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ABSTRACT

The paper presenis a planar gecmetrical model of s discrete
finite vector space E, called a generalized logical disgram (GLD),
and then uses the GLD to interpret and illustrate different concepts
and algorithms described in [1] (the concept of en interval complex,
of a mapping f: E-—{[0,1],*}, of an interval cover of f, of the
extension operatiocn v~ , algorithm G for star generstion and algorithm
A% for interval cover synthesis).

In simple cases, the GLD can also be used for the direct
(graphical} synthesis of interval covers using a simple rule for the

recognition of interval complexes,given in the paper.



ACKNOWLEDGMENT

The author would like to acknowledge his gratitude to
Professor B, H. MeCormick for the valuable discussions pertaining
to this paper, his reading the manuscript and comments toward its
improvement.

The author wishes also to thank Mrs, Roberta Andre' for

the aceurate typing and Mr. Stanley Fundo for the excellent drawings,



1. INTRODUCTICH

The interval generalization of switching thgcry described
in [1) discussed & Boolean algebra of event sets in a discrete finize
rector space E and mappings £ from E into {[C,1],*}, vhere *
represents an unspecified velue. The Boolean algebra and Boolean
functions considered in switching theory are a special case of the
above, in which E is a space of binery vectors and T maps E intc the
andpoints of the interval [0,1] and ¥, The basic problem investigated
in [1] was how to find a minimal collection of multidimensicnal intervals,
whose union covers a set FM, defined as {e €E|f(e} > A}, where X is an
assumed threshold value (0 <A <1}, and does not cover any element of the

o {e € E|f{e) <i}. A set satisfying the above conditions was

celled a minimal exact unordered interval cover of the set Fll against FOR

set

(the names 'exact,unordered' distinguish this cover from free and ordered
covers, also introduced in [1]).

The purpcose of the present paper is to present a planar
geometrical model of the spece E which can serve as a useful visual aid
for representing interval covers of mappings I and gecmetrically interpreting
algorithms for their synthesis. In simple cases this model can also be used
for the direet graphicel synthesis of interval covers.

To permit one to understand this paper without prior, though
desirable, knowledge of [1], those concepts from [1] which are relevant to
this paper have been included {in most cases in their egquivalent geometrical

form).



2, THE FINITE DISCRETE VECTOR SPACE E

Assume that some cobjects or processes are described by &
set of n parameters (discrete or continuous) and each parameter ls
mapped into a discrete variable x., X, € {8, 1, 24 .;., h,-1 b
i=1,2, sssy 0, Values hi represent the number of discrete units
into which the range of variability of each parameter is resclved to
achieve desired accuracy.

Variables Xy Xgs eesy X BTE grouped together intoc vectors

I =

& Xps Xgs eees xn}, called events. The finite vector space con-

sisting of all possible events ¥ ia denoted by E{hl, Ny eens hn} or

briefly by E:
H-1
E= { {x, Koy wees xn) }={ed} j=0 (1)
where H = hlhg---hn and J is the value of a function
v: E —= {0, 1, 2, suey H=1 }:
1 +1
] =vy(e) = x, + jg%;l( x5 i;g h, ) (2}

¥(e) is called the number of an event e. For example, if in the space

E(5, 6, 4, 3) an event e = (3, &, 1, 2) then y(e) = 2 + 1:3 + Lkel-3 + 3:6-%-3 =

269 and the event e is denoted by EESQ'

3. A MAPPIRG f: E —= { [0,1], * } AND A COVER CF THE MAPPING £

let f be & mapping from the space E into { [0,1], ¥}, where *

denotes an unspecified walue:

f: E -—={ [0,1], * } (3}



The mapping f can be interpreted, for example, in the following way.
Assume we are given two classes of objects, class 1 and 0. By measuring

some assumed parameters and specifying values for x X each

% Tps wewy
object can be characterized by an event e € E. Assume that samples are
taken from class 1 and O and the sets El and ED are formed from distinguished
events characterizing the objeects of class 1 and 0, respectively. The sets
El and EO, in general, may not be disjoint. Thus, if an event e e El I EG
is given, we cannct infer from this alone to which class the cbject
characterized by e belongs.

Assume that in the above case we are able to estimate the pro-

bability f(e) that the obJect belongs to class 1. Thus, the exampie can

be formally described by a mapping f defined by (3), if:

Fr={cek | fle) =1} =g\ & (%)
F¢={e€E|0<f{e]<l}=ElnED (5)
P ={eckE| fle)=0}=8"~g (6)
F'={eck| fle)=%}=E(ety g (1)

#
Events from the set F correspond to no objects in the semple

sets; they eare called unspecified events. Events from the set F¢ are

called mixed events. By assuming some threshold A, 0 <& <1, we can
refer the objects characterized by mixed events to class 1 if f(e) > A,

and to class 0, otherwise. We define:

F2 = { e | £le) > ) (8)

F' = {e | fle)e 2} (9)



An important ccncept d:fined in [1] is that of a literal “K?.
b; J

N iz the set of all events e

A literal_mx - (xl. Tys wees xh} € E, whose

x;th component takes values between =, and bi:

[ ]
“](i ={{xl,x,...,xn}1 g == &b} (10)

When 8y < bi the literal is denoted briefly by }{:.'L' and called an

elementary literal. A set-thecretic product of literals

L= (ﬂ\. “x?, IE€{1, 2, esss 0 } is called an interval, It constitutes
iel

in the space E an n-dimensional interval, i.e., & set of events lying

between two arbitrary vectors. For example, L is a set of evenis lying

between vectors a = [al. €y sees ah] and b = (bl, Doy wees bn] where

for jé{ I,a =0apdb, = h.-.l:
i i i

L={e€E|a<ex<b}={ [xl,)(?,...,xc) kVi,ai <x; <b; } (11)

The basic concept of the paper [1] iz that of an interval cover
of a mapping f'» A =set D{f|l} | Lj } of intervals is called an uncrdered

exact interval cover of f under A (or an interval cover of Fll against FDA}

if the set-theoretic union of intervals LJ covers every element of Fll
and does not cover any element of Fﬁl:
) I A *
Flsbx,jg FluF (12)

An interval cover D(f|A) whieh has the minimum number of intervals is
W :
called & minimal cover of fl(there can be many equivalent minimal covers ).

Free and crdered interval covers of 2 mapping T were also defined in [1].

The present paper, however, will only consider unordered exact interval

COVvers.

* In the case when a cost functional is specified for intervals, a
minimal cover means a cover of minimal cost.



Sets Fll and Fﬂl define a mapping fl:
2 E—=0,1,% (13)
1A .
where: {elfi{e} = 1,0,%) =P ,FDA,F* respectively,

If ¥ = {, the mapping A can be expressed in a notation similar

toc that used to represent a Boolean Tunction in switching theory:

- Iz, (14)
L, D(f)
d
where:
Ile denctes the characteristic function of the interval Ly in E,
i.e.
l, if ee Lj

|LJ|{e] =

1, otherwise

B(f) is an interval cover of F]"}L against Fal,

\W/r denotes disjunction (logical sum).
Expression {1k4) parallels the disjunctive normal form (sum-of-

products} of a Boolean function. It will therefore be called the interval

A
disjunctive normal form of f° (alternatively, of f under A),

Eimilarly as in switehing theory we can express fA in another

form, corresponding to the conjunctive normal form of a Boolean funciion:

£ /\ s(L,)

LjE K(f)

whare S{Lé} is the disjunction of the characteristic functions of

literals obtained by applying de Morgan's laws to the complement

of the interval L,. For example, if L, = [ ) g% £ -

a - jer
thEI}I, S{L J = f J = | “ix‘: | - [Iﬂ-xl:i-l |v|b.-1lxnlag r}
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Fig. 1. Space E(L,4,4) and a mapping f£: E(k,k, L) —{[0,1],%}



(for a detailed explanation of the rules of the transformation

see [1] ).
Qx . A
K(f) is a cover of F~ against Fl .
The sbove expression, called = interval conjunctive normal expression

s ilder
of I‘}"t is formed by epplying de Morgan's laws to the egquation ¥ = F ,

L. GENERALIZED LOGICAL DIAGRAM (GLD) AND A FUNCTION IMAGE T(f)

A discrete-euclidean geometrical representation of the space E
would be in the form of ean n-dimensicnal 'grid', spanned from the hl,he,*'-,hn
roints on axes Ky sXggaansX respectively. A mapping f could then be
represented by assigning values f{eJ} to the nodes corresponding to vectors
e {fig. 1),

The sbove geometrical model of the space E is, however, not
easily visualized when n > 3. We therefore introduce another representation,

- & planar one, which may be extended to any value of n.
Let us divide an artitrary rectangle into blhE"'hv rows and

**hn columns, where v is the maximal value for whniech h h “*n? <H/2,

1e

and assign vectors {xl'XE""’xv)’ x, e { D,l,...,hi }y i v, to the rows,

hv+lhv+2'

and vectors {xv+1,xv+2,...jxn), x, € { Oslseeeshy, 3, v < i <m to the columns,
according to the rules:

1. In the first step the rectangle is divided by horizontal lines
inta hl rows which, in order from top to bottom, are assigned values
0% s mewacs h,-1, respectively (values of the component x, of vectors e € E),
In step i each row generated in step i-1 is divided into h, rows. The rows,

in order from top to bottom, within each row generated in step i-1, are

assigned values 0, 1, ..., h,-1 respectively (the values of the component xL}.



In toto, v steps are executed.

2. ©Steps v+l, v+2, ..., n are executed analogously to steps
1, 24 sasy v, but now the rectangle is divided by vertical lines intec
co_umns and the columns are assigned values in order from left to right.

The lines which divide the rectangle in step i, ie {1,2,...,n}
are calied axes of the component xs { axes of different components are
graphically distinguished by different thicknesses of the lines ).,

The diagram so obtained, is ealled a generalized logical diagram

(GLD}. Fig. 2.illustrates the GLD for n = L,

4 unigue vector (xl,xa,...,xv) corresponds to each row in the
GLD and a unigque vector Exv+1{xv*2,...,xn} correspends to each column.
The intersecticn of any row with any column is called & cell of the
diagram., To be preeise, we will assume that the cells do not inelude
roints belonging to any axis nor to the perimeter of the rectange. The
obtained diagram comprises H = b h,***h, cells (number of events in E).
Fach cell of the diagram represents a unique event e of E, determined by
concatenating vectors {xl,xz,...,xv} and [xv+1,xv+2,...,xni which correspond
to row and column respectively, such that their intersecticn is the given
eslls

Thus the GLD is = gecmetrical model of the space E,

Cells of the GLD will also be denocted by eJ and it will be clear

from the context if eY denotes an event or a cell, If ej denctes & cell =,
then the index j = y(e) will be called the number of the cel] e,

It can easily be verified that the numbers of the cells are dis-
trivuted in & GLI, in lexicographical order, i.e, from left to right and

from top to bottom, as is shown Tor E(},3,4,2) in fig. 3. If E is the



N

o ——— - —

- o [l ety A —

= bl e —— —

o i [l S — — — -

xlxp

hg-1

!

i

s ohy-tf O

i

«ewhg-1] ©

ha-1

Fig. 2. Generalized Logical Diagram representing E(hl 'hz'ha'hh:l



3. Distribution of cell numberse in the GLD for E(4,3,k,2)

hy=4, hy=3, hz=4, hy=2
X Xg
ol o |1t {2 ]|3|4]|5]|6]|7
o1 8 |9 |10t ]12]|13]|14]1s
2016 |17 [ 18 |19 | « | « | « | -
of w | & | % | s
1 1
2
o
2 1
2 . . . -
of « |« | | «|76|77]| 78| 79
31180 |8 |8 |83)84/|85]|8s6]| 87
2188 | 89|90 | 91 |92 | 93| 94| o5
0 i 0 i (o] i 0 |
0]
Fig.

10



11

E(3,4,2,2,4)

X %o

]

> b4
A1 N Nl
1T 1T N NECE
ZERN N
NZHEEN NHE
v N NHE
A TN NEE
N NHE
ZEHEN NEE
%\\ N NS
SZEEN NEs
NZEEN NG
N N NEE
1T 1 N NEE
A N NES
ZEEN NEE
= nd

o

Fig. 4. The GLD representation of Il and X

2
2

5

-

B

‘\\“\\
N

3

..
e

N AN

X end X

X
%

AN

NN
.\\\

\L.

NZ AN

L.

NZAW

2lafols'ela|e'i’ 2’3 Xg

-
%

N

o'1'2'3jo'1

X Xz
&)

X

11

1
L

Fig. 5, The QLD representation of

5



12

space of binary vectors, i.e. E(2,2,...,2), the GLD becomes the logical
diagran defined in [2]. The logical diagram of [2] is similar to &
diagram for the soclution of logical problems first constructed by Alan
Marquand in 1881 [3]*. The GLD can therefore be viewed as an extension of
Margquand's idea.

It can easily be verified that an elementery literal x§
ke { U,l,...,hl—l} is represented in the GLD by a set of cells contained
in the row generated in step 1 and assigned the wvalue K. An elementary
literal x?, 1€ {2,3,.0.5v }, k€ {0,1,2,000,8;-1 } is represented by the
union of cell sets comprising cells from the rows generated in step i1 =nd
assigned the value k (fig. b). The literals X;, i = v+l,v2,....n,
k = 0,1,...,0,-1, are represented analogously (fig. 5).

Because
aj Ili bi k
X'= kL=J Xis (15)

- b
a non-elementary literal “xﬁ' is represented by the union of cell sets

corresponding to the elementary literals X?, x?ll..., x;i

Generally, the set-theoretic operatieons on any event sets (thus

also on literals and intervals, i.e, products of literals) are eguivalent

£
1) 'Charts' of E. W. Veitch [L], @iscovered or rediscoversd in 1952,

are disgrams of the same kind, comstructed for simplifying switching function
expressions. They have not become as popular as Karnsugh maps {in which rows
and columns are ordered according to Grey's code instead of the natural binary
code) beecause simple rules for detecting sets of cells corresponding to prime
implicants were lacking., However, if such rules are formulated {6, see also
section 5} and mxes of different variables are distinguished by differing
their thicknesses (as in the diagrams of [6,2] and in the GID),the diagrams
become highly useful for simplifying switching function expressions as well
as for detecting switching function symmetry [2] and for converting normal
Boolean expressiondjexclusive-or-polynomial expressions and vice versa [7].
Importent properties of these diagrams are that all the rules remain the same
for any number of varisbles and that the cell numbers have lexiceographical
order {which Karneugh's maps do not have),
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to the set-theoretic operaticns on the cell sets representing them.
For convenience, we will preserve the same notation for intervals and the
cell sets which represent them. However, to distinguish the intervals
from their gecmetrical equivalents we will call the latter Interval
complexes. Fig. €, T and 8 give examples of an intersection, & uniocn end
a complement of intervael complexes, respectively,

To represent s mapping f: E—{ [ 0,1 ],* }, for each event
e € E, the value fle) is assigned to the cell representing e, The set of
cells of the GLD with their assigned values is called a function image of T
and dencted by T(f). The function image T(f) which corresponds to the
*grid" representation of f in fig. 1, is shown in fig. 9. A cover
D(f|A) of a mapping f under A can be represented by marking in T(f)
the interval complexes corresponding to the intervals of the cover,

Using T{f), we can in simple cases (when the GLD is not too large)
visually determine a cover D{f|A). First, the set F¢ of cells with values
fle), 0 < fle} <1, is partitioned into the sets F¢l = { e|l_j fle) <1}

sng PH {0] 0 <f{e)] <A ) and the sets F** = ¥ly 3'*1}1 and FO* = Oy pi0

are determined (e,g., by changing the walues of the cells of Fq}1 to 1 and
those of F¢0 to 0). Then we visuslly find a set of interval complexes

whose union covers every cell of F11 and does not cover any cell of F"ml

(it may, however, cover cells of F*). Bectioen 5 gives a rule for the

easy recognition of cell sets which are intervel complexes. The above pro-
cedure for determining a cover, based on the intuitive grouping of cells into
interval complexes, parallels the graphical way of finding a simplified
disjunctive normal form of & Boolean function in switching theory., It does

not guarantes that the obtained cover is minimal; in general it gives an

approximately minimal one, without, however, any estimation of the distance
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(in terms of the number of intervals) to the minimal cover. The minimal,
or approximately minimal cover with an estimate of the maximal possible
distance to the minimum can be found by applying the algorithm Aq

(see section Tl

5, RECOGNITION OF INTERVAL COMPLEXES IN THE GLD

The synthesis of a minimal interval cover is computaticnelly
a very complex problem, particularly if the number of dimensions n and
the number of distinect values for each dimensicn hi' are not small numbers,
e.g. o > 8 and h, > 4, Therefore, the synthesis of interval covers
normally has to be performed by a computer. However, for checking the
results and understanding the synthesis algorithms, a gecmetrical
representation of a mapping f by a function image T(f} and of its interval
cover, provided by the GLD,is very useful. Also, in simple cases, the
image T(f) can be directly used for (graphicel) synthesis of an interval
cover,  This cen be simplified by having rules for easy recognition of
interval complexes in the GLD. -

In order to formulate such rules, we shall-first define some
simple geometrical cbjects in the GLD.

A set of cells included in one row [column) or in two or more
adjacent rows (columns) generated in step 1 = 1,2,00057 (1 = w1,v42,.0.,0)
and, if i # 1 (i # v+1), contained in a single row {column) generated in

step i-1, is called a regular row (regular column) (fig.10).

The intersectien of any regular row and any regular column is

called a regular rectangle (fig. 11}).
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Regular rectangles which can be made to cover each other by

translation are called identical.

Let E be & set of cells, The minimal-under-inclusicn regular

rectangle which includes E (i.e. the regular rectangle contained in every

other regular rectangle which includes E), is called a covering rectengle

for E and is dencted by R(E) (fig. 12).

Let Rl and RE be identical regular rectangles containing event

and E2 s respectively. El is seid to have the same placement in
; 1

end RE‘ are superimposed El and E2 cover each

sets B

1

Hl as Ea 1

other. El and E2 having the same placement in R

in Ha, if, when R

1 and HE respectively, can

be expressed by:

E)=R;nLad E, =R, AL {16)

4

where L is an interval complex, called an interval complex addressing

E) in R, (notation: L{El,nlli, or E

1 in R, {L[EE.REJJ. For example, in

2

fig.13 the set El has the same placement in Rl.as E2 in HE and we have:
R, L= I.(El,Hl}
1 +0 Ly2 1
E =
=X g X xEox}
= %0 w0 w0 12 1
EE Xl 13 Xh KE KE
.H2 L = L{EE ’EE}

Now we will formulate a theorem which gives a rule for recognizing
interval complexes in the GLD, Let El’EE""’Ek be some event sets.
Theorem 1:

i ; .
The union ElU E2 ...UER is an interval complex, if El’EE""'Ek

are interval complexes snd the covering rectangle H{Elu E.V ..."Ek} can

2
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Fig. 13. Elu EE 'ES'Eh ,E. are interval complexes

{Theorem 1)
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be partitioned into k identical reguler rectangles Rl’RE’""Rk in

which E. ,E_ ,...,E,_ have the same placement, respectively.

1?72 k
Proof

It El'EE""'Ek;EFE interval complexes and have the same

placement in Rl’BE'""Rh’ respectively, then we have:
E,  RynL, E, = EEM.:" vers By = RklnL
where : L = L(El,ﬁlj = L{EE,,FtE]: . L{Ek,Bk:l.
k
E; = {Rln L) u{REr\ LV seav I{RknL} = Ln(HIuI-'.EU... URK}

V.. VYR : : VY,
But {Rlu ByV ees H}() is the covering rectangle hE{E‘.lU E V... Ek]’ therefore

(=

= U Qiiu
Ei LA R{Elu E En}

2
i=1
K The intersection of interval complexes is alsc an interval complex,
thus U Ei is an interval complex, G.E.D,
i=1

Theorem 1 is illustrated in fig. 13.
6, THE EXTENSION OPERATION v~ AND A STAR Gle|X)

An important conecept introduced in [1] is that of the extension
operation v~ on event sets. Here we will give the GLD interpretation of

this operation,.

Reecall from [1] that {El’EE""}U denctes the union of event
sets By, 1 = 1,2,.., and VE the set of all meximal (under inclusion)

intervals contained in E:
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(B B0V = UEi (17)
1 -

v E = {LJ|LJQE anajﬂLjs E,L,C L) (18)

Let E; and EE be event sets. The extension operation V™ on EJ_

relative to E2 (or the intervel extension of El in EE} is defined:

A
B g - {LJILJQEQ and L, E, # §} (19)

1Y S i

Clearly, E:LU‘EEQEE (if Eln EE = d}, ElTEE - m,

If in (19) the set {L,} includes only maximal (under inclusicn)

J

intervals which are contained in E_ and have a non-empty intersection

2
with E,, the union {LJ}U will be the same. Therefore, we have the

equivalent definition:

EvE, AN (20)
L}
where A= {LJ|LJ\_E'JE_Ea.nd LJ.-'\ E:L#d}}
Thus we have:
VEVE, =/ (21)

Te form E:LU_EE using the GLD, mark the intersection Eln EE

and then, by applying theorem 1, find sll the maximsl interval complexes

which cover at least one event ee€ Eln EE and are contained in EE' The

union of these interval complexes is EIWEE (fig. 1k4).

If E, i.s an interval complex L, ther clearly:

L, if E.nL ¥
EAN L o= ] 1 ¢

5 (22)

§, otherwise
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Interval complexes

i i
Lj‘E i Vg {23)

. A
are called maximal intervel complexes in T{f) under X (or in T{f"}).

A . =
In other words, maximal interval complexes Lj are maximal under inclusion
interval complexes which cover some events from FlJL and do not cover any

*
event from Fch. i.e, they are contained in F'U F. The L, (1 =1,2,3) in

fig. 15 are examples of maximal interval complexes in a functicn image

T{fl}. They were generated by starting with some arbitrary cell ei_E ?lh

2 il »

{where e = egﬁ,eg = e3h,e3 = El&gj and then sdding more cells from Fv F ,

as long as their union is still an interval complex according to thecrem 1,
In general, there can be many different maximel interval complexes

in a T{fl] which cover the same event e:iFlA, The set of all maximal interwval

complexes in T{fl] covering a given event eEFl}' is called the interval

star G(e|A) under A of that event. Clearly:
Gle|x) = {ehrFP (ak)

The concept of an interwval ster is fundamental in our apprzach
to the synthesis of quasi-minimal interwval covers described in Section T«
We will here briefly explain the algorithm G of [1] for generating & star
Gle|r) and illustrate it by a simple example.

Dencting (G(e|h]]uby GUEE|A), we have from (24):

V(e]n) = (e} FA (25)

which is eguivalent (see theorem 13 of [1]) to:

Mefn) = () gy (EIie D) (26)
€ ¥
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Equation (26) is the theoretical basis for algorithm G.

F— OA
First, the second de Morgan's law is applied to {ek}, e B0y

L

and then the'x? are expressed as:

_-;I _D -1 LI
X, =X v UK (28)

By applying the distribution property of v~ over v([1]) and
the rule (22), each {{E}LF{E;}J in {26) is transformed into a sum of

literals, denoted by S Then, by multiplying the Sk by each other and

k*
applying the absorption laws:

L{:LUL&U L,V ves) = [ (29)

Lv(L L, Lb"') = L (30)

{where L,L, Ly, *+* are any literals or products of literals), the

v ]
G (e[A) is expressed as the irredundant sum of intervals:

cY(e|r) = Ly VL ULy veer (32)
The star G(e|A) is then:
Gle|r) = {Lj}, 4 = Esy (32)

Example 1

Generate the star G(e|A) of the event e = o7

o = {Ek}S = {egl,EET,ehh,E'sT ,ETEJ.
k=1

€ E(3,3,3,3) ir
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Fig. 16. The star G(e|X) of event e = e3?

(Example 1)}
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From the GLD for E(3,3,3,3) the products of literals corres-
ponding to the events e and e, , k = 1,2,...,5, are determined, and then

the sums Ek are formed:

39 1 vl yl +0
{e”"} = Il 12 x3 X,

{e,} = x2 x2 x3 X}, | 5, = fedu-{el = 142 v 0x;
fe,d = x! x} x§ xf , 5, = fehr{e ) =1x2v x}
{e )} = x] X3 %5 % , 5y = ehre) =% v ox}
gl=x¢dxix], 8§ = fehrie) =%v X
{egh = x§ x3 %3 Xj , 5y = dehv-leg} =02 v 9%}

According to (26):

5
aV(e|r) = Ql 5, = (02v o (xgv xP)Oxiu i Ox] v 2OV (5

After multiplication with the use of the rule:

o b 3 s
Xy , 1 1, =i, = iand a <b
Syb Gtz 0 ,if 4. =i . =ienda>hb {(3L)
i i 1 2
1 2
ot a2, if i, # i
11 12 1 2
— e max[al,agh and b = min(bl’bEJ’ and the absorption laws,
we have:
F]
V(e|r) = \J L, (35)
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where
L, = %} 9x} *x3 9xt, L = x] x} y Lg = x}
Thus the star Gl{e|x) = {L {E {see fig. 16).

Algorithm G was developed for the machine synthesis of interval
covers. The most tedious part of the algorithm, the transformation from
GY(e|a) = (8;8,+*) to (31) (in the exanple sbove from (33) to (35)),
can be simplified by using the special rules described in [8]. When n and

h

; are small, a star G{e|A) usually consists of only a few elements and

therefore can be determined graphically without using the algorithm, simply

by visual inspection of the function image T(f).

T. GRAPHICAL SYNTHEEIS OF QUASI-MINIMAL INTERVAL COVERS

Paper [1] described an adaptation of the algorithm At [9]{which
provides a solution for the general covering problem) to the synthesis of
guasi-minimal Iinterval covers. From now on we will denote interval adaptations

of A% by AL INTERCOVER or, briefly, by A%.
q

In this section we will geometrically describe a version of A7,

uging the GLD and will give examples of the graphical synthesiz of intervsl
covers., The version described here differs slightly from the cne in [i] in
that we assume the criterion of cover minimality be not only the number of

intervals (as in [1]), but alsc, with secondary priority, the number of literals.
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The flow-diasgram of our version of A s given in fig. 17.

Input to the algorithm is a function image T(f) and an assumed
value A, The output is a quasi-minimal interval cover Mi(£|A) (equal
to the last walue of the variable HQ). and parameters & and & which
egtimate the maximal possible difference between the number of intervals

and literals, respectively, in the cover MI(f|A) and in the minimal

cover M{f|A):

e(Mi(£]n)) - e(M(g[x)) <& (36)

2(MY(£]0)) - z(M(g[x)) <8 (37)

By c(M), z(M) is denoted the number of intervals and number of literals

respectively, in the cover M,

n

denotes the assignment statement,

2

is suxiliary wverisble, whose initial value is the

set - defined by (8),

O{Fp;el} denctes the operation of choosing the cell with the
smallest number from the set specified by the current
value of FF and naming it €15

is an interval complex in G(e, |}), called a guasi-

extremal, which covers the maximum number of events

from the current set Fll {in flow=-diagram Fll designates

a variable whose initial walue is the zet F}“?L given by

.{E} and following values are the sets which remain to

be covered after each step of the algorithm , similarly

F# is also a variable whose values are sets; its initial

value is given by (7)),



PART I

Fart 11

Input Deta %
T(£),A )

b

‘ Determine T(fl] _::]

Generate Gl:ell Al

v

m
Determine LY and B = z(1%) - ={L") ‘

= wu iy, P = ALl

L #*
P (e, |3), F : = FuLd

=
»
i

o
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1i

o(F

. el}

1

Generate G(el|1] and Determine LY

!

M3 = MUzl F = Pl

#*
py=FULY, A: = a+l, §: = & + z(LY)

Fig. 17. Algorithm A% (& graphical version)
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a is an interval complex in G{elEl} which has the minimm
number of literals,

2(1%),2(L™) are numbers of literals in L? and L, respectively,

M is the variable which stores the set of determined quasi-

extremals. Its finsel wvaelue is called a guasi-minimal cover

of £ and denoted by Mi(£[a).

The algerithm consists of 2 parts.

Part I,

After T(fl1 is determined, stars Gle|A)} are successively generated
for events which have the smellest number in the current set Fp, and Lq,Lm
and 5, = 2(13) - 2(L™) are found for each star. If a star contains more
than one Lq, the one with the smaller number of literals is preferable.
Since F¥ in each siep includes only those events from ‘E":Ul which were not
covered by an intervel complex from any star generated in previmué steps
{due to the operation : = FP\\GU{ell]), any two sters are disjloint, i.e.
they kave no common interval complexes.

Part I is terminated when F¥ = @ snd therefore the Tamily of stars
which were generated (we will denote this family by 6') is & maximal under
inelusion family of disjoint stars (i.e. there does not exist an e« Fl;’l

such that G(e|r) § 6" and is disjoint with all its members).

Part II.
. , - Fll 1 ‘
This part (executed if # @ and F* = @} determines sdditiocnal
interval complexes which cover the remaining cells of Flh. Thelr number
iz the value & in (36),
To prove (36) let F* denote the set of cells e, for which stars were

generated in Part I (note that F £ {ERJG{E}L} €6°}). Since the stars of any



Lt

two events of Fr have no common interval complexes, every cover of Fr
against F°* has to inelude at least c(Gr}. elements. But F g Fll, and
therefore any cover of Fll against FDA, thus alsc a minimal cover
M{£{A) (which here means a cover with the minimm number of elements and
the minimum number of literals for that number of elements) cannot have
less elements than r.'{l}r]. Thus, the numcer A of interval complexes which
have to be used to cover the remaining set F‘J')k in part II of the
algorithm can be viewed as an estimate of the maximal possible difference
in number of elements between the cover MI(£|A) and the minimal cover
M{f|A). The estimate § in (37) is obtained by summing the differences
GU determined in part I end then adding the number of literals in intervals
determined in pert II., If & = 0 and 6 = 0,-quf|l) = Hfflhl.

If after the first execution of the algorithm, A and § are
considered to be too large, & better estimate (and/or solution) mﬁy be
obtained by performing cther iterations. A simple and often successful

method for realizing further iterations is described in [8].

Example 2

Determine a quasi-minimal interwval cover MqiffiAJ for the
mapping £* defined by T(f') in fig. 18.
In the first step, the star G(e‘g[l} is determined. It consists

of interval complexes L
1a

1,1'.:1,1.“2 {fig. 19). Sinece L1 covers the maximum

number of cells of F'* (8 cells) it is chosen to be the quasi-extremal, The

operation F¥: = FPNHGVEElBFAJ is realized by marking the cells of

G (elE[A} n Fllwith a *. Part I terminates after determining guasi-extremal

L5 in the star G{elaﬁhj.

*
e(K) denotes the cardinality of K.
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In part II, the remaining cells eﬁl,eaa, and o.=.E‘3 of Fr are

covered by Ll;_. Thus &4 = 1 and & = Z{Ll ) =3 (rig. 19).

It can easzily be verified that if the algorithm is sterted with
the cell e33, the obtainen cover will be the same but 4 = 6§ = 0. Thus

the above determined quasi-minimal cover Mq(f|13 is, in fact, the
minimal cover,

Eggﬂple 3

Assume that objeets of class ] are cheracterized by set }'D“

of events e = Exl,xg,x3,xh} € E(b,b,4,4):

PP = {(0,3,3,0), (0,3,2,1), (1,2,3,0), (1,3,3,1),
(09843, {1.4:8.1): {1,2,2,0), o A 26 1 T
(3,0,0,3), (2,1,0,3), (2,0,1,2}, (3,1,1,2),

(2,1,1,2), (3,1,0,4), {2,0,0,2), (3,0,1,2)}

and cbjects of class 0 by set Fm‘:

P = {(0,0,1,0), (1,2,1,2), feaay: {10:a:m),

£3:34342), (2,3.3.2]), (2,3,3,0)5 (3.3,2,3);
(3,0,3,03; {2,3,3.,1%, {0,3.1,3): (0:2,0,3),

(3.3,3,0), (2,0,3,2), (0,1,1.1), {1,1,0,1)}

The above events can be represented graphically as small ‘pictures!
(fig. 20 a) by interpreting the variables Xyp 1= 1,2,3,4 as elements

of a sguare:

.|

3 | %

end giving them different shades corresponding to the values of xi{x; €{0,1,2,3:),



Fig. 20. a. 'Pictures' respresenting events from sets Fll and FGl
for example 3.

b. Cover Mi(f|A)

O "
c. ©Samples of 'pictures' representing sets F 1 and F



Fig. 21. Cover MY{(f|A) for example 3
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Find the minimal set of features, in the form of intervals in

; b ox .
E(L,4,4,4), which permit classification of any event from My PO dnto

the set Flk or Fm.

1k Ox

A e
Fig. 21 shows the function image T(f") defined by F° and F

and the cover MI{f|A) found by realizing the algorithm A% . First the

star for ehl was generated (L ﬂ and L.'L in fig. 21 are 3 of 5 elements

L2
130

of G{ehl[.k}}, a second star was generated for e '

2
elements of {el3a|?x:l. Since & = & = 0, Mi(£]A) = M{£]a).

{La,L gre 2 of 5

Fig. 2C b shows the intervels L. and L, of MI(£|x) as features

for distinguishing events from F* and FP*. The cover M £|r) partitions
all events of E(L,L,L,4) into class 7! of events which are covered by

L. v Lg’ and class FE:I of events which are not covered by Llu LE' Clearly,

1
FlJ‘Q F* and Fm.; P, Thus, the events previously unspecified (events

. » " *
of F ) are now included in either the set F 1a Fl\f’n or F 0 F~F l.

1

*
Assuming that events e€l are classified es events of class 1 and events

*®

aeF : as events of clasg 0, the seta Fl and FEI can be viewed as generalized

sample sets Fl}' and P‘OA. To illustrate the sbove generalization, samples of
® =

events from sets F % and F 0 were shown in fig. 20c. {In fig. 21 these

events are marked by *1 and *0, respectively.)
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8. CONCLUSION

The GLD model of the space E is a useful visual aid for
gecmetrically representing mappings f end their interval covers, and for
interpreting algorithms for interval covering synthesis. It has proved
to be particularly useful for developing and verifying computer
implementations of algorithm A9 (8l.

If the number n of dimensions of E and the values hi are
small, e.g. n % 6, hi _fh, the GLD can easily be used for the direct

graphical synthesis of interval covers.

This geometric model can also be applied for representing

functions and algorithms of many-valued logie.
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