirement is similar to those found in some programming
languages where variables must be declared before they are used. The general structure and order
of the input file is as follows:

* Parameters controlling the learning process (parameters, criteria-table)
* Definitions of knowledge types (domaintypes, names tables)

» Attribute declarations (variables table)

* Background knowledge in the form of rules (inhypo t=bles)

* Training data (events tables)

= Testing data (tevents tables)

1.4 Example: Conceptual Design of Wind Bracings

Let us consider a problem from the area of conceptual design of wind bracings in steel skeleton
structures of tall buildings. The objective is to find decision rules which would assist a designer
during the conceptual design stage. These rules represent the relationships among attributes
descriping the design requirements to be met, the possible structural design decisions, and an
assumed quality criterion (in our case - the unit steel weight). The quality criterion is considered as
a target concept. Decision rules sought are expected to be design rules which would show how
various structural design decisions taken under different combinations of design requirements
would result in one of four values of the quality criterion. Therefore, four categories of design
rules are sought, associated with the quality criterion.

The representation space consists of seven multivalued attributes: number of stories, bay length,
wind intensity factor, type of joints, number of braced bays, number of vertical trusses, and
number of horizontal trusses. The first three attributes are used to define design reguirements,
while the remaining attributes are used to characterize structural design decisions available.
Classification of design examples into the four categories of designs was done according to the
relative unit steel weight. Accordingly, designs related to “low weight” are called “recommendation
rules,” those related to the category “medium weight” were called “standard rules,” and those
related to the category “high weight” were called “avoidance rules.” All rules related to the category
“infeasible” were called “infeasibility rules” since they represent relationships among attributes
which occur in the case when it is impossible to design a wind bracing of a given type under
assumed design conditions. More details of the design problem considered and the representation
space used are provided in (Arciszewski et al. 1994). ’

Figure 1 shows an example of an input file to AQ15c for the wind bracing file. The first thing to
notice is that the input is organized in a series of rables. each of which describe an aspect of the
problem for the program. The first table shown, the parameters table, instructs AQ15¢ in how to
go about the learning process, how to choose among different plausible conclusions, and what
information to report to the user on the completion of the run. The domaintypes and variables
tables inform the program about the set of artributes to be considered, while the names tables

define the different values for each of the attributes. Finally, the events tables list the training
examples from which AQ15¢ will induce its hypotheses.

)
|
parameters
| run mode ambig trim wts maxstar echo criteria wverbose
| 1 ig neq mini cpx 10 pdnv default 1
domaintypes
type levels rame
lin 5 stories
| nom Z bayLength
nom 2 windIntensity
nom 3 type0fJoints
lin 3 numberQfBays
lin S numberdfTrusses

stories-names
value name

0 &

1 12
2 18
3 24
4 30

bayLength-nameas
value name
0 20
1 30

windIntensity-names
value name

] 01
1 11
typeOfJointa-names
wvalue name
i rigid
1 hinged
2 mixed

number0OfBays-names
value name

o} L
1 2
2 3
numberofTruasas-names
value name
0 0
1 1
2 2
3 3
variables
name

it NS.stories
2 BL.pbayLength

WI.windlIntensicy
0. typeDfJoints
BAa.numberQfBays

VT .oumber0fTrisses
HT . numberQfTrusses

-1 @ L s R

Avoid-events

NS BL WI JO BA VT HT
| 6 30 11 mixed 2 O 2
6 30 11 mixed 2 0 1
6 20 07 mixed 2 0 1
6 20 11 rigid 1 ¢ 0
€ 30 11 rigid 1 0 O
Standard-evants
NS BL WI JO BA VT HT
12 20 07 rigid 3 O O
30 30 11 rigid 3 ¢ 0O
18 30 07 mixed 2 0 3
6 30 11 hinged 1 1 2
12 20 07 mixed @ Q0 2
Recommended-avents
NS BL WI JO BA VT HT
18 30 07 hinged 1 1 2
12 30 07 hinged 1 1 2
12 30 11 hinged 1 1 2
6 30 11 hinged 2 2 0
24 30 11 hinged 1 1 3
Infeasible-evants
N5 BL WI JO BA VT HT
20 30 11 mixed 1 0 1
30 30 07 mixed 1 0 3
30 30 11 mimed 1 0O 3
0 30 07 mixed 1 0O 1
i 0 0

30 30 07 rigid

Figure 1. AQ15c input file for the Wind Bracing problem

Figure 2 shows a portion of the output generated by running AQ15c on the input file shown in
Figure 1. The outhypo tables show the rulesets learned for each of the four decision classes,
The rules for recommended designs, for example, state that either (1) the number of stories should
be between 12 and 30 and the number of trusses should be berween 1 and 3 or (2) the number of
bays should be between 2 and 3 while the number of trusses is between 1 and 3.

The numbers after each rule inform the user about how many of the input examples that particular
rule describes. For example, the first recommended rule applies to 106 input examples of the
recommended class and applies uniquely (i.e., no other recommended rule applies to them) to 49

of the input examples. Similarly, 77 examples of recommended design are satisfied by the second
rule for that class, 20 uniquely.

One of the columns in the input parameters table, trim, directs AQI5c as to how general or
specific the chosen output rule should be. The “mini” value shown in Figure 1 instructs the
program to output rules as short and simple as possible; Figure 2's output was generated with this
setting. Compare those rules to those shown in Figure 3, in which the only change in the input
was to change the trim value to “spec” — a request to select very detailed rules with as many
specific conditions as possible. Yet both rule sets are equally consistent with respect to the input
data. One of AQL5c’s strengths is its ability to respond to the requests of the user representing the
requirements of different learning problems.

Detailed explanations and instructions on setting up input tables and parameters are given in
Section 4.2.

Avoid-outhypo
cpx
1 [MS=6] ([JO=rigid,mixed] {t:15, u:l5)

standard-ocuthypo |

cpX

i [NS=12..24] [VT=0] (£:103, u:103)

2 [NS=30] [(BA=2..3] [VT=0] {e:11, wu:ll)
3 (NS=6] [BA=1] [VT=1] {e:8, u:8)

Racommended-outhypo

cpX
1 (MS=12..30] [¥T=1..3] (£:106, u:49)
2 (BA=2..3] [VT=1..3] (t:77, u:20)

Infeasible-ocuthypo
cpx
1 [N5=30] [JO=rigid,mixed] [BA=1]} (t:8, u:8)

Learning system time: 0.267 seconds
Learning user time: 0.00 seconds

Figure 2. AQ15c output generated from the input file shown in Figure 1

—

parameters
run mode ambig trim wLsS maxstar echo criteria wverbose
1 ie neg spec CpX 10) default 1

hvoid-outhypo
¥ cpx
1 [N5=6] [JO=rigid,mixed] [BA=1..2] [VT=0] (£:15, u:l5)

10

Standard-outhypo

cCpx

1 (N5=12..24] [JO=rigid,mixed] [VT=0] {=:103, u:10M

2 (NS=30] [BL=30] [JO=rigid,mixed] [BA=2..3] [VT={] {1l weiiy

3 [NS=6] [BL=30] [JO=hinged] [Ba=1] [VT=1] {t:8, u:d)
Recommended=-outhypo

CpX

1 [MS=12..30] [JO=rigid,hinged] ([VT=1..3] (£:106, u:l0e}

2 [MS=6] [JO=hinged] [BA=2..3] (VT=1..1] (e£:20, u:20)
Infeasible-outhypo i

4 cpx |

1 [NS=30] [BL=30] [JO=rigid,mixed] [BA=1] [VT=0] fc:8, wu:B)

i

Learning system time: 0.283 seconds
Learning user time: 0.00 seconds

Figure 3. AQI5 coutput from the Wind Bracing problem using maximally specific rules

2. Knowledge Representation

AQ15c uses the VL] (Variable-valued Logic system 1) and *I'C {Auwuotated Predicate Calculus)
(Michalski, 1975, 1983) representational formalisms.

Training examples are given to AQI5c in the form of events, which assign values 1o the domain’s
variables. Each decision class (or class, for short) in the training set may be assigned a set of
events, which form the set of positive examples of the class. During the learning of rules, the
events from all other classes are considered negative examples. When rules for another class are
being generated, the positive and ncgative example labels are changed accordingly. For each class
the algorithm chooses the best decision rule set (according to user-defined criteria) is produced that
is complete and consistent with respect to the input events. A complete rule set is one that covers
(describes) all of the positive examples. A consistenr rule does not cover any negative examples.
The user may provide initial decision rules to the program. These rules are treated as initial
hypotheses. Intermediate results during the search for a cover are called candidate hypotheses or
partial covers.

Each decision rule is described by one or more conditions (also known as selectors), all of which
must be met for the rule to apply. A condition is a relational statement and is defined as:

[TERM RELATION REFERENCE]

where:

TERM is an attribute

RELATION is one of the following symbols: <, <=, =, <>, >=, >
REFERENCE is a value, a range of values, or an internal disjunction of values.

Conditions state that the attribute in TERM takes one of the values defined in REFERENCE.
Examples of conditions (selectors) are shown below:

[color = red. white, blue]
[width = 5]
[temperature = 20...25, 50..60!

A rule (also called a complex) is a conjunction of conditions. The following are examples of rules
in AQI15c notation:

[color = red, white, blue] [stripes = 13] [stars = 1..50]
[width = 12] [color = red.blue]

A cover (or a hypothesis) is a disjunction of rules that together describe all of the positive
examples and none of the negative ones. The following is an example of a two rule cover:

[color = red, white, blue] [stripes = 13] [stars = 50] v
[color = red, white, blue] [stripes = 3] [stars = 1]

A cover is satisfied if any of its rules are satisfied, while a rule is satisfied if all of its conditions are
satisfied. A condition is satisfied if the term takes one of the values in the reference. The cover
shown in the above example can be interpreted as follows: An object is a flag if:

1) Its color ir red, white, or blue, and it has 13 stripes and 50 stars on it, or
2) Its color is red, white, or blue, and it has 3 stripes and 1 star on it

3. Learning Algorithms
Figure 4 is a flowchart of the AQ15c program. Figure 5 is a flowchan of the STAR generation

component of the algorithm. An illustration of the AQ algorithm using the diagrammatic
visualization system DIAV is given in Wnek (1995).

Input Data:

Parameters, Domaintypes.
WVariables. Events, Hypoiheses.
Background knowledge

Select a decision class: label all examples in this class
as positive. Label all other training examples as negative

yes

Testing only?

Select a seed from the positive examples

___________ L e ——

Generate a star: partial cover of seed against negative examples and
hypotheses

l____..__..._.__._..r..._

Select the best complex from the star
according 1o the user-defined criteria
Add the best complex to the current cover

m *
All pos-examples
covered?
no
Are there testing
examples?
Test given examples
no

Done for

all classes?

Figure 4. AQ15 algorithm

Generate a star

Is there a negative
example covered by the
complex?

no

Generate a partial star
1. Generate all maximally general complexes that cover the seed against
the negative example,
2. Intersect the elementary star with the previous partial star,
3. Trim the partial star

Figure 5. Star Generation

4. User's Guide

Input to AQ15¢ and all tools in the AQ family is in the form of a set of relational tables (Hong,
Mozetic, Michalski, 1986). Relational tables have three parts —a table-name, a header, and a list of
tuples. Legal table-names, headers and tuples are described below, and examples are given in
Section 4.1.1. All tables must be separated by at least one blank line. Values within a header may
be separated by spaces or tabs. In many cases some columns are optional (e.g., the cost column in
the variables table). If an optional column is not used, a default value will be assigned. In some
cases table columns may be ordered differently than is presented here. For example in the
domaintypes table, the size column may come before (to the left of) or after (to the right of) the cost
column,

4.1 Getting Started: A Simple Learning Problem

This section describes a sample use of AQ15c using the ml files provided in the AQ15c package.
ml (or Monk #1) is the first in the set of three classification problems known collectively as the
Monk’s problems (Thrun et al., 1991). The goal of this problem is to correctly predict whether the
given robot (as described in a single example) is in class or class2. Each robot is described by six

features (x1..x6). This example does not show how all of the AQ15c tables are used. but it serves
as an introductory example featuring some of the most important table types.

If the AQI5¢c package has been succesfully installed (see the installation notes if this is not the case)
the example can be run as follows:

(Solaris, DOS)Y agl5c.run < ml.agin {(with aql3c.run in the current directory or path)
(Mac) double click on AQI15c.run (ml must be in the same folder as AQ15¢.run)

The following sections describe the input file (ml.aqgin) and output generated by AQI15¢c in more
detail.

4.1.1 Input to the Learning Module

Input to AQ15c in this example includes a parameters table, variables table, and two events tables,
Not all of the training events from the m1 file are shown here for space reasons. The output of
AQ]15c is shown in Section 4.1.2. The first table defines the parameters that will guide AQI5¢’s
performance (Section 4.2.2). The second table defines the six variable domains (Section 4.2.5).
The remaining tables define the event sets for AQ15¢ (Section 4.2.9).

parameters

run maxstar trim echo wts

1 10 mini pve cpx

variables
type size cost name
1 lin 4 1.00 x1.x1
2 lin 4 1.00 X2 .%2
3 lin 3 1.00 x3.x3
4 lin 4 1.00 xd.x4
5 lin 5 1.00 x5.x5
[lin 3 1.00 x6.x6

classl-events
xl x2 x3 x4 x5 x6

3 21T 42
e S e S R R |
1 2 2 3 T 2
23 L 3 & 2
7 S s R
2. 1 1 % 31
1 % 1 3 2 -2
3 2 1 2 4 2
2 1 21 4 2
3. =1, & 3 a4 a
1 2 2 o3 X 2
S S e
class2-events
x]l %2 x3 x4 x5 %6
303 1 03 4 2
il L T e S
20 3 2 2 1 1
2 2 L 3 3 2
. e O R S S |
2 2 1 3 4 2

4.1.2 Ouput from the Learning Module

This section shows what rules are generated after running AQl5c over the entire ml.agin input
file. Which tables are echoed depends on the value of the echo parameter in parameters table. The
echo parameter in the parameters table in the input file tells AQ15c to echo the parameters, variables
and events tables in addition to the learned rules (outhypo tables). The input tables are already
given in section 4.1.1 so only the new outhypo table are shown here. The complete output is

available in m1.agout.

classl-outhypo
B opx
1 [xi=1] [x2=2..3] [x5=2..4] (£:22, u:Z2)
2 [x1=2..3] [x2=1] [x5=2..4] (ezll, u:ll)
3 [x1=3] [x2=2] [x5=2..4] {c:5, u:5)
4 [x1=2] [x2=3] [x5=2..4] (E:5, u:d)
class2-outhypo
cpx
1 [x5=1] (c:16, u:ll)
2 [x1=3] [x2=1] (t:15, u:ll)
3 [x1=21 [x2=21 (t:10, u:l0)
4 [¥1=1] [x2=1] (£:7, u:6}

Outhypo tables containing decision rules (covers) are generated for each class. The class] -outhypo
table gives rules describing the class1 examples (robots). Similarly. the class2-outhypo table
provides rules for class2. The weights associated with rules describe the coverage of individual
rules. For instance, the weights associated with the first rule for class2 indicates that 16 examples
are satisfied by that rule, and 11 of these examples are satisfied by this rule only. More details on
these weights are provided in the description of the "wis’ parameter in Section 4.2.2.

4.1.3 An example using the Testing Module

This section provides sample input and output files for use with the testing module of AQ15c.
This module tests rules against labeled testing examples. Input to the testing module consists of
parameters, domains, rules or training events and testing events. The parameters are given to the
system in a parameters table. The available and their meanings are given in Section
4.2.2). The domains of variables are given in the standard variables table (Section 4.2.5). If rules
have already been generated in a previous run or are from some other source, then AQ15c is run in
testonly mode (as indicated in the parameters table). If rules have not yet been generated, training
events in an events table must then be provided. In this case rules will be generated and
immediately evaluated against the testing data.

The amount of information supplied by the testing module, and the method of evaluation between
testing examples and rules is controlled by the test parameter (Section 4.2.2). This section provides
examples of each of the available testing options.

4.1.3.1 Input to AQI5c with testing evenis

This section provides an example of an AQ15c input which contains testing examples. These files
are provided under the name mltest.agin and m!test.agout. The evaluation methods designated by
test parameter codes “m”, “q" and “w” are all invoked, and the “c” parameter is present telling the

| &

program to echo a full confusion matrix. When multiple test evaluation methods are selected. thev
are performed in the order that they appear in the parameters table. This example introduces two
types of input tables not shown in Section 4.1.1: names tables. which define names for the
different values of a variable (Section 4.2.6), and revents tables, which provide the program with
event sets by which rules are to be tesred (Section 3).

parameters
run mode ambig ctrim wks maxstar echo criteria wverbose tCes:
b ic pos spec cpx 1a pedg default 1 Mgwe
variables
cype size cost name
1 nom 3 1.00 hs
2 nom 3 1.00 bs
£ nom 2 1.00 sm
4 nom E) 1.00 ho
3] nom 4 1.00 jc
6 nom 2 1.00 i
ti-names
value name
1} no
1 Yes
sMm-names
value name
0 no
1 yes
hs-names
value name
0 round
1 square
2 octagonal
bs-names
value name
0 round
1 sQuare
2 octagenal
ho-names
value name
0 sword
1 balloon
2 tlag
ic-names
value name
0 red
1 yellow
2 green
Pos-evencs
hs bs sm ho jc Ei
1 round round yes flag yellow vyes

2 round round yves sword red no

3 round sGuare ves SwWord red VES
4 ~ound ocragonal yes balloon red ves
z aquarse sguare vwas pallocn red vEes
g SGUAre sguare no palloon green ves
Neg-events
hs bs sm ho je i
1 round octagenal yes sword yellow n
2 square octagonal vyes sword yellow no
3 cctagenal sguare ne sword green no
4 octagonal round yes sword blue ves
5 octagonal octagonal no balloon green no
& pctagonal round no palloonn blue no
T octagonal sguare yes flag red no
g octagonal round no flag reen no
9 round octagonal no flag blue yes
10 round occtagonal no flag green VESs
11 square round ves flag yvellow ves
Pos-tevents
hs bs am ho jc ti
1 round cctagonal yes sword blue yes
2 round octagonal yes sword green yes
3 round round yves sword red no
4 round square yves sword red ves
5 sguare square no balloon green yes
Neg-tevents
hs b= sm ho jec ti
1 Louna octagenal yes swoerd yvellow no
2 sgquare octagonal yes sword yellow no
3 round round yes sword red no
4 octagonal sgquare no sword green no
5 octagonal round yves sword blue yeas

4.1.3.2 Output from AQI5c with testing results

The output of AQ15c when testing events are included consists of the rule sets and the requested
testing results. The testing results are displayed in a confusion matrix that provides for every
testing event the degree of confidence that that event belongs to each class. If the event matches a
class other than the class to which it belongs, the name of that best matched class will be printed
under the ‘Class’ heading. If the event most matches the correct class, no entry is given in the
Class column. If a testing example matches multiple classes including the correct class, that
example will be counted as correctly classified. Below are listed the same set of testing examples
rested using all three evaluation methods. This list includes rform (test parameter setting “m"),
agform (test parameter setting “q”) and igform (test parame er setiing “w") (Section 5). The ¢
option was also given to the test parameter 50 that full confusion matrices would be provided for
each testing summary. If there are many testing events, the user may prefer not to see the entire
confusion matrix, but rather a summary of the tests. The file containing this output is found in
mltest.agout

Pos-outhypo
cpx

[bs=round, scpuare! [sm=yasz) !
,Bguare’ [bsssquare, ocsagonal’l

;3

i 1d, occagonal] [jo=green, blus! 27, w7

2 [hsssguare,a:tagonal) [sm=yes! [hossword, flag; | iR,
3 [he=rsund] [bs=cctagonal] [sm=yes] [hos=aword] [j fEx Y

LA R AR R R SRR SRR RRRREE RS EEEEEEEERER R R R s s R AR E R R R R R e R R R R RS

Testing Summary (Rform)

FhE T T E A A AT T AL AA T T TAASIASAA A ARSI R AR A A Ak AR ks s Rk r A AR b b

Event Class member Pos Neg
Fos
1 Neg 0.00 0.84
2 Heg 0.0g 0.64
3 0.s50 0.00
4 0.50 0.00
5 0.50 Q.00
Heg
L 0.00 0.09
2 0.00 0.27
3 Pos 0.50 0.00
4 0.00 0.64
5 0.00 0.64
Events Correct: 7 # Events Incorrect: 3 Accuracy: T0%
Total Selectors: 22 # Total Complexes: 5
LA S S A A AR AR R AR R ER LR LR LARESRRELEEEEESEE SRR 2 LR E R TR

R R L s

Tasting Summary (Hgform)

R R R R R R R R R R L R R R R R R R R R R R R R R R R R R R E R R R R SRS

Bwvent Class member Pos Neg
Pos:
1l Neg 0.00 1.00
2 Neg 0.00 1, 00
3 1.00 0.00
4 1.00 0.00
5 1.00 0.00
Neg:
1 0.00 .00
2 0.00 1.00
3 Fos 1.00 0.00
4 0.00 1.00
5 0.00 1.00
Events Correct: 7 # Events Incorrect: 3 Accuracy: 70%
Total Selectors: 22 # Total Complexes: 5

Fh A AR A A A A AR T I AA A EFRFEFAAISIBTAEEER AT A AAF AR A AR TR TS S ok dH

"‘i***tt*b.'w**'t'wwgf‘ii***r‘tt***tttt*rt'-i*kkﬁ+"it*w*r.i**b'

Testing Summary (Igform}

rtw*il**i'Iw*kﬁ'ftii**ﬂt'I111"iii*ti**f-*l“t***""i**t*#':*bb-

4 Event Class memper Pos Neg
Fos:
1 Neg .00 0.41
2 Neg n.00 0.41
3 0.18 g.o00
4 0.18 0.00
5 n.1ia .00
Neg:
1 0.00 0.08&
2 0.00 0.18
3 Fos 0.18 g0.00
4 0.00 .41
5 g.00 0.41
Events Correct: 7 # Events Incorrect: 3 Accuracy: T0%
Total Selectors: 22 # Total Complexes: 5

*i*gq*tttg***ﬁpttt**f«---atr**ﬁtii*twt*!1titf****r'tttri**#*t-tit

This testing used:
System time: 0.017 seconds
User time: 0.00 seconds

In each of the test runs shown above, 7 of the 10 test events were comectly classified. Their
degrees of match varied according to the testing algorithm.

4.2 AQISC input tables.

The following sections describe in detail the tables in AQI5c, their purpose, and syntax. Most
tables are optional and many of the parts within each table are also optional.

4.2.1 Comments

Comments can be placed anywhere in the agl5c input file. The syntax of comments for AQl5cis
the same as the syntax for comments in C: /* comment */. Comments may span multiple lines.
Comments will not be echoed back at output.

Example
/* Filename: ml.aqin
Date: 10/23/95
Source: Monk's problem set */

4,2.2 The parameters table

The optional parameters table contains values which control the execution of AQ15c. All of the
parameters have default values. The default values are provided in parentheses following the name
of the parameter. Each row of the parameters table corresponds to one run of the program. In this
way ﬁ:fﬂ. user may specify in a single input file many runs using different parameter settings on the
same data.

20

In order to allow parameters tables to be automatically generated after the input of other tables (for
example to heuristically set the maxstar parameter based on the number of variables). an input file
may include multiple parameters tables in various parts of the input file. However, there are a
number of constraints and complexities if the user intends to use this feature directly.

1) If the first parameter table has no ‘run’ field, i.e., no run numbers are « -cified. then no
subsequent parameters table may include this parameter. Similarly, if the first parameter table
includes a ‘run’ parameter, then all following tables must include it explicitly as well.

2) Run numbers are used as labels for parameter settings. Run values must begin with | and each
new run number must be one more than the highest one previously used. A previously used run
number may appear on another parameter line, meaning that both parameter lines with this run
number refer to the same run. If for that reason there are multiple values for any parameter in a
given numbered run, the values appearing later will overwrite the earlier ones: the last value given
supersedes the prior ones; this value will take effect. More details on the run parameter are given
below.

A parameters table consists of a name line (that simply reads “parameters™), a header line defining
the table’s columns, and one or more lines defining parameter settings. The columns that may
appear in a parameters table are as follows:

ambig (meg)

An optional parameter which controls the way ambiguous examples (i.e. overlapping examples
from both the positive and negative class) are handled. Examples overlap when they have at least
one common value for each variable. Legal values are:

neg Ambiguous examples are always taken as negative examples for the current class,
and are therefore not covered by any classification rule set.

pos Ambiguous examples are always taken as positive examples for the current class,
and are therefore covered by more than one classification rule set.

empty Ambiguous examples are ignored, i.e., treated as though they were not part of the

input event set. They may or may not be covered by some classification rule(s).

criteria (default)

Entry is the name of the criteria table (Section 4.2.3) to be applic. to a given run. The name must
be of alpha type, and a criteria table with that name (unless it is “default”) must appear in the input
file.

echo (pvne)

Specifies which tables are to be printed as part of the output. Values in this column consist of a
string of characters. Each character represents a single table type. The order of characters in the
string controls the order of the tables in the output. No blanks or tabs are allowed in this string
(such white space separates words in the input and will confuse the parser). Legal values for the
echo paramewcr and the tables they represent are shown below:

0 ----—- noecho

b ----- childrens table

C --—--- cCriteria table

d -—— domaintypes table
e --—- events tables

i -——— inhypo table

N ===-- names tables

p ----- parameters table
q —— tevents tables

§ =mm-- structure table
=== title table
LT variables table

maxstar (10)

Optional parameter that specifies the maximum number of alternative solutions retained during each
stage of rule generation. The program uses a beam search, in which at any intermediate stage, the
best candidate hypotheses are retained up to a certain number. A higher number specifies a wider
beam search, which also requires more computer resources and processing time. Empirical
evidence indicates that in general the size of maxstar should be approximately the same as the
number of variables used. The rules produced tend to indicate a good compromise between
computational resources and rule quality. Maxstar values may range from I to 50.

mode (ic)
An optional parameter which controls the way in which AQ15¢ is to form rules. Legal values for
this column are:

ic “Intersecting covers” mode allows rules from different classes to intersect over areas
of the learning space in which there are no examples.

dc “Disjoint covers” mode produces covers that do not intersect at all with one another.

vl “Variable-valued logic™ mode produces rules are order-dependent. That is, the rules

for class n will assume that the rules for classes 1 to n-1 were not satisfied. Hence
there are no rules given for the last class; if none of the other rules were satisfied, an
example is by default put into this class.
To illustrate the difference between these modes, consider two classes, one consisting of red
circles, and the other one consisting of blue squares. In ic mode, the rules “Class 1 if red, Class 2
if square™ might be produced. In dc mode, such a rule set would not be allowed, since red squares
would be described by both rules. In vl mode, only the rule for Class 1 would be necessary;
anything else would be assumed to belong to Class 2.

run (l..n)

An optional parameter which controls for which execution of the program the parameters line
applies. Run numbers must be positive integers beginning with "1”, with no succeeding integer
appearing as a run number before its predecessor has already appeared. If used, this parameter
must be in the first column of the parameters table. The default value is simply the number of the
line, so the third parameters line would be assigned a default run number of 3.

test (m)

Optional parameter that controls the method of evaluation and the form of the output produced from
testing the provided tevents (testing events) against the learned or provided rules. If no tevents are
given, this parameter has no effect. If multiple methods are specified for this parameter, then
multiple testing runs are performed in the order in which they were requested, and the results of
each are summarized. This allows a direct comparison between testing methods. The three
methods vary in their evaluation of the degree of match between the testing examples and the rules.
The legal values for this parameter and an explanation of each method of evaluation are as follows:

mn INLEN, or rform mode used for testing. This is the mode used in the INLEN
system (Michalski et al., 1992) .

q hgform evaluation method first described in (Michalski and Chilausky, 1980) .

w igform evaluation method described in (Michalski, 1986) .

c This value controls whether a confusion matrix is d in addition to the

summary of the test run. If this value is present, full matrix is echoed;

otherwise only the summary is provided. The summary provides the number of
events correct, the number of events incorrect, the percentage of correct events. and
the total numbers of conditions and rules in the rule set. A full confusion matrix
provides for every testing event and every class the degree of confidence that that
event belongs to the given class. In addition it gives the name of the class 1o which
the event was best matched if that class was not the target class and tells whether or
not the testing event was maiched exactly (as opposed to being matched by “best
fit") by any rule.

Example testing summaries using the m, q and w options are provided in section 4.1.3.2 along
with examples of full confusion matrices. Details of the testing methods are given in section 5.2.

trim (mini) .
An optional parameter that specifies the generality of the output rules (i.e., the number of possible

events they satisfy). The legal values are:

gen Rules are as general as possible, involving the minimum number of conditions, each
with a maximum number of values.

mini Rules are as simple as possible, involving the minimum number of conditions, each
with a minimum of values.

spec Rules are as specific as possible, irvolving the maximum number of conditions,

each with a minimum of values.

Each condition restricts the set of events which will satisfy a rule, but each value in a condition
relaxes these restrictions. Hence, rules with few conditions, all of which permit many values will
be more general than ones with many conditions, each of which specifies only a few values.

verbose (1)

Opticral parameter that specifies whether the time taken by the learning and/or testing process is to
be added to the output from AQIlSc. The verbose parameter is not solely responsible for
controlling the contents of the output. The echo parameter controls which tables are echoed, the
wis parameter (see below) controls the level of detail in the rule descriptions, and the fest
parameter controls the testing summary detail. The default value for the verbose parameter is 1.
Legal values are:

0 No learning or testing times are echoed.
1 Leaming time echoed. Testing time echoed if testing is performed.
wis (cpx)

Optional parameter that specifies whether AQ is to display weights with the rules it produces. The
weights can give the user a gauge of the importance of individual rules or conditions based on how
much they discriminate between the classes and how many of the input examples they actually
applied to. Legal values are:

no Include no weights in the output.

cpx Two weights are associated with each complex (rule). The first weight is the total
number of positive events that the rule covers (the total weight. denoted by “t™). The
second weight is the number of events covered by this rule and no other rule in the
cover (the unique weight, denoted by “u”). Rules for a given class will be
displayed in decreasing order of the t-weight.

evt In addition to the two weights (total and unique) calculated for each complex, a list
of example indices is printed. These indices list by number, or by key field if keys
wTrc included in the events-tables, the positive examples which are covered by each
rule.

sel Weights are calculated for each selector (condition) in the rule set. There are two
weights associated with each selector. The first weight is the number of positive
examples covered by the condition, and the second weight is the number of negative
examples covered by the condition. When selector weights are shown, the
conditions within a rule are displayed in decreasing order of the ratio of the first
weight to the sum of both weights, i.e., the percentage of positive events covered.
Otherwise the conditions in a rule are displayed in the order that their attributes (as
given in the TERM portion) are given in the variables table.

all All weights and example information is printed for each selector and complex. In
other words, all is the union of evt and sel.

A sample parameters table is shown below. This table directs AQ to run twice. Values in the first
row are the default and control the first run. Values in the second row control the second run of AQ
on the same data. Note that the default criteria table is the ONLY one for which it is unnecessary o
follow with a full table description. The mincost criteria table, however, must be defined later in
the input file. See the next section for a description of criteria tables. Parameters not present in the
parameter table (e.g. “run”, “mode” and “maxstar”) take their default values in both runs.

Example:

parameters

ambig trim WLS echo criteria
neg mini cpx pvne default
pos gen all pvne mincost

4.2.3 The criteria tables

All criteria tables other than the “default” must be defined. This table type is used to define a
lexicographic evaluation function (LEF). An LEF evaluates a set of candidate hypotheses, using a
series of preference criteria in order, with the most important criterion being used first, and so on.
Examples that fail to meet the first criterion are eliminated, while those that qualify are only then
evaluated on the second criterion. Those that qualify under that criterion are then examined
according to the third one, and so forth. The LEF is used by AQIS5c to judge the quality of each
complex formed during learning. The LEF consists of several criterion-tolerance pairs. The
ordering of the criteria in the LEF determines the relative importance of each. The tolerance
specifies the allowable deviation from the optimal found value within each criterion.

A criteria table name consists of two parts - the specific name, which must appear in the “criteria”
column of the parameters tables (in the example above “mincost” was used) and the table name, -
criteria. In the previous example “mincost” in the parameters table refers to the existence of a
“mincost-criteria” table later in the input file. Any value in the criteria column of the parameters
table except “default” must have a corresponding -criteria table and vice-versa,

(l.n)
This column numbers the entries in the criteria table. V:l''~< must be sequential integers. This
column is not required.

criterion (maxnew, minsel)

This mandatory column specifies the criterion which is to be applied at this point in the LEF.
There are eight defined criteria. From these eight the LEF that best describes the user's rule
preference is built. At least one and at most all eight criteria can be used in a criteria table. Criteria
may also be selected by number rather than name. These numbers are the indices of the criteria in

this table.

maxnew (1) - maximize the number of newly covered positive events, i.e. events that are not
covered by previous complexes.
maxtot (2) - maximize the total number of positive events covered.

newvsneg (3) - maximize the ratio between the total number of newly covered positive examples
and all negative events covered. Computationally expensive.

totvsneg (4) - maximize the ratio between the total number of positive covered examples and all
negative evente covered. Computationally expensive.

mincost (5) - minimize the total cost of the variables used (see Section 4.3.4).

minsel (6) - minimize the number of extended selectors (conditions).

maxsel (7) - maximize the number of extended selectors. .

minref (8) - minimize the number of references (permitted values) in the extended selectors.

tolerance (0.00)) i . .
This mandatory column specifies the relative tolerance in the importance of this criterion. In a strict
LEF (tolerance = 0) any complex not having the best (or equal) value for a criterion is immediately
eliminated. This real-valued number specifies the degree of tolerance in the importance of the
criterion given in the same line. As an example, suppose the best complex in a list had a value of
100 for the first defined criterion, and the tolerance for this criterion was 0.2. The absolute
tolerance value is the product of the tolerance value (0.2) and the best value (100) and thereby
allows a leniency range of 20. Any complex with a value between 80 and 100 will not be
eliminated from the list of rules under consideration; instead they would make up the set of rules
evaluated under the second criterion..

An example is given below. The first -criteria table given is the default. In many experiments, this
criteria table will produce good results. This is the only -criteria table that need not be defined.
The second example is a user-defined table called "mincost". Note that row numbers may be
omitted.

Example:
default-criteria

¢ criterion tolerance
1l maxnew 0.00

2 minsel 0.00

mincost-criteria

criterion tolerance
mincost 0.20
maxtot 0.00

4.2.4 The domaintypes table

The domaintypes table is used to define domains for the attributes by which the input and output
events are defined. This table is optional, but it is convenient if several attributes have the same
set of possible values. The table consists of four columns. The type, size, and cost columns all
have the same meanings as defined in the variables table description. There is no limit to the
number of domains, or to the number of values (as defined in the size column) in a domain.

name (Xp)

This mandatory column is the name of the domain being defined and must be of alpha type. If the
name is not provided, the defauit name will be x, where n is the index of the entry in the
domaintypes table.

type (nom) :
This optional column specifies the type of the domain being defined. Four domain types are legal.
The legal types are described below:

nom A "nominal” domain consists of discrete, unordered values (e.g. colors)

lin A "linear” domain consists of discrete, ordered alpha or numeric values (e.g. sizes —
small, med. large)

cye A "cyclic” domain consists of discrete values in a circular order (e.g. months).

str A "structured” domain has values in the form of a hierarchical taxonomy (e.g. types

of food). A variable with a structured domain requires that domain be described in a
structure table (Section 4.2.7) as well.

size (2)
This optional integer value specifies the number of values in the domain being defined. There is no
preset limit on domain size.

cost (1.00)

This optional real value specifies the relative expense of the domain being described. This value is
used by the mincost criterion in the LEF (see description of the criteria table, Section 4.2.3). The
expense of an attribute may be determined by the difficulty or expense of acquiring the value, or it
may be set by a domain expert to encourage or discourage this attribute’s appearance in generated
rules. For instance, in a medical domain, it would be desirable to make a diagnosis via a blood
test, rather than exploratory surgery. To only generate rules that involved the results of such
surgery when absolutely necessary, the attribute describing the results of the surgery could be
assigned a prohibitively high cost, while the blood chemistry attributes would have low costs.

The domaintypes table is normally used in conjunction with the variables table and the names table.
An example of hoth the variables table and domaintypes is given at the end of the following
section.

4.2.5 The variables table

The mandatory variables table specifies the names and domains (legal values) of the variables used
to describe events. The variables table must include at least one, and at most all 5 of the following
columns. There is no preset limit to the number of variables, or to the domain size of a variable.

(1..n)
This optional column numbers the entries in the variables table. Values must be sequential
integers.

name (xn)

This column specifies the name of the attribute. Names must be of alpha type. if the name column
is omitted, the default value is xn where n is the number of the row in which this variable was
Jefined. The value in the name column takes the form nar ie.domain-nare, where name is the
alpha string name of the specific variable while domain-name is a more general name of the domain
(if defined in the domaintypes table), or simply a repetition of the variable name.

type (nom)
This column specifies the type of the variable domain. Four domain types are legal:

nom A "nominal”" domain consists of discrete, unordered values (e.g. colors)

26

lin A "linear" domain consists of discrete, ordered alpha or numeric values (e.g. sizes —
small, med, large)

cyc A “cyclic" domain consists of discrete values in a circular order (e.g. months).

str A "structured” domain has values in the form of a hierarchical taxonomy (e.g. tvpes

of food). A variable with a structured domain requires that domain be described in a
structure table as well.

size (2) _
This integer gives the number of legal values in the domain being defined. There is no limit on the
domain size. The size of a structured variable is defined as the total number of nodes in the

hierarchy (internal and leaf).

cost (1.0)
This real number specifies the relative 'expense’ of the domain being defined on this line. The
value is used when computing criterion mincost is used in the LEF. The default cost is 1.0.

Further explanation is given in Section 4.2.4.

The following example shows domaintypes and variables tables for a computer selection task.
Notice that five of the ten variables take on boolean domains.

Example:
domaintypes variables
name type size # name cost
boolean nom 2 1 pascal.boolean 10.0
op_system MO 2 2 fortran.boolean 10.0
floppies lin 4 3 cobol.boclean 10.0
processor nem 3 4 op_system 10.0
memory str B § floppies 100.0
& disk.boolean 0.0
T pPrec=Isc. 1.0
B memory 100.0
9 printer.boolean 0.0

The variables table may be used in conjunction with the domaintypes and names tables. In the
example given above, the type and size columns were defined for all domaintypes so that these
columns were not needed in the variables table.

4.2.6 The names tables

The names tables are used to specify the legal domain values for an attribute. These must include
the attribute values that appear in the events tables. If no names table is present in the input file,
then the values for that domain are assumed to be the integers from O to size-1 (size is defined in
the variables or domains table). The specific name of a names table must be the same as that used
in the domains or variables table. There are two required columns in each names table, value and
name.

value (1..n)

This column must be an integer beginning with '0' and continuing sequentially up to size-1. This
column is the integer equivalent of the name to be defined in the next column. This column is
required. There is no preset limit to the number of values for an domain being defined.

name (1..n)
This column defines the input and output name of the value being defined. Alpha. integer or real
types are allowed. Only two decimal places are stored for real types. This column is required.

Below are examples of the -names tables for the computer selection problem defined above. All
variables that are of type “boo!=an" may take values “yes” and “no”. The domain “make” has the
values “IBM”, “Compag”. “Zenith” and “Apple”. Note that for the variable “floppies™ the default
values of 0,1,2 and 3 are acceptable, so there is no need for a “floppies” names table.

Example:
boolean-names
value name
0 no
1 yes

make-names
value name

0 IEM

h Compag
2 Zenith
3 Apple

4.2.7 The structure tables

The structure table is optional and is used to define a structured domain for any variable of the
structured type (as specified in the domaintypes or variables table). A structured domain has the
form of a hierarchical graph, in which the lowest level corresponds to the values of the variable at
the lowest level of generality. Higher levels (as defined the structure table) specify parent nodes in
the hierarchy of values and are used to simplify classification rules. For instance, the hierarchy for
the structured variable shape may have curve and polygon as top-level nodes, circle and ellipse as
leaves under curve, and triangle and square among the leaves under polygon.

The specific name of a structure table must be the name of the domain, as specified in the name
column of the domaintypes table, or if the domaintypes table is not specified, in the variable name
from the variables table. A structure table consists of three columns:

name

This optional alpha or integer type entry specifies the name of the element in the hierarchy
corresponding to the value given in the “value” column of the table. If this column is included, the
names used in this column may appear in classification rules instead of the values named in the
names table or the events-tables.

value

This mandatory integer entry specifies a parent node in the hierarchy. This node will be defined as
the parent of the nodes specified in the subvalues column. If this value is a subvalue of some
other values, the row in which this value is declared as a parent must appear before any rows in
which it is listed as a subvalue (e.g. entries must be given in a bottom-up order). This integer
value must always be greater than any of the subvalues in the following column.

subvalues
This mandatory entry specifies a set of children values for the parent node as defined in the value
column. This entry consists of a string of integers separated by commas or by “..” to indicate

28

ranges. These numbers correspond to values as defined in the names table of the variable or
previous rows of the structure table.

The hierarchical graph below shows an example of a structured domain for the vanable "memory”.
Note that the same node (64 in this example) may be shared by multiple parents (“medium” and
“large™). Below are the input tables to define such a structure. Note the' for the variable
“memory” a names table must first be defined, because a domain of all values between 2 and 280
would be inefficient and might cause inaccurate rules. Furthermore, the node "large” must be
defined after the node “very_large"”, as it is higher in the tree.

Example:
Memory -names memory - structure
value name name value subvalues
o 2 very_small 8 0.1
4 small 9 8.2
2 16 medium 10 3..5
3 32 very_large 11 6,7
4 48 large 12 5,11
5 64
a 128
7 280
8 very_small
9 small
10 medium
11 very_large
12 large
Memury
Mr,d:urn

Very kﬁ\ N /}rylarge
128 280

4.2.8 The inhypo tables

The inhypo tables are optional and are used to input rules for incremental learning (i.e., learning by
modifying pnior hypotheses, rather than from examples alone). The specific naune of this table
must match the name of one of the decision classes. The rules input in the inhypo table have two
possible roles. In the first, when there is at least one events table specified, the input rule ; are used
as initial covers for incremental learning. If no events tables are present, the inhypo rules are
treated lai;:v;:ts for rule optimization. If inhypo nﬂebsy f?;;: differ;nt classes intersect in the event
space, ir intersection is treated as determined “ambig" parameter in the parameters
lEble (Section 4.2.2). There are two columns in the inhypo table. #

(1..n)

29

This mandatory column associates a number with each complex in the rule set for the class being
described by this inhypo table. Itis a sequentially increasing integer (|..#complexes). Only in
inhypo tables may an entry span more than one line. There must always be a # entry for each
complex in the table.

epx ([])

This mandatory column specifies the VL, rule. A complex (rule) is presented as a conjunction of
selectors (conditions), each enclosed in square brackets. Selectors and complexes are defined in
Section 2. Below are examples of an inhypo table:

Example:
Under1000-inhypo
cCcpX
1 [floppies=0]

Froml000_4000-inhypo
cpx
1 [Floppies = 1,2] [memory > 16]
2 [Floppies > 3] (memory »= 4]

4.2.9 The event and tevent tables

Events and tevents tables have identical structure except the examples contained in events tables are
used for learning and those in tevents are used in testing. Both types of tables contain a specific
name corresponding to the name of the decision class. This name must be of type alpha.

The column headers for this table consist of the attribute names (as defined in the variables table).
The values in the row of the table must be legal values for the appropriate attribute. In the case that
many attributes are used, events tables may be split. Each split table must contain the specific
name and 'events’ and a different set of attributes. Attributes can not overlap between split events
tables. Events tables consists of three column types: 1) row number, 2) Key and 3) attribute name.

(l.n)
This optional column is an integer index of the example. Values must be sequential integers
beginning with 1. This column is optional.

Key () :
This optional column permits the user to include an identifier for the example in alpha form. This
feature is useful when the wts parameter is set to ‘all’ (Section 4.2.2). It appears like any other
variable column, but in its role as strictly an identifier, its values are not used in learning.

variables (x1..xn)

This definition consists of an arbitrary number of columns, one for each attribute in the variables
table. The entries in the rows of the table must contain legal values of the corresponding variables
in the heading. Entries may be single values or they may be an ‘unknown’ symbol (*). Unknown
values (*) are internally represented as taking all legal values for that attribute domain. Below is
an example of a set of events tables:

Example:
Underl000-events

Pascal Fortran Cobol floppies Disk Processor Memory Printer
no no no 0 no ME502 2..16 no

no no no 0 o ZB0 j: oo
Overdlil-evencs

FPascal Fortran Cobol

1 wves Yes yes

2 no yes yes

Overd(id-events
i floppies Disk Processor Memory Printer

1 i H yes Z80 128 no
2 2 no IE0E5 64 yes
4.2.10 The children tables

The optional children tables define the hierarchical ordering of the values of the decision variable
(i.e., the different classes) in cases in which the decision variable is structured. The specific name
of the table must be the name of a class already defined, i.e. the name must have appeared as the
specific title in an events table. The rule base may be structured to arbitrary depth. The children
table consists of two columns:

node
This mandatory alpha column specifies the name of the child node being defined, i.e., the subclass
of the class by which the table is titled.

events

This mandatory column is a list of indices of events belonging to the parent node (the node on
which the table’s name is based) which are examples of this child node. The list of indices may
use commas (1,2,3,4) or ranges (1..4). The events are numbered in the order they appear in the
parent node’s events table.

The tree below shows how a decision attribute may be structured. In this case classes
“Under1000”, “From1000to4000” and “Overd4000" are siblings at the top of the structure. The
class “From1000to4000" has thirteen events and two sub-classes — “From 1000to2000” and
“From2000to4000".

The example below defines the two classes “From1000t02000” and “From2000t04000™ which are
subclasses of the class “From1000to4000”. Assuming that there is already an events table for
“From 1 000to4000” with 13 events, the following children tables would assign events 1 to 6 and
11 to class “From1000t02000" and events 7 to 13 to class “From2000t04000".

Example:
Froml000tod4000~-children
node events

Froml000to2000 1..6,11
From2000tod000 T A |

From1000to4000

From1000t02000 From2000to4000

123456 89 10 11 12 13

5. Testing Rules
5.1 Introduction

The Testing module is used to evaluate the performance of a rule base. This new module
incorporates the functionality of the separate testing program known as ATEST (Reinke. 1984).
By sharing the input format with AQ15c, it becomes a convenient operator in the AQl5c package.
allowing the user immediate analysis of discovered rules.

5.2 Testing Methods

In this module the fundamental operation is the calculation of the degree of match between a rule
and an example in the form of a vector of attribute values. The calculated value is called a degree
of confidence. The calculation of confidence varies with the method of evaluation selected by the
user in the test parameter in the parameters table. Full descriptions of these methods are given
below based on the following test parameters:

m INLEN, or rform mode used for testing. This mode is named after INLEN in which it is
used (Michalski et al, 1992). In this method of evaluation:

For every testing example, evaluate each class ruleset (cover) against the testing
example.

If a match exists between one or more covers and an example:

For each cover, confidence is the probabilistic sum of confidences for each
rule in the cover, where the probabilistic sum of occurrences A and B is
P(A) + P(B) - (P(A) * P(B)). A rule’s confidence calculation depends on
the source of the evidence for that rule. If the rule was learned from training
examples provided in the current leamning session, then the rule’s
confidence is the percentage of examples of its class covered by that rule
(i.e. a heavier rule or one that better describes a large share of the training
examples will have a higher confidence when matching a new testing
example than a match to a ‘lighter’ rule.)

Else:

The rule’s confidence is the ratio of testing examples of that class covered
by that rule to the total number of testing examples of that class covered by
any rule for that class (i.e. in the absence of training examples, a ‘stronger’
rule is one that matches more of the testing examples).

Else (if no match exists between a class ruleset and the testing example):

A class confidence is a probabilistic sum of confidences for each rule in the
cover. A rule’s confidence is calculated as the ratio of the number of
mngu;?ﬂns in the rule matching the example to the total number of conditions
int e.

q hgform evaluation method first described in (Michalski and Chilausky, 1980). In this
method of evaluation:

A3

Evaluate each cover against all testing examples. If a match exists between a rule
for a given class and an example:

For each class, the degree of match (confidence) is the number of training
examples of the class covered by the rules that match the testing example.
This value is normalized by dividing all confidence values by the maximum
calculated confidence.

Else:
For each class, confidence is the probabilistic sum of confidences for each
rule in the cover. A rule's confidence is calculated as the ratio of the
number of conditions in the rule matching the example to the total number of
conditions in the rule.

w igform evaluation method described by Michalski (1986). In this form of evaluation:

Evaluate each class ruleset against all testing examples. If a match exists between a
cover and an example:

For each class, the degree of maicn (confidence) is the probabilistic sum of
confidences for each rule's confidence in that class. A rule’s confidence is
calculated as the ratio of the number of events covered by the rule to the total
number of all events (for all classes). This evaluation scheme assumes the
number of training examples in a class are characteristic of the distribution
of examples in the universe of possible examples.

Else:
For each class, confidence is the probabilistic sum of confidences for each
rule in the cover of that class. A rule’'s confidence is calculated as the
product of the confidences for each condition in the rule weighted by the
percentage of all training examples covered by the rule. A condition’s
confidence is 1 if it covers the testing example otherwise it is a value
between 0 and 1 proportional to the ratio of the number of possible values
satisfying the condition to the full domain size. :

Example testing summaries are provided in section 4.1.3.2, along with examples of full confusion
matrices using the m, q and w options.

6. Concept Learning Using AQ15c: Examples

6.1 Learning and Visualizing Three Concepis in the ROBOTS Domain Using
Various Parameter Settings

This section provides examples of concept leamning using AQ15c. All of these examples are in the
‘robots’ files provided with AQ15¢. This section describes the problem domain and the example
sets that will be used in each of these runs. We present here a variation on the “robots world”
domain in which there are five variables: Whether or not the robot is smiling, what it is holding,
its size, the time of year (season) in which it was manufactured and location of its home planet.
These represent a binary, a nominal, a linear, a cyclic, and a structured domain. The goal of this
problem is to predict whether a given robot is likely to be friendly, unfriendly or neutral based on
the behavior of other observed robots.

The first run has the parameter settings from which the variations in the following runs are based.
As we begin to study the ambig parameter, note that two examples -- Friendly #2 and Neutral #2 --
are identical. Runs 2 and 3 show the effects of the ambig parameter, runs 4 and 5 show the mode
parameter's effects, runs 6 and 7 focus on the trim parameter, run 8 on the maxstar parameter. and
run 9 will show the effects of different preference criteria.

Figures 6-14 illustrate the Robots representation space and results of learning usingthe DIAV
diagrammatic visualization system (Wnek, 1993). The system employs a General Logic Diagram
(GLD) which is a planar model of a multidimensional space spanned over a set of multivalued
discrete attributes (Michalski, 1973). Each cell in the GLD represents a unique combination of
attribute values. Each atribute partitions the diagram into areas corresponding to the individual
values of the attribute. Conjunctive rules correspond to certain regular arrangements of cells thai
can be easily recognized visually. 4

Diagrams visualizing the Robots representation space use the following abbreviations of atribute
names and attribute values.

smiling ves, no

holding sword, flag, palloon

gige short, medium, Lall

Zeason spr, sum, fal, win

home planet HE Titan, Ganymede, Mars, JYenus, Sirius, Rigel, Betelguese,

Halley_Comet

Diagrams visualizing the Robots representation space consist of 576 cells (points in the
representation space). Training examples of Friendly, Unfriendly and Neutral Robots are marked
using “1” “2" “3", respectively. Ambiguous examples are marked using “#”. Shaded areas show
images of learned concepts. Different shades are used for different classes and their intersections
(see the legend under the diagram). Empty cells represent areas of the representation space not
covered Ly any concept.

6.1.1 AQ15c - input file for Robots example

perameters
run mode ambig trim wts maxstar echo criteria verbose
1 ic pos mini cpx 10 pocvnse default 0
2 1ig neg mini cpx 10 P default 0
3 ie empty mini cpx 10 <} default 0
4 dc pos mini cpx 10 p default 0
5 vl pos mini epx 10 o default 0
=) ic pos spec Ccpx 14 p default 0
7 ic pos gen cpx 10 o] default 0
= ic pos mini cpx 1 P default 0
9 ic pos mini cpx 10 pc lowcost 1
variables
type levels cost name
1 nom 2+ 1.00 smiling
.2 nom 3 1.00 helding
3 lin 3 1.00 size
4 cyc 4 1.00 season
5 str 12 10.0 home

smiling-names

value name
0 yes
1 no

holding-names
value name

o sword
1 flag
2 Dailoon

size-names
value name

a short
1 medium
2 tall

Season-names
value name

i} Spr

1 sum

2 fal

3 Win
home-names

value name

0 Titan

1 Ganymeds

2 Mars

3 Venus

4 Sirius

5 Rigel

6 Betelguese

7 Halley_Comet
a8 Moons

] Planets

10 Orion

13 Stars
home-structure

name value subvalues
Moons 8 0,1
FPlanets 2 2,3
Orion 10 5,6
Stars 11 4,10

lowecost-criteria
criterion tolerance
1 mincost 0.00
2 maxnew 0.10

Friendly-events

smiling holding size season
1 yes flag short spr
2 yes sword tall win
3 vyes sword tall win
4 vyes balloon short win
5 yes balloon medium fal
6 no balloon short win

home

Venus
Halley Comet
Mars

Rigel
Betelguese
Ganymede

34

"

O D D -] OR AR s L b

[

nTrigndiy -—events

smiling nolging Size ZEaAS0n Lome
Y2 sword cail sSum Sizius
Vas sword medium Spr Sirius
no sword short spr Moons
yes sword me Fium Sum Sirius
no halloon medium fal Sirius
no balloon call fal Titan
yes Zlag gshort spr Sirius
1o flag medium Spr Sirius
no flag short sum Sirius
Tnc flag short £al Titan
yEs flag tall fal Ganymede

Neutral-events

O U s L B AR

smiling nolding size season home

no flag medium fal Venus

ves sword tall win Halley Comet
no balloon medium sum Mars

yes sword tall win Gamymede

no flag tall spr Titan

ne sword short win Halley Cemet

6.1.2 AQ15¢c - annotated output file

#%%* Run #1. We list here the problem domain and the example sets that will
«** be used in each of these runs. We present here a variation on the
#** wyohots world” domain in which there are five variables: Whether the
**%* robot is smiling, what it is holding. its size, ana the time of year
w** and location of its home planet. These represent a binary, & nominal,
+ o linear, a cyclic, and a structured domain.
«#* This run has the parameter settings from which the variations in the
*** fpllowing runs are based. Runs 2 and 3 show the effects of the ambig
*#** pararster, runs 4 and 5 show the mode parameter's effects, runs 6 and
#**+ 7 fpcus on the trim parameter, run 8 on the maxstar parameter, and
#+* yun 9 will show the effects of different preference criteria.
#*% MAe we begin to study the ambig parameter, note rhat two examples --
#+* Friendly #2 and Neutral #2 -- are identical. In this run, they will
**+ pe treated as positive examples of their classes, and as such are
***+ coyered by the rules Friendly-1 and Neutral-2.

parameters

run mode ambig trim wts maxstar echo criteria verbose

1 ic pos mini cpx 10 pocTse default 0
default-criteria

criterion tolerance
1 maxnew 0.00
2 minsel Q.00

variahles
TyYTmE zlze cost
1 SO 2 1.04
2 nom = 1.00
3 iin 2 1.00
4 cve 4 100
5 sLr 12 10.00
smiling-names
value TIAMmE
o yes
1 no
holding-names
value name
1] sward
1 flag
2 balloon
size-names
value riame
0 short
1 medium
2 tall
season-names
value name
0 spr
3} Sum
2 fal
3 win
home-names
value namea
0 Titan
1 Ganymede
2 Mars
3 Venus
4 Sirius
5 Rigel
5] Betelguese
Kl Halley_Comet
g Moons
) Planets
T 10 Orion
11 Stars
home-structure
name value
Moons B
Planets 9

Crion 10

In4dme
smiling.smiling
holding . holding
size.slze
SEas0N.5eas0n
home | home

ubvalues

36

Lad
~d

Stars il 4,10

Friendly-events

= smiling holding size season home

1l vyes fiag short spr Venus

2 yes sword call win Halley_ Comet
31 vyes sword tall win Mars

4 vyes balloon short win Rigel

3 yes balloon medium fal Betelguese
& no balloon short win Ganymede

Unfriendly-events

smiling holding size season home
1 ves sword tall sum Sirius
2 ves sword medium sSpr Sirius
3 no sword short spr Moons
4 yes sword medium sum Sirius
5 no balloon medium £al Sirius
& no balloocn tall fal Titan
7 ves flag short Spr Sirius
a8 no fiag medium spr Sirius
9 no flag short sum Sirius
10 no flag short fal Titan
11 ves flag tall fal Ganymede

Neutral-events

smiling holding size season home

1 no flag medium f£al Venus

2 vyes sword tall win Halley_Comet
3 no balloon medium sum Mars

4 ves sword tall win Ganymede

5 ne flag tall spr Titan

f ne sword short win Halley_Comet

Friendly-outhypo
cpx
1 4 [smiling=yes] [home=Planets,Orion,Halley Comet] (£:5, u:d)
2 [holding=balloon] [size=short] (t:2, u:l)

Unfriendly-outhypo
cpx
1 [season=spr, sum, fal] [home=Ganymede, Sirius] (t:8, u:B)
2 [smiling=no) [size=short] [season=spr,fal] {t:2, u:2)
3 [holding=balloon] [home=Titan] {E:1l; w:l)

Neutral-ocuthypo
cpx

1 [smiling=no] [home=Planets,Halley Comet] (t:3, u:3)

2 [size=tall] [season=spr,win] [home=Moons,Halley Comet)] {£:3, u:ld)

ClZICJ =i
[
[4]

5] Y|
7]
B
v |
ik
1 G
]
W
[s]"|
LB
B
B
; HF |sm
s|lrlols|rlp]lslflels|riods]rlols[rlo]s{ripls|slols|flelslflnls]lfliolslflelhe
5 s 1 w 5 5 T w E 5 T) se
5 [u] i 5T
Examples of Robots Con.sst images learned from Robot examples

Friendly — 1 Neutral — 3 ! ' . - .
1 2 3

Unfriendly —2 Ambiguous examples — # 1&2 283 1&3

Figure 6. Run #1: The basis example using the initial parameter settings.

*++ Run #2. In this run, the identical events are treated as negative
**% avamples of their classes, and as such are not covered by any of the
*** yyules for the Friendly and Neutral classes.

parameters
run mode ambig trim wWts maxstar echo criteria verbose
2 ic neq mini cpx 10 P default 0

Friendly-cuthypo

i Cpx
1 [smiling=ves] [home=Planets,Orion) (t:4, u:d)
2 [holding=balloon] [size=ghort] (E:2, u:l)

Unfriendly-ocuthypo

cpX

1 [season=spr, sum, fal] [home=Ganymede,Sirius] {£:8, u:8)
2 [smiling=no] [size=short] [season=spr,fal] (E:2, u:2)
3 [holding=balloon] [home=Titan] f(E:l, wasl)

Neutral-outhypo

cpx
1 [smiling=no] [home=Flanets,Halley_Comet] (t:3, u:3)
2 [size=tall] [season=spr,win] [home=Moons] {t:2, u:2)

=
G |
]
U
E £l
| R
| B
H
LT
| G
| M
. = n
il 5
"]
| B |
H
HP |sm
sTr1olslflolslflblslflolslt[o]slflelsifib slflolslflols]flols[fle]slfib]he
g = 1 w s = f] s 5 f) S
[m t Erd
Examples of Robots Concept images learned from Robot examples

Friendly — 1 Meutral — 3 - ' u ‘ .
1 2 3

Unfriendly —2 Ambiguous examples — # 1&2 783 1&3

Figure 7. Run #2: Rules that exclude the ambiguous examples

%+ pun #3. In this run, the identical events are ignored by the program,
#** yather than being considered to belong to any class. As it turns out,
%% the chosen rules for the Friendly and Neutral classes happen toc cover
**%* rhese events, so the final trimmed versions do include them. This will
*+** ot always be the case.

parameters
run mode ambig trim wts maxstar echeo criteria verbose
3 ic empty mini cpx 10 P default 0

Friendly-outhypo
cpX
1 [smiling=yes] [home=Planets, Orion, Halley_Comet] (£:5, u:d)
2 [holding=balloon] [size=short] {e:2, u:l)

nfriendly-outhypo
CpX

#

1 [season=spr, sunm, fall [home=Ganymede, Sirius] {t:8, u:8}
2 [smiling=no] [size=short] [season=spr, fal] (£:2, u:2)
3 [holding=ballocn] [home=Titan] [i e s |

Neutral-outhypo
opx

40

femiling=no] ;hcme:?lane:s.HaTJe" Comet | (%
[size=tall] [season=spr,winj home=Moons, “ah-eg Comet | {E i, s

sltlelslfle]s[flu]slflolsiflolslflolslrlols]elols] tlulslflulslfluls] fltfhe

s] -] 5 T '] s s f w 58

5 m i £Z
Examples of Robots Concept images learned from Robot examples
Frandy — 1 Neuial—3 CEE B NN
Unfriendly —2 Ambiguous examples — # 182 283 1&3

Figure 8. Run #3: Rules generated by ignoring the ambiguous examples

*** Run #4. We now do a run in dc mode. This means that the Unfriendly rules
*** may not apply te any part of the event space covered by the Friendly
**+ rules, hence their changed, more complex form. The Neutral rules may
*** not intersect with either of the other classes, although because of the
*** ambiguous event, this reguirement is bent somewhat with respect to the
*** Friendly class.

parameters

run mode ambicg trim wts maxstar echo criteria werbose

de pos mini cpX 10 p default g

Friendly-outhypo

Cpx
1 [smiling=yes] [home=FPlanets,Orion,Halley_Comet] (£:5, u:4)
2 [holding=balloon] [size=short] (t:d, u:l)

Unfriendly-outhypo

u:h)
2 [size=medium. .tall] [season=sum, fal] [home=Moons,Sirius] (£:5, u:4)

CpX
1 [holding=sword, flag] [size=short..medium] [home=Moons,Sirius] {t:7,

41

Neutral-outhypo

cpx

1 [size=tall! [season=spr,win] (T:3, u:d)

2 [size=medium] [home=Planets] (tzd, w:2}

3 [smiling=no] [holding=sword] [home=Halley_ Comet] (r:l, u:l)

% :r.lml:l:hmlcl:!ml-q Ilml!ﬂlimld!:llhl-i

am

slrlolslflnlslflolslflolzlfiblslfle]slflo]s[f[o]s[fIo]s[rlo]s{fio]sifibdne

5 5 f] s s f w s s L w se

= m 1 5Z
Example s of Robots Concept images learned from Robot examples
Friendly — 1 Neutral — 3 u u - .
Unfriendly —2 Ambiguous examples — # 2 3 182 283 1&3

Figure 9. FRun #4: The separation of rules is encouraged -

++* Run #5. In vl mode, the rules are applied seguentially. That is, the
x yples for the Unfriendly class assume that none of the rules for the

#** Friendly class were satisfied. No rules are needed for the last class;
*** the fact that none of the others were satisfied is sufficient to classify
*** an example in this class.

parameters
run mode ambig trim wts maxstar echo criteria wverbose
5 vl pos mini cpx 10 =] default 0

Friendly-outhypo
CDX
1 [smiling=yes] [home=Planets,Orion,Halley_ Comet] {t:5, u:4}
2 [holding=balloon] [size=short] (E:2, u:l)

Unfriendly-ouchypo

4

4 .:p}(

& [seasan=spr,sum, Zal; ‘home=Ganymede, Sirius] = S
2 Tsize=short] [season=spr, fal) (£:3, uiZl)

3 [holding=balloon] [home=Titan] ft:1l, u:l)

Neutral-outhypo
= cox
i (essy uib)

AR R RN

i
II-II n
3
Em
s|flblslflp]slflols[f(ols[fib]ls|fibls{flbls|fibls!flofs]fle]s{flo]s|f]b]ne
: 5 f W 5 3 f w 5] f w §1]
H m t 4
Examples of Robots Concept images learned from Robot examples
Friendly — 1 Neutral — 3
Unfriendly —2 Ambiguous examples — # 1&2 2&3 14&3

Figure 10, FRun #5: Rules to be evaluated in “1 then 2 else 3" order. Rule for
class 31 that covers whole representation space is not wvisualized.

**% Bun K6, The previous runs showed "minimal complexity" trimming,

*** in which superflucus conditions were dropped, and the remaining ones
**% were specialized to only show the actual walues found in the training
wx%x oot This run uses “characteristic® mode, in which conditions are
#**% pot dropped. The resulting rules are most specific.

parameters .)
run mode ambig trim wts maxstar echo criteria vwverbose
6 ic pos apeac cpx 10 P default 0

Friendly-cuthypo
cpx : -
1 [smiling=yes] [season=spr, fal,win] [home=Flanets,Oricon,Halley Comet]

{£:5, u:5)

o
T

1 528S0N=S - ‘al]l [home=Ganymede,Sirius] {e:8, wu:8)

2 ismilimgs=noj [holding=sword,flag] (size=short] [season=spr,{al]
[home=Moons] (L2, u:2)

3 [emiling=no] [holding=balloon] [size=tall] [season=fal] [home=Titan]
(el)

MNeutral-outhypo

cpx
1 (smiling=no] [size=short..medium] [season=sum,fal,win]
(home=FPlanets, Halley_ Comet] {t:3, u:3d)
2 [nolding=sword, flag] [size=tall] [season=spr,win]
[home=Moons, Halley_Comet] (E:3, u:ld)
L
i
A 10 t
R e tEZ
B L
| . i - etk | A
Fl i I s ! i & i il Bl | B
i el | e | i 2] e e i H
T
T (G|
| 1
U
E n
| B
L8
| E
HP | =m
sl tlolslflolslflolslflelsifle]s]fle]s[flblslflels]finlsiflb]sifriols|flb]ne
5 s 1 w s 5) w =] 1) s
] m t ST
Examples of Robots Concept images learned from Robot examples
Frigndly — 1 MNeutral — 3 - . . - .
Figure 11. Run #6: Maintaining very specific information
**%* Run #7 involves the learning of "discriminant rules" -- maximally general

*** ones providing only the infermation necessary to discriminate among

*** the classes. Unlike minimal complexity rules, no specialization is done
on the value sets. Instead these rules carve out a wide range of

*#+% yalyues, some of which may not have been covered by any training examples.

parameters

g CDX
1 [smiling=ves] [home=Flanets,Orion,Halley_Comer] {5, ::5)
2 [holding=balloon] [size=short] [home=Moons] el wel)

Unfriendly-ouchype

i CEX

1 [season=spr, sum, fal]l [home=Ganymede,Sirius] (t:8, u:8)

2 [smiling=no] [size=short] [seascn=spr,sum, fal] [home=Moons] (=g
u:2)

3 [holding=balloon] [home=Titan] {1, u:zl}

Neutral-cuthype
i CpX
1 [smiling=no] [home=Planets,Halley_Comet] (£:3, u:3)
2 [size=medium..tall] [season=spr,sum,win] [home=Mocns,Halley_Comet]
(£:3, u:3}

SERRRERFERRRERR

slflol=lflolslrlolslfiols]flulslf[als[fle]lslflelslflelslfiolslfiols[flblne
=

s s f w] 5 f w 5 f [} L
}] t S
Examples of Robots Concept images learned from Ropot examples

Friendly — 1 MNeutral — 3 - E n - .
1 2 3

Unfriendly — 2 Ambiguous examples — # 1&2 283 1&3

Figure 12. Run #7: A maximally general ruleset

**» Run #8 differs from the first run only in its maxstar parameter. With,
*%% mawetar reduced to 1, the program deoes not retain as many intermediate
=** rpsults, thereby reducing its ability to find the optimal rule. The

4
=% yiles founc here ars samewhat more complex than before (note that Thera
*** are now three Meutral rules.)

parameters

run mode ambig trim wts maxstar echeo criteria wverbose

8 iz pos mini el i D default 0

Friendly-outhypo

cpx
1 [emiling=yes] [home=Flanets,Orion,Halley Comet] (e:5, u:d)
2 [holding=balloon] [size=short] (E:2, u:zl}
Unfriendly-outhypo
cpx
1 [season=spr, sum, fal] [home=Ganymede,Sirius] {£:8, u:7}
2 [smiling=no] [holding=sword,balloon] [seasons=spr,fal] [home=Moons]
(=2, u:2)
3 [smiling=no] [holding=flag] [size=short] (£:2, u:l)
Neutral -outhypoe
cpx
1 [holding=sword] [season=win] [home=Ganymede,Halley_Comet] (t:3, u:l)
2 [size=medium] [home=Flanets] (£:2, u:2)
3 [smiling=no] [holding=flag] [size=tall] (£:1, u:l)
. - - | T
| G |
i S B s b o e i | M|
i & ! 11 | i = | Y
e ¥
e ! I 1 1R i i 1158 P
! o E] = 1 i 3 | B
i et i i il i B { il H
i 2
| G
i i M
e i l i
| S|
i il i ,._H_
i i i el i
it i i i H
HF | sm
sl flelzlflolslriblslrio]slrlo]slflo]slflo]s[flofs[fIo]s[le]s[r[o]s]flodno]

s s f w = s f "] s s f] S8

£] t S
Examples of Robots Concept images learned from Robot examples

Friendly — 1 Meutral — 3 . . . - .
1 2 3

Figure 13. Run #8: The result of trading performance for efficiency

e I g Mmimimoscopac ooriterion So selec: among candidste riles
kW . COBT igrned to "home®, the program will try to generate
L #o not invelve this wvariable. It is only sometimes possible.
nEE Al s i es £o 1 in this run; as a result, the processing Time
o R parcStacion 2} is given.

paramerers

rUun mocie ambig Lrim whts maxstar echo criteria verbose

g ie pos mini cpx 10 pc lowcost 1

loweost-criteria
& criterion tolerance
1 mincost .00
2 maxnew 0.10

Friendly-outhypo

opx
1 [smiling=yes] [home=Planets,Ori-~ Halley_Comet] (t:5, u:4)
2 [holding=balloon] [size=short] (Rz2; u:l)

Unfriendly-ocuthypo

cpx

1 [home=Sirius] (Ex7, u:7}

2 [size=tall] [season=fal] {e:2, wu:d)

3 [holding=sword] [season=spr] (£:2, u:l)
4 [size=short] [season=fal] (£:1, u:l)

Neutral -outhypo

Cpx

[size=tall] [season=spr,win] [home=Moons,Halley_Comet] {£:3, wu:2)
[home=Halley_Comet] (£:2, u:l}

[holding=flag] [size=medium] [season=fal] (t:1, u:zl)
[holding=kballoon] [season=sum] {t:1, u:l)

L) B S

This learning used:
System time: 0.300 seconds
User time: 0.00 seconds

sTlolslflolslflolslflolslrlo]lslflolsl[o]s[t[o]s[tTe]s[rIpfs[fio]s]fib}no
5 s f w = = i w F 3 s f w se
5 m L e

Examples of Robots

Friendly — 1 Neutral — 3 ;
Unfriendly — 2 Ambiguous examples — # 1

Concept images learned from Robot examples

EE B N N

1&2 2&3 1&3

Figure 14. Run #9: Rules that attempt to avoid “Home Planet”

6.2 Learning Examplel Problem by Larson and Michalski (1975)

We repeat here the experiment “Example 1.” an abstract classification problem defined by Larson
& Michalski (1975). Our goal is to show the differences in running AQ7 and AQ15¢c. The first
difference is in input data formulation. AQ7 uses a fixed and encrypted input specification. It is
hard to read such a specification when additional comments are not provided. On the other hand
AQI15c has a clear structure: parameters, knowledge structure definitions, and data specification—
all in the form of annotated tables. The specification of knowledge structures allows for flexible
definition of various types, and cost assignment. The size of variables is unlimited. Each class of
examples is in a separate table.

AQ7 output carries many specific comments regarding AQ execution, such as size of Star, sizes of
intermediate Stars, etc. AQ15c output is compact and controlled by the "echo” parameter.

In general, AQ15¢ input and output specifications are much more user-friendly than AQ7.

The first three runs listed below use the same mode and trim parameter settings as those reported
for AQ7. The results, i.e. rules generated by both programs are identical for the three modes: 1C,
DC, and VL. The execution time was 6 seconds for AQ7 ¢ - an TBM 360/75 vs. 0.05 seconds for
AQI15¢c on a Sun SPARCstation. Runs 4 to 7 provide additional variations of parameter settings
(not available for AQ7). These input and output files are prowith AQI5c under the name
example Lrunx. (x specifies the run number). Input files end with .aqin and output files end with
.agout. So, for example this first input file will be found under the name examplel.runl.aqin.

var
3

2
3
4

ClasslO-evancs

#

1
2
3
4

Classl-events

#

1
2
3
4

Class2-events

x1 x2
1 = L
2 3 i
3 2 1
4 3 1
5 3 1
Classi-events
xl =2
1 2 0
2 2 2
3 2 4]
4 2 2
5 2 2

Classd-events

Ul W B 3

iaples
type
nom
O
nom
nom

xl
]

0
0
1

xl
0

1
1
it

x1

(SR o e I e |

w2

o= b a

w2
1

0
1
2

*x2

O MR O

Y o
=i
n

e

(i)

ok
pr

A s ded F1g

w3

[I B e I)

®3

bt

%3

oS S I o =]

x3

[SO e]

x3

Lad L) L L L

Class0-outhypo
#

cpx

x4

x4

xd

x4

x4

trim
mini

[}

1 Cx 0

L)
Y]

RNl

LPV R W R I o) WO WO b O lad = ol B o

O L L

Lxd
M3

. £

LA I

=

m

i

Cricer’a

delault

veroose

48

1 Iale=a, 1] ixi=d (£:4, urd)
Classl-outhvpo

cpx

1 [x1=0,1] {(x3=1]) fe:d, u:4)
ClassZ-outhvpo

CDX

1 [x1=2,3] [x2=1] {t:5, w:5)
Classi-outhypo

4 cpx

ik [x1=2] [x2=0,2] {c:5, u:5)
Classd4-outhypo

cpx

1 [*1=0,1] [=3=3] (e=5: n:5)

System time:
User time:

parameters

This learning used:

0.050 seconds
0.00 seconds

run mode ambig trim wts
2 vl pos mini cpX

Class0-outhypo
£ cpx
1 [x1=0,1]

Classl-outhypo
cDX
1 [x1=0,1]

ClassZ-outhypo
cpx
1 [x2=1]

Classi-outhypo
cpx
1 [x1=2]

Class4-outhypo
cpx
1 (Ex5,

[x3=0] (t:d4, u:d)

[x3=1] (t:d, u:d)

(£:5, u:s)

(£:5, u:9)

u:s)

maxstar
10

criteria
default

verbose
1

49

This learning used:

System time: 7.033 seconds
User Time: .30 seconds
paramete:s
run mode ambi trim wWLE maxstar

3 ic QoS mini cEpX 10
Class(0-outhypo

cpx

1 [%1=0,1] [x3=0] ic:4, u:d)
Classl=-outhypo

cpx

i [xl=0,11 [x3=1] (t:4, u:d)
Class2-outhypo

cpx

1 (¥1=2,3] [%2=1] (t:5, u:s5)
Classi-outhypo

cpx

1 [x1=2] [%2=0,2] (£:5, u:s)
Classd-ocuthypo

cpx

1 [x3=3] (E:5, a:5)

This learning used:

System bime: 0.067 seccnds
User time: 0.00 seconds
parameters
run mode ambig todim wts maxstar

4 iec pos specd cp® 10
Class0-outhypo

& cpx

1 [%x1=0,1] [x3=0] (b:d, u:d)

Classl=-outhypo
cp®

echo

echo
B

criceria
default

eriteria
default

veroosea
1

verbose
1

ClaasZ-ouchypo
$ cpx

1 [xl=2,3) ix2=1] ([x3=0,2] (x4=0,2.3] fEzs,

Classl-ouchvpo
Cpx

1 [®1=2] [x2=0,2] [x3=1,2] [x4=0,2,3) (15,

Classd-outhypo
[af =374
1 [x1=0,1] [x2=0,2] [x3=3) ([=x4=0,L1,3

s

This learning used:

System time: 0.0B3 =zeconds

User time: 0.00 seconds
parameters
run mode ambig trim wts maxstar echo
5 ie pos gen cpx 10 D
Class(0=-outhypo
& cpx
1 [#1=0,1] [x3=0,2] (t:4, u:4)

Classl-outhypo
cpx
1 [x1=0,1] ([=3=1,2] {c:d, u:d}

ClassZ-outhypo

cpX

1 [x1=2,3]) [x2=1] {£:5, u:5)
Classi=-outhypo

£ cpx

1 [xl=2,3] [=x2=0,2] (t:5, u:s)

Classd4-outhypo
L] cpx

1 [®%3=3] (E:5, u:5)

This learning used:

System time: 0.067 seconds

(Ez5,

u:s)

u:s)

criteria
default

‘i

verbose

-
Uk
i
r
o
L]
=
i
B
s
w
m
(9]
%)
¥
£
mn

o paramesers
Tun mode moig trim WLE maxstar
B

& ie Do mini cpx 1

Class{-oucthypo
[cpx
1] [xi=0,11 [®3=0] {4, u:4d)

Classl-outhypo
cpx
1 [#1=0,1] [x3i=l] (c:d, u:d)

- Class2-outhypo
cpX
1 [x1=2,3] [=2=1] (£:8, J:5)

Classl-outhypo

cpx

1 [x1=2] [x2=0,2] (t:5. u:s)
Classd4=-outhypo

fal =} 4

1 [x3=3] (Ex5S, w:5)

This learning used:

System time: 0.017 seconds
B Uger cime: 0.00 seconds
= parameters
run mode ambig trim wts maxstar
7 ic pos mini cpx 10

Class0-cuthypo
£ cpx
1. [#2=0,2] [x3=0] (b2, uiyd)
2 [x3=01 [x4=1,3] (£:2, u:zd)

Classl=-outhypo
cpX
1 [%1=0,1] [=x3=1] (b4, u:4)

Class2-outhypo

echo cricaria
kel default
echo criteria
= mincost

WErnDose

verbose
1

'
[

Classi=-outhyoo
i opx

1 Exi=2} [x2=0.2] fEea weh)

Classd-outhypo
4 CPX
i [%3=3] e, wes)

This learning used:
System time: 0.100 seconds
User cime: 1.00 seconds

T References

Bergadano, F., Matwin, S., Michalski, R.S., and Zhang, J., “Leaming Flexible Concept
Descriptions Using a Two-Tiered Knowledge Representation: Ideas and a Method,” Reports of the
Machine Learning and Inference Laboratory, MLI-88-4, Center for Artificial Intelligence, George
Mason University, 1988.

Hong, J., Mozetic, I., Michalski, R.S., “AQIl5: Incremental Leamming of Attribute-Based
Descriptions from Examples, the Method and User's Guide,” Reports of the Intelligent Systems
Group, University of Illinois at Urbana-Champaign, ISG 86-3, May, 1986.

Michalski, R.S., “Recognition of Total or Partial Symmetry in a Completely or Incompletely
Specified Switching Function, ” Proceedings of the IV Congress of the International Federation on
Automatic Control (IFAC), Vol. 27 (Finite Automata and Switching Systems), pp. 109-129,
Warsaw, June 16-21, 1969, .

Michalski, R.S, “A Theory and Methodology of Machine Learning, in Michalski, R.S, Carbonell,
J1.G. and Mitchell, T.M. (Eds.), Machine Learming: An Artficial Intelligence Approach, Tioga
Publishing Company, 1983, pp. 83-134.

Michalski, R.S., and Chilausky, R.L., “Leaming By Being Told and Learning From Examples:
An Experimental Comparison of the Two Methods of Knowledge Acqusition in the Context of
Developing an Expert System for Soybean Disease Diagnosis,” Policy Analysis and Information
Systems, Vol. 4, No. 2, 1980.

Michalski, R.S., Kerschberg, L., Kaufman, K. and Ribeiro, J., “Mining for Knowledge in
Databases: The INLEN Architecture, Initial Implementation and First Results,” Journal of
Intelligent Information Systems: Integrating Al and Database Technologies, Vol. 1, No. 1, August
1992, pp. 85-113.

34

Michalski, R.S. and Larson, J., “AQVAL/l (AQ7) User's Guide and Program Description.”
Report No. 731, Department of Computer Science, University of Illinois, Urbana, June 1975.

Michalski, R.S. and Larson, J., “Selection of Most Representative Training Examples and
Incremental Generation of VL| Hypotheses: The Underlying Methodology and the Description of
Programs ESEL and AQI1,” Report No. 867, Department of Computer Science, University of
Ilinois, Urbana, May 1978.

Michalski, R.S. and Larson, J., “Incremental Generation of VL| Hypotheses: The Underlying
Methodology and the Description of Program AQIL" ISG 83-5, UIUCDCS-F-83-905.
Department of Computer Science, University of Illinois, Urbana, January 1983.

Michalski, R.S., Mozetic, L., Hong, J., and Lavrac, N., “The Multi-Purpose Incremental Learning
System AQIS5 and its Testing Application to Three Medical Domains,” Proceedings of AAAI-86.

pp. 1041-1045, Philadelphia, PA, 1986.

Reinke, R.E., “Knowledge Acquisition and Refinement Tools for the ADVISE Meta-Expert
System,” University of Illinois at Urbana-Champaign, Master’s Thesis, 1984,

Thrun, S.B., Bala, J., Bloedom, E., Bratko, I., Cestnik, B., Cheng, J., De Jong, K.,
Dzerowski, S., Fahlman, S.E., Hamann, R., Kaufman, K., Keller, S., Kononenko, I.,
Kreuziger, J., Michalski, R.S., Mitchell, T., Pachowicz, P., Vafaie, H., Van de Velde, W.,
Wenzel, W., Wnek, 1., Zhang, J., (1991). "The MONK'S Problems: A Performance Comparison
of Different Learning Algorithms,” (revised version), Carnegie Mellon University, Pittsburgh, PA,

CMU-CS-91-197.

Wnek, J., "DIAV 2.0 User Manual: Specification and Guide through the Diagrammatic
Visualization System," Reports of Machine Learning and Inference Laboratory, MLI 95-5, George
Mason University, Fairfax, VA, 1995.

s o]

Appendix: Programmer’s Guide to Data Structures

A.l Introduction

The most important change in the implementation involved the binary representation of the
complex/selector/event data. The original Pascal data structure supporting the complex/selector/
event limited the size of individual structures, as well as the number of structures. This was due to
the static allocation of memory. This was not a trivial limitation. On the PC version this limit was
approximately 200 events and 12 variables. The new C version uses dynamic memory allocation,
allowing the user to analyze much more input data.

As in the original Pascal implementation, decision classes are organized hierarchically in a tree
structure. Each node in the tree represents a class. A complex is a variant record representing a
complex from a rule or an individual selector. As opposed to the original implementation, event
information is stored in a separate structure. Future implementation will also provide a separate
structure for selector information. This change reduces memeory use and improves speed.

The essential building block of the complex/selector/fevent structure is called “bits.” It is the
address of the contiguous memory location holding the complex information. Consider a simple
event space as follows:

There are 4 variables: x1, x2, x3, x4.

Each of these variables has the following domain sizes:
x1:3 (0.2)
x2:2 (0..1)
x3:4 (0.3)
x4:2 (0..1)

The complex Comp has the following variable values:
xl=1, x2=0, x3=3, x4=1

The size of the complex is 3+2+4+2=11.

Two bytes (16 bits) will be allocated for storage. The last five last bits of the second byte are
unused and are zeroed. The complex bytes will look as follows:

01010000 10100000

A.2 New Data Types

typedef unsigned char * bits
This is the essential data type in the new implementation of AQ. Every variable of this type holds
the pointer to the contiguous memeory area storing the complex/selector/event.

typedef struct Complex {
pcomplex next;
union {
struct [
bits compexbits;

sfsupe

bircs se_sCCoroits;

}

i

IComplex;

typedef szouct Complex *poomplex;

Data type pcomplex is holds the pointer to the variant record containing information about complex
and selector. I[n addition to storing the core logical part of complex or selector, it holds some other
data needed in the algorithm. The previous implementation of AQ also included event information
in this data type. This version has a separate data type for holding the event information. In future
implementations, the pcomplex data type will pertain only to the complex from a rule. Selector data
will be kept by separate structures.

cypedef struct Event {
pevent next;
bits eventbits;

} Ewvent;
cypedef struct Event *pevent;

Type pevent holds the pointer to the data area containing information about events. Note that the
eventbits part of Event is of the same type as complexbits and selectorbits in the Complex type.

typedef struct locate_ {
int firstbyte;

unsigned char firstbit_;
}

Type loraic_ l.oids the pointer to the memory area containing information about variable
configuration in the complex/selector/event. Firstbyte holds the byte number within the complex
where the feature's bits (variable data) starts. Firstbit holds the bit number where the feature starts.

A.3 New Global Variables

The size of the complex/selector/event is determined in the setup function and is represented by the
global variables size_of_complex_in_bits and size_of_complex_in_bytes. The bitwise location of
each feature is kept by the dynamic array pointed by firstbir. The size of each variable is kept in the
dynamic array pointed by varsize. In addition to these variables there is a structure type locate_
holding the bytewise and bitwise locations of each variable. This approach reduces the overhead
associated with the access to features. Also there is no longer a need to create special bitwise masks
to access the features like in previous implementations. Some operations in the new implementation
are done without entering the internal structure of the particular complex/selector/event - we call
such operations bytewise as opposed to bitwise functions that deal with the temal "partitioning"
of the complex/selector/event .

From previous example:
comp = 01010000 10100000

If the presented complex name is comp and the memory location of its first byte.is 100. The
allocated space for it consists of two bytes.

comp = 100 (address of the first byte in complex)

size_of _complex_in_bits = 11
size_of_complex_in_byles =2
number_of _variables = 4

The domain size of each variable is represented by the pointer varsize. In this case :

*varsize = 3 (size of first domain)
*(varsize + 1) = 2 (size of second domain)
= 4 (size of third domain)

]
*(varsize + 2)
) = 2 (size of fourth domain)

*(varsize + 3
Global variable positions_ is the pointer to data type locate_.

positions_->firstbyte = () (the byte number where the first feature starts)
(positions_ +1)->firstbyte = 0 (the byte number where the second feature starts)
(positions_ +2)->firstbyte = 0 (the byte number where the third feature starts)
(positions_ +3)->firstbyte = | (the byte number where the fourth feature starts)

positions_->firstbit = 0 (bit location of the first feature)
(positions_ +1)->firstbit = 3 (bit location of the second feature)
(positions_ +2)->firstbit = 5 (bit location of the third feature)
(positions_ +3)->firstbit = | (bit location of the fourth feature)

Global variable firsthit is the pointer to the array containing the bitwise distances between the
features and the beginning of complex/event/selector.

*firstbit =0 (bitwise distance between first feature and the beginning of complex)
*(firstbit+1) = 3 (bitwise distance between second feature and the beginning of complex)
*(firstbit+2) = 5 (bitwise distance between third feature and the beginning of complex)
*{firstbit+3) = 9 (bitwise distance between fourth feature ar. : il:e beginning of complex)

A.4 New Functions

Most of our effort was put to streamline the basic set and logical operations in the new C version.
Following are short descriptions of some new functions associated with the core of AQ15¢c. Most
of the "high level" functions like traversetree, formrule, coverll etc remained unchanged.

The core of new logical and set operations is included in the new file called ags.c. This file
contains routines that deal with complexes at the lowest level. They can be viewed as a set of basic
tools or drivers needed for the new C version of AQ15.

void compl_allocation(bits *c)
This routine allocates the space needed to hold the complex/selector/fevent pointed by c. It uses the

global variable size_of_complex_in_byres.

void put_1(bits ¢, int _bytenr, unsigned char _bitnr)

This function places a one bit in the location pointed by the above parameters. C is the pointer to
the beginning of the complex/selector/event, _bytenr represents the byte number in complex under
consideration, _bitnr is the bit number in the byte. The beginning of the complex/selector/event
has a _bytenr and _bitnr of zero.

veld put_0(bits ¢, int _bytenr, unsigned char _bitnr)

L
[+ 4]

Function similar to put_l but places zero in the location- pointed by the above parameters.
Parameters are the same as in put_1.

void invert bitibits ¢, int _byctenr, unsigned char _bitnr)
This function inverts the bit value in the location pointed to by the above parameters. The
parameters are the same as in ~1t_1,

char check bit status(bits ¢, int _bytenr, unsigned char

_bitnr)
Check_bit_status returns one if the bit pointed by the above parameters is set to one. Otherwise it

returns zero. See put_| for the description of parameters.

void allocate_ complexes|void))
This function is called by setup after the size of the complex is determined. It allocates complexes

used locally in frequently called functions. :

vold create_bytesivoid)

Create_bytes is called by setup. After domain and variable sizes are acquired, create_bytes
establishes the configuration of the complex/selector/event structure. This function creates global
variables holding information of the bytewise and bitwise locations of each feature. (See

GLOBAL VARIABLES)

int subset_compl(bits cl, bits c2) ’
Subset_compl returns one if complex cl is a proper subset of complex ¢2, otherwise zero is

returned.

char check_if sel fill(bits a, int £fid)
The function returns I if complex a has all bits of feature number fid set to 1. Fid must be in range

of zero to number_of _variables - 1.

void copy_sel (bits a, bits b, int fid)
Copy_sel copies all bits assigned to feature fid of complex a to the same feature number of
complex b. Fid must be in range of zero to number_of_variables - 1.

void blank_feature(bits c, int fid) :
Blank_feature sets all bits belonging to the feawre fid to 0. Fid must be in range from 0 to

number_of_variables - 1

vold copy_complex({bits cl, bits c2)

This function copies the complex pointed by cl to c2. The operation is bytewise, this means that
no feature check is performed. It is different from original Pascal implementation where such
operation had to performed on the array of sets.

void intersect_comp.(bits cl, bits c2, bits c2) ;
The function intersects logically complexes cl and ¢2 and places the resulting complex into ¢3.

This operation is bytewise.

