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Abstract

NETWORK INFERENCE FROM GROUPING DATA

Charles W. Weko III, PhD

George Mason University, 2015

Dissertation Director: Dr. Yunpeng Zhao

In the past two decades, the interest in network analysis has expanded rapidly. Most net-

work analysis methods start from observed network topology. However, network structure

is not directly observed in many fields, especially in social sciences. Thus, a methodology for

inferring implicit network structure is required to effectively apply network analysis. One

area of research involves the inference of network structure from grouped data. Grouped

data records the manner in which a population forms subsets or smaller groups.

In the existing social science literature, inference of network structure from grouped data

is performed using descriptive statistics. Researchers have defined a collection of measures

to quantify the strength of interaction among members of the population and use these

measures to infer a network structure. Classic examples of these measures include the

co-occurrence matrix and the half weight index.

This dissertation defines stochastic models called Star Models for modeling group for-

mation. Each observed group is assumed to have a single leader who has brought the

group together. We derive maximum likelihood estimators for the model parameters. The

parameter estimation of Star Models fits naturally into the framework of the Expectation-

Maximization algorithm. The resulting parameters have an intuitive interpretation as the



assertiveness of individual nodes and their popularity within the population.

We apply the new methods to simulated data to compare our results with the existing

methods. Additionally, we apply these techniques to the famous 18th century Chinese novel,

Dream of the Red Chamber to demonstrate the superior performance of the Star Model.

The number of parameters for Star Models is order O(n2), where n is the size of the

network. This presents a challenge that the model requires a large number of observations

to accurately estimate parameters even when the network size is moderate. In practice,

the number of observations may be limited. To resolve this issue, we further propose a

technique called the Penalized Rho Star Model, which is based on the assumption that only

a few members of the population can generate groups even though the total population is

large. Simulation studies and data analysis are performed to compare the Star Model to

the Penalized Rho Star Model.

The structure of this dissertation begins with a literature review of existing techniques.

Chapter 2 presents the Star Model and shows that assuming that relationships are sym-

metric leads to an identifiable version which we call the Symmetric Star Model. In Chapter

3, we present the Penalized Rho Star Model and show that this technique introduces spar-

sity into the parameters and improves estimation of large networks. We conclude with a

discussion of a broad number of extensions of the existing work.



Chapter 1: Introduction

1.1. Notation

A network encodes fundamental information about how the elements of a system are con-

nected to each other. Each network consists of a set of n discrete verticies, or nodes,

V = {v1, . . . , vn}. In most applications, including those presented in this dissertation, the

number of verticies is assumed to be known and fixed.

Verticies are related to each other by an n × n adjacency matrix, A. Each element

of the adjacency matrix represents the relationship between an ordered pair of verticies.

Specifically, Aij represents the relationship between the pair of nodes, {vi, vj}. The ele-

ments (possibly weighted) of the adjacency matrix are often called edges, links, arcs, or

relationships. The adjacency matrix may be symmetric, i.e., Aij = Aji, for all i, j, or

asymmetric.

Appendix A contains a list of notations used throughout this dissertation.

1.2. Network Science

As documented in a 2006 National Research Council report (Alderson, 2008), the research

field called network science is focused on an interdisciplinary view of complex network sys-

tems. Broadly speaking, the scientific questions that are interesting to researchers address

network structure, universal laws governing structure, and vulnerabilities inherent in com-

plex networks. The applications include the Internet and World Wide Web, friendship and

communication networks in the social sciences, food webs and gene-regulatory networks in

biology, network games in economics, and many others.

Network science generally takes random graphs as a foundation for research. Random

1



graph models specify a probability distribution over a collection of graphs. The precise

analytical characterization of many of the summary structural measures of these models,

such as clustering coefficients and degree distributions makes random graph models ideally

suited to explaining observed network structures (Kolaczyk, 2009). Some well studied ran-

dom graphs models are the Erdös-Renyi graph, the preferential attachment graph, and the

configuration model (Newman, 2011).

The Erdös-Renyi graph model, or the classical random graph model, is probably the

simplest model in network science. This model places an equal probability on all edges in

a network (Erdos and Renyi, 1960). This can be done in two different ways. In the first

technique, the G(n, p) model, a graph is defined to have n nodes and the probability of each

edge is defined to be p. Each edge is included in the network independently of every other

edge; therefore, the number of edges in the graph will have a binomial distribution. In the

second technique, the G(n,m) model, the number of edges in the network is set by m and

the set of edges in the network is selected uniformly from any of the possible networks with

m edges.

Despite its simplicity, the Erdös-Renyi graph model is not able to model some important

characteristics observed in real-world networks, especially the heavy-tailed distribution of

degrees. The degree of a node is the number of edges originating from the node connected

to the rest of the nodes. The preferential attachment model is proposed to model the

observed power-law degree distributions. The preferential attachment model assumes that

observed network structure is the result of a generation process where new nodes entering

the network are more likely to form links to well connected nodes than nodes with few

connections (Barabasi and Albert, 1999). The simplest form of the preferential attachment

model begins with a pair of connected nodes. As a new node is added to the network, it

forms a single link with one of the existing nodes. The node selected to form this link is

selected with a probability that is exactly proportional to the degree of the node.

In the configuration model, the degree of each node in the network is predetermined. The

generation process randomly links nodes based on their fixed degree. This type of model

2



is particularly useful for mimicking networks with arbitrary degree distributions (Newman,

2011).

Random graphs prove foundational when modeling known network structure by provid-

ing a probability distribution over all possible graphs.

1.3. Network Inference

An alternative research area is network inference. Network inference begins with some

observed network behavior and then attempts to infer the network’s structure from that

behavior. In contrast to the models for network formation discussed in the last section,

models for network inference should provide a probability distribution over all possible

observed behaviors.

Social Network Analysis: Methods and Applications (Wasserman and Faust, 1994) in-

troduces the problem of inferring the relations among a collection of children based on their

attendance at birthday parties. In this introductory dataset, the names of children repre-

sent the column headings, and the birthday parties represent the row headings. If a specific

child attended a party, he or she is represented by the numeral 1, and 0 indicates that he

or she did not.

Table 1.1: Grouped Dataset for Six Children and Three Birthday Parties

Child
Party Allison Drew Eliot Keith Ross Sarah

1 1 0 0 0 1 1
2 0 1 1 0 1 1
3 1 0 1 1 1 0

In this dissertation, a collection of individuals observed in the same sample is called a

group, and a dataset of these observations is referred to as grouped data. In Wasserman

3



and Faust’s example, each party defines a group and the set of all parties is the grouped

data. Two individuals are said to co-occur if they appear in the same group. For example,

in Table 1.1 Ross and Sarah co-occur in Parties 1 and 2 but not in Party 3.

In order to make inferences about this population, a method of finding the most likely

network structure that could have generated the observations is needed. Clearly, classical

network models cannot be directly used to accomplish this task because random graphs

model the generation of the network itself rather than the generation of the observed groups.

Therefore, in this dissertation, we introduce models for the generation of grouped data and

apply maximum likelihood estimation to infer the latent network structure.

1.4. Data

1.4.1 Format of Grouped Data

Grouped data consists of observations {V (t), t = 1, ..., T}, which are subsets of a global

population V , taken at different time points, V (t) ⊂ V .

The observed subset V (t) can be coded by an n length row vector G(t) where

G
(t)
i =

 1 if vi ∈ V (t)

0 if vi /∈ V (t)

The number of members in the global population is n and the number of nodes in

group G(t) is denoted by nt =
∑

iG
(t)
i . The full set of observations is denoted by G =

{G(1), . . . , G(T )}.

Note that this data structure is only an abstraction of “groups”. The criteria that

researchers use to define a “group” varies between research situations. For example, a

researcher studying a corporation may define a group as the people attending the same

meeting. Another researcher studying marine mammals may define a group based on the

physical distance between individuals.

4



This dissertation focuses on the situation where only one group is observed at a single

point in time. We call this grouped data partially observed. There are two situations

which are excluded from this focus. First, fully observed populations are present when

all members of V can be observed at the same time. This kind of data is often present

in studies of controlled populations such as captive chimpanzee populations (Schel et al.,

2013). Secondly, simultaneously observed populations are present when multiple groups can

be observed at the same time without observing the full population. For example, suppose

a researcher observes a population of children on a school playground. When the researcher

focuses on a large play structure, some children may be hidden from view and at the same

time children who are not interacting with each other may be in view. This type of data

introduces aspects of measurement error that are addressed briefly in Chapter 4.

An important point concerning partially observed populations is that no inference can

be made about the grouping behavior of the unobserved nodes in observation t. That is,

when two nodes are simultaneously unobserved, we cannot tell whether they are together or

apart in a different group. Table 1.2 summarizes that an inference about the co-occurrence

of two nodes can only be made when one of the nodes is observed.

Table 1.2: Relationship of Observations

Node vi Observed Node vi Not Observed

Node vj Observed vi and vj together vi and vj apart

Node vj Not Observed vi and vj apart unknown

The observed group G(t) is assumed to represent a component of an adjacency matrix,

A(t) generated by A. A component is a subset of the verticies of a network such that

there exists at least one path from each member of that subset to each other member, and

such that no other vertex in the network can be added to the subset while preserving this

property.
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A(t) is an unweighted adjacency matrix where A
(t)
ij = 1 with probability Aij and A

(t)
ij = 0

otherwise. The central challenge of network inference is that there are multiple A(t) which

could have produced the same G(t). For an edge, Aij , where nodes vi and vj are in G(t), we

say the edge is active if A
(t)
ij = 1 and inactive otherwise.

As an example of the way in which a single observed group may be the result of different

behaviors, consider a population of ten nodes. In sample t, G(t) = {1, 1, 1, 1, 1, 1, 0, 0, 0, 0}

is observed. That is, nodes 1-6 are observed to co-occur. Two possible grouping behaviors

that could have caused this observation are shown in Figure 1.1. In Figure 1.1a, the group

is formed by a star subgraph. In Figure 1.1b, the group is the result of a ring subgraph.

In Figure 1.1a, we can see that A15 is active and that A56 is inactive. In practice,

whether a link is active is unknown and must be inferred from the data.

1

2

3

4

5

6

7

8

9

10

(a) True Adjacency Matrix

1

2

3
4

5

6

7

8

9

10

(b) True Adjacency Matrix

Figure 1.1: Two Different Ways Nodes {v1 . . . v6} Can Be Connected

The terms active and inactive have important implications for inferring the network.

Two nodes which co-occur do not necessarily have an active relationship between them;

6



it is only known that some set of active relationships have connected them. However, we

can make a stronger statement about two nodes, {vi, vj}, when only one node is observed.

These two nodes do not have any active set of relationships connecting them and A
(t)
ij = 0.

As a simple example of a set of partially observed grouping data, consider a population

of four individuals (n = 4). Five samples of these individuals are observed (T = 5). This

grouped dataset can be encoded in the 5× 4 matrix shown below.

G =



0 1 1 0

0 0 1 1

1 0 0 0

0 1 1 0

1 1 1 1



Throughout this dissertation, groups are assumed to be independent and identically

distributed within the dataset G. That is, Gt is not the result of a transformation on Gt−1,

and we could reorder the elements of G without effecting our inference. This assumption is

consistent with techniques that are used in social network analysis, which require sightings

to be spaced at least one day apart to provide independence (Bejder et al., 1998).

Under the assumption of independence, a method of data compression is to build a

frequency table, F , which counts the number of times that a unique group appears. This

reduces the number of rows in the grouping data from T to at most 2n. As an additional

means of organizing the data, we sort the groups from least number of members to highest

number of members.

Continuing with our example G above, the resulting frequency table appears below.

Consider the third row of G where only node v1 is observed. This group becomes the first

row of F , and we place a 1 in the fifth column because this group is observed only once.

Compare this to the groups t = 1 and t = 4. These groups have the same membership and

appear in the frequency table on the second row with a 2 in the fifth column.
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F =



1 0 0 0 1

0 1 1 0 2

0 0 1 1 1

1 1 1 1 1



1.4.2 Data Examples

Two datasets are used in this dissertation to demonstrate inference of network structure.

Dream of the Red Chamber

As noted by Kolaczyk (2009), an important problem of parameter estimation, in the context

of network inference, is that there is usually no way to verify the extent to which the estimate

matches reality for a real world dataset. That is, there is no “ground truth” or “golden

standard” to evaluate the performance of the estimated results against. Therefore, to test

the performance of Star Models, it is useful to analyze data where there is some knowledge

of the relationships between nodes.

To this end, we constructed a dataset of characters from the 18th century Chinese novel

Dream of the Red Chamber, also known as The Story of the Stone. Since novels contain a

qualitative social structure that is familiar to readers, the results of quantitative analysis can

be compared to this standard. This novel was selected because the relationships between

the characters are subtle and complex. In this way, the story presents a challenge to the

task of estimating the social structure of the characters.

Traditional approaches to building datasets from novels require carefully reading the

text and identifying dyadic interactions between characters based on criteria established

by the researchers, e.g., character A has a conversation with character B (MacCarron and

Kenna, 2013). Though this method may construct high quality datasets, identifying the

dyadic interactions requires readers who are familiar with the novel’s language and who

have time to build the datasets. Since Dream of the Red Chamber is written in classical
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Chinese and the English translation runs over 2,600 pages, directly generating the dataset

would be excessively time consuming.

To address the novel’s size, the dataset is built using text-mining. We define a group as

characters who co-occur in the same paragraph. Paragraphs containing no character names

are ignored.

We analyze the relationships of 29 important characters. The character names are based

on their original pinyin pronunciations and the David Hawkes translation (Hawkes, 1974).

A publicly available Chinese version of the novel was used for text-mining.

This complete novel contains 120 chapters, but we focus on the first 80 chapters because

it is commonly believed that the last 40 chapters are written by a different author and may

not reflect the original themes of the novel. The resulting dataset has 1,389 observations of

groups containing at least one of the 29 characters.

South Island Hector’s Dolphin Data

This data set consists of observations of Hector’s dolphins that were taken over 1996-1997

in the South Island of New Zealand’s inshore waters. The full population is estimated to

contain 50-70 individuals.

Hector’s dolphins are most often observed in groups of two-to-eight individuals. These

groups often fuse together and split up over periods of several hours. The researchers

considered individuals associated if they were members of the same group or cluster of

groups. Groups of dolphins were considered part of the same cluster of groups if groups

merged in the time span when observations were being taken.

Observations were recorded by photographs. Photography is a noninvasive tool that is

frequently used to study the social structure of cetaceans and other social animals. Groups

are defined entirely based on photographic records. That is, individuals seen, but not

photographed, are not included in the observed group (Bejder et al., 1998).

The dataset focuses on the grouping of 18 individuals. A total of 40 observations are

taken of the population. Throughout this dissertation, this dataset is used as an example

9



of a situation where there are very few observations relative to the number of members in

the population under study.

1.5. Techniques of Network Inference

1.5.1 The Social Networks Perspective

The majority of literature dealing with grouped data comes from social network research

where it is common to collect data on subgroups of a global population. This approach

is founded on a qualitative approach to social interaction known as the social networks

perspective. This perspective was introduced in a book written in 1934 by J.L. Moreno

(Moreno, 1934).

The social networks perspective begins by recognizing that individual actors (nodes)

and their actions are interdependent, rather than autonomous and independent. Under this

perspective, actors are connected by relational ties (edges) that serve as conduits for infor-

mation or resources. Network models focusing on individuals view the network’s structure

as providing opportunities for, or constraints on individual action (Wasserman and Faust,

1994).

This perspective is nicely summed up in the American Psychological Association record

review of Moreno’s book. In the following passage, the editors point out that the strength

of relationships (which is the parameter of interest in social network analysis) are essentially

unobserved data. This suggests that the Expectation-Maximization algorithm will be useful

in solving the network inference problem.

Wherever two or more people are functioning as a social group, that group

not only consists of those individuals, but . . . the relations which maintain

between them. It is these intangible, imponderable and invisible aspects of the

situation which enable the mathematical sum of a certain number of individuals

to function as a social group (PsycNet, 2012).
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One question that the social networks perspective does not address is whether behavior

actually demonstrates interdependencies between individuals or is merely the result of in-

dependent behavior. This issue suggests a “null model” for group formation which will be

addressed in greater detail later in this dissertation.

1.5.2 Dyadic Behavior

In order to derive network structure from grouped data, the relations of interest must first

be defined. One of the most straightforward ways to accomplish this is to define the relations

in a manner that simplifies the derivation of the network structure. The easiest approach is

to define dyadic relationships which exist only between a pair of individual nodes. Examples

of these types of relationships include dating, mating, and financial transactions.

Dyadic relationships enforce a constraint on grouped data, G(t). Under a dyadic rela-

tionship, every group is a pair,
∑

iG
(t)
i = 2 ∀t. This is a fairly artificial constraint which

often has to be aggressively enforced.

Alternatively, if a dyadic relationship is defined such that it is directly observable by

the researcher, network inference is reduced to a trivial task.

With this goal in mind, one of the most basic ways to infer the relationships between

individuals is simply to conduct a survey in which each member of the population lists his

favorite members of the population. This technique can be expanded into what is called

the Moreno-Davis Experiment where respondents list their most favorite as well as least

favorite members of the population (Freeman et al., 1989).

Unfortunately, this type of data collection is not always feasible. For example, the

population under interest in the Moreno-Davis Experiment may not be willing or able to

provide survey responses. This would clearly be the case when the population consists of

inanimate objects like telecommunication routers, brain cells, or proteins. Further, animal

populations are not capable of providing such detailed responses. Even human populations

may not be able to describe their preferences either because they cannot answer such ques-

tions (e.g. young children) or because their responses are subject to bias (e.g. corporate
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organizations).

One way to overcome the problem of survey taking is to use the Bales Experiment. In

the Bales Experiment, the behavior of a population is discretely observed by researchers

who classify dyadic behavior by a scheme of defined categories. This method has two dis-

tinct advantages. First, since the data is collected by the researchers under a set scheme of

classification, the measurement of interactions is standardized for all members of the popu-

lation. Secondly, since data collection occurs independent of the interaction of individuals,

data can be collected over time to describe how the relationships unfold.

The Bales Experiment has two drawbacks. First, data collection is very time intensive,

because it must be done manually. Therefore, the set of data collected is limited by the

resources available for observation. Secondly, the characterization of observed behavior

is subject to the interpretation of the researcher. While this limitation may be fine for

observations on human beings, inferences about the interaction of non-human populations

can be biased by the researcher’s perceptions (Freeman et al., 1989).

1.5.3 Affiliations Networks

While dyadic behavior analysis simplifies the network inference problem by describing

groups based on some pairwise relationship, affiliation network data analysis attempts to

infer network structure by representing the interactions between a set of actors (usually

greater than two) and a set of events (Wasserman and Faust, 1994).

Affiliation networks describe collections of actors rather than the ties between individ-

uals. Affiliations are technically a combination of two sets of nodes, actors and events,

which are often represented by bipartite graphs, but interest usually focuses on translating

the information into a network that describes the connections between actors. This data is

essentially equivalent to grouped data as described above.

The study of affiliation networks is based on the importance of individuals’ membership

in collective organizations. That is, multiple group affiliations form the basis for defining

the social identity of individuals.
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An aspect common to many of the views about affiliations is the idea that actors are

first brought together by their common participation in social events. Joint participation

then provides an opportunity for individuals to interact. Ultimately, interaction increases

the probability that direct pairwise ties will develop between actors (Wasserman and Faust,

1994).

Note that this perspective does not suggest that co-occurrence implies a direct tie,

but that the probability of a direct tie increases as a result of co-occurrence. This joint

participation perspective is the intuitive basis for the maximum likelihood approach used in

this dissertation.

One popular method for measuring affiliation networks is with a co-membership matrix

or a co-occurrence matrix. The co-occurrence matrix can be represented either as a count

of co-occurrence, O#, or as a frequency of co-occurrence, O. This method is described in

detail by Wasserman and Faust; however, it enjoys such popularity that it is often applied

without explanation or reference.

Each element of the co-occurrence matrix, O#, is calculated by summing the number

of times that nodes vi and vj are observed together in the same group, O#
ij =

∑
tG

(t)
i G

(t)
j .

Since co-occurrence is non-directional, the co-occurrence matrix is symmetric, O#
ij = O#

ji .

To fully define the co-occurrence matrix, let O#
ii = O#

i , that is the number of times that vi

is observed in a group.

Once the co-occurrence matrix is calculated, a threshold, α, can be used to translate the

co-occurrence matrix, O#, into an unweighted, undirected adjacency matrix, A. If O#
ij > α,

then Aij = 1, otherwise Aij = 0.

We can easily see that there is a problem with using the co-occurrence matrix to infer

A. The problem is that the choice of the threshold α may be arbitrary and subjective.

This challenge was explored in detail by (Choudhury et al., 2010) when they observed

that by generating a family of networks parameterized by different choices of the threshold,

they produced networks with different structures. In particular, the authors used three
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different thresholds that had been used by previous researchers. They found that the three

resulting networks differed vastly in terms of density, connectivity, and clustering among

other properties.

Proportional Affiliation

The co-occurrence matrix can be modified to produce a weighted, symmetric matrix, O,

where the value of Oij is the probability that nodes vi and vj will be observed to co-

occur. To do this, simply divide the elements of O# by the total number of observations,

Oij =
O#

ij

T =
∑

tG
(t)
i G

(t)
j

T . For the purposes of visualization, we will define Oii = 1. This

notation can be generalized to any subset of V . For example, Oijkl would represent the

co-occurrence of nodes vi, vj , vk, vl, Oijkl =
∑

tG
(t)
i G

(t)
j G

(t)
k G

(t)
l

T . This level of complexity is

not used in this dissertation; however, the simple concept of Oi is used to represent the

probability that node vi is observed. To avoid confusion, the term co-occurrence matrix

will refer to the frequency version of the matrix.

One might initially expect that the elements of O will estimate the probability that

a relationship between two nodes is active. However, careful consideration of how co-

occurrence occurs will show that Oij is not equivalent to the probability that i and j are

connected. O#
ij will include every observation where the edge between nodes vi and vj is

active, it will also include instances where the nodes of interest are interacting through a

common node, or set of nodes, at the moment of observation. This technique implicitly

assumes that nodes vi and vj are not interacting when they are unobserved.

These problems with the co-occurrence matrix are partially due to an unstated assump-

tion about observed groups. That is, each observed group is assumed to be the result of a

clique. This means that the nodes in the observed group are fully connected and an edge

exists between every pair of nodes in the group. While this may be plausible for very small

groups, it is highly unlikely in large groups.
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Coincidence Index / Half Weight Index

L. R. Dice introduced a measure of association called the coincidence index to describe the

co-occurrence of plant species within a habitat (Dice, 1945). This measure had the form:

coincidence indexij =
2
∑

tG
(t)
i G

(t)
j∑

tG
(t)
i +

∑
tG

(t)
j

(1.1)

The half weight index (H) was introduced later (Cairns and Schwager, 1987). H for two

individuals, vi and vj , is calculated as follows:

Hij =

∑
tG

(t)
i G

(t)
j∑

tG
(t)
i G

(t)
j + 0.5

[∑
tG

(t)
i (1−G(t)

j ) +
∑

t(1−G
(t)
i )G

(t)
j

] (1.2)

Since Equation 1.1 predates, is equivalent to, and is easier to interpret than H, this

form is used for calculations. However, we will continue to use the term half weight index

because H is more common in current literature.

H ranges in value from 0 to 1 and is symmetric. Values that are close to zero indicate

that individuals do not co-occur under observation while values that are close to 1 indicate

that individuals almost always co-occur when observed. H estimates the likelihood that

nodes vi and vj will co-occur given that one of them is observed, i.e. P(GiGj = 1|Gi =

1 or Gj = 1). As a result, H is simply another attempt to describe the probability that an

edge or relationship is active in a group.

There is a minor technical problem with this measure which needs to be addressed.

When a given pair of nodes is never observed, H is undefined (i.e. 0
0). In the classical

applications of H, this is not a problem because if a node is not observed it is not included

as an element of V . However, this is an issue for our work because we will want to estimate

the variance of H by bootstrapping and this will occasionally result in a pair of nodes being

completely unobserved. To deal with this, we define this situation as Hij = 0.
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Polish Manufacturing Company E-mail Estimator

Michalski et al. (2014) set out to compare the social network and the corporate hierarchy of

a mid-sized manufacturing company. The stated purpose of this effort was to demonstrate a

technique which could be used by corporate management to address the question of whether

the employees were properly aligned within the organization.

In order to construct the social network of the company, the authors chose to use e-mail

records. These records provided subgroups of the organization along with the sender of the

e-mail; therefore, it could be reduced to dyadic behavior.

The authors proposed the following measure without proof or reference.

Aij =

∑
eij∑
ei
, (1.3)

where eij is an email sent from node vi to node vj , and ei is an email sent from node vi

(Michalski et al., 2014).

As we will see, this measure is the maximum likelihood estimator for the Known Star

Model proposed in Chapter 3.

1.5.4 Inference of Transmission Paths from Co-Occurrences

An alternative to the social network perspective or joint participation is the so-called inter-

nally sensed network tomography problem. In this problem, the network that is inferred is

a complex communication system. Nodes represent routers and switches while edges repre-

sent the connections between these system components. In this scenario, transmissions are

carried over the telecommunication network along a path between a source and terminal

node (Rabbat et al., 2006).

In some cases, it is impossible to directly observe the order in which routers/switches

handle the transmission. However, sensors are able to identify which routers/switches were

active at roughly the same time. The internally sensed network tomography problem aims

to recover network structure from un-ordered lists of network elements along transmission
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paths.

Rabbat and his colleagues modeled the process of group formation as a random walk on

the network subjected to an unknown permutation to account for the lack of order infor-

mation. Treating permutations as missing data, they derived an expectation-maximization

(EM) algorithm for estimating the random walk parameters.

While the model and the EM algorithm significantly simplified the problem, the recon-

struction process grew exponentially in the length of each transmission path. For observa-

tions with many nodes, path length became long and the E-step became computationally

intractable. For an observed group of nt nodes, there were nt! different paths which could

have connected the nodes. To address this challenge, the authors employed a polynomial-

time Monte Carlo EM (MCEM) algorithm based on importance sampling to estimate the

parameters of the model.

1.6. Summary

Not many methods for network inference from group data have been proposed in the current

literature. One of the most basic simplifications is to define relationships in such a way that

only pairs are considered. When analyzing groups with more than two nodes, heuristic

methods using descriptive statistics such as the co-occurrence matrix and half-weight index

are proposed but lack rigorous justification. Rabbat et al. (2006) proposed a model-based

approach based on random walks. Since the number of possible paths on n nodes is factorial,

a Monte Carlo EM algorithm has been applied to control the computational cost. In the

next chapter, a model of group formation is introduced that is linear in n. This model allows

for complexity in group formation without requiring the use of Monte Carlo solutions to

estimate the parameters.
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Chapter 2: Modeling Grouped Data with Star Models

2.1. Motivation

In Chapter 1, we saw that there is a long history of calculating descriptive statistics from

grouped data to characterize the relationships within a population. These descriptive statis-

tics are often mistaken to estimate the probability of links between nodes. However, there

are no statistical models justifying the usage of these estimators. In other words, given the

measures of a set of grouped data, there is no mechanism to simulate a new set of data with

statistics that are similar to the original dataset.

The objective of this chapter is to develop statistical models of grouping behavior and

find estimators for those parameters of the models. The approach will start with simple

models related to the E-mail Estimator, introduced in Section 1.5.3, and then the constraints

on the models will be relaxed to allow for increased sophistication.

2.2. Star Models

This chapter proposes a family of stochastic models for group formation called Star Models.

This name captures the central assumption that each observed group is connected by a star

graph. A star graph on n nodes is a connected graph with (n−1) edges and a single central

node of degree (n− 1).

Figure 2.1 represents what it means when every observed group is connected by a star

graph. This example graphically depicts one of the six ways in which nodes 1 through 6

might have been connected. Note that if star graphs are the only way that observed groups

can be connected, there are only nt graphs which could have produced such an observation.
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Figure 2.1: Example of a Star Graph

In each sample, an n length vector S(t) indicates the member of the group which is the

center of the star graph.

S
(t)
i =

 1 if vi is the center of sample t

0 if vi is not the center of sample t

S
(t)
i is under the constraint that

∑
i S

(t)
i = 1.

S(t) is not necessarily observed. This point will be addressed the the following sections.

Star Models make the assumption that there is a latent network structure defined by

the weighted adjacency matrix A which fully describes the preferences of members of the

population. The adjacency matrix defines a relation where Aij is the probability that the

link between nodes vi and vj is active in sample t. We take Aii = 1 for all diagonal values

by convention, which captures the fact that vi is always in the group that node vi created.

19



2.2.1 Data Generation Process

For Star Models, the probability that a node choses to form a star is given by ρ =

{ρ1, . . . , ρn} where
∑

i ρi = 1. For each sample, a node vk is selected with probability

ρk to be the central node of a group. Node vk then considers every other node in the

population for inclusion in the group independently, with probability Akj .

Qualitatively, this generation process means that the parameter ρ represents the “leader-

ship” or “assertiveness” of the individual and A represents the “popularity” of an individual.

Table 2.1: Example True Adjacency Matrix

j
i ρi 1 2 3 4 5

1 0.2 1.00 0.01 0.01 0.01 0.01
2 0.5 0.01 1.00 0.01 0.90 0.90
3 0.1 0.01 0.01 1.00 0.01 0.90
4 0.1 0.01 0.90 0.01 1.00 0.90
5 0.1 0.01 0.90 0.90 0.90 1.00

As an example, consider the adjacency matrix represented in Table 2.1. For sample

t = 1, suppose that v2 is selected as the central node. Based on the probability that v2

will select the other nodes in the population, it would be very likely to observe a group

containing nodes 2, 4, and 5. That is, G(1) = {0, 1, 0, 1, 1} and S(1) = {0, 1, 0, 0, 0}.

From this generating process, it is possible to estimate commonly observed properties

of grouped data (e.g. the average size of a group). The formulas for these properties are

presented in Appendix B.

2.3. Known Star Model

The initial motivation for Star Models comes from the structure of e-mail datasets. In these

datasets, each group is the result of a population member sending a message to a subset
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of the population. Since e-mail logs generally indicate the sender, it is possible to identify

the unique star graph that produced an observed group. Such a model is called the Known

Star Model (KSM). Under the KSM, S(t) is observed and the number of parameters to be

estimated is:

d = (n− 1)2. (2.1)

Additionally, note that for the KSM, A is not necessarily symmetric.

The following section formally proves that the measure used by Michalski et al. (Equa-

tion 1.3) is the maximum likelihood estimator for Aij when the center of the star forming

the observed group is known.

2.3.1 Maximum Likelihood Estimators

By definition, there is only one graph that could have produced any observed group. There-

fore, the probability of G(t) and S(t), given A, is provided by Equation 2.2

P(G(t), S(t)|A) =

n∏
i=1

n∏
j=1

[
A
G

(t)
j

ij (1−Aij)(1−G(t)
j )]S(t)

i . (2.2)

The likelihood function for the full observation is given by Equation 2.3

P(G,S|A) =

T∏
t=1

n∏
i=1

n∏
j=1

[
A
G

(t)
j

ij (1−Aij)(1−G(t)
j )]S(t)

i . (2.3)

Taking the log of the likelihood function produces

L = logP(G,S|A) =
T∑
t=1

n∑
i=1

n∑
j=1

S
(t)
i

[
G

(t)
j logAij + (1−G(t)

j )log(1−Aij)
]
. (2.4)
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The derivative with respect to Axy is

∂L
∂Axy

=
T∑
t=1

S(t)
x

[G(t)
y

Axy
− 1−G(t)

y

1−Axy
]
. (2.5)

Setting this equation equal to zero and solving for Axy yields

1

Axy

∑
{t:G(t)

y =1}

S(t)
x =

1

1−Axy

∑
{t:G(t)

y =0}

S(t)
x (2.6)

and

Âxy =

∑
tG

(t)
y S

(t)
x∑

t S
(t)
x

. (2.7)

This is exactly the form of the estimator that was used by Michalski et al. (2014).

It is also worth noting that it is not necessary to estimate ρ because S(t) is directly

observable for this model. However, estimates of ρi are needed in the more general model

introduced in the following section.

2.4. The Symmetric Star Model

For the general Star Model, the probability that a group is observed is

P(G(t)|A, ρ) =
∑
i

ρiG
(t)
i

∏
j

A
G

(t)
j

ij (1−Aij)(1−G(t)
j ) (2.8)

and the log likelihood function is:

L(G|A, ρ) =
∑
t

log
[ n∑
i=1

ρiG
(t)
i

∏
j

A
G

(t)
j

ij (1−Aij)1−G(t)
j

]
. (2.9)
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Since most existing techniques for inferring network structure produce a symmetric

adjacency matrix, a reasonable constraint to consider is symmetry, i.e., Aij = Aji for all

i and j. The following theorem shows that symmetry of A is a sufficient condition for

identifiability of a Star Model.

Theorem 1. Let A and A∗ be symmetric adjacency matrices. If P(G = g|A, ρ) = P(G =

g|A∗, ρ∗) for all g, then {A, ρ} = {A∗, ρ∗}.

Proof. Let gk and gl denote the singleton groups which consist only of nodes vk and vl,

respectively. Further, let gkl denote the group representing the pair of vk and vl.

From (2.8) the probability of the singletons is given by the following equations:

P(G = gk|A, ρ) = ρk(1−Akl)
∏

j 6={k,l}

(1−Akj) (2.10)

P(G = gl|A, ρ) = ρl(1−Akl)
∏

j 6={k,l}

(1−Alj) (2.11)

In (2.11) we take advantage of the symmetry of A to replace Alk with Akl.

Now, we consider the probability of gkl.

P(gkl|A, ρ) = ρkAkl
∏

j 6={k,l}

(1−Akj) + ρlAkl
∏

j 6={k,l}

(1−Alj)

= Akl

[
ρk

∏
j 6={k,l}

(1−Akj) + ρl
∏

j 6={k,l}

(1−Alj)
]

= Akl

[P(G = gk|A, ρ)

(1−Akl)
+

P(G = gl|A, ρ)

(1−Akl)

]

=
Akl

(1−Akl)

[
P(G = gk|A, ρ) + P(G = gl|A, ρ)

]
, (2.12)

which implies that:
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Akl =
P(G = gkl|A, ρ)

P(G = gk|A, ρ) + P(G = gl|A, ρ) + P(G = gkl|A, ρ)
. (2.13)

Therefore, Akl = A∗kl for all k and l.

To complete the proof, consider an arbitrary node vk which appears as a singleton

represented by gk:

P(G = gk|A, ρ) = ρk
∏
j 6=k

(1−Akj). (2.14)

If Akl = A∗kl for all k and l and P(G = g|A, ρ) = P(G = g|A∗, ρ∗) for all g, then:

ρk
∏
j 6=k

(1−Akj) = ρ∗k
∏
j 6=k

(1−Akj) (2.15)

and it is easy to see that ρk = ρ∗k for all k.

We will refer to the Star Model with the symmetry condition as the Symmetric Star

Model (SSM) for the rest of this dissertation. Note that for the SSM, the number of

parameters being estimated is:

d =

(
n

2

)
+ (n− 1). (2.16)

Remarks: Before proceeding we would like to make two short remarks about (2.13).

Firstly, (2.13) suggests a method of moments estimator for Akl based on the frequencies

of doubletons and singletons. However, this estimator requires that the probability of

doubletons and singletons be estimated accurately, so this technique would be very inefficient

in practice because small groups appear very infrequently in many datasets. Therefore, we

will continue to consider MLE which presumably uses all available information.
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Secondly, note that the form of (2.13) is similar to the form of the half weight in-

dex shown in (1.2). Roughly speaking, the SSM only uses the probabilities of singletons

and doubletons, while the half weight index uses frequencies of non-co-occurrence and co-

occurrence.

2.4.1 Maximum Likelihood Estimate of the Symmetric Star Model

The maximum likelihood estimator of SSM does not have a closed-form solution. In this

section, we derive equations for the conditions that the MLE {Â, ρ̂} must satisfy. Then we

will show that solving these equations iteratively is equivalent to an EM algorithm. The

details of the EM algorithm will be given in the next section.

Solving the MLE of SSM is an optimization problem with the equality constraints∑
i ρi = 1, and Aij = Aji for all i and j. We denote the log likelihood function as L(G|A, ρ).

This gives us the following Lagrange function:

Λ(G|A, ρ) = L(G|A, ρ)− λo[(
∑
i

ρi)− 1]−
∑
i<j

λij(Aij −Aji). (2.17)

∂Λ(G|A, ρ)

∂Axy
=
∂L(G|A, ρ)

∂Axy
− λxy = 0 if x < y, (2.18)

∂Λ(G|A, ρ)

∂Ayx
=
∂L(G|A, ρ)

∂Ayx
+ λxy = 0 if x > y. (2.19)

Therefore,

∂L(G|A, ρ)

∂Axy
= −∂L(G|A, ρ)

∂Ayx
. (2.20)

We now focus on deriving the derivative of the log likelihood function of the general

Star Model given in Equation (2.9):
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∂

∂Axy
L(G|A, ρ) =

∑
t

ρxG
(t)
x

[∏
j 6=y A

G
(t)
j

xj (1−Axj)1−G(t)
j

]
∂

∂Axy

(
A
G

(t)
y

xy (1−Axy)1−G(t)
j

)
∑n

i=1 ρiG
(t)
i

∏
j A

G
(t)
j

ij (1−Aij)1−G(t)
j

.

(2.21)

Note that the derivative on the right hand side of (2.21) is equal to 1 if node vy is in

observation G(t) and −1 if vy is not in the observation. We represent this by the function

γ(G(t)
y ) =

 1 if G
(t)
y = 1,

−1 if G
(t)
y = 0.

Therefore,

∂

∂Axy
L(G|A, ρ) =

∑
t

ρxG
(t)
x

[∏
j 6=y A

G
(t)
j

xj (1−Axj)1−G(t)
j

]
γ(G

(t)
y )∑n

i=1 ρiG
(t)
i

∏
j A

G
(t)
j

ij (1−Aij)1−G(t)
j

. (2.22)

The denominator of (2.22) is simply the probability of G(t) (see (2.8)). In addition,

the term in the numerator can be made equal to P(G(t), Sx = 1) by multiplying A
G

(t)
y

xy (1 −

Axy)
(1−G(t)

y ). This gives:

∂

∂Axy
L(G|A, ρ) =

∑
t

γ(G
(t)
y )P(G(t), S

(t)
x = 1)

A
G

(t)
y

xy (1−Axy)(1−G(t)
y )P(G(t)|A)

. (2.23)

This equation can be further simplified by noticing that P(G(t),S
(t)
x =1)

P(G(t)|A)
is equivalent to P(S

(t)
x =

1|G(t)):
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∂

∂Axy
L(G|A, ρ) =

∑
t

γ(G
(t)
y )P(S

(t)
x = 1|G(t))

A
G

(t)
y

xy (1−Axy)(1−G(t)
y )

. (2.24)

Plugging (2.24) into (2.20), we get:

∑
t

γ(G
(t)
y )P(S

(t)
x = 1|G(t))

A
G

(t)
y

xy (1−Axy)(1−G(t)
y )

= −
∑
t

γ(G
(t)
x )P(S

(t)
y = 1|G(t))

AG
(t)
x

yx (1−Ayx)(1−G(t)
x )

. (2.25)

By applying symmetry and breaking the summations, this becomes:

∑
t:G

(t)
y =1

P(S
(t)
x = 1|G(t))

Axy
−

∑
t:G

(t)
y =0

P(S
(t)
x = 1|G(t))

1−Axy
=

−
∑

t:G
(t)
x =1

P(S
(t)
y = 1|G(t))

Axy
+

∑
t:G

(t)
x =0

P(S
(t)
y = 1|G(t))

1−Axy
. (2.26)

With some simple algebra, it is easy to see that:

Âxy =

∑
tG

(t)
y P(Sx = 1|G(t)) +G

(t)
x P(Sy = 1|G(t))∑

t

[
P(Sx = 1|G(t)) + P(Sy = 1|G(t))

] . (2.27)

It is worth restating that (2.27) is not a closed form solution for Âxy. This is because

the right hand side of the equation contains Âxy.

We now proceed to derive the condition for ρ̂. By taking the derivative of (2.17) with

respect to ρx, we get the following:
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∂

∂ρx
Λ(G|A, ρ) =

∑
t

G
(t)
x
∏
j A

G
(t)
j

xj (1−Axj)1−G(t)
j

P(G(t)|A)
− λo (2.28)

=
∑
t

P(G(t)|S(t)
x = 1)

ρxP(G(t)|A)
− λo (2.29)

=
1

ρx

∑
t

P(S(t)
x = 1|G(t))− λo. (2.30)

Solving this equation for zero, we obtain:

∑
t

P(S(t)
x = 1|G(t)) = ρxλo. (2.31)

Summing over all nodes, we get:

∑
i

∑
t

P(S
(t)
i = 1|G(t)) =

∑
i

ρiλo (2.32)

∑
t

∑
i

P(S
(t)
i = 1|G(t)) = λo

∑
i

ρi (2.33)

T = λo. (2.34)

Which gives us,

ρ̂x =

∑T
t=1 P(S

(t)
x = 1|G(t))

T
. (2.35)
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2.4.2 EM Algorithm

The last section ended with estimating equations where the probability P(S
(t)
x = 1|G(t))

on the right side of (2.27) and (2.35) depends on {Â, ρ̂}. This implies a fairly intuitive

algorithm iteratively updating {Â, ρ̂} and P(S
(t)
x = 1|G(t)), which can be fitted into the

general framework of EM algorithm.

The central concept of the EM algorithm is to formulate a complete data model then

solve the model as if some data is observed and other data is missing. In this case, the

Known Star Model serves as the complete data model; G is the observed data, and S is the

missing data. Each iteration of the EM algorithm consists of an expectation step followed

by a maximization step. In the most general form of the EM algorithm, the MLE of the

observed data cannot be directly calculated because of the missing data. To overcome

this, the EM algorithm maximizes the expected value of the log likelihood function of the

complete data model. This log likelihood function is given in (2.4).

Based on this, the first step of the EM algorithm involves calculating the following

function where A(k) is the current iteration of the adjacency matrix.

E-Step

Q(A|A(k)) = E
[ T∑
t=1

n∑
i=1

n∑
j=1

S
(t)
i

[
G

(t)
j logA

(k)
ij + (1−G(t)

j )log(1−A(k)
ij )
]∣∣∣G] (2.36)

Since (2.36) is linear in the unobserved data, S
(t)
i , the E-Step (on the (k+1)th iteration)

simply requires calculating the current conditional expectation of S
(t)
i given the observed

data, G(t). See (McLachlan and Krishnan, 2008) for a detailed explanation.
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P(S(t)
x = 1|G(t), A) = E[S(t)

x |G(t), A] =
ρxG

(t)
x
∏
j A

G
(t)
j

xj (1−Axj)1−G(t)
j∑n

i=1 ρiG
(t)
i

∏
j A

G
(t)
j

ij (1−Aij)1−G(t)
j

(2.37)

M-Step

In the general form of the EM algorithm, the M-Step consists of selecting the value of

A which maximizes (2.36). However, since we are able to derive the MLE condition for the

SSM, the M-Step on the (k + 1)th iteration simply requires replacing P(S
(t)
x = 1|G(t)) in

(2.27) and (2.35) with E[S
(t)
x |G(t)].

Theoretical Properties

The Expectation Maximization algorithm has several standard properties which Star

Models inherit. These include numerical stability with each EM iteration increasing the

likelihood, easy implementation, and a low cost per iteration which can offset the larger

number of iterations needed for the EM algorithm compared to competing procedures.

Since Star Models belong to classical mixture models, the MLEs also achieve consistency

and asymptotic normality (McLachlan and Krishnan, 2008).

2.4.3 Symmetric Star Model EM Algorithm

Algorithm 1 illustrates the details of the algorithm for the SSM.

There are two techniques included in the algorithm to avoid using a bad starting point.

First, we use ten different staring points. Second, we limit the number of iterations taken

through the algorithm. This is based on the observation that when this algorithm has a

bad starting point, it will take a very long time to converge; and the point that it converges

to is not a maximum.

Also, notice that when ρi = ρj = 0, Aij is undefined under (2.27). In this case, the

value of Aij does not affect the likelihood function for the observed data; therefore, we

define Aij = 0.
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Data: G
Result: Â, ρ̂

Initialize:
L(G|Â) = −∞

for rep=1 to 10 do

Initialize:

Â
(0)
ij = unif(0, 1) ∀{i, j}

Xi = unif(0, 1) ∀i
ρ̂

(0)
i = Xi∑

kXk

∆L(G|A(0)) = 104

counter=1

while |∆L(G|A(m+1))

L(G|A(m))
| > 10−4and counter < 100 do

E-Step

Update P(S
(t)
k = 1|G(t)) by Equation 2.37

M-Step

Update A(m+1) by Equation 2.27

Update ρ(m+1) by Equation 2.35

∆L(G|A(m+1)) = L(G|A(m+1))− L(G|A(m))

counter=counter+1

end

if L(G|A(m+1)) > L(G|Â) then

if Âij ≤ 10−4 then

Âij = 0

else

Âij = A
(m+1)
ij

end

end

end

Algorithm 1: Symmetric Star Model EM Algorithm

To illustrate the difference in the performance of the traditional techniques and the

Star Models, consider the toy example presented in Figure 2.2a where the strength of the

relationships is represented by the width of the links. In this example, there is a pair of

nodes, v1 and v2, that never voluntarily approach each other. Despite the aversion between
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these two nodes, they share a number of relationships with common nodes. This situation

may be thought of as two coworkers who do not particularly like one another, but who are

often required to cooperate because of their relationships to intermediaries. In Figure 2.2b,

we can see that the co-occurrence matrix mistakenly assigns a relatively strong relationship

to nodes v1 and v2. In Figure 2.2c, the half-weight index arrives at a very similar conclusion

as the co-occurrence matrix. In both Figures 2.2b and 2.2c, the non-existent relationship

between nodes v1 and v2 is actually estimated to be stronger than all other relationships.

By contrast, the Star Model results in Figure 2.2d clearly capture the social structure of

the population.
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(a) True Adjacency Matrix
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(b) Co-occurrence Matrix
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(c) Half Weight Index
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(d) Star Model Estimate

Figure 2.2: Comparison of Estimation Techniques
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2.5. Simulation Results

2.5.1 Generating the True Model Parameters

When performing data analysis, the “true” parameters are unobservable. However, we can

evaluate the performance of different methods by comparing them with simulated parame-

ters.

To generate ρ, we select n i.i.d. random numbers uniformly, Xi, and divide each random

number by the sum of all Xi’s. That is, ρi = Xi∑
j Xj

.

We use a two step process to generate A. First, we create an unweighted, undirected

Erdos-Renyi random graph on n nodes where an edge is present with probability p. Then

each present edge is assigned a relationship strength with a beta distribution, i.e., for i < j,

Aij =

 Beta(α, β) w.p. p

0 otherwise

we let Aji = Aij because we assume A is symmetric.

In the following examples, a common setup is used so that all examples are similar. The

probability that a relationship exists is 0.30. When relationships do not exist, the probability

of two nodes interacting is 0.001. And when a relationship does exist, the probability of two

nodes interacting is given by the beta distribution Beta(α = 10, β = 2). This distribution

has the form shown in Figure 2.3 and a mean of 10
10+2 = 0.8333. This produces a latent

network structure where relationships are clearly distinguished from random encounters.

Although the following examples require the estimation of ρ̂, the results focus on Â to

explore convergence and compare techniques.
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Figure 2.3: Distribution of Beta Function

2.5.2 Simple Example of SSM

The initial example presents a small population of only 5 nodes to limit the estimation to 14

parameters. The purpose of this example is to show that convergence does, in fact, occur.

The true adjacency matrix for this population is shown on left-hand side of Table 2.2. To

ensure convergence, 10,000 observations are generated.

Comparing the estimated adjacency matrix on the right hand side of Table 2.2 with

the true adjacency matrix on the left, we can make two important observations. First,

the estimated values of Âij are generally close to their true values. Secondly, there is no

instance of a link with no relationship being mistaken for a link with a relationship.

2.5.3 Convergence of SSM

In this section, we briefly explore how the estimator behaves as the number of observations

increases for different network sizes.

To measure the difference between A and Â, we define the mean absolute error (MAE)
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Table 2.2: General results

True Adjacency Matrix Estimated Adjacency Matrix
j j

i 1 2 3 4 5 1 2 3 4 5

1 1.0000 0.0010 0.0010 0.0010 0.0010 1.0000 0.0010 0.0004 0.0001 0.0015
2 0.0010 1.0000 0.0010 0.7452 0.8324 0.0010 1.0000 0.0144 0.7465 0.8302
3 0.0010 0.0010 1.0000 0.0010 0.5885 0.0004 0.0144 1.0000 0.0043 0.5536
4 0.0010 0.7452 0.0010 1.0000 0.8594 0.0001 0.7465 0.0043 1.0000 0.8573
5 0.0010 0.8324 0.5885 0.8594 1.0000 0.0015 0.8302 0.5536 0.8573 1.0000

over the matrix as:

MAE =
1(
n
2

)∑
i<j

|Âij −Aij |. (2.38)

There are other metrics from computer science literature to evaluate the effectiveness of

the estimated A matrix. Some of these metrics focus on false positives, false negatives, or

functions of these values (Hastie et al., 2009). Typically these methods, in a network setting,

work under some assumption of sparsity. Since we make no assumptions regarding sparsity

in this thesis, we have not compared (2.38) with these other metrics. It is worthwhile to

compare our metric with these alternative metrics under a sparsity assumption and we leave

this for future work.

In Table 2.3, we consider four different scenarios with n = {10, 20, 30, 50}. The latent

network structure for each scenario was generated with p = 0.3, α = 10, and β = 2. For

each scenario, we run 100 replicates and report the mean and standard deviation of the

MAE over these replicates.

Not surprisingly, as the number of observations increases, the average MAE tends to

decline. For the first two scenarios of n = 10 and n = 20, the standard deviation of the

MAE declines monotonically as the number of observations increases. For the second two
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scenarios of n = 30 and n = 50, although the standard deviation of the MAE ultimately

decreases as the number of observations increases, for low values of T , the standard deviation

seems to rise before it decreases.

Table 2.3: Average and Standard Deviation of Mean Absolute Error as Observations In-
crease

n = 10 n = 20 n = 30 n = 50

Obs Avg MAE StDev MAE Avg MAE StDev MAE Avg MAE StDev MAE Avg MAE StDev MAE

200 0.021 0.004 0.031 0.023 0.184 0.047 0.256 0.024

500 0.013 0.002 0.012 0.002 0.110 0.053 0.237 0.027

1000 0.009 0.002 0.009 0.001 0.067 0.056 0.207 0.033

2000 0.006 0.001 0.006 0.001 0.020 0.024 0.183 0.043

4000 0.005 0.001 0.004 0.001 0.010 0.017 0.145 0.053

10000 0.003 0.001 0.003 0.000 0.005 0.011 0.081 0.061

20000 0.002 0.000 0.002 0.000 0.003 0.002 0.060 0.058

50000 0.001 0.000 0.001 0.000 0.002 0.002 0.020 0.033

2.5.4 Visualization

The mean absolute error of the matrix is only a measure of overall estimator performance

and cannot give details of each adjacency matrix element. To explore how each element of

the estimate changes when the number of observations increases, we introduce a visualiza-

tion of the relationships between members in the population.

In this visualization, the adjacency matrix is represented as an n × n grid where the

ith × jth cell represents the relationship Aij . The strength of a relationship is represented

by the cell’s color. That is, nodes with weak relationships have light cells while nodes with

strong relationship have dark cells. Cells representing relationships of intermediate strength

are shaded along the gray scale.

Figure 2.4 presents estimates of an adjacency matrix with n = 20. Figure 2.4a shows the
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true matrix and Figures 2.4b-2.4d give estimates as the number of observations increases

from T = 100 to T = 10, 000. As suggested by Table 2.3, when there are relatively few

observations for a population, the estimated structure contains important errors. In this

case, there are 209 parameters which need to be estimated. With only T = 100 (Figure

2.4b), we can see that some of the true adjacency matrix’s basic structure is identified, but

there is considerable error in some relationships, consider A1,20 as an example. In the true

adjacency matrix, this relationship does not exist, but in the first estimate the relationship

is estimated to be strong. However, as the number of observations increases to T = 1, 000

(Figure 2.4c) the set of non-zero relationships in the true adjacency matrix is captured, and

the only errors exist in degrees of strength. As an example of this refinement, consider A2,20

which is under estimated in Figure 2.4c but estimated more accurately in Figure 2.4d.
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(a) True Adjacency Matrix

(b) Â (T = 100) (c) Â (T = 1000) (d) Â (T = 10000)

Figure 2.4: Symmetric Star Model Estimates Improve as T Increases

2.6. Data Analysis

2.6.1 Dream of the Red Chamber

Overview

Dream of the Red Chamber was first published in print form in 1791 and is one of China’s

four great classical novels. The novel provides a detailed record of the wealthy and aristo-

cratic Jia clan who live in two large, adjacent family compounds in the capital. The novel

charts some thirty main characters and over four hundred minor ones as the Jias’ fall from

the height of their prestige.
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The main character of the novel is the adolescent male heir of the family, Jia Baoyu. He

has a special bond with his sickly cousin Lin Daiyu, who shares his love of music and poetry.

Baoyu, however, is ultimately tricked into marrying another cousin, Xue Baochai, whose

grace and intelligence exemplifies an ideal woman, but with whom he lacks an emotional

connection. The romantic rivalry and friendship among the three characters against the

backdrop of the family’s declining fortunes forms the main story in the novel.

Figure 2.5 presents the results of the three techniques for estimating social structure

discussed throughout this dissertation. The characters have been ranked by the estimated

value of ρ (see Table 2.4). In these estimates, the same performance is observed that has

been seen in simulation studies. The co-occurrence matrix estimates all relationships as

being very weak and it is difficult to differentiate the presence of a relationship from an

absence of relationship. The half-weight index presents a much denser set of relationships,

but there is evidence of relationships which have been imputed transitively.
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(a) Co-Occurrence Matrix (b) Half Weight Index

(c) SSM Adjacency Matrix

Figure 2.5: Estimates for Dream of the Red Chamber

For a specific example, consider Jia Yingchun and Jia Xichun in Figure 2.6. In the co-

occurrence matrix, there seems to be no significant relationship between these characters

and the three main characters. In the half-weight index, these characters share relationships

with all the three main characters; but in the SSM adjacency matrix, these characters only

share a relationship with the third main character. In general, SSM returns a much sparser

network with clearer structure.
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The EM algorithm of SSM provides very stable solutions. By selecting multiple starting

points, we find that the adjacency matrix (Figure 2.5c) is repeatedly returned as the most

likely parameter of the observed data.

(a) Co-Occurrence Matrix (b) Half Weight Index (c) SSM Adjacency Matrix

Figure 2.6: Estimates Brothers in Dream of the Red Chamber

In Table 2.4, we present the ρ values of the characters sorted from highest to lowest

along with the degree centrality and eigenvector centrality of Â.

Characters with a high value of ρ are relatively more likely to initiate a group. The

first six names on the list capture characters who are central to the story. Jia Baoyu is the

main character. Wang Xifeng is the female family member who runs the household and

wields political and economic power over the family. Lin Daiyu is the love interest of Jia

Baoyu. Grandmother Jia is the highest living authority in the house and the oldest and

most respected member of the entire clan. Xue Baochai is the “ideal” Chinese maiden and

the predestined wife of Jia Baoyu. Finally, Jia Zheng is the father of the main character.

Degree centrality is a measure of the probability that an individual node will be selected

to be a member of a group. Nodes with high degree centrality are more likely to be chosen to

be members of a group than nodes with low degree centrality. Notice that degree centrality

does not correspond directly to values of rho. In particular, there are several characters

with high degree centrality in Table 2.4 who have a very low value of ρ (e.g. Ping’er).

Eigenvector centrality is a measure of the influence of a node within a network. It
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Table 2.4: Values of ρ for characters in Dream of the Red Chamber

Character ρ Degree Centrality Eigenvector Centrality

Jia Baoyu 0.3061 3.201 0.553
Wang Xifeng 0.1573 2.723 0.479

Lin Daiyu 0.0997 2.789 0.502
Grandmother Jia 0.0838 5.135 1.000

Xue Baochai 0.064 4.789 0.937
Jia Zheng 0.0409 1.948 0.208
Hua Xiren 0.0375 2.799 0.403

Shi Xiangyun 0.0329 1.905 0.309
Jia Lian 0.029 1.820 0.202

Xiangling 0.0175 2.075 0.259
Li Wan 0.0173 3.441 0.718

Xue Pan 0.0151 1.690 0.139
Yuanyang 0.0148 1.645 0.196

Jia Tanchun 0.0144 2.987 0.657
Lady Wang 0.0135 3.764 0.815
Granny Liu 0.0118 1.651 0.178

Ping’er 0.0072 2.951 0.501
Aunt Xue 0.0068 2.793 0.517
Qingwen 0.0068 1.959 0.227

Qin Keqing 0.0044 1.148 0.030
Jia Yingchun 0.0042 1.987 0.336

Concubine Zhao 0.0039 1.590 0.203
Jia Yuanchun 0.0034 1.580 0.139

Jia Xichun 0.0031 1.744 0.227
Zijuan 0.0024 1.320 0.093
Jia She 0.0023 1.567 0.150

Jia Qiaojie 0.0000 1.078 0.033
Miaoyu 0.0000 1.265 0.053
Mingyan 0.0000 1.119 0.030

assigns relative scores to all nodes in the network based on the concept that connections

to high-scoring nodes contribute more to the score of a given node than equal connections

to low-scoring nodes. As with degree centrality, this measure does not follow the same

pattern as ρ. While some well connected members of the population are ranked high in

this measure (e.g. Grandmother Jia), nodes with high degree centrality also seem to have
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a high eigenvector centrality.

The standard deviation of the parameters of the Symmetric Star Model was estimated

using the bootstrap technique. Using the frequency table, F , discussed in Section 1.4.1, we

sampled 5000 datasets by taking T samples from F where each group was selected with

probability equal to its frequency in F . In general, the standard deviation was low. This

was particularly true for ρ̂ where the maximum standard deviation was 0.0173. Table 2.5

presents the standard deviation of Â at different percentiles.

Table 2.5: Percentiles of Standard Deviation in Â estimated by SSM for Dream of the Red
Chamber

Percentile Max 95 % 75 % Med 25 % 5 % Min

StDev 0.2696 0.1025 0.0374 0.0100 0.0000 0.0000 0.0000

Alternative Visualization

As an alternative to the gray scale visualization presented above, we offer a technique that

represents the relationship strength by the cell area plotted. In Figure 2.7, the width and

height of each plotted cell is equal to the relationship strength. Therefore, if a pair of nodes

shares a strong relationship, the cell will be almost filled and if the relationship is weak

the cell will be almost empty. Throughout this section, we represent co-occurrence with

the color black, while the half weight index is red and the SSM is green. Characters are

presented in the same order as in Table 2.4.

In Figure 2.8, we take advantage of this plotting technique to contrast different estimates

by overlaying them on each other. In each cell, the smaller value is plotted in the center of

the larger value. This means that a red square with a black square inside of it represents a

half weight index estimate that exceeds the co-occurrence estimate.
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Figure 2.7: Estimates for Dream of the Red Chamber Represented by Plot Area

Main Characters

One of the main themes of the Dream of the Red Chamber is the love story surrounding the

protagonist Jia Baoyu (1st character in Figure 2.5) and two potential fiances. These are the

sickly Lin Daiyu (2nd character) and the “ideal” Xue Baochai (3rd character). Although

Jia Baoyu shares a special bond with Lin Daiyu and has no significant emotional connection

to Xue Baochai, he is ultimately tricked into marrying Xue Baochai.

In Table 2.6, we present the relationships between these two girls and the other charac-

ters as estimated by the co-occurrence matrix, half weight index, and SSM. As mentioned

earlier, the SSM shows a sparse structure. When the elements of Â equal zero, they coincide

with relationships in the novel where characters seldom co-occur.
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Figure 2.8: Overlaid Estimates for Dream of the Red Chamber (O-Black, HWI-Red, SSM-
Green)

From the novel, Lin Daiyu is a sensitive and sickly girl who prefers to be alone. By

contrast, Xue Baochai is a social and calculating girl. She is extremely good at interpersonal

communication, especially with the protagonist’s mother (Lady Wang) and grandmother

(Grandmother Jia). These significantly different personalities are clearly represented by the

SSM estimator while the other estimators do not identify this difference.

Xue Baochai, generally, has much stronger relationships with other characters except

for three: Jia Baoyu (the protagonist), Miaoyu (a nun with a similar personality to Lin

Daiyu) and Zijuan (a maid of Lin Daiyu). The co-occurrence matrix and half-weight index

fail to show such a clear pattern.
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Table 2.6: Relationships of Lin Daiyu and Xue Baochai to other characters in Dream of the
Red Chamber

Co-Occurrence Matrix (O) Half Weight Index (H) Symmetric Star (Â)

Lin Xue Lin Xue Lin Xue
Daiyu Baochai Daiyu Baochai Daiyu Baochai

Jia Baoyu 0.1728 0.1274 0.4563 0.3587 0.3113 0.2258
Lin Daiyu 1.0000 0.1109 1.0000 0.4866 1.0000 0.4072

Xue Baochai 0.1109 1.0000 0.4866 1.0000 0.4072 1.0000
Jia Yuanchun 0.0072 0.0050 0.0531 0.0449 0.0156 0.0228
Jia Tanchun 0.0439 0.0533 0.2490 0.3482 0.0915 0.4848

Shi Xiangyun 0.0590 0.0490 0.3273 0.3119 0.2194 0.2365
Miaoyu 0.0072 0.0036 0.0552 0.0337 0.0597 0

Jia Yingchun 0.0252 0.0274 0.1667 0.2141 0 0.2846
Jia Xichun 0.0187 0.0202 0.1313 0.1692 0.0102 0.2461

Wang Xifeng 0.0497 0.0526 0.1840 0.2131 0.0317 0.0697
Jia Qiaojie 0.0022 0.0022 0.0170 0.0208 0 0.0348

Li Wan 0.0367 0.0482 0.2086 0.3160 0.0580 0.3384
Qin Keqing 0.0007 0.0007 0.0052 0.0062 0 0

Grandmother Jia 0.0655 0.0648 0.2725 0.2985 0.1925 0.2820

Jia She 0.0065 0.0043 0.0449 0.0357 0 0
Jia Zheng 0.0122 0.0144 0.0701 0.0952 0.0143 0.0174
Jia Lian 0.0072 0.0036 0.0423 0.0245 0.0002 0.0073

Xiangling 0.0180 0.0252 0.1185 0.1961 0.0741 0.2344
Ping’er 0.0122 0.0209 0.0668 0.1306 0.0016 0.1643

Xue Pan 0.0043 0.0101 0.0292 0.0809 0 0
Granny Liu 0.0072 0.0050 0.0493 0.0411 0.0101 0.0113

Lady Wang 0.0490 0.0590 0.2248 0.3037 0.0224 0.2065

Aunt Xue 0.0302 0.0396 0.1806 0.2750 0.0479 0.1657
Hua Xiren 0.0403 0.0389 0.1938 0.2105 0.0283 0.1469
Qingwen 0.0166 0.0115 0.1020 0.0829 0.0155 0.0886
Yuanyang 0.0086 0.0101 0.0556 0.0763 0 0.0430
Mingyan 0.0007 0.0007 0.0053 0.0064 0 0
Zijuan 0.0317 0.0108 0.2184 0.0888 0.1775 0.0376

Concubine Zhao 0.0050 0.0058 0.0361 0.0495 0 0.0338

2.6.2 Dolphins network

In the preceding example, the number of observed groups exceeded the number of param-

eters. However, in some datasets, it is possible that a small number of observations are
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available either due to the costs, or the time associated with collecting the data. In the fol-

lowing example, we focus on a dataset where the number of parameters significantly exceeds

the number of observations.

Bejder et al. (1998) presents a dataset with observations of 18 Hector’s dolphins. With

n = 18, there are 170 parameters which must be estimated; however, only 40 observations

were taken on this population. We first present the co-occurrence matrix and half-weight

index for the dataset in Figure 2.9.

(a) Co-Occurrence Matrix (b) Half Weight Index

Figure 2.9: Conventional Estimates for Dolphins

Since there are more parameters than observations, we would expect that there would

be multiple network structures which could explain the observed behavior. To demonstrate

this, we applied Algorithm 1 using two different random number streams to obtain the two

adjacency matrices shown in Figure 2.10 and found distinctly different structures. As an

example, consider the relationships associated with node v4. In the left panel, node v4 only

has five relationships. Two are strong while the other three are more modest. However,

in the right panel node v4 has more and different relationships with a total of five strong

relationships.

One reason that we select this dataset is to re-enforce the point made by Voelkl et al.

(2011) to pay attention to the size of raw datasets in network analysis. In fact, this dolphin

47



dataset and similar datasets have been studied in several literatures of network analysis

and used as benchmarks in community detection (Bejder et al., 1998; Girvan and Newman,

2002; Lusseau et al., 2003). However, the networks used in these literatures are constructed

by ad-hoc measures such as the half-weight index. Researchers may analyze these net-

works without being aware that the raw data contains too few observations for satisfactory

estimation of the latent networks.

Despite the instability of the estimates in Figure 2.10, both demonstrate a great deal

of sparsity because every zero that appears in the co-occurrence matrix, O, also appears in

Â. Interestingly, the sparsity of Â does not come solely from the sparsity of O, i.e., Âij = 0

does not imply that Oij = 0. In the dolphin example, O has only 33 elements above the

diagonal which have a value of zero, but there are 74 zeros in Â1 and 77 zeros in Â2. Since

we do not apply a regularization method (any type of L1 penalty) in the objective function,

we call this phenomenon a self-sparsity property of the SSM. The source and mathematical

explanation of self-sparsity is discussed in the next section. However, we will provide some

intuition and elementary observations of this property first.

(a) First Estimate Â1 (b) Second Estimate Â2

Figure 2.10: Adjacency Matrix Estimates for Dolphins

This sparsity is not simply present in the estimated adjacency matrices, but also appears

in ρ̂. In Table 2.7, the ρ̂’s estimated with the two adjacency matrices in Figure 2.10 are given
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along with the number of times that each node appears in the dataset. In each estimate,

there are several ρ̂i’s which are equal to zero, but these do not occur at the same nodes.

Moreover, there is no apparent threshold for the number of observations below which all

ρ̂i are equal to zero. Consider v12, which appears 15 times and yet ρ̂
(1)
12 = 0. Similarly, v4

appears 12 times and v6 only appears 8 times; but in both estimates of ρ̂, node v6 is more

likely to be the center of a group than v4.

Table 2.7: Two Different estimates of ρ for Dolphins

Nodes

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18∑
Gi 20 24 7 12 18 8 9 5 2 9 3 15 24 2 2 11 4 2

ρ(1) 0.132 0.302 0.075 0 0.091 0.05 0 0.025 0 0.12 0 0 0.105 0 0 0.075 0.025 0

ρ(2) 0.147 0.295 0 0 0.179 0.05 0.025 0 0.025 0 0 0.05 0.204 0 0 0.025 0 0

2.6.3 Self-sparsity

In Section 2.6.2, we introduced an interesting property of the Symmetric Star Model esti-

mators which we refer to as self-sparsity. When T is small relative to n, the model tends

to produce a sparse adjacency matrix. This sparsity in A is a result of sparsity either in G

itself or in ρ, hence the name.

To see why this sparsity exists, recall the M-step for maximum likelihood of A (2.27)

and ρ (2.35), as well as the E-step in (2.37).

Self sparsity derives primarily from the fact that ρx = 0 implies that P(S
(t)
x = 1|G(t), A) =

0 for all t. This is simply an application of (2.37).

To begin, notice that ρx = 0 is an absorbing state. That is, when ρ
(k)
x = 0 for iteration

k, then ρ
(k+1)
x = 0. Since ρ

(k)
x = 0 implies P(S

(t)
x = 1|G(t), A) = 0 for all t, in (2.35), the

numerator will sum to zero and we will have ρ
(k+1)
x = 0.
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Next, observe that if ρx = 0, then the values of the xth row of A are irrelevant. Techni-

cally, they can assume any value since the numerator of (2.37) will always equal zero. One

might be tempted to assign Axy = 0 for all y when ρx = 0; but under the Symmetric Star

Model, notice that the form of (2.27) is changed to:

Âxy =

∑
tG

(t)
x P(Sy = 1|G(t))∑
t P(Sy = 1|G(t))

. (2.39)

(2.39) is the asymmetric form of (2.27) which would be unidentifiable if used in general

(identifiability will be discussed in greater detail in Chapter 4). This means that under

the SSM, when ρx = 0, the elements of the xth row of A are simply reflections of their

symmetric counterparts.

There are several specific situations which will lead to a sparsity in A.

Case 1: G
(t)
i G

(t)
j = 0 for all t

This situation exists when two nodes never co-occur. It is natural that when two nodes(vi

and vj) are never observed together, we would estimate their preference for each other (i.e.

Aij) to be zero.

Observe that from (2.37), G
(t)
i = 0 implies P(Si = 1|G(t)) = 0. This means that if

either G
(t)
i = 0 or G

(t)
j = 0, then the numerator of (2.27) will equal zero for observation t.

Therefore, if G
(t)
i G

(t)
j = 0 for all t, then Aij = 0.

Case 2: ρi = ρj = 0

ρi = ρj = 0 implies that P(Si = 1|G(t)) = P(Sj = 1|G(t)) = 0 for all t. This means that

the numerator and denominator of (2.27) will both equal zero. Since Aij = 0
0 is undefined

and, more importantly, can take on any value without effecting the likelihood function, we

define Aij = 0.
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Case 3: ρ̂i = Oi

From Appendix B, we have the following equation for the probability that node vi is ob-

served:

Oi =
∑
k

ρkAki (2.40)

If the probability that a node is acting as a group leader is equal to the probability that

the node is observed, ρ̂i = Oi, then we have:

Oi = ρi +
∑
k 6=i

ρkAki (2.41)

0 =
∑
k 6=i

ρkAki. (2.42)

Therefore, for every k 6= i either ρk = 0 or Aki = 0.

Case 4: When ρi is small

Even when ρx is close, but not exactly equal, to zero the SSM will tend to produce a sparse

result for A. To see why this is true, recall that if either G
(t)
y = 0 or P(Sx = 1|G(t)) = 0

for all t, then Axy = 0. Since ρx is close to zero, we will have P(Sx = 1|G(t)) = 0 for most

observations.

2.7. Conclusion

To our best knowledge, Star Models introduce an innovative approach to social network

inference. By defining a model-based generating mechanism to link the latent network

structure to observed grouped data and applying an EM algorithm, we can estimate network

structure.
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Not only are the estimators easy to calculate in a reasonable amount of time, but the

estimators have a practical interpretation. The parameter ρ measures the leadership or

assertiveness of a population member. Aij measures the popularity or probability that a

member of the population will be included in a group.

The Star Models compare favorably against existing techniques which measure social

behavior. Since the co-occurrence matrix and half weight index lack a generating mechanism

to connect them to the observed grouped data, these measures miss important features of

a community’s social behavior.

By applying the Symmetric Star Model to the 18th century Chinese novel Dream of the

Red Chamber, we demonstrate that the SSM is able to detect important differences in the

relationships between characters of a complex story. We also demonstrated that when the

number of observations is small compared to the number of individuals in a population, as

in the case of the dolphin dataset, {Â, ρ̂} shows signs of instability and “self-sparsity”.
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Chapter 3: Inducing Sparsity with Penalized Rho Star Model

3.1. Introduction

In the last chapter, we saw that, for small datasets, it is possible to find multiple solutions

to the Symmetric Star Model (SSM) which had similar likelihoods (see Figure 2.10). This

is particularly true when the number of observations, T , is less than number of parameters

to be estimated, d; however, it is most dramatic when the number of observations is less

than the number of members in the population, T < n.

If we consider the classic linear regression model, we can see that this behavior is not

particularly surprising. Suppose we attempt to perform a linear regression on d parameters

with T observations where T < d. This situation would be under determined and would

produce multiple equally likely sets of parameters. Similarly, we think of the network

inference problem with a low number of observations as an under determined system. One

plausible solution is to reduce the number of parameters in the SSM.

Moreover, reducing the number of parameters sometimes is necessary even when the

uniqueness of a solution is not a problem. Table 2.3 shows that for a network with moderate

size (n = 50), a huge number of observations is needed to achieve accurate estimation since

the number of parameters has order O(n2). In this chapter, we make an assumption of

sparsity on parameters and propose a method based on regularization of ρ.

3.1.1 Motivation

The classic method of dealing with such a situation in linear regression is to apply the ‘least

absolute shrinkage and selection operator’ (LASSO) (Tibshirani, 1996). This technique

and its variants have been applied in a number of different ways to reduce the number of

non-zero regression coefficients in a linear model.
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Taking such an approach reduces the variance of individual parameter estimates by

allowing bias into the model. LASSO is able to shrink some parameters exactly to zero,

which has two advantages. First, this approach is useful for model selection in identifying

the most relevant parameters. Second, applying such shrinkage can, in fact, improve the

predictive ability of a model despite the added bias.

Our basic goal is to introduce greater sparsity into A. However, as will seen later, it is

not enough to penalize the elements of A towards zero.

In the classic application of LASSO, an L1 penalty is applied to the magnitude of the

parameters of the model,

min
β
SSE(β) + η

p∑
j=1

|βj | (3.1)

where η is a tuning parameter which forces the parameters β towards zero more strongly

as it increases.

If η is increased until
∑p

j=1 |βj | = 0, the model will be reduced to the null model. In the

linear regression situation, the null model is simply the mean value of the response variable.

However, in the network inference situation, nodes should behave independently in the

null model. That is, nodes appear in a group independently of the presence of other nodes.

Therefore, attempting to make A sparse by penalizing the sum of the elements of A does

not cause the Star Model to approach the null model. Since Aij = 0 implies vi will never

approach vj if vi is the central node of the group, this violates the independence assumption.

The null model will be discussed in more detail in Chapter 4.

From the discussion on self-sparsity, we see that sparsity in ρ will lead to sparsity in the

adjacency matrix, since if both ρi and ρj equal zero, Aij will not affect the likelihood of

SSM. Based on this, we propose a method which further shrinks more elements of ρ towards

zero. We refer to this as the Penalized Rho Star Model (PRSM).

The motivation for shrinking some ρ’s to zeros is obvious in the case of T < n because

it is impossible that every member of the population has been observed to be the center
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of at least one group; therefore, some members of the population must have ρi = 0. Even

in the case of the dolphin dataset where n = 18 and T = 40, it is very unlikely that every

node has formed a group.

It is also useful to recognize that in the unpenalized SSM, ρi has an upper and lower

bound. The upper bound is Oi. The lower bound is
∑

tG
(t)
i

∏
j 6=i 1−G(t)

j

T . The existence of a

lower bound is important because for nodes which appear as singletons, it is impossible for

their ρ to be exactly zero.

Therefore, it is not enough to apply an ad-hoc threshold for the number of times a node

must be observed for its ρ to be non-zero.

3.2. Methodology

3.2.1 Linear Penalty

To penalize ρ, we apply a linear penalty based on the probability that node vi is observed.

η
∑
i

ρiT∑
tG

(t)
i

= η
∑
i

ρi
Oi

(3.2)

where η is a tuning parameter.

This penalty has a nice interpretation. Nodes which are observed very rarely have a

stronger penalty applied to their ρ than nodes which are observed more often. That is,

if a node is unlikely to occur, we assume that it is also unlikely to act as a leader in the

population. Conversely, the more often a node is observed, the more likely that they are

exerting a leadership role over the population. An additional benefit of the linear penalty

is that it makes the optimization problem convex with respect to ρ.

3.2.2 Formulation of Optimization Problem

Our optimization problem can be formulated as follows:
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minimize
A,ρ

Λ(G|A, ρ) = −L(G|A, ρ) + η
∑
i

ρiT∑
tG

(t)
i

subject to (
∑
k

ρk)− 1 = 0.

Aij −Aji = 0, i = 1, . . . , n, j = 1, . . . , n.

− ρk ≤ 0, i = 1, . . . , n.

−Aij ≤ 0, i = 1, . . . , n, j = 1, . . . , n.

Aij − 1 ≤ 0, i = 1, . . . , n, j = 1, . . . , n.

(3.3)

where η ≥ 0.

Note that in this formulation, we have explicitly included 0 ≤ ρi ≤ 1 and 0 ≤ Aij ≤

1. These constraints were present in the formulation used in Chapter 2; however, the

Expectation Maximization algorithm enforced them without special consideration. In the

following sections, we will actively enforce the constraint that ρi is positive.

3.2.3 Algorithm

In Chapter 2, we were able to estimate A and ρ simultaneously using the EM algorithm.

If we try estimating both parameters using the EM algorithm with the added penalty, we

violate the constraint
∑

i ρi = 1.

To address this issue, we break A’s and ρ’s update into two separate tasks. We will

continue to use the EM algorithm to update A while using a fixed ρ; then we will hold A

fixed and use convex optimization with inequality constraints to solve for ρ.

Estimating A with Fixed ρ

For fixed ρ, the derivative of (3.3) with respect to Axy is the same as in Chapter 2; therefore,

the estimator is the same as the one that we derived in the SSM (2.27).
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Estimating ρ with Fixed A

Optimizing a penalized likelihood is challenging because the objective function is a high-

dimensional non-concave function with singularities (Fan and Li, 2001). However, fixing A

reduces (3.3) to a concave function with inequality constraints.

minimize
A,ρ

Λ(G|A, ρ) = −L(G|A, ρ) + η
∑
i

ρiT∑
tG

(t)
i

subject to (
∑
k

ρk)− 1 = 0,

− ρk ≤ 0 ∀k

(3.4)

To solve for ρ, we use the Interior Point Method. The Interior Point Method is a

technique for solving optimization problems that have inequality constraints. Instead of

solving the Karush-Kuhn-Tucker (KKT) conditions for the inequality constraints, we add a

logarithmic penalty to the objective function such that as the estimated term approaches its

boundary, the objective function tends towards positive infinity (Boyd and Vandenberghe,

2011).

Since (3.4) and the log penalty are convex in ρ, we can solve this problem numerically

using Newton’s Method.

We implement the Interior Point Method using MATLAB’s fmincon function and pro-

vide the gradient of the objective function to reduce runtime.

Practical Considerations

There are three practical considerations which have to be addressed within our algorithm.

First, we have to find a reasonable starting point. Rather than selecting a random

starting point, we begin at the solution to the unpenalized SSM.

Second, there is no guarantee that the algorithm will converge to a global optimum. In

fact, it is possible that there are multiple local optimums in the parameter space. Suppose
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we have two local optimal solutions {ρ1, A1} and {ρ2, A2}. If, by holding A1 fixed, we get ρ2

and by holding A2 fixed, we get ρ1, the algorithm can oscillate between equally satisfactory

solutions. In this case, the objective function will fail to improve with each iteration. To

handle this, we allow the algorithm to search five alternative solutions before declaring the

current best solution optimal.

Finally, occasionally fmincon will produce a solution which is infeasible (e.g. ρi = 0

for some ρi which appears as a singleton). When this happens, we reject the solution and

randomly select a new starting point.

Data: G, η

Result: Â, ρ̂
Initialize:
bestOBJ=∞
counter= 1
{A(0), ρ(0)} =SSM(G)

while counter< 6 do

ρ(m) =fmincon(G, η)

A(m) =SSM(G, ρ(m))

currentOBJ=OBJFun(G,A(m), ρ(m))

if currentOBJ<bestOBJ then
bestOBJ=currentOBJ
Aopt = A(m)

ρopt = ρ(m)

counter= 1
end
counter=counter+1

end

Algorithm 2: Penalized Rho Algorithm

3.3. Selecting Tuning Parameters

The value of η is selected using the Bayesian Information Criterion (BIC).

The BIC is frequently used when a model is fitted using maximization of a log-likelihood

(Hastie et al., 2009). The generic form of BIC is:

BIC = −2L+ (log T )d (3.5)
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where L is the log-likelihood, T is the number of observations, and d is the number of

parameters. BIC tends to penalize complex models more heavily, giving preference to

simpler models in selection.

In previous sections, we have calculated the number of parameters in the SSM using

(2.16). This is the number of unique symmetric elements in A,
(
n
2

)
, and the number of

independent parameters in ρ, (n − 1). However, as the number of non-zero elements in ρ

decreases from n, the structure of A changes and d will not follow this equation. If we let

no be the number of non-zero elements in ρ, the form of A becomes:

X Y

Y ′ 0

where X is an no × no symmetric matrix and Y is an no × (n− no) matrix and 0 is an

(n− no)× (n− no) matrix of zeros.

As a result, the formula for the number of parameters becomes:

d =

(
no
2

)
︸ ︷︷ ︸

X

+no(n− no)︸ ︷︷ ︸
Y

+ (no − 1)︸ ︷︷ ︸
ρ

(3.6)

Figure 3.1 shows how the number of parameters changes with no for a population of

n = 20 individuals. When no is close to n, the reduction in parameters is not very significant.

However, as the number of non-zero nodes decreases, the number of parameters begins to

decline rapidly. This suggests that while PRSM will be beneficial in simplifying models when

a significant number of ρ’s are reduced to zero, there will be little benefit if G contains many

singletons which cannot be reduced to zero.

3.4. Simulation Studies

In previous sections, we used the mean absolute error (MAE) (2.38) as a measure of the

overall accuracy of an estimate of A. We will continue to do so, but we will also begin to
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Figure 3.1: Number of Parameters as no Changes

focus on the estimated value of no.

3.4.1 Toy Example

Consider the following toy situation. We have an adjacency matrix represented in Table

3.1 where there are only two members of the population exerting leadership. We have a

limited set of 20 observations shown in Table 3.2. Notice that node v4 is not a leader, but

it is very popular.

Table 3.3 shows the effect of applying Algorithm 2 with increasing η until the number

of non-zero elements of ρ has been reduced to no = 2. Notice that when we apply SSM, the

model estimates that nodes v1 though v4 all have non-zero ρ. This makes sense when we

consider that each of these nodes appear in over half of the observations (see Table 3.2).

As η becomes larger, the first node to be forced to zero is v3. This reduction is achieved
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Table 3.1: Example of a Population With Sparse ρ’s

j

ρ i 1 2 3 4 5 6 7

0.5 1 1.0000 0.7854 0.0000 0.9063 0.0000 0.0000 0.7452
0.5 2 0.7854 1.0000 0.8324 0.8817 0.5885 0.8594 0.0000

Table 3.2: Frequency Table Low Observations Example

A

1 2 3 4 5 6 7 Frequency Elements

1 0 0 0 0 0 0 1 1
1 0 0 1 0 0 0 1 2
1 1 0 0 0 0 1 1 3
1 1 0 1 0 0 0 1 3
0 1 1 1 1 0 0 2 4
1 1 0 1 0 0 1 3 4
1 1 0 1 0 1 0 1 4
1 1 1 1 0 0 0 1 4
1 1 0 1 1 1 0 1 5
1 1 1 0 1 1 0 1 5
1 1 1 1 0 1 0 5 5
1 1 1 1 1 0 0 1 5
1 1 1 1 1 1 0 1 6

Number of Times Observed 20

18 18 11 17 6 9 4

with a relatively low value of η = 20. When η is increased to 500, the PRSM identifies the

sparsity which was built into the original model and the Bayesian Information Criterion

achieves its minimum.
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Table 3.3: Bayesian Information Criterion as η Increases

j

η 1 2 3 4 5 6 7 LL BIC Parameters

0 0.3466 0.5224 0.0816 0.0494 0.0000 0.0000 0.0000 -54.7256 172.3616 21
1 0.3477 0.5201 0.0779 0.0542 0.0000 0.0000 0.0000 -54.7273 172.3650 21
2 0.3521 0.4538 0.0735 0.1207 0.0000 0.0000 0.0000 -54.6992 172.3089 21
5 0.3545 0.4610 0.0652 0.1193 0.0000 0.0000 0.0000 -54.7228 172.3559 21
10 0.3536 0.5333 0.0520 0.0611 0.0000 0.0000 0.0000 -54.8207 172.5517 21
20 0.3544 0.4556 0.0000 0.1900 0.0000 0.0000 0.0000 -55.2724 161.4722 17
50 0.3577 0.4853 0.0000 0.1569 0.0000 0.0000 0.0000 -55.3119 161.5512 17
100 0.3586 0.5385 0.0000 0.1028 0.0000 0.0000 0.0000 -55.6926 162.3126 17
200 0.3715 0.5446 0.0000 0.0840 0.0000 0.0000 0.0000 -55.7212 162.3698 17

500 0.3428 0.6572 0.0000 0.0000 0.0000 0.0000 0.0000 -57.8849 151.7186 12

1000 0.3428 0.6572 0.0000 0.0000 0.0000 0.0000 0.0000 -57.8853 151.7193 12
2000 0.3429 0.6571 0.0000 0.0000 0.0000 0.0000 0.0000 -57.8856 151.7199 12
5000 0.3429 0.6571 0.0000 0.0000 0.0000 0.0000 0.0000 -57.8853 151.7195 12

In addition to the effects of PRSM on ρ, we consider what happens to A as η increases.

In Table 3.4, we can see that the basic structure of the true adjacency matrix is present

with minimal penalty. Further, in Table 3.5 we can see that the same structure is preserved

and that there is no significant distortion of individual elements (i.e. A14) when η = 500.

Table 3.4: Estimated Adjacency Matrix for η = 1

j

ρ i 1 2 3 4 5 6 7

0.3477 1 1.0000 0.8817 0.0000 0.7096 0.0000 0.0000 0.5768
0.5201 2 0.8817 1.0000 0.8280 0.9125 0.3240 0.8674 0.0000
0.0779 3 0.0000 0.8280 1.0000 1.0000 1.0000 0.0000 0.0000
0.0542 4 0.7096 0.9125 1.0000 1.0000 0.9515 0.0000 0.0000

One might observe that the estimates in Tables 3.4 and 3.5 are not very accurate when

compared to the true adjacency matrix (Table 3.1); however, there are only 20 observations,
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Table 3.5: Estimated Adjacency Matrix for η = 500

j

ρ i 1 2 3 4 5 6 7

0.3428 1 1.0000 0.8000 0.0000 0.7083 0.0000 0.0000 0.5834
0.6572 2 0.8000 1.0000 0.8369 0.9239 0.4565 0.6847 0.0000

so it is not surprising that the estimates are not very accurate.

3.4.2 BIC for Increasing η with Fixed Number of Parameters

In Table 3.3, we notice that when the number of parameters decreases, it does so with a

sudden drop. This results in a sudden drop in the BIC (3.5). However, observe that, in

general, the lowest value of η that produces a reduction in parameters seems to also be the

η associated with the lowest BIC. That is, BIC tends to increase as η increases when the

number of parameters remains the same. This is a natural result of (3.5).

3.4.3 Estimating Parameters for Large Sparse Networks (n = 50)

In the previous chapter, we observed that as the number of observations increases, the

MAE of the estimated A improves. However, for situations where there is a large number

of nodes, the improvement rate can be very slow. Since PRSM does not seem to distort

the individual elements of A, we now show that for sparse latent network structure, the

estimates converge to the true adjacency matrix much faster.

To simulate this situation, we focus on a system of 50 nodes where no = 8. In initial

testing, a penalty of η = 500 was found to consistently produce minimal BIC solutions. For

each scenario, we produced 100 sets of observations and estimated {Â, ρ̂} for each set of

observations. We then calculated descriptive statistics for MAE and no.

The results of this experiment are shown in Table 3.6. As expected, the accuracy of
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both the SSM and PRSM improves as the number of observations increases. This is true of

both Â and the estimated number of non-zero elements in ρ.

More importantly, PRSM converges faster than SSM to the correct n̂o. For example,

with only 500 observations, PRSM performs as well as SSM with 4000 observations. Also,

we observe that when the SSM and PRSM estimate the same value for n̂o, they tend to

estimate the same degree of error in Â. Finally, when there are sufficient observations for

the SSM to correctly identify the number of non-zero parameters in ρ, PRSM doesn’t appear

to provide much improvement in estimation.

Table 3.6: Average and Standard Deviation of Mean Absolute Error as Observations In-
crease

Symmetric Star Model Penalized Rho Star Model

Obs Avg MAE StDev MAE Avg no StDev no Avg MAE StDev MAE Avg no StDev no

200 0.0421 0.0046 28.21 2.3151 0.0390 0.0059 22.28 6.4135

500 0.0393 0.0040 26.52 2.4842 0.0299 0.0078 15.46 5.2309

1000 0.0386 0.0048 25.28 2.2160 0.0256 0.0114 11.50 4.6046

2000 0.0367 0.0049 21.75 2.2264 0.0216 0.0112 10.37 4.4099

4000 0.0302 0.0055 16.47 2.1342 0.0185 0.0123 9.18 3.1699

10000 0.0222 0.0068 9.49 1.1055 0.0167 0.0122 8.16 0.3685

20000 0.0172 0.0069 8.20 0.4020 0.0144 0.0102 8.24 1.4079

50000 0.0116 0.0060 8.00 0.0000 0.0123 0.0111 8.00 0.0000

3.5. Data Analysis

3.5.1 Penalized Rho Star Model for Dolphins

The initial motivation for the PRSM was to introduce sparsity on ρ to reduce the number

of parameters in the SSM in situations where the number of observations is small compared
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to the number of members in the population. In the last chapter, we saw this in the dolphin

data where there are 18 individuals but only 40 observations.

This situation and the dataset itself deserve some attention before considering the esti-

mates derived from the PRSM. First, the dataset has four nodes which appear as singletons

(Nodes v1, v2, v5, and v13 are indicated in the following tables by placing them in parenthe-

ses.) Since nodes which appear as singletons cannot have ρi = 0, the minimal value of no is

4. Applying (3.6), we will have to estimate at least 65 parameters, which still exceeds our

observations.

In Tables 3.7 and 3.8, we give the results of using two different random number streams

for the data evaluation. The first interesting thing to notice about these two tables is that

they achieve their minimum BIC at the same η. This seems to be a pattern of the PRSM

and is not fully understood.

Secondly, notice that the two highlighted solutions tend to agree closely with each other.

There is disagreement on only three nodes, {v4, v7, v10}, and these are nodes with relatively

low values. This is much better performance than in Table 2.7 where there are 7 nodes of

disagreement and significant differences in estimated values.

Finally, notice that the number of estimated parameters is far above the number of

observations or even the minimal expected number of parameters. This suggests that while

applying PRSM to this small dataset should stabilize the estimate of Â, we should not

expect the effect to be perfect. This can be observed in Figure 3.2. While the solutions are

more consistent than in Figure 2.10, there is still some instability.
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(a) First Penalized Estimate Â1 (b) Second Penalized Estimate Â2

Figure 3.2: Penalized Adjacency Matrix Estimates for Dolphins (η = 20)

3.5.2 Penalized Rho Star Model for Dream of the Red Chamber

In addition to being useful for handling datasets where the number of observations is smaller

than the number of individuals, the Penalized Rho Star Model can be useful for simplifying

a model when the size of the population is large.

To demonstrate this, we apply the Penalized Rho Star Model to a reduced dataset

from Dream of the Red Chamber. Since the original dataset focuses on the 29 most central

characters, it contains a large number of singletons and pairs.

Singletons are important because groups consisting of a single node can only occur if the

observed node is the central node of the group. Therefore, the ρ associated with a singleton

cannot be exactly equal to zero. All but four characters appear as singletons.

Pairs have a similar effect on the Star Model. Since every pair must have at least one

member with a non-zero ρ, datasets with a large number of unique pairs can be constrained

in the number of nodes whose ρ can be penalized to zero.

To apply the Penalized Rho Star Model to the Dream of the Red Chamber dataset, we
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remove all singletons and pairs. This dataset reduction is strictly for purposes of illustrating

the behavior of Penalized Rho Star Model when simplifying a model where the population

size is large.

The results of this simulation are shown in Tables 3.9 and 3.10. One might expect to get

results that are inconsistent with the story using the reduced dataset. For the Symmetric

Star Model (i.e. η = 0), we observe ρ values which are distinctly different than those in

Table 2.4.

In particular, the main character is estimated to no longer play a central role. This

is a result of the removal of singletons and pairs. 35% of the original observations of Jia

Baoyu occur when he is alone or with only one other character. However, as the penalty is

increased, the number of the parameters decreases and the centrality of the main character

reasserts itself.

Since our interest lies in reducing the complexity of the dataset, we will focus on the

solution with the lowest number of parameters, η = 500. At this level of penalty, eleven

individuals are estimated to have ρ = 0.

Figure 3.3 shows the estimated relationships between characters based on the reduced

dataset. As before, characters have been sorted by ρ in descending order.

Clearly, this estimate is different from the estimate shown in Figure 2.5c. However, the

difference does not appear to destroy the social structure of the data. Important characters

like Grandmother Jia and Lady Wang remain important and trivial characters are ranked

low. Lin Daiyu still has fewer and weaker relationships than Xue Baochai. The resulting

estimate also remains sparse with high contrast between relationships.

This initial experimentation suggests that for datasets with many individuals appearing

in large groups, the Penalized Rho Star Model has potential for reducing model complexity

without sacrificing inferential ability.

69



Figure 3.3: Estimated Relationships for Dream of the Red Chamber (η = 500)
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3.6. Conclusion

In previous work, it has been shown that datasets with relatively low numbers of observa-

tions tend to produce unstable Â. In this chapter, we leveraged the self sparsity property

of the SSM to propose a method for applying a linear penalty to ρ to induce sparsity in Â.

This approach corresponds to an application of LASSO in a linear regression setting

and has a number of desirable properties that can be applied to small datasets.

First, elements of ρ that are close to zero are penalized towards zero, thereby reducing

the complexity of the model. The benefits of this reduction in complexity are measured

using the Bayesian Information Criterion. We further saw that the optimal level of the

penalty η was the smallest value that reduced the non-zero elements of ρ to their smallest

value.

Second, it was shown that the number of observations needed to estimate the true

adjacency matrix is reduced. That is, when working with small datasets that are the result

of sparse latent network structures, the PRSM converges to the true adjacency matrix faster

than the SSM.

Finally, even when there are too few observations to support the necessary number of

parameters, the PRSM induces more stability into solutions than we observed in the SSM.

This stability manifests itself both in ρ and A.
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Chapter 4: Future Work

In this chapter, we will discuss three avenues for future work and finish with a general

discussion of applications that can expand on existing work. In the first section, we will

present an alternative representation of the Star Models as a finite mixture model of multi-

variate Bernoulli random variables and provide a motivation for applying this model. This

will lead to a discussion of the conditions for the model to be identifiable.

In the second section, we will propose a more general mechanism of group formation

and discuss techniques for solving the problem.

In the third section, we propose some relationships which may be useful for efficiently

enumerating connected networks.

4.1. Identifiability of Star Models

4.1.1 Definition of Multivariate Bernoulli Random Variables

In this section, we reintroduce the Star Models as a finite mixture model of multivariate

Bernoulli random variables.

A multivariate Bernoulli random variable can be thought of as a set of different coins

which are tossed simultaneously so that each coin’s result can be uniquely observed. There-

fore, the parameters of an n sized multivariate Bernoulli random variable are π = {π1, . . . , πn}

where πi does not necessarily equal πj . The parameter πi is the probability that coin i will

come up as a head.

The probability mass function of the multivariate Bernoulli distribution is (Dai et al.,

2013)
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P(G|π) =

T∏
t=1

n∏
i=1

π
G

(t)
i

i (1− πi)(1−G(t)
i ) (4.1)

It is important to note that the multivariate Bernoulli is not a Binomial distribution

because each coin can have a different value of πi. And it is not a Multinomial distribution

where
∑

i πi = 1 and only one coin can be observed to be a head at one time.

4.1.2 Definition of a Finite Mixture Distribution

Suppose a random variable, X, takes on values in the sample space X , and that its distri-

bution can be represented by a probability density (or mass) function of the form:

p(x) = ρ1f1(x) + · · ·+ ρkfk(x) (4.2)

where

ρi > 0 ∀i (4.3)

∑
i

ρi = 1 (4.4)

and

fi(x) ≥ 0 ∀i (4.5)

∫
X
fidx = 1 ∀i (4.6)

In such a case, we say that X has a finite mixture distribution and that p(x) is a finite

mixture density function.
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The parameters ρ1, . . . , ρk are called the mixing weights and f1(x), . . . , fk(x) are the

component densities of the mixture (Titterington et al., 1985).

From these definitions, it is very easy to see that the Star Models are, in fact, finite

mixtures of multivariate Bernoulli random variables.

4.1.3 Identifiability of Finite Mixtures of Multivariate Bernoulli Random

Variables

In general a finite mixture of multivariate Bernoulli random variables is not identifiable

(Teicher, 1961). However, this shortcoming does not prevent such models from being useful

in practice. When dealing with classification problems where the researcher only has to

identify which component density an observation came from, this type of mixture can be

effectively used (Carreira-Perpinan and Renals, 2000). In such a situation, the individual

parameters of the multivariate Bernoulli random variables are not of interest. Of course,

this presents a challenge in network inference because we are specifically interested in the

individual parameters.

4.1.4 Identifiability

A basic requirement for any model is identifiability. For Star Models, this means for any

two sets of parameters {A, ρ} and {A∗, ρ∗}:

P(G = g|A, ρ) = P(G = g|A∗, ρ∗) ∀g =⇒ A = A∗, ρ = ρ∗. (4.7)

Unlike the Known Star Model, if both A and ρ are allowed to take arbitrary values, the

Star Model is unidentifiable.

This can be demonstrated by the following simple counterexample. Consider a network

of size n with A defined as follows: A12 = 1 and all the other off-diagonal components are

0. Further, let ρi = 1/n for all i. Given this, the probability of G has the form:
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P(G = g|A, ρ) =


1
n g = {1, 1, 0, ..., 0},
1
n {g : g1 6= 1,

∑
i gi = 1},

0 otherwise.

There are an infinite number of parameters yielding the same distribution, but a simple

alternative set of parameters {A∗, ρ∗} is given as follows. Let ρ∗ = (0, 2/n, 1/n, 1/n, ..., 1/n).

A∗21 = 1/2 and all the other off-diagonal components of A∗ are 0. Obviously, we have

P(G = g|A, ρ) = P(G = g|A∗, ρ∗). This counterexample demonstrates that Star Models are

not identifiable without an additional condition like the symmetry condition presented in

Chapter 2.

4.1.5 Necessary and Sufficient Condition for Identifiability

To understand what is required to make a finite mixture of multivariate Bernoulli random

variables identifiable, we turn to Yakowitz and Spragins (1968) which provides the following

theorem:

Theorem 1. H is identifiable if and only if F is a linearly independent set over the field

of real numbers, R.

The symmetric condition introduced in Section 2.4 satisfies this condition in a manner

that is not fully understood. A more thorough understanding of this theorem could lead to

a less restrictive condition on the Star Models.

4.2. General Grouping Model

Throughout this dissertation, we have shown how the relationships between nodes could be

inferred from grouped data by limiting the set of possible subgraphs generating the observed

group. Furthermore, we showed how the work of Rabbat et al. (2006) places a different

restriction on the subgraphs than Star Models.
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A natural extension of this work is to relax the restrictions on the set of possible graphs.

One way to do this is to simply let the observed group, G(t), be the result of any connected

subgraph on the nodes in G(t).

Such a model would allow a process of group formation which we call the General

Grouping Model (GGM). Under this model of group formation, we assume that there is

a latent symmetric weighted adjacency matrix, A, where Aij is the probability that the

relationship between nodes i and j is active for sample t.

We attempt to apply the Expectation Maximization algorithm to optimize the likeli-

hood function. For large groups, the E-step is difficult to calculate exactly, but could be

approached using Monte Carlo Expectation Maximization (MCEM).

4.3. Enumeration of Connected Graphs

In the previous section, we would need to efficiently estimate the probability that a group

was connected. One way to approach this would be to develop a technique a enumerate all

connected graphs.

Here, we introduce a simple method for uniquely identifying every possible network on

an arbitrary set of nodes. Once this indexing system is established, we show how some

properties of the numbering system lead to a very easy technique for finding connected

graphs.

This work is inspired by An Atlas of Graphs (Read and Wilson, 2004). The authors

of this curious work present pictures of over 10,000 graphs along with tables giving the

number of graphs with a certain property and tables of parameters associated with many

of the pictured graphs.

One drawback of the Atlas is the numbering system that it uses for graphs. To begin,

the Atlas categorizes graphs based on different properties. There are chapters containing

trees, regular graphs, planar graphs, etc. In each chapter, graphs are given a prefix to

indicate the property that is the focus of the chapter. For instance, unicyclic graphs have
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the prefix “U-” while 3-connected plane graphs have the prefix “Tc-”. Within each chapter,

graphs are numbered sequentially based on the number of verticies in the graph.

The first shortcoming of this numbering system is that there are multiple graphs which

show up in different chapters with different numbers. For instance, G18, P4, and C1 all have

the same adjacency matrix.

The second drawback is that it is impossible to draw a graph given its graph number.

Consider the tree T168; all we know from the graph number is that the graph is a tree; we

don’t know the number of verticies or the degree. Instead, we have to cross reference this

number to a table.

The final drawback is that given an arbitrary adjacency matrix, there is no index to find

the picture of that graph.

As an alternative, we propose the following indexing system. Suppose we have the

symmetric unweighted adjacency matrix, A, of a simple graph. We adopt the labeling

convention that the first row and column of the adjacency matrix are associated with node

vn and the last row and column are associated with v1.

We first reduce A to its upper triangular form. For an n×n adjacency matrix, this will

result in a triangular matrix with
∑n−1

i=1 i terms.

Then we convert the upper triangle into the binary form of the network, B, by putting

the first row of the matrix into the binary number, then the next, etc.

Table 4.1: Adjacency Matrix for N100

v5 v4 v3 v2 v1

v5 1 0 0 0 1
v4 0 1 1 0 0
v3 0 1 1 1 0
v2 0 0 1 1 0
v1 1 0 0 0 1
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Table 4.2: Upper Triangular Matrix for N100

v5 v4 v3 v2 v1

v5 0 0 0 1
v4 1 0 0
v3 1 0
v2 0
v1

As an example of this process, consider the adjacency matrix in Table 4.1. We convert

this to the upper triangular form shown in Table 4.2. From here it is very simple to see

that this has the binary form shown below. Further, since this binary number has a decimal

value of 100, we call this network N100.

B100 = 0001100100

In order to make the network index more universal, we allow a single network to be

applied to multiple numbers of verticies. For instance, N1 is simply a network that connects

nodes v1 and v2. If we are considering a graph with 15 nodes, N1 would still connect nodes

v1 and v2, but it would not connect any other nodes.

This aspect of our indexing system leads to the following definition:

Definition 4.1. The basis of a network is the minimum number of verticies on which the

network can be defined.

Proposition 4.2. A network can only be connected in its basis.

Suppose a network, Nx, has basis n but is represented on n+ 1 nodes. From the binary

form, we can easily see that the n + 1 row of the adjacency matrix must consist of only

zeros. Therefore, node vn+1 is not connected to any other nodes in the network and Nx is

not connected.

We believe that leveraging this relationship along with several others can lead to an

efficient algorithm for enumerating all connected networks on a graph with n nodes. Since
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these relationships are built on a unique indexing system, they can be stored dynamically

for reuse once the attributes of a given network have been established.

4.4. Additional Work

There are several extensions of the existing work which are possible.

4.4.1 Singleton Free Datasets and Alternative Handling of Singletons

There are some datasets which can never contain a singleton. For example, in an e-mail

dataset each observation is an interaction between two individuals, even though additional

individuals may be involved and the primary members of the interaction may be ambiguous.

We can modify Star Models so that a pair of individuals generates the group, then adds

members to the group. This would increase the dimension of ρ to m =
(
n
2

)
pairs and

the dimension of A to m × n. This would be a problematic formulation for large groups;

however, the Penalized Rho technique could be applied to simplify the model.

Additionally, the implicit assumption in the PRSM that a singleton is acting as a

“leader” may have to be modified. As was seen in the Dolphin dataset, since four indi-

viduals appeared as singletons, there was no way to penalize all of the elements of ρ to zero.

It is possible that the generating mechanism could be modified to account for this behavior

differently.

4.4.2 Effect of Removing Individuals

This work can also be used to quantify the effect of changes in a population. For instance, it

is common practice to separate disruptive children in classrooms. A legitimate research area

would measure whether such actions change the social behavior of the remaining children.

An important aspect of this is that we would have to compare old observations ignoring the

removed member and observations taken after the individual is removed.

The dataset from the Dream of the Red Chamber provides an opportunity to begin

this research because the first 80 chapters of the dataset occur before the death of a main
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character.

4.4.3 Behavior Transitions Across Time

In the famous karate club example (Zachary, 1977), Zachary was looking at the social

interactions of a group as it underwent a social fracture. Similarly, research on captive

primates has focused on techniques for integrating existing populations to establish stable

social conditions (Schel et al., 2013). There are likely ways to relax the assumption of

observation independence to model social behavior through time.

4.4.4 Social Group Evolution

Snijders et al. (2010) has proposed a Markov Chain approach to group formation through

time. It would be worthwhile to consider ways in which the Star Models could be incorpo-

rated into an evolutionary model.

4.4.5 Non-Member Grouping Effects

There is clear evidence that social behavior can be dependent on some condition other

than the members of the population. For example, the size of chimpanzee groups increases

when female members of the population are in estrus. Therefore, it might be worthwhile to

incorporate additional covariates into the Star Model to further simplify the model.

4.4.6 Measurement Error

Because much of the social activity data is collected by hand, a practical concern for re-

searchers is determining if measurement error is occurring. This can come in different forms.

First, one researcher can misidentify an individual member of the population. If there were

a training set of data developed by expert researchers, it could be compared against the

data collected by new researchers to check for errors.

Another source of work related to measurement error is to deal with the issue of un-

observed members. For example, suppose we were using photographs taken by a group of

82



humans. There is an important member of the group who is unobserved, the person taking

the picture. In fact, it is likely that this person is the central node of the observation and

exerts considerable influence on the make up of the group.

A final area of measurement error that should be addressed is overlapping groups. As

group size increases, it becomes more and more likely that the mode of group formation

includes some element of two groups coming together. Addressing this will increase the

complexity of the problem; however, this complexity may be mitigated by leveraging the

General Grouping Model discussed above.

4.4.7 Population Bounding

At present there are two techniques for bounding a population (Laumann et al., 1989;

Wasserman and Faust, 1994), the realist and the nominalist approach. Under the realist

approach, members of groups are identified based on group membership as perceived by

the actors themselves (e.g. college men are included in the population based on their

membership in a specific fraternity). In the nominalist approach, the population is defined

based on the analytical needs of the researcher, even though the researcher may perceive

no clear social boundary (e.g. co-authorship datasets).

Research on the effect of measurement errors would likely create insights into the proper

way to determine the population boundary and the effect of making mistakes in boundary

selection.

4.5. Outreach

Thus far in this work, we have conducted only limited outreach to other researchers who

may have an interest in these techniques. In the coming months, I intend to coordinate

presentation of this material with the following organizations:

• United States Military Academy Network Science Center

• Naval Postgraudate School Operations Research Department
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• Center for Army Analysis

• RAND

• Institute for Defense Analysis

• Army Research Laboratory

• INFORMS

Additionally, we intend to make a submission to the editors of the Encyclopedia of Social

Network Analysis and Mining.

Finally, we will look towards developing a website that includes links to our work,

datasets, and (possibly) downloads of code.
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Appendix A: Notation

Table A.1 provides a list of quantities addressed in this dissertation along with the notation

that is used for each quantity. A complete explanation of each quantity is reserved for the

section of the dissertation where the quantity is introduced.
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Table A.1: Notation Table

Quantity Notation Section

Number of Nodes n 1.1
Full Set of Nodes V 1.1

Specific Node (Node i) vi 1.1
Adjacency Matrix A 1.1

Element of an Adjacency Matrix Aij 1.1
Erdös-Renyi Graph with Fixed Probability G(n, p) 1.2

Erdös-Renyi Graph with Fixed Number of Edges G(n,m) 1.2
Generic Probability p 1.2
Number of Edges m 1.2

Number of Observed Groups T 1.4.1
Index of Observed Groups t 1.4.1

Subset of the Population in Observation t V (t) 1.4.1
Full Set of Observed Groups G 1.4.1

Single Group in Observation t G(t) 1.4.1

Indicator of node vi in Observation t G
(t)
i 1.4.1

Number of Individuals in Observation t nt 1.4.1

Unweighted Undirected Adjacency Matrix Connecting G(t) G(t) 1.4.1
Compressed Set of Observed Groups F 1.4.1

Co-Occurrence Count Matrix O# 1.5.3
Co-Occurrence Frequency Matrix O 1.5.3

Threshold for Co-Occurrence Count Matrix α 1.5.3
Half Weight Index H 1.5.3
Message from vi ei 1.5.3

Message from vi to vj eij 1.5.3

Indicator Vector of Center Node of Group G(t) S(t) 2.2

Probability that vi is the center of Group G(t) ρi 2.2.1
Number of Parameters d 2.3

Log-Likelihood L 2.3.1
A Specific Example of a Group g 2.4

Indicator Function of Node vy γ(G
(t)
y ) 2.4.1

Probability Node vi is Observed Oi or πi 2.6.3 or 3.1.1
Tuning Parameter η 3.1.1
Objective Function Λ 3.2.2

Number of Non-Zero Elements of ρ no 3.3
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Appendix B: Properties of Grouped Data Under Star Models

For any observed G, there are certain descriptive statistics which can be calculated directly

from G. These include

• Frequency that node vi is observed (Oi)

• Frequency that nodes vi and vj co-occur (Oij)

• Frequency that nodes vi and vj co-occur given one of them is observed (Hij)

• Average group size (n̄t)

• Average group size given node vi is a member of the group (n̄t,i)

Clearly, some of these statistics (referred as empirical quantities later in this section)

form the basis of the measures typically used to infer network structure. However, it is

also possible to calculate the expected values of these statistics (referred as theoretical

quantities) from the Symmetric Star Model.

Therefore, in this appendix, we present expressions for theoretical quantities from Star

Models. It is worth noting that since the Known Star Model and the Symmetric Star Model

have the same generating mechanism, the properties calculated below are not dependent on

whether the central node is known or not.

• Probability that vi is observed

P(G
(t)
i = 1|A) =

∑
k

ρkAki (B.1)

• Probability that vi and vj co-occur (O)

P(G
(t)
i G

(t)
j = 1|A) =

∑
k

ρkAkiAkj (B.2)
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• Probability that vi and vj co-occur given one of them is observed (HWI)

P(G
(t)
i G

(t)
j = 1|G(t)

i +Gj(t) > 0, A) =
2
∑

k ρkAkiAkj∑
k ρkAki +

∑
k ρkAkj

(B.3)

• Average group size

E[nt|A] =

n∑
i=1

E[nt|S(t)
i = 1, A]E[S

(t)
i = 1] =

n∑
i=1

ρi

n∑
j=1

Aij (B.4)

• Average group size given vi is a member of the group

E[nt|G(t)
i = 1, A] =

n∑
k=1

P(S
(t)
k = 1|G(t)

i = 1)E[nt|S(t)
k = 1]

=

n∑
k=1

ρkAki∑
l ρlAli

n∑
j=1

Akj (B.5)

88



Appendix C: Runtime of Star Models

One aspect of the Star Models that is of particular concern is the time that it takes to

estimate the parameters for a dataset. To explore this, we varied the population size and

number of observations as shown in Table C.1. These trials ran on a Intel Pentium CPU

G2030 at 3.00 GHz with 4.00GB of RAM.

For each population, we produced a latent network structure with no = n, then generated

six observation sets of differing length from that structure. We repeated this process 100

times for each population and report the average time to estimate the parameters.

Table C.1: Average Runtime in Seconds

n = 5 n = 10 n = 20 n = 30

Parameters d = 14 d = 54 d = 209 d = 464

Obs SM PRSM SM PRSM SM PRSM SM PRSM

200 11.5 118.4 17.0 348.8 28.5 555.6 35.9 929.7
500 11.0 102.8 15.9 351.4 35.6 761.8 70.9 1,869.6

1,000 10.1 104.4 15.1 314.8 39.6 886.0 114.0 3,240.7
2,000 10.3 90.9 13.8 299.5 44.9 1,166.1 184.4 4,968.5
5,000 10.1 84.6 13.5 265.6 58.8 1,277.6 364.3 9,376.0
10,000 10.1 76.4 14.0 261.8 59.0 1,527.9 912.1 23,794.9

The number of parameters, d, increases according to (2.16).

One of the most striking features of Table C.1 is that for datasets where the number

of observations is on the order of ten times larger than the number of parameters to be

estimated, the runtime appears to decrease. This improvement in runtime is likely caused

by a reduction in the number of iterations necessary for convergence.
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