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A PIPELINE FOR CONSTRUCTING A CATALOG OF MULTI-METHOD MODELS OF
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Dissertation Director: Dr. John Wallin

Galaxies represent a fundamental unit of matter for describing the large-scale structure

of the universe. One of the major processes affecting the formation and evolution of galax-

ies are mutual interactions. These interactions can including gravitational tidal distortion,

mass transfer, and even mergers. In any hierarchical model, mergers are the key mecha-

nism in galaxy formation and evolution. Computer simulations of interacting galaxies have

evolved in the last four decades from simple restricted three-body algorithms to full n-body

gravity models. These codes often included sophisticated physical mechanisms such as gas

dynamics, supernova feedback, and central blackholes. As the level of complexity, and

perhaps realism, increases so does the amount of computational resources needed. These

advanced simulations are often used in parameter studies of interactions. They are usually

only employed in an ad hoc fashion to recreate the dynamical history of specific sets of

interacting galaxies. These specific models are often created with only a few dozen or at

most few hundred sets of simulation parameters being attempted.



This dissertation presents a prototype pipeline for modeling specific pairs of interacting

galaxies in bulk. The process begins with a simple image of the current disturbed mor-

phology and an estimate of distance to the system and mass of the galaxies. With the

use of an updated restricted three-body simulation code and the help of Citizen Scientists,

the pipeline is able to sample hundreds of thousands of points in parameter space for each

system. Through the use of a convenient interface and innovative scoring algorithm, the

pipeline aids researchers in identifying the best set of simulation parameters. This disser-

tation demonstrates a successful recreation of the disturbed morphologies of 62 pairs of

interacting galaxies. The pipeline also provides for examining the level of convergence and

uniqueness of the dynamical properties of each system. By creating a population of models

for actual systems, the current research is able to compare simulation-based and observa-

tional values on a larger scale than previous efforts. Several potential relationships between

star formation rate and dynamical time since closest approach are presented.



Chapter 1: Introduction

In terms of the large-scale structure of the universe, galaxies represent a fundamental unit of

matter. Galaxies tend to be found in groups called clusters, which in turn form a hierarchy

of super-clusters tracing the distribution of matter in the universe. Understanding the

formation of galaxies and the manner in which they evolve over their lifetimes is important

for addressing a number of important questions (Springel et al., 2005). These include

what role inflation may have played in the early universe, what is dark matter, and how

will the universe as a whole evolve. One of the major processes affecting the formation and

evolution of galaxies are mutual interactions. These interactions can including gravitational

tidal distortion, mass transfer, and even mergers. In any hierarchical model mergers are

the key mechanism in galaxy formation and evolution.

The various interaction effects lead to what one important review (Struck, 2006b) sum-

marizes as five major themes to be studied: the generation of tidal morphologies, induced

nuclear activity, induced star formation, the role of collisions in galaxy evolution, and the de-

pendence of these effects on the clustering environment. This dissertation will focus mainly

on the generation of tidal morphologies and address in part some aspects of induced star

formation. When constructing models of specific systems, achieving a match to the tidal

morphology is a necessary prerequisite for obtaining an accurate model. While it might

be possible to have matched the shape correctly but have unrealistic predictions related to

other characteristics such as star formation rate, it is unrealistic to claim an accurate model

for a specific system without a match to the morphology.

Galaxy interactions take place on timescales of a billion years or more. Even though

we are able to look back through time to earlier epochs and see galaxies at many stages of

interaction, we cannot hope to observe any particular system for more than just a single
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instant in time. Because of this static view provided by observations, researchers have

turned to simulations of interacting systems.

Previous progress in developing detailed models of specific, observed systems has been

ad hoc. The time to model individual systems has been quoted as taking as much as six

months (Hammer et al., 2009). Since 2000, a number of researchers have developed semi-

automated methods for trying to speed the process, (Theis and Kohle, 2001), (Wahde and

Donner, 2001), (Barnes and Hibbard, 2009), (Smith et al., 2010). These methods have seen

success in matching artificial systems, but their application to real sets of interacting galaxies

usually requires detailed observation data beyond a simple image as well as customized

fitness functions.

This dissertation contributes to the study of interacting galaxies by presenting a set of

software tools and processes that were used to develop models for 62 pairs of interacting

galaxies. These tools incorporate the input of a large number of Citizen Scientist volunteers

who helped search for and review candidate models for particular systems. As part of the

research done for this dissertation, a website called Merger Zoo (Holincheck et al., 2010b)

was launched to enable the contributions of volunteers from the Zooniverse community.

The specific models developed with the help of the volunteers, the tools for processing and

analyzing the results, and the set of evaluated results will all contribute to future work in

this field.

1.1 A Short History of the Study of Interacting Galaxies

There are several excellent reviews in the literature discussing the history, observational

evidence, and an overview of simulation techniques for studying interacting galaxies. Three

of them are Barnes and Hernquist (1992), Struck (1999), and Struck (2006b). Noting the

growth and diversification in the field since the early 1970s, the authors of each paper make

note of how it is not practical to give a comprehensive overview in a single volume.

In the early part of the 20th century, astronomers came to realize that many of the

nebulous objects they had been observing were actually galaxies of similar significance to
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the Milky Way. With a universe full of “island universes” to catalog, Hubble proposed

a classification scheme where galaxies were categorized based on their morphologies. His

scheme, with modifications, is still the most widely used system. To illustrate his categories,

Hubble famously proposed a tuning fork diagram with elliptical galaxies on the handle, two

types of spirals on the forks, and lenticular galaxies at or near the intersection. If the

fork is oriented horizontally, the handle is on the left with barred spirals on the bottom

fork and non-barred spirals on the top fork. Hubble suggested a possible evolutionary

sequence where galaxies would become more organized as they transitioned from ellipticals

to lentinculars and then into spirals of increasingly loose spiral arms. This speculated order

of galaxy types resulted in astronomers referring to ellipticals as early-type galaxies and

spirals as late-type ones. This particular evolutionary path has been discredited, but yet

the terminology remains.

Galaxies that were unsymmetrical were called irregular galaxies by Hubble. The first

type of irregulars have a rough or clumpy appearance. The second type have a smooth

appearance. De Vaucouleurs added refinements such as intermediate categories on the

prongs of the tuning fork and a third prong for weakly barred systems.

Equipped with this classification system, astronomers of the early- to mid-20th century

began amassing catalogs of galaxies and their Hubble-types. Among the important realiza-

tions to come from this effort where that galaxies tended to exist in large clusters, and that

not all galaxies could be assigned an exact Hubble type. The second realization, that some

galaxies had peculiar, though not necessarily irregular, shapes led some to speculate as to

the origins of these morphologies. The fact that galaxies were often found in dense clus-

ters provided a possible explanation: that these isolated, island universes may on occasion

pass close to one another and interact. These interactions may be simple close passages,

collisions, or even captures resulting in mergers.

One of the first to speculate that tidal forces caused peculiar morphologies was Zwicky

in the 1950s. At the time his theory was considered unlikely because collisions between

galaxies were thought to be improbable(Struck, 2006b) and that gravity alone would not
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be able to cause such narrow features (Barnes and Hernquist, 1992). In the 1960s, working

with the data collected from the Palomar sky survey, Arp collected images of over 300

peculiar galaxies. He published this atlas of objects with his attempt at a categorization

scheme.

Several attempts in the 1960s and 1970s were successful in demonstrating that tidal

distortions cause by gravity could produce the thin tails and bridges seen in interacting

galaxies. The researchers used a simple model for pairs of interacting galaxies. Each galaxy

was treated as a point mass and is surrounded by a disk of mass-less test particles. The

particles in each disk are influenced by the gravity of both galaxies. These models are

referred to by several names, but will be called restricted three-body methods in this work.

The results from these models showed that the more dramatic features of interacting galaxies

are produced by slow, close passages along parabolic or elliptical orbits. Faster passages

usually result in smaller features being generated.

The most often cited of the restricted three-body papers from this time is Toomre and

Toomre (1972). The authors of this work were able to produce simple, yet credible models

of four well-known pairs of interacting galaxies. This seemed to answer conclusively that it

was possible to recreate the general morphology of interacting systems, especially the tails

and bridges, with gravitational tidal disturbances. Additionally, Toomre and Toomre (1972)

predicted tidal that effects on the gas in the galaxies could lead to enhanced star formation

as well as gas transfer to nuclear regions. From the 1970s onward, the understanding of

interacting systems was influenced by both observations and simulations.

1.2 Some Important Physical Processes in Interacting Sys-

tems

Galaxies are composed of luminous stars, an interstellar medium of gas and dust, and some

form of non-luminuous but gravitationally-charged, dark matter. In general, stars and dark

matter are treated as collisionless. The interstellar medium (ISM) is generally treated as
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a compressible fluid (Barnes and Hernquist, 1992), the primary component being the gas.

In each of the interacting galaxies gas can collide, be compressed, dissipate, heat, or cool.

All three components feel the effects of gravity. However, the gas experiences a number

of interesting phenomena in response to being disturbed when two galaxies interact. For

modeling purposes, the physics is generally divided into gravity and gas dynamics.

1.2.1 Gravity

Most restricted three-body methods ignore gas. Most use an analytic formula to describe

the gravity potential for the disk of each galaxy. Depending on the nature of the potential,

they may either ignore or include contributions from dark matter. Usually, the entire mass

for the galaxy is assigned to a particle located at the center of the galaxy. Massless test

particles are then distributed randomly around the disk to sample this potential. At each

time step, the acceleration of a test particle is calculated by adding the acceleration from

each of the two disks. The three bodies in this calculation are the two galaxy centers of

mass and the test particle. This is repeated for all test particles. With the acceleration

information, the particle positions and velocities are updated for the next time step. Toomre

and Toomre (1972) demonstrated that this simple model will generate simulations with tidal

features matching real systems.

Real galaxies do not have all of their mass concentrated exactly at their centers. Also, in

real interacting systems, as the orbits of stars and dark matter are disturbed, their responses

cause the distribution of mass to change which represents a change to the gravitational

potential. Restricted three-body methods fail to account for these changes and are said to

have rigid potentials.

A more realistic treatment of gravity is to use an N-body method. In these simulations

multiple massive particles are used to represent each galaxy. To achieve a self-consistent

representation of the potential, typically the number of particles will exceed 10 000. With

the mass in the system distributed throughout, the potential will respond along with the

mass as the orbits of particles are tidally disturbed. The mutual interactions between the
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particles also allows for the modeling of smaller pieces of the galaxies experiencing self-

gravity. For example, a tidal tail formed during the close passage of two galaxies may

initially appear rather broad. The gravity experienced between simulation particles in the

tail may cause it to contract into a thinner shape. In real systems, dense regions of star

formation are sometimes observed near the tips of tidal tails. These regions may be forming

tidal dwarf galaxies (Struck, 2006b). This behavior is largely missing from restricted three-

body models. Wallin et al. (1990) demonstrated that even in the absence of self gravity in

tidal features, restricted three-body models could produce realistic density enhancements.

Combining these density increases with a simple Schmidt law allows even these simple

models to estimate induced star formation.

The most straight forward way to calculate the mutual gravitational acceleration in

N-body simulations is with direct summation. Iterate over all particles in the simulation.

For each particle, iterate over all other particles and calculate the potential between the

two particles, adding to the total felt by the particle. This requires ∼ O(N2) operations to

compute the potential for all particles at each time step. In the mid 1980s the hierarchical

tree method was developed. In this method, particles are organized in a hierarchical tree

data structure. When calculating the potential experienced by a particle, proceed as before

with direct summation. However, for distant particles, use low-order multipole expansions

to approximate the potential. This expansion is aided by use of the tree structure. These

tree codes can compute the potential at each time step with∼O(N logN) operations (Barnes

and Hernquist, 1992). Other methods for calculating the potential are grid-based and can

be a hybrid of grids and particles.

1.2.2 Gas Dynamics

In general, much of the gas in galaxies will be in the form of neutral hydrogen atoms, HI.

This gas emits photons at a wavelength of 21cm due to electrons jumping between split,

hyperfine levels in the ground state. The radiation observed due to this quantum effect is an

effective means of tracing the presence of HI gas in a galaxy. When treated as an emission
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line in the spectrum of a galaxy or region of a galaxy, it is useful to look for any broadening

of shift in this line. Such effects allow measurements of the line-of-sight velocity of this gas

with respect to the observer to be measured. This velocity information describes how the

gas in the system is moving.

The gas in interacting galaxies will follow the same trajectories as stars only as long

as pressure forces remain small. However, shocks in the gas will redistribute the angular

momentum between various components causing the path of the gas to be very different

than the stars. Shocks can form through several means. One could be direct collisions

between gas in one galaxy and the other for encounters when the two galaxies actually pass

through one another. Another shock forming effect are the various gravitational torques

and tides in the system. Any time two different parcels of gas experience different forces,

they can develop a relative velocity leading to one parcel overtaking the other and causing

a shock. Originally it was suspected that large-scale shocks would end up stripping gas

from interacting galaxies. However, numerical results in 1980s and 1990s showed that the

shocked gas would remain in the galaxy and may even be driven towards the center (Barnes

and Hernquist, 1992).

Gas that has been shocked, or merely had its density increased, may experience localized,

gravitational collapse. This collapse may lead to the formation of new stars. Stars with a

range of masses will form in this manner, with new stars being surrounded by gas. The

more massive stars will be O and B type. They are much hotter and radiate intensely in the

UV range. This radiation will interact with the surrounding gas. The UV radiation from

hot, young stars will ionize the hydrogen atoms turning clouds of HI into regions of HII.

The protons and electrons will recombine to form neutral hydrogen again with the electron

in a random energy level. The subsequent cascade will often include the transition from

n=3 to n=2, known as the Balmer α or Hα. This causes the electron to emit a photon with

a wavelength of about 656nm, which produces an emission line. By measuring the strength

of the Hα emission line one can estimate the star formation rate in that location.

Star formation converts gas into stellar mass. Some of this mass will be in the form
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of low mass stars which will have very long lifetimes ∼ 10 Gyrs. Other portions of this

mass will be in the form of high mass stars which will have short lifetimes. Towards the

later stages of their lifetime, these stars will have strong stellar winds which will disperse

the gas in the vicinity. This could lead to localized density increases, triggering more star

formations. But if the winds are strong enough they could blow the gas into a lower density

configuration which would actually decrease or cut off star formation. These interactions

with the surrounding gas can affect the temperature along with the density.

In addition to triggering star formation, the effect on the gas in interacting systems can

cause large portions of it to lose angular momentum. This gas will then be driven towards

the nuclear regions of the galaxy. Interactions may be an important mechanism for fueling

nuclear activity.

Clearly, the behavior of gas in interacting galaxies must be included in any model that

wishes to accurate describe the system (Barnes and Hernquist, 1992). Two broad categories

of methods are particle-based or grid-based. For particle-based methods, the gas can be

treated as a set of discrete clouds that undergo inelastic collisions. These methods are

referred to as ”sticky particle”. Another particle method is called smoothed particle hydro-

dynamics (SPH). Even though it is particle-based, it treats the gas as a continuous medium.

The physical properties tracked by gas particles in this method are calculated using smooth-

ing kernels that weight the contributions of nearby particles. The second broad category of

methods is grid-based. In the last several years, some researches have been using adaptive

mesh refinement (AMR) to make grid hydrodynamic calculations more spatially adaptable.

AMR allows localized regions of complex interactions to be modeled with a relatively fine

grid while less active regions can be modeled with a coarse grid.
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1.3 Comparing Models to Observations

In computational science it is important to relate simulations to empirical data1. This is

similar to theoretical sciences that develop models which make predictions or attempt to

explain observed data. Both the restricted three-body and the full N-body methods produce

simulation output which can be evaluated based on morphology. If the shape, position, and

orientation of tidal features matches the observed values, then the simulation is a plausible

approximation of the real system. This is the first and most important constraint on a

model of a specific system of interacting galaxies.

Researchers are able to provide a qualitative assessment of how well a simulation matches

an image of a pair of interacting galaxies. Toomre and Toomre (1972) included a relatively

small number of test particles in the graphical presentation of their simulation results.

As computers increased in CPU speed and graphics capabilities, the number of particles

was increased. An important early effort to incorporate interactive graphics was Borne

(1988). The authors in that work demonstrated the utility of creating a simulated surface

density plot of particle mass. They in turn were able to construct simulated isophotes for

comparison with observations.

Other constraints on the models can involve the gas dynamics. If a model includes a

treatment of the gas in the system, it may be possible to calculate the line-of-sight velocity

of the gas for various regions in the simulated galaxies. These velocities can be compared to

observed HI velocity data. One of the first to incorporate this approach was Borne (1988).

Additionally, some models can predict a star formation rate (SFR) based upon the density

of gas in the system. This predicted SFR can be compared to values based on measurements

of the Hα emission line.

In addition to using observational data to constrain a model solution, the dynamical pa-

rameters from a simulation can be compared to observed values in an attempt to determine

any correlations. For example, the closest distance between two galaxies in a recent passage

1Barnes (2011) gives a useful definition of the process of modeling interacting galaxies as a search “to
define a mapping from the current morphology and kinematics of a tidal encounter back to the initial
conditions.”
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might correlate with the SFR. To determine if this is true, the SFR and closest distance

for multiple systems can be used to construct a scatterplot. This type of correlation, while

potentially more meaningful with a full N-body model solution, can be performed with the

dynamical parameters from restricted three-body models.

1.4 Automating the Search for Models of Interacting Galax-

ies

Determining the dynamical parameters for a model of a real system of interacting galaxies

can be a time-consuming process. Toomre and Toomre (1972) offered a series of coarse, yet

revealing, parameter studies. For example they showed the different morphologies resulting

by varying the inclination angle while holding other values fixed. Using the physical intuition

gained from such studies, researchers attempting to model a specific system will narrow the

range of simulation parameters to be used. However, there is a tremendous amount of trial

and error involved in finding a best-fit orbit. This is especially true if one is trying to match

the kinematics data from the simulation to observations. Hammer et al. (2009) claims that

”[t]he accurate modelling of both morphology and kinematics takes several months, from

two to six months for a well-experimented user.”

Several attempts at speeding and even automating this process have been published.

Wahde (1998) was one of the first to demonstrate the use of a genetic algorithm for op-

timizing models of interacting galaxies. A genetic algorithm (GA) uses the evolutionary

processes of crossover and mutation to randomly assemble new offspring from an existing

population of solutions. The parent solutions are chosen to generate offspring in proportion

to their fitness. The more fit, or better matched to the target system, an individual model

is, the more often it will contribute its genetic information to subsequent generations. The

genes in this GA approach are simply the dynamical model parameters like inclination,

mass ratio, disk orientations, etc. The fitness function to be evaluated and optimized needs

to provide a meaningful qualitative value for how well a given simulation result matches the
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target system. A value of 1 means a perfect match, lower values indicate worse matches.

With a fitness function defined, a GA is seeded with an initial population and then set

to evolve for some number of generations. Researchers trying to optimize galaxy models

will use a population size of around 50 and will evolve for 50 generations. There is an

extensive body of research on the convergence behavior of GAs in terms of the nature of

the fitness landscape being studied and the particular evolutionary mechanisms invoked

(De Jong, 2006).

At least three groups have published results of GA optimization of models of interacting

galaxies: Wahde and Donner (2001), Theis and Harfst (2000), and Smith et al. (2010).

They all demonstrate convergence to one or few best-fit models for real systems. However,

the convergence radius for these systems is not well documented however. A large radius

of convergence (perhaps even global in scale) is demonstrated by Wahde (1998) and others

when they are modeling artificial systems. These systems use the simulation code itself

to generate a high-resolution simulated observation of a hypothetical system of interacting

galaxies. The researchers are then able to use their GA to optimize and find a close fit to

the known dynamical parameters. Additionally, to demonstrate convergence as well as some

amount of uniqueness, it is customary to take the resulting best-fit models, apply a set of

random alterations to the dynamical parameters, and then use these altered models as the

initial population in a new GA run. If this population converges to the same best-fit model,

then some confidence in the local uniqueness of the model is gained. However, Smith et al.

(2010) found four distinct best-fit models for the pair of galaxies NGC 7714/5. Even though,

they used some kinematics data in their fitness calculation, this demonstrates the potential

degeneracy within the models when the fitness is based primarily on the morphology.

The performance of GAs as a method for optimizing a fitness function over a particular

domain is much better than an exhaustive search. Consider a model that requires 12

parameters. In order to sample each parameter at 10 values along its range, 1012 simulation

runs will have to be performed. If a single simulation runs in about 1 sec, one would need

over 30 000 years (assuming no increase in computing power) to perform an exhaustive
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search for a single system. Reducing the number of free parameters obviously brings down

the number of simulations to be performed, but doing so might over constrain the system

and not find a good match. GAs allow for a reasonable approximation to a full parameter

search. By randomly distributing the initial population and evolving for several generations,

there is also no restriction on the resolution used to sample the parameter space. Further

confidence in the convergence of the model can be gained by performing multiple runs with

different initial random populations. If one considers the time to perform 50 runs of a

population of 50 models for 50 generations, it would take less than 36 hours to perform the

needed simulations at a rate of one per second.

For both cases, exhaustive search and GA, the total time needed to compute the sim-

ulations can be sped up by distributing the work across multiple machines. Both methods

can be treated as embarrassingly parallel. However, it is much more reasonable to expect

access to 36 machines for one hour than to get access to 30 000 machines for one year.

These estimates assume a time per simulation of about 1 sec. This is only reasonable for a

restricted three-body simulation. A single full N-body simulation can take hours to days to

run. After finding the best-fit model using the GA or exhaustive search, the researcher is

likely to want to use these parameters as an initial guess in a full N-body simulation. The

intention is that by restricting the ranges of each of the parameters with a lower fidelity

model, the optimized full N-body model can be found with fewer trials. This approach is

known as multi-method-modeling (Wahde and Donner, 2001). The combination of GAs,

parallel computing, and multi-method-modelling provides extreme time savings. It has the

potential to reduce the time it takes to find an accurate full N-body model of a system from

several months with manual methods to several days. The GA also provides some assurance

that a reasonable volume of parameter space was sampled and that the optimized solution

is unique.

One would expect that the prospect of applying these automated matching systems to a

large number of real galaxies would have these research groups modeling large populations

of galaxies. Unfortunately, this has not yet happened. For a single study (Hammer et al.,
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2009), their population of 33 is the largest number of models attempted for specific systems,

of which we are aware. They used the Identikit software from Barnes and Hibbard (2009)

and related simulation code to run full n-body simulations of just 48 different sets of initial

conditions. They then altered the viewing angles of the results to find qualitative matches

to the morphology and observed kinematics of their sample of 33 galaxy mergers. They

fit 33 mergers with a total of 48 simulations run, not 48 per merger. The authors of that

study (Hammer et al., 2009) correctly indicate that uniqueness of their solutions is not

guaranteed. There are several drawbacks to these current automated methods that hinder

widespread application.

1.4.1 Current Methods

The main reason these gridded methods are not generally applicable is due to the character-

istics of the fitness functions used. The methods are relying on the use of kinematics data

as part of the fitness calculation. This data is not available for the vast majority of systems

where disturbed morphologies are observed. So a reliable fitness function that depended

mainly on morphological information would be more widely applicable. Also, the scoring

of close matches is not always performed correctly with existing fitness calculations.

At the present time, it appears that all researchers using GAs have implemented some

form of the same basic fitness function. These groups compute some type of distance map

between an image of the target system and the simulation output. If you treat the plane of

the sky projection of particle positions (and gas) as an image, one can scale and align it to

the target image. From there one computes the difference between the two images in each

region. The number of regions ranges from a coarse five by five grid on each image to a

pixel by pixel comparison. The difference can be a simple subtraction or a chi-squared value.

One modification to this basic fitness function involves identify regions where tidal features

occur and granting them additional weights in the difference calculation. Another change

is to use a mask to block out any pixels of the central disks regions from the differencing.

Both measures allow the tidal features to have more impact on the final score for a model.
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The latest enhanced fitness functions also make use of the kinematics data for galaxies. A

similar difference calculation can be performed for the simulated and observed plots of this

data. Using the kinematics data is thought to better guarantee an accurate best-fit model.

Another problem with these grid-based methods is that they can produce non-sensical

relative results. These occur when two non-exact matches are scored. One is judged subjec-

tively to be much worse than the other by human experts yet still receives a higher fitness

score by the algorithm. Consider a system with symmetrical tidal tails running north and

south from the disk of the galaxy. Two different simulation results are generated. One

also has symmetrical tidal tails. However they are rotated away from the north-south line.

Another simulation produces two tidal tails that are not symmetric. One points east, the

other points south. This situation is depicted in Figure 1.1. While neither model is an ex-

act match, which one is closer to the real system? An expert might judge the symmetrical

system to be closer. It can be made into an exact match simply by rotating the system a

few degrees. The south/east tail combination would have to undergo much more substan-

tial changes to become a match, so it should score worse. Unfortunately, when using the

difference calculation described above, the system with the symmetrical tails will receive a

lower score because neither tail lines up. The other system will be scored higher because

at least the southern tail matches the target. One could imagine additional pathologies of

this type for other morphologies as well.

1.4.2 The Role of Citizen Scientists

A human evaluator reviewing simulation output can be seen as applying a more robust

fitness function. Our visual processing capability will allow us to see similar morphologies

where the simple difference calculation will not. Also, by focusing on people’s ability to

match similar shapes, additional observational data is not needed to achieve initial conver-

gence on morphologies. Using a human fitness function allows this method to be applied to

a large number of systems that may lack additional observational data, such as kinematics.

A single reviewer may lose interest after viewing 125 000 simulations of the same system

14



Figure 1.1: An example where the gridded fitness function fails. The highlighted gray area
shows the grid method would score Model 1 higher than Model 2.

looking for morphological matches. However, if the work is distributed across 1 000 volun-

teers, each one would only need to review 125 simulations. This would achieve the same

number of samples of parameter space as the 50/50/50 GA, though purely random samples

would not necessarily guarantee convergence.

Volunteers can be trained to recognize morphological similarities between between sim-

ulations and images of real systems. By applying this training, when presented with a set

of simulations based on randomly chosen parameters, they can identify the ones that are

plausible matches. Additionally they can be presented with subsequent rounds of pre-vetted

simulations to identify the best-of-the-best of each round. In this way the volunteers, acting

now as Citizen Scientists, can help explore parameter space and characterize the fitness of

simulation outputs at each location in that space that is sampled. By combining the efforts
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of thousands of Citizen Scientists, detailed knowledge of the fitness landscape is gained.

This knowledge is useful for the direct identification of the best-fit model. However, a col-

lection of human-scored simulations also provides an opportunity to train new automated

fitness functions. These fitness functions could use algorithms that better recreate the hu-

man judged scores for simulation outputs. Once automated, these fitness calculators could

be used with existing GAs to achieve more reliable best-fit matches.

1.4.3 A Pipeline for Constructing Models of Systems of Interacting Galax-

ies

This dissertation will focus on building a pipeline for constructing multi-method models

of interacting galaxies. The pipeline will start with target identification and processing.

It will proceed to presenting the results of restricted three-body simulations to Citizen

Scientist volunteers and collecting their scores for each simulation. The best-fit models will

be determined from these scores. The dynamical parameters from these models can be

compared to observations and derived values, such as SFR. They can also be used as initial

guesses in full N-body simulations to produced more detailed simulation outputs. Finally,

the collection of annotated simulation outputs will be accumulated into a training set of

data to improve automated fitness functions.

Figure 1.2 presents an overview of the pipeline. The input is an image of a pair of

interacting galaxies. The physical scale is set with some additional information including a

distance estimate (usually from redshift) and a mass estimate (usually from luminosity or

color information). The stages of the pipeline will result in a simulation model and orbit

parameters.
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Figure 1.2: Pipeline overview.

17



Chapter 2: Modeling Galaxies

Galaxies are host to most of the observable matter in the universe. They have sizes and

masses that range several orders of magnitude with dwarf galaxies having a few hundred

million to a billion stars, large spiral galaxies like our own Milky Way with over 100 billion

stars and a diameter of 100,000 light years, and giant ellipticals that can have ten times

as much mass. Binney and Tremaine (2008) name four principal constituents for galaxies

like the Milky Way: stars, interstellar medium, central black hole, and dark halo. Using

our own galaxy as the scale, there are on the order of 1011 stars with a total mass close to

5 x 1010 times that of our sun. The interstellar medium, or ISM, consists of gas (mostly

atomic and molecular hydrogen) and dust (the common name for small solid particles).

The ISM has a mass of about 10% of that of the stars. The central black hole, a feature

recognized as common to most galaxies like the Milky Way, has a mass on the order of 106

solar masses. The fourth component, the dark halo, is composed of weakly interacting dark

matter particles. It is the largest component of a galaxy both in mass and size with on the

order of 1012 solar masses of matter and a radius on the order of 200 kpc. The thin disk

where the stars orbit the center of the galaxy is only on the order of 10 kpc in radius and a

thickness of about 0.5 kpc. Stars orbit in this disk in roughly circular orbits with velocities

of ∼ 100 kms−1. That equates to an orbital period around the galaxy on the order of 100

Myr. This period, along with the short lifetime of type O stars, establishes the key time

scale for simulating galaxies.

Modeling all four constituents simultaneously is still a difficult proposition. Hopkins

et al. (2013) continue to add additional feedback mechanisms between formation of new

stars and the gas dynamics in simulations. Tools such as these are often used in parameter
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studies where hypothetical systems are studied by holding most parameters fixed and vary-

ing a few key simulation inputs to study their effects. These studies continue to enhance

our understanding of detailed physical processes in interacting galaxies. The approach in

this research, is somewhat different. Our objective is to determine realistic orbit parameters

to describe the relative orbits of a large number of actual systems. Toomre and Toomre

(1972) showed that the first order effects of gravity are the most import factor in the for-

mation of large scale tidal distortions in interacting galaxies. The multi-method approach

advocated here focuses on the use of simpler models first to narrow down the orbit param-

eters. With a much reduced volume of parameter space to explore, more sophisticated, and

computationally intensive, models can be constructed.

We use two types of particle codes to simulate gravity in interacting galaxies. The first

is the restricted three-body method in which only one particle with mass is assigned to each

galaxy and the remaining massless test particles trace the evolution of the potential. The

other is a full n-body simulation in which each particle is assigned mass and the mutual

interactions are summed to produce a self consistent and more realistic model of interacting

galaxies.

2.1 Restricted Three-Body

The gravitational potential produces an attractive force between every pair of massive

objects. In a restricted three-body simulation1 a single massive particle is used to represent

the entire mass of each galaxy. The massive particles are placed at the center of each

galaxy. The disks of the galaxies are then populated with a set of massless test particles.

The acceleration acting on each massless particle is the sum of the accelerations produced

by each of the galaxy centers. Test particles are randomly distributed around the disk of the

galaxies with respect to some distribution function, usually chosen to mimic the actual mass

distribution, and then assigned an initial velocity. The second order differential equation

for the acceleration due to gravity as a function of position is usually decomposed into two

1Sometimes also referred to as multiple three-body or restricted multi-body simulations.
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coupled, first order differential equations. The first equation sets the time derivative of the

position equal to the particle velocity, and the second equation defines the time derivative

of the velocity as the acceleration due to galaxy. The simulation can be advanced at each

time step by using the previous velocity and computed acceleration to advance the position

and velocity respectively of each particle. Many numerical techniques exist that can be

applied to solve these equations such as the Euler method of leapfrog integration.

One important reason for the impact of Toomre and Toomre (1972) was the success

they had in recreating the disturbed morphologies for four actual pairs of disk galaxies.

Other researchers applied a similar approach to modeling elliptical galaxies (Borne, 1984).

Simulations of interacting galaxies using the restricted three-body method produce realistic

and visually appealing results with only a few thousand particles and can run in under one

second on modern personal computers.

2.2 N-Body

The mechanics of n-body simulations are similar to the restricted three-body situation.

Particles are distributed throughout the disks of each galaxy and assigned initial velocities.

However, instead of concentrating the mass of each galaxy into a single particle, every

particle in the simulation is assigned a portion of the total galaxy mass. Most simulation

techniques assign the same mass to each particle and simple include more or fewer particles

for higher or lower mass galaxies in the same simulation. The mutual interaction between

every pair of particles has to be considered to compute the acceleration needed to advance

the simulation. The simplest approach is perform this calculation by iterating over each pair

of particles and calculating the gravitational acceleration. This method has a computation

complexity of O(n2). Increasing the number of particles by a factor of ten increases the

simulation time by a factor of 100. This is discouraging because it requires on the order

of 10,000 particles to represent the disk of a galaxy. Also, in order to simulate stable disks

at equilibrium for a galaxy in isolation, the dark matter halo must be simulated as well.

Without the halo, the disk will become unstable on its own and collapse. Simulating an
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individual galaxy requires many tens of thousands of particles. Simulated an interacting

pair of galaxies obviously requires double the number of particles.

The advantage of N-body simulations is that they include self-gravity. Self-gravity refers

the effects of mutual gravitational attraction between localized groups of particles. This is

important in regions that have been disturbed tidally, as during close passages of interacting

galaxies. Self-gravity is thought to play an important role in the formation and evolution

of tidal features including through induced start formation.

In order to benefit from the enhanced realism of n-body simulations without having to

devote unaffordably large amounts of computational resources at a single model, some opti-

mization needs to be performed. One method of speeding up the direct summation of forces

in the n-body problem is to use specialized hardware such as the GRAPE boards (Baum-

gardt and Makino, 2003) or modern Graphical Processing Units or GPUs (Portegies Zwart

et al., 2007). Another approach is to find approximations for the force of gravity.

2.2.1 Tree Codes

One popular approximation technique distinguishes between close and distant interactions

between pairs of particles. Consider the force felt by a particle due to two other particles

that are very distant to the first particle. These two particles are located close to one

another. The force felt by the first particle could be approximated by calculating the center

of mass of the two particles and treating them like one new particle. The advantage of this

method comes when considering larger groups of distant particles. Their combined force

on a distant particle can be approximated by computing their center of mass. To further

improve this approximation, an expansion of the gravitational moments up to and including

the quadrupole moment is calculated for each group. The error in this approach is usually

controlled through a single parameter, θ. This parameter is also called the opening angle

and is used to determine distance and size of a group of particles relative to a particle of

interest before the approximation can be applied. To aid in the identification of groups

and the tracking of their parameters, a tree data structure is used. This hierarchical data
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structure divides the simulation volume up using a recursive binary splitting algorithm, or

other balancing technique, to identify groups of particles. The tree code offers performance

of O(n log n). This is a significant improvement over the direct summation technique.

This technique was first proposed by Barnes and Hut (1986). Tree Codes have since been

parallelized and also ported to run on GPU hardware. Simulations with billions of particles

are now possible. We are approaching a time, within a few iterations of Moore’s Law, when

simulations with one particle per star will be possible.

2.3 Additional Physical Processes

Section 1.2 describes several physical processes that are important for simulating interacting

galaxies. Here we describe two. The first is dynamical friction, which is inherent in n-

body simulations but is missing in restricted three-body ones. The second is the potential

inclusion of gas dynamics.

2.3.1 Dynamical Friction

Self-consistent N-body codes have demonstrated that the orbits of secondary galaxies will

decay over time. One important process that leads to the loss of orbital energy is scattering

in the form of dynamical friction. These codes can also produce other multi-body effects

like violent relaxation. These effects are absent in restricted three-body codes. The orbital

decay, even during a first passage encounter, can be significant. Dynamical friction plays a

key role in galaxy evolution through other interactions such as between a bar and the dark

matter halo. A parameterized version of this effect leading to orbital decay is derived in

Binney and Tremaine (2008)

A massive body M moving through a field of other massive particles will interact with

them through the gravitational force. The field particles have individual masses much less

than M. However, these field particles are part of an overall system that is very massive

and large. It is customary to approximate this system as infinite and homogeneous, with

the distribution of velocities taken to be Maxwellian. As the body M moves through this
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field of stars, the field stars will be deflected resulting in an enhanced density behind the

massive body sometimes referred to as a wake. The attraction of this wake on the moving

body is opposite in direction compared to its velocity resulting in dynamical friction.

For a set of background masses of density ρ and a Maxwellian distribution of velocities

with dispersion σ, Chandrasekhar’s dynamical friction formula (Chandrasekhar and von

Neumann, 1943) for the acceleration becomes

dv

dt
=

4πG2M lnΛ

v3

[
erf (X)− 2X√

π
e−X

2

]
v

X =
v

σ
(2.1)

We define the following values useful for calculating the velocity dispersion σ

p(r) = G

∫ r

0

ρ(r)m(r)

r2
dr

v2r =
p(r)

ρ(r)

If our multi-model method approach is to succeed, we need to be able to convert models

derived using restricted three-body methods to full n-body simulations. Ignoring the effects

of dynamical friction will make this process much more difficult. By including it, we reduce
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the likelihood of needing to perform redundant optimization of the orbit parameters again

when the full n-body simulations are computed.

2.3.2 Modeling Gas

Barnes and Hernquist (1992) emphasizes the importance of including gas dynamics in sim-

ulations. In addition to self-gravity, gas dynamics produce important effects that result

from close passages of interacting galaxies. Modeling these effects, including induced start

formation, is important to ensure accurate models. The technique considered for simulating

gas dynamics here is a particle-based technique known as smoothed particle hydrodynamics

(SPH). The particles in SPH represent regions of gas in which the values representing the

state of the gas, such as density and temperature, are smoothed with a kernel. The SPH

particles track the gas properties at each location and interact with one another during the

simulation allowing the dynamics of the gas to be modeled. SPH can be used with both

restricted three-body and n-body simulations.

For this dissertation no simulations with gas particles were run. The inclusion of the

discussion of gas dynamics is intended to highlight its importance to producing realistic

simulations of galaxies and to afford an opportunity to say that nothing about the multi-

method approach inhibits the inclusion of gas effects.

2.4 Specific Codes

Multiple galaxy simulation codes exist. For performing N-body simulations GADGET,

along with its derivatives GADGET-2 and GADGET-3, is the most commonly used code

by researchers today. One drawback of the current GADGET code is that it does not

provide a built-in mechanism for setting the initial conditions of simulations. Researches

must establish particle masses, positions, and velocities elsewhere with another tool and

then use GADGET to perform the simulation. Multiple restricted three-body codes exist

as well. However, having fallen out of favor with the advent of tree codes, many researches

have left these simpler codes behind to focus on full n-body simulations. One code currently
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being used by at least one research group is called MINGA (Petsch and Theis, 2008). It

includes a treatment of dynamical friction but the source code does not appear to have been

published for use by others. Similarly Mihos (2002) has produced an online Java Applet

for the GalCrash code which allows users to run restricted three-body simulations in real

time. Again, the source code does not appear to have been made available.

This research makes use of two codes produced by Wallin and other researchers. The

first is a restricted three-body code called SPAM2 (Wallin, 1990). The other is a full n-body

tree code called MASS993 (Antunes and Wallin, 2001). The benefits of using these two codes

in a multi-model method is that both codes were developed by the same researcher using

similar coordinate systems. This simplifies the process of converting between the restricted

three-body and the full n-body models.

2.4.1 SPAM

The single greatest advantage of the SPAM code is that it is formulated to make the center

of mass of the primary galaxy the origin of the coordinate system. This makes it a very

simple task to match up each simulation time step with a target image. It also requires

that we define the relative orbit of the two galaxies in terms of the position and velocity

of the secondary galaxy with respect to the primary. This is somewhat different from the

usual step of setting the origin at the center of mass computed from both galaxies together.

Included Potentials

The SPAM code includes two potentials4. The first is a purely analytic potential for gravity

using a softened point mass. The expression for acceleration of a massless test particle due

to gravity is modified to include a softening length, ε, as shown in Equation 2.2.

2SPAM is the Stellar Particle Animation Module.
3MASS is the Multi-physics Astrophysical Simulation Software.
4A third undocumented potential exists as well. It is a Modified Newtonian Dynamics (MOND) potential.

It is based on the analytic expressions in Scarpa (2006)
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~a = − GM

(r2 + ε2)
r̂ (2.2)

The gravitational potential is given below.

φ(r) =
GM

ε

[
π

2
− tan−1

(
r

ε

)]
(2.3)

One important enhancement made to the SPAM code was the addition of a more realistic

potential. This potential includes contributions from a halo, disk and bulge. It is referred

to as the Three Component Potential. These components are the same three used in

Hernquist (1993) and the expressions below follow from that work as well as the MASS99

implementation described in Antunes and Wallin (2007).

For the Halo

qhalo =
γhalo
rc

(2.4)

αhalo =
1

1− qhalo
√
π exp

[
q2halo

]
(1− erf(qhalo))

(2.5)

M(r)halo =
4παhalo
r2halo

1

2
√
π3

∫ r

0

exp(−x2)
x2 + q2halo

x2dx (2.6)

For the bulge

26



M(r)bulge = 4πρlocal

∫ r

0
exp

[
−x2

h2bulge

]
x2dx (2.7)

And for the disk, make the approximation that the mass is distributed with

M(r)disk =
1

2h2disk

∫ r

0
exp

[
−x
hdisk

]
x2dx (2.8)

Summing the mass of all the components, we can then calculate the acceleration

Mtotal(r) = Mdisk(r) +Mhalo(r) +Mbulge(r) (2.9)

~a =
GMtotal(r)

r2
r̂ (2.10)

Within the plane of the disk, this approximation performs well. However, for particles

above or below the plane, the modeled force is not as accurate.

The three component potential is used to initialize an n-body simulation by distributing

a large number of particles, at least 10 000, according to the analytic potential described

above. The resulting potential is then approximated by sampling the velocity dispersion and

radial force as function of radial distance. These sampled values are stored in large arrays.

Later, during subsequent force calculations, the radial distance between each particle and

the respective centers-of-mass is used to lookup the force and velocity dispersion in this

array. The values are then scaled by multiplying by the appropriate mass and used in the

force calculations. It is this lookup process that gives the three component potential its
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alternate name, of n-body interpolated potential (NBI).

Setting Initial Conditions

The SPAM code was modified for use with Merger Zoo to accept the following inputs: x-,

y-, z- components of position and velocity, mass of each galaxy, radius of each galaxy, and

two orientation angles for each galaxy. The orientation angles are similar to an inclination

with respect to the reference plane and a position angle. These 14 parameters are needed

to model the relative orbit trajectory as well as the orientations of the galaxy disks with

respect to the reference plane. These values are specified for the current epoch. To perform

a simulation, the orbit must first be integrated in reverse to an earlier time, a process we

call backward integration. This is performed by the PERTURBER POSITION routine.

Once the trajectory has been backward integrated, the disk of mass-less test particles

for each galaxy is created. Particles are assigned to a radial distribution based on the user’s

choice of radial profile. Particles can be distributed with a probability proportional to 1/r,

exp(−r/r0), or exp(−r2/a + r × b + c). After determining a particle’s radial position the

circular velocity is calculated according the user-specified central potential. The particle’s

azimuthal position is then randomized. Finally, an optional random ”heat” value can be

applied to the particle’s velocity. The user specifies the maximum magnitude of the velocity

offset which is chosen from a uniform random distribution independently for each of the

three components. This is handled by the PROFILE. As each particle’s position and velocity

are assigned, they are rotated with respect to the corresponding galaxies orientation angles.

Integration

Updated velocities and positions are calculated using a fixed time step, fourth-order Runge-

Kutta integrator. The force calculation for the selected potential is performed by the

DIFFEQ routine. This routine operates on an array of all particles, the two centers of mass

and the test particles, with each call.
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2.4.2 MASS99

MASS99 is an “N-body plus SPH” code. It simulates older stars, gas, and the formation of

new stars with SFR feedback mechanisms (Antunes and Wallin, 2007). It is implemented

as an optimized tree code with multiple trees for gravity and gas. The software can be run

in a cluster environment through the use of an MPI runtime. It has also been updated

to support Open MP for running on single machines with a large number of cores. The

software includes separate utilities to assist in initializing simulations, running them, and

then projecting the output for convenient visualization.

The MASS99 code is a good candidate for being able to match restricted three-body

simulations with our modified potential because it uses a similar potential to determine

its own initial conditions. This should help to simplify the process of converting a best-fit

restricted three-body model to a full n-body model, and then later, a full n-body model

with gas dynamics.

2.5 Validity of Restricted Three-Body Approximation

The restricted three-body approach was used by Toomre and Toomre (1972) to recreate

plausible orbit trajectories necessary to create the disturbed morphologies of several well

know interacting galaxies. However, researchers soon moved to more sophisticated n-body

codes to simulate galaxies. Does our advocacy of a return to three-body codes represent

a step backwards? No. By updating the potential to something more sophisticated than

a softened point mass and adding dynamical friction, we are providing a very useful ap-

proximation to n-body simulations. Again, in our multi-method approach, we are able to

use this approximation to significantly reduce the total parameter space to be searched for

best-fit simulation initial conditions and at greatly reduced computational cost. After us-

ing a restricted three-body approximation for the first level search, researchers should then

proceed to optimize full n-body simulations to determine the best-fit models for galaxies.

In Figure 2.1 we present the rotational velocity curve for a model galaxy using our two
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potentials. Within the disk radius, where r is less than 1, we see a flatter rotation curve for

the three component potential. For comparision, we plot a theoretical velocity curve based

on a NFW profile (Navarro et al., 1996). The two potentials that account for dark matter

provide similar rotation curves. This is expected because our three component potential is

derived from Hernquist (1993). All three potentials converge asymptotically.

Figure 2.1: Rotational velocity curves for restricted three-body potentials.

The other approximation that needs to be validated is the dynamical friction treatment.

At the present state, the strength of the dynamical friction in our restricted three-body code

is a configurable parameter. During the Merger Zoo project, we left that parameter set to

a relatively low value, meaning that most of our simulations had little to no dynamical

friction. When attempting to build a full n-body simulation that matches the restricted

three-body simulation, it is important to have an appropriate amount of dynamical friction.
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Otherwise, the full n-body simulation will lose orbital angular momentum and the secondary

galaxy will follow a different trajectory from the approximation. This in turn is likely to

yield substantially different morphology than the restricted three-body approximation.

In Figure 2.2 we show the trajectory of the secondary galaxy from a MASS99 n-body run

with a decaying orbit. Each of the subpanels from top to bottom include a SPAM trajectory

for the same initial conditions, but with increasing dynamical friction. The top panel shows

almost no orbit decay for SPAM, clearly a mismatch with the MASS99 trajectory. The

middle parameter shows some significant decay, but not at the same rate. The bottom panel

shows a qualitatively similar decay pattern. The analytic treatment of dynamical friction

in SPAM is effective at shedding orbital angular momentum. Unfortunately, it remains a

parameter that requires manual tuning. This dissertation does not present a full solution

for converting restricted three-body models to full n-body ones due to the difficulty with

automatically aligning the trajectories. That work has now become the focus of another

research project.

Figure 2.2 demonstrates the ability to match trajectories between MASS99 and SPAM

by tuning the dynamical friction term. The next step is to demonstrate similar morphology

between the restricted three-body and the full n-body simulations. For a particular set

of SPAM parameters a simulation was run using 2000 particles and a dynamical friction

coefficient of 0.01. The backwards propagated SPAM position was used as the starting po-

sition for a MASS99 simulation with over 4800 particles. Figure 2.3 shows the results of the

two simulations. The first row shows the particle positions and trajectory of the secondary

galaxy for each simulation. The second row compares the two trajectories and the two sets

of particle positions. We see that the trajectories are a good match for most of the simu-

lation with some divergence apparent near the time of closest approach, when dynamical

friction is strongest. The particle positions are a qualitative match. The shape and size

of the tail on the primary galaxies are a good match. For the secondary galaxy, MASS99

produces a tail that is slightly more tightly curved than SPAM does. This demonstrates

the feasibility of converting SPAM parameters to full n-body, MASS99 simulations.
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Figure 2.2: MASS99 and SPAM trajectories with varying dynamical friction.
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Figure 2.3: The particle positions and trajectory are plotted for SPAM on the top left and
MASS99 on the top right. The two trajectories are compared on the bottom left. The
particle positions are compared on the bottom right.
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Chapter 3: The Population of Interacting Galaxies

During the 20th century astronomers cataloged tens of thousands of galaxies and classified

them according to Hubble’s morphologically-based system. They were able to identify many

objects from previously compiled lists of nebulae, such as the New General Catalog (NGC),

as being galaxies outside of the Milky Way. As astronomers revisited the thousands of NGC

objects, and discovered many thousands of new galaxies, they continued to assign Hubble

classifications to them. Over time, the asymmetric, irregular galaxies stood out from the

more common elliptical and disk galaxies. As early as the first few decades of the 20th

century it was noticed that many of these irregular galaxies had nearby companions. They

were often described as double and triple galaxies. Due to the relative proximity of irregular

galaxies to one another, it was thought that perhaps they were able to influence, or interact,

with each other. Struck (2006a) names Holmberg and Zwicky as early investigators into

the possibility that galaxy collisions could play a role in the creation of irregular galaxies.

Holmberg published a catalog of multiple galaxies in 1937, Zwicky published another one

in 1959. Also in 1959, the National Geographic Society Palomar Observatory Sky Survey

(POSS) was published. This large set of photometric plates provide observations of the

entire northern sky with significant coverage to declinations to -30◦. By reviewing the

POSS, Vorontsov-Velyaminov produced a catalog of 355 objects that he called interacting

galaxies. In 1966, Arp produces his Atlas of Peculiar Galaxies with 338 objects. Both

Vorontsov-Velyaminov and Arp included their own classification schemes to attempt to

categorize the interacting galaxies. Both authors also made use of a sky survey to provide

the initial data for selecting their objects of interest.

In the later years of the 20th century and the beginning of the 21st century, digital

versions of photographic plates and later CCD images were made available on the Internet.

One of the first and most important combined the northern sky data from POSS with
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southern sky data from the UK Schmidt telescope. It is known as the Digitized Sky Survey

and became available in 1994. Other projects to observe the entire sky or as much of it as

possible from a given observatory have been conducted as well. These include ground-based

efforts such as the Sloan Digital Sky Survey and orbital observatories like the Wide-field

Infrared Survey Explorer. Most surveys after POSS also were conducted with automated

image processing pipelines that identified photometric sources in the images and applied

algorithms to measure their properties. These properties are usually made available in

databases. This gives researchers the opportunity to study catalogs of millions of objects

by querying for automatically measured values and to also access science images for direct

photometric measurements as well.

3.1 Sky Surveys

Several sky surveys were used in this research. Some of them included mechanisms for

querying for images, both thumbnail and FITS files. These capabilities were often consumed

by writing software to submit HTTP requests to specific URLs to automatically download

images. The sky surveys also usually include a database of catalog properties of objects.

Similar software was developed to query these databases.

3.1.1 Digitized Sky Survey

The physical plates produced as part of the POSS were very useful to astronomers producing

the first large-scale catalogs of interacting galaxies. It took until 1994 for these images to

become widely available in digital form on the internet. In that year, the Catalogs and

Survey Branch (CASB) of the Space Telescope Science Institute (STScI) completed the

first generation of the Digitized Sky Survey (DSS). This survey included the data from the

Palomar observatory and was combined with observations of the southern sky taken with

the UK Schmidt telescope at the Anglo-Australian Observatory. A second generation of

the DSS was made available in 2006. It consists of images captured in followup surveys

at both Palomar Observatory and the Anglo-Australian Observatory. The first DSS had
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plates for both blue and red filters. The second DSS has both of those filters as well as

an IR filter. The angular resolution of the images is between 1” and 1.7”. The images

may be accessed via a simple HTML form hosted by STScI1. The POSS is extremely useful

because it provides whole-sky coverage at sufficient resolution to study hundreds of nearby

interacting galaxies.

3.1.2 Sloan Digital Sky Survey

The Sloan Digital Sky Survey (SDSS) has been in operation since 2000 and has observed over

one quarter of the entire sky with deep exposures with five different filters. Additionally, the

2.5 meter telescope at Apache Point Observatory, New Mexico, includes an ability to use

optical fibers fed through custom metal plates to feed spectrographs. By conducting multiple

passes over the observation area, the telescope is able to acquire alternate photometric

and spectroscopic observations. Not all objects are observed spectroscopically. SDSS also

includes automated pipelines for processing the raw observations to identify likely sources

and catalog their photometric and spectroscopic properties. The photometric properties for

galaxies include their magnitudes in each of the five filters: u, g, r, i, z as well as radial

brightness profiles. The pipelines attempt to fit two types of profiles, exponential and de

Vaucouleurs, the first being a reasonable fit for disk galaxies and the second being used

to model elliptical galaxies. The spectroscopic data includes a number of useful spectral

lines that can aid researchers study metallicities of galaxies, but is most useful for providing

highly accurate redshift measurements for galaxies. The SDSS is extremely useful because it

provides photometric properties and redshift measurements for a large number of galaxies.

3.1.3 Wide-field Infrared Survey Explorer

The Wide-field Infrared Survey Explorer (WISE) mission was launched into low earth orbit

in December 2009 to survey the entire sky at four different infrared wavelengths (Wright

et al., 2010). The telescope has an angular resolution of ∼ 6” for the first three bands know

1http://archive.stsci.edu/cgi-bin/dss form/
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as W1, W2, and W3 with wavelengths of 3.4, 4.6 and 12 µm. The fourth band, W4, with a

wavelength of 22 µm and has an angular resolution of ∼ 12”. WISE was able to complete

conduct one complete survey of the sky plus and additional 20 percent coverage before the

loss of cryogenic coolant began to affect operations. A further 30 percent coverage of the sky

in bands W1, W2, and W3 was performed before coolant loss prevented further operations.

The loss of cryogenic coolant is a normal part of infrared observing missions in orbit. The

infrared observations in WISE are particularly useful as proxies for estimating stellar mass

and star formation rate in galaxies.

3.2 Catalogs of Interacting Galaxies

Irregular, or peculiar, galaxies have very interesting shapes. It is easy to see that their

disturbed morphologies attract attention from many different researchers. The introduction

to this chapter gave a brief overview of some of the catalogs of interacting galaxies that

were created in the last century. Below are details for the catalogs used in this research.

3.2.1 Arp

Halton Arp published his Atlas of Peculiar Galaxies in 1966 (Arp, 1966). He selected the

set of 338 galaxies by reviewing the lists constructed by Zwicky, Vorontsov-Velyaminov ,

and others. The Atlas contained a combination of reproductions of POSS plates and blue-

band imagery that he collected. The classification scheme proposed by Arp had several

high-level classes of peculiar galaxies. They were spiral galaxies, spirals with companions

on arms, elliptical galaxies, galaxies, and double galaxies. The scheme itself may not be

an ideal one. For example, one sub-category for spirals with companions is “elliptical

companions” and a sub-category for elliptical galaxies is “close to and perturbing spirals”.

This makes it difficult for independent researchers to uniquely classify additional peculiar

galaxies according to this scheme. The catalog does present a set of nearby galaxies that

are well resolved by SDSS, HST, and WISE. The telescopes from those surveys can produce

high resolution imagery useful for identifying important morphological details like tidal tails
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and bridges.

3.2.2 Galaxy Zoo - Mergers Catalog

SDSS Data Release 6 (DR6) provided a catalog of photometric properties for approximately

100 million galaxies. Around 1 million of them also had spectral data. This massive data

set far exceeds the capacity for a single researcher, or even a small team, to visually inspect

each galaxy. The Galaxy Zoo project was launched in July 2007. It provided a simple to

use HTML interface that would present volunteers with an image of a galaxy and then a set

of buttons to click for the classification. These volunteers, acting as Citizen Scientists, were

tasked with identifying wether they were looking at an elliptical galaxy, a spiral galaxy

rotating clockwise, a spiral galaxy rotating anti-clockwise, an edge on disk, a star, and

image artifact, or a potential galaxy merger. The site was stood up with the expectation

that it would take years to classify the 1 million galaxies in the sample. By the end of

the projects first year, over 150,000 people signed up to contribute a total of more than 50

million classifications. This means that each galaxy was voted on more than an average of

50 times. Lintott et al. (2008) presents the results of these classifications. That paper also

describes previous efforts at producing catalogs of morphological classifications. Previous

efforts ranged from a few hundred to over 10,000 with usually one or only a few people

classifying each image. The Galaxy Zoo data set was several orders of magnitude larger in

size, but also contained a distribution of opinions for each galaxy. This allows researchers

to study how elliptical- or spiral-like a given galaxy is. The advent of convenient access to

galaxy images by SDSS made this large scale effort possible, and the use of modern web

browsers made contribution by Citizen Scientists convenient. Automated processes going

beyond those manually constructed catalogs often use observed values such as colors as a

proxy for morphology and are likely to have unknown biases. Galaxy Zoo helps to address

these issues by providing the distribution of user selections for each galaxy. By producing

classifications of such a large set of galaxies by direct visual inspection, the Galaxy Zoo

catalog has become not only an extremely useful data set on its own but also a remarkable
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training set for researchers wishing to develop their own automatic classification techniques.

The details of the data release for the catalog are presented in Lintott et al. (2011).

One of the possible choices when classifying galaxies was a button labelled “Merger”

showing an icon of a galaxy with a tidal tail. Out of the million galaxies classified by the

Galaxy Zoo volunteers, thousands were identified by at least a portion of the users as being

mergers. The catalog presented in Darg et al. (2009) contains over 3003 visually selected

pairs of interacting galaxies at various stages of merging.

3.2.3 The overlap between Arp and SDSS

There are 205 of the 338 Arp galaxies covered by SDSS DR7. The Darg catalog contains

32 Arp galaxies. The discrepancy is due in part to the fact that the Galaxy Zoo sample

of approximately 1 million galaxies included only those galaxies with spectroscopic data as

well. So a large number of Arp galaxies, though observed by SDSS, do not have spectroscopic

data within the survey.

3.2.4 Hubble Space Telescope - ‘Galaxies gone Wild!’

In 2008, near the time of the 18th anniversary of the launch of the Hubble Space Telescope

(HST) aboard the Space Shuttle Discovery, several versions of a press release were released

by various NASA and ESA organizations to mark the occasion. One version2 was titled

‘Galaxies gone Wild!’ and featured 59 images of interacting galaxies that were observed

by HST. Two years later, during the celebration of the 20th anniversary of the launch of

HST, the Galaxy Zoo project was promoting a version of their website that was used to

classify HST imagery of galaxies. In conjunction with this celebration, several upgrades to

the Merger Zoo website and target preparation software were made so that galaxy targets

without any SDSS data could be studied. Of these 59 pairs of galaxies, nine of them were

presented as targets on the Merger Zoo website. Eight of these pairs were further studied

with the Merger Wars activity. The only target not processed by Merger Wars was Arp 65.

2http://www.spacetelescope.org/news/heic0810/
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This set of galaxies is referred to later as HST GGW or just the HST galaxies.

3.2.5 Other catalogs

As mentioned above, other catalogs of interacting galaxies such as Vorontsov-Velyaminov

do exist. The Arp Atlas was sufficient for identifying the targets studied as part of the

Merger Zoo. However, another online database containing information about galaxies,

much more than just interacting ones, proved critical to this research. That database is

the NASA Extragalactic Database (NED) hosted by the Infrared Processing and Analysis

Center (IPAC) at CalTech. The information in this database is made available through a

set of HTML forms. It was a simple matter to write software that could submit HTTP

requests matching the form parameters sent though the web page and programatically

retrieve information about galaxies such as the name of an object at a given set of RA and

Dec coordinates, as well as basic object information such as representative magnitude and

redshift.

3.3 The Sample for this Study

The sample for this study consists of 54 pairs of interacting galaxies drawn from SDSS

and eight pairs of interacting galaxies from HST GGW for a total of 62 interacting pairs.

Figure 3.1 shows the distribution of redshift values for the Merger Zoo sample studied here

compared to the full Arp catalog and the Galaxy Zoo sample of mergers studied in Darg et al.

(2009). The pairs in our sample tend to have a significantly smaller redshift than those in the

Darg catalog. There is obvious overlap with the the Arp catalog. However, as pictured in

Figure 3.1, the Arp catalog has a median redshift lower still than our catalog. The redshifts

for the Arp galaxies were acquired by querying the NED database with the names of each

galaxy (Arp 1, Arp 2, . . ., Arp 338). The database returned no redshift measurement

at all for 45 of the Arp galaxies. For 51 other galaxies in the Arp catalog, a query of the

NED database returned a measured redshift of exactly 0. So even these somewhat “famous”

galaxies do not have complete coverage in current astronomical databases.
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Figure 3.1: Normalized distribution of redshifts for three merger catalogs.

3.4 Photometric Observations

Galaxies are studied by inferring physical properties from the observed amount and dis-

tribution of light that they produce. SDSS is a very useful survey for measuring the light

from galaxies because it has recording imagery of them through five different filters, u,g,r,i,

and z spanning the visible spectrum and into the near infrared. The photometric pipeline

used by SDSS automatically detects sources of light in each image, measures the amount of

flux for each source in each filter, determines whether the source is likely a star or galaxy,

and saves the information to a database. When the measurements are accurate, this pro-

vides a wealth of information for researchers. The five photometric magnitudes can be used

to form an approximate spectral energy distribution (SED). This is turn can be used to

fit a theoretical population of stars to estimate the stellar mass of the galaxy. SEDs can

also be used, when combined with a large number of redshift measurements, to calculate a

photometrically determined redshift for galaxies. For estimating the mass of galaxies to be

used in our sample, we obtain the database values for the ugriz magnitudes and apply the

relationships in Bell et al. (2003) to calculate multiple mass values. We used the minimum,
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mean, and maximum values to provide the initial target and range of masses for our sim-

ulations. For HST targets our mass estimates were based on a simple 1 to 1 mass-to-light

ratio. We determined the luminosity of the galaxy based on the magnitude value returned

by NED and the redshift. We then divided by the solar luminosity to arrive at an estimate

for number of solar masses.

3.4.1 Deblending

The algorithms used in SDSS through DR7 for automated processing had a preference for

chopping up large, nearby galaxies (like our entire sample) into smaller pieces through a

process known as deblending. This process has been improved for DR8 and later. For Arp

82, the clearly larger primary galaxy is estimated to have a mass of 1.7 × 109 M� and the

secondary a mass of 1.0 × 1010 M�. The mass ratio is 1 to 5.9 for the primary to secondar.

Using values from DR8, the mass of the primary becomes 4.6 × 1010 M� and the secondary

changes slightly to 9.9 × 109 M�. A mass ratio of 4.6 to 1 is a realistic value for this system.

The NED-based mass estimates are 2.3 × 1010 M� and 7.2 × 109 M� respectively, with a

mass ratio of 3.2 to 1. Values in DR8 are much improved, but they were not available when

we began this research and still suffer from the issue of deblending for some targets.

However, researchers studying SDSS galaxies have taken to redoing the photometric

measurements for large galaxies. For our sample, we initially considered performing our

own re-measurement of the galaxies in our sample. The first issue we encountered was

that most existing tools for measuring galaxies did not have a built-in capability for setting

apertures for irregular and overlapping galaxies. We solved with problem by building our

own tool for measuring irregular galaxies. The details are in Appendix A. Rather than using

traditional circular or elliptical apertures, we use a combination of image thresholding and

contour finding algorithms to find the pixels containing flux from our galaxy. We perform

this operation on images that have had the background subtracted by using a combination

of source masking and two dimensional linear regression similar to West et al. (2010). One

additional problem remained. For large sky surveys, the CCD imaging arrays tend to be
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very big compared to other telescopes. This size allows the survey to image large fields of

view. However, even with large frame sizes, some galaxies will fall on the border between

frames. For a survey such as SDSS, which makes a point of repeated observations of the

exact same frame, this means some of the flux is in one frame and some flux is in another.

The two frames must be combined in order to measure the total integrated flux of a galaxy.

The process of combining multiple frames is sometimes referred to as mosaicking. It can be

accomplished in multiple ways, but each of them adds complexity to the process of making

photometric observations.

3.4.2 WISE Photometry

WISE atlas imagery was available for each of our target galaxies from both SDSS and HST

without the need to perform mosaicking. The angular resolution for WISE is noticeably

degraded compared to SDSS, 6” vs. 0.5”, but for large galaxies such as ours the key

morphological features are resolved. The additional advantage of using WISE imagery is

that simple relationships exist to convert magnitude and color information into mass, star

formation rate, and specific star formation rate. The photometric tool, originally intended

for use with SDSS imagery, was able to work with work WISE image data. It provided the

ability to measure magnitudes in all four IR bands measured by the survey, W1, W2, W3,

and W4.

3.5 Matching SDSS Value-added Catalog with WISE

The SDSS database is a valuable resource for astronomers. A number of researchers have

sought to extend its utility by producing catalogs of derived values matched to SDSS objects.

These lists are referred to in general as value-added catalogs. Here we refer to one in

particular, Kauffmann et al. (2003), as the MPA/JHU value-added catalog, or simply the

value-added catalog in the following sections. The research team who produced this dataset

used the ugriz magnitudes, redshift, and two important stellar absorption line indices to

estimate the stellar mass and star formation histories for over 100,000 in the SDSS DR1.
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They have since updated their value-added catalog for subsequent data releases. Here we

consider their data for SDSS DR7. Their process is a very useful one, but cannot be applied

directly to our targets for a number of reasons. First, many of our targets were deblended

in the SDSS catalog, so any derived values calculated by Kauffmann et al. (2003) will be

inaccurate. Second, we cannot replicate their analysis for many of our targets because we

may not have individual redshift measurements for both galaxies in a pair and we definitely

do not have spectral line data for many of our galaxies. Additionally, the calculation of star

formation rate depends on assuming a specific star formation history (or set of histories).

Eventually, the star formation history is a property we expect to model with full n-body

simulations with gas dynamics. Assuming it as part of the photometric process could be

problematic. Finally, not all of our targets were observed by SDSS.

With these issues in mind, we decided to investigate the relationship between infrared

magnitudes measured by WISE and stellar mass and SFR for galaxies. To accomplish

this, we queried the WISE database for information on the approximately 700,000 galaxies

that were in both the Galaxy Zoo dataset and the SDSS value-added catalog. This gave

us the opportunity to compute absolute magnitudes for WISE pass bands and compare

them with model values for mass and SFR from the value-added catalog. We discovered

several interesting correlations. During the same time we were performing this analysis in

the summer of 2012, another group was pursuing a similar, more in-depth study as well

(Yan et al., 2013). That work also attempted to incorporate information about metallicities

derived from spectral data. Many of our targets lacked spectral data, so we were unable

to gain any direct value from replicating their method. We also learned of an as-yet,

unpublished analysis from 2012 as well that took a similar approach (Shi et al., 2012).

Here we present the results of our three way catalog matching for SDSS, Galaxy Zoo,

and WISE. Figure 3.2 shows the linear regression fit to mass as a function of W1. Figure

3.3 shows the linear regression fit to SFR as a function of W3.
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Figure 3.2: MPA/JHU Mass as a function of W1 absolute magnitude.

log(Mass) = −0.439×W1 + 0.164 (3.1)

Figure 3.3: MPA/JHU SFR as a function of W3 absolute magnitude.
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log(SFR) = −0.339×W3− 9.091 (3.2)

We compare our sample to two morphological types from Galaxy Zoo, ellipticals and

spirals. We have prepared a “clean” version of the Galaxy Zoo sample by only including

those galaxies where the vote fraction was greater than or equal to 0.8. For example a spiral

where only half the Citizen Scientists voted it as a spiral would be excluded. In Figure 3.4

we see the results of plotting the SFR as a function of mass shows that spirals and ellipticals

from the Galaxy Zoo catalog still have some overlap but are reasonably separated. Plotting

the Merger Zoo targets on top shows that they tend to look like the spirals, but again, with

overlap in the ellipticals.

Figure 3.4: SFR as a function of Mass for different morphological types.

The W1 - W3 color is a equivalent to SFR normalized by stellar mass. Plotting the three

populations again shows the separation go the spirals in blue and ellipticals in red. Figure
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3.5 shows that the Merger Zoo galaxies have a higher normalizes SFR than ellipticals. Our

sample tends to have a higher normalized SFR than most spirals as well.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

-1 0 1 2 3 4 5 6

W1 - W3

Merger Zoo

Spirals

Ellipticals

Figure 3.5: Relative frequency of W1 - W3 for various samples.

3.5.1 SDSS / WISE Regression Analysis

The relationships chosen above are the ones with the best Pearson’s correlation coefficient,

ρ. Strong relationships have ρ values close to +1 or -1, indicating positive or negative

correlations. Completely uncorrelated data has a ρ value of 0. For Mass, W1 was the best

predictor, with W2 a reasonable second choice. For SFR, W3 was significantly better than

others. For specific SFR, SFR per unit mass, W1-W3 would be a logical choice since it

represents a ratio of mass and SFR. It was actually the second best choice, with W2-W3

being just slightly better choice with a lower RMS. Table 3.1 contains the RMS residuals and

rho values obtained by performing linear regressions on all WISE magnitudes and colors.

The cells representing the best fits for each quantity have a darker background. The best

RMS residual is 0.19 dex which is substantially larger than the uncertainty of the measured

flux within a given aperture.
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Table 3.1: RMS residuals and Pearson’s ρ for linear regressions of mass, SFR, specific SFR,
with all WISE magnitudes and colors

Mass SFR Specific SFR

RMS (dex) ρ RMS (dex) ρ RMS (dex) ρ

w1 0.19 -0.97 0.60 -0.33 0.71 0.50
w2 0.22 -0.94 0.59 -0.38 0.73 0.46
w3 0.54 -0.56 0.38 -0.80 0.81 -0.17
w4 0.47 -0.70 0.51 -0.59 0.82 0.10

w1-w2 0.64 0.19 0.51 0.59 0.78 0.31
w1-w3 0.58 -0.46 0.48 0.65 0.41 0.87
w1-w4 0.57 -0.50 0.58 0.39 0.59 0.70
w2-w3 0.56 -0.51 0.51 0.60 0.40 0.87
w2-w4 0.54 -0.57 0.60 0.31 0.59 0.69
w3-w4 0.65 0.14 0.53 -0.55 0.69 -0.53
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Chapter 4: Identifying Morphological Matches

Since the middle of the twentieth century catalogs with hundreds of interacting galaxies

have existed. Starting with the publication of Toomre and Toomre (1972), researchers

have had a tool to use to attempt to model the specific relative orbit for two interacting

galaxies. That seminal paper itself contained plausible models based on the authors’ ability

to recreate the morphologies for four systems: Arp 295, M51, NGC 4676 and NGC 4038/9.

However, in the ensuing decades, no single paper has attempted to provide models for a

large number of systems. Researchers have tended to focus on small numbers of galaxies

at a time, attempting to produce more detailed models for well studied systems, such as

M51. No attempt to model many dozens of actual systems by matching their morphologies

appears to have been made.

This chapter presents the pipeline built to generate plausible models for a large number

of systems. For a given pair of interacting galaxies, the input to the pipeline is primarily an

image of the two galaxies showing any tidal distortions. Next, an estimate of the distance

to the pair and an estimate of the mass of each galaxy are required. With this minimal

information some constraints on the initial conditions can be applied. This allows us to

select sets of initial conditions and run simulations. The output of the simulations are then

compared to the image of the system. The quality, or fitness, of the match is evaluated and

then the best simulation is selected.

4.1 Target Preparation

The target preparation process for Merger Zoo began by selecting an interesting pair of

interacting galaxies. The criteria used were that the galaxies had to have obvious tidal

distortions and that some idea of what the progenitor disks were had to be discernible in the
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image. Once a pair was selected and the approximate sky coordinates determine from the

Arp catalog or a NED query, a color thumbnail was downloaded from the SDSS server. The

thumbnail was then converted to a gray scale. A simple threshold was applied by manual

raising the brightness “floor” of the image until most of the image was replaced with black

pixels, leaving just the galaxy pair. This gray scale thumbnail was made available, along

with the color one, for users in the Merger Zoo project to compare with their simulations.

The center of the image was selected to be the center of the galaxy identified as primary.

The selection of primary was made based on which galaxy appeared to be larger.

Combining the sky coordinates of the center and the angular size of the image, it is

simple to use bilinear interpolation to identify approximate RA and dec values for other

points in the image, such as the center of the secondary galaxy. Initially, automated routines

were developed to identify contiguous groups of pixels in the thresholded image. The largest

group would correspond to the primary and the next largest group would then correspond

to the secondary galaxy. Next, the pixel groups would be fitted with a minimum bounding

box. From this box a rotated and inclined ellipse could be fit to each pixel group. The center

of each galaxy could be estimated by a selection of either the brightest pixel in a group, or

the center of the fitted ellipse. Because the initial process lacked the ability to explicitly

mask stars in the image, occasionally a group of pixels associated with a star was the first

or second largest group. A change to a manual process was made where the researcher

preparing the target would simply click on the image at the location of the center of each

galaxy. This allowed for consistent identification of the primary and secondary galaxies.

The researcher also had the ability to adjust the size, shape, and orientation of each of the

fitted ellipse.

The simulation parameters used in this study included the three dimensional position

and velocity vectors needed to describe the relative orbit of the two galaxies. Two of those

parameters, the x and y separation distance of the two galaxies are determined by locating

the galaxy centers in the image. The next parameters to describe the simulation include

two orientation angles and size of each disk. One angle is the inclination with respect to
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the sky. The other angle is the position angle of the galaxy disk. These two angles, along

with the size of the disk are estimated from the image by the automated process described

above. The remaining two parameters to be estimated are the masses of the two galaxies.

For SDSS targets, the CAS server was queried for the galaxy target nearest to the center

of each image. This query usually returned two types of information. The first was the

redshift to the galaxy, which allows us to set a specific scale for separation distance and

disk size. The other type of information is photometric values, u, g, r, i, z. Following

citemasspaper, it is possible to estimate the mass of the galaxies using the relative color

values contained in the five bands. For HST targets, NED was queried for redshift and a

photometric magnitude, usually a B magnitude. The mass was estimated by converting the

magnitude to a luminosity, using the redshift information to first estimate distance. The

luminosity was then converted to a mass with a simply mass-to-light ratio of one. Of the six

orbit parameters, six disk parameters, and two masses, the image and database information

provided reasonable estimates for ten out of fourteen.

Initial attempts were made to use the difference between the redshifts of the two galaxies

to constrain the line-of-sight velocity component, the z direction. However, not all pairs

had observed redshifts for both galaxies

The next stage in target preparation is to determine the appropriate range that the

simulation parameters are allowed to vary. The x and y components of the relative posi-

tion vector are held fixed. However, the disk orientations, masses, and all three velocity

components are allowed to vary over a range of values.

• The masses are each allowed to vary over two orders of magnitude from 0.1 × mass

to 10 × mass as determined above.

• The x and y velocities are allowed to vary between ± the escape velocity as computed

using the sum of the two maximum mass values determined in the previous step for

a particle located at the current x and y separation of the two galaxies.

• The z velocity was originally allowed to range between 0 and the line of sight velocity
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determined from the redshifts. However, not all galaxies had redshift values so the z

velocity varied the same as the x and y components.

• The z position is allowed to vary between ± 5 × the diameter of the disk of the

primary galaxy.

• The position angles are allowed to vary ± 20 degrees.

• The inclination angle is used to describe the rotation direction, so with a four-fold

degeneracy, the inclination angle is allowed to vary ± 20 degrees.

• The disk radius for each galaxy is allowed to vary from 0.5 to 1.5 the value estimated

from the image.

After the initial range of parameters are selected, we review the simulation results of

several hundred randomly selected input parameters. Each parameter within a randomly

generated set is selected at random from a uniform distribution scaled to match the mini-

mum and maximum values of that parameter. If during this review phase fewer than ten

results with at least some matching morphology are identified, the parameter ranges are

adjusted manually. Usually these adjustments are to restrict the ranges. Once we are able

to find at least 10 useful candidate simulation matches within a set of 100 to 200 sets of

randomly generated simulation parameters, the target is considered ready to be presented

to the Citizen Scientists.

In this manner, the fourteen simulation parameters were assigned allowed maximum

and minimum values. These ranges were stored in a simulation parameter file. This file was

bundled into a ZIP archive with the color and gray scale thumbnail images and uploaded

to an Amazon S3 storage bucket where they could be accessed by the Merger Zoo website.

With the specified ranges, simulation parameters can be selected by drawing a random

number from a uniform distribution between 0 and 1 and scaling by the min and max

values.
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4.1.1 Simulation Filter

An additional filter is imposed on the randomly selected sets of parameters. During initial

testing that included half a dozen different systems, the above ranges of parameter values

allowed for a large number of randomly generated simulation inputs that resulted in sim-

ulations that showed no tidal features. In order to estimate whether a given simulation

will result in tidal features we calculated a form of the tidal approximation parameter from

Binney and Tremaine (2008). They provide an estimate for the change in velocity for a

particle at a location in the primary galaxy due to tidal forces resulting from the passage

of the secondary galaxy.

∆v ≈ 2GM2

b2V2
(x, y, 0) (4.1)

We adopted a similar form for the coefficient which we called β, and in our canonical

units it looks like

β =
M1 +M2

rmin2Vrmin
(4.2)

Before running a full simulation with all of the test particles, we perform a backwards

integration of just the two galaxy centers of mass. During the backwards integration we

determine the closest approach distance, rmin, and the relative velocity at the time of closest

approach, Vrmin . The β parameter captures two important quantities, the first is the mutual

gravitational attraction. This is important because we wish to observe tidal distortions

to both the primary and secondary in some systems. The second key component is the

inverse velocity at the time of closest approach. This incorporates the sense of interaction

time, during which one galaxy can impose a force or impart an impulse. Even though the

units are not quite the same as the tidal approximation parameter we believe it contains

sufficient information to predict whether or not there will be noticeable tidal distortions.

The β parameter increases with increasing mass, it deceases with increasing distance, and
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decreases with increasing velocity. More massive systems have a chance to cause greater

tidal distortions. Systems that pass farther apart from one another will have less distortion.

Systems that are only close for a short time due to a high relative velocity will not show as

much distortion.

For our threshold, we set an arbitrary minimum value of β = 0.5. Any set of simula-

tion parameters with a β greater than 0.5 was considered to have a significant chance of

displaying tidal distortion. For systems with a β value less than the specified minimum, we

accepted them with an exponentially decreasing probability.

p = exp(−0.05
β

βmin
) (4.3)

We would then draw a number from a uniform random distribution between 0 and 1.

If the number exceeded the probability then the parameter set was kept. If not, a new

randomly generated set of parameters was tested. A parameter set with β close to but less

than 0.5 will be accepted with probability 0.05. At β = 0.01 the probability falls to 0.01

and at β = 0.001 the probability is only 0.0001. This decreasing probability allows us to

sample parameter space with sets of parameters that do not exceed our minimum β while at

the same time we avoid having to review a large number of simulations that will likely not

show any tidal distortions. With these thresholds there are an average of 12 parameter sets

rejected for every one that passes. Of the parameter sets where β was below the threshold,

on average 7% are accepted after passing the probability filter.

4.2 Automated Methods

Before the Merger Zoo was developed, we attempted to build an automated system to

run simulations and compare them to the target images. The optimization problem we

were attempting to solve was to identify the best set of values for the remaining twelve

simulation parameters. An exhaustive search of this parameter space would be difficult.

Consider testing just ten different values of each of the twelve parameters. You would still
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have to run ten to the twelfth, or one trillion, simulations. At one second per simulation,

this would take over 30,000 years.

The approach we took initially was to use Genetic Algorithms similar to the work

of Theis and also Wahde. We used a GA code known as PIKAIA. We encoded each of

the twelve parameters as genes on the chromosome for each simulation. Chromosomes

were generated by randomly selecting gene values from the allowed range. Populations

as small as 50 and as large as 5000 were generated. The populations were allowed to

evolve through the use of cross-over and mutation in each generation. In order for the GA

to proceed, we needed an automated method to evaluate the fitness of each simulation.

Following a similar approach to other researchers, we applied a low resolution grid to the

simulation output and the image. The algorithm computes the percentage of light, or

simulation particles, in each grid cell. A distance between the simulation and the image can

be computed by calculating the difference between each grid cell and summing over all cells.

Unfortunately, this approach led to many GA-derived solutions that were only locally, and

not globally, optimal. This is because the algorithm does not properly differentiate between

mediocre matches correctly (see Figure 1.1). After running several thousand different initial

populations for several thousand generations each, we were unable to find any plausible

matches for the handful of systems we attempted to model this way. The automated fitness

function being used by other researchers to select between simulations that were already

close to a match, was not applicable for situations were large portions of parameter space

needed to be searched.

4.3 Citizen Scientists

Humans are able to rapidly review simulation output and compare to target imagery. The

slight rotation example above is a good example of how we perceive a close match. We built

the Explore interface to allow for the review of thousands of simulations by an individual

researcher. The screen presents the results of restricted three-body simulations run in real

time to the user. There are eight simulation outputs surrounding the target image in the
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center. The user can click on a simulation image to indicate thate they believe it is a

possible match to the target in the center. If not a match, then clicking on the simulation

image can be used to indicate that it at least shares one or more important tidal features

with the target. After reviewing the current set of eight images, the user clicks “More” to

see eight more images. In this fashion, a single user can review a thousand simulations an

hour.

Figure 4.1: Explore.

Once the interface was constructed we realized it was an ideal way to solicit input

from Citizen Scientist volunteers. Using our partnership with the Galaxy Zoo project, we

launched the Merger Zoo. In addition to the Explore interface, we also developed the En-

hance interface. This screen allowed the user to adjust each of the twelve simulation param-

eters to attempt to improve how well the simulation matched the target image. Whenever

the user had determined that they had found a somewhat better match, they could save

the simulation to their selected set.

After each set of eight simulations were added to the users selected set, we changed

their screen to the Evaluate activity. Here they were asked to select, in order, the three
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Figure 4.2: Enhance.

best images from the set of eight simulations that they had already selected. After eight

first round images were selected, the user was asked to select the top three in a second level

“tournament” of sorts. Dedicated users worked their way up through four or more levels of

the tournament.

User selections were saved in session files by the applet which uploaded them to Amazon

S3 bucket. This was the Merger Zoo interface that was implemented for the beta phase

of the website and presented in Holincheck et al. (2010a). The number of sessions were

less than a hundred or so for the beta. The research team downloaded the session files

and manually reviewed the selected simulations to identify good matches. An attempt was

made to use clustering and kernel density estimations to identify useful sets of simulation

parameters from all sets that advanced to at least level three in the tournament. Wallin

et al. (2010) presented a model for Arp 86 that was found by Merger Zoo beta users.

Soon after the full Merger Zoo website was launched, Citizen Scientists were reviewing

simulations at the rate of several hundred sessions a day, where each session could include

100 to 1000 simulations. After a few thousand user sessions were completed, the files were

downloaded and examined. The expectation was that the Evaluate activity would place the

best simulation from each session at the top of the list. When the research team reviewed

the sessions however, they noticed two interesting facts. First was that the users were on
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track to review hundreds of thousands of simulations for each galaxy pair and were selecting

tens of thousands of simulations. The second was that the Evaluate activity did not leave

the simulations sorted in any kind of useful order. The initial attempts to cluster simulation

sets on this larger volume of data did not yield useful results. Another method for evaluating

the selected simulations was needed. With so many thousands of simulations to review for

each galaxy pair, would it be possible to have the Citizen Scientists help us review them?

The answer was yes, and the method for accomplishing this is called Merger Wars.

4.3.1 Merger Wars

The Merger Wars algorithm is used to sort the large lists of simulation results. For each

target image, users would be presented simulation images two at a time. The user simply

clicks on the simulation image that is a better match to the target image. When a simulation

image is presented, that counts as participating in a competition. When a simulation image

is selected, that counts as a win in the competition. The overall score, or fitness, for a

simulation image is the simple ratio of number of wins to number of competitions. The

images with a higher winning percentage are considered better matches than those with a

lower winning percentage.

Figure 4.3: Merger Wars.
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The idea of ranking by pairwise comparisons is not a new one. The study of similar

methods dates back to at least the 18th century and they are used today to rank chess play-

ers, online XBox gamers, and cat pictures. However, the Merger Wars algorithm includes

two novel enhancements. The first is the inclusion of a third choice labelled “Neither is

a good match”. In situations where users feel that the simulation images are both rather

poor, then can click the “Neither” button to record a loss for both images. The other

enhancement has to do with image selection and shallow tournaments. Rather than simply

compete all the images in a single large tournament in a winner take all style, or simply ap-

ply user selections as the comparison function in a traditional sorting algorithm, the method

makes use of shallow tournaments. In the current implementation, images are competed

against each other in randomly selected sets of eight. In a given tournament, the image

can lose in the first round, second round or third round and accumulate zero to three wins.

These shallow tournaments soften the impact of an incorrectly judged competition. For

example, if a user clicks on the wrong image, a good image is scored down and a bad image

is scored up. However, both images will be competed again in other tournaments. There

is no single elimination in the larger process. Simulation images are selected for inclusion

in a tournament in such a way as to keep the total number of competitions for all images

close to equal.

In Appendix B we demonstrate that the Merger Wars algorithm has comparable perfor-

mance to traditional sorting algorithms, O(n log n), and that in the presence of inaccurate

comparisons, where users click the wrong image, the algorithm is more accurate that tra-

ditional sorting algorithms. The Merger Wars method was implemented as a JavaScript

interface in the Merger Zoo website. This allowed Citizen Scientists that did have the Java

plugin installed and enabled, and who then were not able to run simulations, to contribute

to the project. Additionally, it gave volunteers a chance to see the types of simulations

being selected by others.

The Explore and Enhance features in the Merger Zoo applet allowed Citizen Scientists

to review over 3 million simulations and select around 66,000 for followup. The Merger Wars
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algorithm provided an accurate method to sort these results with over 1 million competitions

and identify the top simulations for each pair. Figure 4.4 gives a schematic view of the

Merger Zoo application supported by the research team and the Citizen Scientists. This is

a sub view of the larger pipeline in Figure 1.2.

Figure 4.4: Merger Zoo Process.

4.3.2 Finale Activities

In the last few months of the Merger Zoo project, a set of finale activities were launched.

For each of the 54 SDSS targets, the top 20 or so Merger Wars results were reviewed

by the research team. They selected 4 to 8 simulations per target to represent the best

simulations. Two activities were then launched to further rate these top simulations with

the goal of selecting a single overall best simulation for each pair. The first activity was
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called “Simulation Showdown”. Here, the user was presented with two sets of images. The

first set included the target image and simulation image from one galaxy pair, the other set

included the two images for another pair. The user needed to identify which image was a

better match to its respective target. This compared simulations from different pairs against

each other. The second finale activity was called “Best of the Best”. It presented the target

image in the center. The best images were distributed at random around the target image.

The volunteer was asked to select the best image for each target. Each activity generated

a new fitness score. The top simulations for each pair were ranked by these scores. For

about half of the systems the top-ranked simulation for “Simulation Showdown” and “Best

of the Best” were the same. For the other half, the research team picked a consensus best

simulation from the two candidates for each target.

Figure 4.5: Simulation Showdown. Figure 4.6: Best of the Best.

4.3.3 Merger Zoo Contributions

The Galaxy Zoo Mergers project, or Merger Zoo, was launched on November 23, 2009. The

last simulation submissions and Merger War clicks were collected on June 7, 2012. The site

remains available on the Internet with a notice that data collection is no longer occurring.

In the two and a half year period that the site was active, 6081 Citizen Scientists with

the Zooniverse logged in1 and ran a combined 3.31 × 106 restricted three-body simulations

in 4765 hours of session time. The volunteers also judged 106 Merger Wars competitions.

1A total of 30305 registered Zooniverse volunteers visited the site, but only 6081 completed the tutorial
and saved results.
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In addition to the more than 3 million simulations viewed by the volunteers, the β filter

described in Section 4.1 was used to exclude an estimated 300 million (3×108) sets of initial

conditions that did not produce significant tidal distortions. Of the simulations that the

volunteers viewed, they selected over 66000 simulations as being of potential interest and

spent time trying to refine the parameters for 13000 simulations in the Enhance activity.

This means on average that each pair of galaxies had 4.8 million sets of initial conditions

rejected by the β filter with over 50000 simulations reviewed by volunteers who selected,

again on average, over 1000 simulations per system to be evaluated with over 16000 Merger

Wars competitions.

Figure 4.7 shows the cumulative number of simulations viewed by Citizen Scientists

with respect to the time since the site launched. For the first six months the rate at which

volunteers reviewed simulations was notably higher than the last two years the site was

active. Figure 4.8 groups volunteers into bins by the log of the number of simulations they

viewed. Most volunteers viewed at least 64 simulations. There were ∼ 500 users that viewed

at least 1000 simulations, and 34 users viewed 10000 simulations or more. The two most

active volunteers viewed ∼ 325000 simulations over 250 hours and ∼ 553000 over 100 hours

respectively. Based on the time zone information submitted with their results, over 90% of

volunteers were from Europe or the United States.

Figure 4.7: Cumulative count of simula-
tions viewed.

Figure 4.8: The distribution of simula-
tions viewed among volunteers.
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4.4 Current Process

The capabilities developed for Merger Zoo required the use of various web services ranging

from hosting of a web site backed by a database, access to cloud storage services, and manual

processing of batches of data to initiate the Merger Wars process. Using lessons learned

along the way, a set of two applications has been developed that replace the functionality

of the Merger Zoo. The are described in detail in Appendix C. The target preparation

package allows a researcher to start with either the RA/Dec coordinates or just the name

of a pair of interacting galaxies. It then steps the researcher through each of the target

preparation pieces: identifying disk locations, setting disk size and shape, thresholding the

image, masking stars, estimating mass and distance, and setting the range of simulation

parameters. The tool saves a set of files, including the parameter range file and thumbnail

images, for use by a second piece of software. The second tool combines many features

of the Merger Zoo applet with the Merger Wars algorithm and some statistical summary

information. This tool allows the researcher to perform the rapid search of the Explore

activity and the fine tuning of the Enhance activity. However, the selected simulations are

made available in realtime for sorting and fitness evaluation by the Merger Wars activity.

The two tools together make it possible for a single researcher to prepare a target, view

several thousand simulations, and select the best set of simulation parameters in under an

hour. These two tools are completely independent of the Merger Zoo and allow a single

researcher to perform the same parts of the pipeline previous fulfilled by Citizen Scientists.

4.4.1 Potential for a New Automated Method

Attempts were made to develop a new automated fitness evaluator while the Merger Zoo

project was active. Efforts focused on the application of computer vision techniques in

an ad hoc fashion. Techniques such as contour matching and simple image moments were

applied, but they yielded no meaningful correlation with user-assigned fitness values. After

the Merger Zoo finale period, we began collaborating with the creator of the WNDCHRM

software (Shamir et al., 2008). This software applies many dozens of image measurement
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algorithms with multiple scales and orders of moments. In all, it can extract almost 3000

features from a single image. The software also contains a powerful classification tool.

In Shamir et al. (2013) we applied the tool to random selections of user selected states

for each galaxy to classify simulation images by which target image they belong too. The

simulations images were also rotated about their centers by a randomly selected angle. This

was done to ensure that any features identified as useful for classifying galaxies would be

rotation independent. The WNDCHRM classifier computes a Fisher score for each image

feature indicating how well each feature can separate the classes. The output includes a

sorted list of features with the ones having the largest Fisher score on the top of the list.

During this classification activity, the software reported that the Zernike image moments

had the highest Fisher scores. Zernike moments are computed from a set of complex poly-

nomials forming an orthogonal basis. Following similar data structures to Boland (1999) we

implemented an independent Zernike moment calculation tool and extracted all moments

up to order 20 for each target image and each simulation image. The moments were then

assigned to a feature vector for each image. The distance between the feature vector of the

target image and that of the simulation image is an indication of how similar the images are.

Low fitness images have a wide range of Zernike distances. However, high fitness images

tend to only have small Zernike distances. A large Zernike distance is a strong indicator of

poor fitness. This means that at the very least the Zernike moments can be used to filter

out images that are likely to have low fitness, even if some low fitness images will still pass

the filter. Some moments correlated more strongly with Merger Wars fitness than others. If

we select a subset of moments to compute the distance, we see an even greater correlation.

Figure 4.9 below shows Merger Wars fitness as a function of weighted Zernike distance. The

overall correlation is not quite strong enough to make a specific prediction about fitness.

However, the horizontal and vertical lines demonstrate the lower, right quadrant of low-

fitness, high-distance simulations can be easily excluded by an automated Zernike distance

calculation.
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Figure 4.9: Merger Wars fitness as a function of Zernike distance.

Moving beyond the fitness evaluation uses of Zernike moments, we attempted clustering

of the target images in that feature space. The objective was to separate the targets

into groups with similar morphologies. The results of K-means clustering were somewhat

disappointing because the majority of images were assigned to one or two clusters. We then

implemented an agglomerative hierarchical clustering routine. The algorithm is seeded

by assigning each target image to its own cluster. Each subsequent pass of the algorithm

computes which pair of clusters is closest to each other and combines them. The dendrogram

plot of the results confirmed that most of the targets were located close to one another in the

feature space with a number of outliers. Several of the morphological clusters are presented

in Figure 4.10. These images were selected by the clustering algorithm based on their

relative distances in Zernike feature space.

The potential correlation between Zernike distance and Merger Wars fitness and the

success of clustering similar morphologies are strong indicators that the computer vision
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Figure 4.10: Several clusters of similar interacting galaxies selected automatically based on
relative Zernike distances.

approach of developing an automated fitness evaluator holds promise. Future work will

attempt to modify our genetic algorithm optimizer to make use of a Zernike moment-based

fitness function.
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Chapter 5: Simulation Results

In this Chapter we present the simulation results for each system. We then quantify how

well the simulation parameters for each system have converged to a unique best-fit.

5.1 Results for each Pair of Galaxies

In the next 62 subsections of this Chapter, each of the 62 Merger Zoo targets is presented.

The subsection for each target includes summary information. We include a simple his-

togram of the Merger Wars fitness to indicate the distribution of volunteer-judged “quality”

for the simulations. Next we attempt to demonstrate the convergence of the best-fit orbit

through several means. The first is to present the target image along with the simulation

results of the best 3 targets. Next, we present plots of the trajectories from the simulations

for several different fitness populations. Similar trajectories indicate convergence. As the

fitness level is increased, the diversity of trajectories should decrease if the model has con-

verged. The next set of plots include information about how much of the total parameter

space remains fore each fitness population.

We acknowledge the large number of tables and figures that follow is typically considered

material for an appendix. However, in this instance, we seek to highlight the quality of

results of each system in order to inform later discussion in the Chapter. We believe that

we have developed a succinct method for presenting information about several populations

of dozen of parameters for tens of thousands of simulations for each system.
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5.1.1 SDSS 587722984435351614

Each subsection like this one is labelled with the primary name of the target. This targets

name indicates that it was selected from the list of targets in SDSS. The list of aliases in

Table 5.1.1 includes Arp 240 and a pair of NGC catalog numbers. For other targets, if

there is no corresponding Arp or NGC catalog numbers, we provide a cross match to the

IC, UGC, and 2MASS catalogs. The right ascension, declination, and redshift are provided

as well. The second part of the table summarizes the Merger Zoo activity for the target.

It lists the total number of simulations viewed by all volunteers, how many they rejected,

how many they selected, and the number that were enhanched. The next three columns

describe the Merger Wars outcome for the simulation images for this target. There were

over 22000 Merger Wars competitions, but only ∼ 7000 winners. That means that for more

than 15000 Merger Wars competitions, the volunteers clicked the neither button.

Table 5.1: Identification Information and Merger Zoo summary for SDSS
587722984435351614.

Name Aliases RA (hms) Dec (dms) Redshift

SDSS 587722984435351614 Arp 240, NGC
5257/5258

13:39:52.8 +0:50:23.4 0.022676

Viewed Rejected Selected Enhanced MW Comps MW Wins Neither

74697 71868 2829 603 22745 7463 15282

The low number of Merger Wars winners resulted in a large number of simulations re-

ceiving a low Merger Wars fitness score. We see in Figure 5.1 that almost 70% of simulations

were assigned a fitness of 0. Looking towards the higher fitness value, we see a relatively low

fraction of states with fitness scores above 0.4, and only a few above 0.8. The distribution

of fitness values is different for each target.

Next, we present the target image used on Merger Zoo for the pair of interacting galaxies.

It is in the upper left corner of Figure 5.2. The single best simulation for each target is
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Figure 5.1: Relative frequency of fitness for all selected states of SDSS 587722984435351614

located at the upper right panel of these quad plots. The next two highest fitness simulations

occupy the bottom row. In this manner we can view how well the best simulations match

the tidal features and overall morphology of the target image. For this particular pair of

galaxies, the volunteers have done an excellent job. Each galaxy has symmetric tails that

are recreated in the simulation with the proper size and orientation. The quad plot for the

target image and top simulations is presented on its own page for each system.
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Figure 5.2: Target image and top 3 simulations for SDSS 587722984435351614

Next we present a quad plot in Figure 5.3 for the trajectory of the secondary galaxy

relative to the primary galaxy in all of the selected simulations. Each plot shows a set of

trajectories. The trajectories are calculated as part of the simulation. They are rotated

from the plane of the sky to be in the plane of the primary disk. This is a different rotation

for each simulation because the orientation angles for the primary disk, θ1 and φ1, are

allowed to vary. The black circle represents the size of the primary disk computed from

the average of all r1 values for the set of trajectories plotted in that panel. The circle is

the same size in each plot, so the overall scale for each panel is adjusted accordingly. An

individual blue line traces the path of the secondary galaxy for a single simulation. The
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top left panel shows the paths of all simulations that the volunteers selected. The top right

panel shows the trajectories for the top 50% of the population, by fitness. The lower left

panel shows the paths for the top 10%. Finally, on the lower right, we see the trajectories

for the top 3 simulations. These are the same simulations plotted in Figure 5.2. The top

three trajectories pass the primary disk in roughly the same location. They have similar

shapes, but one trajectory appears somewhat shorter in this projection than the other two.

This means it has a different inclination relative to the plane of the primary disk than the

others. Trajectories that are very different from one another in the bottom right panel

indicate a non-unique orbit.
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Figure 5.3: Trajectories for all selected states, the top 50%, the top 10%, and the top 3
states for SDSS 587722984435351614

The final pair of plots for this system describes the level of convergence for each pa-

rameter. The parameters are broken up into two different sets. The first set of parameters

are the 12 simulation parameters that were varied as part of the Merger Zoo process. This

occurred either by random selection by the software during the Explore activity or by the

users’ selections during the Enhance activity. The 12 parameters are:

• rz - the z-component of the orbit position vector in plane-of-the-sky frame.

• vx, vy, and vz - the components of the orbit velocity vector in plane-of-the sky frame.

• m1, m2 - the mass of the primary and secondary galaxies
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• r1, r2 - the disk radius of the primary and secondary galaxies

• φ1, φ2 - the position angle of the primary and secondary galaxies

• θ1, θ2 - the disk inclination angle of the primary and secondary galaxies

For each parameter, four populations are considered: all selected states, top 50% by

fitness, top 10% by fitness, and the top states selected by the experts. The set of expert

states were the ones evaluated in the Merger Zoo finale activity and included between 4 and

8 high fitness simulations for each target. The y-axis represents the fraction of parameter

space remaining. For each population, this fraction is computed by dividing the full range of

parameters in that population by the full range of parameters for all simulations viewed for

that target. For example, consider a target where rz was allowed to vary between -10 and 10

simulation units. For the selected states, the value ranged between -5 and 5. The fraction

of that parameter remaining would be 10 divided by 20 or 0.5. If the set of expert states

had rz values between 0 and 2, then the fraction of parameter space remaining for that

parameter would be 0.1. For each population, the fraction of parameter space remaining

is plotted above each parameter. A line is then drawn connecting these points and the

area under this line is filled in. As the fitness of the population is increased, the color

darkens. Target systems that are converging to a unique orbit will have a small area under

the curve. For this target we see that vx and vy as well as φ1 and φ2 have a small fraction

of parameter space remaining. That means these values have converged more than other

simulation values in the top panel of Figure 5.4.

The bottom panel in Figure 5.4 contains a similar plot for the orbit parameters. These

values included classical orbit elements such as eccentricity as well as orientation angles

relative to the plane of the sky and the plane of each disk. The orbit parameters shown in

the plot are:

• tmin - the time since closest approach of the two galaxies.
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• rmin - the closest approach distance.

• p - the semi-paramater for conic section orbits.

• ecc- the eccentricity of the orbit.

• inc, lan, ω - the inclination angle for the orbit, longitude of ascending node, and

argument of pericenter in plane-of-the-sky frame.

• dinc, dlan, dω - the inclination angle for the orbit, longitude of ascending node, and

argument of pericenter in frame of the primary disk.

• dinc2, dlan2, dω2 - the inclination angle for the orbit, longitude of ascending node,

and argument of pericenter in frame of the secondary disk.

• mr - mass ratio.

• vtca - the velocity at time of closest approach.

• cv1, cv2 - the orbital velocity of a particle at the edge of the disk of the primary and

secondary galaxy.

• β - the interaction parameter.

For this target, most of the orbit parameters are well constrained with little of the

parameter space remaining. The orbit angles referenced to the plane of the disk of the

secondary galaxy have the highest remaining fraction. This is consistent with the fact

that the simulation parameter θ2 was not well constrained because that angle is needed to

perform the necessary rotation for dinc2, dlan2, dω2.

The information in the parallel coordinate plots can also be represented in a pair of

glyph plots. In Figure 5.5 we plot the convergence information for each parameter along its

own radial line. Here we have chosen to represent the radial distance in a given direction

not by how much of the parameter space remains, but by how much was eliminated. Well

converged values have a large radius. This means a well converged set will have a large area.
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We plot two populations for each glyph. The bottom layer is the population of the expert

states. The top layer is the population of all selected simulations. The area of the glyph for

all selected simulations is smaller than the area for the top simulations. This is consistent

with the top fitness population having better convergence than the large population.

The glyph plots are not repeated in the individual results for each system. They are

however used in a later section as a more compact representation of similar information as

what is provided in the parallel coordinate plots.
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Figure 5.4: Parallel coordinates for convergence of simulation and orbit parameters for
SDSS 587722984435351614
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Figure 5.5: Glyph plots for convergence of simulation and orbit parameters for SDSS
587722984435351614
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5.1.2 SDSS 587724234257137777

Arp 290 has a steadily declining fitness distribution with no simulations with a fitness above

0.75. The top simulations do capture the general shape of the primary galaxy including the

enhanced density in the southern region. The trajectories show moderate convergence. The

simulation parameters are largely converged but with uncertainity in the disk orientation

paremeters that translates to uncertain orbit angle parameters.

Table 5.2: Identification Information and Merger Zoo summary for SDSS
587724234257137777.

Name Aliases RA (hms) Dec (dms) Redshift

SDSS 587724234257137777 Arp 290, IC 195/196 2:03:49.7 +14:44:19.1 0.012162

Viewed Rejected Selected Enhanced MW Comps MW Wins Neither

80157 78432 1725 347 26568 12848 13720

Figure 5.6: Relative frequency of fitness for all selected states of SDSS 587724234257137777
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Figure 5.7: Target image and top 3 simulations for SDSS 587724234257137777
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Figure 5.8: Trajectories for all selected states, the top 50%, the top 10%, and the top 3
states for SDSS 587724234257137777
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Figure 5.9: Parallel coordinates for convergence of simulation and orbit parameters for
SDSS 587724234257137777
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5.1.3 SDSS 587726033843585146

Arp 142, sometimes called the Penguin Galaxy, has a sharp drop off in fitness. However the

high fitness simulations have impressively captured the asymmetric tidal features. The top

3 trajectories are almost identical. The convergence of the simulation parameters is good

except for the mass of the secondary and the disk orientation parameters. The uncertain

secondary mass also leaves the cv2 parameter somewhat unconstrained.

Table 5.3: Identification Information and Merger Zoo summary for SDSS
587726033843585146.

Name Aliases RA (hms) Dec (dms) Redshift

SDSS 587726033843585146 Arp 142, NGC
2936/2937

9:37:44.0 +2:45:36.5 0.023313

Viewed Rejected Selected Enhanced MW Comps MW Wins Neither

28253 27909 344 80 6399 2391 4008

Figure 5.10: Relative frequency of fitness for all selected states of SDSS 587726033843585146
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Figure 5.11: Target image and top 3 simulations for SDSS 587726033843585146
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Figure 5.12: Trajectories for all selected states, the top 50%, the top 10%, and the top 3
states for SDSS 587726033843585146
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Figure 5.13: Parallel coordinates for convergence of simulation and orbit parameters for
SDSS 587726033843585146
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5.1.4 SDSS 587727177926508595

Arp 318 has few high fitness states. The top simulations show a reasonable recreation of

the western tail of the primary. The top 3 trajectories are very similar. The convergence

on simulation parameters is excellent except for θ2. The orbit parameters are also well

constrained except for some of the orientation angles.

Table 5.4: Identification Information and Merger Zoo summary for SDSS
587727177926508595.

Name Aliases RA (hms) Dec (dms) Redshift

SDSS 587727177926508595 Arp 318, NGC 833/835 2:09:24.5 -10:08:09.6 0.013586

Viewed Rejected Selected Enhanced MW Comps MW Wins Neither

34267 33761 506 100 9101 3884 5217

Figure 5.14: Relative frequency of fitness for all selected states of SDSS 587727177926508595
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Figure 5.15: Target image and top 3 simulations for SDSS 587727177926508595
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Figure 5.16: Trajectories for all selected states, the top 50%, the top 10%, and the top 3
states for SDSS 587727177926508595

88



Figure 5.17: Parallel coordinates for convergence of simulation and orbit parameters for
SDSS 587727177926508595
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5.1.5 SDSS 587727178988388373

Arp 256 has a maximum fitness near 0.75. The simulations show that the tidal features

of the primary and the secondary are both recreated. The top 3 trajectories pass by the

primary disk in almost the same location. For the simulation parameters the mass values

remain unconstrained which adds uncertainty to a number of the orbit parameters.

Table 5.5: Identification Information and Merger Zoo summary for SDSS
587727178988388373.

Name Aliases RA (hms) Dec (dms) Redshift

SDSS 587727178988388373 Arp 256 0:18:50.0 -10:21:41.8 0.027329

Viewed Rejected Selected Enhanced MW Comps MW Wins Neither

28823 28199 624 215 11105 5055 6050

Figure 5.18: Relative frequency of fitness for all selected states of SDSS 587727178988388373
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Figure 5.19: Target image and top 3 simulations for SDSS 587727178988388373
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Figure 5.20: Trajectories for all selected states, the top 50%, the top 10%, and the top 3
states for SDSS 587727178988388373
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Figure 5.21: Parallel coordinates for convergence of simulation and orbit parameters for
SDSS 587727178988388373
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5.1.6 SDSS 587727222471131318

This target has a steep fitness decline. Only a small number of statesi, 259, were selected by

the volunteers. The top three simulations have an accurate recreation of the tidal features

of the primary. The bar feature in the secondary is not well modelled by a restricted three-

body simulation. The trajectories for the top to fitness populations appear converged. The

simulation parameters are well constrained with the exception of φ1. This is understandable

because the inclination angle for this galaxy is low, its plane is largely the same as the plane

of the sky, so the position angle is not well defined.

Table 5.6: Identification Information and Merger Zoo summary for SDSS
587727222471131318.

Name Aliases RA (hms) Dec (dms) Redshift

SDSS 587727222471131318 UGC 11751 21:28:59.3 +11:22:55.0 0.029087

Viewed Rejected Selected Enhanced MW Comps MW Wins Neither

30080 29821 259 71 4899 1914 2985
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Figure 5.22: Relative frequency of fitness for all selected states of SDSS 587727222471131318
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Figure 5.23: Target image and top 3 simulations for SDSS 587727222471131318
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Figure 5.24: Trajectories for all selected states, the top 50%, the top 10%, and the top 3
states for SDSS 587727222471131318
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Figure 5.25: Parallel coordinates for convergence of simulation and orbit parameters for
SDSS 587727222471131318
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5.1.7 SDSS 587728676861051075

For Arp 104, over 0.75 of simulations have a Merger Wars fitness of 0. Regardless of the

small number of higher fitness states, two of the top 3 simulations have recreated a thin

tidal bridge between the two galaxies. However, they also show a southern tail on the

secondary galaxy that is not in the target image. This is probably not a correct match to

the morphology. The trajectories show a lack of specific convergence. However the top 3

trajectories all show a multiple passsage orbit. The masses and orientation angles are not

well constrained, nor are the orbit parameters.

Table 5.7: Identification Information and Merger Zoo summary for SDSS
587728676861051075.

Name Aliases RA (hms) Dec (dms) Redshift

SDSS 587728676861051075 Arp 104, NGC
5216/5218

13:32:10.2 +62:46:02.4 0.009783

Viewed Rejected Selected Enhanced MW Comps MW Wins Neither

65717 64074 1643 348 8161 3164 4997
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Figure 5.26: Relative frequency of fitness for all selected states of SDSS 587728676861051075
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Figure 5.27: Target image and top 3 simulations for SDSS 587728676861051075
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Figure 5.28: Trajectories for all selected states, the top 50%, the top 10%, and the top 3
states for SDSS 587728676861051075
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Figure 5.29: Parallel coordinates for convergence of simulation and orbit parameters for
SDSS 587728676861051075
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5.1.8 SDSS 587729227151704160

This double ring galaxy, or Heart Galaxy, was one of the more popular Merger Zoo targets.

Over 177000 simulations were viewed by volunteers. All of the top 3 simulations have

recreated at least one ring, with the other galaxy showing a thinning out of the disk, if not

a fully formed ring. The top trajectories all pass through the disk of the primary, which is

expected for a ring galaxy. The primary mass was not well constrained, but the remainder

of simulation and orbit parameters were.

Table 5.8: Identification Information and Merger Zoo summary for SDSS
587729227151704160.

Name Aliases RA (hms) Dec (dms) Redshift

SDSS 587729227151704160 2MASS
15530935+5408557

15:53:08.6 +54:08:50.4 0.046756

Viewed Rejected Selected Enhanced MW Comps MW Wins Neither

177399 174398 3001 554 50678 19256 31422
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Figure 5.30: Relative frequency of fitness for all selected states of SDSS 587729227151704160
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Figure 5.31: Target image and top 3 simulations for SDSS 587729227151704160
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Figure 5.32: Trajectories for all selected states, the top 50%, the top 10%, and the top 3
states for SDSS 587729227151704160
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Figure 5.33: Parallel coordinates for convergence of simulation and orbit parameters for
SDSS 587729227151704160
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5.1.9 SDSS 587731913110650988

Arp 285 has a high number of mediocre fitness states near 0.3. The top 3 simulations

recreate the symmetric tails of the primary. The jet-like feature in the secondary is not

recreated. The trajectories are close to identical. The masses and disk sizes are not well

constrained, but yet the orbit parameters seem relatively converged.

Table 5.9: Identification Information and Merger Zoo summary for SDSS
587731913110650988.

Name Aliases RA (hms) Dec (dms) Redshift

SDSS 587731913110650988 Arp 285, NGC
2854/2856

9:24:02.9 +49:12:14.1 0.009243

Viewed Rejected Selected Enhanced MW Comps MW Wins Neither

17971 17412 559 82 10201 5590 4611

Figure 5.34: Relative frequency of fitness for all selected states of SDSS 587731913110650988
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Figure 5.35: Target image and top 3 simulations for SDSS 587731913110650988
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Figure 5.36: Trajectories for all selected states, the top 50%, the top 10%, and the top 3
states for SDSS 587731913110650988
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Figure 5.37: Parallel coordinates for convergence of simulation and orbit parameters for
SDSS 587731913110650988
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5.1.10 SDSS 587732136993882121

Arp 214 has a large portion of low fitness simualations, but not all 0 fitness. The simulations

recreate the tails of the primary but do not generate them with quite the same length.

The top trajectories are similar. The simulation parameters are well constrained with the

exception of disk sizes and orientation angles. This is reflected in the lack of convergence

in the orbit angles as well.

Table 5.10: Identification Information and Merger Zoo summary for SDSS
587732136993882121.

Name Aliases RA (hms) Dec (dms) Redshift

SDSS 587732136993882121 Arp 214, NGC
3718/3729

11:32:35.4 +53:04:00.0 0.003312

Viewed Rejected Selected Enhanced MW Comps MW Wins Neither

26424 25706 718 91 13063 4319 8744

Figure 5.38: Relative frequency of fitness for all selected states of SDSS 587732136993882121
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Figure 5.39: Target image and top 3 simulations for SDSS 587732136993882121
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Figure 5.40: Trajectories for all selected states, the top 50%, the top 10%, and the top 3
states for SDSS 587732136993882121
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Figure 5.41: Parallel coordinates for convergence of simulation and orbit parameters for
SDSS 587732136993882121
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5.1.11 SDSS 587732772130652231

NGC 4320 has a declining fitness profile. There were relatively few simulations selected,

594, out of ∼ 80000 that were viewed by volunteers. The best simulation is a reasonably

good recreation of the merger, especially considering it is difficult to identify two separate

galaxies. The southern tail is not quite correct, but the general asymmetry displayed is

a match. The top trajectories still has some diversity. The least constrained simulation

parameter besides the usual disk angle is the mass of the secondary galaxy. The orbit

parameters are unconstrained as a result.

Table 5.11: Identification Information and Merger Zoo summary for SDSS
587732772130652231.

Name Aliases RA (hms) Dec (dms) Redshift

SDSS 587732772130652231 NGC 4320, UGC 7452 12:22:57.6 +10:32:52.7 0.026675

Viewed Rejected Selected Enhanced MW Comps MW Wins Neither

79931 79337 594 163 10736 3598 7138
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Figure 5.42: Relative frequency of fitness for all selected states of SDSS 587732772130652231
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Figure 5.43: Target image and top 3 simulations for SDSS 587732772130652231
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Figure 5.44: Trajectories for all selected states, the top 50%, the top 10%, and the top 3
states for SDSS 587732772130652231
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Figure 5.45: Parallel coordinates for convergence of simulation and orbit parameters for
SDSS 587732772130652231
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5.1.12 SDSS 587733080814583863

NGC 4669 has a number of simulations with fitnesses above 0.6. The broad, asymmetric

tidal tail of the primary is recreated in the simulations. The top trajectories are similar.

The masses, disk sizes, and orientation angles are not well constrained. The mass ratio is

constrained even though the individual masses retain some variance.

Table 5.12: Identification Information and Merger Zoo summary for SDSS
587733080814583863.

Name Aliases RA (hms) Dec (dms) Redshift

SDSS 587733080814583863 NGC 4669, UGC 7905 12:43:49.4 +54:54:16.4 0.016261

Viewed Rejected Selected Enhanced MW Comps MW Wins Neither

25603 24999 604 124 11039 4682 6357

Figure 5.46: Relative frequency of fitness for all selected states of SDSS 587733080814583863
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Figure 5.47: Target image and top 3 simulations for SDSS 587733080814583863
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Figure 5.48: Trajectories for all selected states, the top 50%, the top 10%, and the top 3
states for SDSS 587733080814583863
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Figure 5.49: Parallel coordinates for convergence of simulation and orbit parameters for
SDSS 587733080814583863
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5.1.13 SDSS 587734862680752822

Arp 255 has a number of medium and high fitness simulations. The simulations show

accurate reconstructions of tidal features for both the primary and the secondary galaxies.

The top trajectories are very similar. The masses and disk parameters appear to not be

well constrained. However, the non angular orbit parameters are converged.

Table 5.13: Identification Information and Merger Zoo summary for SDSS
587734862680752822.

Name Aliases RA (hms) Dec (dms) Redshift

SDSS 587734862680752822 Arp 255, UGC 5304 9:53:08.8 +7:51:58.2 0.040858

Viewed Rejected Selected Enhanced MW Comps MW Wins Neither

37782 37270 512 143 9247 4606 4641

Figure 5.50: Relative frequency of fitness for all selected states of SDSS 587734862680752822
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Figure 5.51: Target image and top 3 simulations for SDSS 587734862680752822
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Figure 5.52: Trajectories for all selected states, the top 50%, the top 10%, and the top 3
states for SDSS 587734862680752822
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Figure 5.53: Parallel coordinates for convergence of simulation and orbit parameters for
SDSS 587734862680752822
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5.1.14 SDSS 587735043609329845

Arp 82 was another popular target for Merger Zoo with over 150000 simulations viewed by

the volunteers. They identified simulations with fitnesses above 0.8. The long tidal tails of

the primary are well matched even if the length and orientation of the northern tail is not

a perfect recreation. The trajectories are similar showing a bound orbit. The simulation

parameters are well constrained except for mass of the secondary and the disk inclination

angles. The orbit parameters match the expected behavior.

Table 5.14: Identification Information and Merger Zoo summary for SDSS
587735043609329845.

Name Aliases RA (hms) Dec (dms) Redshift

SDSS 587735043609329845 Arp 82, NGC
2535/2536

8:11:13.5 +25:12:23.8 0.013666

Viewed Rejected Selected Enhanced MW Comps MW Wins Neither

152318 149410 2908 457 44774 19761 25013
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Figure 5.54: Relative frequency of fitness for all selected states of SDSS 587735043609329845
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Figure 5.55: Target image and top 3 simulations for SDSS 587735043609329845
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Figure 5.56: Trajectories for all selected states, the top 50%, the top 10%, and the top 3
states for SDSS 587735043609329845
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Figure 5.57: Parallel coordinates for convergence of simulation and orbit parameters for
SDSS 587735043609329845
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5.1.15 SDSS 587735665840881790

Volunteers identified a few high-fitness simulations for Arp 239. The best simulation does

not quite connect the tidal features of the primary and secondary, but the other top simu-

lations do a better job of that. The top trajectories are similar. The mass of the secondary

is not well constrained causing uncertainty in derived orbit parameters as well.

Table 5.15: Identification Information and Merger Zoo summary for SDSS
587735665840881790.

Name Aliases RA (hms) Dec (dms) Redshift

SDSS 587735665840881790 Arp 239, NGC 5278 13:41:39.3 +55:40:14.6 0.02521

Viewed Rejected Selected Enhanced MW Comps MW Wins Neither

18576 18262 314 72 5940 2289 3651

Figure 5.58: Relative frequency of fitness for all selected states of SDSS 587735665840881790
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Figure 5.59: Target image and top 3 simulations for SDSS 587735665840881790
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Figure 5.60: Trajectories for all selected states, the top 50%, the top 10%, and the top 3
states for SDSS 587735665840881790
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Figure 5.61: Parallel coordinates for convergence of simulation and orbit parameters for
SDSS 587735665840881790
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5.1.16 SDSS 587736941981466667

The fitness distribution for Arp 199 is more uniform than for other targets. The simulations

show that there are no strong tidal features for users to follow for guidance. There is some

density enhancement in the inclined galaxy disk that matches the target image. The top

trajectories are not identical but they are relatively similar compared to the entire set of

trajectories considered. Suprisingly, most of the simulation and orbit parameters show

convergence. It may be that the lack of features caused volunteers to reject any disturbed

morphologies which may have been useful for constraing the simulation.

Table 5.16: Identification Information and Merger Zoo summary for SDSS
587736941981466667.

Name Aliases RA (hms) Dec (dms) Redshift

SDSS 587736941981466667 Arp 199, NGC
5544/5545

14:17:02.5 +36:34:16.6 0.01014

Viewed Rejected Selected Enhanced MW Comps MW Wins Neither

13668 12765 903 102 16210 11512 4698
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Figure 5.62: Relative frequency of fitness for all selected states of SDSS 587736941981466667
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Figure 5.63: Target image and top 3 simulations for SDSS 587736941981466667
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Figure 5.64: Trajectories for all selected states, the top 50%, the top 10%, and the top 3
states for SDSS 587736941981466667
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Figure 5.65: Parallel coordinates for convergence of simulation and orbit parameters for
SDSS 587736941981466667
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5.1.17 SDSS 587738569246376675

There is a steep decline in the fitness distribution of Arp 57. The simulations recreate

the tidal features of both the primary and the secondary. One detail not well matched is

the sharp “kink” in the northern tail of the primary. The top trajectories are similar. The

small number of selected states, 231, has resulted in a situation where the expert population

has worse convergence than the top 10% for the primary disk radius. There is also poor

convergence for the masses and orientation angles. However, many of the orbit parameters

show decent convergence.

Table 5.17: Identification Information and Merger Zoo summary for SDSS
587738569246376675.

Name Aliases RA (hms) Dec (dms) Redshift

SDSS 587738569246376675 Arp 57 13:16:47.4 +14:25:39.6 0.060208

Viewed Rejected Selected Enhanced MW Comps MW Wins Neither

20418 20187 231 129 4453 1822 2631
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Figure 5.66: Relative frequency of fitness for all selected states of SDSS 587738569246376675
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Figure 5.67: Target image and top 3 simulations for SDSS 587738569246376675
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Figure 5.68: Trajectories for all selected states, the top 50%, the top 10%, and the top 3
states for SDSS 587738569246376675
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Figure 5.69: Parallel coordinates for convergence of simulation and orbit parameters for
SDSS 587738569246376675

148



5.1.18 SDSS 587738569249390718

This target has a lopsided fitness distribution. The top simulations recreate the tidal tails

of the primary. The trajectories are similar to one another. The simulation parameters

are well converged with the exception of the inclination angle for the secondary disk. It is

possible that the secondary galaxy in this pair is actually elliptical.

Table 5.18: Identification Information and Merger Zoo summary for SDSS
587738569249390718.

Name Aliases RA (hms) Dec (dms) Redshift

SDSS 587738569249390718 2MASS
13445034+1355178

13:44:50.3 +13:55:16.9 0.082453

Viewed Rejected Selected Enhanced MW Comps MW Wins Neither

21792 21390 402 161 7453 3161 4292

Figure 5.70: Relative frequency of fitness for all selected states of SDSS 587738569249390718
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Figure 5.71: Target image and top 3 simulations for SDSS 587738569249390718
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Figure 5.72: Trajectories for all selected states, the top 50%, the top 10%, and the top 3
states for SDSS 587738569249390718
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Figure 5.73: Parallel coordinates for convergence of simulation and orbit parameters for
SDSS 587738569249390718
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5.1.19 SDSS 587739153356095531

Arp 247 has few high fitness simulations. The best ones are not all able to recreate the

presence of connecting material for the two galaxies. The trajectories are of a similar shape

by they are not oriented the same way. The simulation parameters show good convergence

except for the mass of the secondary. However the orbit parameters are not well converged.

Table 5.19: Identification Information and Merger Zoo summary for SDSS
587739153356095531.

Name Aliases RA (hms) Dec (dms) Redshift

SDSS 587739153356095531 Arp 247, IC 2338/2339 8:23:34.0 +21:20:50.3 0.018079

Viewed Rejected Selected Enhanced MW Comps MW Wins Neither

36286 35186 1100 193 19460 8528 10932

Figure 5.74: Relative frequency of fitness for all selected states of SDSS 587739153356095531
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Figure 5.75: Target image and top 3 simulations for SDSS 587739153356095531
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Figure 5.76: Trajectories for all selected states, the top 50%, the top 10%, and the top 3
states for SDSS 587739153356095531
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Figure 5.77: Parallel coordinates for convergence of simulation and orbit parameters for
SDSS 587739153356095531
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5.1.20 SDSS 587739407868690486

The fitness for Arp 241 shows a sharp decline. However, the volunteers were very successful

in recreating the tails, one each, for the primary and secondary galaxies. The top 3 tra-

jectories are similar. There is an apperance of a family of trajectories in the bottom left

trajectory panel for the top 10% of simulations. The disk masses, radii, and angles were

not well constrained.

Table 5.20: Identification Information and Merger Zoo summary for SDSS
587739407868690486.

Name Aliases RA (hms) Dec (dms) Redshift

SDSS 587739407868690486 Arp 241, NGC 5699 14:37:50.4 +30:28:59.5 0.034521

Viewed Rejected Selected Enhanced MW Comps MW Wins Neither

42380 41944 436 187 8001 3184 4817

Figure 5.78: Relative frequency of fitness for all selected states of SDSS 587739407868690486
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Figure 5.79: Target image and top 3 simulations for SDSS 587739407868690486
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Figure 5.80: Trajectories for all selected states, the top 50%, the top 10%, and the top 3
states for SDSS 587739407868690486
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Figure 5.81: Parallel coordinates for convergence of simulation and orbit parameters for
SDSS 587739407868690486
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5.1.21 SDSS 587739505541578866

There are several high fitness simulations for Arp 313. The tidal features are reasonably

matched in the simulation images. The diffuse nature of the northern tail is recreated. The

trajectories are similarly parabolic. The simulation parameters are well converged except

for the disk sizes and angles.

Table 5.21: Identification Information and Merger Zoo summary for SDSS
587739505541578866.

Name Aliases RA (hms) Dec (dms) Redshift

SDSS 587739505541578866 Arp 313, NGC
3994/3995

11:57:36.4 +32:16:39.8 0.010854

Viewed Rejected Selected Enhanced MW Comps MW Wins Neither

26294 25947 347 56 6474 2905 3569

Figure 5.82: Relative frequency of fitness for all selected states of SDSS 587739505541578866
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Figure 5.83: Target image and top 3 simulations for SDSS 587739505541578866
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Figure 5.84: Trajectories for all selected states, the top 50%, the top 10%, and the top 3
states for SDSS 587739505541578866
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Figure 5.85: Parallel coordinates for convergence of simulation and orbit parameters for
SDSS 587739505541578866
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5.1.22 SDSS 587739646743412797

Arp 107 has a large concentration of low percentage states. The large prominent tidal tail of

the primary was a popular feature for our volunteers to attempt to match. They viewed over

100000 simulations. The curvature of that tail is a good match, as well as the existence of

the bridge between the two galaxies. The top trajectories are very similar. The simulation

parameters are well constrained except for the orientation angles of the secondary galaxy,

yet the orbit parameters still show a wide range of parameter space remaining.

Table 5.22: Identification Information and Merger Zoo summary for SDSS
587739646743412797.

Name Aliases RA (hms) Dec (dms) Redshift

SDSS 587739646743412797 Arp 107, UGC 5984 10:52:14.8 +30:03:28.3 0.034597

Viewed Rejected Selected Enhanced MW Comps MW Wins Neither

106516 103925 2591 517 45337 20228 25109

Figure 5.86: Relative frequency of fitness for all selected states of SDSS 587739646743412797
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Figure 5.87: Target image and top 3 simulations for SDSS 587739646743412797
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Figure 5.88: Trajectories for all selected states, the top 50%, the top 10%, and the top 3
states for SDSS 587739646743412797
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Figure 5.89: Parallel coordinates for convergence of simulation and orbit parameters for
SDSS 587739646743412797
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5.1.23 SDSS 587739647284805725

Arp 294 has a steadily declining fitness distribution. The target image has no strong tidal

features for users to match. The volunteers recreated some density enhancements in the

two disks. The top trajectories were similar. The simulation parameters were modestly

converged with the exception of the disk inclination angles.

Table 5.23: Identification Information and Merger Zoo summary for SDSS
587739647284805725.

Name Aliases RA (hms) Dec (dms) Redshift

SDSS 587739647284805725 Arp 294, NGC
3786/3788

11:39:42.4 +31:54:33.4 0.008933

Viewed Rejected Selected Enhanced MW Comps MW Wins Neither

20239 19441 798 101 14045 8276 5769

Figure 5.90: Relative frequency of fitness for all selected states of SDSS 587739647284805725
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Figure 5.91: Target image and top 3 simulations for SDSS 587739647284805725
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Figure 5.92: Trajectories for all selected states, the top 50%, the top 10%, and the top 3
states for SDSS 587739647284805725
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Figure 5.93: Parallel coordinates for convergence of simulation and orbit parameters for
SDSS 587739647284805725
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5.1.24 SDSS 587739707420967061

The steadily declining fitness distribution for Arp 172 is similar to that of some other

systems. However, the target image does contain tidal features, even if they are somewhat

diffuse. The top simulations recreat the two very loose “tails” in the image. The top 3

trajectories are very similar. The simulation parameters are modestly converged.

Table 5.24: Identification Information and Merger Zoo summary for SDSS
587739707420967061.

Name Aliases RA (hms) Dec (dms) Redshift

SDSS 587739707420967061 Arp 172, IC 1178/1181 16:05:33.1 +17:36:04.6 0.033687

Viewed Rejected Selected Enhanced MW Comps MW Wins Neither

53962 53487 475 134 8647 4019 4628

Figure 5.94: Relative frequency of fitness for all selected states of SDSS 587739707420967061
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Figure 5.95: Target image and top 3 simulations for SDSS 587739707420967061
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Figure 5.96: Trajectories for all selected states, the top 50%, the top 10%, and the top 3
states for SDSS 587739707420967061
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Figure 5.97: Parallel coordinates for convergence of simulation and orbit parameters for
SDSS 587739707420967061
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5.1.25 SDSS 587739721376202860

For Arp 302, a few high-fitness simulations were identified, though the steadily declining

distribution indicates convergence may not have been achieved. The target image is another

relatively bland system. The volunteers were able to create some density enhancements in

the two disks. The top 3 trajectories are not that similar. The mass of the primary is

very poorly constrained. This cascaded uncertainty to orbit parameters such as the time

and distance of closest approach and the orbitial velocity of stars in the outer disk of the

primary.

Table 5.25: Identification Information and Merger Zoo summary for SDSS
587739721376202860.

Name Aliases RA (hms) Dec (dms) Redshift

SDSS 587739721376202860 Arp 302, UGC 9618 14:57:00.6 +24:37:03.3 0.033669

Viewed Rejected Selected Enhanced MW Comps MW Wins Neither

14177 13772 405 46 7366 4150 3216
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Figure 5.98: Relative frequency of fitness for all selected states of SDSS 587739721376202860
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Figure 5.99: Target image and top 3 simulations for SDSS 587739721376202860
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Figure 5.100: Trajectories for all selected states, the top 50%, the top 10%, and the top 3
states for SDSS 587739721376202860
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Figure 5.101: Parallel coordinates for convergence of simulation and orbit parameters for
SDSS 587739721376202860
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5.1.26 SDSS 587739721900163101

The steep decline of fitness values for Arp 242 is easily noticed. The long, elegant tidal

features of the “Mice” can be difficult to recreate. Our volunteers submitted simulations

that capture the orientation, length, and thickness of the tails. The top 3 trajectories

are very similar. There is also a family of trajectories visible in the lower left trajectory

panel. For the simulation parameters, the convergence of the mass, size, and orientations

of the disks is low. However the orbit eccentricity, semi-parameter, and inclination are well

constrained.

Table 5.26: Identification Information and Merger Zoo summary for SDSS
587739721900163101.

Name Aliases RA (hms) Dec (dms) Redshift

SDSS 587739721900163101 Arp 242, NGC 4676 12:46:10.1 +30:43:52.6 0.022059

Viewed Rejected Selected Enhanced MW Comps MW Wins Neither

55366 54706 660 161 11887 4815 7072
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Figure 5.102: Relative frequency of fitness for all selected states of SDSS
587739721900163101
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Figure 5.103: Target image and top 3 simulations for SDSS 587739721900163101
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Figure 5.104: Trajectories for all selected states, the top 50%, the top 10%, and the top 3
states for SDSS 587739721900163101
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Figure 5.105: Parallel coordinates for convergence of simulation and orbit parameters for
SDSS 587739721900163101
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5.1.27 SDSS 587739810496708646

The small percentage of high-fitness simulations for Arp 72 is apparent. The top simulations

present moderate matches to the southern tail and diffuse northern feature of the primary

galaxy. The trajectories are similar to each other. The simulation paremeters appear well

converged, yet the orbit inclination is not.

Table 5.27: Identification Information and Merger Zoo summary for SDSS
587739810496708646.

Name Aliases RA (hms) Dec (dms) Redshift

SDSS 587739810496708646 Arp 72, NGC
5994/5996

15:46:58.2 +17:53:04.4 0.010974

Viewed Rejected Selected Enhanced MW Comps MW Wins Neither

44249 43849 400 76 7350 2416 4934

Figure 5.106: Relative frequency of fitness for all selected states of SDSS
587739810496708646
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Figure 5.107: Target image and top 3 simulations for SDSS 587739810496708646
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Figure 5.108: Trajectories for all selected states, the top 50%, the top 10%, and the top 3
states for SDSS 587739810496708646
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Figure 5.109: Parallel coordinates for convergence of simulation and orbit parameters for
SDSS 587739810496708646

190



5.1.28 SDSS 587739845393580192

There are relatively few high-fitness simulations for Arp 101. The asymmetric tidal feature

of the norther galaxy is not well recreated by the top simulations. The top trajectories are

similar to each other though. The disk sizes and orientations are not well converged.

Table 5.28: Identification Information and Merger Zoo summary for SDSS
587739845393580192.

Name Aliases RA (hms) Dec (dms) Redshift

SDSS 587739845393580192 Arp 101, UGC
10164/10169

16:04:31.7 +14:49:08.8 0.015274

Viewed Rejected Selected Enhanced MW Comps MW Wins Neither

30553 30095 458 130 8378 2951 5427

Figure 5.110: Relative frequency of fitness for all selected states of SDSS
587739845393580192
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Figure 5.111: Target image and top 3 simulations for SDSS 587739845393580192
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Figure 5.112: Trajectories for all selected states, the top 50%, the top 10%, and the top 3
states for SDSS 587739845393580192
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Figure 5.113: Parallel coordinates for convergence of simulation and orbit parameters for
SDSS 587739845393580192
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5.1.29 SDSS 587741391565422775

Arp 58 has a fitness distribution with a large fraction of low fitness states combined with

a flat distribution extending to high-fitness values greater than 0.8. The simulation images

show a very accurate recreation of the large tidal tails of the primary. There is an additional

density enhancement near the secondary that is at least present in some of the simulations.

The top trajectories are almost identical. The simulation parameters are impressively well

converged wih the exception of the mass the of the primary. That uncertainty transfers

only to the mass ratio as other orbit parameters seem constrained.

Table 5.29: Identification Information and Merger Zoo summary for SDSS
587741391565422775.

Name Aliases RA (hms) Dec (dms) Redshift

SDSS 587741391565422775 Arp 58, UGC 4457 8:31:57.6 +19:12:40.4 0.037222

Viewed Rejected Selected Enhanced MW Comps MW Wins Neither

29718 29336 382 69 7085 3279 3806
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Figure 5.114: Relative frequency of fitness for all selected states of SDSS
587741391565422775
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Figure 5.115: Target image and top 3 simulations for SDSS 587741391565422775
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Figure 5.116: Trajectories for all selected states, the top 50%, the top 10%, and the top 3
states for SDSS 587741391565422775
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Figure 5.117: Parallel coordinates for convergence of simulation and orbit parameters for
SDSS 587741391565422775
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5.1.30 SDSS 587741532784361481

Arp 105 was moderately popular with ∼ 60000 simulations viewed by volunteers. The top

simulations all recreate the long, thin tidal tail of the primary, though the orientation is not

quite correct. The simulations also predict a southernly tail that is behind the secondary

galaxy. The trajectories show a family structure with the top 3 being almost identical.

The simulation parameters are well constrained with the exception of the disk orientation

parameters. The orbit parameters are nicely converged.

Table 5.30: Identification Information and Merger Zoo summary for SDSS
587741532784361481.

Name Aliases RA (hms) Dec (dms) Redshift

SDSS 587741532784361481 Arp 105, NGC 3561 11:11:12.9 +28:42:42.4 0.029356

Viewed Rejected Selected Enhanced MW Comps MW Wins Neither

59402 58505 897 224 15814 6402 9412
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Figure 5.118: Relative frequency of fitness for all selected states of SDSS
587741532784361481
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Figure 5.119: Target image and top 3 simulations for SDSS 587741532784361481
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Figure 5.120: Trajectories for all selected states, the top 50%, the top 10%, and the top 3
states for SDSS 587741532784361481
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Figure 5.121: Parallel coordinates for convergence of simulation and orbit parameters for
SDSS 587741532784361481

204



5.1.31 SDSS 587741534400217110

There are asymmetric tidal features in Apr 97. The L-shaped fitness distribution is easily

observed. Both the curvature of the southern tail and straightness of the northern one

are well matched to the target image. The top trajectories are similar. The simulation

parameters seem well converged with the exceptions of the radius and inclination of the

primary disk.

Table 5.31: Identification Information and Merger Zoo summary for SDSS
587741534400217110.

Name Aliases RA (hms) Dec (dms) Redshift

SDSS 587741534400217110 Arp 97, UGC 7085A 12:05:45.4 +31:03:31.0 0.023366

Viewed Rejected Selected Enhanced MW Comps MW Wins Neither

50875 50251 624 177 11177 4866 6311

Figure 5.122: Relative frequency of fitness for all selected states of SDSS
587741534400217110
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Figure 5.123: Target image and top 3 simulations for SDSS 587741534400217110
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Figure 5.124: Trajectories for all selected states, the top 50%, the top 10%, and the top 3
states for SDSS 587741534400217110
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Figure 5.125: Parallel coordinates for convergence of simulation and orbit parameters for
SDSS 587741534400217110
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5.1.32 SDSS 587741602030026825

The volunteers only viewed 7300 simulations for Arp 305. This system contains two small,

widely-spaced galaxies. However, both galaxies have tidal features. The top simulations

seem to have achieved a moderat match to the tidal tails of the primary. The orientation

of the tails is not quite correct. For the sceondary, the top simulations produce similar

distortion to what is visible in the target image. The trajectories are very similar. The

simulation parameters are well constrained except for the radius of the secondary disk.

Table 5.32: Identification Information and Merger Zoo summary for SDSS
587741602030026825.

Name Aliases RA (hms) Dec (dms) Redshift

SDSS 587741602030026825 Arp 305, NGC
4016/4017

11:58:45.6 +27:27:07.3 0.011521

Viewed Rejected Selected Enhanced MW Comps MW Wins Neither

7367 7101 266 144 4998 2023 2975
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Figure 5.126: Relative frequency of fitness for all selected states of SDSS
587741602030026825
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Figure 5.127: Target image and top 3 simulations for SDSS 587741602030026825
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Figure 5.128: Trajectories for all selected states, the top 50%, the top 10%, and the top 3
states for SDSS 587741602030026825
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Figure 5.129: Parallel coordinates for convergence of simulation and orbit parameters for
SDSS 587741602030026825
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5.1.33 SDSS 587741722819493915

Arp 106 has an L-shaped fitness distribution. The warped disk and tidal tails are well

matched in the simulation images. The top trajectories are not identical but do appear to be

bound orbits. The simulation parameters are moderately converged. The orbit parameters

appear better converged than the simulation values.

Table 5.33: Identification Information and Merger Zoo summary for SDSS
587741722819493915.

Name Aliases RA (hms) Dec (dms) Redshift

SDSS 587741722819493915 Arp 106, NGC 4211 12:15:35.8 +28:10:39.8 0.022012

Viewed Rejected Selected Enhanced MW Comps MW Wins Neither

40835 40216 619 196 11050 4825 6225

Figure 5.130: Relative frequency of fitness for all selected states of SDSS
587741722819493915
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Figure 5.131: Target image and top 3 simulations for SDSS 587741722819493915
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Figure 5.132: Trajectories for all selected states, the top 50%, the top 10%, and the top 3
states for SDSS 587741722819493915
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Figure 5.133: Parallel coordinates for convergence of simulation and orbit parameters for
SDSS 587741722819493915
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5.1.34 SDSS 587741817851674654

The NGC 2802/2803 pair does not exhibit clear tidal features. The smoothly declining

fitness distribution is apparent. The top simulations do produce a morphological fuzziness,

and in one case a tail, in the general area of distortion in the target image. The top

trajectories are similar. The convergence of the simulation parameters is not good for

masses, radii, or orientation angles.

Table 5.34: Identification Information and Merger Zoo summary for SDSS
587741817851674654.

Name Aliases RA (hms) Dec (dms) Redshift

SDSS 587741817851674654 NGC 2802/2803, UGC
4897

9:16:41.4 +18:57:49.3 0.02914

Viewed Rejected Selected Enhanced MW Comps MW Wins Neither

26368 25584 784 145 13959 4632 9327

Figure 5.134: Relative frequency of fitness for all selected states of SDSS
587741817851674654
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Figure 5.135: Target image and top 3 simulations for SDSS 587741817851674654
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Figure 5.136: Trajectories for all selected states, the top 50%, the top 10%, and the top 3
states for SDSS 587741817851674654
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Figure 5.137: Parallel coordinates for convergence of simulation and orbit parameters for
SDSS 587741817851674654
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5.1.35 SDSS 587741829658181698

Another popular merger, Arp 301 was viewed in over 100000 simulations by the volunteers.

The symmetric, stubby tails of the primary galaxy are well matched by the top simulations.

The trajectories are similar. The convergence for simulation parameters is moderate to

good except for φ1.

Table 5.35: Identification Information and Merger Zoo summary for SDSS
587741829658181698.

Name Aliases RA (hms) Dec (dms) Redshift

SDSS 587741829658181698 Arp 301, UGC 6207 11:09:51.4 +24:15:41.8 0.020591

Viewed Rejected Selected Enhanced MW Comps MW Wins Neither

104801 103002 1799 317 31705 12970 18735

Figure 5.138: Relative frequency of fitness for all selected states of SDSS
587741829658181698
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Figure 5.139: Target image and top 3 simulations for SDSS 587741829658181698
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Figure 5.140: Trajectories for all selected states, the top 50%, the top 10%, and the top 3
states for SDSS 587741829658181698
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Figure 5.141: Parallel coordinates for convergence of simulation and orbit parameters for
SDSS 587741829658181698
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5.1.36 SDSS 587742010583941189

The tidal features are sometimes difficult to view for Arp 89. The top simulations recreated

the subtle hook in the northern feature. The existence of a potential feature connected to

the secondary was not well matched. Only two of the top three trajectories are similar.

The convergence of the masses is poor.

Table 5.36: Identification Information and Merger Zoo summary for SDSS
587742010583941189.

Name Aliases RA (hms) Dec (dms) Redshift

SDSS 587742010583941189 Arp 89, NGC 2648 8:42:39.8 +14:17:08.2 0.006871

Viewed Rejected Selected Enhanced MW Comps MW Wins Neither

22360 21193 1167 219 20663 11208 9455

Figure 5.142: Relative frequency of fitness for all selected states of SDSS
587742010583941189

226



Figure 5.143: Target image and top 3 simulations for SDSS 587742010583941189
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Figure 5.144: Trajectories for all selected states, the top 50%, the top 10%, and the top 3
states for SDSS 587742010583941189
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Figure 5.145: Parallel coordinates for convergence of simulation and orbit parameters for
SDSS 587742010583941189
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5.1.37 SDSS 587742014353702970

Arp 87 presents another L-shaped fitness distribution. The tidal tails of the primary galaxy

are well matched by the volunteers. The trajectories are similar. The simulation parameters

converge except for the θ angles. The orbit parameters are reasonably well converged.

Table 5.37: Identification Information and Merger Zoo summary for SDSS
587742014353702970.

Name Aliases RA (hms) Dec (dms) Redshift

SDSS 587742014353702970 Arp 87, NGC 3808 11:40:44.0 +22:25:45.8 0.023603

Viewed Rejected Selected Enhanced MW Comps MW Wins Neither

42154 41733 421 213 7672 2873 4799

Figure 5.146: Relative frequency of fitness for all selected states of SDSS
587742014353702970
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Figure 5.147: Target image and top 3 simulations for SDSS 587742014353702970
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Figure 5.148: Trajectories for all selected states, the top 50%, the top 10%, and the top 3
states for SDSS 587742014353702970
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Figure 5.149: Parallel coordinates for convergence of simulation and orbit parameters for
SDSS 587742014353702970
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5.1.38 SDSS 587742571610243080

The L-shaped fitness distribution for Arp 191 is not as pronounced as it is for some targets.

The western tidal tail is well matched in the simulations. One also predicts an eastern tail.

The trajectories are similar. The simulation parameters are well constrained as well as the

orbit values.

Table 5.38: Identification Information and Merger Zoo summary for SDSS
587742571610243080.

Name Aliases RA (hms) Dec (dms) Redshift

SDSS 587742571610243080 Arp 191, UGC 6175 11:07:20.8 +18:25:58.6 0.026548

Viewed Rejected Selected Enhanced MW Comps MW Wins Neither

62068 61604 464 191 8589 3633 4956

Figure 5.150: Relative frequency of fitness for all selected states of SDSS
587742571610243080
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Figure 5.151: Target image and top 3 simulations for SDSS 587742571610243080

235



Figure 5.152: Trajectories for all selected states, the top 50%, the top 10%, and the top 3
states for SDSS 587742571610243080
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Figure 5.153: Parallel coordinates for convergence of simulation and orbit parameters for
SDSS 587742571610243080
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5.1.39 SDSS 587745402001817662

Arp 237 consists of two galaxies very close to one another. The fitness distribution is

roughly L-shaped. The southern tail is well matched. The fuzziness of the top features is

only roughly matched. The top trajectories are all closed orbit, multiple passages. The

mass of the secondary galaxy is not well constrained nor is the size of the primary galaxy.

Table 5.39: Identification Information and Merger Zoo summary for SDSS
587745402001817662.

Name Aliases RA (hms) Dec (dms) Redshift

SDSS 587745402001817662 Arp 237, UGC 5044 9:27:43.4 +12:17:14.1 0.028833

Viewed Rejected Selected Enhanced MW Comps MW Wins Neither

25173 24927 246 95 4662 1588 3074

Figure 5.154: Relative frequency of fitness for all selected states of SDSS
587745402001817662
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Figure 5.155: Target image and top 3 simulations for SDSS 587745402001817662
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Figure 5.156: Trajectories for all selected states, the top 50%, the top 10%, and the top 3
states for SDSS 587745402001817662
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Figure 5.157: Parallel coordinates for convergence of simulation and orbit parameters for
SDSS 587745402001817662
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5.1.40 SDSS 587746029596311590

Arp 181 was a popular target with over 126000 simulation views. The sharp, thin tidal fea-

tures of the primary are moderately matched. The internal spiral structure of the secondary

is only loosely matched by the density enhancements in the simulations. The trajectories

are similar. Other than the mass of the primary, the simulation parameters and orbit

parameters are well converged.

Table 5.40: Identification Information and Merger Zoo summary for SDSS
587746029596311590.

Name Aliases RA (hms) Dec (dms) Redshift

SDSS 587746029596311590 Arp 181, NGC 3212 10:28:16.6 +79:49:24.5 0.032402

Viewed Rejected Selected Enhanced MW Comps MW Wins Neither

126303 124050 2253 370 39427 15970 23457

Figure 5.158: Relative frequency of fitness for all selected states of SDSS
587746029596311590
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Figure 5.159: Target image and top 3 simulations for SDSS 587746029596311590
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Figure 5.160: Trajectories for all selected states, the top 50%, the top 10%, and the top 3
states for SDSS 587746029596311590
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Figure 5.161: Parallel coordinates for convergence of simulation and orbit parameters for
SDSS 587746029596311590
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5.1.41 SDSS 588011124116422756

Another L-shaped fitness distribution is present for Arp 238. This system presents two

galaxies each with obvious tidal features. The top simulations recreate the top and bottom

tails. They also match some of the distortion near the disk of the secondary galaxy. The

trajectories are very similar. The simulation parameters are very well converged.

Table 5.41: Identification Information and Merger Zoo summary for SDSS
588011124116422756.

Name Aliases RA (hms) Dec (dms) Redshift

SDSS 588011124116422756 Arp 238, UGC 8335 13:15:31.1 +62:07:45.1 0.030788

Viewed Rejected Selected Enhanced MW Comps MW Wins Neither

49305 48767 538 118 9796 3790 6006

Figure 5.162: Relative frequency of fitness for all selected states of SDSS
588011124116422756
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Figure 5.163: Target image and top 3 simulations for SDSS 588011124116422756
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Figure 5.164: Trajectories for all selected states, the top 50%, the top 10%, and the top 3
states for SDSS 588011124116422756
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Figure 5.165: Parallel coordinates for convergence of simulation and orbit parameters for
SDSS 588011124116422756
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5.1.42 SDSS 588013383816904792

This target has a roughly L-shaped fitness distribution. Both galaxies have distinct, though

not necessarily symmetric, tidal features. The top simulations are all good matches. The

trajectories are similar, but one of them shows a sharp kink that is probably due to an

error in the smoothing done to generate the plot. The simulation parameters are very well

converged. The convergence of the orbit parameters is bettern than in most other systems.

Table 5.42: Identification Information and Merger Zoo summary for SDSS
588013383816904792.

Name Aliases RA (hms) Dec (dms) Redshift

SDSS 588013383816904792 2MASS
12043959+5257265

12:04:39.5 +52:57:25.8 0.080803

Viewed Rejected Selected Enhanced MW Comps MW Wins Neither

59488 59132 356 122 6641 2709 3932

Figure 5.166: Relative frequency of fitness for all selected states of SDSS
588013383816904792
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Figure 5.167: Target image and top 3 simulations for SDSS 588013383816904792
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Figure 5.168: Trajectories for all selected states, the top 50%, the top 10%, and the top 3
states for SDSS 588013383816904792
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Figure 5.169: Parallel coordinates for convergence of simulation and orbit parameters for
SDSS 588013383816904792
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5.1.43 SDSS 588017604696408086

The fitness distribution is not as L-shaped as it is for others. Arp 297 has a long, thin

tail that wraps around the primary galaxy. The volunteers did a very good job matching

that feature. The top trajectories are similar. There is good convergence of simulation and

orbital parameters. This target differs from most in that the disk orientation angles are

well constrained.

Table 5.43: Identification Information and Merger Zoo summary for SDSS
588017604696408086.

Name Aliases RA (hms) Dec (dms) Redshift

SDSS 588017604696408086 Arp 297, NGC
5752/5754

14:45:19.6 +38:43:52.5 0.015214

Viewed Rejected Selected Enhanced MW Comps MW Wins Neither

37553 36934 619 142 11201 5446 5755

Figure 5.170: Relative frequency of fitness for all selected states of SDSS
588017604696408086
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Figure 5.171: Target image and top 3 simulations for SDSS 588017604696408086
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Figure 5.172: Trajectories for all selected states, the top 50%, the top 10%, and the top 3
states for SDSS 588017604696408086
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Figure 5.173: Parallel coordinates for convergence of simulation and orbit parameters for
SDSS 588017604696408086
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5.1.44 SDSS 588017604696408195

The NGC 5753/5755 pair of galaxies only displays strong tidal features on the larger pri-

mary. The simulation images demonstrate the volunteers ability to achieve a modest match

to the tidal tails. The nothern tail has a “kink” that is not well matched. Two of the top

trajectories are similar, with the lower left panel showing a family of paths. The simulation

parameters for the disks have moderate to poor convergence.

Table 5.44: Identification Information and Merger Zoo summary for SDSS
588017604696408195.

Name Aliases RA (hms) Dec (dms) Redshift

SDSS 588017604696408195 NGC 5753/5755, UGC
9507

14:45:18.8 +38:48:20.6 0.032099

Viewed Rejected Selected Enhanced MW Comps MW Wins Neither

51971 51386 585 195 10717 4578 6139

Figure 5.174: Relative frequency of fitness for all selected states of SDSS
588017604696408195
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Figure 5.175: Target image and top 3 simulations for SDSS 588017604696408195

259



Figure 5.176: Trajectories for all selected states, the top 50%, the top 10%, and the top 3
states for SDSS 588017604696408195
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Figure 5.177: Parallel coordinates for convergence of simulation and orbit parameters for
SDSS 588017604696408195
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5.1.45 SDSS 588017702948962343

The fitness distribution for Arp 173 presents a rough L shape. The very thin tidal features of

the primary are well matched, including the curvature and the tip of the southern tail. The

top trajectories are not very similar. The convergence for orbit and simulation parameters

is poor. Here we have a plausible morphological match, but poor convergence.

Table 5.45: Identification Information and Merger Zoo summary for SDSS
588017702948962343.

Name Aliases RA (hms) Dec (dms) Redshift

SDSS 588017702948962343 Arp 173, UGC 9561 14:51:29.2 +9:20:05.3 0.029441

Viewed Rejected Selected Enhanced MW Comps MW Wins Neither

28770 28359 411 94 7546 3151 4395

Figure 5.178: Relative frequency of fitness for all selected states of SDSS
588017702948962343
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Figure 5.179: Target image and top 3 simulations for SDSS 588017702948962343
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Figure 5.180: Trajectories for all selected states, the top 50%, the top 10%, and the top 3
states for SDSS 588017702948962343
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Figure 5.181: Parallel coordinates for convergence of simulation and orbit parameters for
SDSS 588017702948962343
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5.1.46 SDSS 588017978901528612

For Arp 84, the tidal features of the secondary galaxy are more prominent. The fitness

distribution is in between a smoothly declining one and an L-shaped one. The tails of

the secondary galaxy are well matched in the simulation images. The volunteers have also

produced a reasonable match to the disturbed disk of the primary galaxy. The trajectories

are moderately similar. The simulation parameter convergence is good except for disk sizes

and orientations.

Table 5.46: Identification Information and Merger Zoo summary for SDSS
588017978901528612.

Name Aliases RA (hms) Dec (dms) Redshift

SDSS 588017978901528612 Arp 84, NGC
5394/5395

13:58:37.9 +37:25:28.8 0.011711

Viewed Rejected Selected Enhanced MW Comps MW Wins Neither

18924 18511 413 119 7643 3596 4047

266



Figure 5.182: Relative frequency of fitness for all selected states of SDSS
588017978901528612
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Figure 5.183: Target image and top 3 simulations for SDSS 588017978901528612
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Figure 5.184: Trajectories for all selected states, the top 50%, the top 10%, and the top 3
states for SDSS 588017978901528612
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Figure 5.185: Parallel coordinates for convergence of simulation and orbit parameters for
SDSS 588017978901528612
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5.1.47 SDSS 588018055130710322

UGC 10650 has a long northern tail. The top simulations provide three distinct versions of

that tail, each of which is a moderate to good match. The trajectories are roughly similar.

The convergence of simulation masses is moderate while disk sizes and orientations is closer

to poor convergence.

Table 5.47: Identification Information and Merger Zoo summary for SDSS
588018055130710322.

Name Aliases RA (hms) Dec (dms) Redshift

SDSS 588018055130710322 UGC 10650 17:00:06.8 +23:07:53.5 0.056835

Viewed Rejected Selected Enhanced MW Comps MW Wins Neither

47369 46938 431 108 7917 3769 4148

Figure 5.186: Relative frequency of fitness for all selected states of SDSS
588018055130710322
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Figure 5.187: Target image and top 3 simulations for SDSS 588018055130710322
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Figure 5.188: Trajectories for all selected states, the top 50%, the top 10%, and the top 3
states for SDSS 588018055130710322
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Figure 5.189: Parallel coordinates for convergence of simulation and orbit parameters for
SDSS 588018055130710322
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5.1.48 SDSS 758874299603222717

The fitness distribution for Arp 112 hints at an L shape. The simulations present a moder-

ately good match to the asymmetric norther tail. The enhanced density in the other galaxy

is somewhat matched by the volunteers. The trajectories are similar to each other. The

simulation parameters have moderate convergence except for the size of the primary disk.

Table 5.48: Identification Information and Merger Zoo summary for SDSS
758874299603222717.

Name Aliases RA (hms) Dec (dms) Redshift

SDSS 758874299603222717 Arp 112 0:01:26.7 +31:26:00.2 0.016048

Viewed Rejected Selected Enhanced MW Comps MW Wins Neither

113395 112327 1068 272 18994 7353 11641

Figure 5.190: Relative frequency of fitness for all selected states of SDSS
758874299603222717
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Figure 5.191: Target image and top 3 simulations for SDSS 758874299603222717
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Figure 5.192: Trajectories for all selected states, the top 50%, the top 10%, and the top 3
states for SDSS 758874299603222717
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Figure 5.193: Parallel coordinates for convergence of simulation and orbit parameters for
SDSS 758874299603222717
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5.1.49 Arp 148

Arp 148 has an unexcited fitness distribution. This is matched by the unexciting morphology

with no easy tidal features for volunteers to match. The top three simulations all look like

unperturbed disks. Two of the top three trajectories are similar. The simulation and orbit

parameters have poor convergence.

Table 5.49: Identification Information and Merger Zoo summary for Arp 148.

Name Aliases RA (hms) Dec (dms) Redshift

Arp 148 Arp 148 11:03:54.1 +40:50:57.7 0.034524

Viewed Rejected Selected Enhanced MW Comps MW Wins Neither

33460 31676 1784 182 24073 15206 8867

Figure 5.194: Relative frequency of fitness for all selected states of Arp 148
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Figure 5.195: Target image and top 3 simulations for Arp 148

280



Figure 5.196: Trajectories for all selected states, the top 50%, the top 10%, and the top 3
states for Arp 148

281



Figure 5.197: Parallel coordinates for convergence of simulation and orbit parameters for
Arp 148
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5.1.50 CGCG 436-030

This HST GGW target has asymmetric features on the primary and the secondary. The

volunteers were able to match the tidal features. However, the top simulations usually have

corresponding symmetric tails that are not present in the image. The trajectories are very

similar. The simulation and orbit parameter convergence is poor.

Table 5.50: Identification Information and Merger Zoo summary for CGCG 436-030.

Name Aliases RA (hms) Dec (dms) Redshift

CGCG 436-030 2MASS
01200265+1421417

1:20:02.7 +14:21:43.4 0.031569

Viewed Rejected Selected Enhanced MW Comps MW Wins Neither

27351 26885 466 84 6384 3201 3183

Figure 5.198: Relative frequency of fitness for all selected states of CGCG 436-030
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Figure 5.199: Target image and top 3 simulations for CGCG 436-030

284



Figure 5.200: Trajectories for all selected states, the top 50%, the top 10%, and the top 3
states for CGCG 436-030
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Figure 5.201: Parallel coordinates for convergence of simulation and orbit parameters for
CGCG 436-030
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5.1.51 Arp 272

Arp 272 has distinct tidal features. However, they are within the plane of the disk and are

difficult to model with our restricted three-body code. Additionally, there is what appears

to be a strong collection of material in a knot between the two galaxies. This may be a dwarf

galaxy, the creation of which cannot be modeled without self-gravity. The top simulations

each produced density enhancements in the two disks. The match is very rough. The top

trajectories show that the two galaxies remain close to each other during the simulation

period. The simulation paramater convergence is poor, particularly for the galaxy masses.

Table 5.51: Identification Information and Merger Zoo summary for Arp 272.

Name Aliases RA (hms) Dec (dms) Redshift

Arp 272 Arp 272, NGC 6050 16:05:23.4 +17:45:25.8 0.031928

Viewed Rejected Selected Enhanced MW Comps MW Wins Neither

11901 11031 870 130 11697 5770 5927

Figure 5.202: Relative frequency of fitness for all selected states of Arp 272
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Figure 5.203: Target image and top 3 simulations for Arp 272
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Figure 5.204: Trajectories for all selected states, the top 50%, the top 10%, and the top 3
states for Arp 272
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Figure 5.205: Parallel coordinates for convergence of simulation and orbit parameters for
Arp 272

290



5.1.52 ESO 77-14

This HST GGW target was more popular than other HST targets with volunteers viewing

over 51000 simulations. Each galaxy has a tidal tail. Those tails are both present in each

of the top simulations. The best-fit simulation seems to have an additional ring of debris

not seen in the target image. The trajectories are all closed, multi-passage orbits. The

simulation and orbit parameters have moderate to poor convergence.

Table 5.52: Identification Information and Merger Zoo summary for ESO 77-14.

Name Aliases RA (hms) Dec (dms) Redshift

ESO 77-14 2MASS 23210539-
6912472

23:21:04.6 -69:12:47.3 0.042326

Viewed Rejected Selected Enhanced MW Comps MW Wins Neither

51759 50977 782 128 10759 4335 6424

Figure 5.206: Relative frequency of fitness for all selected states of ESO 77-14
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Figure 5.207: Target image and top 3 simulations for ESO 77-14

292



Figure 5.208: Trajectories for all selected states, the top 50%, the top 10%, and the top 3
states for ESO 77-14
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Figure 5.209: Parallel coordinates for convergence of simulation and orbit parameters for
ESO 77-14
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5.1.53 NGC 5331

NGC 5331 does have obvious features, but not the more popular long tails. The small

northern tail in the image is moderately matched by the best simulation. The trajectories

are not very similar. The convergence of orbit and simulation parameters is poor.

Table 5.53: Identification Information and Merger Zoo summary for NGC 5331.

Name Aliases RA (hms) Dec (dms) Redshift

NGC 5331 NGC 5331, UGC 8774 13:52:16.2 +2:06:01.1 0.032799

Viewed Rejected Selected Enhanced MW Comps MW Wins Neither

6595 6302 293 68 4137 2479 1658

Figure 5.210: Relative frequency of fitness for all selected states of NGC 5331
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Figure 5.211: Target image and top 3 simulations for NGC 5331
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Figure 5.212: Trajectories for all selected states, the top 50%, the top 10%, and the top 3
states for NGC 5331
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Figure 5.213: Parallel coordinates for convergence of simulation and orbit parameters for
NGC 5331
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5.1.54 NGC 6786

NGC 6786 definitely has an L-shaped fitness distribution. It was one of the most popular

targets with over 250000 simulations viewed. The primary and secondary each have two tidal

tails. The top simulations are all moderate to good matches for all four key tidal features.

The convergence of the trajectories is impressive. Even though the top paths are not

identical, the represent a substantially reduce set of possibilities from the largely saturated

image of trajectories for even the top 50% of simulations. The simulation parameters are

well converged with the exception of the disk inclination angle.

Table 5.54: Identification Information and Merger Zoo summary for NGC 6786.

Name Aliases RA (hms) Dec (dms) Redshift

NGC 6786 NGC 6786, UGC 11415 19:10:53.8 +73:24:37.0 0.025017

Viewed Rejected Selected Enhanced MW Comps MW Wins Neither

253392 246370 7022 1389 40144 17348 22796

Figure 5.214: Relative frequency of fitness for all selected states of NGC 6786
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Figure 5.215: Target image and top 3 simulations for NGC 6786
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Figure 5.216: Trajectories for all selected states, the top 50%, the top 10%, and the top 3
states for NGC 6786
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Figure 5.217: Parallel coordinates for convergence of simulation and orbit parameters for
NGC 6786
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5.1.55 SDSS 587736523764334706

Arp 274 is another example of a less than exciting pair of largely unperturbed disks. The

internal spiral structure was not well matched. The top simulations simply produce den-

sity enhancements. The trajectories are not very similar to each other. The simulation

parameter convergence is moderate to poor.

Table 5.55: Identification Information and Merger Zoo summary for SDSS
587736523764334706.

Name Aliases RA (hms) Dec (dms) Redshift

SDSS 587736523764334706 Arp 274, NGC 5679 14:35:08.7 +5:21:31.7 0.028867

Viewed Rejected Selected Enhanced MW Comps MW Wins Neither

30401 28236 2165 206 37950 24428 13522

Figure 5.218: Relative frequency of fitness for all selected states of SDSS
587736523764334706
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Figure 5.219: Target image and top 3 simulations for SDSS 587736523764334706
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Figure 5.220: Trajectories for all selected states, the top 50%, the top 10%, and the top 3
states for SDSS 587736523764334706
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Figure 5.221: Parallel coordinates for convergence of simulation and orbit parameters for
SDSS 587736523764334706
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5.1.56 SDSS 587747120521216156

The fitness distribution for Arp 146 is between L-shaped and smoothly declining. The

creation of the ring galaxy is matched in all simulations. The shape is not a good match in

all simulations. The features of the non-ring galaxy are not well matched. One of the top

simulations even has the rotation going in the opposite direction. The trajectories are not

very similar to each other. The simulation paramater convergence is moderate.

Table 5.56: Identification Information and Merger Zoo summary for SDSS
587747120521216156.

Name Aliases RA (hms) Dec (dms) Redshift

SDSS 587747120521216156 Arp 146 0:06:44.7 -6:38:12.9 0.07544

Viewed Rejected Selected Enhanced MW Comps MW Wins Neither

51786 50560 1226 191 21576 7028 14548

Figure 5.222: Relative frequency of fitness for all selected states of SDSS
587747120521216156
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Figure 5.223: Target image and top 3 simulations for SDSS 587747120521216156
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Figure 5.224: Trajectories for all selected states, the top 50%, the top 10%, and the top 3
states for SDSS 587747120521216156
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Figure 5.225: Parallel coordinates for convergence of simulation and orbit parameters for
SDSS 587747120521216156
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5.1.57 SDSS 588007005230530750

Arp 143 has an almost L-shaped fitness distribution. There is not distinct tidal feature,

however, the elongated disk of the primary galaxy is moderately well matched by the top

simulations. The trajectories are similar. The simulation paramter convergence is good

except for the sizes of the two disks.

Table 5.57: Identification Information and Merger Zoo summary for SDSS
588007005230530750.

Name Aliases RA (hms) Dec (dms) Redshift

SDSS 588007005230530750 Arp 143, NGC
2444/2445

7:46:52.9 +39:01:55.6 0.013503

Viewed Rejected Selected Enhanced MW Comps MW Wins Neither

75426 73228 2198 375 38320 14153 24167

Figure 5.226: Relative frequency of fitness for all selected states of SDSS
588007005230530750
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Figure 5.227: Target image and top 3 simulations for SDSS 588007005230530750
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Figure 5.228: Trajectories for all selected states, the top 50%, the top 10%, and the top 3
states for SDSS 588007005230530750
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Figure 5.229: Parallel coordinates for convergence of simulation and orbit parameters for
SDSS 588007005230530750
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5.1.58 SDSS 758877153600208945

Arp 70 was viewed in over ∼ 177000 simulations. The primary galaxy has a nicely hooked

tidal tail that was well matched by the volunteers. The trajectories are very similar. The

simulation parameters are not well converged due to the masses.

Table 5.58: Identification Information and Merger Zoo summary for SDSS
758877153600208945.

Name Aliases RA (hms) Dec (dms) Redshift

SDSS 758877153600208945 Arp 70, UGC 934 1:23:28.2 +30:47:04.0 0.035004

Viewed Rejected Selected Enhanced MW Comps MW Wins Neither

176999 173502 3497 429 60763 28395 32368

Figure 5.230: Relative frequency of fitness for all selected states of SDSS
758877153600208945
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Figure 5.231: Target image and top 3 simulations for SDSS 758877153600208945

316



Figure 5.232: Trajectories for all selected states, the top 50%, the top 10%, and the top 3
states for SDSS 758877153600208945
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Figure 5.233: Parallel coordinates for convergence of simulation and orbit parameters for
SDSS 758877153600208945
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5.1.59 SDSS 587739720308818095

Arp 218 has a hooked tidal tail. That feature was only reproduced well by the best simu-

lation. The trajectories are not very similar. However, the simulation parameters are very

well converged.

Table 5.59: Identification Information and Merger Zoo summary for SDSS
587739720308818095.

Name Aliases RA (hms) Dec (dms) Redshift

SDSS 587739720308818095 Arp 218, UGC 10084 15:53:36.8 +18:36:34.5 0.049944

Viewed Rejected Selected Enhanced MW Comps MW Wins Neither

47867 46288 1579 302 25282 9410 15872

Figure 5.234: Relative frequency of fitness for all selected states of SDSS
587739720308818095
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Figure 5.235: Target image and top 3 simulations for SDSS 587739720308818095
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Figure 5.236: Trajectories for all selected states, the top 50%, the top 10%, and the top 3
states for SDSS 587739720308818095
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Figure 5.237: Parallel coordinates for convergence of simulation and orbit parameters for
SDSS 587739720308818095
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5.1.60 Arp 273

Arp 273 has an L-shaped fitness distribution. The distortion of the primary galaxy is often

described as a rose. The simulations failed to reproduce the void in the disk of the primary.

However, the trajectories were similar in that they all passed close to the actual disk of the

primary. The orbit parameters will well constrained with the usual exceptions of the the

disk orientation angles.

Table 5.60: Identification Information and Merger Zoo summary for Arp 273.

Name Aliases RA (hms) Dec (dms) Redshift

Arp 273 Arp 273, UGC
1810/1813

2:21:28.6 +39:22:31.0 0.025227

Viewed Rejected Selected Enhanced MW Comps MW Wins Neither

71836 70249 1587 198 18067 7012 11055

Figure 5.238: Relative frequency of fitness for all selected states of Arp 273
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Figure 5.239: Target image and top 3 simulations for Arp 273
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Figure 5.240: Trajectories for all selected states, the top 50%, the top 10%, and the top 3
states for Arp 273
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Figure 5.241: Parallel coordinates for convergence of simulation and orbit parameters for
Arp 273
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5.1.61 SDSS 1237678620102623480

This target was the only target from SDSS DR8. It is sometimes referred to as the Violin

Clef galaxy. It is thought to be part of a multiple merger system with a total of four

galaxies at the same approximate redshift (Willett, 2011). There was no redshift value

available from SDSS when this galaxy was first discovered by a Citizen Scientist from the

Galaxy Zoo project. We modeled the system as a simple pair. The fitness distribution

resulted in a partial match to the tidal tails. The length of the northern tail was not well

matched by the simulations. The trajectories are very similar. The simulation parameter

convergence is moderate to poor, though the velocity does seem well constrained.

Table 5.61: Identification Information and Merger Zoo summary for SDSS
1237678620102623480.

Name Aliases RA (hms) Dec (dms) Redshift

SDSS 1237678620102623480 2MASS
00040703+0320165

0:04:15.4 +3:23:01.8 0.02288

Viewed Rejected Selected Enhanced MW Comps MW Wins Neither

72808 71767 1041 257 18558 5706 12852
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Figure 5.242: Relative frequency of fitness for all selected states of SDSS
1237678620102623480
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Figure 5.243: Target image and top 3 simulations for SDSS 1237678620102623480
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Figure 5.244: Trajectories for all selected states, the top 50%, the top 10%, and the top 3
states for SDSS 1237678620102623480
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Figure 5.245: Parallel coordinates for convergence of simulation and orbit parameters for
SDSS 1237678620102623480
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5.1.62 Arp 244

Arp 244, the Antennae Galaxies, has an L-shaped fitness distribution. The general shape

and orientation of the tidal tails is matched by two of the top three simulations. However the

length of the features is usually shorter in the simulations. The trajectories are very similar

and appear to be closed orbits. The simulation parameters have moderate convergence.

Interestingly, the vy parameter is not well converged in addition to the disk masses.

Table 5.62: Identification Information and Merger Zoo summary for Arp 244.

Name Aliases RA (hms) Dec (dms) Redshift

Arp 244 Arp 244, NGC
4038/4039

12:01:53.0 -18:52:00.8 0.005601

Viewed Rejected Selected Enhanced MW Comps MW Wins Neither

35758 34562 1196 218 16093 5555 10538

Figure 5.246: Relative frequency of fitness for all selected states of Arp 244
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Figure 5.247: Target image and top 3 simulations for Arp 244
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Figure 5.248: Trajectories for all selected states, the top 50%, the top 10%, and the top 3
states for Arp 244
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Figure 5.249: Parallel coordinates for convergence of simulation and orbit parameters for
Arp 244
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5.2 Convergence of Model Parameters

The qualitative review of the results for each pair of galaxies revealed an interesting pattern.

The pairs where the fitness distributions were L-shaped tended to have a good simulation

match to the target image. They also tended to have a high level of convergence. This

L-shape is characteristic of power law distributions with long tails. In order to quantify

the shape of the fitness distributions we computed the first four statistical moments for the

fitness population of each galaxy pair. From those moments we calculated the skewness and

kurtosis. Figure 5.250 shows the kurtosis and skewness for each fitness distribution.

Figure 5.250: Kurtosis vs. Skewness of the fitness distribution.

The kurtosis value is negative for the fitness distribution of 18 pairs. This indicates that

their fitness distributions are flatter than a normal distribution. These distributions also

have low skewness resulting in less differentiation between low- and high- fitness simulations.
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For comparison we show the target image, best fit simulation, fitness distribution, top 3

trajectories and glyph plots for several galaxy pairs. Figure 5.251 shows the three pairs with

the lowest skewness. All three have almost no distinguishable tidal features. The fitness

distributions are relatively flat. The trajectories are divergent and the glyph plots do not

indicate a high level of convergence for simulation and orbit parameters.
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Figure 5.251: The galaxy pairs with the three lowest fitness distribution skewnesses.

Figure 5.252 shows the three pairs with the highest skewness. All three have very

obvious tidal features. The fitness distributions are very skewed with most simulations

given a fitness score of zero. The trajectories are consistent. However, the glyph plots

are not remarkably different from those of the low skewness galaxy pairs. This seems to

indicate that the parallel coordinate and glyph plots are not a good indicator of which

sets of simulations have converged to a high fitness match of the simulation. One possible

explanation is that not every target was prepared identically. In some instances simulation

parameter ranges were edited by hand. For example, the double-ring galaxy in our sample

had the ranges for vx and vy restricted to keep their relative magnitudes low compared to
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rz. This was done to ensure more simulation parameter sets would be selected with an

overall velocity perpendicular to the plane of the sky in order to encourage formation of

rings1. Other simulation ranges were edited on an ad hoc basis. Also, because some of

the parameters are based on intrinsic properties of each galaxy pair (velocity ranges were

constrained by estimated mass), not every simulation parameter was sampled across the

same range of values for each galaxy.
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Figure 5.252: The galaxy pairs with the three highest fitness distribution skewnesses.

Another trend hinted at during the qualitative review of all of the galaxy pairs was

that target images with larger, more distinct tidal features tended to be more popular. We

wanted to know if the activity level for a target influenced the skewness. In Figure 5.253

we show how the skewness varies with the number of simulations reviewed. Systems with

the most number of simulations do not have the highest skewness. There is no definite

trend overall, though a claim could be made that the targets with the fewest number of

simulations viewed tended to have smaller skewness values.

1Rings are likely to form when one galaxy passes perpendicularly through the plane, and within the disk,
of the other galaxy. Here both galaxies disks had relatively low inclination angles with respect to the plane
of the sky, so a velocity vector perpendicular to the sky is likely to be perpendicular to each disk as well.
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Figure 5.253: Skewness vs. Number of Simulations Viewed.

If the activity level does not heavily influence the fitness skewness, then it remains pos-

sible that the distribution of fitness values is related to inherit properties of the interacting

galaxies. We group the target images into clusters as described in Section 4.4.1. For each

group we discuss any potential similarities between parameter values and convergences for

members. It is important to remember that these morphological groupings are not uniquely

defined. It is possible that some galaxy pairs belong more to other groups than as defined

here. One important benefit of arbitrarily specifying a maximum cluster size is that we can

study properties for a finite set of related galaxies at the same time. The last two figures for

each group are each a set of box plots for the eccentricity and inclination of the relative orbit

with respect to the disk of the primary. For the box plots, the upper and lower adjacent

values are included. Several orbits are extremely hyperbolic with very large eccentricities.

They are simply off the scale, so assume any missing eccentricity box refers to a hyperbolic

orbit.
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5.2.1 Morphological Group 1

The galaxies in this group have a modest skewness to their fitness distributions, eccentricities

around 0.5 and inclinations between 40◦ and 60◦. The exception is the second target with

a lower skewness, and larger interquartile range (IQR), and smaller glyph plots.
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Figure 5.254: Morphological Group 1
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Figure 5.255: The distribution of eccentricity and inclination for the top simulations in
group 1

5.2.2 Morphological Group 2

Three out of five galaxies in this group have parabolic orbits. The inclinations are in a range

of 30◦ and 80◦. The first two galaxies have a low skewness to their fitness distributions while

the last three have a higher value.
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Figure 5.256: Morphological Group 2

Figure 5.257: The distribution of eccentricity and inclination for the top simulations in
group 2
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5.2.3 Morphological Group 3

All five galaxies in this group have a tightly converged eccentricity less than 1.0 meaning

they are closed orbits. The inclinations range from 40◦ and 90◦.
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Figure 5.258: Morphological Group 3
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Figure 5.259: The distribution of eccentricity and inclination for the top simulations in
group 3

5.2.4 Morphological Group 4

The five galaxies in this group all have low skewness for their fitness distributions. Neither

the eccentricities nor inclinations are well constrained with all systems having a median

value near the mean of all possible inclinations, 90◦.
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Figure 5.260: Morphological Group 4

Figure 5.261: The distribution of eccentricity and inclination for the top simulations in
group 4
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5.2.5 Morphological Group 5

Five of six galaxies have low to moderate skewness. The sixth value has a high skewness

and a closed orbit while the other five have parabolic orbits. The inclinations range from

20◦ and 60◦, with the least constrained orbit having a high IQR for both inclination and

eccentricity.
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Figure 5.262: Morphological Group 5
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Figure 5.263: The distribution of eccentricity and inclination for the top simulations in
group 5

5.2.6 Morphological Group 6

These galaxies have moderate to high skewness with five out of six having closed orbits,

with tightly constrained eccentricities. The inclinations are less well converged and range

between 40◦ and 100◦.
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Figure 5.264: Morphological Group 6

Figure 5.265: The distribution of eccentricity and inclination for the top simulations in
group 6
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5.2.7 Morphological Group 7

The skewness is low for all the fitness distributions in this group. The eccentricities are not

well constrained and tend towards parabolic orbits. The median inclinations range from

40◦ and 120◦.
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Figure 5.266: Morphological Group 7
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Figure 5.267: The distribution of eccentricity and inclination for the top simulations in
group 7

5.2.8 Morphological Group 8

The galaxies in this group all have interesting tails. Three of five eccentricities are con-

strained and represent closed orbits. The inclination are less well constrained and range

between 40◦ and 80◦.
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Figure 5.268: Morphological Group 8

Figure 5.269: The distribution of eccentricity and inclination for the top simulations in
group 8
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5.2.9 Morphological Group 9

This group is a mixed bag with three pairs having parabolic orbits. The other two orbits are

closed and hyperbolic. The inclinations are at different ranges with some well constrained

near 10◦ and others nearly perpendicular or retrograde in the range of 90◦ and 120◦.
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Figure 5.270: Morphological Group 9
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Figure 5.271: The distribution of eccentricity and inclination for the top simulations in
group 9

5.2.10 Morphological Group 10

All galaxies have a high skewness value for their fitness distributions. This group has mostly

closed, elliptical orbits with one hyperbolic orbit. The inclinations are in the range of 40◦

and 70◦.
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Figure 5.272: Morphological Group 10

Figure 5.273: The distribution of eccentricity and inclination for the top simulations in
group 10
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5.2.11 Morphological Group 11

This is another group of high skewness galaxies with primarily parabolic orbits and most

inclinations between 50◦ and 90◦.
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Figure 5.274: Morphological Group 11
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Figure 5.275: The distribution of eccentricity and inclination for the top simulations in
group 11

5.2.12 Morphological Group 12

This last group consists of pairs with short tidal features and galaxies that are relatively

far apart compared to their sizes. The skewness values for the fitness distributions are low

and the IQR for inclinations are high for most of the pairs. The orbits tend to be parabolic

to hyperbolic which is consistent with widely spaced galaxies. The inclinations are not well

converged an range from 0◦ and 180◦.
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Figure 5.276: Morphological Group 12

Figure 5.277: The distribution of eccentricity and inclination for the top simulations in
group 12

357



These morphological groups were selected by an agglomerative hierarchical clustering

algorithm using Zernike moments to calculate separation in feature space. The link between

morphology and orbit parameters is demonstrated by most groups having similar values for

eccentricities and inclinations.

5.3 Coverage of Parameter Space

The discussion above focuses on how well the pipeline narrowed the total range of parameter

values. This section presents a brief summary of results in order to demonstrate that

a wide range of parameter space was covered for each target. Table 5.63 presents the

observed values and simulation parameters for each primary and secondary galaxy for all

62 target pairs. The columns include the star formation rate derived from the measured

W3 magnitude and the stellar mass derived from the measured W1 magnitude. The rest of

the columns include simulation parameters such as mass, disk radius, and orbit inclination

with respect to the plane of the disk. For each of the simulation parameters, we have

included the value from the best-fit simulation as well as the minimum and maximum

values from all simulations presented to the Citizen Scientists. The simulation mass values

were usually allowed to vary over three orders of magnitude. The disk radius usually ranged

from approximately 1 kpc to tens of kiloparsecs. For most systems, the inclination with

respect to the plane of the disk ranged over the entire 0◦ to 180◦ range.

A summary of simulation parameters referring to the pair, rather than the individual

galaxies, is included in Table 5.64. The mass ratios, minimum distance, time since closest

approach, orbital eccentricity, and β are included. Like in Table 5.63, this table includes

the value from the best-fit simulation as well as the minimum and maximum values from

all simulations presented to the Citizen Scientists. The mass ratios cover a large range of

values due to the large range in individual mass values that were sampled. The minimum

separation distance varies approximately two orders of magnitude. The time since closest

approach ranged from 0, the current epoch, to over 8 Gyr. However, the oldest best-fit Tmin

is less than 0.57 Gyr. Orbit eccentricities range from circular, 0, through parabolic, 1, and
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very hyperbolic, greater than 1000. The β parameter had a wide range from a minimum

less than 0.001 to a maximum value of over 50000 for the most extreme case.

For each of the twelve simulation parameters we can compute the remaining fraction

of parameter space. This is done by computing the range of parameter values for the top

expert states and then dividing by the range of parameter values for all states shown to

the Citizen Scientists. This ratio indicates how much of parameter space remains, and

by inversion, how much of parameter space was ruled out for producing a good match to

the target image. The distribution of remaining fraction values are shown in Table 5.65.

Overall, the components of the relative velocity vector were best constrained, along with the

z-component of the relative position vector. This means the process places tight constraints

on the path through space that the secondary galaxy travels with respect to the primary.

The disk radii are the next best constrained along with the disk inclination angle. The two

masses typically have remaining fractions near 0.3. Eliminating 70% of a parameter that

spans two orders of magnitude is a significant reduction. The least well constrained values

are the two position angles, θ.

5.3.1 Distribution of Simulation Parameters

Figure 5.278 contains seven histograms and one scatter plot. The histograms show the

distribution of some import simulation parameters across all pairs. The values shown are

for the best-fit value for each pair. The masses range over more than three orders of

magnitude. Most of the projected separations are less than 40 kpc. The Rmin values tend

to be smaller by a factor of two. The Tmin values range from 0 to 570 Myr. The β values

range from 0.01 to 100. Most of the eccentricities are between 0 and 2 including a mix of

elliptical and nearly parabolic orbits. However a number of orbits are very hyperbolic with

eccentricities much greater than 1. The inclination with respect to the sky covers most of

the full range. There is a peak in the distribution near 90◦. The scatter plot in the bottom

right of Figure 5.278 offers a potential explanation. The orbits with very high eccentricities

tend to have inclinations nearly perpendicular to the plane of the sky. This is a result of our
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selection bias for picking galaxies that have relatively small projected separation distances.

A hyperbolic passage would need to be nearly perpendicular to the plane of the sky for us

to have a high probability of perceiving the galaxies as still being close to each other.

5.3.2 β Parameter

The β filter described in Section 4.1.1 removed from view of the Citizen Scientists approx-

imately 93% of the simulations with a β value less than 0.5. Of the 62 best-fit simulations,

17 had β values less than the threshold of 0.5. It could be argued that the filter was too

aggressive in throwing out “boring” simulations if more than one quarter of our best-fit

parameter sets would have been eliminated. However, this was the justification for putting

in the probabilistic exception to the filter. That exception means that rather than not cover

the volume of parameter space with low β, we simply cover it less densely than we otherwise

would without a filter. In Figure 5.279 the three galaxy pairs with the lowest best-fit β are

plotted along with the the three highest. The low β pairs are largely unperturbed disks.

These simulations are not well constrained by the morphology alone and it is likely that low

β simulations, indicating a weak interaction so far, would reproduce the disks. The high β

simulations show strong tidal features, either by the inclusion of long thin tidal tails, or a

wide debris field as in the middle image in the bottom row.
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Table 5.63: Simulation results for primary and secondary galaxies comparing observed SFR and mass with simulation mass, disk

radius, and orbit inclination relative to the disk. Simulation parameters include best value and the min and max values.

Target Galaxy
W3 - SFR

(log M�/yr)
W1 - Mass
(log M�)

Sim. Mass
(log M�)

Min
Sim. Mass
(log M�)

Max
Sim. Mass
(log M�)

Rdisk
(kpc)

Min
Rdisk
(kpc)

Max
Rdisk
(kpc)

Incdisk
(deg)

Min
Incdisk
(deg)

Max
Incdisk
(deg)

587722984435351614 pri 0.899 ± 0.386 11.214 ± 0.195 12.537 9.779 12.563 44.687 1.818 71.077 60.268 0.375 179.407
587722984435351614 sec 0.929 ± 0.386 11.305 ± 0.195 12.470 9.083 12.499 63.751 1.560 95.152 86.190 0.752 178.788
587724234257137777 pri -0.205 ± 0.387 10.723 ± 0.195 10.713 9.122 11.284 14.106 1.130 48.972 119.153 1.011 179.610
587724234257137777 sec -0.937 ± 0.390 10.431 ± 0.196 10.559 8.780 11.485 6.582 1.209 38.404 14.184 0.309 179.404
587726033843585146 pri 0.657 ± 0.386 11.272 ± 0.195 11.040 10.211 11.503 19.164 5.228 23.587 88.892 0.825 178.982
587726033843585146 sec -0.427 ± 0.390 10.948 ± 0.196 11.188 10.302 11.204 5.014 3.513 13.849 54.434 0.903 179.360
587727177926508595 pri 0.567 ± 0.386 11.119 ± 0.194 10.565 9.121 12.560 9.870 1.130 70.951 91.308 0.316 178.646
587727177926508595 sec -0.358 ± 0.387 10.830 ± 0.195 11.011 8.792 12.498 9.209 1.072 75.115 124.526 0.434 179.492
587727178988388373 pri 0.455 ± 0.387 10.748 ± 0.198 11.115 10.301 11.427 14.111 3.349 28.701 83.272 0.116 178.940
587727178988388373 sec 0.990 ± 0.386 11.011 ± 0.197 11.100 10.391 11.280 8.156 3.023 13.439 148.756 0.328 179.236
587727222471131318 pri 0.335 ± 0.387 10.876 ± 0.198 10.283 9.602 12.563 12.222 4.757 71.018 35.522 1.927 177.924
587727222471131318 sec -0.609 ± 0.393 10.804 ± 0.198 10.192 9.330 12.499 11.336 1.810 75.174 16.750 0.648 178.680
587728676861051075 pri 0.300 ± 0.386 10.731 ± 0.194 10.942 9.627 11.174 1.440 1.132 13.848 75.842 0.526 179.458
587728676861051075 sec -0.671 ± 0.387 10.490 ± 0.195 10.676 9.574 10.750 0.884 0.641 15.300 135.593 0.739 179.376
587729227151704160 pri -0.011 ± 0.390 10.847 ± 0.201 10.894 9.267 11.255 4.581 1.130 48.583 56.159 1.274 176.349
587729227151704160 sec -0.011 ± 0.390 10.847 ± 0.201 10.992 9.178 11.568 6.179 1.060 37.755 130.053 2.018 179.624
587731913110650988 pri 0.007 ± 0.386 10.295 ± 0.195 9.204 9.204 10.584 5.009 4.104 7.136 18.273 0.174 179.389
587731913110650988 sec 0.265 ± 0.386 10.463 ± 0.195 10.505 9.079 10.526 5.706 4.130 6.486 96.195 3.396 177.324
587732136993882121 pri -0.616 ± 0.386 10.385 ± 0.194 10.070 9.353 10.887 8.015 5.299 17.664 81.345 10.264 163.829
587732136993882121 sec -0.481 ± 0.386 9.948 ± 0.194 10.009 9.578 11.368 6.312 2.335 7.552 104.250 20.127 158.064
587732772130652231 pri -0.046 ± 0.388 10.610 ± 0.199 10.898 9.358 11.280 7.073 1.130 48.896 86.691 0.084 179.045
587732772130652231 sec 0.031 ± 0.388 10.704 ± 0.198 11.048 9.057 11.569 2.573 1.057 38.326 124.826 0.540 179.628
587733080814583863 pri -0.693 ± 0.389 9.477 ± 0.206 10.314 8.735 10.910 4.187 3.703 10.292 79.241 0.943 179.436
587733080814583863 sec 0.064 ± 0.387 10.256 ± 0.198 11.065 8.987 11.156 5.031 2.881 7.525 144.864 0.338 179.291
587734862680752822 pri 0.344 ± 0.388 11.038 ± 0.199 11.363 11.017 11.503 15.202 9.294 23.050 49.590 0.688 178.858
587734862680752822 sec 0.421 ± 0.387 10.562 ± 0.203 10.642 10.301 10.819 11.735 6.257 15.574 27.872 0.296 179.728
587735043609329845 pri 0.335 ± 0.386 10.698 ± 0.195 11.172 9.150 11.526 5.901 1.821 14.419 11.270 0.252 179.964
587735043609329845 sec -0.255 ± 0.387 10.007 ± 0.198 10.874 8.885 11.371 2.894 1.577 13.916 80.180 0.287 179.809
587735665840881790 pri 0.570 ± 0.386 11.220 ± 0.195 10.968 10.470 11.223 7.449 5.420 7.644 49.338 0.581 179.738
587735665840881790 sec 0.000 ± 0.388 10.594 ± 0.198 10.272 10.149 10.985 2.214 1.146 2.700 122.185 0.517 179.330
587736941981466667 pri -0.815 ± 0.388 10.135 ± 0.196 10.246 10.029 11.255 4.546 1.815 14.298 43.800 1.609 179.116
587736941981466667 sec -0.279 ± 0.387 10.090 ± 0.196 10.051 9.605 11.343 4.629 1.559 13.895 113.226 1.009 179.809
587738569246376675 pri 0.761 ± 0.387 11.387 ± 0.199 11.149 10.605 11.427 17.703 3.320 30.346 84.466 3.634 176.859
587738569246376675 sec 0.322 ± 0.389 10.749 ± 0.206 10.990 10.387 11.281 9.771 2.937 13.448 83.263 4.576 175.886
587738569249390718 pri -0.165 ± 0.400 10.674 ± 0.213 10.961 9.621 12.562 11.017 1.828 70.763 82.243 1.952 178.686
587738569249390718 sec -0.381 ± 0.406 10.985 ± 0.207 11.364 9.612 12.498 16.625 1.566 73.154 120.800 0.586 178.838
587739153356095531 pri 0.102 ± 0.387 10.405 ± 0.198 10.870 10.241 11.223 7.173 3.327 19.074 59.038 2.275 177.846
587739153356095531 sec -0.023 ± 0.387 10.128 ± 0.199 10.555 10.308 11.234 3.330 1.654 12.301 109.910 8.427 163.535
587739407868690486 pri 0.327 ± 0.387 10.507 ± 0.202 10.199 9.671 10.847 3.721 2.918 6.236 49.638 5.482 160.447
587739407868690486 sec 0.714 ± 0.387 10.912 ± 0.198 10.369 9.391 10.567 5.169 1.390 6.692 128.969 4.272 175.802
587739505541578866 pri 0.330 ± 0.386 10.650 ± 0.195 10.712 10.192 11.123 4.642 4.501 12.055 159.444 0.498 178.381
587739505541578866 sec 0.140 ± 0.386 10.398 ± 0.195 10.436 9.999 11.175 11.104 5.702 17.768 128.896 1.524 178.056
587739646743412797 pri 0.448 ± 0.387 11.197 ± 0.197 10.987 10.035 12.549 16.491 1.861 49.662 83.363 0.340 179.372
587739646743412797 sec -0.475 ± 0.393 11.012 ± 0.198 10.856 9.837 12.144 6.551 1.595 47.282 114.265 0.328 179.260
587739647284805725 pri -0.005 ± 0.386 10.488 ± 0.195 10.633 10.209 11.452 8.691 5.225 18.275 45.263 1.096 179.498
587739647284805725 sec -0.038 ± 0.386 10.588 ± 0.195 10.821 10.380 11.171 8.198 3.512 13.933 110.188 0.363 179.627
587739707420967061 pri -0.255 ± 0.390 11.313 ± 0.196 11.262 10.470 11.410 8.806 4.148 10.696 51.055 0.300 179.786
587739707420967061 sec -0.240 ± 0.390 11.012 ± 0.198 11.115 10.153 11.568 8.086 1.063 9.452 64.253 0.651 179.389
587739721376202860 pri 1.167 ± 0.386 11.621 ± 0.195 10.750 9.811 10.986 14.163 10.088 18.626 138.654 0.303 179.845
587739721376202860 sec 0.419 ± 0.387 10.675 ± 0.200 10.320 9.487 10.663 9.522 3.978 9.944 72.933 0.744 178.881
587739721900163101 pri 0.518 ± 0.386 11.077 ± 0.195 10.519 10.452 11.267 10.685 5.409 14.506 19.476 0.735 179.641
587739721900163101 sec -0.108 ± 0.388 10.894 ± 0.196 10.743 10.431 11.217 5.858 4.209 9.906 85.375 0.383 179.678
587739810496708646 pri 0.252 ± 0.386 10.462 ± 0.195 10.119 9.819 11.421 9.184 5.756 12.758 67.939 1.411 179.123
587739810496708646 sec -1.097 ± 0.390 9.137 ± 0.205 9.979 9.306 11.281 2.587 1.761 12.826 141.753 0.744 179.099
587739845393580192 pri -0.056 ± 0.387 10.636 ± 0.196 10.714 9.835 10.812 6.597 3.466 8.665 54.604 0.114 179.472
587739845393580192 sec -0.875 ± 0.391 10.344 ± 0.197 10.777 9.852 10.850 4.452 3.405 8.819 96.761 1.436 178.578
587741391565422775 pri 0.540 ± 0.387 11.061 ± 0.198 11.325 9.940 11.339 19.353 3.403 23.954 16.813 0.436 179.493
587741391565422775 sec -0.381 ± 0.393 9.731 ± 0.217 10.551 10.330 11.201 2.848 2.249 9.979 71.923 1.439 179.200
587741532784361481 pri 0.796 ± 0.386 11.084 ± 0.197 10.775 9.340 12.070 9.231 2.966 48.958 30.661 0.481 179.417
587741532784361481 sec 0.093 ± 0.388 11.212 ± 0.196 11.450 9.221 11.569 11.876 1.058 38.397 97.662 1.184 179.505
587741534400217110 pri 0.319 ± 0.387 10.494 ± 0.199 9.983 9.778 11.423 8.136 4.694 16.516 42.937 0.810 179.426
587741534400217110 sec -0.859 ± 0.394 10.494 ± 0.199 10.090 9.310 11.227 3.621 1.807 12.903 111.965 0.611 179.292
587741602030026825 pri 0.179 ± 0.386 10.447 ± 0.195 10.529 9.633 10.645 10.505 5.537 13.466 78.609 0.764 177.616
587741602030026825 sec -0.642 ± 0.388 9.729 ± 0.199 10.271 9.201 10.377 7.027 5.076 12.072 77.726 1.913 178.647
587741722819493915 pri -0.310 ± 0.388 10.929 ± 0.196 11.125 10.699 11.220 8.976 5.085 10.140 107.297 0.738 179.889
587741722819493915 sec 0.067 ± 0.387 10.382 ± 0.199 10.300 10.066 10.625 2.944 1.880 4.701 128.334 0.996 179.319
587741817851674654 pri -0.422 ± 0.391 11.154 ± 0.196 10.751 9.915 10.778 13.780 4.134 13.780 108.392 0.758 179.504
587741817851674654 sec -0.521 ± 0.392 10.986 ± 0.197 10.364 9.900 11.380 7.522 4.195 12.485 147.982 0.946 179.223
587741829658181698 pri 0.370 ± 0.386 10.581 ± 0.197 11.055 9.115 11.409 10.237 1.130 48.995 68.150 0.583 179.406
587741829658181698 sec 0.377 ± 0.386 10.786 ± 0.196 11.175 8.825 11.567 16.684 0.771 38.397 36.383 0.249 179.575
587742010583941189 pri -0.738 ± 0.387 10.575 ± 0.194 10.709 9.916 10.803 12.049 8.157 15.319 50.688 0.490 179.938
587742010583941189 sec -1.017 ± 0.388 9.135 ± 0.200 10.491 9.479 10.655 4.657 2.069 4.896 97.860 0.148 179.311
587742014353702970 pri 0.337 ± 0.387 10.776 ± 0.197 10.164 9.944 11.234 8.079 1.957 16.057 29.527 0.453 179.593
587742014353702970 sec 0.497 ± 0.386 10.706 ± 0.197 10.225 9.602 11.368 5.416 1.624 13.352 58.891 0.713 178.062
587742571610243080 pri 0.061 ± 0.387 10.688 ± 0.198 10.869 9.939 11.427 7.373 3.321 20.305 84.801 0.635 179.264
587742571610243080 sec 0.061 ± 0.387 10.688 ± 0.198 11.089 10.288 11.378 8.222 2.272 13.419 50.209 0.147 179.542
587745402001817662 pri 0.429 ± 0.387 10.896 ± 0.197 11.036 10.395 11.165 7.850 1.900 8.753 43.624 0.906 177.903
587745402001817662 sec 0.120 ± 0.387 10.505 ± 0.200 10.653 10.380 11.099 5.175 1.444 12.888 65.073 0.396 179.345
587746029596311590 pri 0.576 ± 0.387 11.085 ± 0.197 10.686 9.980 10.795 1.563 0.728 1.821 27.369 0.205 179.971
587746029596311590 sec 0.451 ± 0.387 11.334 ± 0.196 10.936 10.008 10.943 1.731 1.095 2.686 65.183 0.276 179.898
588011124116422756 pri 0.561 ± 0.387 10.773 ± 0.199 11.187 9.615 12.559 7.280 6.285 68.755 56.716 0.342 179.223
588011124116422756 sec 1.135 ± 0.386 11.066 ± 0.197 11.146 9.615 12.490 7.585 4.978 75.030 140.369 0.218 179.669
588013383816904792 pri 0.515 ± 0.390 11.026 ± 0.206 11.096 9.642 12.562 2.970 1.806 70.116 44.028 0.450 179.644
588013383816904792 sec 0.845 ± 0.388 11.226 ± 0.203 10.774 9.646 12.492 3.493 1.667 74.655 118.063 0.835 178.987
588017604696408086 pri -0.010 ± 0.387 10.765 ± 0.195 10.844 9.333 10.909 10.761 8.472 10.965 59.550 0.742 178.959
588017604696408086 sec -0.066 ± 0.387 10.077 ± 0.199 10.479 9.006 10.506 5.240 2.342 5.855 86.102 0.450 179.460
588017604696408195 pri -0.362 ± 0.391 10.394 ± 0.202 10.643 9.599 10.774 4.617 4.617 9.824 50.506 0.295 179.574
588017604696408195 sec 0.692 ± 0.386 10.961 ± 0.198 10.397 9.506 10.690 5.769 3.247 8.967 113.301 1.237 179.681
588017702948962343 pri 0.844 ± 0.386 11.183 ± 0.196 12.037 10.071 12.071 6.947 5.724 14.310 55.871 0.703 179.561
588017702948962343 sec 0.352 ± 0.387 10.592 ± 0.200 10.556 9.039 11.047 6.865 5.082 12.704 71.162 0.659 179.888
588017978901528612 pri 0.552 ± 0.386 11.155 ± 0.194 10.670 9.527 11.861 17.238 5.730 21.006 85.655 0.601 179.728
588017978901528612 sec 0.372 ± 0.386 10.541 ± 0.195 10.059 8.902 11.437 4.084 1.767 6.025 108.538 0.750 178.999
588018055130710322 pri 0.349 ± 0.389 10.668 ± 0.206 10.588 10.588 11.112 8.501 4.671 11.677 56.153 1.037 179.847
588018055130710322 sec 0.472 ± 0.388 10.861 ± 0.203 10.612 10.330 10.732 6.955 2.913 7.283 56.679 0.213 179.727
758874299603222717 pri -0.714 ± 0.390 10.734 ± 0.196 10.958 8.961 11.134 4.374 2.333 6.280 151.534 0.312 179.632
758874299603222717 sec -0.121 ± 0.387 10.658 ± 0.196 10.980 8.939 11.115 4.091 2.301 6.747 166.845 0.256 179.385

Arp 148 pri 0.591 ± 0.387 10.773 ± 0.199 9.605 9.549 10.694 10.023 6.899 16.480 135.780 0.122 179.543
Arp 148 sec 0.574 ± 0.387 10.708 ± 0.200 10.016 9.401 10.138 13.305 2.822 13.481 75.288 0.696 179.635

CGCG 436-030 pri 1.092 ± 0.386 11.157 ± 0.197 10.792 9.833 10.792 11.624 7.171 13.300 29.236 0.433 179.190
CGCG 436-030 sec -1.192 ± 0.408 9.297 ± 0.225 10.221 9.737 10.339 13.301 6.187 15.217 85.473 1.577 179.093

Arp 272 pri 0.256 ± 0.387 10.895 ± 0.198 10.354 9.478 10.654 37.913 18.282 40.293 109.740 21.153 163.729
Arp 272 sec -0.911 ± 0.400 9.452 ± 0.220 10.089 9.366 10.357 18.229 7.668 26.378 100.268 10.136 172.553

ESO 77-14 pri 0.914 ± 0.386 11.294 ± 0.197 10.407 9.594 10.747 1.414 0.841 2.316 12.301 0.391 179.883
ESO 77-14 sec 0.586 ± 0.387 10.812 ± 0.201 10.289 9.415 10.560 1.059 0.571 1.887 30.310 0.489 179.852
NGC 5331 pri 0.625 ± 0.387 11.086 ± 0.197 10.555 10.040 10.720 24.367 11.466 25.782 40.877 2.382 177.034
NGC 5331 sec 1.022 ± 0.386 11.369 ± 0.196 10.349 9.835 10.627 13.739 10.045 20.009 125.733 0.885 177.459
NGC 6786 pri 0.841 ± 0.386 11.193 ± 0.196 10.792 9.609 12.562 11.291 4.265 70.324 76.342 0.070 179.898
NGC 6786 sec 0.812 ± 0.386 11.259 ± 0.195 10.405 9.286 12.498 6.755 3.526 74.681 110.068 0.343 179.806

587736523764334706 pri 0.348 ± 0.387 10.893 ± 0.197 10.747 9.641 10.818 17.752 10.129 20.378 139.049 0.984 179.453
587736523764334706 sec -0.107 ± 0.388 10.364 ± 0.201 10.237 9.638 10.813 12.693 5.848 13.601 62.621 1.016 179.347
587747120521216156 pri 0.381 ± 0.390 10.796 ± 0.209 10.702 10.033 10.808 8.834 6.559 21.103 148.919 0.570 179.302
587747120521216156 sec 0.381 ± 0.390 10.796 ± 0.209 10.782 10.669 11.343 12.906 5.127 14.558 80.499 0.612 179.643
588007005230530750 pri -0.787 ± 0.389 10.702 ± 0.195 10.623 9.581 11.116 7.349 4.687 12.031 118.975 0.491 179.299
588007005230530750 sec 0.362 ± 0.386 10.755 ± 0.195 10.149 9.611 11.166 7.749 3.497 20.965 107.140 0.297 179.489
758877153600208945 pri 0.372 ± 0.387 11.244 ± 0.197 10.783 9.108 11.284 13.716 9.749 29.730 58.102 0.106 179.590
758877153600208945 sec -0.676 ± 0.396 10.650 ± 0.201 10.672 8.765 10.940 7.801 4.007 9.898 107.966 0.461 179.694
587739720308818095 pri 0.307 ± 0.389 10.894 ± 0.202 10.740 9.658 12.562 11.066 4.543 67.723 76.106 0.765 179.538
587739720308818095 sec 0.122 ± 0.390 10.634 ± 0.205 10.125 9.133 12.492 6.377 5.282 74.241 31.727 0.064 179.929

Arp 273 pri 0.381 ± 0.387 11.503 ± 0.195 10.846 9.614 12.563 43.043 3.393 71.014 75.498 1.267 179.206
Arp 273 sec 0.447 ± 0.387 10.828 ± 0.197 10.544 9.621 12.499 35.544 1.059 75.158 127.601 1.146 179.709

1237678620102623480 pri -0.931 ± 0.395 9.329 ± 0.215 10.590 10.095 10.594 10.467 5.722 19.803 20.304 0.120 179.988
1237678620102623480 sec -1.848 ± 0.427 9.335 ± 0.215 10.782 10.337 10.987 7.864 3.451 8.628 88.775 0.728 179.153

Arp 244 pri 0.545 ± 0.386 10.985 ± 0.194 10.526 9.627 10.803 13.754 6.795 13.848 32.397 9.225 163.161
Arp 244 sec 0.258 ± 0.386 10.685 ± 0.194 10.647 9.574 10.750 13.404 4.015 15.300 56.944 7.969 173.789
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Table 5.64: Simulation results for each target include the mass ratio, minimum distance, time since
closest approach, orbital eccentricity, and β parameters. The best value, min and max values are
included.

Target Best
MR

Min
Mr

Max
MR

Rmin
(kpc)

Min
Rmin
(kpc)

Max
Rmin
(kpc)

Tmin
(Myr)

Min
Tmin

(Myr)

Max
Tmin

(Myr)
ecc Min

ecc
Max
ecc β Min

β
Max
β

587722984435351614 1.167 0.307 889.801 81.443 0.402 409.274 249.449 0.000 8602.542 3.700 0.001 677.694 0.291 0.001 3920.725
587724234257137777 1.427 0.020 272.820 18.813 0.128 199.207 479.844 0.000 8612.936 0.790 0.001 3080.303 0.499 0.001 4361.565
587726033843585146 0.712 0.147 15.843 8.947 0.105 142.032 77.953 0.000 8657.975 0.442 0.001 168.073 2.937 0.009 7040.448
587727177926508595 0.358 0.018 217.774 15.036 0.190 383.156 169.764 0.000 8656.243 1.579 0.001 838.669 0.732 0.002 2763.580
587727178988388373 1.036 0.372 5.458 17.250 0.102 231.411 122.992 0.000 8657.975 1.628 0.002 400.671 0.801 0.002 12355.246
587727222471131318 1.234 0.185 8.147 16.299 0.207 379.329 502.363 0.000 8628.526 0.991 0.012 2272.374 0.369 0.000 606.179
587728676861051075 1.845 0.076 16.571 1.069 0.057 148.908 67.559 0.000 8635.455 0.640 0.001 464.457 101.600 0.002 31287.255
587729227151704160 0.798 0.074 29.031 1.527 0.075 141.077 65.827 0.000 8628.526 0.657 0.007 483.573 32.806 0.003 14902.455
587731913110650988 0.050 0.050 29.772 18.315 0.285 83.746 242.520 0.000 8614.668 2.533 0.002 841.036 0.228 0.003 496.124
587732136993882121 1.151 0.183 3.646 9.324 0.170 152.956 495.434 0.000 8635.455 1.007 0.004 3181.084 0.675 0.001 833.729
587732772130652231 0.709 0.060 50.696 4.117 0.077 155.099 133.386 0.000 8651.046 0.365 0.002 1180.444 12.037 0.002 10825.800
587733080814583863 0.177 0.004 79.719 8.363 0.112 140.481 102.205 0.000 8652.778 0.218 0.001 176.206 2.548 0.006 6797.398
587734862680752822 5.266 1.578 15.792 20.493 0.188 150.749 247.717 0.000 8657.975 0.375 0.002 309.546 0.885 0.005 3510.090
587735043609329845 1.986 0.021 416.918 6.374 0.047 151.156 131.654 0.000 8657.975 0.155 0.001 931.630 5.021 0.004 47950.387
587735665840881790 4.957 0.314 11.597 4.592 0.138 129.854 131.654 0.000 8652.778 0.119 0.000 118.606 5.899 0.009 3637.425
587736941981466667 1.569 0.177 6.620 12.080 0.140 141.443 3.465 0.000 8595.613 7.365 0.005 244.303 0.257 0.002 2238.622
587738569246376675 1.441 0.382 5.886 14.738 0.648 231.592 289.292 0.000 8654.510 4.378 0.008 182.603 0.683 0.002 337.144
587738569249390718 0.395 0.204 6.945 24.142 0.223 325.138 263.308 0.000 8657.975 0.748 0.001 394.143 0.665 0.002 2593.574
587739153356095531 2.069 0.154 7.558 6.605 0.147 95.170 320.473 0.000 8657.975 0.413 0.001 780.897 3.025 0.002 3912.572
587739407868690486 0.677 0.130 28.202 7.389 0.064 150.308 329.135 0.000 8637.188 0.219 0.001 328.179 2.049 0.002 17007.528
587739505541578866 1.887 0.150 6.748 17.512 0.226 127.950 109.134 0.000 8602.542 6.253 0.002 1065.720 0.261 0.001 2176.819
587739646743412797 1.353 0.167 21.220 6.741 0.203 201.900 420.946 0.000 8657.975 0.400 0.001 732.706 3.651 0.001 2552.681
587739647284805725 0.648 0.146 4.625 62.351 0.231 142.814 119.528 0.000 8656.243 1.491 0.001 325.053 0.078 0.003 1459.349
587739707420967061 1.400 0.103 10.923 2.146 0.111 148.919 155.906 0.000 8656.243 0.523 0.001 151.476 37.757 0.013 8819.703
587739721376202860 2.692 0.143 30.496 68.384 0.098 141.524 100.473 0.000 8649.314 28.310 0.002 668.570 0.017 0.002 8194.417
587739721900163101 0.597 0.174 6.803 15.990 0.081 150.089 429.607 0.000 8657.975 0.702 0.001 198.824 0.655 0.005 12756.872
587739810496708646 1.379 0.599 10.777 14.658 0.213 157.070 162.835 0.000 8652.778 4.699 0.002 5138.944 0.207 0.000 736.442
587739845393580192 0.864 0.097 9.110 4.873 0.137 71.771 214.804 0.000 8642.384 0.636 0.014 680.411 4.460 0.003 3324.229
587741391565422775 5.944 0.088 9.070 21.807 0.245 148.497 256.379 0.000 8657.975 0.580 0.001 304.237 0.713 0.004 1843.127
587741532784361481 0.211 0.019 393.639 21.427 0.069 120.486 278.898 0.000 8652.778 1.784 0.002 804.968 0.649 0.002 8977.519
587741534400217110 0.781 0.415 9.752 17.261 0.085 146.805 325.670 0.000 8656.243 0.824 0.001 1434.159 0.281 0.002 3633.394
587741602030026825 1.809 0.194 27.380 12.595 0.164 91.844 472.915 0.000 6423.324 1.549 0.006 1323.764 0.590 0.001 1759.599
587741722819493915 6.686 1.194 14.136 7.088 0.083 147.802 124.725 0.000 8657.975 0.626 0.000 179.424 2.988 0.004 11209.197
587741817851674654 2.436 0.035 6.708 8.734 0.150 140.689 91.811 0.000 8657.975 2.821 0.014 383.936 1.026 0.002 3378.716
587741829658181698 0.759 0.016 284.456 16.455 0.092 197.674 65.827 0.000 8657.975 1.301 0.000 882.459 0.930 0.002 11681.497
587742010583941189 1.655 0.185 21.114 25.408 0.153 147.430 452.127 0.000 8657.975 0.987 0.001 1136.358 0.292 0.001 2150.949
587742014353702970 0.868 0.136 19.277 11.147 0.122 138.027 329.135 0.000 8538.447 1.806 0.003 2021.211 0.522 0.001 2485.946
587742571610243080 0.602 0.053 8.506 9.236 0.160 230.897 147.244 0.000 8657.975 1.295 0.000 126.375 1.916 0.003 4413.198
587745402001817662 2.413 0.214 6.025 3.621 0.172 137.550 103.937 0.000 8656.243 0.386 0.001 241.766 13.322 0.004 3083.534
587746029596311590 0.563 0.109 6.013 2.169 0.065 148.946 20.787 0.000 8657.975 0.336 0.001 109.481 24.801 0.002 21124.506
588011124116422756 1.098 0.197 5.019 13.540 0.174 275.404 58.898 0.000 8657.975 0.106 0.001 192.612 1.900 0.003 5201.787
588013383816904792 2.099 0.197 4.140 4.953 0.110 263.861 50.236 0.000 8657.975 0.471 0.001 596.985 5.908 0.002 11168.961
588017604696408086 2.322 0.068 77.628 18.567 0.069 146.923 562.994 0.000 8656.243 0.587 0.001 937.365 0.576 0.002 14854.786
588017604696408195 1.761 0.082 18.461 8.824 0.103 132.723 337.796 0.000 8657.975 0.794 0.000 2069.538 1.374 0.001 5754.884
588017702948962343 30.202 0.138 1075.938 4.775 0.223 98.984 174.961 0.000 8637.188 0.341 0.000 171.560 16.792 0.007 4792.330
588017978901528612 4.089 0.037 271.690 4.606 0.078 133.241 230.394 0.000 8657.975 0.054 0.004 2237.097 4.418 0.001 10030.263
588018055130710322 0.945 0.910 6.015 13.918 0.067 143.050 452.127 0.000 8654.510 0.604 0.000 345.020 0.788 0.003 19540.015
758874299603222717 0.950 0.007 149.897 5.867 0.063 149.720 58.898 0.000 8657.975 0.050 0.000 171.140 5.684 0.002 21353.400

Arp 148 0.388 0.274 19.651 8.497 0.123 146.496 38.110 0.000 8495.140 12.908 0.001 597.817 0.239 0.001 3202.354
CGCG 436-030 3.722 0.323 11.068 19.466 0.134 95.978 263.308 0.000 8647.581 0.977 0.011 835.493 0.426 0.002 2848.546

Arp 272 1.838 0.140 18.966 8.654 0.180 151.840 363.780 0.000 8543.644 0.810 0.003 913.581 1.002 0.001 1273.594
ESO 77-14 1.311 0.112 21.132 3.018 0.026 149.208 93.544 0.000 8656.243 0.782 0.002 80.297 15.930 0.002 51774.985
NGC 5331 1.608 0.259 7.622 7.681 0.220 173.170 119.528 0.000 8590.416 1.998 0.010 1432.837 1.202 0.001 971.091
NGC 6786 2.438 0.039 25.521 13.392 0.064 346.368 511.025 0.000 8657.975 1.108 0.001 980.623 0.763 0.003 18724.424

587736523764334706 3.239 0.067 14.916 59.210 0.312 142.069 0.000 0.000 8638.920 16.797 0.007 658.300 0.025 0.003 773.381
587747120521216156 0.833 0.049 1.376 2.776 0.180 146.276 102.205 0.000 8657.975 0.233 0.003 82.315 14.192 0.004 2833.376
588007005230530750 2.979 0.063 13.720 12.117 0.153 138.341 230.394 0.000 8657.975 0.694 0.000 1996.395 0.792 0.001 2912.730
758877153600208945 1.289 0.016 319.669 19.671 0.045 212.174 271.969 0.000 8652.778 1.181 0.001 1842.282 0.468 0.001 47999.308
587739720308818095 4.121 0.149 43.927 6.002 0.187 328.818 285.828 0.000 8657.975 0.457 0.001 1183.856 2.704 0.001 1910.213

Arp 273 2.004 0.040 23.218 37.833 0.221 408.622 284.095 0.000 8652.778 4.036 0.007 1215.151 0.114 0.001 1590.700
1237678620102623480 0.643 0.128 1.807 25.472 0.262 148.960 159.370 0.000 8652.778 2.523 0.005 1369.829 0.240 0.001 1213.433

Arp 244 0.758 0.076 16.571 1.572 0.063 148.908 55.433 0.000 2929.299 0.493 0.001 464.457 36.021 0.002 18465.811
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Table 5.65: The mean, median, min, and max remaining fraction for the twelve simulation
parameters.

Name Mean RF Median RF Best RF Worst RF

rz 0.12 0.09 0.0 0.54
vx 0.04 0.02 0.003 0.36
vy 0.05 0.02 0.005 0.54
vz 0.06 0.03 0.0 0.44
m1 0.33 0.30 0.0007 0.94
m2 0.32 0.28 0.0 0.87
r1 0.29 0.22 0.01 0.97
r2 0.31 0.22 0.007 0.97
φ1 0.29 0.17 0.004 0.97
φ2 0.37 0.27 0.0 0.97
θ1 0.53 0.65 0.01 0.95
θ2 0.56 0.62 0.0 0.97
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Figure 5.278: The distribution of simulation parameters including mass, Tmin, projected
separation, Rmin, β, ecc, inc, and ecc vs. inc. The bottom right plot shows that the highest
eccentricities are nearly perpendicular to the plane of the sky.
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Figure 5.279: The galaxy pairs with the lowest β (top) and highest β bottom.
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Chapter 6: Comparing Simulation Values to Observations

In this Chapter we present comparisons between simulation values and physical quantities

derived from photometric observations of the galaxies.

6.1 Stellar Mass

The WISE photometry provides us with estimates for stellar mass and star formation rate

for each of our galaxies. We begin comparing our simulation values to observations with

the galaxy masses. For the best-fit simulation, we have the final mass for the primary and

secondary galaxies. We convert those values to physical units and plot them along with

the photometric masses for each galaxy. Photometric uncertainties are due largely to the

uncertainty in the linear regression between W1 magnitude and mass. The uncertainty

for simulation values was estimated by sampling the values from the set of “top” fitness

states 10000 times in accordance to their fitness values from the two finale activities. The

variance in the sampled population is calculated in order to estimate the one σ errors for

each simulation, and derived orbit, parameter.

Figure 6.1 shows that the two different approaches to estimating mass give similar results

to within ∼ 0.5 dex. We have separated the SDSS galaxies, that had their initial simulation

masses estimated with ugriz colors, from the HST galaxies, that had their masses estimated

from a simple mass-to-light ratio from NED magnitude values.

The agreement for SDSS and HST galaxies seems to be of a similar quality. The simula-

tion masses for HST galaxies my be slightly underestimated compared to the SDSS galaxies.

Figure 6.1 confirms that our best-fit simulations converged to realistic values for the galaxy

masses even though they were randomly selected from a set of values that varied over two
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Figure 6.1: Photometric Mass vs. Simulation Mass

orders of magnitude. The photometric mass is due to the stellar population. The simula-

tion mass is due to the total dynamical mass of each galaxy. This mass includes the dark

matter halo. The agreement between the stellar population mass and our dynamical mass

indicates that the simulation mass is probably too low. We would expect the total mass

to be higher than just the stellar mass. This is another reason to consider incorporating

observed velocity information into our pipeline to help constrain the dark matter mass in

addition to the stellar mass.

The relationship between photometrically derived mass ratio and simulation mass ratio is

shown in Figure 6.2. The correlation between photometric and simulation mass ratio seems

consistent from mass rations close to 1 up to 10. Most of the outliers have correspondingly

large uncertainties in their simulation values. This overall agreement between the two

values for mass ratio are consistent with the previous agreement between simulation mass

and photometric mass.
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Figure 6.2: Photometric Mass Ratio vs. Simulation Mass Ratio

6.2 Star Formation Rate

We did not perform the density compression measurements from Wallin et al. (1990) for our

restricted three-body models. We were also not able to advance the pipeline far enough to

conduct a large number of full n-body simulations. So we do not have any simulation-based

estimates for the star formation rate. However, we can attempt to verify an expected rela-

tionship between the photometrically observed star formation rate and time since the star

formation was triggered. As an estimate of the time since starburst we select our simula-

tion time since closest approach. Bruzual A. and Charlot (1993) propose an exponentially

decreasing star formation rate with time. We adopt an expression of the same form as

Kennicutt (1998) for our star formation rate history in Equation 6.1.

R(t) = R0 exp− t
τ

(6.1)
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We convert the time since closest approach, tmin, from simulation units to years and

then compute the log value. We then plot the log of SFR as computed by our relationship

with the W3 magnitude. The SFR as a function of time for all galaxies1 is shown in Figure

6.3 along with error estimates. The exponential decay we expect from Bruzual A. and

Charlot (1993) should appear as a decreasing linear trend on the log-log scale.

Figure 6.3: Star formation rate vs. tmin for all galaxies.

Any claim that Figure 6.3 presents an obvious trend between SFR and tmin is likely

to be met with some skepticism. One possible refinement is to normalize the SFR so that

it is per unit mass of the host galaxy. Figure 6.4 shows this normalized SFR. Again, no

definitive relationship is present.

We applied to additional refinements. First we separated the galaxies into separate pop-

ulations for the primary and secondary galaxies. WIthin each sub-population, we divided

1The values for SDSS 587736523764334706 were excluded because its tmin was so close to zero it stretches
the log scale excessively to -18.
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Figure 6.4: Normalized star formation rate vs. tmin for all galaxies.

the galaxies into three groups based upon mass ratio. The first group was for nearly equal

masses with a mass ratio less than or equal to 1.5. The next group covered the mass ratios

less than or equal to 3, the traditional limit for major mergers. The final group was for the

minor mergers with mass ration greater than 3. Figure 6.5 shows the SFR and normalized

SFR for the primary galaxies. Figure 6.6 shows the same values for the secondary galaxies.

In general the SFRs for the secondary galaxies appear lower than for the primaries. This

seems to hold even for the normalized SFR. As one last refinement, we plot the SFR for the

primary galaxies but exclude the values for mass rations less than or equal to 1.5. In Figure

6.7 we see a recognizable decline in SFR as tmin increases. We have plotted an exponential

decay for comparison. The slope of the line was determined by simply linear regression (no

weights). The characteristic timescale τ for the decay expression that corresponds to the

line is 0.81 Gyr.
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6.2.1 Projected Separation Distance

When astronomers observe pairs of galaxies, especially mergers, one useful quantity that is

possible to measure is the projected separation distance. This is simply the distance in the

plane of the sky separating the two galaxies. Because redshift information is often lacking,

or lacking sufficient precision and accuracy, it is usually not possible to determine the full

three-dimensonal distance between the two galaxies. Additionally, most populations of pairs

are not modeled with simulations, so dynamical values are not available. This leaves the

two-dimensional projected separation distance as an estimate of how close the galaxies are

at present epoch as well as a proxy for time since closest approach. Many papers in the

literature attempt to study the star formation rates of a population of galaxy pairs as a

function of this distance. One recent example is Scudder et al. (2012) where they present

evidence for decreasing star formation rate with increasing separation distance.

We present the projected separation distance and time since closest approach in the

Figure 6.8. There does appear to be a correlation. This suggests that rsep may be a good

proxy for tmin.

Figure 6.9 shows the normalized star formation rate as a function of projected separation

distance, rsep. There does not appear to be any strong relationship. We would expect to

see a similar trend of decreasing SFR for increasing rsep similar to Scudder et al. (2012),

but that is not the case. If we adopt a binning approach similar to those authors, we also do

not see a similar relationship. In contrast to the expected decreasing relationship, Figure

6.10 seems to show an increasing relationship. The population size for each bin is small.

The bin near 70 kpc only has two galaxies. Such a small population is not likely to yield

as useful of a result as the that displayed in Figure 3 of Scudder et al. (2012).
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Figure 6.5: SFR for primary galaxies divided by mass ratio.
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Figure 6.6: SFR for secondary galaxies populations divided by mass ratio.
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Figure 6.7: SFR for primary galaxies divided by mass ratio.
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Figure 6.8: Projected separation distance as a function of Tmin.
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Figure 6.9: Normalized star formation rate as a function of projected separation distance.
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Figure 6.10: Normalized star formation rate as a function of binned projected separation
distance.
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Chapter 7: Conclusion

The prototype pipeline was able to perform simulations for over 300 million samples of

parameter space for 62 pairs of interacting galaxies. The pipeline was able to present over 3

million of those parameter sets to Citizen Scientist volunteers who selected 66000 of them for

followup evaluation. Those same Citizen Scientists were able to perform 1 million Merger

Wars competitions to assign fitness scores to the selected set of simulations and rank them

accordingly. The final result is a best-fit, restricted three-body dynamical model of each of

our 62 target interacting pairs. In the absence of a uniform observationally-derived data

for all of our systems, we developed useful expressions for mass and star formation rate

based on data from the WISE survey. Finally we have produced a training set of 66000

human-evaluated simulation results. These images have already proven useful as a training

set for machine learning and computer vision algorithms.

Our dynamical mass values and mass ratios were a reasonable match to their photometrically-

derived counterparts. We were able to produce a exponential decline in star formation rate

with time when we exclude interacting galaxies with mass ratios very close to one.

7.1 The Pipeline for Constructing Models

The pipeline as presented in Figure 1.2 was implemented with the exception of the Full N-

Body sub processes. Those processes were prototyped during the conduct of this research,

however, they are now the focus of a separate dissertation which is and indicator of the

level of work expected to be able to perform those tasks. The comparison to observations is

somewhat more limited than originally planned. Even relatively famous and close galaxies

such as those in the Arp catalog do not have a homogeneous set of observed quantities

available. The most glaring omission is the lack of consistent measurement of the redshifts
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to these galaxies. As a step towards providing uniform measurements, we developed a tool

for performing photometry of infrared imagery from WISE. We also developed relationships

for stellar mass and star formation rate. This provided us the consistent set of observational

data we needed in the comparison step of the pipeline.

Applying experience gained by running a website for thousands of Citizen Scientists, we

were able to refactor our software tools into a pair of applications that now run indepen-

dently of Merger Zoo. These applications replace the previous version of Prepare Target

and Merger Zoo processes in the overall pipeline. For interacting pairs similar to those

from the Arp catalog processed by Merger Zoo, the new tool allows a researcher to perform

and review several thousand simulations in under an hour. The efficiency of the Merger

Wars algorithm and the meaningful constraints we place on the 14 dimensional simulation

parameter space allow us to rapidly model interacting galaxies. The new process could

potentially duplicate the converge of simulation parameters for a single system in only a

few hours of work by a single researcher. The new pipeline is more efficient than Merger

Zoo. The Evaluate task has been eliminated, as well as the Prepare Targets for Merger

Wars task. This tool will be used in the future to model even more of the Darg catalog of

mergers identified by Galaxy Zoo.

There are exceptions to the reasons for such optimism. Consider the possibility of the

existence of systems that simply cannot be modeled realistically with restricted three-body

approximations or where the morphology may not uniquely constrain the orbit trajectory.

Barnes and Hibbard (2009) stresses the importance of incorporating velocity information,

such as derived from HI observations, to constrain model results. They discuss the history

of full n-body models for NGC 7252 where initially the best-fit orbit was thought to be

retrograde (Borne and Richstone, 1991), but as improved velocity measurements were made,

the best-fit orbit was changed to be a prograde orbit.

We provided several methods for visualizing convergence of simulation and orbit pa-

rameters. We found a strong correlation between the skewness of the fitness distribution

of simulations and how well the best fit simulation matched the target image. We believe
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the large sample and convergence information generated by our population will provide

guidance to researchers studying such difficult systems to model.

7.2 The Merger Zoo Catalog of Interacting Galaxy Models

We have created a set of 62, best-fit, dynamical models using a restricted three-body code.

The level of convergence for each system varies somewhat and is evaluated visually. The

sheer number of simulations reviewed by Citizen Scientists, over 50000, is orders of magni-

tude more than viewed by current researches simulating individual systems. It is important

to note, that current researchers are using the more sophisticated and computationally in-

tensive full n-body codes. The hundred or so simulation runs they review represented an

increased level of realism over the restricted three-body simulations run here. However,

by reviewing so few simulations, they are unable to estimate the uniqueness of their final

models. The restricted three-body portion of our multi-model process is currently the best

mechanism available for exploring a wide volume of parameter space in order to achieve an

estimate of uncertainty in final simulation parameters.

Our catalog also includes measurements of stellar mass and star formation rate derived

from WISE photometry. Our dynamical masses for the galaxies correspond well with those

derived from WISE data. The mass ratios were comparable as well. When we examine

the star formation rates for the primary galaxies and exclude those pairs with nearly equal

masses, we see an obvious trend of exponential rate of decay of star formation with time.

The characteristic decay timescale for our population was 0.81 Gyr.

7.2.1 Machine Learning Training Set

The 66000 images with fitness score can be used by other researchers to develop a better

automated fitness function. Our initial attempts at performing computer vision analysis

on this data set has identified Zernike moments as potentially useful image characteristics.

We will make the data set available to the public in accordance with applicable Zooniverse

data release policies. We expect to be able to make use of these images to produce an
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automated fitness function that will allow genetic algorithms to compete with our current

human-driven pipeline.
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Appendix A: A Method for Photometry of Irregular Galaxies

A.1 Introduction

Large Sky Surveys such as the Sloan Digital Sky Survey (SDSS) and Wide-field Infrared

Survey Explore (WISE) (Wright et al., 2010) provide imagery and automated photometric

measurements of millions of galaxies. However, the automated routines are often optimized

for detection and processing of point sources like stars or galaxies with sizes on the order of

a few arc seconds (Lupton et al., 2001) (Cutri et al., 2012). Additionally, where these au-

tomated routines can accommodate resolved galaxies, they usually do not have algorithms

to address highly irregular shapes. Often galaxies are modelled by an exponential or de

Vacoulers profile. The deviance from these profiles are an indication that a galaxy is ir-

regular, but does not measure its actual photometric properties. While it is correct to say

that these automated pipelines are not optimized for close, irregular galaxies, they are still

quite successful in extracting photometric properties of many millions of objects.

This appendix presents the details of the photometric procedure developed to measure

images of interacting galaxies. It presents the background subtraction process, flux mea-

surement, and flux apportionment methods used to assign flux to both galaxies in each pair.

This method was initially developed to work with SDSS imagery, but was extended to work

with WISE imagery.

A.2 Obtaining Imagery

Image data suitable for photometric measurements is provided by SDSS and WISE. The

SDSS imagery is available from their Data Archive Server (DAS). This web interface pro-

vides access to FITS files for specific frames. A frame refers to a particular portion of

the sky observed by the telescope. The DAS provides fpC files that are bias subtracted,

flat fielded, and with bad pixels replaced by interpolated values. These are referred to as

corrected frames.
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The WISE images are available from the NASA/IPAC Infrared Science archive. The

WISE atlas images are intensity images formed by coadding multiple images of the same

portion of the sky. In addition to the intensity image, the service also provides uncertainty

maps for each each image which represent the 1 σ noise for each pixel in the coadded image.

This noise includes known detector noise and the Poisson noise.

Both surveys provide online forms for performing bulk query and download of images

either by frame identifiers or source positions. The images are downloaded as FITS files

and are registered to the appropriate location in the sky allowing for astrometry in addition

to photometry.

A.3 Background Subtraction

Flux in an image comes from both the sources of interest and the more diffuse sky back-

ground. The flux from the sky can be greater than some of the sources of interest, or at

least brighter than the low surface brightness regions of a source. In order to properly

measure the flux from sources, the background flux level must be estimated and subtracted

from the images. To develop the approach presented here, three separate methods for

improving upon the background estimation and deblending resulting from the automated

pipeline were reviewed. They were West et al. (2010), Simard et al. (2011), and Blanton

et al. (2011). In West et al. (2010), the authors were attempting to produce more reliable

photometry for a sample of about 200 HI-selected galaxies. The authors in Simard et al.

(2011) were attempting to fit combined bulge-disk models to 1.2 million galaxies. The last

paper (Blanton et al., 2011) was attempting to provide improved background estimates for

all photometric frames in SDSS. They tested their method on SDSS DR7 and have had

their results incorporated into the imaging servers supporting SDSS DR8.

A.3.1 Source Identification

The background subtraction process begins by first identifying the sources in an image. The

pixels containing flux from the sources are masked in the image. The unmasked pixels will
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then contain only background flux. Sources can be identified through pre-existing catalogs

or by measuring the image directly. For source identification, we use the SExtractor tool

(Bertin and Arnouts, 1996). The automated tool works by applying a series of brightness

thresholds to the image and then scanning for regions of 8 connected pixels. These regions

can be combined at different thresholds to identify all of the source pixels. The tool also in-

cludes the ability to deblend the flux from multiple sources that have been grouped together.

For the purposes of generating a source mask, the deblending feature is not needed.

A.3.2 Background Estimation

In West et al. (2010) the authors t a tilted plane to the background sky to estimate its

value within the masked regions. Tilted plane is another name for a two-dimensional, linear

regresion. In Simard et al. (2011) they use the combined galaxy and background tting

routines within the GIM2D software package. Blanton et al. (2011) t a spline model to the

background. The titled plane method was estimated by West et al. (2010) to introduce

on the order of only 0.01 magnitudes compared to higher order models such as a fourth

order polynomial t. It is adopted here for use with WISE frames. The titled plane values

are calculated over the entire frame and substracted from the unmasked science image.

Fitting the plane involves performing the two-dimensional regression required to estimate

α, β1, and β2 as described in Equation A.1. The coordinate X1 corresponds to the pixel x

coordinate and X2 corresponds to the y coordinate.

Y = α+ β1 ×X1 + β2 ×X2 (A.1)

We apply the source identification and background estimation to the WISE imager for

Arp 290 shown in the thumbnail in Figure A.1. This system shows two irregular disk

galaxies that are well separated.

For the W1 imagery we used the SExtractor tool to identify the sources in the image.

The tool also provides a FITS file that indicates which pixels in the image belong to sources.

This source mask is padded by 4 pixels around the outside of all sources by convolving a 4 x
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Figure A.1: SDSS color thumbnail for Arp 290.

4 pixel kernel with the mask. This padding acts to associate low surface brightness features

with the sources and keep those pixels out of the background estimation. The mask is then

inverted to represent the known background pixels. Figure A.2 shows the sources identified

by SExtractor with the source centers highlighted in pick and the background pixels set to

white. Figure A.3 shows this same mask after padding and inversion. The background is

estimated from the pixels in this image.

Figure A.2: Arp 290 source pixels with
background set to white.

Figure A.3: Arp 290 ackground mask
with 4 pixel padding.

The same mask is used to obtain background pixels in all four bands, W1, W2, W3,

and W4. The results of the background estimation process are shown in Table A.1. The

background is modeled as a fitted plane. For convenience, we have provided the estimated

mean and standard deviation of the background flux before and after the tilted plane was
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subtracted. The final column shows the relative difference between the σs before and after

subtraction. In all cases, the tilted plane mode reduced the size of σ, and in the best case,

W2, reduced it by 28%. This is better than would result from simply subtracting the mean

or median background flux. The resulting mean background flux in all four bands is very

close to zero.

Table A.1: Background µ and σ before and after background subtraction.

Band µpre σpre µpost σpost Rel. ∆σ

W1 4.44 0.0739 -4.12E-16 0.0721 0.0249
W2 11.4 0.0694 -8.52E-17 0.0691 0.00463
W3 812 0.417 8.58E-14 0.369 0.113
W4 268 0.0476 -2.85E-14 0.0342 0.282

A.4 Measuring Flux in an Aperture

Typically apertures are circles or ellipses. To measure flux, simply add up all of the pixels

inside of the aperture. Some amount of attention can be paid to pixels that are on the

boundary. For our apertures, pixels on the aperture boundary are included in the flux

measurement.

For our irregular galaxies we use a custom tool written in Java to do the processing. All

four bands, W1, W2, W3, and W4 are downloaded to the same directory. The background

estimation and subtraction process is applied. With the background subtracted, a contour

finding algorithm is applied. The user clicks on the center of the primary galaxy and then

the secondary galaxy to indicate where they are. The user is allowed to have an additional

constant amount subtracted from the image. This is equivalent to raising the floor of the

image in a thresholding operation. Whenever the background is adjusted, the contour

finding algorithm is reapplied. After first identifying the galaxy centers, the software will

help to estimate which threshold level is needed in order to draw separate contours around

each galaxy. If the two galaxies are seperated into distinct contours at the lowest level,

the sum of all pixels inside each contour is computed and stored for later use. If the two
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galaxies are in the same contour, the total flux is computed. Then, using the relative pixel

area for the separated contour level is used to assign a proportional amount of the total

contour flux to each galaxy.

Figure A.4: Custom WISE photometry tool measuring Arp 290.

Figure A.4 shows the custom photometry tool measuring Arp 290. The yellow circles

represent stars that we want to mask. Their flux is replaced with an estimate of the local

background. That value is estimated by calculating the median flux value between the two

concentric circles. The tool also shows the sample estimates. The for histograms on the

right side are, from top to bottom the flux values in the same row as the primary source,

the flux from the column of the primary, the flux values for the row of the secondary,

the flux values for the column of the secondary, and the flux values on the straight line

joining the two galaxies. For galaxies that are well separated, the flux drops down to the

background level on this final plot. An example of what this looks like when the two galaxies

have overlapping flux see Figure A.5 below. That figure shows the WISE photometry tool

measuring UGC 11751. The line plot does not return all the way to the background level.

The proportional assignment of flux will be necessary in this case.

After masks have been applied, primary and secondary identified, and minimal threshold

necessary to separate the galaxies is identified, the software will integrate the total flux for

each galaxy and convert to magnitudes. The results are written to a directory where the
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Figure A.5: Custom WISE photometry tool measuring UGC 11751.

WISE images are stored. Each galaxy pair has its imagery in a separate directory with

the imagery for all four bands together. The same background masks, source masks, and

galaxy contour apertures are used for each WISE band.

A.5 Radial Profile

With the total integrated flux computed for each galaxy and the center of each galaxy

located in pixel coordinates, the software identifies the brightest level in each galaxy. It

then attempts to set a number of distinct threshold levels by raising the floor of the image

repeatedly until the contour finder detects a smaller contour. The flux inside the next

contour is measured. The process is repeated until the floor reaches the brightest level.

The resulting set of contours each have their own fluxes and areas. These apertures

form the first step in a differential light measurement. In an attempt to compute a radial

profile similar to a set of nested elliptical apertures, the software computes the square-root

of the area of each contour to estimate an effective radius. The differential light curve can

then be produced. Analytic radial intensity profiles have been know for sometime such as

the exponential of de Vaucouleurs R1/4 law. Then general form of these laws is known as a

Sersic profile.
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I(R) = I010−bn[(R/Re)
1/n−1] (A.2)

The parameter bn is not a free parameter it depends on the others and is selected in

such a way that half of the total light comes from R < Re. The analytic expression for bn

is from Ciotti and Bertin (1999) is used. That leaves three parameters to fit, I0, Re, and n.

The exponent n is closely linked to morphology of galaxies. Values close to 1 are associated

with spiral galaxies. Values close to 4 are associated with elliptical galaxies. We used the

Levenberg-Marquardt nonlinear least-squares method to fit the Sersic profiles (Lampton,

1997).

It is possible to fit multiple Sersic profiles simultaneously for a galaxy, such as in the

case of an elliptical bulge embedded in a spiral disk. In Figures A.6 and A.7 we show

the intensity profile as a function of effective radius for W1 for the primary and secondary

galaxies of Arp 290. The effective radius is computed by simply taking the square root of

the area of a given flux contour.

Figure A.6: Radial profile and model fits
for W1 of the Arp 290 primary galaxy.

Figure A.7: Radial profile and model fits
for W1 of the Arp 290 secondary galaxy.

The two component fit is a slightly better match for the primary, but adds nothing to

the fit for the secondary. The single Sersic profile for the primary had an exponent of 1.00

and an Re of 10.7”. The exponent for the secondary was 0.92 and Re was 9.17”. These

galaxies have brightness profiles similar to spiral galaxies.
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A.5.1 Multiple Bands

The Sersic profile can be fit for each band, W1, W2, W3, and W4. Table A.2 presents the

exponent and Re for the primary and secondary galaxies of Arp 290.

Table A.2: Sersic profile parameters for Arp 290 primary and secondary galaxies.

Primary Secondary

Band Re n Re n

W1 10.7 1.00 9.17 0.91
W2 11.3 0.95 8.99 0.82
W3 166 1.70 13.0 0.80
W4 46.5 0.85 63.6 1.14

Similar results were obtained for each of the 62 target galaxies. These values will be

used in followup photometric analysis of the targets. Not only for the traditional spiral or

elliptical dichotomy but also to examine cause of the different values for n and Re for some

spectral bands.
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Appendix B: The Effectiveness of the Merger Wars

Algorithm

B.1 Abstract from Submitted Draft

The method of pairwise comparisons for ranking is often applied to relatively small pop-

ulations, n = 100 or even n = 10. Many methods of finding optimal rankings involve

performing comparisons between all pairs resulting in n(n − 1)/2 comparison operations.

For accurate comparison functions, traditional fast sorting methods can produce a total

rank order of the population in O(n log n) comparison operations. There has been signifi-

cant study of methods for comparing numbers or items with values that contain uncertainty.

These methods are often called fuzzy sorting. However, the performance of sorting methods

when used with errors or uncertainties in the comparison function, rather than the number

itself, does not appear to have been studied extensively. This work presents the results of

experimental simulations to determine the effect on overall rank accuracy of the error rate

in the comparison function used for sorting. For comparison, the performance of an updated

method for ranking by scoring is also presented. For large error rates in the comparison

functions, the ranking by scoring method produces more accurate results than sorting and

preserves O(n log n) performance. This is an improvement over traditional pairwise ranking

algorithms.

B.2 Introduction

The study of pairwise comparisons to produce ranked sets began at least as early as the

18th century with the work of the Marquis de Condorcet. Thurstone (1927) demonstrated

that it was possible to recover a psychological scale to quantify items that have undergone

a series of pairwise comparisons. Pairwise comparison methods are used to rank items such

as chess players or competing hypotheses. In the field of machine learning, methods exist
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to evaluate the results of pairwise comparisons in order to learn preferences. The results of

these algorithms can then be used to rank objects directly or to rank candidate labels in

classification problems.

When ranking objects according to some criteria, be it something physical like length

or abstract like quality, two obvious approaches are evaluation and comparison. Under an

evaluation approach, each item is evaluated based on the criteria and assigned a score. The

scores are then used as keys to sort the items. The second approach is to compare pairs of

items as if they were in a competition. Typical comparison methods involve performing all

possible combinations of pairs, n(n− 1)/2.

In preference learning methods, usually the preferences are gathered and then an error

minimization technique is applied to this set of comparison results (sometimes referred to

as a preference matrix) to account for potential inconsistencies including the violation of

transitivity. These inconsistencies, which are not necessarily errors, can arise for a multitude

of reasons: differing opinions between evaluators, changing one’s mind, fatigue, or an actual

circular paradox where A > B > C > A. The preference matrix can then be used to induce

a utility function, f, that can be used to determine if f(a) > f(b) (Hüllermeier et al., 2008).

In this paper, we propose two schedules of pairwise comparisons that can avoid having to

populate the entire preference matrix. The first schedule follows from Silverstein and Farrell

(2001) where it was observed that a list sorting algorithm performs comparisons between

pairs in an efficient way. The other schedule of comparisons proposed here is a ranking by

scoring method (Pyle, 1999). Rather than using round-robin or purely random selection of

pairs, the proposed method groups items into small sets to be evaluated tournament style.

We evaluate the performance of each method type in the presence of several different

types and levels of errors. Each of these schedules can produce accurate ranks of the entire

set of items with only O(n log n) comparisons.

392



B.2.1 Motivation

In our work with Galaxy Zoo - Mergers (Wallin et al., 2010), a Zooniverse Project, we are

tasked with determining which of the thousands of simulations submitted by volunteers

best recreates the features seen in an image of interacting galaxies. At the current time

algorithms for comparing simulations results to actual images only provide accurate results

over a limited range. Such techniques can easily determine a poor match and an exact

match, however, they often fail to determine the correct relative accuracy of two good, but

not perfect, simulation results. For now, humans are better able to assess quality in those

situations.

To harness the innate image processing abilities of our volunteers, we created an activity

known as Merger Wars. Volunteers are presented with a series of pairwise comparisons

where they are asked to determine which of the two simulation results is a better match

to the target image. In the short term, the volunteers are able to filter the submitted

simulations so that we can focus follow-up, high-resoltion simulations on the small fraction

of high-fitness results. Our long term objective is to produce a utility or fitness function

that covers the entire range of preferences learned from our volunteers. The ranking by

scoring method presented here follows from what was implemented to satisfy a number

of other constraints related to operating an online web site. Such constraints prevented

us from easily implementing a traditional sorting approach such as Silverstein and Farrell

(2001). The tournament method was our solution for operating under these constraints.

We present our evaluation of the performance of both types of methods.

B.3 Methods

For sorting, three algorithms with O(n log n) performance were considered: merge sort,

quick sort, and tree sort. Two algorithms with O(n2) were considered: bubble sort and

insertion sort. For an overview of sorting in general, and these algorithms in particular,

consult Knuth (1973). The ranking by scoring method was used with a simple win fraction
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score and also with an Elo score (Elo, 1978). The win fraction score is obtained by taking the

number of times an item “wins” a comparison and dividing it by the number of comparisons

in which that item participated. The Elo score for two opponents in a competition makes

use of their current rating or score to calculate the expected outcome of a match between

the two. The difference between the actual outcome and the expected outcome is used to

update the players’ ratings or scores. The expected Elo score for Player 1 and Player 2 is

given by

E1 =
1

1 + 10(R2−R1)/400
, (B.1)

and

E2 =
1

1 + 10(R1−R2)/400
. (B.2)

After a match, or comparison, the score for each player is calculated as 0 for a loss, 1 for

a win, and 0.5 for a tie (which is not considered in this paper). The update to each player’s

rating is then calculated by R′1 = R1 + K(S1 − E1) and R′2 = R2 + K(S2 − E2). Here we

used K = 30 and seeded all items with an initial score of 200.

The ranking by scoring method (RSM) and RSM with ELO (RSM-ELO) requires that

the number of comparisons, number of wins, and score for each item be stored. For RSM-

ELO, the ELO formula is used to update the score for both items following each comparison.

Some implementations apply the ELO formula to batch results following a tournament. We

did not consider that variation in the present work. For the basic RSM implementation the

score is updated after each comparison simply by incrementing the number of comparisons,

number of wins, and calculating the win fraction. The scheduling for RSM and RSM-ELO

is done as follows:

1. Select 8 items to compete in a tournament from the set of items with the fewest total

comparisons
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2. Perform 4 pairwise comparisons for Round 1

3. Using the Round 1 winners, perform 2 pairwise comparisons for Round 2

4. Using the Round 2 winners, perform a final pairwise comparison for Round 3

This very simple tournament separates the 8 items into 4 groups: Round 1 losers, Round

1 winners, Round 2 winners, and a Round 3 winner. Generally, low ranking items are elimi-

nated in the first round and high ranking items advance to the final round. This tournament

is single elimination, or knockout, but because it is small, the impact of erroneous compar-

isons is minimized. For further protection against errors, the selection in the first step is

used to ensure a uniform number of comparisons for all items in the set.

For a first pass through the population of items, they are randomly selected 8 at a time

from the set of items with no comparisons. After all items have competed in at least one

tournament, some will have 1 comparison, some 2, and some 3. The next pass through the

population will select random sets of 8 items with only 1 comparison. These are the Round 1

losers from the first pass. The next pass will take random sets of 8 from the population with

only 2 comparisons, etc. As the method progresses, the items are competed in multiple short

tournaments. In each tournament, the winners gain more wins and comparisons within a

tournament, and the losers will be re-competed sooner on the next large pass.

B.3.1 Comparison Function

The comparison symbols for greater than and less than can be combined into a comparison

function:

c(a, b) =


−1, a < b

1, a > b

(B.3)

A complete comparison function would include a case where a=b returns 0. That case

is not considered here. We constructed an erroneous comparison function by selecting a
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random number, x, from a uniform distribution between 0 and 1. For random errors our

comparison function looked like

er(a, b, x,Accuracy) =


c(a, b), x ≤ Accuracy

−c(a, b), x > Accuracy

(B.4)

We used several different accuracy levels: 1, 0.99, 0.95, 0.9, 0.8, 0.75, 0.7, 0.6, and 0.5.

In addition to random errors, we considered the impact of errors arising from the fact that

people are less able to discriminate between two nearly equal choices than they are for two

choices that are very different. We called this type of error a Weber error after Weber’s

Law. The form of Weber’s Law we used states that unless the relative difference between

two objects is greater than a certain threshold, the person making the comparison will be

unable to distinguish between the two choices. We require the relative distance between

the two items to be greater than 0.25. Less than that threshold and either value of the

comparison function is returned with equal likelihood.

ew(a, b) =


c(a, b),

a− b
a

> 0.25

er(a, b, x, 0.5),
a− b
a
≤ 0.25

(B.5)

B.3.2 Simulation Method

For each sorting method and RSM we evaluated the comparison function for 9 different

error levels as well as the Weber error. We looked at multiple population sizes, n, to verify

performance as a function of n. For each combination of method, comparison function, and

population size we conducted multiple trials. Each trial consisted of generating a random

list of n real numbers from a range of 0 to 1. We used the JavaTMrandom number generator

to select from both a uniform and a normal distribution, in separate trials. The results of

the multiple trials were combined to determine the mean and standard deviation for the
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number of comparisons and the accuracy metrics.

Within a trial, the sorting method was applied up to 10 times on the same list of data.

The intent was to see if multiple sequential sorts would improve the overall sorting accuracy.

For example, if a list is sorted with one pass of the quick sort algorithm with a comparison

function with accuracy 0.75, the result will be a list that is not in correct rank order.

Another pass of the quick sort algorithm with the same accuracy will likely move the list to

be closer to the correct rank order. We expect that multiple passes of a sorting algorithm

will continue to improve the accuracy of the rank order as long as the comparison function

used has an accuracy > 0.5.

B.3.3 Accuracy Metric

For each randomly generated list, we were able to use a traditional sorting method with

a perfectly accurate comparison function to determine the true rank order. This made

it possible for us to calculate the accuracy of each pass of the sorting methods. When

comparing the actual ranking of a list of items, τ , with the predicted ranking, τ ’, Hüllermeier

et al. (2008) suggest using the Spearman rank correlation, ρ, and Kendall’s Tau.

Spearman’s Rho is defined as :

(τ, τ ′) 7→ 1−
6
∑n

i=1(τ(i)− τ ′(i))2

n(n2 − 1)
. (B.6)

Kendall’s Tau provides a measure of rank accuracy by counting the number of discordant,

or rank reversed, pairs. It is defined as:

(τ, τ ′) 7→ 1− 2|{(i, j)|τ(i) < τ(j) ∧ τ ′(i) > τ ′(j)}|
n(n− 1)/2

. (B.7)

The calculation of tau is an O(n2) operation. Both accuracy measures cover the interval

[-1,+1]. A value of 1 indicates the list is in correct rank order, -1 means inverse rank order,

and a value close to 0 indicates an ordering that appears random.
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B.4 Results

Figure B.1 is a scatter plot showing the performance (Spearman’s Rho) of each method

when ranking 1000 items chosen at random from a uniform distribution with comparison

functions of various accuracies after one iteration of the sort for each trial. The y-error bars

represent the one σ uncertainty in the value of ρ after at least 10 trials.

Figure B.1: Spearman Rho for n = 1000

Among the O(n log n) sorts, quick sort and tree sort perform very similarly. The merge

sort appears to be less accurate after a single sort iteration. Overall, the best performing

and worst performing sorts were O(n2), bubble sort and insertion sort respectively. For

accuracies below 0.95, the best performing methods were the two RSM implementations.

There values improve with each comparison. The RSM methods do not have an internal

convergence criteria, so the state of the list after n log n comparisons was used to compute ρ.
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For a perfectly accurate comparison function, neither RSM achieves perfect sort accuracy.

Increasing the list size to 100 000, does not change the performance order of the methods,

see Figure B.2. The merge sort and insertion sort perform noticeably worse. The RSM

methods appear to perform slightly better for the larger list size.

Figure B.2: Spearman Rho for n = 100 000

The sorting performance is similar when measured with Kendall Tau and for the normal,

rather than uniform, distribution. However, there is a difference in performance between

ranking the two types of distributions when using the Weber’s law to model the error in

the comparison function. Table B.1 shows the performance for each method under the

Weber comparison function. All methods perform similarly to a comparison function with

an accuracy in the range of [0.9, 1.0]. All of the sorting methods perform worse under the

normal distribution than the uniform distribution. Conversely, the two RSM algorithms

perform better with the normal distribution. The accuracy of insertion sort improves under
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the Weber model than the random error model. Its performance is still much worse than

the other methods.

Table B.1: Performance for a List of 1000 Items with Weber Comparison Function for
Uniform and Normal Distributions

Method ρ - Uniform ρ - Normal ρ Difference τ - Uniform τ - Normal Difference τ
Merge 0.959 ± 0.004 0.859 ± 0.013 -0.1 0.834 ± 0.008 0.675 ± 0.014 -0.159
Quick 0.959 ± 0.005 0.859 ± 0.019 -0.1 0.827 ± 0.011 0.663 ± 0.0215 -0.164
Tree 0.959 ± 0.005 0.856 ± 0.019 -0.103 0.827 ± 0.01 0.661 ± 0.02 -0.166

Bubble 0.977 ± 0.003 0.868 ± 0.012 -0.109 0.879 ± 0.007 0.699 ± 0.013 -0.18
Insertion 0.443 ± 0.035 0.098 ± 0.032 -0.345 0.307 ± 0.026 0.064 ± 0.022 -0.243

RSM 0.918 ± 0.004 0.936 ± 0.004 0.018 0.746 ± 0.006 0.78 ± 0.006 0.034
RSM Elo 0.907 ± 0.005 0.934 ± 0.003 0.027 0.726 ± 0.007 0.772 ± 0.005 0.046

One method to improve the final rank order accuracy is to perform consecutive sorts of

the same list for each trial. The performance of some sorting methods is dependent on the

initial order of the list. For example. quick sort will perform poorly on a nearly sorted list.

However, for even moderate accuracies such as 0.75, after only one sort iteration the list

has a ρ of 0.5 when compared to the correct rank order. Figure B.3 shows the performance

of each of the methods (excluding bubble sort) as the number of sort iterations is increased.

Quick sort and tree sort do their best work on the first iteration. The other methods show

at least incremental improvement with each additional iteration. Interestingly, the O(n2)

method, insertion sort, has several iterations in the O(n log n) comparisons region. This

indicates that an inaccurate comparison function causes the algorithm to converge very

prematurely. The two RSM algorithms outperform the other methods.

Seeing that several of these methods do not achieve their best accuracy until after several

iterations of O(n log n) comparisons, we wondered if there was an easy improvement to each

method. For every pairwise comparison, perform the comparison twice. If the two answers

agree, accept it. If not perform a third, tie-breaker comparison. This is also known as

a “Best of Three” competition. In general, the accuracy of a comparison function with

errors can be improved by using a “Best of N” competition. The expected accuracy can be

given as a probability of winning the match, where the probability, p, of winning any single

comparison is the same as the accuracy.
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Figure B.3: Spearman Rho for Repeated Sorts of N = 1000, Accuracy = 0.75

P (k of n) =
n∑
j=k

Pj(p)

Pj =

(
j − 1

k − 1

)
pk(1− p)j−k (B.8)

The expected number of comparisons, per pair, as a function of p then becomes

E(k of n) =
n∑
j=k

j ∗ (Pj(p) + Pj(1− p))

To verify, we performed a merge sort on several lists of 1000 numbers selected from a
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uniform distribution. For an original accuracy of 0.75 we calculated the expected accuracy

and number of comparisons for best of 3, best of 5, and best of 7. We then computed the

rho and tau using the experimental procedure for the “Best of” competitions as well as

single competitions using the expected accuracy of each.

Table B.2 contains the expected accuracy and the multiplier for the number of compar-

isons as the N in “Best of N” is increased with initial accuracy of 0.75. The third column

shows the number of comparisons when performing sorting with only single comparisons

when using the expected accuracy. The fourth column shows the multiplier, E, multiplied

by the number of comparisons. The final column shows the actual number of comparisons

for each “Best of N” trial. The agreement between the last two columns is well within one

σ of each other.

Table B.2: “Best of N” Number of Comparisons for a List of 1000 Items with Initial
Accuracy of 0.75

Best of N Expected Accuracy Expected Comparisons Comparisons E * Comparisons “Best of” Comparisons
1 0.75 1 6400 ± 600 - -
3 0.844 2.38 7180 ± 540 17100 ± 1280 17100 ± 1230
5 0.896 3.77 7780 ± 400 29400 ± 1510 29300 ± 1650
7 0.929 5.16 8110 ± 360 41800 ± 1860 41800 ± 1790

Table B.3 contains the ρ and τ values. The value when using only single comparisons at

the expected accuracy is given. Next, the value is given for using increasing N in “Best of

N” with an initial accuracy of 0.75. Again, the values match the predicted values to within

one σ.

Table B.3: “Best of N” Performance for a List of 1000 Items with Initial Accuracy of 0.75
Best of N Expected Accuracy ρ “Best of” ρ τ “Best of” τ

1 0.75 0.168 ± 0.070 - 0.117 ± 0.048 -
3 0.844 0.316 ± 0.103 0.309 ± 0.103 0.231 ± 0.076 0.226 ± 0.075
5 0.896 0.453 ± 0.112 0.456 ± 0.127 0.356 ± 0.090 0.358 ± 0.101
7 0.929 0.572 ± 0.134 0.572 ± 0.124 0.480 ± 0.114 0.480 ± 0.105

The final area of investigation tracked the number of comparisons performed for the

first sort iteration as a function of the accuracy of the comparison function. For merge sort

and quick sort (as well as tree sort), the number of comparisons decreased with decreasing
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accuracy. Similar to the poor behavior of the insertion sort, as the comparisons become less

accurate, the O(n log n) sort methods converge with fewer comparisons. The resulting list

is likely not in correct rank order and the decreased number of comparisons is not presented

here as a benefit, in and of itself, of inaccurate comparison functions.

The result in Figure B.4 demonstrates the relationship between comparison accuracy

and number of comparisons. This relationship may allow one to determine the accuracy of

the comparison function posterori. For situations where one does not know the accuracy

of the comparison function, or the relative accuracy of two different comparison functions,

counting the number of comparisons may allow an estimate of the accuracy.

Figure B.4: Number of Comparisons vs. Comparison Accuracy
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B.5 Conclusion

In the presence of an inaccurate comparison function, the insertion sort method performs

poorly and the Ranking by Scoring Methods perform best. Other sort methods perform well

under the assumption of Weber-like errors in comparisons. For merge sort, the accuracy

can be improved by repeating the sort of the entire list for several iterations. The accuracy

of comparisons for all methods can be improved through the use of “Best of N” matches.

The most consistent behavior was exhibited by the RSM algorithms that performed well

for different error models and sample distributions. The RSM method out performs other

methods when considering both accuracy and number of comparisons for Weber-like error

comparison functions and comparison functions with random accuracies of ≤ 0.9.

Additional work can be done to see if there are more ideal parameters for the Elo scoring

algorithm to improve the accuracy of those results. The prospects of using the number of

comparisons to estimate the accuracy of the comparison
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Appendix C: Target Preparation and Simulation Search

Software

C.1 Introduction

This guide describes how to perform the Target Preparation and Simulation Search activities

of the Merger App Software. The purpose of the software is to determine likely orbit

parameters that can be used to reconstruct, via simulation, the disturbed morphologies of

interacting galaxies. This is accomplished by performing simple measurements on an image

of the pair of galaxies. These measurements, when combined with astronomical catalog

data, can be used to constrain the simulation parameters to a range of values. A search of

the phase space represented by these values is conducted first with random samples used

to rapidly perform simulations. The user is able to select a number of candidate matches.

Through a process of review, and an optional enhancement step, the user can refine the list

of candidate matches to determine the best set of simulation parameters.

C.1.1 Running the Software

The software is written in JavaTM. It requires a Java Runtime Environment, version 1.6 or

later. It has mainly been tested with the Sun R©(now Oracle R©) virtual machine, but should

work with other Java implementations as well. Once you have downloaded the software

package and extracted it from the archive you should see several scripts in the directory.

To launch the target preparation script on Mac OS X, Unix, or Linux systems run the

tgt.sh script. On windows run the tgt.bat script. The search software is launched via the

search.sh or search.bat script.

Some common problems include not having java installed (the JRE, you don’t need

a browser plugin) or not having version 1.6 or later available as the default java on your

system. Additionally, double-clicking the scripts from a file browser may not work. You
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may have to open a terminal window or command prompt and execute the command that

way to ensure the relative classpath definition works.

When the software runs, it will create a .jspam directory in your user home directory.

In there is a preferences file called merger.props. This will be the default directory for

downloading target information later on.

The function of the two activities are described below.

C.2 Target Preparation

Preparing a target will result in the creation of several image files and a text file for simula-

tion parameter ranges. The process includes identifying the target and obtaining an image

on the “Target” tab. Next the centers of each galaxy are identified and have a distance

and mass set on the “Disk Info” tab. On the “Disk Orientation” tab the disk size and

orientation angles are set. On the final tab, “Parameter Ranges”, the software will estimate

the likely ranges of the simulation parameters.

C.2.1 Target Tab

The first step is to assign a name to this target and then pick a directory for where these

files can be saved. This information is entered in the “Target Name” box and by clicking

the “Pick Dir” button at the top of the software. See Figure C.1 below. Once the name is

entered and the directory is picked, click Save.

The next step is to query an image server and a catalog database for information about

and an image of the merger of interest. The Sloan Digital Sky Survey (SDSS) provides both

of these online resources for each of its data releases. The software is able to query SDSS

DR7, DR8, and DR9 (when it becomes available). The software is also capable of querying

imagery from the Digitized Sky Survey (DSS) of the Space Telescope Science Institute. The

catalog database used to support those images is the NASA/IPAC Extragalactic Database

hosted at JPL/Caltech.

406



Figure C.1: The target identification screen.

To search for a target by name, type the name into the “Search by Name” box and click

“Query”. You can also search the SDSS object ID or by a position on the sky. To search

by position enter both Right Ascension and Declination in degrees.

Clicking “Query” will retrieve an image from the image server. DSS has image data

that covers the whole sky. However, SDSS does not, so when using that as your source, the

query may not return imagery.

Figure C.2: Target tab with downloaded image.
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Once an image has been downloaded, you can move the mouse cursor over the image to

see the RA/Dec coordinates for each pixel. If you want to zoom on the image, the software

will actually download a new copy of the image for you. Just update the value for the

width, measured in arc minutes, and the software will download a new image with equal

height and width. To recenter an image, make sure the check box next to “Recenter on

click” is checked, and then the next time you click the left mouse button in the image, the

software will download a new image centered at the RA/Dec that you clicked on. After

you have the image centered on the primary or larger galaxy and scaled to show all of the

features of both galaxies, click “Save” again. Figure 2 shows how it looks for Arp 82.

C.2.2 Disk Info

On this tab you need to identify the center of each galaxy. Start with the primary tab

selected on the left. Click the “Select” button. Now, click on the image at the center of

the primary galaxy. This should be close to the center of the image. Once you’ve selected

a center, the pixel coordinates and RA/Dec should appear in the coordinates boxes.

Figure C.3: Disk Info with primary center selected.

Next, click on the “Query” button to query the catalog database for information about

the galaxy at that point in the sky. The software will retrieve the catalog name and redshift.
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The redshift will be converted to a distance in Mpc. This distance will be combined with

apparent magnitude information from the catalog to estimate absolute magnitude. From

the absolute magnitude, the mass of the galaxy will be estimated. If the query does not

turn up information, you can enter it by hand. Once the primary galaxy has been identified,

click on the Secondary tab and repeat the “Select” and “Query” steps. The redshifts should

be similar. Click “Save” to save your work.

C.2.3 Disk Orientation

On this tab you will be able to remove the background of the image and set the size and shape

of the initial disks for the simulation. Begin by clicking and dragging the “Background”

slider up slowly. This will raise the threshold for the image floor. As the slider goes up,

the less bright pixels are set to 0 brightness. Once you feel that most of the background

directly around the galaxies has been removed, you can stop dragging the slider. Stars and

other objects in the image that are not touching the galaxies will be removed later.

Figure C.4: Disk Orientation with background level raised.

If there is a star or other object in the image that is touching your galaxies, you can

click and hold down the mouse while over the image to activate the eraser mode. The cursor

will turn into an eraser, and you can use it to erase pixels from the image by moving your
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mouse while holding down the button. The figure below shows where the nearby star has

been erased.

Figure C.5: Image after the star to the right of the primary has been erased.

If you are satisfied that the background is correctly removed and other objects have

been separated from the galaxies, you can save this target image by clicking “Save Target

Image”. This saves only the pixels connected to the primary and secondary galaxies you

defined.

Next click “Estimate Disks” to get the software to estimate disk shape and size for you.

You can adjust the orientation angles and disk size by using the sliders at the top.

Generally the disk should be set to be a little bit smaller than the outer tidal features, like

the tails in this image.

Figure C.6: Automated disk parameters. Figure C.7: Disks after user adjustments.

Once you have the disk shape and size as you like it, click “Save” at the top right.
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C.2.4 Parameter Ranges

The parameter range values are initially 0. The software will estimate ranges for you if you

click “Calculate Simulation Ranges” at the bottom. Advanced users may wish to edit the

ranges here. Once done, click “Save” again.

Figure C.8: Parameter ranges.

With the parameter ranges set, you are now ready to begin running simulations of this

pair of galaxies. If you would like to redo a previous step, go back to the desired tab and

make changes. If you are unsatisfied with the results after a few tries, consider starting over

by exiting and relaunching the application.

C.3 Simulation Search

Using the initial conditions and parameter ranges you set up during target preparation, you

can generate simulations in an attempt to match the shape of the galaxies in your target

image. The process begins on the “Simulate” tab. Here you can view 8 simulations per

batch and select candidate matches. There is a “Review” tab to allow you to see which

simulations you have selected. The next tab is “Enhance” where you can try to improve

upon the simulations that were randomly generated. On the “Evaluate” tab you will rank
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the simulations to determine which is the best. There is also a “Statistics” tab to let you

view information about your progress.

C.3.1 Simulate

To begin running simulations, open the “File” menu and click on “Select Target”. From

this dialog browse to the directory where you saved the tgt file in the previous activity and

open it. You should see your target image loaded in the center square.

Figure C.9: Simulate tab with target loaded.

To have the software randomly select sets of simulation parameters and run them for

you, click “More”. As interesting simulations appear, you can click on them. They will

be highlighted with a red box and will be added to your list of selected simulations. If

you change your mind about a simulation before you click “More” again, you can click the

image a second time to turn off the red highlighting and remove it from your list. The goal

at this stage is not perfection. Look for simulations that have at least a hint of having the

proper shape, such as a tail that is too short or in the wrong position. Maybe you can find

a simulation where the primary is correct, but the secondary is not. Add it to your selected

list. You will need to review about 1000 simulations to develop several dozen candidate

matches.

412



Figure C.10: Simulate screen with selected simulations.

C.3.2 Preferences

The Preferences menu will let you edit simulation preferences. You can set the number of

particles in each simulation and the size of the particles. There is an option to turn the

animation on and off. You can also view the simulations in red/blue stereo if you have

red/blue 3D glasses available. The “Color” tab will let you set the color for the simulation

particles.

Figure C.11: Preferences.
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C.3.3 Review

The “Review” tab allows you to see the list of selected simulations. As you progress through

the “Evaluate” activity, the order of simulations in the list will change so that the best

simulations are at the top. To select a simulation for use on the “Enhance” tab, click on it

and a yellow highlight box will appear around it.

Figure C.12: Review tab.

C.3.4 Enhance

The “Enhance” tab allows you to alter the simulation parameters in an attempt to improve

the match with the target image. On the interactive simulation screens like this one and

on the “Simulate” tab, if you click and hold down the mouse you can rotate the simulation

in 3D to see if from different angles. The “Reset View” button under the simulation will

return it to its default position. Clicking “More ‘Stars’ ” will rerun the simulation using

more particles. Clicking “Fewer ‘Stars’ ” will do the opposite. The increase in particle

number is only temporary to provide an enhanced view of the simulation.

Simulation parameters are available to alter two at a time. Clicking on the various

toggle buttons: Mass, Speed, Depth, Size, Angles 1, and Angles 2, will allow you to edit

their values. There are tooltips available to explain which parameters are active. To adjust
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Figure C.13: Enhance tab.

the values, click on the black cross symbol, hold the mouse down, and then drag it around

the gridded area. The tool tips will indicate which values are edited by moving up and

down or left and right. Depending on the speed of your computer, the simulations will

update immediately while you move the cursor around. Sometimes you may have to wait

a few seconds after you stop moving the cursor for the simulation to catch up. The flip

buttons allow you to reverse the rotation direction of galaxy 1 and 2 independently. If

you think you’ve improved the simulation, click “Save Sim” to add it to the list of selected

simulations.

C.3.5 Evaluate

After you’ve selected at least 8 simulations, you can use the “Evaluate” tab to sort them

by quality or fitness. This is accomplished by judging a series of head-to-head comparisons.

Two simulations are displayed at a time. If you think the simulation on the left is better,

click on it. If you think the one n the right is better, click on it. If you think neither

simulation is particularly good, you can click on “Neither is a Good Match”. Through a

series of these competitions a fitness score is accumulated for each simulation. The ones

that are more often judged to be the best will rise to the top.
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The scoring algorithm does not have a termination condition. As you add more simu-

lations, you will need to come back to this activity to properly evaluate them. For a given

set of simulations, the more competitions you judge, the more accurate your score for them

will be.

Figure C.14: Evaluate screen with Merger Wars.

C.3.6 Statistics

The “Statistics” tab provides information on your progress. The number of random sims

rejected refers to simulations that were evaluated by the system to have too small of an

impulse to generate an interesting simulation and were never shown to you. The number

of simulations run is how many you have seen on the “Simulate” tab. The number selected

refers to how many you have clicked on. The number enhanced refers to how many you

have added from the “Enhance” tab. The number evaluated refers to how many have had

a score assigned. The number of merger wars competitions refers to the number of clicks

you done on the “Evaluate” tab.

C.3.7 Saving

Once you are satisfied with your results, you can save the set of simulation parameters in

a text file. Each row will have a comma separated list of simulation parameters that you
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Figure C.15: Statistics tab with table
view of states

Figure C.16: Statistics tab with his-
togram view.

can use with the SPAM simulation software to recreate your target galaxy. The order of

simulation parameters in the file is by fitness, with the best ones on top.

C.3.8 About the Software

The software is based on the tools and interfaces he created for the Galaxy Zoo Mergers1

project of the Zooniverse2. The software for computing the simulations is known as SPAM.

It is described in the first two references below. The goals of the Galaxy Zoo Mergers project

are discussed in the other reference. The SPAM code is available on the Astrophysics Source

Code Library3. The author plans to soon make the Target Preparation and Simulation

Search software available there as well.

1http://mergers.galaxyzoo.org
2http://www.zooniverse.org
3http://asterisk.apod.com/viewforum.php?f=35
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