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Abstract

FEDERATED LEARNING IN MOBILE EDGE COMPUTING: OPTIMIZATION, PRI-
VACY, AND APPLICATIONS FOR CYBERSECURITY

Hengrun Zhang, PhD

George Mason University, 2022

Dissertation Director: Dr. Kai Zeng

In the big data era, compared with traditional centralized machine learning, federated

learning can greatly reduce data collection time, relieve computation burdens of local clients,

and preserve data privacy. Recently, communication overhead in federated learning begins

to attract increasing attentions. At first, federated learning needs several communication

rounds between local devices and public servers for model aggregation, which are mostly

through wireless networks. Besides, since uploaded model parameters in federated learning

are still vulnerable to inference attacks, extra privacy masks are needed for them, such

as Secret Sharing (SS) and secure Multi-Party Computation (MPC), which can further

aggravate communication. In addition, the number of communication rounds can soar if

adversaries try to slow convergence of federated learning by poisoning local data or uploaded

model parameters.

In this dissertation, we provide comprehensive analysis about optimizing communication

overhead in federated learning from the above three aspects. In detail, we discuss the

following four research projects: 1) We consider communication overhead reduction through

convergence performance optimization in federated learning via introducing centralized ma-

chine learning-based adaptive learning strategies to the model parameter update rule. Con-



vergence upper bounds under our optimization scheme are derived after each communica-

tion round with a certain number of local iterations, and after a given number of commu-

nication rounds. Through comparison with the bounds of original federated learning, we

theoretically analyze how those strategies should be tuned to help federated learning ef-

fectively optimize convergence performance and reduce overall communication overhead; 2)

We propose a privacy-preserving task scheduling strategy based on (2,2) SS and mobile edge

computing to reduce data processing latency, in which locally-learned model parameters are

separated into two portions before uploaded to public edge servers for parameter aggrega-

tion based on MPC. We show that the related privacy constraint can be enforced through

constructing a pairwise Markov chain. We further formulate the whole task scheduling

problem as a stochastic latency minimization problem and solve it by converting it into a

linear programming problem; 3) We further extend the (2,2) case to (R,L) case, and pro-

pose a communication-aware secret share placement strategy to optimize communication

overhead by minimizing weighted transmission hop counts in a hierarchical edge computing

architecture. We show that the constructed optimization problem is NP-hard, and efficient

heuristic algorithms can be applied to find sub-optimal solutions. We respectively evaluate

two traditional heuristics, i.e. Genetic Algorithm (GA) and Particle Swarm Optimization

(PSO), introduce two basic heuristics, i.e. top-down and bottom-up heuristic, and further

propose an advanced algorithm, called Bottom-Up Top-Down (BUTD) heuristic. Based on

comparison, we find that our proposed BUTD heuristic can outperform all the other four

heuristics when communication among different shares of the same secret is comparable to

that among different secrets; 4) Finally, we talk about combating data poisoning attacks

through developing a federated self-learning intrusion detection system, which is based on

a practical application of federated learning in cybersecurity. This application targets Con-

troller Area Network (CAN bus) and is based on Graph Neural Network (GNN). We show

that different driving scenarios and vehicle states will impact sequence patterns and data

contents of CAN messages. In this case, we develop a federated learning architecture to

accelerate the learning process while preserving data privacy.



Chapter 1: Introduction

1.1 Background and Motivation

Traditional centralized machine learning usually faces the following two challenges: 1) Col-

lecting enough valid data for model training can take extravagant time; 2) Model training

can require excessive computational resources. Data explosion in recent years has further

made machine learning and data mining tasks almost impossible and impractical to be

processed in a single local device, especially considering that mobile phones and tablets

are becoming primary computing devices for most people [1, 2]. In this situation, cloud

computing or mobile edge computing become the saviors for all such tasks.

However, cloud computing or mobile edge computing can bring a myriad of privacy con-

cerns with the raw data upload requirement. Recently, a new distributed learning algorithm,

called federated learning [3], has been proposed to counter the challenges of centralized learn-

ing while preserving the data privacy. An overview of federated learning process is shown

in Fig. 1.1. Instead of directly uploading raw data to central servers, in federated learning,

each end device can train its own data locally, and only upload learned model parameters

for global model parameter aggregation, which greatly improves the privacy level. On the

other hand, communication overhead in federated learning has recently become one of its

major concerns. At first, federated learning needs several communication rounds between

local devices and public servers for model aggregation, which are mostly through wireless

networks. Besides, since uploaded model parameters in federated learning are still vulner-

able to inference attacks, extra privacy masks are needed for them, such as Secret Sharing

(SS) and secure Multi-Party Computation (MPC), which can further aggravate communi-

cation. In addition, the number of communication rounds can soar if adversaries try to slow

convergence of federated learning by poisoning local data or uploaded model parameters.
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Figure 1.1: The overview of federated learning

Considering the above observations, we need to develop communication overhead reduction

strategies from different aspects to improve the applicability of federated learning.

1.2 Problem Statement

In this dissertation, we aim at solving how to optimize communication overhead during the

whole process of federated learning, which can be further divided into the following three

detailed research problems:

• How can those adaptive learning strategies originally proposed in centralized machine

learning be adapted to federated learning to reduce communication overhead through

accelerating convergence rate and improving convergence performance?

• After introducing SS and MPC to further protect uploaded model parameters, and

mobile edge computing to relieve communication concerns between public servers and

local devices, how can we minimize computation latency and communication overhead

among those edge servers?

• How can we develop intrusion detection systems to filter out those compromised lo-

cal devices and attacks, which can negative impact the convergence performance of

federated learning, and further raise the number of necessary communication rounds?
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1.3 Research Projects in This Dissertation

The authors in [3] have shown that federated learning can realize proper convergence accu-

racy based on mini-batch Stochastic Gradient Descent (SGD) for unbalanced and non-

Independent-and-Identically-Distributed (non-IID) datasets. However, considering that

several rounds of global model parameter aggregation are needed during the whole learning

process, communication overhead in federated learning largely depends on its convergence

performance, which can be further impacted by system and data statistical heterogeneity

[4]. In the real world, different end devices can have different computation capabilities,

communication conditions and power levels (left block in Fig. 1.1), which introduce system

heterogeneity. These issues can cause some end devices (usually called stragglers) not able

to finish enough iterations timely for local model parameter update, thus uploading out-

dated model parameters. On the other hand, different end devices may have local datasets

with different sizes (middle block in Fig. 1.1) and non-IID distributions (right block in

Fig. 1.1 for training, which are considered as data statistical heterogeneity. Derived local

model parameters in the current communication round can greatly drift away from previous

global model parameters because of system and data statistical heterogeneity, which causes

unexpected fluctuations or even divergences. Targeting the above two kinds of heterogene-

ity, many existing works have proposed convergence performance optimization strategies

through end device synchronization [5–7], end device selection [8–10], cross-client variance

reduction [11–13], etc.

However, all the above federated learning optimization algorithms are developed based

on the original federated learning. In centralized machine learning, many adaptive learning

strategies [14–16] are developed to optimize convergence performance, which in general

consider momentum and adaptive learning rate. These adaptive strategies can be introduced

to federated learning before any further optimization targeting heterogeneity issues. In [17],

the authors try to generalize relevant algorithms and apply them in federated learning,

such as FedAdagrad, FedAdam, and FedYogi. However, all these algorithms are only simple

3



extensions of corresponding adaptive learning algorithms. Although convergence guarantee

is provided in this paper, they do not give rigorous analysis about the potential solution bias

and the impact of momentum and adaptive learning rate on federated learning. With the

above observations, we carefully design an adaptive Federated learning algorithm targeting

the model parameter Update Rule, called FedUR, which is based on comprehensive analysis

of the impact of those adaptive learning strategies on federated learning. Detailed discussion

is in Chapter 2.

Although federated learning can greatly improve the privacy level, recent works have

shown that model parameters are still vulnerable to inference attacks [18–21], and extra

privacy masks are needed for those uploaded model parameters. Currently, Secret Sharing

(SS) [22,23], secure Multi-Party Computation (MPC) [24,25] and Differential Privacy (DP)

[26,27] are the most commonly-adopted techniques to protect uploaded model parameters.

Therein, SS and MPC are usually considered together. Let’s take (R,L) SS as an example.

Locally-learned model parameters will be randomly split into L portions before uploaded

to public servers for aggregation based on MPC. A (R,L) SS scheme has a privacy require-

ment that a single public server can obtain at most R − 1 secret shares at the same time.

Such a split actually acts as a means of encryption. Compared with MPC based on ho-

momorphic encryption [28], SS has lower computation complexity and higher robustness to

user dropouts, which make it more suitable to model parameter aggregation in federated

learning, since local devices, such as smart phones and tablets, usually have limited com-

putation capacity, and communication is usually through wireless networks. DP is another

light-weighted privacy-preserving technique, which protects uploaded model parameters by

adding artificial noise.

DP usually induces the tradeoff between convergence performance and uploaded model

parameter privacy in federated learning while SS and MPC raise concerns in data process-

ing latency and communication overhead. In this dissertation, we consider the problems

brought by SS and MPC. In federated learning, aggregating M sets of locally-learned model

parameters will incur O(M) of communication overhead between public servers and local
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devices. With the introduction of SS, an extra O(ML) communication overhead will be

caused among local devices if each secret is separated to L shares. This high communi-

cation overhead poses great challenges in communication latency and transmission power

management. Recently, mobile edge computing [29,30] is proposed to replace conventional

cloud computing, which can effectively lower communication overhead by offloading some

computation tasks to nearby edge nodes instead of remote cloud servers. On the other hand,

different from cloud computing, edge nodes are distributed across the whole edge network,

and each edge node is usually believed to have limited computation and storage capacity,

which can cause data processing latency. Based on the above observations, we propose two

privacy-preserving task scheduling strategies in mobile edge computing.

The first strategy targets (2,2) SS. A pairwise Markov chain is constructed to minimize

data processing latency on the edge nodes. Once edge nodes receive uploaded model pa-

rameter portions, they will decide whether to process those portions themselves or assign

portions to other nodes based on the constructed Markov chain. Considering the afore-

mentioned privacy constraint, we cannot consider each node separately. Instead, each two

nodes will be considered in pairs, and this is why we call our Markov chain “pairwise”. The

Markov chain will be constructed carefully with possible pair transitions. The second strat-

egy is an extension of the first one. At first, the (2,2) SS is generalized to (R,L). Besides, the

strategy is developed in a hierarchical mobile edge computing architecture, which has been

widely considered to provide flexibility in balancing traffic loads in the whole edge network

and bring improved quality of service (QoS) [31–34]. Furthermore, both data processing

latency and communication overhead are considered in this strategy. Since the constructed

optimization problem is NP-hard, we try to find the sub-optimal solutions based on two

traditional heuristics (GA and PSO) and three proposed heuristics (top-down, bottom-up

and BUTD heuristic). Based on comparison, we find that our proposed BUTD heuristic

can outperform all the other four heuristics when communication among different shares

of the same secret is comparable to that among different secrets. Detailed discussion is in

Chapter 3 and Chapter 4.
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Figure 1.2: Vehicles Driving in Different Scenarios

Federated learning can be seen as an Internet-of-Things (IoT) system, which usually

faces numerous security problems. Attackers can try to compromise local devices, and poi-

son raw data or uploaded model parameters [35–38], which negatively impacts convergence

performance of federated learning, and further increases the number of necessary commu-

nication rounds between local devices and public servers. When developing robust model

parameter aggregation strategies, federated learning can be conversely relied on to design

self-learning intrusion detection systems for combating those security issues. In Chapter

5, targeting the CAN bus system in the vehicle network, we propose a federated intrusion

detection system for data poisoning attacks. As is illustrated in Fig. 1.2, vehicles can drive

in different scenarios (e.g. city, country, and freeway) with different features. Some vehicle

states happening frequently in one scenario may be seldom seen in another. For example,
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Figure 1.3: Dissertation Architecture

a driving speed of 60 mph can be seen quite often in freeways while is almost impossible

to happen in cities. Changes in vehicle states can further lead to variations in message

sequences of CAN bus communication. Therefore, the intrusion detection model trained

on one vehicle will be constrained by its limited driving scenarios and vehicle states (e.g.,

a taxi may mostly drive in cities with low speed and a lot of stops), so cannot be applied

to other vehicles with different driving scenarios and vehicle states (e.g., an intercity bus

may mostly drive on freeways with high speed and few stops). To take advantage of crowd-

sourcing while protecting user data privacy, we can adopt a federated learning framework

to train a universal model that covers a wide range of driving scenarios and vehicle states.

The general architecture of this dissertation can be described in Fig. 1.3.
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Chapter 2: FedUR: Federated Learning Optimization

through Adaptive Centralized Learning Optimizers

In this chapter, we aim at reducing communication overhead in federated learning by solving

the first detailed research problem in Section 1.2. One paper related to this research project

is currently under review [39].

2.1 Introduction

Considering that several rounds of global model parameter aggregation are needed during

the whole learning process, communication overhead in federated learning largely depends

on its convergence performance, which can be further impacted by system and data statisti-

cal heterogeneity [4]. In the real world, different end devices can have different computation

capabilities, communication conditions and power levels (left block in Fig. 1.1), which in-

troduce system heterogeneity. These issues can cause some end devices (usually called

stragglers) not able to finish enough iterations timely for local model parameter update,

thus uploading outdated model parameters. On the other hand, different end devices may

have local datasets with different sizes (middle block in Fig. 1.1) and non-IID distributions

(right block in Fig. 1.1 for training, which are considered as data statistical heterogeneity.

Derived local model parameters in the current communication round can greatly drift away

from previous global model parameters because of system and data statistical heterogeneity,

which causes unexpected fluctuations or even divergences. Targeting the above two kinds

of heterogeneity, many existing works have proposed convergence performance optimization

strategies through end device synchronization [5–7], end device selection [8–10], cross-client

variance reduction [11–13], etc.
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However, all the above federated learning optimization algorithms are developed based

on the original federated learning. In centralized machine learning, many adaptive learning

strategies [14–16] are developed to optimize convergence performance, which in general

consider momentum and adaptive learning rate. These adaptive strategies can be introduced

to federated learning before any further optimization targeting heterogeneity issues. In [17],

the authors try to generalize relevant algorithms and apply them in federated learning,

such as FedAdagrad, FedAdam, and FedYogi. However, all these algorithms are only simple

extensions of corresponding adaptive learning algorithms. Although convergence guarantee

is provided in this paper, they do not give rigorous analysis about the potential solution

bias and the impact of momentum and adaptive learning rate on federated learning. With

the above observations, we carefully design an adaptive federated learning strategy, called

FedUR, which is based on comprehensive analysis of the impact of those adaptive learning

strategies on federated learning. The main contributions of this research project are as

follows:

• We fully investigate the change of surrogate update rule after introducing adaptive learn-

ing strategies. We show that the surrogate update rules of current adaptive federated

learning algorithms are equivalent to the objective update rules only when each commu-

nication round has a single local iteration.

• We further consider convergence performance when each communication round has mul-

tiple local iterations. We respectively analyze the convergence upper bound after each

communication round and a given number of communication rounds. Through compar-

ison with those bounds of the original federated learning, we theoretically analyze the

impact of momentum and adaptive learning rate on federated learning and how to tune

them to effectively optimize convergence performance.

• We evaluate our proposed adaptive federated learning strategy, i.e. FedUR, through

extensive experiments based on several real datasets and machine learning models. Ex-

perimental results show that compared to existing adaptive federated learning algorithms,
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FedUR can in general increase final convergence accuracy by 5.5-17.4%, and accelerate

the whole learning process by 21.9-47.2% with lower communication overhead.

The rest of this chapter is organized as follows. Related works will be summarized in Sec-

tion 2.2. Preliminaries and basics in this research project will be introduced in Section 2.3.

Convergence performance and communication overhead will be analyzed in Section 2.4,

which is followed by solving two application issues of FedUR in Section 2.5. Experimental

results for validation and evaluation will be provided in Section 2.6. Some future directions

on federated learning optimization will be discussed in Section 2.7. Finally, conclusions will

be drawn in Section 2.8.

2.2 Related Work

Federated learning, firstly proposed by Google [3] and usually called FedAvg, is a new dis-

tributed learning algorithm, which can protect data privacy during model training. Commu-

nication overhead is an important factor in federated learning. At first, the communication

links from the end devices, such as smart phones and sensors, to the cloud are mostly wire-

less. Besides, several rounds of communication are needed between end devices and central

servers for global model parameter aggregation. Intuitively, communication overhead can

be diminished by reducing the uploaded data size in each communication round or the

necessary number of communication rounds in the whole learning process.

As to reducing the uploaded data size, [40–42] consider compressing uploaded model

parameters. Recently, FedPAQ [43] proposes to upload a quantized version of local model

parameters, and also analyzes the impact on convergence performance. ASTW FedAVG

[44] develops a layerwise local model parameter update strategy, in which parameters in

deep layers of the learning model are uploaded less frequently than those in the shallow

layers. Partial local device participation in each communication round (similar to SGD)

is another strategy. Convergence performance can further get ameliorated via intelligent

end device selection. LAG [45] selects end devices based on model update contributions, in
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which local clients approaching local optima do not need to upload their model parameters.

FAVOR [8] uses deep reinforcement learning to select a subset of end devices achieving

the best test accuracy. FOLB [9] aims at a near-optimal device selection distribution to

maximize the loss decrease. Communication conditions are further considered in [46, 47]

during end device selection. AAFL [7] explores the best number of selected end devices

in each communication round based on current network conditions and deep reinforcement

learning.

Wang et al. [48] systematically analyze convergence upper bounds of gradient descent

under FedAvg and non-IID data distributions, which are further optimized under the con-

straint in communication rounds. On the other hand, convergence performance optimiza-

tion of federated learning can also reduce the necessary number of communication rounds,

which is usually about tackling those heterogeneity issues. According to [4], heterogeneity

issues can be further divided into system and data statistical heterogeneity. System het-

erogeneity has been considered since the era of distributed learning. Different end devices

may have different computation capacities, communication conditions and power levels,

which usually cause synchronization problems. Up to now, there are in general three types

of systems to tackle those synchronization problems, i.e. Bulk Synchronous Parallel (BSP)

systems [49–51], ASynchronous Parallel (ASP) systems [52–54], and Stale Synchronous Par-

allel (SSP) systems [5, 55, 56]. These three kinds of systems respectively completely wait,

completely do not wait, and partially wait for all selected end devices to upload local up-

dates before each global aggregation. Recently, FedNova [6] further investigates the impact

of asynchronous model aggregation on convergence performance in federated learning, and

proposes normalized weighted gradients to alleviate objective inconsistency. PSP [57] pro-

vides flexibility in local model parameter aggregation through a hierarchical mobile edge

computing structure.

Data statistical heterogeneity is considered after federated learning is proposed. CABS

[58], BA-SGD [59], and Adaptive-B [10] try to balance the global data distribution through

batch size optimization. FedProx [11] and FedDANE [60] introduce a proximal term to the
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original loss function for local model parameter update, which makes updated parameters

more similar across different end devices with non-IID data distributions. Such a strategy

can provide significantly more stable and accurate convergence performance compared with

FedAvg. VRL-SGD [12] and SCAFFOLD [13] focus on modifying gradients to mitigate

cross-client variance. FedPD [61] expands the discussion to non-convex loss functions, and

optimizes federated learning from the primal-dual perspective.

Recently, some works have tried to generalize those centralized learning-based adaptive

strategies [14–16] to federated learning [17, 62, 63], and propose relevant algorithms, such

as FedAdagrad, FedAdam, and FedYogi. However, the impact of these adaptive strategies

on federated learning has not been well studied, nor the convergence performance has been

optimized. In this research project, we fully investigate the impact of momentum and

adaptive learning rate on federated learning, and analyze how to tweak these two factors

to optimize convergence performance and communication overhead.

2.3 Preliminaries and Basics

When it comes to evaluating a machine learning algorithm, the final convergence accuracy

is usually an important metric. On the other hand, as has been discussed in the previous

section, communication overhead also needs to be considered for federated learning, which

further depends on the data size of transmitted model parameters, the number of selected

end devices, and the number of communication rounds (or convergence rate). In this re-

search project, we aim to reduce the number of communication rounds through optimizing

convergence performance from the aspect of the update rule. In the view of local iterations,

we consider the following two factors:

• Communication frequency: the number of local iterations before each global model

parameter aggregation, denoted by τ .

• Convergence rate: the total number of local iterations in the whole learning process,

denoted by T .
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Then, the total number of communication rounds C can be calculated by C = T/τ . Based

on this formula, we can see that a smaller T and larger τ will result in a reduced C. FedUR is

also orthogonal to those aforementioned federated learning optimization methods targeting

system and data statistical heterogeneity, which can be integrated with FedUR to further

increase convergence rate and reduce communication overhead. The core notations in this

research project are summarized in Table 2.1.

Table 2.1: Core Notations

Notations Description

Nk, N , K
Batch size of the k-th end device, the whole population,
and total number of selected end devices.

fn(w), Fk(w), F (w)
Loss function of the n-th data sample, the k-th end device,
and global loss function.

Gk(t), G(t)
Mini-batch gradient of the k-th end device, and global mini-
batch gradient in the t-th iteration.

β1, β2
First and second-order exponential decay rate, β1, β2 ∈
[0, 1).

mk(t), m(t)
Biased first raw moment estimate of the k-th end device,
and the whole population.

uk(t), u(t)
Biased second raw moment estimate of the k-th end device,
and the whole population.

m̂k(t), m̂(t)
Bias-corrected first raw moment estimate of the k-th end
device, and the whole population.

ûk(t), û(t)
Bias-corrected second raw moment estimate of the k-th end
device, and the whole population.

ηk(t), η(t)
Learning rate vector of the k-th end device, and the whole
population in the t-th iteration.

wk(t), w(t)
Learned model parameter vectors of the k-th end device,
and the whole population.

wF (t)
Aggregated global model parameter vectors in the t-th it-
eration.
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2.3.1 Federated Learning

Federated learning can be seen as a special type of distributed learning, but has no control

of data distributions. Each end device owns a portion of the whole dataset for local training,

but those data portions are unbalanced and non-IID. With a given type of loss function

f(·), federated learning can derive the loss function for each data sample xn in each end

device, i.e. fn(w). Under mini-batch SGD, the mini-batch loss function of the k-th end

device can be calculated by averaging loss functions across all selected data samples:

Fk(w) =
1

Nk

∑
n∈Pk

fn(w) (2.1)

where Pk is the set of selected data samples in the k-th end device.

When it comes to local model parameter update in the k-th end device, the correspond-

ing gradient Gk(t) in each local iteration t can be derived by computing partial derivatives

of Fk(w) on the aggregated global model parameter vector wF (t). Then, the i-th model

parameter in the k-th end device will be updated as follows:

wk,i(t+ 1)← wF
i (t)− ηk,i(t)Gk,i(t) (2.2)

Afterwards, all the K selected end devices will upload their learned model parameters to

the central server for aggregation:

wF (t+ 1) =
1

N

K∑
k=1

Nkwk(t+ 1) (2.3)

The result is considered as the globally learned model parameters after the t-th iteration.

Finally, wF (t+ 1) will be broadcast to all end devices for the next iteration.

Formula (2.2) and (2.3) together construct the surrogate model update rule of federated

learning. In [3], the authors show its equivalence to the objective update rule wi(t + 1) =
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Figure 2.1: Effect of (a) momentum and (b) adaptive learning rate

wi(t) − ηGi(t) under a static learning rate (ηk,i(t) = η for all i, k, and t) and one local

iteration per communication round.

2.3.2 Adaptive Federated Optimization

All the centralized learning-based adaptive algorithms are in general based on accumulated

gradients, which are used to define momentum and adaptive learning rate. These two terms

can help to optimize convergence performance through tweaking learning directions and step

sizes respectively, which are illustrated in Fig. 2.1.

In this subsection, we give the analysis based on Adam [15]. All the other algorithms

have similar strategies. With the introduction of momentum and adaptive learning rate,

the i-th model parameter will be updated as follows:

wi(t+ 1)← wi(t)− ηi(t)mi(t) (2.4)
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with

mi(t)←β1mi(t− 1) + (1− β1)Gi(t) (2.5a)

ηi(t) ≜
η0√

ui(t) + ϵ
(2.5b)

Here, η0 is a predefined global learning rate. ϵ is a small constant added to prevent the

denominator being zero. ui(t) is updated as follows:

ui(t)← β2ui(t− 1) + (1− β2)G
2
i (t) (2.6)

Note that all the first and second moment estimates are initialized to 0, which can cause

biases. Therefore, the following corrections are further applied to tackle them.

m̂i(t) =
mi(t)

1− βt
1

ûi(t) =
ui(t)

1− βt
2

(2.7)

All the above formulae denote the objective model update rule. In [17], the authors extend

those adaptive algorithms to federated learning, and let’s still take FedAdam as an example,

which is summarized in Algorithm 1.

End devices in FedAdam will upload derived local gradients instead of local model

parameters. In this case, those global moment estimates and model parameters can be

directly derived in the central server based on the aggregated global gradients. However, as

is shown in line 22 of Algorithm 1, each end device actually uploads accumulated local

gradients when each communication round has multiple local iterations. Let’s take the

momentum in the first communication round as an example. In the objective update rule,

if we fully expand Formula (2.5a), we can get:

m(τ) = (1− β1)

τ∑
t=1

βτ−t
1 G(t) (2.8)
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Algorithm 1: FedAdam

Input : N : global batch size. K: number of selected end device. Nk: local batch

size, k = 1, 2, · · · ,K. τ : number of local iterations. β1, β2: decay rate. ϵ:

small constant.

Output: wF ∗
: best aggregated global model parameters.

1 Initialize t← 0, wF (0)← random seed, wF ∗ ← wF (0) m(0)← 0, u(0)← 0;

2 for j = 0, 1, 2, · · · do
3 S ← random set of K end devices;

4 for each end device k in S in parallel do

5 Gk((j + 1)τ)← LocalUpdate(wF (jτ), k);

6 G((j + 1)τ)← 1
N

∑K
k=1NkGk((j + 1)τ);

7 Compute mi((j + 1)τ) and m̂i((j + 1)τ) based on Formula (2.5a) and (2.7);

8 Compute ui((j + 1)τ) and ûi((j + 1)τ) based on Formula (2.6) and (2.7);

9 wF ((j + 1)τ))← wF (jτ)− η0
m̂i((j+1)τ)√
ûi((j+1)τ)+ϵ

;

10 if F (wF ((j + 1)τ)) < F (wF ∗
) then

11 wF ∗ ← wF ((j + 1)τ)

12 if F (wF ∗
) is less than a threshold then

13 break ; //Learning process ends.

14 Function LocalUpdate(w, k):

15 for each local iteration t do

16 t← t+ 1;

17 SL(t)← random set of Nk data samples;

18 Compute the gradient gd(t) for each selected data sample d ∈ SL(t);

19 Gk(t)← 1
Nk

∑
d∈SL(t)

gd(t);

20 wk(t)← wk(t− 1)− ηlGk(t);

21 if t mod τ = 0 then

22 return w −wk(t);

Under FedAdam, the surrogate update rule will become:

m(τ) = (1− β1)

τ∑
t=1

G′(t) (2.9)
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Based on the above comparison, we can see the following two problems: 1) Directly using

accumulated local gradients will remove the effect of exponential decay; 2) The global

gradient G′(t) in Formula (2.9) is not equal to G(t), since in each local iteration t, the

local gradient Gk(t) is calculated based on wk(t − 1) instead of wF (t − 1). For adaptive

learning rate, we can have similar observations. Such two problems can cause unnecessary

fluctuations and extra communication rounds in the learning process.

In [17], the authors do not consider the above two problems. Instead, they focus on

ensuring convergence by introducing a local learning rate ηl (line 20 of Algorithm 1), which

is not necessary based on our analysis in the next section. Besides, the convergence upper

bounds in [17] are in terms of global gradients, which are actually comparative results. They

cannot guarantee that the learning process will finally converge to a global optimum. Our

FedUR is based on the analysis about these two problems. We show that properly tweaking

hyper-parameters can effectively alleviate their impact on convergence performance. All

the derived convergence upper bounds are in reference to the global optimum.

2.4 Convergence Performance Analysis

In this section, we will derive convergence upper bounds under accumulated local gradients

to show that the two problems discussed in Section 2.3.2 will not cause divergence in the

learning process. In [48], the authors investigate the convergence performance under Fe-

dAvg and accumulated local gradients. Through comparison with those convergence upper

bounds, we will analyze how to tune relevant hyper-parameters to improve convergence per-

formance. A lower convergence upper bound under the same number of local iterations can

further infer lower communication overhead under the same convergence requirement. As

has been discussed in Section 2.3, communication frequency and convergence rate together

determine the overall communication overhead. Correspondingly, we will derive two upper

bounds for comparison.
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2.4.1 Basic Assumptions and Definitions

For a proper comparison, our theoretical analysis setting is similar to that in [48]. FedUR

is based on synchronized model parameter aggregation. Assume when the whole learning

process finally converges, the total number of local iterations is T , which is further separated

into J intervals, with each interval containing τ local iterations and corresponding to one

communication round in federated learning. Then, we use the shorthand [j] to denote the

j-th iteration interval during the whole learning process, i.e. the interval [(j − 1)τ, jτ ] with

j = 1, 2, · · · , J . From the perspective of centralized learning, we define the objective model

parameter update rule for each iteration interval t ∈ [j] as follows:

w[j],i(t+ 1)← w[j],i(t)−
η0√

û[j],i(t) + ϵ
m̂[j],i(t) (2.10)

Compared with FedAdam, our FedUR offloads momentum calculation back to local

iterations, through which we can resume the effect of exponential decay. Besides, we move

the predefined global learning rate η0 to local updates. In this case, for the k-th end device

and in each iteration interval t ∈ [j], we have:

w[j],k,i(t+ 1)← w[j],k,i(t)− η0m̂[j],k,i(t) (2.11)

Afterwards, locally-learned model parameters instead of local gradients will be uploaded

to the central server for aggregation. In this case, the central server does not need to

keep track of those moment estimates except aggregated global parameters. The adaptive

learning rate η[j](t) is introduced in global model parameter aggregation, and the surrogate

model parameter update rule becomes:

wF
[j],i(jτ) =

1

N

K∑
k=1

Nk[w
F
[j],i((j − 1)τ)−

wF
[j],i((j − 1)τ)− w[j],k,i(jτ)√

û[j],i + ϵ
] (2.12)
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Here, we approximate η[j](t) based on the expected global bias-corrected second moment

estimate in the iteration interval [j], with each element denoted by û[j],i. With such a design,

in each iteration interval, our algorithm can be considered as having a static learning rate

η[j], with the i-th element:

η[j],i =
η0√

û[j],i + ϵ
(2.13)

û[j],i can be derived in the central server based on wF
[j],i((j−1)τ). More details will be given

in Section 2.5.1.

Similar to [48], we assume in theoretical analysis that the loss function F (w) in this

research project is convex, ρ-Lipschitz and β-smooth. In this case, with a slight abuse of

concepts, we will have:

|F (w)− F (w′)| ≤ρ||w −w′|| (2.14a)

||G(w)−G(w′)|| ≤β||w −w′|| (2.14b)

where || · || means the L2 norm. Based on the same model parameter vector w, we further

define an upper bound δk to denote gradient difference derived from the k-th end device

and the whole population. In other words, we have:

||Gk(w)−G(w)|| ≤ δk (2.15)

with δ ≜
∑K

k=1 Nkδk
N .

2.4.2 Communication Frequency

In communication frequency analysis, we will consider each iteration interval separately.

The convergence upper bound compares FedUR with centralized learning in each iteration

interval. At the beginning of each iteration interval [j], we assume w[j]((j−1)τ) ≜ wF
[j]((j−
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1)τ) = w[j],k((j−1)τ) and m[j]((j−1)τ) ≜ m[j],k((j−1)τ) for ∀j, k. As has been described

in Formula (2.13), since FedUR can be seen as having a constant learning rate in each

iteration interval, we can decouple momentum and adaptive learning rate.

With the introduction of momentum, we give the following convergence upper bound

related to the number of local iterations before a global model parameter aggregation.

Theorem 2.4.1. For each iteration interval [j] and t ∈ [j], under a constant learning rate

η, we have:

|F (wF
[j](t))− F (w[j](t))| ≤ ρ[h1(t− (j − 1)τ)− h2(t− (j − 1)τ)] (2.16)

where:

h1(x) ≜
δ

β
((ηβ + 1)x − 1)− ηδx (2.17a)

h2(x) ≜
ηδβ1[(ηβ + 1)x − 1]

ηβ + 1− β1
− η2δββ1(1− βx−1

1 )

(ηβ + 1− β1)(1− β1)
(2.17b)

for any x = 1, 2, · · · .

Formula (2.16) is derived based on the ρ-Lipshitz assumption described in Formula (2.14a).

h1(x) is the corresponding upper bound derived in Theorem 1 of [48], which is based on

FedAvg. h2(x) shows how much the upper bound can get improved with the introduction

of momentum. As has been discussed in [48], when x becomes large, the exponential term

(ηβ − 1)x will become dominant. Besides, since β1 < 1 by definition, with the increase of

x, the second term in Formula (2.17b) will become a constant. In this case, the value of

h2(x) largely depends on its first term. For the first term, at first we can conclude that it

is bigger than 0. Furthermore, under a constant learning rate η, the only parameter that

can be manually tuned is β1 in the first term. With the increase of β1, the numerator of

the first term will become larger while its denominator will become smaller, which makes

the value of the first term larger, and further increases the value of h2(x). A formal proof
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is detailed in Appendix A.1.

Based on the above observations, we can find that the introduction of momentum

can reduce the upper bound. In other words, if we set a threshold describing the

difference requirement between aggregated model parameters and globally learned model

parameters, SGD with momentum can endure more local iterations before global aggrega-

tions (larger τ), which reduces necessary communication frequency. Besides, in order to

further reduce communication frequency, a decay rate β1 very close to 1 should be put

on the momentum term in model parameter update, shown in Formula (2.5a).

On the other hand, with the introduction of adaptive learning rate described in Formula

(2.13), we also derive the convergence upper bound as follows.

Theorem 2.4.2. For any interval [j] and t ∈ [j], under the adaptive learning rate given in

Formula (2.13), we have:

|F (wF
[j](t))− F (w[j](t))| ≤ ρh3(t− (j − 1)τ) (2.18)

where:

h3(x) ≜
δ

β
((η̄[j]β + 1)x − 1)− η̄[j]δx (2.19)

for any x = 1, 2, · · · .

Here, we use η̄[j] to represent a scalar-form learning rate, which can replace all η[j],i

of Formula (2.13) in this theorem. The definition of η̄[j] and relevant proof are provided

in Appendix A.2. Based on Formula (2.19), we can see that the upper bound largely

depends on η̄[j], considering the dominant term (η̄[j]β + 1)x, which further refers to the

adaptive learning rate η[j],i. The adaptiveness of η[j],i with accumulated gradients can

suppress the effect of β at the beginning of learning process, which is very helpful since

gradient changes can be very sharp and induce large h3(x). Theoretically, we can try to

shrink the upper bound through continuously reducing η0 in η[j],i. However, a small η0 will
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further induce a small learning rate. As has been discussed in Section 2.3.2, if the learning

rate becomes too small, the learning process will slow down or even converge to a local

optimum or saddle point. We will analyze in Section 2.5.2 how to balance communication

frequency and convergence rate by tuning η0. In addition, the accuracy of this upper

bound depends on the extent to which û[j],i can approximate ûi(t) in each interval [j].

Such approximation is affected by variances of gradients. In this case, we need a large

exponential decay rate β2, i.e. as close to 1 as possible, to reduce their impact.

Note that our adaptive federated learning algorithm also needs to meet the convergence

requirement in adaptive centralized learning [15], i.e.
β2
1√
β2

< 1.

2.4.3 Convergence Rate

In the last subsection, we derived two convergence upper bounds to discuss the difference

between FedUR and centralized learning. With those bounds, we can claim that the two

problems discussed in Section 2.3.2 will not cause any divergence in each iteration interval

[j]. However, the whole learning process cannot be seen as conventional centralized learning,

since we assume model parameter synchronization at the beginning of each iteration interval.

In this subsection, we will compare this partial centralized learning with the global optimal

model parameters w∗, through which we analyze the convergence rate of our adaptive

federated learning algorithm.

According to relevant analysis given in [15], corrections made in Formula (2.7) will

generate an expected ratio as follows:

| E[m̂i(t)]√
E[ûi(t)]

| = | E[Gi(t)]√
E[G2

i (t)]
| ≤ 1 (2.20)

Such an approximation will become more accurate with gradients getting more stable.

Considering the above formula together with Formula (2.4) and (2.5b), we can further derive

that in the centralized view, the step size of model parameter update largely depends on
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the predefined global learning rate η0. In other words, in each iteration interval [j], the

equivalent partial centralized learning will have:

|w[j],i(t+ 1)− w[j],i(t)| ≤ η0 (2.21)

From this formula, we can see that the whole learning process will finally converge as long

as η0 is bounded.

When we investigate the convergence rate analysis in [48], we will notice that most of the

related proof can be inherited in this research project, which is based on convexity properties

of loss functions. The main difference caused by the adaptiveness of our algorithm is in

Lemma 5 of [48]. When the loss function F (w) is β-smooth, according to Lemma 3.4 in [64]

and Formula (2.21), for each iteration interval [j] and an I-dimensional model parameter

vector, we can have:

F (w[j](t+ 1))− F (w[j](t))

≤GT
[j](t)(w[j](t+ 1)−w[j](t)) +

β

2
||w[j](t+ 1)−w[j](t)||2

≤η0
I∑

i=1

G[j],i(t) +
βIη20
2

(2.22)

This upper bound is the basis of analyzing convergence rate in [48] for FedAvg (Formula

(26) of [48]). The smaller this upper bound is, the higher convergence rate we can achieve.

Let’s denote this upper bound in FedAvg and FedUR as θ1,[j](t) and θ2,[j](t), respectively.

Then, with further processing, we will have:

θ1,[j](t) =
β
∑I

i=1G
2
[j],i(t)

2
(η − 1

β
)2 −

∑I
i=1G

2
[j],i(t)

2β
(2.23a)

θ2,[j](t) =
βI

2
(η0 +

∑I
i=1G[j],i(t)

βI
)2 −

(
∑I

i=1G[j],i(t))
2

2βI
(2.23b)
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Since the root-mean square is greater than or equal to arithmetic mean, we should have

minη θ1,[j](t) ≤ minη0 θ2,[j](t). However, based on the above two equations, the real achieved

upper bound largely depends on η and η0, which are pre-defined and fixed. Furthermore, β

will become a dynamic hyper-parameter and highly related to gradients if it is considered

separately in each communication round. In this case, −
∑I

i=1 G[j],i(t)

βI will be more stable

than 1
β , and η0 will be more likely to perform consistently than η.

If we define a ratio γ ≜ θ2,[j](t)/θ1,[j](t), then based on Lemma 2 in [48], we can derive

the following convergence rate upper bound:

Theorem 2.4.3. If all the following assumptions hold under a given ε > 0 and a given

total number of local iterations T :

1. η0 is bounded

2. ϕ− ρh(τ)
τε2

> 0

3. F (w[j](t))− F (w∗) ≥ ε for any j

4. F (w(T ))− F (w∗) ≥ ε

where we define ϕ ≜ γηω(1− βη
2 ) and ω ≜ minj

1
||w[j]((j−1)τ)−w∗|| , then we have:

F (w(T ))− F (w∗) ≤ 1

T (ϕ− ρh(τ)
τε2

)
(2.24)

Here, η represents the learning rate in FedAvg. h(τ) ≜ h1(τ)− h2(τ) with the learning

rate η replaced by η̄[j]. Compared with FedAvg, this upper bound improvement is deter-

mined by γ and h(τ). γ depends on θ1,[j](t) and θ2,[j](t), and θ2,[j](t) is more likely to

approach the minimum during the whole learning process. As has been discussed in Section

2.4.2, h(τ) will be reduced with the introduction of momentum and adaptive learning rate,
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which further decreases the upper bound. In general, this upper bound is more likely to get

depressed under FedUR. In other words, compared with FedAvg, FedUR needs a smaller T

to reach the same convergence accuracy.

2.5 Application Issues

Up to now, we have in general constructed our adaptive federated learning model and

theoretically analyzed its communication overhead improvement from the perspective of

both communication frequency and convergence rate. During our algorithm deployment,

two hyper-parameters still need to be fixed in each iteration interval [j], i.e. the expected

global bias-corrected second raw moment estimate û[j] and the global learning rate η0.

2.5.1 Computation of û[j]

Typically, the computation of those moment estimates needs gradient information. In

FedUR, we can derive an expected û[j] in each iteration interval [j] only based on the

aggregated global model parameter vector wF
[j]((j − 1)τ). The general idea is as follows.

Formula (2.5a) gives us the way to derive the global gradient Gi(t) from the biased first

raw moment estimate in two consecutive iterations. In each iteration t, we can at first infer

mi(t) from m̂i(t) based on Formula (2.7). Since we can derive the relationship described by

Formula (2.25), we can get m̂i(t) through m̂k,i(t).

m̂i(t) =
1

N

K∑
k=1

Nkm̂k,i(t) (2.25)

Finally, we can calculate m̂k,i(t) via the local model parameter update rule described by

Formula (2.26), in which wF
i (t) was already derived in the last global aggregation, and
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wk,i(t+ 1) is the uploaded local model parameter.

wk,i(t+ 1)← wF
i (t)− η0m̂k,i(t) (2.26)

When it comes to the situation that each communication round has multiple local itera-

tions, we need to compute the expected û[j],i in each iteration interval [j] shown in Formula

(2.13). Suppose each communication round includes τ local iterations. We at first modify

Formula (2.26), and calculate the corresponding expected m̂[j],k,i as follows:

m̂[j],k,i =
wF
[j],i((j − 1)τ)− w[j],k,i(jτ)

η0τ
(2.27)

Afterwards, we can directly use Formula (2.25) and (2.7) to compute the expected m̂[j],i

and m[j],i. t in Formula (2.7) will be defined as (j − 1)τ + τ/2. Finally, we will modify

Formula (2.5a) as follows to derive gradient information, in which mi(t) will be replaced

with m[j],i:

G[j],i =
m[j],i − β1m[j],i((j − 1)τ)

1− β1
(2.28)

Note that G[j],i is the expected accumulated gradient within the interval [j], which we can

directly use to compute û[j],i based on Formula (2.6) and (2.7).

2.5.2 Computation of η0

Based on Theorem 2.4.2, we know that η0 should be set as small as possible to achieve

a low communication frequency. In Section 2.4.3, we further notice that the convergence

rate depends on θ2,[j](t), which reaches the minimum when η0 = −
∑I

i=1 G[j],i(t)

βI . In this

case, there will be a trade-off between communication frequency and convergence rate from

the perspective of η0. During application, η0 will be updated in the central server after
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each model parameter aggregation. In this case, we can generate the following optimization

problem to derive the best η0:

argmin
η0

ζ(η0) = αθ2,[j](jτ) + (1− α)η0 (2.29)

where α ∈ (0, 1] is a hyper-parameter to balance the above two factors. α cannot be 0 since

we need to guarantee that the whole learning process will finally converge. G[j](jτ) will be

directly computed based on the newly aggregated global model parameter vector W F (jτ).

With a slight modification of ζ(η0), we get:

ζ(η0) =
αβI

2
[η0 +

α
∑I

i=1G[j],i(jτ) + (1− α)

αβI
]2 −

[α
∑I

i=1G[j],i(jτ) + (1− α)]2

2αβI
(2.30)

where we can derive the best η0 as:

η0 = −
α
∑I

i=1G[j],i(jτ) + (1− α)

αβI
(2.31)

Note that the above formula can be negative. When this situation happens, we will set η0 to

0.001 to ensure proper convergence. Besides, we also need to set an upper bound towards η0

to satisfy the first assumption in Theorem 2.4.3, which is η0 ≤ 0.1 in this research project.

Now, we can give our adaptive federated learning algorithm, which is summarized in

Algorithm 2. In the algorithm design, we assume that the number of local iterations τ

is given in each communication round, which can be optimized under given resource con-

straints based on the control algorithm in [48]. In Section 2.6.3, we will further compare

our algorithm with FedAvg and FedAdam under different τ to show its advantages in sav-

ing communication overhead. Besides, from Formula (2.31), we can see that η0 is related

to β, which will be estimated in each communication round. The global estimation is an

aggregated result of all from selected end devices. To get distinguished from exponential
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Algorithm 2: FedUR

Input : N : global batch size. K: number of selected end device. Nk: local batch

size, k = 1, 2, · · · ,K. τ : number of local iterations. α: trade-off weight.

β1, β2: decay rate. ϵ: small constant.

Output: wF ∗
: best aggregated global model parameters.

1 Initialize t← 0, wF (0)← random seed, wF ∗ ← wF (0) m[0] ← 0, u[0] ← 0, η0 ← 0.001;

2 Initialize mk(0)← 0, uk(0)← 0 for k = 1, 2, · · · ,K;

3 for j = 0, 1, 2, · · · do
4 S ← random set of K end devices;

5 for each end device k in S in parallel do

6 (wk((j + 1)τ), β̂k)← LocalUpdate(wF (jτ), η0, k);

7 Compute m̂[j+1],k based on Formula (2.27) for each end device k, derive the

aggregated m̂[j+1] via Formula (2.25), and estimate m[j+1] through Formula (2.7);

8 Compute G[j+1] based on Formula (2.28);

9 Update u[j+1] ← β2u[j] + (1− β2)G[j+1], and compute û[j+1] based on Formula

(2.7);

10 Compute wF ((j + 1)τ) based on Formula (2.12);

11 if F (wF ((j + 1)τ)) < F (wF ∗
) then

12 wF ∗ ← wF ((j + 1)τ)

13 if F (wF ∗
) is less than a threshold then

14 break ; //Learning process ends.

15 Estimate β̂ ← 1
N

∑K
k=1Nkβ̂k;

16 Update η0 based on Formula (2.31);

17 Function LocalUpdate(w, η0, k):

18 wk(t)← w;

19 Compute the gradient under w, denoted as G(w);

20 for each local iteration t do

21 t← t+ 1;

22 SL(t)← random set of Nk data samples;

23 Compute the gradient gd(t) for each selected data sample d ∈ SL(t);

24 Aggregate Gk(t)← 1
Nk

∑
d∈SL(t)

gd(t);

25 mk(t)← β1mk(t− 1) + (1− β1)Gk(t);

26 m̂k(t)←mk(t)/(1− βt
1);

27 wk(t)← wk(t− 1)− η0m̂k(t);

28 if t mod τ = 0 then

29 β̂k ← ||Gk(t)−G(w)||/||wk(t)−w||;
30 return (wk(t), β̂k);
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decay rates, we denote these estimations as β̂ and β̂k here.

2.6 Experimental Results

2.6.1 Experimental Settings

In this section, we will make comprehensive comparison among our proposed FedUR, Fe-

dAvg, and FedAdam in terms of final convergence accuracy, communication frequency and

convergence rate to validate the improvement in convergence performance and commu-

nication overhead. The reason for considering FedAdam as a representative of existing

adaptive federated learning algorithms is that according to the experimental results in [17],

FedAdam in general achieves the best convergence performance. All the algorithms are eval-

uated based on three machine learning models, i.e. logistic regression, multi-layer neural

network, and convolutional neural network (CNN). The loss function is generally based on

cross entropy with difference on non-linear transforms. Logistic regression and multi-layer

neural networks consider sigmoid function, while REctified Linear Unit (ReLU ) function

is adopted in CNN. We conduct simulations based on two real-world datasets, i.e. MNIST

[65] and CIFAR-10 [66].

In detail, an L2 regularized multi-class logistic regression is applied here. The multi-

layer neural network used in this research project has an input layer, a hidden layer and

an output layer, which are all densely connected. The hidden layer totally has 1,000 units,

and the output layer has a softmax activation. For CNN, we applied a network with two

convolution layers, two max pooling layers, a dense layer and an output layer. Therein, the

first and second convolution layer respectively have 32 and 64 channels. Both of these two

layers utilize a 5 × 5 kernal, a 1 × 1 stride and a ReLU activation. The two max pooling

layers both conduct a 2 × 2 pool size. The dense layer has 1,000 units, concatenated by a

softmax output layer.

For those hyper-parameters, we initialize η0 ← 0.001. Besides, we have β1 ← 0.9 and

β2 ← 0.999 to make them as close to 1 as possible and meet the requirement
β2
1√
β2

< 1.
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The small constant ϵ is set to 10−7. In FedAvg, the static learning rate η is set to 0.01. In

FedAdam, the global learning rate η0 is always set to 0.001.

For the federated learning setting in this research project, we consider synchronous

model parameter aggregation under data statistical heterogeneity. In other words, datasets

across all end devices are unbalanced and non-IID. The MNIST dataset is composed of

70,000 gray-scale images of handwritten digits (60,000 for training and 10,000 for test),

while the CIFAR-10 dataset contains 50,000 color images for training and 10,000 test color

images. These two datasets both have 10 classes. In this case, we at first sort training

images according to those classes, and then partition them to 100 shards, which can be

seen as a scenario that 100 end devices participate in a federated learning task. Since

our adaptive federated learning algorithm is evaluated from communication frequency and

convergence rate, the whole training process will stop after 1,000 local iterations instead of

a certain number of communication rounds. For comprehensive comparison, we consider

the scenario with 10, 20, and 50 selected end devices in each communication round, with

each selected end device randomly picking up 10 data samples (batch size) in each local

iteration.

2.6.2 Convergence Accuracy

In this subsection, we compare our adaptive federated learning algorithm with two baselines,

i.e. FedAvg and FedAdam on convergence performance. The final convergence accuracy in

terms of test sets are considered as the metric. Note that we fix the trade-off weight α to

0.5 in this subsection, and leave the discussion about it in the Section 2.6.4.

Fig. 2.2, 2.3, and 2.4 respectively show convergence performance comparison under

logistic regression, multi-layer neural network, and CNN. Therein, logistic regression and

multi-layer neural network are both based on the MNIST dataset, while CNN is analyzed

under the CIFAR-10 dataset. For FedAvg and FedAdam, we consider the highest commu-

nication frequency in the evaluation, i.e. τ = 5. Our adaptive federated learning scheme

further evaluates the scenario with τ = 10 and τ = 20. Since the learning process needs to
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Figure 2.2: Comparison results for logistic regression

stop after 1,000 local iterations, τ = 5, τ = 10, and τ = 20 respectively infer 200, 100,

and 50 communication rounds. Note that the x-axes in all these figures are communication

round. Both accuracy and loss are illustrated based on the test sets in those two datasets
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Figure 2.3: Comparison results for multi-layer neural network

and the aggregated global model parameters after each communication round.

From Fig. 2.2, we can see that generally all of the three algorithms will finally converge

to over 90% of test accuracy. Besides, with more end devices selected in each communication
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Figure 2.4: Comparison results for CNN

round, more stable convergence process will be achieved. On the other hand, our proposed

FedUR can achieve much higher test accuracy than FedAvg and FedAdam, which is due to

the equivalence reconstruction to centralized learning in our algorithm. Furthermore, FedUR

can achieve similar convergence performance under all the three evaluated communication

frequencies, which infers the robustness of our proposed algorithm.

Similar trends can also be found in the other two models, i.e. multi-layer neural network

and CNN, which are shown in Fig. 2.3 and 2.4. Note that we only illustrate the scenario with

10 selected end devices in each communication round for CNN. We further list the achieved

best test accuracy of all the three algorithms under τ = 5 in Table 2.2. Besides CNN, LR

and MLP respectively refer to logistic regression and multi-layer neural network. From this

table, we can see that in all cases, our proposed algorithm has the best performance. In

general, compared with FedAdam, our FedUR can achieve a test accuracy improvement of

5.5%, 5.8%, and 17.4% in logistic regression, multi-layer neural network, and CNN.

2.6.3 Communication Frequency and Convergence Rate

We further make communication frequency and convergence rate comparison here. Our

general idea is that if our proposed adaptive federated learning algorithm can achieve a
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Table 2.2: Best Achieved Test Accuracy

FedAvg FedAdam FedUR

MNIST
10 devices

LR 0.9244 0.9263 0.9782

MLP 0.9198 0.9194 0.9784

MNIST
20 devices

LR 0.9281 0.9311 0.9787

MLP 0.9294 0.9258 0.9774

MNIST
50 devices

LR 0.9195 0.9264 0.9792

MLP 0.9211 0.9302 0.9798

CIFAR-10 CNN 0.4828 0.5142 0.6038

similar convergence rate and accuracy to those two baselines under a lower communication

frequency or a larger τ , the overall communication overhead is definitely saved. From the

previous subsection, we already know that even if we enlarge τ from 5 to 20, our proposed

algorithm still outperforms the two baselines in the final convergence accuracy. In this

subsection, we will further compare the convergence rate under different communication

frequencies.

Similar to the previous subsection, the two baselines still adopt the most frequent com-

munication, i.e. τ = 5. Besides, α is still fixed to 0.5 here. We compare the number

of necessary communication rounds among FedAvg, FedAdam, and our adaptive federated

learning to reach an 80% test accuracy for the MNIST dataset or 30% test accuracy for the

CIFAR-10 dataset. Some typical experimental results are shown in Fig. 2.5. In order to

clearly reflect the trend, we applied a 5th-order one-dimensional mean filter towards raw

experimental results. From this figure, we can see that for logistic regression and multi-layer

neural network, our proposed algorithm achieves the highest convergence rate under all the

three different communication frequencies. For CNN, our method performs the best under

τ = 5 and τ = 10, and has similar performance when τ = 20.
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Figure 2.5: Comparison result among different communication frequencies

We further list in Table 2.3 the specific number of necessary communication rounds to

reach 80% or 30% test accuracy for each case in Fig. 2.5. Therein, LR-10 refers to logistic

regression plus 10 selected devices in each communication round, and so on. τ = 5, τ = 10,

and τ = 20 are all under our proposed algorithm. In general, compared with FedAdam, our

method can respectively increase the convergence rate by 47.2%, 41.0%, and 21.9% under

τ = 5, τ = 10, and τ = 20.
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In general, FedUR can achieve better final convergence accuracies and higher conver-

gence rates even under lower communication frequencies, which will greatly reduce commu-

nication overhead during the whole learning process.

Table 2.3: Number of Necessary Communication Rounds to Reach 80% (MNIST) or 30%
(CIFAR-10) Test Accuracy

FedAvg FedAdam τ = 5 τ = 10 τ = 20

LR-10 18 18 10 17 16

LR-20 10 11 8 8 7

LR-50 8 8 6 5 5

MLP-10 24 27 11 11 12

MLP-20 10 14 7 6 8

CNN-10 32 32 16 18 38

2.6.4 Learning Process Optimization

The value of the hyper-parameter α in Formula (2.31) will determine η0, and further im-

pact the whole convergence performance. In this subsection, we compare the convergence

performance of our adaptive federated learning algorithm under α = 0.1, 0.3, 0.5, 0.7, and

0.9. Both logistic regression and multi-layer neural network are considered here.

Fig. 2.6 compares those scenarios under different communication frequencies. 50 end

devices are randomly selected in each communication round. From this figure, we can see

that our algorithm performs similarly under different α and logistic regression, while some

difference can be noticed for multi-layer neural network. In detail, there is an obvious

performance degradation when τ = 20 and α = 0.1. Based on the theoretical analysis in

Section 2.5.2, we know that a small α means that much emphasis is put on communication

frequency, which will induce a small η0. A small η0 will further cause a small learning rate.

If the learning rate is too small, the convergence will slow down or even stop unexpected

in a local optimal or saddle point. Such an impact seems to get exaggerated with the
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Figure 2.6: Convergence performance with different communication frequencies

decrease of communication frequency. Furthermore, the complexity of a machine learning

model also plays a role therein. On the other hand, the convergence is less stable when

α = 0.9, especially at the beginning of the whole learning process. A too large α will induce

uncertainty to local iterations, and further cause oscillations in the whole learning process,

especially at the beginning.

We also evaluate convergence performance of our algorithm under different numbers of

selected end devices in each communication round, which is illustrated in Fig. 2.7. τ is set

to 5 here. From this figure, we can see that the negative impact of a too small α is not

significant, which is probably due to frequent communication, i.e. τ = 5. On the other

hand, oscillations caused by a too large α is still noticeable in the whole learning process.

The value of η0 in each communication round is shown in Fig. 2.8 with τ = 5. All the

three machine learning models are considered here. In Formula (2.31), we know that both
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Figure 2.7: Convergence performance with different numbers of selected end devices in each
communication round

gradients and β should decrease as the learning process goes. These two trends may get

cancelled when we consider η0. That is the main reason why the Adam optimizer adopts a

constant global learning rate η0. However, based on Fig. 2.8, we observe that η0 should have

an increase trend at the beginning, and then gradually flattens, when applied in federated

learning. In addition, η0 should be set differently under different machine learning models

and numbers of selected end devices in each communication round. Actually, many other

factors in federated learning, such as communication frequency, can also cause difference in

the η0 setting, which will not be shown here due to the page limit.

In Section 2.4.3, we defined a ratio γ as a metric to evaluate the convergence rate

improvement of our adaptive federated learning algorithm compared with FedAvg. In Fig.

2.9, we illustrate the value of this ratio under τ = 5, and in different machine learning
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Figure 2.8: Value of η0 with τ = 5, different machine learning models, and different numbers
of selected end devices
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Figure 2.9: Value of γ with τ = 5, different machine learning models, and different numbers
of selected end devices

models plus selected end devices in each communication round. We also draw a dotted line

in this figure to illustrate γ = 1. We can easily figure out that the value of γ is greater than

1 in most situations, which means that our proposed algorithm can generally outperform

FedAvg in convergence rate. Besides, we also notice that γ is close to 1 at the beginning,

and increases afterwards, which further validates our discussion in Section 2.4.3 that η0 is

more likely to perform consistently than η.

2.7 Future Directions on Federated Learning Optimization

2.7.1 Federated Learning Optimization Scheme Integration

System and data statistical heterogeneity are widely considered when it comes to conver-

gence performance optimization in federated learning. For system heterogeneity, it is usually
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about end device synchronization [5–7]. As to data statistical heterogeneity, existing works

have considered battling unbalanced and non-IID data distributions across different end

devices through end device selection (FAVOR [8] and FOLB [9]), batch size optimization

(CABS [58], BA-SGD [59], and Adaptive-B [10]), and cross-client variance reduction (Fed-

Prox [11]), VRL-SGD [12], and SCAFFOLD [13]). Our proposed algorithm is orthogonal

to all the above federated learning optimization strategies, which are developed based on

the original federated learning or FedAvg. A proper integration with those strategies can

further improve convergence performance.

If we further expand the scope to communication overhead optimization, uploaded model

parameter compression has recently been considered [40,41,43]. Therein, a quantized version

of local model parameters are uploaded to the central server for aggregation, which will bring

new challenges to central servers on deriving global momentum and adaptive learning rate.

In addition, communication management schemes, such as [48], can be integrated into our

algorithm to further optimize communication between end devices and central servers if

resource constraints exist.

2.7.2 Tradeoff among Convergence Performance, Communication Over-

head, and Privacy Protection Level

Recent works have shown that uploaded model parameters in federated learning are still

vulnerable to inference attack [18–21]. An even higher privacy-preserving level can be

reached by protecting uploaded model parameters based on secret sharing [22, 23], secure

multi-party computation [24, 25], or differential privacy [26, 67]. However, the first two

strategies can further increase communication overhead if local model parameters need

to be separated into several pieces and uploaded to different central servers. The recently-

proposed mobile edge computing can relieve such a concern by offloading model aggregation

tasks from remote cloud servers to nearby edge nodes. On the other hand, since edge nodes

usually have limited computation resources, a proper task scheduling strategy is necessary

to balance workload in different edge nodes and optimize communication among them. In
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Chapter 3 and 4, we respectively propose two relevant strategies, which can additionally

meet the privacy requirements to protect uploaded model parameters. Federated learning

optimization strategies targeting system heterogeneity can also be considered here.

Differential privacy masks uploaded model parameters through adding random Gaussian

noise. Therefore, there will be tradeoff between the privacy protection level and convergence

performance [27], which can further influence communication overhead. The design of

differential privacy policies still remains largely open in federated learning.

2.8 Summary

In this research project, we proposed a federated learning optimization algorithm from the

aspect of model parameter update rule, i.e. FedUR. The algorithm design is based on a

full investigation about the impact of momentum and adaptive learning rate on federated

learning. Although using accumulated local gradients can cause the update rule bias when

each communication round has multiple local iterations, such bias will not impact the overall

convergence trend, and can be further alleviated by tweaking the above two terms. We came

up with the convergence upper bound under FedUR after each communication round and

a given number of communication rounds. Through comparison with those upper bounds

in FedAvg, we theoretically analyzed how to tune those two terms to minimize communica-

tion overhead through reducing communication frequency and accelerating learning process.

Extensive experiments validated our theoretical analysis about convergence performance.

In general, compared with existing adaptive federated learning algorithms, our proposed

strategy can increase final convergence accuracy by 5.5-17.4%, and accelerate the whole

learning process by 21.9-47.2% even under less frequent communication.
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Chapter 3: Pairwise Markov Chain: A Privacy-Preserving

Task Scheduling Strategy in Mobile Edge Computing

This chapter discusses the second detailed research problem in Section 1.2. The extra

communication burden brought by Secret Sharing (SS) and secure Multi-Party Computation

(MPC) can be greatly relieved by the introduction of mobile edge computing. On the other

hand, since edge servers are usually assumed to have limited resources [29, 30, 48, 68], we

need to further consider computation latency optimization by balancing tasks among those

servers. This research project is related to the publication [69].

3.1 Introduction

As has been mentioned in Section 2.7.2, in federated learning, sensitive information can still

get leaked from those shared model parameters or gradients via inference attacks [18–21].

In this case, follow-up works consider putting extra privacy masks to locally-learned model

parameters uploaded to public servers. Currently, MPC [22, 28] and Differential Privacy

(DP) [67,70] are usually considered. Therein, the design of DP needs to balance the privacy

protection level with convergence performance, which is out of the scope of this dissertation.

When it comes to MPC, SS [22] and Homomorphic Encryption (HE) [28] are two widely

considered strategies. Compared with HE, SS has lower computation complexity and higher

robustness to user dropouts, which make it more suitable to scenarios with mobile local

devices, such as smart phones and tablets.

SS has been considered for not a short time in many multimedia applications. In com-

puter vision, image matching is based on image features extracted through algorithms with

very high computational requirements, such as Scale-Invariant Feature Transform (SIFT)

[71]. People have to rely on cloud computing when the number of images to be processed
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is large. However, some images, such as profiles and medical images, have sensitive con-

tents that are not supposed to go public. In this case, when images are uploaded to clouds

for SIFT feature extraction, image owners do not want to reveal the image content to the

cloud server. In recent years, many related works have been done for privacy-preserving

SIFT [72–74]. These works usually realize SIFT feature extraction in the encrypted domain

through homomorphic addition, multiplication and comparison. Later in [75, 76], images

are randomly split into two portions and transmitted to two clouds for SIFT processing,

which can actually be seen as a (2,2) SS. When it comes to federated learning, those locally-

learned model parameters and model aggregation tasks respectively correspond to images

and image matching tasks.

However, MPC usually suffers from high communication overhead. For a data processing

job of aggregating M secrets, at least O(M) of communication overhead will be induced

between public servers and local devices. Besides, with the introduction of SS to combat

user dropouts, an extra O(ML) communication overhead will be caused among local devices

if each secret is separated to L shares. This high communication overhead poses great

challenges in communication latency and transmission power management. Recently, mobile

edge computing [29, 68] is proposed to replace conventional cloud computing, which can

effectively lower communication overhead by offloading some computation tasks to nearby

edge nodes instead of remote cloud servers.

Unfortunately, the bridge between SS, MPC and mobile edge computing is still not built

up. Most of the current MPC schemes are still considered in a cloud computing setting,

in which public servers are assumed to have unlimited computation and storage capacity,

and mobile local devices directly communicate with those cloud servers. In this situation,

communication overhead only happens between public servers and mobile local devices, and

is usually reduced through algorithm design or data compression. When it comes to the

deployment in mobile edge computing, communication between the edge and mobile local

devices can be omitted considering edge servers being nearby. On the other hand, edge nodes

are distributed across the whole edge network, and each edge node is usually believed to
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have limited computation and storage capacity. In this case, relevant computation offloading

strategies among those edge nodes become critical in determining achieved communication

and computation latency or transmission power improvement. Currently, tons of works

[77–82] have already proposed such strategies from different aspects. However, none of

them considered privacy constraints during task scheduling. In MPC based on SS, we

should avoid a certain number of shares of the same secret being stored in the same edge

server. Fig. 3.1 shows a toy example of deploying a (2,2) SS in mobile edge computing. In

this example, an end user splits information (derived local model parameters in federated

learning) into two secret shares, then uploads them to two edge nodes (Edge node 1 and

2) for further processing (model aggregation). If either of these two edge nodes decides to

switch the received secret shares to other nodes because of computation or storage capacity,

they should avoid these three situations denoted by red arrows in Fig. 3.1:

• Red arrow 1○: Edge node 1 decides to switch secret share 1 to another edge node,

which happens to be edge node 2.

• Red arrow 2○: Edge node 2 decides to switch secret share 2 to another edge node,

which happens to be edge node 1.

• Red arrow 3○: Both edge node 1 and 2 decide to switch both two secret shares to

another edge nodes, which happen to be the same edge node K.

Based on the above observations, we propose a privacy-preserving stochastic task schedul-

ing strategy in this chapter, which is based on (2,2) SS. A Markov chain will be constructed

to facilitate the stochastic task scheduling on the edge nodes. Once edge nodes receive se-

cret shares, they will decide whether to process those shares themselves or assign shares to

other nodes based on the constructed Markov chain. Considering the privacy constraint, we

cannot consider each node separately. Instead, each two nodes will be considered in pairs,

and this is why we call our Markov chain “pairwise”. The Markov chain will be constructed

carefully with possible pair transitions. We can construct our pairwise Markov chain in

advance based on the property that the stationary state of a Markov chain is not affected
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Figure 3.1: Toy example of (2,2) SS deployed on edge.

by its initial state. The optimized queuing and processing latency on edge nodes can then

be computed and recorded in advance, which saves computational delay when deciding the

scheduling. Simulation results validate that our proposed strategy can achieve an efficient

task scheduling while ensure the privacy. The main contributions of this research project

are as follows:

• We propose a mobile edge computing based deployment for privacy-preserving model

parameter aggregation in federated learning. We formulate the task scheduling problem

with the consideration of privacy constraint that no two shares of the same secret should

be scheduled to the same edge node for processing. To the best of our knowledge, we are

the first one to consider such a privacy constraint in task scheduling problems on edge.

• We propose a pairwise Markov chain to enforce the privacy constraint. The system states

and transition probabilities are carefully designed. Achievability of the stationary state

of the Markov chain is proved.
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• We integrate the proposed pairwise Markov chain with the optimization model, construct

a stochastic optimization problem for queuing plus processing latency minimization with

the privacy constraint enforcement, and show that the problem can be solved through

transforming it to a linear programming problem.

The rest of this chapter is organized as follows. Section 3.2 discusses related works. In

Section 3.3, we give a full description of our privacy constrained task scheduling system.

In Section 3.4, our constructed pairwise Markov chain for privacy constraint enforcement

is introduced. Our optimization strategy through linear programming is presented in Sec-

tion 3.5. Experimental results for validation and evaluation are given in Section 3.6. We

discuss possible improvements and extensions in Section 3.7. Conclusions will be drawn in

Section 3.8.

3.2 Related Works

Mobile edge computing helps reduce computation latency and communication overhead

by processing information on the edge nodes near local users. On the other hand, since

edge servers usually have limited computation and storage capacity, a well-designed task

scheduling strategy is needed to decide which computing task to be assigned to which edge

node. Up to now, several resource allocation and task scheduling works [77–82] have been

done for mobile edge computing systems with different configurations. However, none of

them considered privacy issues.

SIFT algorithm [71] has been widely used in image matching owing to its robustness.

Since SIFT requires a large number of convolution computations, many cloud computing

solutions have been proposed for it. With the concern of preserving image privacy against

untrusted third party cloud servers, privacy-preserving SIFT schemes have been proposed.

[72–74] propose to utilize homomorphic encryption to satisfy privacy requirements. Later,

[75] claims that relying on just one server cannot well guarantee privacy, and [75,76] propose

to randomly split images for encryption and transmit these two portions to two different
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remote servers for privacy-preserving SIFT processing. When it comes to federated learning,

those locally-learned model parameters and model aggregation tasks respectively correspond

to images and image matching tasks. In this chapter, we propose an mobile edge computing

based deployment for such a privacy-preserving application. During the whole process,

it should be guaranteed that no edge nodes are assigned two shares of the same secret.

Therefore, a task scheduling strategy with such a privacy constraint needs to be designed.

A Markov-chain-based task scheduling strategy is proposed in this chapter. The privacy

constraint is guaranteed by paring the corresponding edge nodes. The achievability of

our Markov chain is proved by irreducibility and positive recurrence [83]. Irreducibility is

ensured by the structure of our Markov chain, and positive recurrence is claimed through

Foster-Lyapunov theorem [84].

3.3 Model Construction and Problem Formulation

In this research project, we consider the privacy-preserving model parameter aggregation in

federated learning as an application scenario. Each end device will derive model parameters

based on its own dataset, which are combined together to generate a vector. This locally-

learned model parameter vector is considered as a secret I, which is split into two shares

based on SS. Each element in the first share I1 is a number randomly selected within a

certain range. The second share is generated through adding the original model parameter

vector with the first share. In other words, we have I2 = I + I1. Afterwards, two secret

shares will be transmitted to two different edge nodes for privacy-preserving model aggre-

gation. In the edge, each edge node will decide whether to process the received secret share

by itself or switch the received secret share to another edge node. In this process, we need

to ensure that no two shares of the same secret are assigned to the same edge node.

3.3.1 System Model

Let’s consider an edge network, denoted as G = (V,E), where V and E represent the set of

nodes and links in the network. Each edge node is assumed to have both communication and
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computing capabilities. All the links among edge nodes are considered full-duplex. In this

chapter, we assume that communication among edge nodes are through high-speed wired

links. For example, in a campus wireless network, the edge nodes could be access points

(APs), which are connected by high speed Ethernet with transmission rate of 10 Gbps.

Therefore, we assume that the transmission delay among the edge nodes is negligible com-

pared with queuing delay in the edge node.

For an edge network with K edge nodes V = {v1, v2, · · · , vK}, when a secret share is

uploaded by a user either through a wireless or wired link, we assume that it will always

be transmitted to an edge node vi, which is called the reference node. This reference

node will decide whether it will process the secret share itself or switch the secret share

to another node vj ̸= vi. We assume that if a secret share gets switched to another node

once, it will not be switched again. In other words, when the secret share arrives at the

head-of-line of node vj , it will be processed by vj . Thus, the whole process can be seen as

a 2-hop behavior. In this chapter, we use Pi to denote the proportion of secret shares that

are processed by node vi itself when the edge network gets stable.

An example of the 2-hop process with four edge nodes (K = 4) is illustrated in

Fig. 3.2(a). From the perspective of reference node vi, the 2-hop process will generate

K queues. The first queue records secret shares to be processed by node vi itself, which is

denoted as Qi,i. All the other queues Qi,j record secret shares to be switched to node vj .

With a slight abuse of notation, we use Qi,i(t) and Qi,j(t) to denote their queue lengths in

each time slot t, respectively. Besides, we use Di,i(t) and Di,j(t) to denote their head-of-line

(HOL) delay [85], respectively. According to Little’s Law [86], if the entire edge network

can become stable, the queue length and HOL delay should have the following relationship

in the stationary state.

di,k =
1

βi,k
lim

Mq→∞

Mq∑
mq=0

mq · Pr{qi,k = mq} (3.1)
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(a) (b)

Figure 3.2: Example of our 2-hop process and transmissions not permitted under privacy
constraint. (a) 2-hop process. (b) Transmissions not permitted.

Here, node vk can be both vi and vj . βi,k represents the long-term average arrival rate for

queue Qi,k. In this research project, we use the average arrival rate within a long enough

time interval for approximation. Note that a unit arrival process is assumed in this chapter,

which makes all the arrival rates between 0 and 1. di,k and qi,k respectively represent the

HOL delay and queue length for queue Qi,k as the entire system becomes stable. mq and

Mq are the possible and maximum queue length individually. Pr{qi,k = mq} reflects the

probability where the stable queue length of Qi,k is equal to mq.

We can assume that the long-term average arrival rate of node vi is αi. This αi can

also be seen as the arrival rate in the first hop. Since once a secret share arrives at node

vi, it will be processed by node vi itself with a proportion Pi, the arrival rate for Qi,i can

then be denoted as βi,i = Piαi. On the other hand, the proportion where an arrived secret

share is scheduled to another node is 1 − Pi obviously. In this chapter, we assume that

the scheduled node is randomly selected from the other (K − 1) nodes, which makes the

long-term average arrival rate of Qi,j equal to βi,j = 1
K−1(1 − Pi)αi. From this equation,

we can see that all βi,j are actually the same. For notation ease, we can respectively use

αi,1 and αi,2 to represent βi,i and all the βi,j .

In this chapter, we assume that all edge nodes have the same computation capacity. In
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this case, service time is just related to tasks. Since federated learning will only aggregate

model parameters based on the same machine learning model, we can consider service time

for those secret shares the same, which is denoted as No, in the number of time slots. With

the same arrival and service rate, we can claim that when the whole edge network becomes

stable, all those queue lengths Qi,j(t) should converge to a single length q2. Considering

Little’s Law discussed above, we also have the converged HOL delay d2. Besides, we also

use q1 and d1 to represent the converged queue length and HOL delay for Qi,i.

3.3.2 Optimization Problem Formulation

In this research project, we aim at minimizing the total latency under the system model

introduced in the last section. According to the definition, the total latency is actually

composed of queuing time and service time. However, as has been discussed in the last

section, service time is fixed with the given servers and tasks. In this case, our optimization

problem can actually be simplified to minimizing queuing time, which can be represented

by HOL delay. In our defined system model, we have two kinds of HOL delay, d1 and d2.

Obviously, we want them both to be minimized. In this case, we define the summation

of these two kinds of HOL delay as our objective to be minimized, which is denoted as T

shown below:

T ≜ d1 + d2 (3.2)

From the perspective of each edge node vi, there is a similar 2-hop process. In this case,

we can define a uniform optimization problem as below:

min T

s.t. ϕp(I1,Qi,k) + ϕp(I2,Qi,k) ̸= 2 i, k = 1, 2, · · · ,K
(3.3)
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The indicator function ϕp(I,Qi,k) is defined as follows:

ϕp(I,Qi,k) ≜


1 I ∈ Qi,k

0 I /∈ Qi,k

(3.4)

The constraint in (3.4) actually corresponds to the privacy constraint in this research

project, which requires that no edge nodes should get both two shares of the same secret.

Fig. 3.2(b) shows an example with four edge nodes. In this example, two shares of the

same secret individually arrive at node v1 and v2. We illustrate two pairs of transmissions

that should not be permitted, (f1,1, f1,2) and (f2,1, f2,2). The privacy constraint is enforced

through our pairwise Markov chain to be described in detail in Section 3.4. We will tune

the transition probabilities in our Markov chain to optimize the delay performance.

3.4 Pairwise Markov Chain for Privacy Constraint Enforce-

ment

In this research project, we consider an attack model like this: an attacker wants to recover

the content of some secrets. In order for this, the attacker randomly selects and eavesdrops

a node in our edge network. Therefore, our task scheduling policy should avoid transmitting

two shares of the same secret to the eavesdropped node. Since the eavesdropped node can

be any node in the edge network, our policy should be further extended to the case that

two shares of the same secret should not be transmitted to any node in the edge network.

When it comes to a traditional task scheduling problem, the whole process can actually be

described by a Markov chain. Here, we carefully modify the Markov chain by considering

each two edge nodes in pairs to reflect the privacy constraint.
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Figure 3.3: Example of an edge network and transformed pairwise architecture.

3.4.1 Optimization Problem Reconsideration and Pairwise Markov Chain

Construction

Our constructed pairwise Markov chain is based on a pairwise architecture. We start from

a simple example of an edge network with three edge nodes, shown in Fig. 3.3.

From this figure, we can see that each two edge nodes are considered in pairs to generate

a new node. Based on our pairwise architecture, if two different edge nodes v1 and v2 receive

two secrets of the same share, generally speaking, they will have two choices: processing

the two shares themselves, or transmitting the two shares to another pair. If they choose

to process the two shares themselves, obviously, there will be no violation of the privacy

constraint. If they choose to schedule the shares to another pair, there will be another two

choices: transmitting the two shares to v1 and v3, or v2 and v3. When secret shares are

transmitted to v1 and v3, it can actually be seen as the case that the first secret share is still

processed by v1 itself, while the second secret share is transmitted from v2 to v3. A similar

case applies to secret shares being transmitted to v2 and v3. The detailed assignments

are shown in Fig. 3.4. It is easy to imagine when an edge network has K(K > 3) nodes,

the reference node pair (vi1 , vi2) can have three kinds of choices (instead of just two

in the above example) when two received secret shares are determined to be transmitted

to another pair. Besides being transmitted to node pair (vi1 , vj2) and (vj1 , vi2), the secret
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Figure 3.4: Detailed assignments of secret shares.

shares can also be transmitted to node pair (vj1 , vj2). Here, i1, i2, j1, j2 = 1, 2, · · · ,K, and

i1, i2, j1 and j2 are all different.

With the above pairwise architecture, two shares of the same secret have no chance to

be transmitted to the same node. On the other hand, we need to reconsider the system

model and optimization problem described in Section 3.3. Previously, we consider the whole

system from the perspective of each edge node. With the introduction of privacy constrain,

we should consider the system in node pairs. Fortunately, the system still follows Little’s

Law, but with a little modification for the arrival rate of each edge node. In Fig. 3.3, we

give the proportion of secret shares processed by node pair (v1, v2) itself, denoted as P1,2.

Based on previous discussion, we have shown that even if two shares of the same secret will

be transmitted to another node pair, the situation still exists that one of these two secret

shares will still be processed by the original node. In other words, the proportion of a node

Pi1 is not necessarily equal to the proportion of a node pair Pi1,i2 . In the example shown

in Fig. 3.3, we actually have P1 = P2 = P1,2 +
1−P1,2

2 =
1+P1,2

2 . When the case is extended

to an edge network with K edge nodes, we should have the following relationship:

Pi1 = Pi2 = Pi1,i2 +

(
1

K−1

)
− 1(

2
K

)
− 1

(1− Pi1,i2) =
2 + (K − 1)Pi1,i2

K + 1
(3.5)

The arrival rates need to be modified accordingly when described by Pi1,i2 .

From (3.5), we can see that Pi1 and Pi2 are the same. Actually, if we consider the
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whole edge network from the perspective of node pair (vi1 , vi2), the first-hop arrival rate

of these two nodes αi1 and αi2 are also the same, denoted as λi1,i2 for notation ease. This

is because a node pair corresponds to two shares of the same secret. Obviously, these two

secret shares always arrive at the same time. In this situation, the minimal HOL delay

summation, described in (3.2), of these two nodes should be the same. In other words,

we just need to minimize the HOL delay summation from the perspective of one of these

two nodes, which makes the optimization objective in (3.3) unchanged. Besides, with our

generated pairwise architecture, the privacy requirement can be met, which corresponds to

the constraint in (3.3).

Similar to traditional scheduling policies, our pairwise scheduling process can also be

described by a Markov chain, which is called as pairwise Markov chain in this research

project. Each system state of our constructed pairwise Markov chain is denoted as Z(t) =

(O(t),Q(t)), where O(t) and Q(t) represent the working status and queue length vector,

respectively. Each element ok(t), with k = 1, 2, · · · ,K, in O(t) reflects how many time slots

are still needed for the k-th server to complete its current task. Recall that in Section 3.3.1,

we assume that the total number of time slots for an edge node to complete a task is

No. Therefore, each ok(t) has No + 1 possible values, with ok(t) = 0, 1, 2, · · · , No, where

ok(t) = 0 means that the server is idle in this time slot. Each element qk(t) in Q(t)

represents the queue length with a structure similar to that of ok(t). For the edge network

with K nodes, the state space S ⊆ {0, 1, · · · , No}K ×{0, 1, · · · Mq}K represents all possible

states of our Markov chain that can be reached from the initial state, which is defined as

Z(0) ≜ (0K×1,0K×1). Mq depends on the storage limit of each server.

3.4.2 Pairwise Markov Chain Achievability

According to [83], an irreducible Markov chain has a positive stationary distribution if and

only if all of its states are positive recurrent. In other words, we can prove that our Markov

chain has a stationary distribution by showing that it is irreducible and positive recurrent.
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Proposition 3.4.1. The pairwise Markov chain proposed in this research project is irre-

ducible.

Proof. For irreducibility, we should show that any two states can be reached from each

other in our Markov chain. Since by the definition of our Markov chain, the initial state can

reach any other states, we just need to show that any states can reach the initial state. In

our Markov chain, we assume that the initial state has a possible transition to itself. This

transition is necessary and reasonable, since we should consider the case that no tasks are

in the edge in a certain time slot. Such an assumption will just make our Markov chain

aperiodic. This means that for a given set of transition probabilities, our Markov chain will

just have one stationary distribution, which does not influence our proof.

With the above assumption, we can give a proof for irreducibility as follows. For any

state Z(t), we can find the server with the longest queue length qmax. Recall that each task

can be completed in No time slots. Then, we can assume an event that in No(qmax + 1)

time slots, there are no tasks arriving at the edge. From Section 3.4.1, we know that

the arrival rate of node pair (vi1 , vi2) is λi1,i2 . Then, the probability of this event is (1 −

λi1,i2)
No(qmax+1) > 0, which means that this event can happen. If this event happens, the

edge will complete all tasks that are both in service and queued in No(qmax + 1) time

slots. In other words, the current state will transit to the initial state Z(0) in at most

No(qmax + 1) time slots. Note that some states Z(t) may transit to the initial state in

less than No(qmax + 1) time slots with our task switch operations. However, this does not

matter since for the initial state, we have already assumed a possible transition to itself.

Since any state in our Markov chain can have such an event, any state can reach back to

the initial state, which proves the irreducibility.

Now, we have shown that our Markov chain is irreducible. We still have to show that

our Markov chain is positive recurrent. Here, we utilize Foster-Lyapunov theorem [84] to

prove it.

Proposition 3.4.2. The pairwise Markov chain proposed in this research project is positive
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recurrent.

Proof. Consider a Lyapunov function defined as follows:

V (Z(t)) ≜ ∥O(t)∥+ ∥Q(t)∥ =
K∑
k=1

ok(t) + qk(t) (3.6)

Here, ∥·∥ is the L1-norm. Then, according to Foster-Lyapunov theorem, it suffices to show

that for any given state Zc, our Markov chain has:

E[V (Z(t+ 1))− V (Z(t))|Z(t) = Zc] ≤ −δ, Zc ∈ F (3.7a)

E[V (Z(t+ 1))− V (Z(t))|Z(t) = Zc] < C, Zc /∈ F (3.7b)

Here, E[·] calculates the expected value. δ and C are two strict positives. F denotes some

finite set. Next, we will show how to find δ, C and F .

In our Markov chain, we define F to include all states where every node in the server

is busy with some task. Formally, F = {ZF = (OF ,QF )|oF,k ̸= 0 for ∀oF,k ∈ OF , k =

1, 2, · · · ,K}. In this case, for any Zc ∈ F and K ≥ 3, we have:

E[V (Z(t+ 1))− V (Z(t))|Z(t) = Zc]

=E[∥O(t+ 1)∥+ ∥Q(t+ 1)∥ − ∥O(t)∥ − ∥Q(t)∥|Z(t) = Zc]

=
K∑
k=1

[ok(t+ 1)− ok(t)] +

K∑
k=1

[qk(t+ 1)− qk(t)]

≤−K + 2 < 0 (3.8)

Since every edge node is busy with some task, after one time slot passes, each element in the

working status vector can only decrease by 1. With totally K edge nodes, ∥O(t+ 1)∥ will

decrease by K compared with ∥O(t)∥. Besides, with the unit arrival process assumption,
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there are at most two new tasks (one secret split into two shares) arriving at node pair

(vi1 , vi2) in the current time slot. Then, no matter whether these two tasks are processed

by the current nodes or transmitted to other nodes, ∥Q(t+1)∥ will not be further changed.

Therefore, ∥Q(t+1)∥ can at most increase by 2 compared with ∥Q(t)∥. Then, the expected

value is at most equal to (3.8). Furthermore, if we want to make the scheduling problem

meaningful, K should be larger than 2. Therefore, (3.8) is less than 0. In this case, for any

Zc ∈ F , the expected value is strictly less than 0. In other words, we can find a strictly

positive δ, satisfying formula (3.7a).

On the other hand, for any Zc /∈ F , some edge nodes may be idle, which may make the

total decrease of ∥O(t)∥ less than K. Besides, similar to the case of Zc ∈ F , ∥Q(t+1)∥ can

at most increase by 2 compared with ∥Q(t)∥. Then, we can see that the largest expected

value happens when all edge nodes are idle. In other words, we have (3.9), which is not

greater than 2. In this case, we can pick any C > 2. Then, we can have that for any

Zc /∈ F , formula (3.7b) is satisfied.

E[V (Z(t+ 1))− V (Z(t))|Z(t) = Zc]

=

K∑
k=1

[ok(t+ 1)− ok(t)] +

K∑
k=1

[qk(t+ 1)− qk(t)]

≤0 + 2 = 2 (3.9)

Based on the above analysis, we have proved that our Markov chain is irreducible and

positive recurrent. In this case, we can claim that the chain has a stationary distribution.

3.4.3 Privacy Constrained Stochastic Task Scheduling Modeling

Next, let’s take a look at how to relate the privacy constraint to our constructed pairwise

Markov chain. Previously, we have listed four situations that do not violate the privacy

constraint. These four situations can be ensured through carefully designing transition
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probabilities in our constructed pairwise Markov chain. For a network with totally K

nodes, we will have (K − 1)K/2 pairs, which is denoted as (vk1 , vk2) in this section. From

the perspective of a given reference node pair (vi1 , vi2) and for each state Z(t), we will

assign a probability for an assignment to node pair (vk1 , vk2), denoted as P k1,k2
Z(t) . Note that

as has been discussed before, k1 = i1 or k2 = i2 actually correspond to the cases that secret

shares will be processed by the current nodes. We can construct relationships between these

probabilities and transition probabilities to ensure the privacy constraint. Here, two cases

are discussed in detail for relationship construction between those two probabilities. Similar

discussions can be done from the perspective of any given node pair.

Case 1: In this case, we will discuss all the states in our constructed Markov chain whose

elements in the working status vector are all not zero. This means that all edge nodes are

in service. In other words, when our Markov chain arrives at the state Z(t) = ((ok(t) ̸=

0)K×1, (qk(t))K×1), it can only transit to the state Z(t + 1) = ((ok(t) − 1)K×1, (qk(t) +

∆qk)K×1). Here, ∆qk can be 0 or 1. Value 0 means that there is no new task assigned to

node vk in the current time slot, while value 1 means that there is an assigned task to vk.

In this case, we should have:

Pr{Z(t+ 1)|Z(t)} =


λi1,i2P

k1,k2
Z(t) ∆qi = ∆qj = 1

1− λi1,i2 ∆qk = 0,∀k
(3.10)

It is easy to imagine that all ∆qk = 0 represents there are no newly arrived tasks.

Case 2: In this case, we will discuss all the states in our Markov chain who have

elements with value 0 in the working status vector. This means that some edge nodes

are idle, and can process their next queued tasks. Then, we should have Z(t + 1) =

((ok(t) +∆ok)K×1, (qk(t) +∆qk)K×1). ∆ok can be −1, 0, N , and ∆qk can be −1, 0, 1. Each

combination of ∆ok and ∆qk corresponds to a subsequent system state. The value of ∆ok

and ∆qk are determined by the arrival process, working status of each edge node and task
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assignment strategy. When ok(t) ̸= 0, the corresponding edge node is in service, and Case

2 will get simplified to Case 1. If the edge node is idle (ok(t) = 0), ∆ok can be 0 or No.

It is 0 when the edge node has processed all the queued tasks and has no newly assigned

task. In this situation, ∆qk can only be 0. Otherwise, ∆ok will be No. As for ∆qk, its value

should be -1 if there is no newly arrived task, and 0 with a newly arrived task.

After the above discussion about possible combinations of ∆wk and ∆qk, it is the time

to consider those transition probabilities. Before that, we further summarize those possible

combinations into five categories. Each combination is denoted as ci, with i = 1, 2, · · · , 5.

In detail, c1 = (∆qk = 1,∆ok = −1), c2 = (∆qk = 0,∆ok = No), c3 = (∆qk = 0,∆ok = 0),

c4 = (∆qk = 0,∆ok = −1), and c5 = (∆qk = −1,∆ok = No). c1 and c2 correspond to the

situations that there is a newly assigned task, and we use a set CY to include them. c3, c4

and c5 correspond to the situations that there is no newly assigned task, which is included

by the set CN . Then, the transition probability can be described as follows:

Pr{Z(t+ 1)|Z(t)} =


λi1,i2P

k1,k2
Z(t) (∆qi,∆oi) ∈ CY , (∆qj ,∆oj) ∈ CY

1− λi1,i2 (∆qk,∆ok) ∈ CN , ∀k
(3.11)

Based on the above discussion, we can construct relationships between P k1,k2
Z(t) and tran-

sition probabilities. The parameters to be tuned are actually P k1,k2
Z(t) .

3.4.4 Optimization Problem Modeling

Next, we will talk about how to complete constructing our optimization model in detail.

Recall that in Section 3.3, we gave a general idea of the proportion Pi1 and Pi2 (Pi in Sec-

tion 3.3), the privacy constraint, and parameters to be tuned for our optimization problem.

In Section 3.4.1, we have shown that Pi1 = Pi2 , and we just need to consider the HOL

delay summation from the perspective of one of those two nodes vi1 and vi2 . Besides, in the

last section, we constructed our pairwise Markov chain for privacy constraint enforcement,
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and defined parameters to be tuned as P k1,k2
Z(t) . In this case, our optimization problem can

be rewritten as (3.12). For simplicity, Pr{Z(t + 1)|Z(t)} is represented by Prz1,z. The

stationary distribution is described as Distz.

min
P

k1,k2
Z(t)

T = d1 + d2

s.t.
∑
z∈S

Prz1,z ·Distz = Distz1 ,∀z1 ∈ S

∑
z∈S

Distz = 1

P k1,k2
Z(t) ≥ 0

(3.12)

Here, the first two constraints represent stationary state equations of our Markov chain. The

relationship between P k1,k2
Z(t) and Prz1,z is described in equation (3.10) and equation (3.11).

With our Markov chain, di1,k can be calculated through the extension of equation (3.1) as

follows (di2,k has the same form):

di1,k =
1

βi1,k

Mq∑
mq=0

mq · Pr{qi1,k = mq} =
1

βi1,k

Mq∑
mq=0

mq

∑
z∈S

qi1,k=mq

Distz (3.13)

Here, Mq corresponds to the storage limit of each server. Recall that when k = i1, βi1,i1 =

αi1,1, qi1,i1 = q1 and di1,i1 = d1, while for all k ̸= i1, βi1,k = αi1,2, qi1,k = q2 and di1,k = d2.

If we can solve the optimization problem described in (3.12), the proportion Pi1 and

Pi2 can be calculated with those P k1,k2
Z(t) . In detail, we can firstly calculate the node pair

proportion Pi1,i2 based on (3.14). Then, Pi1 and Pi2 can be derived based on the relationship
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described in (3.5).

Pi1,i2 =

∑
z∈S Distz ·

∑
z1∈S1

P k1,k2
z∑

z∈S Distz ·
∑

z1∈S2
P k1,k2
z

(3.14)

Here, Z(t) and Z(t + 1) are respectively simplified to z and z1. Given any system state

z ∈ S, S1 indicates a portion of subsequent system states of z, These subsequent system

states correspond to the case that k1 = i1 and k2 = i2. In other words, the newly arrived

tasks are decided to be processed by the current node pair. S2 corresponds to the set of all

possible subsequent system states of z.

3.5 Optimization Problem Solving

As has been discussed in the last section, we need to firstly solve the optimization problem

described in (3.12) in order to derive the proportion Pi1 and Pi2 . The optimization model

described in (3.12) can theoretically be solved. However, considering its nonlinearity, it

is not computationally practical. In this section, we will give a full description of how to

transform our optimization problem to a linear equivalent form, and solve it through linear

programming.

Firstly, we let Xk1,k2
z = Distz · P k1,k2

z . Since
∑K

k1,k2=1,k1 ̸=k2
P k1,k2
z = 1, we should have∑K

k1,k2=1,k1 ̸=k2
Xk1,k2

z = Distz correspondingly. After that, the original optimization model

is considered together with equation (3.5), (3.11), (3.13) and (3.14), and can be transformed
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to the following form:

min
X

k1,k2
z ,Pi1,i2

T = d1 + d2

s.t. C1(X
k1,k2
z , Pi1,i2) = 0

C2(X
k1,k2
z1 ) = 0,∀z1 ∈ S

∑
z∈S

K∑
k1,k2=1,k1 ̸=k2

Xk1,k2
z = 1

Xk1,k2
z ≥ 0

(3.15)

Where d1 and d2 can be described by Xk1,k2
z , Pi1,i2 with the following two formulas:

d1 =
K + 1

αi1 [2 + (K − 1)Pi1,i2 ]

Mq∑
mq=0

mq

∑
z∈S

q1=mq

K∑
k1,k2=1,k1 ̸=k2

Xk1,k2
z

d2 =
K + 1

αi1(1− Pi1,i2)

Mq∑
mq=0

mq

∑
z∈S

q2=mq

K∑
k1,k2=1,k1 ̸=k2

Xk1,k2
z

(3.16)

The first and second constraint respectively come from equation (3.14) and the first sta-

tionary state equation of our Markov chain. In detail, we have:

C1(X
k1,k2
z , Pi1,i2) =

∑
z∈S

∑
z1∈S1

Xk1,k2
z − Pi1,i2

∑
z∈S

∑
z1∈S2

Xk1,k2
z

C2(X
k1,k2
z1 ) =

∑
z∈S

∑
z1∈S3

αi1X
k1,k2
z +

∑
z∈S

∑
z1∈S4

(1− αi1)

K∑
k1,k2=1,k1 ̸=k2

Xk1,k2
z −

K∑
k1,k2=1,k1 ̸=k2

Xk1,k2
z1

(3.17)
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Here, S3 and S4 are respectively the set of subsequent states with and without newly arrived

tasks. With (3.15), (3.16) and (3.17), the original optimization problem is transformed to

an equivalent linear programming problem. We can use a one-dimensional search algorithm

proposed in [80] to solve it. The optimal set of Xk1,k2
z , denoted as Xp, will be firstly

obtained for each given Pi1,i2 ∈ [0, 1]. Then, we will conduct a horizontal comparison

for all combinations of the optimal set Xp and given Pi1,i2 to find the optimal P ∗ and the

corresponding ultimate optimal setX∗. Finally, all transition probabilities can be calculated

through P k1,k2
z = Xk1,k2

z · (
∑K

k1,k2=1,k1 ̸=k2
Xk1,k2

z )−1 and equation (3.11).

3.6 Simulation and Evaluation

In this section, we will give a full analysis for the efficiency of our proposed privacy-

preserving stochastic task scheduling strategy. Our scheme is compared with two baselines:

• Random Walk (RW): Each idle pair receiving two secrets of the same secret will randomly

select another pair, which does not include themselves, and transmit those two portions

to that pair for processing. This case actually corresponds to the proportion for local

processing Pi1 = Pi2 = 0.

• Greedy Local Processing (GLP): Each idle pair receiving two shares of the same secret will

choose to process those two shares themselves anytime. This case actually corresponds

to the proportion for local processing Pi1 = Pi2 = 1.

In the simulation, we consider an edge with six nodes. The largest possible number of

queued tasks Mq is set to be 5. As has been mentioned in Section 3.3.1, the processing

latency No for all tasks in this research project can be considered the same. Here, we assume

that No = 20 time slots. Besides, we respectively add a bias of 100 time slots to reflect

possible node and link corruptions. Such biases are randomly applied to the whole network.

Fig. 3.5(a) shows the comparison among our task scheduling strategy, RW and GLP.
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(a) (b)

Figure 3.5: Efficiency evaluation results. (a) Queuing plus processing latency vs. arrival
rate. (b) Optimal proportion for local processing vs. arrival rate

From this figure, we can see that as the arrival rate grows, all of the three task schedul-

ing strategies have longer latency, which is consistent to our intuition. Overall, our task

scheduling strategy has the most optimal result. When the arrival rate is low, GLP almost

has the same latency as our task scheduling strategy. This is because at this time, edge

nodes usually do not have queued tasks. In this case, tasks are better to be served locally

as soon as they reach the edge nodes. Transmission to other nodes can meet additional link

corruptions besides node corruptions. When the arrival rate rises, GLP begins to achieve

performance similar to our task scheduling strategy. This indicates that passing tasks to

other nodes is proper for a higher arrival rate. Finally, Fig. 3.5(b) shows the optimal propor-

tion of local processing Pi1 or Pi2 for different arrival rates. From this figure, we can notice

that the proportion Pi1 or Pi2 are not exactly 1, 0.9 actually, when the arrival rate is low.

The reason is that node corruptions will cause queued tasks. When tasks are queued in one

node, it is better to distribute them to other nodes to fully utilize computation resources

of the whole network.
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3.7 Future Work

In this section, we want to discuss briefly about potential improvements and extensions of

our privacy-preserving scheduling policy in this chapter.

• In this chapter. we assume that the attacker can only eavesdrop one edge node, which

can be overcome through (2,2) SS. In the next chapter, we extend (2,2) SS to (R,L) SS

to tackle the case with multiple edge nodes getting hacked. Even worse, all edge nodes

have the possibility to be owned by the same entity and all get compromised. This

case may not be solved properly just by privacy-preserving scheduling. In addition,

schedulers may also be attacked. It is also interesting to look into the case that

schedulers act maliciously.

• The privacy-preserving task scheduling strategy in this chapter is based on a com-

paratively simple mobile edge computing architecture, in which all the edge nodes

are connected to each other and have the same computation and storage capacity. In

the next chapter, the scheduling problem is considered in a more general mobile edge

computing structure. In the future, we will also strive to encompass heterogeneous

edge devices into the scheduling algorithm design.

• Communication latency and throughput constraints are not considered in this chapter,

which restricts the scalability of the scheduling policy in this chapter. In the real world,

communication between local devices and edge nodes are usually through wireless

networks. Besides, communication among edge nodes can either be wired or wireless.

A more granular and comprehensive task scheduling strategy needs to be developed,

which considers communication factors, such as communication overhead, bandwidth,

reliability, and energy.
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3.8 Summary

In this chapter, we propose a privacy-preserving stochastic task scheduling strategy for

locally-learned model parameter aggregation in federated learning based on (2,2) SS. Secrets

are randomly split into two shares for encryption and transmitted to two edge nodes for

processing. During the whole process, all edge nodes should not have the chance to get

both two shares of the same secret. In order to guarantee such a privacy constraint, we

construct a pairwise Markov chain to take care of it. Edge nodes are considered in pairs in

all system states of our proposed Markov chain. The achievability can be proved through

showing irreducibility and positive recurrence. Queuing plus processing latency can be

minimized based on our constructed pairwise Markov chain. Simulation results validate

that our task scheduling strategy can achieve minimal latency and guarantee the privacy

constraint simultaneously.
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Chapter 4: Communication-Aware Secret Share Placement

in Hierarchical Edge Computing

This chapter can be seen as an extension of the last chapter. We consider (R,L) Secret

Sharing (SS) instead of (2,2) SS. Besides computation latency, we also need to consider

communication overhead among those edge servers, especially after each secret being sepa-

rated to more than two shares. This research project is related to the publication [23].

4.1 Introduction

In this research project, we design a communication-aware secret share placement strategy

in mobile edge computing to minimize communication overhead among different secrets

and shares in terms of weighted transmission hop counts. The computation and storage

capacity of each edge node is considered by applying a limitation with regard to queue

length. The strategy is deployed in a hierarchical mobile edge computing architecture shown

in Fig. 4.1. Hierarchical architectures [31–34] are widely considered recently in mobile edge

computing, which provide flexibility in balancing traffic loads in the whole edge network,

and bring improved quality of service (QoS).

Instead of directly involving mobile local devices in the computation process, data in

each user will be separated into L shares and uploaded to L different nearby access points.

Afterwards, all the computation will be conducted on edge, which will further reduce the

possibility of packet loss due to user dropouts. Fig. 4.2 illustrates an example with L = 2.

Since communication happens among shares of the same secret and different secrets, we

should put all those uploaded secret shares as closely as possible. On the other hand, our

scheduling policy should also guarantee that a certain number of shares of the same secret
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Figure 4.1: Hierarchical mobile edge computing network.

should never be assigned to the same edge server. Note that this number is not necessary

R if an adversary can compromise multiple edge nodes at the same time.

The related optimization problem is a typical combinatorial search problem, which

is NP-hard. In this case, sub-optimal solutions can be derived through heuristic algo-

rithms. Classical heuristics include Genetic Algorithm (GA) and Particle Swarm Optimiza-

tion (PSO). In this chapter, based on characteristics of the optimization problem, we at

first developed two basic heuristics, i.e. the top-down and bottom-up heuristic, which can

outperform GA and PSO in a certain cases. Afterwards, we further integrated the above
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Figure 4.2: An example of privacy-preserving task scheduling based on MPC

two heuristics and proposed the Bottom-Up Top-Down (BUTD) heuristic, which can out-

perform all the above four heuristics when communication among different shares of the

same secret is comparable to that among different secrets. The main contributions of this

research project are as follows:

• Based on SS, MPC and the hierarchical edge computing network structure, we propose a

communication-aware secret share placement strategy to minimize communication over-

head in terms of weighted transmission hop counts among different secrets and shares.

We show that the whole scheduling process can be modeled as an optimization problem

with the computation and storage limitation and privacy constraint, which is actually an

NP-hard problem. Heuristic algorithms can be developed to find the sub-optimal solution

in this case.

• Based on the characteristics of the optimization problem, we develop two basic heuris-

tic algorithms, i.e. the top-down and bottom-up heuristic, which respectively minimize

weighted communication hop counts among different secrets with acceptable hop counts

among different shares of the same secret, and vice versa. We systematically analyze

that these two heuristics can outperform two classical heuristics, i.e. GA and PSO, in a
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certain cases.

• We further integrate the top-down heuristic with bottom-up heuristic, and propose BUTD,

which outperforms all the above four heuristics when communication among different

shares of the same secret is comparable to that among different secrets. Therein, the

bottom-up heuristic is applied together with consideration of remaining computation and

storage space within a neighborhood at the initialization stage of the top-down heuristic.

The rest of this chapter is organized as follows. In Section 4.2, we discuss related works.

In Section 4.3, we give a full description of our communication-aware privacy-preserving

task scheduling system. Our two basic heuristics are presented in Section 4.4, followed

by Section 4.5, which talks about our proposed BUTD heuristic. Strategies to simplify

algorithm deployment are provided in Section 4.6. Experimental results and analysis are

given in Section 4.7, and conclusions will be drawn in Section 4.9.

4.2 Related Works

MPC popularizes recently with the development of federated learning [3], in which a global

machine learning model can be trained without the need of uploading raw data to public

servers. However, contributors may be concerned that those uploaded gradients can still

leak sensitive information to a certain extent [18–21]. Considering this, many recent works

[22,24,25,67] propose to further protect data to be uploaded via SS and MPC.

4.2.1 Secret Sharing and Secure Multi-Party Computation

MPC is usually believed to originate from Yao’s garbled circuit protocol [87]. Later, SS is

further introduced to improve the privacy-preserving level and combat package loss during

transmission. A typical (R,L) SS scheme can tolerate an adversary controlling at most

R−1 shares of a secret. Currently, the two most popular secret sharing schemes are Shamir

[88] and additive secret sharing. Shamir secret sharing is secure against a passive adversary

when R < L
2 , while against an active adversary when R < L

3 . Additive secret sharing can
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tolerate an adversary controlling L − 1 shares no matter whether the adversary is passive

or active. Typical MPC schemes include [89–91]. Later, Damg̊ard et al. [92] developed

an MPC scheme, called SPDZ, which is unconditionally secure against active and adaptive

corruption of up to L−1 of the L parties. This work is followed by two major improvements,

i.e. SPDZ2 [93] and MASCOT [94], which accelerate data preprocessing via advanced check

of Message Authentication Code (MAC) and oblivious transfer, respectively.

Recently, federated learning gives SS and MPC new vitality considering high consilience

between their deployment scenarios. Therein, Mohassel and Zhang [24] proposed a two-

server model to have linear regression, logistic regression and neural network training, which

was later extended to a three-server situation in [95]. Bonawitz et al. [22] systematically

designed a secure aggregation protocol in federated learning based on SS and MPC. In [67],

the authors further introduced differential privacy to parameter aggregation in federated

learning, which can protect against collusion between public servers and local devices. Later,

Li et al. [25] proposed a chained MPC structure to reduce communication overhead between

public servers and local devices. In this structure, several local devices are grouped into a

chain and only communicate with their neighbors. Only the very first and last local device

will communicate with the public server. However, such a structure is vulnerable to packet

loss or user dropout, and SS is hard to deploy here considering that those secret shares need

to be broadcast to several other local devices.

4.2.2 Combinatorial Search

As has been discussed previously, SS and MPC usually suffer from high communication

overhead. Recently, the proposal of edge computing can effectively lower it by offloading

some computation tasks to nearby edge servers. However, how to deploy SS and MPC in

edge computing still remains largely open.

Different from cloud computing, computation offloading strategies among edge nodes

become critical in determining data processing latency and energy consumption, especially

72



considering that edge nodes have limited computation and storage capacity, and are dis-

tributed and hierarchically structured [31–34]. In [69], based on (2, 2) SS and MPC, we

designed a structure, called pairwise Markov chain, to realize proper computation offload-

ing among edge nodes. The relevant optimization problem can be solved through linear

programming.

In this research project, we generalize the (2, 2) SS scheme to (R,L). We find that

the relevant optimization problem can be considered as a combinatorial search problem,

which is NP-hard. According to the taxonomy in [96], our problem is quite related to

problems in Group 9, i.e. scheduling of single-user workflow jobs in cloud environments.

Representative related works propose to use heuristic algorithms, such as genetic algorithm

(GA) [97, 98], particle swarm optimization (PSO) [99, 100], partial critical paths (PCP)

[101, 102], to find sub-optimal solutions to those problems. However, all the above works

did not consider any privacy constraints. Besides, we will show in Section 4.5.1 that with a

proper heuristic design, we can introduce some intrinsic restrictions to help us find better

sub-optimal solutions to our optimization problem.

4.3 Model Construction and Problem Formulation

Fig. 4.2 shows a toy example of our targeted communication-aware secret share placement

problem based on (2, 2) SS. In this figure, a user wants to distribute two shares of its

secret to a toy network with three public servers, which already has two secrets assigned.

According to the share index, three servers are divided into two groups. We define the

intra-group communication as all communication among shares of different secrets with

the same index. An example is illustrated with a yellow double arrow dash line in Fig. 4.2.

On the other hand, the inter-group communication includes all communication among

different shares of the same secret. An example is illustrated with a purple double arrow

dash line in Fig. 4.2. Our scheduling policy aims at helping the user distribute the two

shares, and the final assignment result should have minimal intra-group and inter-group

communication overhead.
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4.3.1 System Model

Our system model design is based on the following three main assumptions: (1) The mo-

bile edge computing has a hierarchical network structure illustrated in Fig. 4.1; (2) The

number of field-level servers S is largely greater than L (represented by the symbol “>>”

in Fig. 4.1), and secret shares will only be stored in those field-level servers; (3) Each level

in the network has enough communication channels or access points (greatly larger than

L) to meet requirements of the privacy constraint during secret share switching. Note that

based on specific applications, the first two assumptions can be modified by just tuning the

secret matrix Ca and share matrix Cb to be discussed below, which will not impact related

algorithms in this research project. We are based on these assumptions for the simplicity

of analysis. In addition, the third assumption can be realized through multipath routing

protocols [103–105].

Let’s then assume a job to schedule M secrets under an MPC scheme, which separates

a secret to L shares. When the m-th secret is to be assigned, we use am,l to denote the

index of the field-level server to be distributed to the l-th share of the secret. A secret

share assignment vector Am is further introduced to include all those am,l, i.e. Am =

(am,1,am,2, · · · ,am,L). Besides, for all those m− 1 assigned secrets, we introduce L sets of

Bm,l to include field-level server indices assigned to the l-th shares of those m − 1 secrets,

i.e. Bm,l = {a1,l,a2,l, · · · ,am−1,l}. Considering the hierarchical network structure shown

in Fig. 4.1, field-level servers will be indexed from the deep to field level. In detail, we have

am,l = (dm,l, im,l, sm,l, fm,l), where dm,l, im,l, sm,l and fm,l respectively represent the server

index in the deep, intermediate, shallow and field level.

As has been mentioned before, our system model has two matrices to describe intra-

group and inter-group communication overhead in terms of weighted communication hop

counts, i.e. the secret and share matrix. In this chapter, these two matrices are respec-

tively denoted as Ca and Cb. Considering the hierarchical network structure, we assign

different values or overhead to communication between two secret shares having different
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server position relationships. We use cmin and cmax to represent the minimal and maxi-

mal communication overhead in terms of weighted hop counts in the hierarchical network

structure. We assume that if two secret shares are distributed to the same field-level server,

their communication has the minimal overhead. At the other extreme, if two secret shares

are assigned to two different field-level servers allocated in different deep-level server clus-

ters, their communication has the maximal overhead. In between, different communication

overhead ranging from cmin to cmax will be assigned in different cases. In addition, based

on (R,L) SS, if R− 1 shares of a particular secret have been assigned to a particular field-

level server, we will set the corresponding element in the diagonal of Cb to infinity, which

enforces that any R shares of the same secret are not assigned to the same field-level server.

Note that this setting is based on the assumption that an adversary can compromise only

one edge node at a time, which needs to be tuned further if multiple edge nodes can be

attacked at the same time. All the above settings will be realized through introducing two

communication overhead coefficients, i.e. κ and ρ, described in Table 4.1, in which we have

1 < κ1 < κ2 < κ3 < κmax and 1 < ρ1 < ρ2 < ρ3 < ρmax. In this research project, we will

test a linear and exponential communication overhead increase with those two coefficients.

In Section 4.3.2, we will provide the value of each element in Ca and Cb under those two

kinds of communication overhead increase.

Table 4.1: Detailed Description of Value Assignments in Ca and Cb

κ ρ Description

κmax ρmax Different deep-level server clusters, dm1,l1 ̸= dm2,l2 .

κ3 ρ3 Different intermediate-level server clusters of the same deep-level
server cluster, dm1,l1 = dm2,l2 but im1,l1 ̸= im2,l2 .

κ2 ρ2 Different shallow-level server clusters of the same intermediate-
level server cluster, im1,l1 = im2,l2 but sm1,l1 ̸= sm2,l2 .

κ1 ρ1 Different field-level servers of the same shallow-level server cluster,
sm1,l1 = sm2,l2 but fm1,l1 ̸= fm2,l2 .

1 1 or ∞ The same field-level server, fm1,l1 = fm2,l2 .
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Note that the above value assignments are based on the assumptions discussed previ-

ously. We can actually further tune Ca and Cb to satisfy different network structures and

enforce various security and privacy constraints. Heterogeneous communication links and

conditions can also be encompassed. Moreover, we can take into account the data size factor

during transmission, since the more data need to be carried during a transmission, the less

hop counts we hope to have. In this research project, a weight ws is introduced to represent

the data size ratio between intra-group and inter-group communication.

4.3.2 Optimization Problem Formulation

With the above system model, we can formulate the following optimization problem to

minimize communication overhead in terms of weighted hop counts

argmin
Am

L∑
l=1

Da(am,l, Bm,l) + ws ·Db(Am) (4.1a)

subject to,

∀s ∈ {1, 2, · · ·S}, qs < Q (4.1b)

In (4.1a), the first and second term respectively correspond to intra-group and inter-group

communication, which can be further decomposed to

Da(am,l, Bm,l) =

m−1∑
m′=1

Ca(am,l,am′,l) (4.2)

and

Db(Am) =
∑
l1<l2

l1,l2∈{1,2,···L}

Cb(am,l1 ,am,l2) (4.3)
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(4.1b) defines the computation and storage limitation of each field-level server in terms of

queue length. In this work, all field-level servers are assumed to have the same computation

and storage limitation, which can buffer at most Q shares at the same time. Such an

assumption can also be modified by changing the value of Q in each field-level server.

As has been mentioned in Section 4.3.1, we test two kinds of communication overhead

increase in this research project. For linear increase, Ca and Cb are defined as follows

Ca(κ) =
cmax − cmin

κmax − 1
· κ+

κmax · cmin − cmax

κmax − 1
(4.4a)

Cb(ρ) =
cmax − cmin

ρmax − 1
· ρ+ ρmax · cmin − cmax

ρmax − 1
(4.4b)

The exponential increase has the following form

Ca(κ) = (
(cmin)

κmax

cmax
)

1
αmax−1 × e

κ
κmax−1

·ln cmax
cmin (4.5a)

Cb(ρ) = (
(cmin)

ρmax

cmax
)

1
ρmax−1 × e

ρ
ρmax−1

·ln cmax
cmin (4.5b)

Here, κmax and ρmax respectively represent the maximal value of κ and ρ. Note that here

we directly use κ and ρ as parameters in Ca and Cb for simplicity. In fact, we further have

an intrinsic mapping from Ca(am,l,am′,l) to Ca(κ), and from Cb(am,l1 ,am,l2) to Cb(ρ),

which have already been fully described in Table 4.1.

Unfortunately, the above optimization problem is a typical combinatorial search prob-

lem, which has long been proven an NP-hard problem. The search space for this problem is

SL. In other words, the search space will grow exponentially with the number of field-level

servers, which can be further expanded by increasing the number of secret shares. In this

case, efficient heuristic algorithms need to be developed to find sub-optimal solutions to

this problem.
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4.4 Basic Heuristic Algorithms

In this section, we will list all the four basic heuristic algorithms evaluated in this research

project. The first two are classical heuristics, i.e. GA and PSO. Based on characteristics of

the optimization problem, we additionally propose two heuristics, called the top-down and

bottom-up heuristic.

4.4.1 Genetic Algorithm

Genetic algorithm (GA) was firstly proposed by Holland [106]. During initialization, a

population with P individuals are randomly generated within a certain range. As to our

optimization problem, each individual corresponds to one possible secret share assignment

scheme Am = {xm,1, xm,2, · · · , xm,L}. Note that different from the representation in Sec-

tion 4.3.1, the position of each server is indexed with a scalar xm,l here, which can bring

convenience to secret assignment update to be discussed below. When assigning each secret

based on GA, we will at first randomly generate P such Am. Each element or gene xm,l in

Am is an integer from 1 to S.

After initialization, GA will jump into the breeding process, which is composed of a

given number of iterations or generations. In each generation, a children population with the

same number of individuals P will be generated from the original population through parent

selection, crossover and mutation. Here, we use tournament selection to select parents with

the lowest fitness value (lowest communication overhead in our optimization problem).

Afterwards, children are generated via uniform crossover and mutation based on a normal

distribution N (0, σ2) with a mean value of 0 and a pre-defined standard deviation σ.

GA will terminate after reaching a pre-defined maximal generations. Afterwards, all the

best children in each generation will be further compared to obtain the overall best child,

which is considered as the sub-optimal solution to our optimization problem.
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4.4.2 Particle Swarm Optimization

Particle swarm optimization (PSO) is another well-known heuristic algorithm, which was

firstly proposed by Kennedy and Eberhart [107]. PSO is modeled based on swarming or

flocking behaviors in animals. Different from GA, which resamples the whole population in

each iteration or generation, PSO maintains a static population or swarm throughout the

whole iteration process, and tweaks each individual or particle in the swarm in response to

new discoveries about the space. As to our optimization problem, each possible secret share

assignment scheme Am = (xm,1, xm,2, · · · , xm,L) can be considered as a particle, and PSO

can be applied here to find the sub-optimal scheduling scheme to our problem.

In detail, similar to GA, PSO will randomly generate a swarm Am with P particles

during initialization. Afterwards, PSO tweaks each particle in the swarm by introducing a

velocity set vm = {vm,1, vm,2, · · · , vm,L}, in which each element is impacted by four factors,

i.e. v∗m,l – velocity of particle xm,l in the last iteration, x∗m,l – the best position of particle

xm,l up to now, x+m,l – the best position in the neighborhood of particle xm,l up to now,

and x!m – the best position of any particles up to now. Levels of influence to the velocity of

those four factors are defined by four parameters ι, ι∗, ι+ and ι!. In each iteration, values

of those four parameters are randomly generated between 0 and pre-defined ι0, ι
∗
0, ι

+
0 and

ι!0, respectively. Then, the velocity in each iteration is updated as follows

vm,l ← ιv∗m,l + ι∗(x∗m,l − xm,l) + ι+(x+m,l − xm,l) + ι!(x!m − xm,l) (4.6)

where v∗m,l will be given a random value between a pre-defined −r and r inclusively during

initialization. Afterwards, each particle will be updated by xm,l ← xm,l + ϵvm,l, where ϵ

represents the step size of each particle. Currently, x!m is usually not considered by ι!0 ← 0 to

make the algorithm less likely to get stuck in local optima. Besides, ϵ is commonly set to 1.

Considering that xm,l should be discrete, a rounding operation will be applied additionally.

Similar to GA, PSO will terminate after reaching the pre-defined maximal iterations.
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It will also record the best particle in each iteration, and the overall best particle will

be selected by comparing all those best particles, which is considered as the sub-optimal

solution to our optimization problem.

4.4.3 Top-Down and Bottom-Up Heuristic Algorithm

Up to now, we have introduced two classical heuristic algorithms, which can be applied

to our optimization problem. In this chapter, we propose another two basic heuristic

algorithms based on the characteristics of our targeted optimization problem, which are

respectively called the top-down and bottom-up heuristic algorithm.

The basic idea of these two heuristics is as follows. As is shown in (4.1a), our optimiza-

tion problem has two components, i.e. the intra-group communication
∑L

l=1Da(am,l, Bm,l)

and inter-group communication Db(Am). In those two basic heuristics designed by us, we

only consider either one of those two components and omit the other one. Then, the opti-

mization problem will become fully decomposable to several sub-problems, and the search

space will be greatly reduced from SL to SL, which makes the brute-force method practical

to obtain the optimal solution. Obviously, the so-called optimal solution is still sub-optimal

when the omitted component is considered again. However, we will show later that these

two heuristics can sometimes outperform GA and PSO.

Let’s take a look at the top-down heuristic at first. In this research project, we consider

the intra-group communication as the top-level communication, while the inter-group as

the bottom-level. The top-down heuristic only considers the intra-group communication.

As has been discussed in Section 4.3, the intra-group communication includes all communi-

cation among shares of different secrets with the same index, which are combined together

to generate a group with that index. In this case, under the top-down heuristic, the opti-

mization problem can be fully decomposed to L sub-problems for each secret to be assigned

Am = (xm,l, xm,l, · · · , xm,L). In each sub-problem, we try to find the best server assignment

xm,l, which achieves the minimal sum of communication overhead to all the other members

in Group l. With the brute-force method, we will search all those S field-level servers in the
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network. Without the consideration of inter-group communication, those N sub-problems

are independent of each other, and we can solve them one after another, which will only

incur a linear search space of SL. This makes the brute-force method applicable. On the

other hand, our optimization problem has a privacy constraint that a certain number of

shares of the same secret should not be assigned to the same server. Therefore, if scheduling

repetition passes the given privacy threshold, we will reschedule the current share to the

second best server, and so on. Furthermore, the assignment of the first secret is generated

randomly during initialization. Details of the top-down heuristic are summarized in Algo-

rithm 3. Note that we use the scalar form to represent all the server positions here, i.e.

am,l 7→ xm,l. Such a mapping will be further discussed in Section 4.6.1.

Algorithm 3: Top-down Heuristic.

1 for l = 1 to L do
2 Overhead← 0;

3 Best Overhead←∞;

4 for s = 1 to S do
5 for m′ = 1 to m− 1 do
6 Overhead← Overhead+Ca(s, xm′,l);

7 if Overhead < Best Overhead then
8 xm,l ← s;

9 Best Overhead← Overhead;

10 return A

Contrary to the top-down heuristic, the bottom-up heuristic only considers the inter-

group or bottom-level communication. As has also been discussed in Section 4.3, the inter-

group communication includes all communication among different shares of the same secret.

Similar to the top-down heuristic, the bottom-up heuristic can also make our optimization

problem fully decomposable to L independent sub-problems, which can be solved by search-

ing an SL space with the brute-force method. Differently, the bottom-up heuristic will try

to find the best server assignment xm,l, which achieves the minimal sum of communication

overhead to all the other shares in the same secret. Note that considering the distance is

mutual, when assigning xm,l, we just need to check its hop counts to xm,1, xm,2, · · ·xm,l−1,
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which have already been assigned. xm,1 will be assigned randomly during initialization.

Afterwards, the bottom-up heuristic will apply a sorting function towards Am to further

minimize intra-group communication overhead, which is realized with an O(L3) computa-

tion complexity in this work, and will be discussed more specifically in Section 4.6.2. Details

of the bottom-up algorithm are described in Algorithm 4.

Algorithm 4: Bottom-up Heuristic.

1 xm,1 ← a random server between 1 and S;

2 for l = 2 to L do
3 Overhead← 0;

4 Best Overhead←∞;

5 for s = 1 to S do
6 for l′ = 1 to l − 1 do
7 Overhead← Overhead+Cb(xm,l′ , s);

8 if Overhead < Best Overhead then
9 xm,l ← s;

10 Best Overhead← Overhead;

11 return Sort(Am)

Fig. 4.3 shows a comparison among GA, PSO and two basic heuristics proposed by us

for a job of scheduling 10 secrets, each of which is separated into 10 shares. Linear overhead

growth is utilized. The results are scaled by the number of secrets, i.e. 10 in Fig. 4.3, and

sorted according to the overall communication overhead. From the figure, we can see that

in both cases, GA and PSO achieve similar performance. Our top-down heuristic achieves

the best performance when ws = 1, while the bottom-up heuristic begins to outperform the

other three heuristics when ws = 3.

Actually, such trends aggravate when the weight keeps decreasing from 1 or increasing

from 3. The reason is clear why the top-down heuristic can outperform bottom-up heuristic

or vice versa, since intra-group or inter-group communication are assumed to carry more

data, and those two heuristics respectively consider one of those two kinds of communication.

Besides, the trends can be further changed if we consider different numbers of secrets and

shares in a secret. For a job of scheduling M secrets, each of which is separated to L shares,
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Figure 4.3: Comparison among GA, PSO, top-down and bottom-up method.

the number of intra-group and inter-group communications are respectively (M − 1)L and

L(L−1)
2 . Therefore, increasing the number of secrets will favor the top-down heuristic, since

M is only related to the intra-group communication. The bottom-up heuristic will benefit

from rising the number of shares, because the inter-group communication has a quadratic

relationship with L, while the intra-group communication just keeps a linear increment

towards L. On the other hand, it is also interesting to see that these two basic heuristics can

outperform GA and PSO in some cases, which are two of most popular heuristic algorithms.

In addition, running time can be greatly reduced with the search space shrunk from SL to

SL. In the example shown in Fig. 4.3, running time drops from the order of seconds to

milliseconds. This further makes the two basic heuristics stand out.

4.5 Advanced Heuristic Algorithm

In this section, we will at first analyze why our two basic heuristics can sometimes outper-

form GA and PSO. Afterwards, we further propose an advanced heuristic algorithm, called

the bottom-up top-down (BUTD) heuristic, which can outperform all those four heuristics
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when intra-group communication is comparable to inter-group communication.

4.5.1 Performance Analysis

As has been discussed in Section 4.4.3, our two basic heuristics can outperform the other

two classical heuristics, i.e. GA and PSO, in some situations of our optimization problem.

Actually, even when communication among different shares of the same secret is comparable

to that among different secrets, those two basic heuristics can still achieve performance

similar to GA and PSO sometimes. This is caused by the intrinsic restrictions introduced

to those two basic heuristics.

As to the top-down heuristic, let’s at first consider the case where all servers have no

computation and storage limitation or the queue length Q = ∞. In this situation, the

shares of different secrets with the same index should be scheduled to exactly the same

server, since we only considers the intra-group communication. When we look back to the

inter-group communication, we will notice that all the following secrets have exactly the

same inter-group communication distance pattern as that of the first secret. In other words,

all the secrets will have exactly the same inter-group communication overhead sum. When

the computation and storage limitation is introduced, though not all the shares of different

secrets with the same index can be scheduled to exactly the same server, they will still be

assigned to a neighborhood. Under this circumstance, all the following secrets should still

have an inter-group communication overhead sum similar to that of the first secret. This

is called the intrinsic restriction of the top-down heuristic. Such a restriction will make

the inter-group communication overhead sum acceptable. In other words, although the top-

down heuristic only considers the intra-group communication during optimization, there is

an intrinsic traction force to ensure that all the shares of the same secret not drift away

from each other too much. This will make our top-down heuristic outperform GA and PSO,

which change the secret share assignment Am completely free of control, especially in cases

with a small ws, as is shown in Fig. 4.3(a).

Similar to the top-down heuristic, the bottom-up heuristic also has such an intrinsic
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restriction, which is realized via the sorting function mentioned in Section 4.4.3. For each

secret, the sorting function will pair each assigned server with the closest group to make

the intra-group communication overhead sum acceptable.

4.5.2 Bottom-up Top-down (BUTD) Heuristic

From the above discussion, we can see that the intrinsic restrictions in our two basic heuris-

tics can help to find a better sub-optimal solution to our optimization problem in different

situations. On the other hand, the performance of those two heuristics largely depends on

the first secret or share assignment, which are generated randomly during initialization.

Furthermore, we notice that the assignment of the first share in the first secret does not

matter, since intra-group communication does not need to be considered at this time. In

this case, if we use the bottom-up heuristic for the first secret assignment, and all the fol-

lowing secrets are scheduled based on the top-down heuristic, ideally, we can achieve a job

scheduling scheme with a global optimal solution. This is the general idea of BUTD.

However, as has been discussed previously, since field-level servers in the network have

computation and storage limitation, when the queue length of a particular server reaches the

given threshold Q, we can no longer schedule secret shares to this server. Instead, they can

only be assigned to another server within a particular neighborhood. In the extreme case,

later secret shares have to be switched to a server in another deep-level server cluster, which

is far away from all the other shares in the same group, when all the closer servers have

been fully occupied. This will cause large intra-group communication overhead. Therefore,

in order to further reduce the overall communication overhead, it is important to find a

sparse neighborhood for each share when scheduling the first secret.

In BUTD, we additionally consider the remaining computation and storage space in the

neighborhood, and generate the following optimization problem at the initialization stage
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of the top-down heuristic.

argmin
A1

∑
l1<l2

l1,l2∈{1,2,···L}

Cb(a1,l1 ,a1,l2)− wq ·
L∑
l=1

∑
s∈Ne(a1,l)

Q− qs (4.7)

Here, we use A1 to denote the first secret to be assigned in a job. wq is a weight to

balance the communication overhead and remaining computation and storage space factor.

Ne(a1,l) represents the given neighborhood of the server scheduled to the l-th share. In this

research project, we are based on the hierarchical network structure discussed previously,

and consider that the neighborhood of a particular field-level server is composed of all

the field-level servers in the same shallow-level server cluster, including that particular

server itself. Note that we use a subtraction instead of an addition between communication

overhead and queue length information in (4.7), since neighborhoods with larger remaining

computation and storage space, a.k.a. sparser neighborhoods, are preferred. Besides, we do

not need to worry about that Q−qs becomes negative as long as there is still spare space in

the network. After assigning the first secret, BUTD will continue scheduling the following

secrets based on the top-down heuristic. The optimization problem described by (4.7) is

actually another combinatorial search problem. Heuristics, e.g. GA and PSO, can further

be used here to find the sub-optimal solution.

4.6 Algorithm Deployment Strategies

In this section, we will discuss two strategies introduced in this research project to improve

computational efficiency and simplify algorithm deployment.

4.6.1 Server Index Mapping

In Section 4.3.1, based on the hierarchical network structure, the server assigned with the

l-th share of a secret is indexed by a vector am,l = (dm,l, im,l, sm,l, fm,l), where dm,l, im,l,
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sm,l and fm,l respectively represent the server index in the deep, intermediate, shallow and

field level. However, when we apply those heuristic algorithms in this research project, we

treat the index of each server as a scalar xm,l for simplicity of computation. A mapping

needs to be defined in this case, which is denoted as follows.

xm,l ← Dm,l + Im,l + Sm,l + fm,l (4.8)

Here, Dm,l describes the total number of field-level servers in those dm,l−1 deep-level server

clusters. Im,l is the total number of field-level servers in those im,l − 1 intermediate-level

server clusters of the dm,l deep-level server cluster. Sm,l−1 represents the total number of

field-level servers in those sm,l− 1 shallow-level server clusters of the im,l intermediate-level

server cluster. Finally, we add the field-level server index fm,l to map the vector am,l to

the scalar xm,l.

Such a mapping and its reverse can be stored in the system via two tables in advance.

We can directly call them when needed during job scheduling, which can greatly improve

computational efficiency. Besides, we also expand both the original Ca and Cb to two-

dimensional matrices in accordance with the scalar form server index.

4.6.2 Dynamic Matrix

In Section 4.4.3, we discussed that the bottom-up heuristic needed a sorting function to

further minimize intra-group communication overhead. We realize this function through a

dynamic communication overhead matrix.

Let’s denote them-th secret assignment result before sorting asA′
m = (x′m,1, x

′
m,2, · · · , x′m,L).

For each x′m,l, we calculate the intra-group communication overhead in terms of each Bm,l′ ,

l′ = 1, 2, · · · , L. Then, we can construct an L × L matrix CL×L to include all calculated

overhead. Afterwards, the bottom-up heuristic will scan this matrix for L times to find the

current minimal element ci,j in it. The row and column index pair of this minimal element

(i, j) corresponds to the field-level server x′m,i and its corresponding group Bm,j . Then, we
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Figure 4.4: Dynamic communication overhead matrix.

will set xm,j = x′m,i. Each time the algorithm find the current minimal element ci,j , it will

set all the elements in the i-th row and j-th column of this matrix to infinity. In this case, it

can avoid the paired field-level servers and groups being selected again. Since each scan will

go through all the elements in the L× L matrix, and totally L scans are needed to pair all

servers in A′
m, the computation complexity of this sorting function is O(L3). Fig. 4.4 shows

an example of dynamically changing the constructed communication overhead matrix. Note

that such a sorting will not necessarily realize globally optimal pairing of servers and groups,

but can make our bottom-up heuristic stay polynomial instead of going exponential.

Such an idea is also applied to our server computation and storage limitation enforce-

ment. When the queue length in a server reaches the given threshold, we will set related

elements in the secret matrix Ca and share matrix Cb to infinity. However, instead of

setting all the elements in both the corresponding row and column to infinity, only elements

in the corresponding row need to be set to infinity. For example, suppose the s-th server

between 1 and S reaches the given queue length threshold. Then, elements in the s-th row

of Ca and Cb will be set to infinity.
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4.7 Simulation and Evaluation

In this section, we will evaluate all the heuristics discussed above with comprehensive simu-

lations on an Intel(R) Core(TM) 3.4 GHz 4-core processor with 16 GB RAM. The simulation

platform is MATLAB R2017a.

4.7.1 Simulation Setup

In this research project, we will consider two experimental settings, which are in general

based on [31, 34]. The first one is a small-scale hierarchical edge computing network with

a total number of 128 field-level servers, while a large-scale hierarchical edge computing

network with 1,600 field-level servers is generated for the second setting. When it comes

to the hierarchical network structure, in each experimental setting, we assume that all

server clusters in the same level have the same capacity. For example, all shallow-level

server clusters are assumed to have the same number of field-level servers. In the small-

scale setting, we consider a job of scheduling 10 secrets, while the large-scale simulation

considers a job of scheduling 600 secrets. The computation and storage limitation or queue

length threshold Q of each field-level server is set to 5 for both situations. In the simulations,

we assume that both these two networks have enough spare space for their corresponding

job. In detail, during initialization, each field-level server in the small-scale environment is

assumed to have a random number of tasks less than or equal to Q − 1 which are already

in the queue, while the randomly generated number is less than or equal to Q − 4 in the

large-scale environment.

When it comes to the privacy constraint, we consider a (2, 10) SS scheme in the sim-

ulations, which can help to compare the performance of different heuristics in the most

stringent environment. In such a scheme, all secrets in these two simulations are assumed

to be separated into 10 shares, and all the diagonal elements in Cb need to be set to infinity

at the very beginning to enforce that any two shares of the same secret should not be as-

signed to the same field-level server. The maximal and minimal communication overhead,

i.e. cmax and cmin, are set to 1 and 5 respectively in the experiments. Besides, we set
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κ1 = ρ1 = 2, κ2 = ρ2 = 3, κ3 = ρ3 = 4 and κmax = ρmax = 5. Detailed description of

the experimental settings are shown in Table 4.2. Note that heuristic algorithms can have

performance oscillations when scheduling secret shares. Since we only need to evaluate the

general trend, all the curves in the experiments are actually sorted overall communication

overhead.

Table 4.2: Experimental Settings

Parameters Small Scale Large Scale

Number of Deep-Level Server Clusters 2 2

Number of Intermediate-Level Server Clusters 4 10

Number of Shallow-Level Server Clusters 4 4

Number of Field-Level Servers 4 20

Total Number of Servers 128 1,600

Number of Secrets 10 600

Number of Shares 10 10

Queue Length Limitation 5 5

4.7.2 Parameter Selection

As has been shown in previous sections, the heuristic algorithms introduced in this re-

search project have several parameters to be tuned. A proper parameter setting can greatly

improve the performance of those heuristics. Therefore, we will at first explore parameter

selection. In this work, we only consider parameter selection in the small-scale environment,

and will conduct a reasonable extension to parameters in the large-scale setting.

Parameters in GA and PSO

The performance of GA and PSO depend on several parameters. Therein, some of them

have general guidance. In GA, such parameters are population size and number of gener-

ations, while in PSO, such parameters are swarm size and number of iterations. For these
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parameters, we will use the recommended settings in [108]. Therein, population and swarm

size are set to the minimum between 100 and 10×L, which are 100 in this research project.

The number of generations and iterations are set to 200×L, which are 2,000 in this research

project.

Except four parameters listed above, the other parameters depend on specific situations,

which are comprehensively evaluated in this research project. For GA, we have tournament

size ts, crossover rate cr, mutation rate mr and standard deviation σ. For PSO, we evaluate

the initial velocity v∗0 (with regard to the range between −r and r inclusively), inertia ι,

self adjustment weight ι∗, social adjustment weight ι+ and neighbor size ne. Large numbers

of settings are tested in the simulations. In each setting, the performance is evaluated

based on the average of 30 runs. Both linear and exponential communication overhead

increase are considered, and ws is set to 2. Some settings achieving comparatively good

performance under linear communication overhead increase are illustrated in Fig. 4.5 and

Fig. 4.6. Exponential counterparts have similar results, which are omitted here. Based on

the above comparisons, generally, GA achieves the best performance when ts = 20, cr = 0.3,

mr = 0.3 and σ = 50, while PSO has the least communication overhead when r = 5, ι = 0.6,

ι∗ = 1.5 and ι+ = 1.5. These two parameter settings are used in the following simulations

of the small-scale environment and as the basis of the parameter extension in the large-scale

hierarchical network structure.

Weight Selection

In the previous sections of this chapter, we introduced two weights to describe the impor-

tance between two factors in the objective functions, i.e. ws to represent the data size ratio

between intra-group and inter-group communication, and wq to balance the communication

overhead and remaining computation and storage space. Therein, ws is pre-determined by

the job to be scheduled while wq can be manually tuned. As has been discussed in Sec-

tion 4.4.3, when ws is small or large enough, intra-group communication will overwhelm

inter-group communication or vice versa. In those situations, the top-down and bottom-up
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Figure 4.5: GA performance comparison under linear communication overhead increase and
different parameter settings. (a) ts = 10; (b) ts = 20; (c) Comparison of the best parameter
setting in (a) and (b).
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Figure 4.6: PSO performance comparison under linear communication overhead increase
and different parameter settings. (a) r = 5 and ne = 30; (b) r = 30 and ne = 50; (c)
Comparison of the best parameter setting in (a) and (b).

heuristic will perform the best respectively. On the other hand, when intra-group communi-

cation overhead has the similar weight to inter-group communication, the BUTD heuristic

will outperform all the other 4 heuristics.

Based on Fig. 4.3, we can see that in the small-scale setting, when ws is between 1

and 3, the top-down and bottom-up heuristic have similar performance. The reason is as

follows. In the small-scale setting, we have the number of secrets M = 10 and the number of

shares L = 10. In this case, the number of intra-group and inter-group communications are

respectively (M − 1)L = 90 and L(L−1)
2 = 45. In other words, in order to make inter-group
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Figure 4.7: BUTD performance comparison under different initialization schemes and wq.

communication have exactly the same weight as intra-group communication, we should have

ws = 2. When ws is around 2 or between 1 and 3, those weights are similar to each other,

and the top-down and bottom-up heuristic should perform comparably. In addition, as has

been mentioned previously, the BUTD heuristic should perform the best in this range.

In this section, based on the case ws = 2, we further explore the most appropriate

value of wq. Fig. 4.7 shows some candidate wq in BUTD. Therein, both GA and PSO are

considered at the initialization stage. The best parameter setting for GA and PSO derived

in the last section are used. We also evaluate both the linear and exponential communication

overhead increase. From these figures, we can see that in both two kinds of communication

overhead increase, the best performance is achieved when GA is used during initialization,

and wq is set to 25.

4.7.3 Small-Scale Experimental Setting

In this section, we give an exhaustive performance comparison among all heuristic algo-

rithms in this research project. The comparison is based on the best parameter settings

discovered in the last section.
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Figure 4.8: Performance comparison in the small-scale environment.

Performance and Running Time

Fig. 4.8 compares the brought communication overhead under all the heuristic algorithms

in this research project and the small-scale environment. In accordance with the parameter

settings which we derived in the previous section, the weight ws is set to 2. From the figure,

we can see that in general, our proposed BUTD heuristic brings the least communication

overhead in both the linear and exponential increase. Besides, compared with PSO and

GA, the bottom-up, top-down and BUTD heuristic have a more steady performance. The

performance of GA oscillates a lot when scheduling some secrets, which results in obvious

increase at the tail of the corresponding curves. On the other hand, the performance of PSO

can vary significantly between the linear and exponential increase. These results further

validate the effect of intrinsic restrictions discussed in Section 4.5.1. Since GA and PSO

are totally free to explore the whole space, their performance has much more randomness

compared with the other three heuristics.

We further compare the running time of those five heuristic algorithms, whose results are

shown in Table 4.3. From this table, we can see that the top-down, bottom-up and BUTD
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heuristic take much less time than GA and PSO. This is because the search space of GA

and PSO is SL, while the other three heuristics only needs SL. Besides, GA is even more

time-consuming than PSO due to the parent selection in each generation. Furthermore,

utilizing GA during the initialization of BUTD kind of increases its running time.

Table 4.3: Running Time Comparison

Heuristics GA PSO Top-down Bottom-up BUTD

Time (s) 259.01 39.47 0.027 0.042 20.33

Secret Share Scheduling Distribution

In this section, we validate based on simulations that our BUTD heuristic can effectively

find comparatively sparse neighborhoods to schedule secrets. Our small-scale experimental

setting has the following modifications in order for a better illustration. We assume that

each field-level server can have at most Q = 10 secret shares in queue. Besides, we further

assume that the first 10 field-level servers are totally empty at the beginning, while all the

other servers have a queue length between 6 and Q− 1. Let’s still consider the small-scale

job of scheduling 10 secrets, each of which is further separated to 10 shares. Ideally, all

the secret shares should be assigned to the first 10 empty servers, since those servers just

have enough spare space, and both the minimal intra-group and inter-group communication

overhead can be realized.

Fig. 4.9 shows a comparison of secret share scheduling distributions under all the five

heuristics in this work. From this figure, we can see that our BUTD heuristic can effectively

find the sparse space, i.e. the first 10 field-level servers, and schedule most of secret shares

to that region, while the other four heuristics are inclined to assign secret shares more

uniformly, which can induce higher communication overhead.
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Figure 4.9: Secret share scheduling distribution under different heuristics.

Rising Trend

You may notice that in some situations listed above, the communication overhead curve

shows a rising trend along with the secret index, especially when the optimal parameter set-

ting is selected. Actually, such rising trends are inevitable, since neighborhoods of assigned

secrets will be filled up anyway with new secrets continuing to come. On the other hand,

these trends only happen when the whole network is almost full. In this situation, no good

secret share assignments can be found and all heuristics will achieve similar performance,

in which case we would recommend switching to another network.

The performance comparison shown in Fig. 4.10 further validates our thought. Here, we

consider a hierarchical edge computing network with all field-level servers having Q−1 secret

shares in queue to represent an almost full network. All the other small-scale experimental

settings are still followed. From this figure, we can see that all the five communication

overhead curves intertwine, which means that similar performance is achieved. Besides,

you may also notice that the brought communication overhead of some secrets in the figure

are missing, i.e. the 10th secret for GA and the 9th and 10th secret for PSO. This is because
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Figure 4.10: Scheduling results under different heuristics and an almost full network.

the corresponding heuristics cannot find a feasible scheduling scheme for those secrets within

the pre-defined number of iterations.

4.7.4 Large-Scale Experimental Setting

We further conduct experiments in the large-scale experimental setting discussed in Sec-

tion 4.7.1. For the parameter setting, we derive the following extension from that in the

small-scale environment. In fact, most of the parameters do not need to be tuned here. We

only need to care about parameters related to the number of public servers, since it is the

only factor that can change the whole search space. Therfore, for GA, only the standard

deviation σ needs to be considered. For PSO, they are the initial velocity v∗0 or range factor

r and the neighbor size ne. No parameters need to be tweaked for both the top-down and

bottom-up heuristic, and only wq needs to be changed for BUTD. We apply a linear increase

along with the number of secrets and public servers for those parameters. In other words,
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since the number of public servers is increased from 128 to 1600, i.e. 12.5 times, we will

also multiply those parameters by 12.5. In this case, we have new σ = 625, r = 63 and

ne = 375.

The weight wq in BUTD is another parameter which needs to be tuned. Based on (4.7),

we can see that wq is related to the size of the given neighborhood. In this research project,

we define the neighborhood as all the field-level servers in the same shallow-level server

cluster, which increases from 4 for the small-scale experimental setting to 20 for the large-

scale experimental setting, or by 5 times, according to Table 4.2. In this case, in order to

rebalance the relationship between communication overhead and computation and storage

space, we set wq to 5 in the experiment shown in Fig. 4.11, which is 5 times less than its

value in the small-scale experimental setting. Furthermore, we also consider rebalancing

the importance between intra-group and inter-group communication here. The number of

intra-group and inter-group communications are now respectively (M − 1)L = 5990 and

L(L−1)
2 = 45. In other words, in order to make inter-group communication have exactly

the same weight as intra-group communication, we need to set ws = 133 in the large-scale

environment.

Fig. 4.11 shows the performance comparison under all the five heuristics in this research

project. From this figure, we can see that the BUTD heuristic still performs the best in

the large-scale environment. On the other hand, there are surges at the tail of the BUTD

curves, which correspond to the rising trend discussed in Section 4.7.3.

Note that we set ws to 133 here just for validation. In practice, it is not quite possible

to have such a big difference between intra-group and inter-group communication overhead.

In this case, the top-down heuristic should already suffice when we have a large number of

secrets to assign.
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Figure 4.11: Performance comparison in the large-scale environment.

4.8 FutureWork on Privacy-Preserving Task Scheduling with

SS and MPC

In this chapter, we extend the discussion about secret share placement from the following

three aspects: 1) We generalize (2,2) SS to (R,L) SS, and the situation is also considered

that an adversary can simultaneously compromise multiple edge nodes; 2) The targeted

mobile edge computing architecture is more comprehensive and practical. The hierarchical

structure is currently widely investigated with its advantage in flexibility and scalibility; 3)

Communication factors are encompassed, which significantly expands the applicability of

related algorithms. In the future, the following problems are still worth exploring:

• Hop count is not a comprehensive metric to determine the optimal network path,

which can also be affected by other communication factors, such as bandwidth and

environment interference. Besides, the secret share placement strategy in this chapter

is only based on a general network model. In the real applications, the secret matrix

Ca and the share matrix Cb may need to be further modified according to different

communication models and mobile edge computing structures. Even a dynamic Ca
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and Cb can be considered if communication conditions change.

• In federated learning, the wireless communication between local devices and central

servers can still be a problem even under mobile edge computing. In this case, another

communication matrix may need to be introduced if we want to further consider such

a communication issue in the whole optimization problem.

• In general, intra-group communication is used for locally-learned model parameter

aggregation in federated learning, while inter-group communication is responsible for

synchronization issues. Different SS and MPC algorithms [22, 92] may need different

information exchange for these two kinds of communication. A proper measure of

the data size ratio ws is needed for those specific SS and MPC algorithms. As has

been discussed in this chapter, the top-down, bottom-up, and BUTD heuristic can

respectively have the best performance when ws has different values.

• Strictly speaking, Chapter 3 and 4 only discuss the optimization problem about secret

share placement. During local model parameter aggregation, some granular arrange-

ments need to be conducted for packet transmission. Existing works have talked

about such arrangements in decentralized manners, such as ring all-reduce [109] and

multitree all-reduce [110], which have potential integration with algorithms proposed

in these two chapters.

• Scheduling strategies in this chapter do not consider computation latency optimiza-

tion. Instead, computation and storage capacity is considered as a constraint. Alter-

natively, a tradeoff between communication and computation can be investigated, and

comparison can be conducted with algorithms in this chapter. Besides communication

heterogeneity discussed above, computation and energy level can also be different for

different edge nodes, which may also impact secret share placement results.
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4.9 Summary

In this research project, we proposed a communication-aware secret share placement strat-

egy in hierarchical edge computing structures. We show that the related model is actually

a combinatorial search problem, which is already proven to be NP-hard. In this situation,

we introduce five heuristic algorithms to find sub-optimal solutions and compare their per-

formance. Therein, GA and PSO are two classical heuristics which we can directly apply.

In addition, based on the characteristics of our targeted problem, we further propose two

basic heuristics, i.e. the top-down and bottom-up heuristic, which respectively only target

the intra-group and inter-group communication. Furthermore, we introduce the bottom-up

heuristic to the initialization stage of the top-down heuristic, and schedule secret shares

together with the consideration of remaining computation and storage space within a par-

ticular neighborhood, i.e. all the field-level servers within the same shallow-level server

cluster, which is called the BUTD heuristic. We show through both systematic analysis

and comprehensive experiments that our three proposed heuristics can respectively achieve

the best performance when intra-group communication overwhelms inter-group communi-

cation, vice versa, and those two kinds of communication are comparable.
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Chapter 5: Federated Graph Neural Network for Fast

Anomaly Detection in Controller Area Networks

In this chapter, we aim at reducing communication overhead in federated learning by solving

the third detailed research problem in Section 1.2. Convergence of federated learning can

be greatly slowed if adversaries compromise local devices and poison raw data or uploaded

model parameters, which can further cause numerous unnecessary communication rounds

between local devices and public servers. Intrusion Detection System (IDS) is usually one

of the strategies to combat those attacks. However, considering the number of attack

types and heterogeneity among end devices, conventional centralized machine learning can

suffer a lot in developing IDSs in a timely manner. Recent works [111–115] have shown that

federated learning can conversely be applied to combat those cybersecurity problems, which

refers to self-learning IDSs. In this chapter, we validate the value and utility of federated

learning based on a well-known research problem in cybersecurity, i.e. intrusion detection

in Controller Area Network (CAN bus). Relevant intrusions can be seen as data poisoning

attacks in federated learning. One paper related to this research project is currently under

review [116].

5.1 Introduction

Modern vehicles rely on processing units, i.e. Electronic Control Units (ECUs) to accomplish

different driving tasks, such as collision avoidance, anti-lock brakes and traction control.

These ECUs are further interconnected by a bus or network for cooperations [117, 118].

A typical in-vehicle control network is depicted in Fig. 5.1. Currently, the most popular

communication standard is the CAN bus, which was designed by Robert Bosch GmbH in

1983. The CAN bus is a broadcast medium, where messages sent by one ECU can be
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Figure 5.1: A typical in-vehicle control network

received by all the other ECUs in the same control network. The CAN bus uses a lossless

bitwise arbitration method to resolve contentions during data transmissions. In detail, every

CAN message is assigned a CAN ID based on its functionality and priority. A message with

a lower ID will win the contention when two messages collide. Usually messages containing

crucial information, such as those related to powertrain and vehicle safety, will be assigned

lower CAN IDs, while infotainment and telematics messages will have higher CAN IDs

[119].

The CAN bus protocol does not provide any authentication or encryption mechanisms.

In this case, attackers have the chance to compromise the CAN bus in a vehicle through

inserting forged messages. For a typical CAN ID, once forged messages overwhelm normal

messages, attackers can take control of relevant operations in the targeted vehicle, which

can cause severe consequences if that CAN ID is related to powertrain or vehicle safety.

Furthermore, the recent development of Intelligent Transportation Systems (ITS) and IoT

continuously expand the attack interfaces, which include but are not limited to sensors, Wi-

Fi, and On-Board Diagnostics (OBD) [120]. In 2021, Upstream Security’s research team

provided a global automotive cybersecurity report based on 633 publicly reported incidents
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in the last decade, which shows an exponential growth trend in cyberattacks on connected

vehicles [121].

Considering this, several IDSs have been proposed to increase security of CAN bus. In

general, if an adversary wants to make forged messages overwhelm normal ones, it can inject

forged messages (DoS or fuzzy attack), suspend normal messages (suspension attack), or

falsify data contents of normal messages (replay or spoofing attack). ECUs in the same CAN

network usually transmit their messages with a comparatively fixed frequency, which makes

the statistics of CAN message sequences comparatively stable. In this case, if the first two

attack strategies happen, message frequencies or message sequences are likely to be changed,

which are the motivations for the existing message frequency or sequence-based detection

methods [122–125]. Besides, some existing works [126–128] consider message falsification

attacks. They are based on the observation that message contents with the same CAN ID

will neither vary too much.

The situation becomes complicated when considering message injection/suspension at-

tacks together with message falsification attacks. Message falsification attacks will not

change message frequencies or sequence patterns, which will evade IDSs only considering

message injection/suspension. On the other hand, IDSs for message falsification cannot

identify Denial-of-Service (DoS) attacks [129] or bus-off attacks [130], which do not need

to change normal message contents. Recently, some related works tried to detect both of

the above two kinds of attacks simultaneously based on Long Short-Term Memory (LSTM)

autoencoder [126, 131, 132] and bloom filtering [125]. However, these schemes need to gen-

erate a separate model and analyze relevant messages for each CAN ID, which can induce

very high computation complexity and intrusion detection delay. In order to detect all the

attacks, we can also apply ensemble learning [133] to train multiple classifiers, but it will

still lead to increased computation complexity and detection delay.

Based on the above observations, we propose a CAN bus IDS based on GNN in this

chapter, which can efficiently detect message injection, suspension, and falsification attacks

simultaneously. Directed attributed graphs are constructed to include both statistical CAN
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message sequences and message contents. Therein, message sequences are described by

nodes, edges and edge attributes in graphs. Data contents in messages with a typical CAN

ID are preprocessed by the READ [134] method, and summarized as the corresponding

node attributes. With these generated CAN message graphs, a two-stage GNN-based clas-

sifier cascade can be trained to build our IDS, which is illustrated in Fig. 5.2. The first

stage has similar functionality as existing IDSs, i.e. anomaly detection. Considering that

attacked data are usually hard to acquire in the real world, normal data usually dominate

the training set, which will become highly imbalanced. In this case, we replace the tradi-

tional softmax layer in GNN with a one-class classification layer for the anomaly detection

purpose. Once an attacked data sample is captured by the first-stage classifier, this data

sample will further go to the second-stage classifier for attack classification. Inspired by

[135], besides the softmax layer for multi-class classification, the second-stage classifier also

has an openmax layer to tackle new anomalies from potentially unknown classes, which will

be buffered for further investigation and open world recognition [136,137].

Furthermore, in Section 5.6, we will show that different vehicle states can lead to varia-

tions in message sequences, message contents, and further message graphs. Therefore, the

model trained on one vehicle will be constrained by its limited driving scenarios (e.g., a

vehicle may mostly drive in local with low speed and a lot of stops) and vehicle states, so

cannot be applied to other vehicles with different driving scenarios and vehicle states (e.g.,

a vehicle may mostly drive on highway with high speed and few stops). To take advantage

of crowdsourcing while protecting user data privacy, we further adopt a federated learning

framework to train a universal model that covers a wide range of driving scenarios and

vehicle states. The main contributions of this research project are summarized as follows:

• We propose a CAN bus IDS which can efficiently detect CANmessage injection/suspension

and message falsification attacks at the same time. Instead of a simple combination of

the above two traditional IDSs, we define a CAN message graph to integrate message

contents with statistical message sequences in terms of CAN ID pairs.
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Figure 5.2: Architecture of the two-stage classifier cascade

• We develop a GNN which is fit for directed attributed graphs. Considering that attacked

data are hard to acquire in the real world, which may cause highly imbalanced training

sets, we develop a two-stage classifier cascade to tackle normal and attacked CAN data

respectively. An openmax layer is introduced to cope with new anomalies from potentially

unknown classes.

• Based on the observation that changes of vehicle states can cause variations in generated

CAN message graphs and further negatively impact intrusion detection performance, we

consider federated learning to cover different driving scenarios and vehicle states while

protecting data privacy.

• We evaluate the proposed IDS through extensive experiments based on several real-world

datasets. Through comparisons with three baselines, we validate that our proposed IDS

106



can achieve similar performance to both IDSs based on statistical CAN message sequences

and message contents. Besides, federated learning can effectively combine models derived

under different driving scenarios and vehicle states, and greatly improve intrusion detec-

tion performance.

The rest of this chapter is organized as follows. Related works will be summarized in Sec-

tion 5.2. CAN message graphs will be proposed in Section 5.3. Section 5.4 and Section 5.5

respectively give the design of the first-stage and second-stage classifier. The impact of

vehicle states on message contents and message sequences will be analyzed in Section 5.6,

which motivates the adoption of federated learning to take advantage of crowdsourcing

while protecting user data privacy. Experimental results for validation and evaluation will

be provided in Section 5.7. Some open problems will be discussed when federated learning is

deployed in CAN bus IDSs in Section 5.8. Finally, conclusions will be drawn in Section 5.9.

5.2 Related Work

5.2.1 Attack Types

According to [120], attacks to in-vehicle networks or CAN buses can be divided into message

sniffing, message injection, message suspension and message falsification. Therein, the later

three categories of attacks can further impact normal functionalities of vehicles.

Message injection attack is usually considered together with message suspension attack,

since they are both related to message frequency or statistical message sequence in terms

of CAN ID. In practice, message falsification attack is realized through a combination of

message sniffing, message injection and message suspension. Based on [123, 129, 130, 138–

140], the specific attack types considered in this research project are summarized as follows:

• Denial-of-Service (DoS): This attack can also be called bus-off attack [130], which aims

at paralyzing CAN bus systems through continuously injecting legitimate CAN messages

with a low CAN ID, e.g. 0x000. Since the CAN bus uses a lossless bitwise arbitration

107



method to tackle data transmission contention, some functionalities assigned with higher

CAN IDs will never get the chance to be transmitted.

• Fuzzy: This attack will generate and transmit CAN messages with random CAN IDs

and data contents. The CAN IDs will range from 0x000 to 0x7FF [132], and some of

them originally may not be used in the compromised vehicles. Such a type of attack can

interfere with some functionalities of victims if extra lower CAN IDs are introduced into

the systems. Besides, the randomly generated data contents can mislead vehicles if those

CAN IDs are initially used.

• Suspension: This is just the message suspension attack. The attacker will try to com-

promise some ECUs in the CAN bus system, and stop them from sending any CAN

messages.

• Replay: This attack will try to compromise some ECUs in the CAN bus system, and

store some valid CAN messages in a particular time period, which will be transmitted

later. Such a type of attack can mislead compromised vehicles since those stored CAN

messages are actually outdated. If the attacker can further suspend those sniffed ECUs,

it becomes message falsification attack.

• Spoofing: Similar to replay attack, spoofing attack will at first try to sniff some ECUs

in the CAN bus system. However, spoofing attack will try to impersonate those com-

promised ECUs by simulating their message transmission frequencies, while the related

data contents are usually forged. Message falsification attack can also be realized here

by further suspending those compromised ECUs.

5.2.2 Intrusion Detection Systems

IDSs can be divided into anomaly detection-based and signature-based methods, which

respectively identify intrusions by comparing with normal data and known attacks. Most

CAN bus IDSs are anomaly detection-based methods. Message injection or suspension

attacks will change CAN message frequencies or statistical message sequences in terms
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of CAN ID pairs, which is the basis of related works. Early works [124, 141] directly use

message frequencies for intrusion detection. Later, some data analysis methods are proposed

based on statistical message sequences. Such methods compare two message sequences

through statistical metrics, such as cosine similarity, Pearson correlation or chi-squared

test [122, 123]. If a significant changes in message frequencies or sequences (metric values

larger than given thresholds) is detected, they predict that intrusions happen in the second

message interval. Recently, some works [122, 142] also consider machine learning based

methods, such as LSTM autoencoder, to detect message injection or suspension attacks

through statistical CAN message sequence reconstruction. The authors in [143] further

explore the possibility to convert CAN message streams to images, and train a generative

adversarial network (GAN) for CAN bus intrusion detection.

All the above IDSs cannot properly tackle message falsification attacks. Existing works

targeting message falsification attacks are based on the assumption that message contents

or some bits therein do not have much variance. Early works consider Hamming distance

between the bit representation of each two CAN messages [125] or message entropy [144,145]

for intrusion detection. For machine learning methods [127, 128, 146], they generally adopt

techniques originally used for identifying human actions [147–149].

Recently, the development of natural language processing inspires some CAN bus IDSs

based on LSTM [126,131] to detect message injection/suspension attacks together with mes-

sage falsification attacks. The authors in [125] and [133] also propose to consider both CAN

message frequencies and message contents through bloom filtering and ensemble learning.

However, these schemes need to either consider each CAN ID separately or train multi-

ple machine learning models. Considering each CAN ID separately will induce high data

collection delay, since sufficient numbers of CAN messages are required for each CAN ID.

Our proposed IDS inherits the advantage of those IDSs based on CAN message sequences,

which only needs an enough number of overall CAN messages. On the other hand, train-

ing multiple machine learning models will bring much higher computation complexity than

training a single model. Furthermore, most of existing CAN bus IDSs, especially those
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based on LSTM, detect attacks on the basis of a trustworthy reference (a normal CAN

message sequence in the previous time slot), which usually cannot be guaranteed during

intrusion detection.

Finally, open world recognition has also drawn attention in CAN bus intrusion detection.

The authors in [137] proposed a transfer learning architecture, which can be trained for

unknown attacks. [136] realizes a similar functionality based on a one-class classifier. These

two works can be seen as successors of our work. After our IDS buffers enough previously

unknown attacks or anomalies, the open world recognition strategies can be introduced to

tackle them. A comprehensive comparison between our proposed IDS and existing schemes

is summarized in Table 5.1 to show the advantages of our method. A comparison of detection

functionality is also listed in the table. Existing IDSs for the CAN bus system can only tell

whether an attack happens or not (binary), while our proposed IDS can further figure out

the specific attack type, and tackle previously unknown anomalies (open multi-class).

Table 5.1: Comparison between Our Proposed IDS and Existing Schemes

Schemes [122–124,141,142] [143] [144,145] [127,128,146] [125,126,131] [133] Our proposed IDS

Message injection ✔ ✔ ✖ ✖ ✔ ✔ ✔

Message falsification ✖ ✖ ✔ ✔ ✔ ✔ ✔

Collection delay Low Low Low Low High – Low

Computation complexity – – – – – High Low

Reference needed ✔ ✖ ✔ ✖ ✔ ✖ ✖

Detection functionality Binary Binary Binary Binary Binary Binary Open multi-class

5.3 Preliminaries and Basics

5.3.1 CAN Message Description

Fig. 5.3 illustrates a typical CAN bus message format. The main part is composed of the

following fields:

• Arbitration: This field contains an identifier of a given CAN message, i.e. CAN ID.
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Figure 5.3: CAN bus message format

• Control: This field is mainly composed of two components. Remote transmission request

(RTC) specifies the type of the current CAN message, i.e. a remote request frame or a

real data frame. Data length code (DLC) gives the number of data bytes in the data

field.

• Data Contents: This field includes data to be transmitted, the length of which is

reflected in DLC.

• Cyclic Redundancy Check (CRC): This filed provides the checksum for the current

CAN message.

Our CAN bus intrusion detection system in this research project is based on CAN ID in the

arbitration field and data contents of each CAN message. In the CAN standard, a CAN ID

has either 11 or 29 bits, and the version with 11 bits is usually selected for CAN buses in

vehicles. Data contents have a length between 0 and 8 bytes (or 64 bits). Recently, Bosch

proposed an extended CAN standard, called CAN with Flexible Data-Rate (CAN-FD).

Data contents in CAN-FD messages can have a length of up to 64 bytes. In this research

project, we are still based on the CAN standard with up to 8 bytes of data.

CAN bus data can be streamed through using the candump tool in Linux CAN subsys-

tem, a.k.a. SocketCAN. Fig. 5.4 shows an example with four streamed CAN bus messages.

Therein, the red and blue box respectively include CAN IDs and data contents of those

four messages, which are denoted with hexadecimal numerals. The other two components

in streamed CAN messages are timestamp and CAN interface name.
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(1615955313.947905) can0 386#FFE000000000000B

(1615955313.948145) can0 405#0000200000000526

(1615955313.948396) can0 428#05010000997E2B

(1615955313.948614) can0 42D#7FF8451E842C24

Figure 5.4: Streamed CAN bus messages

5.3.2 CAN Message Graph

As has been discussed in Section 5.1, CAN messages with each CAN ID are usually trans-

mitted in a comparatively fixed frequency. Early works [124,141] directly use it for intrusion

detection. Later, researchers notice that fixed frequencies can further infer stable statistical

message sequences in terms of CAN ID pairs. In addition, several ECUs may need to collab-

orate with each other to accomplish a vehicle operation task, which can be realized through

transmitting successive CAN messages. For example, after one CAN message reflecting gas

increase is transmitted, we will probably see one message denoting an increase in revolu-

tions per minute (RPM) of the vehicle engine. Then, another CAN message representing a

vehicle acceleration will also be spotted [150]. Considering these two factors, the sequences

should follow comparatively fixed patterns.

With this observation, data analysis metrics, such as cosine similarity and Pearson

correlation, or machine learning models, such as LSTM autoencoder, can be applied based

on statistical message sequences for intrusion detection [122, 142]. Note that in order for

real-time analysis, CAN messages are considered in intervals, which usually vary from

100 to 200 messages. Streaming such numbers of CAN messages usually costs an order of

milliseconds. If the message interval is too short, i.e. less than 100 messages, the message

sequence will become unstable, since many messages with higher CAN IDs do not need to

be transmitted very frequently, and these CAN IDs may not appear in some of message

intervals.

112



264

04A

115

13C

322

071

12

20

33

15

26

31

18
28

15

17

24

18

24

(1522004165.988068) can0 264#0003948C0C00FD83

(1522004165.988292) can0 04A#00D8D8D8FED8D8D8

CAN message stream CAN message graph

264 04A
1

𝒗264 =

00
03
94
8𝐶
0𝐶
00
𝐹𝐷
83

𝑇

Figure 5.5: A toy example showing conversion from CAN message stream to CAN message
graph

Besides statistical message sequence, message graph is actually another possible struc-

ture to describe CAN message streams. Compared with message sequences, message graphs

can further embed message contents. Graph structures have both edge attributes and node

attributes, and they provide the possibility to simultaneously detect all the three categories

of attacks mentioned in Section 5.1.

Fig. 5.5 shows the conversion from a toy CAN message stream with two messages to a

CAN message graph. Each node in the graph represents a CAN ID appearing in the given

message interval. In this toy CAN message stream, a message with CAN ID 264 is followed

by another CAN message 04A. Therefore, we construct a directed edge from Node 264 to

Node 04A with an attribute or weight of 1. A normal CAN message graph is shown in Fig.

5.6. In each CAN message sequence, messages are considered in pairs similar to that shown

in Fig. 5.5. Edge attributes or weights refer to the number of corresponding message pairs

appearing in the given message interval. The structure of a graph is usually described by an

adjacency matrix, denoted by An×n in this research project. n here represents the number

of nodes in a CAN message graph, which further infers the number of CAN IDs appearing

in the corresponding message interval. In addition, since CAN message graphs have edge

attributes, we further introduce an edge matrix En×n to include this information.

5.3.3 CAN Message Content Preprocessing

The data content in each CAN message can be used for identifying message falsification

attacks. As has been discussed in [132], signal semantics are usually described in blocks

in message contents, and a proper data division can greatly improve intrusion detection
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Figure 5.6: CAN message graph

accuracy. The authors in [134] proposed a well-behaved signal boundary extraction algo-

rithm for CAN message contents, called READ, which divides message contents based on

the bit-flip rate. The general idea behind this algorithm is that for each signal semantic,

the most significant bit in the related data block will vary much slower than the least one.

In this case, if a bit with a high bit-flip rate is followed by one with a low rate, these two

bits probably belong to two different signal semantics or data blocks.

In order to calculate the bit-flip rate, a certain number of CAN messages need to be

collected for each CAN ID. Note that the CAN message content division only needs to be

conducted once based on the training set before our IDS model training. In this case, we

do not need to worry about any data collection delay during intrusion detection. Besides,

we neither need to tackle any CAN message content associated with a new CAN ID during

intrusion detection, since it just infers a fuzzy attack according to Section 5.2.1. The details

of bit-flip rate calculation for each CAN ID is summarized in Algorithm 5.

A bit-flip rate heatmap based on a dataset in [122] is illustrated in Fig. 5.7, which is

composed of 44 CAN IDs and 23,963 normal CAN messages. Here, CAN IDs are indexed
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Algorithm 5: Bit-Flip Rate Calculation

Input : messageArray: an array of CAN messages with the targeted CAN ID in the
training set.

Output: bitflip: an array of bit-flip rates for message contents of the targeted CAN
ID. magnitude: the corresponding magnitude array.

1 Initialize messageLen← len(messageArray), b← len(messageArray[0]),

bitflip← array(b);

2 previous← messageArray[0];

3 for indexM = 1, 2, · · · ,messageLen− 1 do
4 current← messageArray[indexM ];

5 for indexB = 0, 1, · · · , b− 1 do
6 if current[indexB] ̸= previous[indexB] then
7 bitflip[indexB] + +;

8 previous← current;

9 for indexB = 0, 1, · · · , b− 1 do
10 bitflip[indexB]← bitflip[indexB]/messageLen;

11 magnitude[indexB]← ⌈log10(bitflip[indexB])⌉;

according to their values. From this heatmap, we can intuitively figure out several data

blocks in different CAN IDs. A signal boundary will be applied where a light pixel is

followed by a dark pixel. Besides, according to [134], we do not need to care about small

variations in bit-flip rate. In this case, we further introduce a magnitude array on line 11

of Algorithm 5, and look for drops in the magnitude array instead. Finally, for convenience

of GNN design in the next section, we need to describe all CAN message contents with

a node matrix V n×n′ . After applying READ, message contents with different CAN IDs

will be separated into different numbers of data blocks, each of which is further converted

to a decimal number. n′ in the node matrix denotes the maximal number of data blocks

across all CAN IDs. We will further align the number of data blocks for all CAN IDs by

complementing some 0s in the front.
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Figure 5.7: Bit-flip rate heatmap

5.4 First-Stage Classifier

5.4.1 Graph Neural Network

Graph learning has recently drawn increasing attention. All current graph learning frame-

works can be divided into three levels, i.e. node level, edge level and graph level [151].

Therein, node level algorithms can be utilized to determine whether a typical CAN message

is forged or not, which is similar to the idea in [125]. Our proposed CAN bus IDS is based on

graph level algorithms. All three levels of models start with some graph convolution layers,

and graph level schemes realize graph classification tasks via further introducing pooling

and readout layers. In this research project, we are based on GNN proposed in [152] for

CAN bus intrusion detection.

The convolution layer of GNN in this chapter takes the following form:

Z = f(D̃
−1

ĀXW ) (5.1)
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The original GNN in [152] only targets undirected graphs without edge attributes and

self-loops. In order to make it fit for CAN message graphs in this chapter, we at first

concatenate the node matrix V with edge matrix E to generate a descriptor for CAN

message graphs, denoted as Xn×(n+n′). Such an operation actually embeds edge attributes

into node attributes. In other words, attributes of edges starting from a typical node are

considered as part of attributes of that node. Ā = A+ I represents the adjacency matrix

with added self-loops, which are realized through an identity matrix I. Since CAN message

graphs considered in this chapter are directed and allow self-loops, we further tackle the

adjacency matrix A to make all diagonal elements 0 before adding I. D̃ is a diagonal degree

matrix with d̃ii =
∑n

j=1 āij , where d̃ii and āij are respectively elements in D̃ and Ā with

the corresponding indices. W ∈ R(n+n′)×c denotes model parameters in the convolution

layer, where c is the number of feature channels in the convolution layer. f(·) is a pointwise

nonlinear activation function, such as Rectified Linear Unit (ReLU).

The whole graph convolution process can be explained as follows. Node and edge at-

tributes are at first fit into the convolution layer through a linear feature transformation

XW . Afterwards, for each node, its “channel descriptor”, denoted by Y = XW , will be

propagated to its neighborhood including itself through ĀY . Here, we can see that why we

need to include self-loops in the adjacency matrix A. Then, we normalize the propagation

results by multiplying them with the diagonal degree matrix D̃, which aims at keeping a

fixed feature scale after graph convolution. Finally, a pointwise nonlinear activation function

f(·) is applied before outputting the graph convolution results.

Similar to convolution neural networks applied in image processing, in order to cap-

ture graph substructure features in different scales, we need to apply and stack multiple

convolution layers. In this case, in the t-th convolution layer, we further have:

Zt = f(D̃
−1

ĀZt−1W t) (5.2)

117



Here, Zt−1 and Zt respectively represent the input and output matrix of the cl-th convo-

lution layer, and we further have Z0 = X. W t ∈ Rct−1×ct includes model parameters in

the t-th convolution layer, with c0 = n+ n′. After acquiring all Zt from those convolution

layers, the outputs are stacked through concatenation, i.e. Z1:t = [Z1,Z2, · · · ,Zt].

Up to now, the design of graph convolution layers have finished. For graph classification

tasks, pooling and readout layers need to be further introduced. Besides pooling layers for

downsampling, the authors in [152] further introduce a sorting operation to sort nodes in

a graph according to their structural roles, which can make similar graphs fit into readout

layers in a comparatively consistent node order. Such an operation is beneficial to tackling

CAN message graphs in this research project. As will be discussed in Section 5.6.1, vehicle

states can sometimes cause variations in CAN message graphs, since some ECUs in vehicles

are not always activated in order to prolong battery life. Such a situation can further induce

node indexing issues, which can be solved by this sorting operation. The readout layers are

usually composed of some 1-dimensional (1-D) convolution layers and dense layers.

5.4.2 One-Class Classification

Traditionally, the last layer of a neural network is a sigmoid or softmax layer for classification

tasks. However, to the best of our knowledge, nearly all the current attacked data are

simulated for CAN bus IDS evaluation. Intrusions to CAN buses are hard to acquire in

real vehicles, which will make the training set highly imbalanced. Considering this, the

first-stage classifier will be designed as an anomaly detection-based IDS. The conventional

sigmoid or softmax layer will be replaced with a one-class classification layer, and only

normal CAN bus data will be used to train the model.

One-class classification is widely used for anomaly detection, which can train a classifier

only by using normal data. One-class support vector machine (OC-SVM) [153] and support

vector data description (SVDD) [154] are two currently two most popular related algorithms.

Compared with OC-SVM, SVDD has better computation scalability and better performance

in tackling curse of dimensionality [155]. Therefore, we introduce SVDD to our GNN for
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intrusion detection.

Similar to OC-SVM, SVDD comes from the traditional support vector machine (SVM).

However, instead of using a hyperplane to define the soft classification border, SVDD tries

to find a hypersphere with a center o ∈ Rcg and a radius r > 0 as the border. Here, cg

represents the output dimensionality of the last dense layer in our GNN. In general, the

related optimization problem of SVDD can be defined as follows:

argmin
r,o,ξ

r2 +
1

νm

m∑
k=1

ξk (5.3a)

subject to,

∀k, ||ϕcg(Xk)− o||2 ≤ r2 + ξk, ξk ≥ 0 (5.3b)

In Eq. (5.3a), ξ is called a slack vector, in which all slack variables ξk ≥ 0 altogether

construct a soft classification border or hypersphere. The soft classification border allows

some of data samples or support vectors originally from one class to cross the borderline

and fall in another class, which helps to avoid model overfitting via reducing the radius of

the hypersphere to a certain extent. On the other hand, the hypersphere cannot be shrunk

without any limitation, since this can potentially induce model underfitting. In this case,

a weight ν ∈ (0, 1] is introduced here to balance model overfitting and underfitting. In Eq.

(5.3b), the function ϕcg(xk) is the kernel function usually used in SVM for space mapping.

Here, we can consider the whole architecture of GNN except the last one-class classification

layer as the kernel function. Xk refers to the k-th CAN message graph discussed in Section

5.4.1 in the training set. || · ||2 is the L2 norm.

With a small trick, we can embed the constraint of the above optimization problem into

its objective function. At first, we can set:

ξk = max{0, ||ϕcg(Xk)− o||2 − r2} (5.4)
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Then, we replace ξk in Eq. (5.3a) with Eq. (5.4). Besides, we also consider a model

parameter regularization term to further dodge model overfitting. At last, we can get

the following optimization problem without any constraint, which can be seen as the loss

function of our whole GNN model.

argmin
r,W all

r2 +
1

νm

m∑
k=1

max{0, ||ϕcg(Xk)− o||2 − r2}+ λ

2
||W all||2 (5.5)

Here, λ is the weight decay to balance the penalty for large model parameters. W all denotes

a vector which includes all the parameters in our GNN model except the last one-class layer.

We no longer consider the center of the hypersphere o as a coefficient to be tuned here,

and follow the strategy in [155] to fix o. Some data samples are at first chosen from the

training set. Afterwards, we let these data samples pass through the initialized whole GNN

except the last one-class classification layer, and record the outputs from the last dense

layer. Finally, the center o is set to the mean of these outputs. Note that the above loss

function needs to investigate all the CAN message graphs in the training set at the same

time. If gradient descent is used for model parameter update, CAN message graphs for

training need to be considered in batches. With the concern of computation complexity,

the training process in this research project is based on mini-batch Stochastic Gradient

Descent (SGD).

5.5 Second-Stage Classifier

After the first-stage classifier filters out all the anomalies, they will further be sent to the

second-stage classifier to detect the specific attack type. The second-stage classifier can be

seen as a signature-based IDS. In order to tackle the potential new anomalies from unknown

classes, such as zero-day attacks, this classifier further introduces an openmax layer.

During the training process, the second-stage still utilizes the traditional softmax func-

tion in the output layer. The openmax layer is deployed during intrusion detection to replace
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the softmax layer, which revises the output of the penultimate layer in the original classifier

to reject data samples not close enough to any known class. In this research project, the

output of the penultimate layer can be denoted as an activation vector AC×1, where C

represents the number of known types of attacks. The design of the openmax layer is based

on meta-recognition algorithms [156,157], in which the distribution of the activation vector

is analyzed through Extreme Value Theory (EVT), and the Weibull distribution is figured

out. In detail, the EVT fitting in the openmax layer design adapts the concepts of Nearest

Class Mean [158,159] or Nearest Non-Outlier [160] per attack type to the activation vector.

Each attack type ci is represented with a mean activation vector (MAV), which is derived

through averaging all the activation vectors of the training samples belong to this attack

type, denoted as Āci . Then, within each attack type, we calculate the Euclidean distance

between the activation vector of each training sample Aci,j and the MAV Āci . Afterwards,

we conduct the Weibull fitting for each attack type based on EVT:

||Aci,j − Āci ||2 ∼Weibull(αi, βi,γi) (5.6)

where αi, βi and γi respectively denote the shape, scale and position parameter to describe

a Weibull distribution. γi has the same dimensionality as Āci for shifting the data. All the

Weibull fitting is pre-computed at the end of the training process.

When a new anomaly CAN message graph comes to the second-stage classifier, the

openmax layer will follow Algorithm 6 for attack type classification with potential unknown

anomaly rejection. From Algorithm 6, we can see that the openmax layer in general adapts

the softmax function to open world recognition, which is realized by introducing an extra

class c0 (line 8 of Algorithm 6). Such a class is used to include all the anomaly CAN message

graphs that are not quite similar to any existing attack type, and further infer a potential

unknown class. Line 4 of Algorithm 6 generates probabilities in which the new anomaly

CAN message graph belongs to a selected number of top-ranked classes or attack types.

Such probabilities are derived from the corresponding fitted Weibull distributions, and used

121



to revise the activation vector (line 5 of Algorithm 6).

Algorithm 6:Openmax Attack Type Classification with Potential Unknown Anomaly
Rejection

Input : A(X) = [a1, a2, · · · , aC ]T : activation vector of the new anomaly CAN

message graph X. Āci : MAV representing the known attack type ci.
{αi, βi,γi}: parameter set describing the fitted Weibull distribution related
to the known attack type ci. κ: number of “top” classes to revise.

Output: c∗: attack type, unknown class if c∗ = c0 or probability P (c = c∗|X) < ϵ

1 Initialize S = [s1, s2, · · · , sC ]← 0, ω = [ω1, ω2, · · · , ωC ]← 1;

2 S ← argsort(A(X));

3 for i = 1, 2, · · · , κ do

4 ωsi ← 1− κ−i
κ e

−(
||A(X)−Āsi−γsi

||2
βsi

)αsi

;

5 A(X)← A(X) ◦ ω ; //Element-wise product.

6 a0 ←
∑C

i=1 ai(1− ωi);

7 for i = 0, 1, · · · , C do

8 P (c = ci|X) = eai∑C
j=0 e

aj
;

9 c∗ = argmax
c

P (c = ci|X);

5.6 Federated Graph Neural Network Learning

5.6.1 Vehicle State and CAN Message Relationship

Currently, existing works are based on the assumption that CAN bus intrusions can change

statistical message sequences and message contents. In fact, changes of vehicle states can

also cause CAN message variations but in a reasonable way. Intuitively, CAN message

contents will change to reflect different vehicle states. On the other hand, vehicle states

can also affect CAN message sequences, since some ECUs may not get activated all the

time to prolong battery life in vehicles. For example, tire pressure sensors will sleep most

of the time and wake up only when vehicles start to travel at high speeds (over 40 km/h),

or during diagnosis and the initial CAN ID binding phases [161].

We further validate the above claims based on the dataset in [150] without any attacks,

which is collected when the vehicle has an acceleration process from 0 to 30 mph (about
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CAN ID: 254     Message Interval: 100

4769769 2849 463 0

4769761 2849 2511 0

4769753 2850 463 0

(a)

CAN ID: 254

1st message:     4769769 2849 463 0

200th message: 4769695 860 2511 1293

401st message: 4769753 1009 463 2311

600th message: 4769785 3220 2512 1203

(b)

Figure 5.8: CAN message contents with CAN ID 254. (a) In the same message interval;
(b) Several message intervals apart.

48 km/h) followed by a deceleration process back to 0 mph. Therein, the targeted CAN

ID is 254, which is related to vehicle speed information, and the dataset has 707 messages

with this CAN ID. Message contents are preprocessed based on READ. Fig. 5.8(a) shows

all relevant CAN messages within a 100 message long interval, which includes the 1st CAN

message, while Fig. 5.8(b) lists the data content of the 1st, 200th, 401st and 600th message.

In a single message interval, we can consider that the vehicle is in the same state, while two

CAN messages from two different intervals may correspond to two different vehicle states.

From Fig. 5.8(b), we can observe obvious value changes in the second and fourth data

block, which are not reflected in Fig. 5.8(a). Besides, the fourth data block seems to be

related to the vehicle speed, which makes its value vary within a certain range considering

the vehicle speed limit. In the other words, message content changes with CAN ID 254

should have the above two features, or be reasonable. Note that the value of the third data

block actually jumps between around 463 (odd indices) and around 2511 (even indices),

which is not considered as a change here.

Next, we show that vehicle states can also affect CAN message sequences. We split

the whole dataset with 23,963 CAN messages to 239 message intervals with each having

100 messages. For each message interval, we count the number of appearing times for

each possible CAN ID pair, and generate the corresponding statistical message sequence.
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(a) (b)

Figure 5.9: Cosine similarity comparison between 2 message sequences with (a) 1 message
interval apart, and (b) 50 message intervals apart.

Note that in order to make a proper comparison, we at first go through all CAN message

pairs in the dataset to record all possible CAN ID pairs. Afterwards, we compare two

message sequences based on cosine similarity. Fig. 5.9 shows comparison results under two

situations. In the first scenario, we compare any two consecutive CAN message sequences.

In detail, cosine similarity between 1st and 2nd message sequence is indexed in 1st interval

pair, cosine similarity between 2nd and 3rd message sequence is indexed in 2nd interval pair,

and so on. In the second scenario, we compare any two CAN message sequences with 50

message intervals apart. In detail, cosine similarity between 1st and 51st message sequence

is indexed in 1st interval pair, cosine similarity between 2nd and 52nd message sequence is

indexed in 2nd interval pair, and so on.

Based on the above two comparisons, we can notice a step change when two message

sequences are 50 intervals apart, which cannot be observed in the fist situation. In a short

time, a.k.a when we compare two consecutive message sequences, we can consider that

the vehicle state does not change. In this case, message sequences vary within a certain

range, which is reflected in Fig. 5.9(a). On the other hand, two message sequences with 50

intervals apart will correspond to two different vehicle states. Since some ECUs, such as tire

pressure sensors, will only get activated in some vehicle states, noticeable variations, such
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as the step change in Fig. 5.9(b), can happen. In addition, message sequence changes may

further have intrinsic connections with some message content variations, such as the above

CAN ID 254 related to vehicle speed. In order to differentiate CAN message variations

caused by vehicle state changes, we need to collect data from as many driving scenarios

and vehicle states as possible, which may have to come from different vehicles considering

the limitations discussed in Section 5.1. Federated learning can then be applied for model

training while protecting data privacy.

5.6.2 Federated Learning

Federated learning can be seen as a type of distributed machine learning, in which a cloud

server collaborates with several local users for model training. The whole training set

in federated learning is actually composed of those local datasets owned by each local

device, which are non-independent and identically distributed (non-IID). During model

training, each local device will train a local model based on its own dataset, and only

upload model parameters to the cloud server for aggregation, through which data privacy

can get protected. In this research project, the non-IID property can be caused by different

driving scenarios or vehicle states. In order to improve intrusion detection performance of

our IDS, we consider a federated learning environment. Vehicles in different status can train

our GNN model based on their own CAN bus data, and then upload model parameters to

the cloud server for model aggregation.

In this research project, we evaluate two federated learning schemes, i.e. FedAvg [3]

and FedProx [11], which are both based on mini-batch SGD to update local parameters.

The whole training process can be divided into a certain number of communication rounds

between the cloud server and vehicles. In each communication round, part of vehicles are

selected to upload their model parameters to the cloud server for aggregation after local

iterations. In the l-th selected vehicle, some generated CAN message graphs are selected at

each local iteration. During the training of the first-stage classifier, for each selected message

graph Xk, we will derive the corresponding loss based on the loss function defined in Eq.
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(5.5) and current local model parameters in the l-th vehicle, denoted as f(rl,W all,l,Xk).

Under mini-batch SGD, the mini-batch loss of the l-th selected vehicle can be calculated by

averaging losses across all selected message graphs:

F (rl,W all,l) =
1

ml

∑
k∈Pl

f(rl,W all,l,Xk) (5.7)

where Pl is the set of selected message graphs in the l-th vehicle at each local iteration, and

ml denotes the total number of elements in Pl.

When it comes to local model parameter update in the l-th vehicle, the mini-batch gra-

dient Gτ (rl,W all,l) at each local iteration τ can be derived by computing partial derivatives

of F (rl,W all,l) on each model parameter. Then, model parameters in the l-th vehicle will

be updated as follows:

[rl,W all,l]τ+1 ← [rl,W all,l]τ − ηGτ (rl,W all,l) (5.8)

Here, we use [rl,W all,l]τ to denote a vector which includes all parameters in our one-

class GNN model. η represents the learning rate. After a given number of iterations, all

the L selected vehicles will upload their learned model parameters to the cloud server for

aggregation:

[r,W all] =
1

m

L∑
l=1

ml[rl,W all,l] (5.9)

The result is considered as the globally learned model parameters after each communication

round. Finally, [r,W all] will be broadcast to all vehicles for the following possible local

iterations.

The above model parameter update is generally based on FedAvg, which will not nec-

essarily provide convergence guarantee. FedProx improves the convergence performance by

further introducing a proximal term. Such a term can ensure that updated local model
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parameters will not drift away from the global model parameters derived in the last com-

munication round. Mathematically, the mini-batch loss function of the i-th vehicle will be

modified to:

F (rl,W all,l)← F (rl,W all,l) +
µ

2
||[rl,W all,l]− [r,W all]pre||2 (5.10)

Here, we use [r,W all]pre to represent the global model parameters derived in the previous

communication round. µ is a hyperparameter to balance the effect of the proximal term.

The training of the second-stage classifier follows a similar process except that the

traditional softmax and cross-entropy function are respectively used here as the output

layer and loss function. In addition, the deployment of the openmax layer needs the Weibull

fitting, which is conducted at the end of model training. In the federated learning scenario,

the cloud server will at first request vehicles to upload the activation vectors of anomaly

CAN message graphs and the corresponding labels in their training sets. Afterwards, the

Weibull fitting will be conducted in the cloud server. Since only the activation vectors

instead of raw data need to be uploaded, the privacy guarantee of federated learning is not

violated. Besides, the Weibull fitting only needs one single communication round between

the cloud server and vehicles, which will not induce much extra communication overhead.

5.7 Experimental Results

5.7.1 Datasets and Experiment Setup

In this section, we will conduct extensive experiments to evaluate our GNN-based IDS

under CAN message injection attacks, message suspension attacks and message falsification

attacks. In detail, for the first-stage classifier, we compare our IDS with three baselines on

anomaly detection, which respectively represent IDSs considering statistical CAN message

sequences and message contents. When it comes to the second-stage classifier, we evaluate

its performance in classifying specific attack types and identifying new anomalies from

unknown classes.
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In the first baseline [122], the authors develop three kinds of strategies to detect CAN bus

intrusions via message sequences, i.e. thresholds for cosine similarity, Pearson correlation

and LSTM. Data for evaluation are collected on a Ford Transit 500 [150], which are separated

into three sets. The first dataset is composed of 23,963 normal CAN messages, while

message injection attacks are considered in the remaining two datasets. In the second and

third dataset, CAN IDs related to vehicle speed and RPM (254 and 115) are respectively

targeted, and compromised CAN messages are randomly injected into the these two datasets

after given time spots. In total, the second and third dataset each have 88,492 and 30,308

CAN messages.

The second and third baseline [126, 132] both design IDSs based on message contents

and LSTM. The evaluation dataset is CAN Signal Extraction and Translation Dataset pro-

vided by Hacking and Countermeasure Research Lab [162]. In order to make reasonable

comparisons, we follow the strategies in [132, 163] to generate anomaly data with the five

attack types discussed in Section 5.2.1, i.e. DoS, fuzzy, suspension, replay, and spoofing

attack.

We generally follow the architecture of GNN model in [152]. Such GNN model at first

has four graph convolution layers, with the last layer having only one feature channel for

the convenience of node sorting, which is realized in a SortPooling layer. The SortPooling

layer is followed by two 1-D convolution layers, one MaxPooling layer, one dense layer and

one dropout layer. The original softmax layer is replaced with SVDD for the first-stage

classifier, and the openmax layer is considered in the second-stage classifier. During the

GNN model training, tons of hyperparamters can be tuned. In this research project, we

focus on the number of feature channels in the first three graph convolution layers. We

also test different settings of two hyperparameters in SVDD, i.e. ν and λ. In addition,

the hyperparameter µ in FedProx will also be explored. We follow the settings in [152]

for the remaining hyperparameters. In detail, the output of the SortPooling layer is set to

a ks ×
∑4

t=1 ct tensor, where ks is set to a value which is not larger than the number of

nodes in 60% of CAN message graphs in the training set. The first 1-D convolution layer
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has 16 feature channels followed by a MaxPooling layer with a filter size 2 and step size 2.

The second 1-D convolution layer has 32 feature channels, a filter size 5 and step size 1.

The dense layer has 128 hidden neurons, followed by a dropout layer with a 0.5 drop rate.

For activation functions, hyperbolic tangent function (tanh) is selected in graph convolution

layers, and ReLU in all the other necessary layers. Mini-batch SGD is optimized with Adam

[15].

5.7.2 Statistical CAN Message Sequences

In this subsection, we at first evaluate training performance under different GNN model

settings, and select the best setting based on experimental results. In detail, we ex-

plore the number of feature channels in graph convolution layers with {32, 64, 128}, ν with

{0.001, 0.01, 0.1} and λ with {1e − 4, 1e − 5, 1e − 6}. We use the first dataset in the first

baseline as the training set, which only contains normal CAN messages. For message inter-

vals, we test the case with a length of 100 CAN messages. The size of mini-batches is 10.

Each setting is based on a 10-fold cross validation, which is further run for 10 times. The

averaged accuracy curves under different hyperparameter settings are shown in Fig. 5.10.

Based on those comparisons, we can see that the number of feature channels in graph con-

volution layers can affect convergence performance, while the other two hyperparameters

do not have too much impact. In this experiment, we choose 32 feature channels, ν = 0.01

and λ = 1e− 6.

Afterwards, we conduct comparisons with the first baseline to show the effectiveness of

our proposed IDS in detecting CAN message injection attacks. Note that in the original

second and third dataset of the first baseline, data contents of injected CAN messages also

get changed. In detail, all injected RPM and speed messages respectively end with “FFF”

and “FFFF”. In order to reflect the ability of our IDS in detecting intrusions only changing

statistical message sequences, we randomly select one of normal messages with the same

CAN ID in the same message interval, and use its data content in the relevant injected

CAN messages. We make these modifications to simulate DoS attacks or bus-off attacks,
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(a) (b) (c)

Figure 5.10: GNN model hyperparameter setting comparison related to the first baseline.
(a) Feature channel; (b) ν; (c) λ.

which cannot be identified by IDSs considering CAN message contents. The comparison

with the first baseline based on a 100 CAN message long interval is shown in Table 5.2, in

which the considered metrics include accuracy, precision, recall and F1-score. In this table,

RPM and speed respectively represent those two corresponding attacks. CS, PC, LSTM-CS

and LSTM-PC respectively represent the three kinds of intrusion detection strategies in the

first baseline, i.e. thresholds for Cosine Similarity, thresholds for Pearson Correlation and

statistical CAN message sequence reconstruction based on LSTM for intrusion detection.

GNN corresponds to our IDS. Based on the comparison, we can see that our IDS can achieve

even better performance than the first baseline in detecting CAN message injection attacks.

Besides, in order to evaluate the scalability of our IDS, we further consider the situation

that message intervals have different lengths during intrusion detection, i.e. 150 and 200.

The results are shown in Table 5.3. From this table, we can see that our IDS can still

achieve fairly high performance even when the length of message intervals during intrusion

detection is different from the length during model training.

At last, we consider in this research project that message intervals longer than 200 will

impact real-time performance of IDSs, since collecting 200 CAN messages will cost more

than 100 ms. The average prediction time of our IDS for each CAN message graph is 3 ms.
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Table 5.2: Comparison Results with the First Baseline (in %), Anomaly Threshold in the
First Baseline: 0.87.

Attack IDS Accuracy Prediction Recall F1

RPM

CS

PC

LSTM-CS

LSTM-PC

GNN

96.65

97.32

97.32

96.80

100

91.40

93.48

92.47

91.49

100

96.59

97.73

97.73

97.73

100

93.92

95.56

95.03

94.51

100

Speed

CS

PC

LSTM-CS

LSTM-PC

GNN

89.20

90.57

96.93

96.93

99.41

68.29

71.60

89.71

88.57

96.92

88.89

92.06

95.31

96.88

100

77.24

80.55

92.43

92.54

98.44

Table 5.3: Scalability Evaluation (in %)

Attack Interval Length Accuracy Prediction Recall F1

RPM
150

200

97.65

97.06

93.48

92.39

97.73

96.59

95.56

94.44

Speed
150

200

94.71

96.43

80.60

87.14

85.71

96.83

83.08

91.73

5.7.3 CAN Message Contents

The related dataset used in this subsection is at first separated into a training set (the first

80%) and a test set (the last 20%). We assume here that the first 80% dataset should be

able to cover most of vehicle states appearing in the last 20% of the whole data, which can

be validated by the following experimental results. Similar to Section 5.7.2, the training set

here also only contains normal CAN messages. The message interval length is set to 100

for both the training and test set. Although the second and third baseline consider CAN

message contents for intrusion detection, they can both detect message injection (DoS and
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fuzzy), message suspension, and message falsification (replay and spoofing) attack at the

same time. Therefore, we also apply all the five attack types in the test set for comprehensive

comparisons. Those attacks are randomly deployed in different message intervals of the test

set. GNN model hyperparameters and the mini-batch size are the same as those selected in

the last subsection. Table 5.4 shows related comparison results, where LSTM-P and CLAM

respectively denote the second and third baseline.

Table 5.4: Comparison Results with the Second and Third Baseline (in %), Anomaly
Threshold in the Second and Third Baseline: 0.83.

Attack IDS Accuracy Prediction Recall F1

DoS

LSTM-P

CLAM

GNN

97.26

98.75

100

94.20

95.70

100

91.60

97.10

100

92.90

96.40

100

Fuzzy

LSTM-P

CLAM

GNN

97.10

97.80

98.14

93.30

96.20

97.56

93.30

95.20

97.01

92.80

96.70

97.28

Suspension

LSTM-P

CLAM

GNN

97.38

97.90

99.72

91.90

93.90

98.88

93.80

94.90

99.73

92.90

94.40

99.30

Replay

LSTM-P

CLAM

GNN

97.25

97.75

97.73

92.90

94.90

94.71

95.80

95.80

95.66

94.30

95.30

95.18

Spoofing

LSTM-P

CLAM

GNN

95.75

97.00

97.91

91.80

94.80

96.10

90.80

92.90

94.30

91.30

93.80

95.19

From the results, we can see that in general, our IDS can achieve comparable perfor-

mance to the second and third baseline. After taking a deeper insight, we find that message

falsification attacks, i.e. replay and spoofing attacks, are hard to detect if related data

contents only have slight changes compared with normal CAN message contents, which

explains why our IDS performs a little less effective towards message falsification attacks.
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Considering the robustness of CAN bus, IDSs targeting statistical message sequences usu-

ally can achieve high performance, since injected CAN messages should overwhelm normal

messages to take control of CAN buses, especially those DoS attacks, which will usually

make significant changes to statistical message sequences. However, message falsification

attacks can easily control CAN buses via slightly modifying normal CAN messages. For

example, a speed reading change from 35 km/h to 40 km/h can trigger the activity of some

ECUs, such as tire pressure sensors mentioned in Section 5.6.1. It is tricky to judge those

slightly changed data contents, which sometimes can just be noise. How to balance the

sensitivity of related IDSs is worth considering in practical applications.

Table 5.5: Real-Time Performance Comparison

IDS NoO DCT (ms) DT (ms)

LSTM-P

CLAM

GNN

100 per CAN ID

12 per CAN ID

100 in total

≥ 991.20

≥ 110.84

48.87

7.6

1.35

3.20

Although LSTM-P and CLAM can detect all the three kinds of attack at the same time,

they both need a certain number of observations for each CAN ID to detect intrusions based

on LSTM, which can induce high data collection delay and impact real-time performance.

Table 5.5 shows a real-time performance comparison with them. In this table, NoO, DCT,

and DT respectively represent Number of Observations, Data Collection Time, and Detec-

tion Time for each intrusion detection. The NoO of LSTM-P and CLAM are the number

for each CAN ID while our GNN corresponds to the total number of CAN messages. Based

on our observations, even for CAN IDs with the highest message frequency, only 4 to 6 mes-

sages can be found in each 100 CAN messages. In this case, the total number of required

CAN messages before each intrusion detection have to be much larger than 200 in LSTM-P

and CLAM, or over 2 times larger than the necessary number in our proposed IDS. Such

a number difference can further cause DCT difference, and seriously impact the real-time
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performance, which is also reflected in Table 5.5. The DT of our proposed IDS is 3.20 ms in

average. Although it is larger than the DT of CLAM, the gap is almost negligible compared

with the difference of DCT. Last but not least, the memory consumption of our first-stage

classifier for intrusion detection is 354.6 KB, which is also less than that of LSTM-P (13,417

KB) and CLAM (682 KB).

5.7.4 Attack Type Classification

In this subsection, we will evaluate the performance of our second-stage classifier. We still

use the dataset in the last subsection, follow the strategies in [132,163] to generate anomaly

data with the five attack types, and consider 100 CAN message long intervals for message

graph generation. Different from the last subsection, we will apply those five attack types

uniformly to the whole dataset before training (80%) and test (20%) separation. The model

training of the second-stage classifier is quite similar to that of the first-stage classifier except

that the traditional softmax and cross-entropy function are respectively used here as the

output layer and loss function. GNN has the same structure and hyperpatameters as that

in the first-stage classifier.

When it comes to specific attack type classification, the openmax layer will be used to

replace the softmax layer. At first, let us not consider open world recognition, in which

c0 is not introduced and ϵ is set to 0. Fig. 5.11 shows a confusion matrix based on 4,740

attacked data samples, where each specific attack type owns 948 data samples. Based

on the confusion matrix, we can see that our second-stage classifier works pretty well in

identifying DoS and suspension attack, which can only cause difference in statistical CAN

message sequences. On the other hand, replay and spoofing attack can be misclassified

to each other because of CAN message content changes. It is sometimes very tricky to

tell whether an attacked data sample belongs to replay or spoofing attack. Spoofing and

replay attack respectively use randomly generated and previously seen CAN messages to

replace normal ones. Chances are that randomly generated CAN messages can sometimes

be similar to or even the same as those previously seen messages. The situation of fuzzy
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Figure 5.11: Specific attack type classification confusion matrix (in %)

attack is also complicated. Different from DoS and suspension attack, which usually focus

on a single CAN ID, fuzzy attack randomly generates several CAN IDs. If a specific fuzzy

attack does not cause an obvious change on the statistical CAN message sequence, it will

be quite similar to a fuzzy or replay attack, which causes misclassifications shown in Fig.

5.11.

Next, let us evaluate the ability of our second-stage classifier in identifying new anomalies

from unknown classes. Here, we respectively leave one attack type as the “unknown” class

and consider the other four attack types during model training. For each targeted attack

type, we determine the most proper probability threshold ϵ in Algorithm 6 based on the

optimal cut-point in the corresponding receiver operating characteristic (ROC) curve. Table

5.6 shows the evaluation results. Note that here, we combine the four attack types used in

model training to a “general” class, through which the open world recognition problem can
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be seen as a two-class classification problem. In general, we can see that our second-stage

classifier can effectively identify new anomalies not quite similar to any existing attack type,

which usually infers unknown classes. Besides, fuzzy, replay and spoofing attack sometimes

cannot be identified when they are considered as the “unknown” class. The reason behind

this is actually quite similar to the above.

Table 5.6: Open World Recognition Performance Evaluation (in %)

Attack Accuracy Prediction Recall F1

DoS

Fuzzy

Suspension

Replay

Spoofing

100

87.13

100

95.45

93.38

100

62.86

100

84.01

77.90

100

87.13

100

95.36

93.35

100

73.03

100

89.33

84.93

5.7.5 Effect of Federated Learning

As has been discussed previously, vehicle states can affect statistical CAN message sequences

and message contents. In this subsection, we evaluate the impact of federated learning on

intrusion detection performance improvement based on the first-stage classifier. Related

experiments are conducted based on datasets in the first baseline. We split the first dataset

to 10 portions for local training to simulate an environment with 10 vehicles. The second and

third dataset are still used as test sets. GNN model hyperparameters and the mini-batch

batch size are the same as before in each simulated vehicle. The center of the hypersphere

o in the one-class classification layer is set to the average of local centers derived from all

simulated vehicle. We at first conduct experiments to explore the hyperparameter settings

in FedProx, which are illustrated in Fig. 5.12. 10-fold cross validation is still utilized here.

Considering that federated learning has model parameter aggregation after local training,

accuracies are indexed by the number of communication rounds instead of epochs. Based
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Figure 5.12: Hyperparameter setting comparison related to federated learning

on comparison results, we can see that µ does not have too much impact on convergence

performance, and we select µ = 0.01 in the following experiments. We also include the

convergence performance of FedAvg to show the improvement of FedProx.

Table 5.7 shows the accuracy comparisons based on test sets and GNN model parameters

after 120 communication rounds. For the situation without considering federated learning

(Without FL), we only use the data in the first simulated vehicle for training. Based on the

comparisons, we can see that intrusion detection performance can get seriously degraded if

training sets only cover limited vehicle states. In the real-world, such situations can happen

if we only track one vehicle having limited driving scenarios. However, this issue can be

solved by collecting and integrating multiple local models derived from different vehicles.

For more comprehensive comparison, we also include the traditional centralized learning

scenario. We can see that the convergence performance of FedProx is comparable to that

of centralized learning. We also did related evaluation for the second-stage classifier, and

figured out similar trends.
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Table 5.7: Accuracy Comparison of Federated Learning (in %)

Without FL FedAvg FedProx Centralized

RPM

100

150

200

32.01

34.32

36.30

80.03

81.35

88.61

99.04

94.65

97.65

100

97.65

97.06

Speed

100

150

200

33.33

29.04

37.29

78.82

74.71

84.98

99.41

97.62

98.82

99.41

94.71

96.43

5.8 Open Problems on CAN Bus IDSs based on Federated

Learning

Several open problems still exist in further extending the CAN bus IDS proposed in this

research project, especially after the introduction of federated learning.

• As is shown in Fig. 5.2, once anomalies are rejected as from unknown classes, they

will be buffered for further investigation. If necessary, new anomalies can be further

tackled by transfer learning [137] or extra one-class classifier training [136]. How-

ever, introducing new layers to existing learning models or directly considering extra

classifiers can increase computation complexity, which may exceed the computation

capacity of participating vehicles. In this case, a light-weighted learning model is quite

necessary.

• In this research project, we assume that all vehicles participating in federated learning

are from the same model. The lack of relevant public specifications can cause large

divergence on CAN message streams from different vehicle models, which further

brings challenges to the related machine learning model design. A potential strategy

to tackle this challenge is to train an individual IDS for each vehicle model, and further

combine them together through hierarchical structures.
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• In this research project, we also assume that both vehicles and cloud servers are honest

when developing the IDS. Since the IDS is constructed based on federated learning,

poisoning attacks can also happen during model training. In this case, how to filter

out these attacks can be a new challenge. Currently, Byzantine-tolerant distributed

learning is widely considered as one potential solution. However, existing schemes

either assume that the participants’ training data are independent and identically

distributed [164,165], which violates the assumption of federated learning, or greatly

degrade the convergence performance of federated learning [166].

5.9 Summary

In this research project, we propose a CAN bus IDS based on GNN, which can efficiently de-

tect CAN message injection, suspension, and falsification attacks at the same time. A CAN

message graph is developed here to integrate statistical message sequences with message

contents. A GNN fit for directed attributed graphs is constructed and trained to predict

intrusions. Considering that attack data are hard to acquire in the real world, which may

cause highly imbalanced training sets, we develop a two-stage classifier cascade to tackle

normal and attacked CAN data respectively. In the first-stage classifier, we replace the

traditional softmax layer in GNN with a one-class classification layer for anomaly detec-

tion and train the GNN only with normal CAN messages. Once anomaly CAN data are

spotted, they will be further passed to the second-stage classifier to determine the specific

attack type, in which an openmax layer is introduced to tackle anomalies from potential

unknown classes. We also notice that changes of vehicle states can affect CAN message

graph patterns in a reasonable way. In this case, federated learning is considered to cover

a wide range of driving scenarios and vehicle states while protecting user data privacy. We

validate our IDS based on several real-world datasets and comparisons with three baselines.

Experimental results show that our IDS can achieve similar performance to those IDSs only

based on statistical CAN message sequences and message contents.
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Chapter 6: Conclusion and Future Work

6.1 Conclusion

In this dissertation, we provide comprehensive analysis about optimizing communication

overhead in federated learning from the following three aspects. At first, federated learning

needs several communication rounds between local devices and public servers for model

aggregation, which are mostly through wireless networks. Besides, since uploaded model

parameters in federated learning are still vulnerable to inference attacks, extra privacy

masks are needed for them, such as Secret Sharing (SS) and secure Multi-Party Compu-

tation (MPC), which can further aggravate communication. In addition, the number of

communication rounds can soar if adversaries try to slow convergence of federated learning

by poisoning local data or uploaded model parameters.

In detail, we conduct the following four research projects. At first, We consider reduc-

ing communication overhead through convergence performance optimization in federated

learning. We aim at achieving comparable final convergence accuracy under lower commu-

nication frequency and higher communication rate. The proposed optimization algorithm

targets the model parameter update rule in federated learning, called FedUR. This algo-

rithm introduces centralized machine learning-based adaptive learning strategies to feder-

ated learning. Convergence upper bounds under our optimization scheme are derived after

each communication round with a certain number of local iterations, and after a given num-

ber of communication rounds. Through comparison with the bounds of original federated

learning, we theoretically analyze how those strategies should be tuned to help federated

learning effectively optimize convergence performance and reduce communication overhead.

Next, we focus on secret share placement after using SS and MPC to further protect

uploaded model parameters. We find that the recently proposed mobile edge computing
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relieves the concern about the communication between local devices and public servers, but

raises new challenges in communication and computation management among edge servers.

In this case, we propose a privacy-preserving task scheduling strategy based on (2,2) SS

and mobile edge computing to reduce data processing latency, in which locally-learned

model parameters are separated into two portions before uploaded to public edge servers

for parameter aggregation based on MPC. We show that the related privacy constraint

can be enforced through constructing a pairwise Markov chain, and carefully designing

system states and transition probabilities. We further formulate the whole task scheduling

problem as a stochastic latency minimization problem and solve it by converting it into a

linear programming problem.

We further extend the (2,2) case to (R,L) case, and propose a communication-aware se-

cret share placement strategy to optimize communication overhead by minimizing weighted

transmission hop counts in a hierarchical edge computing architecture. The computation

and storage capacity of each edge node are considered by applying a limitation with re-

gard to queue length. We define a secret matrix Ca and a share matrix Cb to describe all

communication among shares of different secrets with the same index and all communica-

tion among different shares of the same secret. We show that the constructed optimization

problem is NP-hard, and efficient heuristic algorithms can be applied to find sub-optimal

solutions. We respectively evaluate two traditional heuristics, i.e. Genetic Algorithm (GA)

and Particle Swarm Optimization (PSO), introduce two basic heuristics, i.e. top-down and

bottom-up heuristic, and further propose an advanced algorithm, called Bottom-Up Top-

Down (BUTD) heuristic. Based on comparison, we find that our proposed BUTD heuristic

can outperform all the other four heuristics when communication among different shares of

the same secret is comparable to that among different secrets.

Finally, we validate the value and utility of federated learning based on a well-known

research problem in cybersecurity, i.e. CAN bus intrusion detection. Our proposed CAN

bus intrusion detection system is designed based on Graph Neural Network (GNN). This

work generates directed attributed graphs based on CAN message streams in given message
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intervals. Afterwards, a GNN is trained based on generated CAN message graphs. Con-

sidering highly imbalanced training data, a two-stage classifier cascade is developed, which

is composed of a one-class classifier for anomaly detection and a multi-class classifier for

attack classification. An openmax layer is further introduced to the multi-class classifier

to tackle new anomalies from unknown classes. We show that different driving scenarios

and vehicle states will impact sequence patterns and data contents of CAN messages, which

further cause changes in CAN message graphs. In this case, we develop a federated learning

architecture to accelerate the learning process while preserving data privacy.

6.2 Future Work

In the future, we want to further explore the following research directions.

6.2.1 Future Work on Federated Learning Optimization

System and data statistical heterogeneity are widely considered when it comes to conver-

gence performance optimization in federated learning. For system heterogeneity, it is usually

about end device synchronization [5–7]. As to data statistical heterogeneity, existing works

have considered battling unbalanced and non-IID data distributions across different end

devices through end device selection (FAVOR [8] and FOLB [9]), batch size optimization

(CABS [58], BA-SGD [59], and Adaptive-B [10]), and cross-client variance reduction (Fed-

Prox [11]), VRL-SGD [12], and SCAFFOLD [13]). Our proposed algorithm in Chapter 2

is orthogonal to all the above federated learning optimization strategies, which are devel-

oped based on the original federated learning or FedAvg. A proper integration with those

strategies can further improve convergence performance.

If we further expand the scope to communication overhead optimization, uploaded model

parameter compression has recently been considered [40,41,43]. Therein, a quantized version

of local model parameters are uploaded to the central server for aggregation, which will bring

new challenges to central servers on deriving global momentum and adaptive learning rate.

In addition, communication management schemes, such as [48], can be integrated into our
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algorithm to further optimize communication between end devices and central servers if

resource constraints exist.

6.2.2 Future Work on Privacy and Security in Federated Learning

Recent works have shown that federated learning can get negatively affected by poison-

ing attacks [35–38] (security issues). In addition, uploaded model parameters in federated

learning are vulnerable to inference attacks (privacy issues) [18–21]. For poisoning attacks,

besides developing self-learning intrusion detection systems, Byzantine-tolerant distributed

learning is another solution. However, the authors [36] have pointed out that the current

relevant schemes are based on the assumption that local data owned by different local

clients are Identical and Independently Distributed (IID). In other words, how to extend

them to federated learning with non-IID data distributions still needs to be explored. As

to inference attacks, an even higher privacy-preserving level can be reached by protecting

uploaded model parameters based on secret sharing [22,23], secure multi-party computation

[24,25], or differential privacy [26,67]. However, the first two strategies can further increase

communication overhead if local model parameters need to be separated into several pieces

and uploaded to different central servers. In this dissertation, we have proposed two secret

share placement strategies to optimize computation latency and communication overhead

in mobile edge computing. Several deployment issues still need to be tackled, which have

been discussed in Section 4.8. In addition, differential privacy masks uploaded model pa-

rameters through adding random Gaussian noise. Therefore, there will be tradeoff between

the privacy protection level and convergence performance [27], which can further influence

communication overhead. The design of differential privacy policies still remains largely

open in federated learning.
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6.2.3 Future Work on Federated CAN Bus Intrusion Detection

New anomalies identified by the proposed CAN bus IDS in this dissertation can be further

tackled by transfer learning [137] or extra one-class classifier training [136]. However, in-

troducing new layers to existing learning models or directly considering extra classifiers can

increase computation complexity, which may exceed the computation capacity of partici-

pating vehicles. In this case, a light-weighted learning model is quite necessary. Besides, in

the proposed IDS, we assume that all vehicles participating in federated learning are from

the same model. The lack of relevant public specifications can cause large divergence on

CAN message streams from different vehicle models, which further brings challenges to the

related machine learning model design. A potential strategy to tackle this challenge is to

train an individual IDS for each vehicle model, and further combine them together through

hierarchical structures. Furthermore, we also assume that both vehicles and cloud servers

are honest. As has been mentioned above, poisoning attacks in federated learning have re-

cently drawn increasing attention [35–38]. Since the IDS is constructed based on federated

learning, poisoning attacks can also happen during model training. In this case, how to

filter out these attacks can be a new challenge. Currently, Byzantine-tolerant distributed

learning is widely considered as one potential solution. However, existing schemes either

assume that the participants’ training data are IID [164,165], which violates the assumption

of federated learning, or greatly degrade the convergence performance of federated learning

[166]. Further exploration is necessary.
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Appendix A: Missing Proofs

A.1 Proof of Theorem 2.4.1

In this proof, we will use m(t) to approximate m̂(t), since β1 < 1, and based on For-

mula (2.7), we should have:

lim
t→∞

m̂i(t) = lim
t→∞

mi(t)

1− βt
1

= mi(t) (A.1)

At the beginning of each interval [j], we assume w[j],k((j − 1)τ) = w[j]((j − 1)τ), and

further m[j],k((j − 1)τ) = m[j]((j − 1)τ). Then, based on the following two formulae:

mi(t)←β1mi(t− 1) + (1− β1)Gi(t) (A.2a)

m̂i(t) =
1− β1
1− βt

1

t∑
c=1

βt−c
1 Gi(c) (A.2b)

we will have:

m[j],k(t)−m[j](t)

=[β
t−(j−1)τ
1 m[j],k((j − 1)τ) + (1− β1)

t−(j−1)τ−1∑
c=0

βc
1G[j],k(t− c)]− [β

t−(j−1)τ
1 m[j]((j − 1)τ)

+ (1− β1)

t−(j−1)τ−1∑
c=0

βc
1G[j](t− c)]

=(1− β1)

t−(j−1)τ−1∑
c=0

βc
1(G[j],k(t− c)−G[j](t− c)) (A.3)

Next, let’s discuss the upper bound in Theorem 2.4.1. As has been discussed in Section
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2.4.2, as long as we get the upper bound of ||wF
[j](t)−w[j](t)||, we can derive the upper bound

of |F (wF
[j](t))−F (w[j](t))| through the ρ-Lipschitz assumption. For ||wF

[j](t)−w[j](t)||, we

have:

||wF
[j](t)−w[j](t)||

=||wF
[j](t− 1)−

∑K
k=1Nkηm[j],k(t− 1)

N
−w[j](t− 1) + ηm[j](t− 1)||

≤||wF
[j](t− 1)−w[j](t− 1)||

+ η

∑K
k=1Nk||m[j],k(t− 1)−m[j](t− 1)||

N
(Triangle inequity)

=||wF
[j](t− 1)−w[j](t− 1)||+ ηβ(1− β1)

∑K
k=1Nk||

∑t−(j−1)τ−1
c=0 βc

1(w[j],k(t− c)−w[j](t− c))||
N

(Formula (A.3) and β-smooth)

≤||wF
[j](t− 1)−w[j](t− 1)||+ ηβ(1− β1)

t−(j−1)τ−1∑
c=0

βc
1

∑K
k=1Nk||(w[j],k(t− c)−w[j](t− c))||

N
(Triangle inequity)

=||wF
[j](t− 1)−w[j](t− 1)||+ ηβ(1− β1)

t−(j−1)τ−1∑
c=0

βc
1

∑K
k=1Nkδk((ηβ − 1)t−c−1−(j−1)τ − 1)

Nβ
(Lemma 3 in [48])

=||wF
[j](t− 1)−w[j](t− 1)||+ ηδ(1− β1)

t−(j−1)τ−1∑
c=0

βc
1((ηβ − 1)t−c−1−(j−1)τ − 1) (A.4)
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In other words, we have:

||wF
[j](t)−w[j](t)|| − ||wF

[j](t− 1)−w[j](t− 1)||

≤ηδ(1− β1)

t−(j−1)τ−1∑
c=0

βc
1((ηβ − 1)t−c−1−(j−1)τ − 1) (A.5)

By induction, we can have the following derivation. Note that we assume w[j],k((j −

1)τ) = w[j]((j − 1)τ).

||wF
[j](t)−w[j](t)||

=
t∑

y=(j−1)τ+1

||wF
[j](y)−w[j](y)|| − ||wF

[j](t− 1)−w[j](t− 1)||

≤ηδ(1− β1)
t∑

y=(j−1)τ+1

y−(j−1)τ−1∑
c=0

βc
1((ηβ − 1)y−c−1−(j−1)τ − 1)

=ηδ(1− β1)
t∑

y=(j−1)τ+1

y−(j−1)τ−1∑
c=0

( β1

ηβ+1)
c

(ηβ + 1)(j−1)τ−y+1
− βc

1

=ηδ(1− β1)
t∑

y=(j−1)τ+1

1

(ηβ + 1)(j−1)τ−y+1
·

(ηβ + 1)y−(j−1)τ − β
y−(j−1)τ
1

(ηβ + 1− β1)(ηβ + 1)y−(j−1)τ−1
− 1− β

y−(j−1)τ
1

1− β1
(Geometric series)

=ηδ(1− β1)
t∑

y=(j−1)τ+1

(ηβ + 1)y−(j−1)τ − β
y−(j−1)τ
1

ηβ + 1− β1
− 1− β

y−(j−1)τ
1

1− β1

=ηδ(1− β1)

t−(j−1)τ∑
z=1

(ηβ + 1)z − βz
1

(ηβ + 1)− β1
− 1− βz

1

1− β1
(A.6)
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Based on the following observation:

az − bz

a− b
= az−1 +

b(az−1 − bz−1)

a− b
(A.7)

We can further have:

||wF
[j](t)−w[j](t)||

=ηδ(1− β1)

t−(j−1)τ∑
z=1

(ηβ + 1)z−1 − 1 +
β1[(ηβ + 1)z−1 − βz−1

1 ]

(ηβ + 1)− β1
− β1(1− βz−1

1 )

1− β1

=ηδ

t−(j−1)τ∑
z=1

[(ηβ + 1)z−1 − 1] + ηδ

t−(j−1)τ∑
z=1

{−β1(ηβ + 1)z−1 + β1

+
β1(1− β1)

ηβ + 1− β1
[(ηβ + 1)z−1 − βz−1

1 ]− β1 + β1β
z−1
1 }

=ηδ

t−(j−1)τ∑
z=1

[(ηβ + 1)z−1 − 1] + ηδ(
β1(1− β1)

ηβ + 1− β1
− β1)

t−(j−1)τ∑
z=1

(ηβ + 1)z−1

− ηδ(
β1(1− β1)

ηβ + 1− β1
− β1)

t−(j−1)τ∑
z=1

βz−1
1 (A.8)

Set x = t− (j − 1)τ , we will have:

||wF
[j](t)−w[j](t)||

={ δ
β
[(ηβ + 1)x − 1]− ηδx}

− {ηδβ1[(ηβ + 1)x − 1]

ηβ + 1− β1
− η2δββ1(1− βx−1

1 )

(ηβ + 1− β1)(1− β1)
} (Geometric series)

=h1(x)− h2(x) (A.9)
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A.2 Proof of Theorem 2.4.2

We at first define an equivalent learning rate η̄[j], which meets the following relationship

with I model parameters:

η̄[j]

K∑
k=1

||G[j],k(t)−G[j](t)||

=
K∑
k=1

√√√√ I∑
i=1

[η[j],i(G[j],k,i(t)−G[j],i(t))]2

=

K∑
k=1

||η[j] ◦ (G[j],k(t)−G[j](t))|| (A.10)

Here, the symbol “◦” represents the element-wise or Hadamard product of two vectors.

Note that we will definitely have:

min
i∈{1,2,··· ,I}

η[j],i ≤ η̄[j] ≤ max
i∈{1,2,··· ,I}

η[j],i (A.11)

We still just need to look at ||wF
[j](t)−w[j](t)||, considering the ρ-Lipschitz assumption.

Besides, at the beginning of each interval [j], we still assume w[j],k((j−1)τ) = w[j]((j−1)τ),

and further G[j],k((j − 1)τ) = G[j]((j − 1)τ). Furthermore, we assume in this proof that

in each interval [j], û[j] can be used to approximate û(t). In other words, we assume

η[j](t) ≈ η[j] for ∀t ∈ [j].

||wF
[j](t)−w[j](t)||

=||wF
[j](t− 1)−

∑K
k=1Nkη[j] ◦G[j],k(t− 1)

N
−w[j](t− 1) + η(t) ◦G[j](t− 1)||

≤||wF
[j](t− 1)−w[j](t− 1)||
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+

∑K
k=1Nk||η[j] ◦ (G[j],k(t− 1)−G[j](t− 1))||

N
(Triangle inequity)

=||wF
[j](t− 1)−w(t− 1)||

+ η̄[j]β

∑K
k=1Nk||w[j],k(t− 1)−w[j](t− 1)||

N
(Formula (A.10) and β-smooth)

=||wF
[j](t− 1)−w[j](t− 1)||

+ η̄[j]β

∑K
k=1Nkδk((η̄[j]β − 1)t−1−(k−1)τ − 1)

Nβ
(Lemma 3 in [48])

=||wF
[j](t− 1)−w[j](t− 1)||+ η̄[j]δ((η̄[j]β − 1)t−1−(j−1)τ − 1) (A.12)

Then, following the induction process similar to that in Appendix A.1 and setting x =

t− (j − 1)τ , we can derive:

||wF
[j](t)−w[j](t)|| ≤

δ

β
[(η̄[j]β + 1)x − 1]− η̄[j]δx = h3(x) (A.13)
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[54] F. Niu, B. Recht, C. Ré, and S. J. Wright, “Hogwild!: A lock-free approach to paral-
lelizing stochastic gradient descent,” arXiv preprint arXiv:1106.5730, 2011.

[55] W. Dai, J. Wei, X. Zheng, J. K. Kim, S. Lee, J. Yin, Q. Ho, and E. P. Xing,
“Petuum: A framework for iterative-convergent distributed ML,” arXiv preprint
arXiv:1312.7651, 2013.

[56] X. Shi, B. Cui, Y. Shao, and Y. Tong, “Tornado: A system for real-time iterative
analysis over evolving data,” in Proceedings of the 2016 International Conference on
Management of Data, 2016, pp. 417–430.

[57] Z. Qu, S. Guo, H. Wang, B. Ye, Y. Wang, A. Zomaya, and B. Tang, “Partial syn-
chronization to accelerate federated learning over relay-assisted edge networks,” IEEE
Transactions on Mobile Computing (Early Access), 2021.

[58] L. Balles, J. Romero, and P. Hennig, “Coupling adaptive batch sizes with learning
rates,” arXiv preprint arXiv:1612.05086, 2016.

[59] P. Yin, P. Luo, and T. Nakamura, “Small batch or large batch?: Gaussian walk
with rebound can teach,” in Proceedings of the 23rd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, 2017, pp. 1275–1284.

[60] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smithy, “FedDANE:
A federated Newton-type method,” in Proceedings of the 53rd Asilomar Conference
on Signals, Systems, and Computers. IEEE, 2019, pp. 1227–1231.

[61] X. Zhang, M. Hong, S. Dhople, W. Yin, and Y. Liu, “FedPD: A federated learning
framework with adaptivity to non-iid data,” IEEE Transactions on Signal Processing,
vol. 69, pp. 6055–6070, 2021.

[62] W. Liu, L. Chen, Y. Chen, and W. Zhang, “Accelerating federated learning via mo-
mentum gradient descent,” IEEE Transactions on Parallel and Distributed Systems,
vol. 31, no. 8, pp. 1754–1766, 2020.

[63] J. Mills, J. Hu, and G. Min, “Communication-efficient federated learning for wireless
edge intelligence in IoT,” IEEE Internet of Things Journal, vol. 7, no. 7, pp. 5986–
5994, 2020.

156



[64] S. Bubeck, “Convex optimization: Algorithms and complexity,” arXiv preprint
arXiv:1405.4980, 2014.

[65] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied
to document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324,
1998.

[66] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from
tiny images,” University of Toronto, Tech. Rep., 2009. [Online]. Available:
http://www.cs.toronto.edu/ kriz/learning-features-2009-TR.pdf

[67] S. Truex, N. Baracaldo, A. Anwar, T. Steinke, H. Ludwig, R. Zhang, and Y. Zhou,
“A hybrid approach to privacy-preserving federated learning,” in Proceedings of the
12th ACM Workshop on Artificial Intelligence and Security, 2019, pp. 1–11.

[68] P. Mach and Z. Becvar, “Mobile edge computing: A survey on architecture and
computation offloading,” IEEE Communications Surveys & Tutorials, vol. 19, no. 3,
pp. 1628–1656, 2017.

[69] H. Zhang and K. Zeng, “Pairwise Markov chain: A task scheduling strategy for
privacy-preserving sift on edge,” in IEEE INFOCOM 2019-IEEE Conference on Com-
puter Communication, 2019, pp. 1432–1440.

[70] M. Hao, H. Li, G. Xu, S. Liu, and H. Yang, “Towards efficient and privacy-preserving
federated deep learning,” in ICC 2019-2019 IEEE International Conference on Com-
munications (ICC), 2019, pp. 1–6.

[71] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” International
Journal of Computer Vision, vol. 60, no. 2, pp. 91–110, 2004.

[72] W. Lu, A. L. Varna, A. Swaminathan, and M. Wu, “Secure image retrieval through
feature protection,” in 2009 IEEE International Conference on Acoustics, Speech and
Signal Processing, 2009, pp. 1533–1536.

[73] C.-Y. Hsu, C.-S. Lu, and S.-C. Pei, “Image feature extraction in encrypted domain
with privacy-preserving SIFT,” IEEE Transactions on Image Processing, vol. 21,
no. 11, pp. 4593–4607, 2012.

[74] S. Wang, M. Nassar, M. Atallah, and Q. Malluhi, “Secure and private outsourcing
of shape-based feature extraction,” in International Conference on Information and
Communications Security. Springer, 2013, pp. 90–99.

[75] Z. Qin, J. Yan, K. Ren, C. W. Chen, and C. Wang, “Towards efficient privacy-
preserving image feature extraction in cloud computing,” in Proceedings of the 22nd
ACM International Conference on Multimedia, 2014, pp. 497–506.

[76] S. Hu, Q. Wang, J. Wang, Z. Qin, and K. Ren, “Securing SIFT: Privacy-preserving
outsourcing computation of feature extractions over encrypted image data,” IEEE
Transactions on Image Processing, vol. 25, no. 7, pp. 3411–3425, 2016.

[77] Z. Jiang and S. Mao, “Energy delay tradeoff in cloud offloading for multi-core mobile
devices,” IEEE Access, vol. 3, pp. 2306–2316, 2015.

157



[78] J. Kwak, Y. Kim, J. Lee, and S. Chong, “DREAM: Dynamic resource and task
allocation for energy minimization in mobile cloud systems,” IEEE Journal on Selected
Areas in Communications, vol. 33, no. 12, pp. 2510–2523, 2015.

[79] S. Sardellitti, G. Scutari, and S. Barbarossa, “Joint optimization of radio and compu-
tational resources for multicell mobile-edge computing,” IEEE Transactions on Signal
and Information Processing over Networks, vol. 1, no. 2, pp. 89–103, 2015.

[80] J. Liu, Y. Mao, J. Zhang, and K. B. Letaief, “Delay-optimal computation task schedul-
ing for mobile-edge computing systems,” in 2016 IEEE International Symposium on
Information Theory (ISIT), 2016, pp. 1451–1455.

[81] C. You, K. Huang, H. Chae, and B.-H. Kim, “Energy-efficient resource allocation for
mobile-edge computation offloading,” IEEE Transactions on Wireless Communica-
tions, vol. 16, no. 3, pp. 1397–1411, 2016.

[82] X. Wang, R. Jia, X. Tian, and X. Gan, “Dynamic task assignment in crowdsens-
ing with location awareness and location diversity,” in IEEE INFOCOM 2018-IEEE
Conference on Computer Communications, 2018, pp. 2420–2428.

[83] R. Serfozo, Basics of Applied Stochastic Processes. Springer Science & Business
Media, 2009.

[84] R. Srikant and L. Ying, Communication Networks: An Optimization, Control and
Stochastic Networks Perspective. Cambridge University Press, 2013.

[85] A. Mekkittikul and N. McKeown, “A starvation-free algorithm for achieving 100%
throughput in an input-queued switch,” in Proceedings of the IEEE International
Conference on Communication Networks, 1996.

[86] S. M. Ross, Introduction to Probability Models. Academic Press, 2014.

[87] A. C. Yao, “How to generate and exchange secrets,” in 27th Annual Symposium on
Foundations of Computer Science (SFCS 1986). IEEE, 1986, pp. 162–167.

[88] A. Shamir, “How to share a secret,” Communications of the ACM, vol. 22, no. 11,
pp. 612–613, 1979.

[89] R. Cramer, I. Damg̊ard, and U. Maurer, “General secure multi-party computation
from any linear secret-sharing scheme,” in International Conference on the Theory
and Applications of Cryptographic Techniques. Springer, 2000, pp. 316–334.

[90] U. Maurer, “Secure multi-party computation made simple,” Discrete Applied Mathe-
matics, vol. 154, no. 2, pp. 370–381, 2006.

[91] O. Catrina and S. de Hoogh, “Improved primitives for secure multiparty integer com-
putation,” in International Conference on Security and Cryptography for Networks.
Springer, 2010, pp. 182–199.

[92] I. Damg̊ard, V. Pastro, N. Smart, and S. Zakarias, “Multiparty computation from
somewhat homomorphic encryption,” in Annual Cryptology Conference. Springer,
2012, pp. 643–662.

158



[93] I. Damg̊ard, M. Keller, E. Larraia, V. Pastro, P. Scholl, and N. P. Smart, “Practi-
cal covertly secure MPC for dishonest majority–Or: Breaking the SPDZ limits,” in
European Symposium on Research in Computer Security. Springer, 2013, pp. 1–18.

[94] R. Bendlin, I. Damg̊ard, C. Orlandi, and S. Zakarias, “Semi-homomorphic encryption
and multiparty computation,” in Annual International Conference on the Theory and
Applications of Cryptographic Techniques. Springer, 2011, pp. 169–188.

[95] P. Mohassel and P. Rindal, “ABY3: A mixed protocol framework for machine learn-
ing,” in Proceedings of the 2018 ACM SIGSAC Conference on Computer and Com-
munications Security, 2018, pp. 35–52.
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[144] M. Müter and N. Asaj, “Entropy-based anomaly detection for in-vehicle networks,”
in 2011 IEEE Intelligent Vehicles Symposium (IV), 2011, pp. 1110–1115.

162



[145] M. Marchetti, D. Stabili, A. Guido, and M. Colajanni, “Evaluation of anomaly de-
tection for in-vehicle networks through information theoretic algorithms,” in 2016
IEEE 2nd International Forum on Research and Technologies for Society and Indus-
try Leveraging a better tomorrow (RTSI), 2016, pp. 1–6.

[146] M.-J. Kang and J.-W. Kang, “A novel intrusion detection method using deep neural
network for in-vehicle network security,” in 2016 IEEE 83rd Vehicular Technology
Conference (VTC Spring), 2016, pp. 1–5.

[147] M. Baccouche, F. Mamalet, C. Wolf, C. Garcia, and A. Baskurt, “Sequential deep
learning for human action recognition,” in International Workshop on Human Behav-
ior Understanding, 2011, pp. 29–39.

[148] L. Ding, W. Fang, H. Luo, P. E. Love, B. Zhong, and X. Ouyang, “A deep hybrid
learning model to detect unsafe behavior: Integrating convolution neural networks
and long short-term memory,” Automation in Construction, vol. 86, pp. 118–124,
2018.

[149] H. Rahmani, A. Mian, and M. Shah, “Learning a deep model for human action recog-
nition from novel viewpoints,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 40, no. 3, pp. 667–681, 2018.

[150] L. B. Othmane, L. Dhulipala, N. Multari, and M. Govindarasu, “On the performance
of detecting injection of fabricated messages into the CAN bus,” IEEE Transactions
on Dependable and Secure Computing (Early Access), pp. 1–1, 2020.

[151] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip, “A comprehensive survey
on graph neural networks,” IEEE Transactions on Neural Networks and Learning
Systems, vol. 32, no. 1, pp. 4–24, 2020.

[152] M. Zhang, Z. Cui, M. Neumann, and Y. Chen, “An end-to-end deep learning ar-
chitecture for graph classification,” in Thirty-Second AAAI Conference on Artificial
Intelligence, 2018, pp. 1–8.

[153] B. Schölkopf, J. C. Platt, J. Shawe-Taylor, A. J. Smola, and R. C. Williamson, “Esti-
mating the support of a high-dimensional distribution,” Neural Computation, vol. 13,
no. 7, pp. 1443–1471, 2001.

[154] D. M. Tax and R. P. Duin, “Support vector data description,” Machine Learning,
vol. 54, no. 1, pp. 45–66, 2004.

[155] L. Ruff, R. Vandermeulen, N. Goernitz, L. Deecke, S. A. Siddiqui, A. Binder,
E. Müller, and M. Kloft, “Deep one-class classification,” in International Conference
on Machine Learning. PMLR, 2018, pp. 4393–4402.

[156] W. J. Scheirer, A. Rocha, R. J. Micheals, and T. E. Boult, “Meta-recognition: The
theory and practice of recognition score analysis,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 33, no. 8, pp. 1689–1695, 2011.

[157] P. Zhang, J. Wang, A. Farhadi, M. Hebert, and D. Parikh, “Predicting failures of
vision systems,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2014, pp. 3566–3573.

163



[158] R. Tibshirani, T. Hastie, B. Narasimhan, and G. Chu, “Diagnosis of multiple cancer
types by shrunken centroids of gene expression,” Proceedings of the National Academy
of Sciences, vol. 99, no. 10, pp. 6567–6572, 2002.

[159] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpa-
thy, A. Khosla, M. Bernstein et al., “ImageNet large scale visual recognition chal-
lenge,” International Journal of Computer Vision, vol. 115, no. 3, pp. 211–252, 2015.

[160] A. Bendale and T. E. Boult, “Towards open world recognition,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 1893–1902.

[161] I. Rouf, R. D. Miller, H. A. Mustafa, T. Taylor, S. Oh, W. Xu, M. Gruteser,
W. Trappe, and I. Seskar, “Security and privacy vulnerabilities of in-car wireless
networks: A tire pressure monitoring system case study,” in USENIX Security Sym-
posium, 2010, pp. 1–16.

[162] H. M. Song and H. K. Kim. (2020) CAN signal extraction and translation dataset.
[Online]. Available: https://ocslab.hksecurity.net/Datasets/can-signal-extraction-
and-translation-dataset.

[163] M. Hanselmann, T. Strauss, K. Dormann, and H. Ulmer, “CANet: An unsupervised
intrusion detection system for high dimensional CAN bus data,” IEEE Access, vol. 8,
pp. 58 194–58 205, 2020.

[164] P. Blanchard, E. M. El Mhamdi, R. Guerraoui, and J. Stainer, “Machine learning with
adversaries: Byzantine tolerant gradient descent,” Advances in Neural Information
Processing Systems, vol. 30, 2017.

[165] G. Damaskinos, E.-M. El-Mhamdi, R. Guerraoui, A. Guirguis, and S. Rouault, “AG-
GREGATHOR: Byzantine machine learning via robust gradient aggregation,” Pro-
ceedings of Machine Learning and Systems, vol. 1, pp. 81–106, 2019.

[166] D. Yin, Y. Chen, R. Kannan, and P. Bartlett, “Byzantine-robust distributed learning:
Towards optimal statistical rates,” in International Conference on Machine Learning.
PMLR, 2018, pp. 5650–5659.

164



Curriculum Vitae

Hengrun Zhang received the B.S. degree in automation from East China University of Sci-
ence and Technology, Shanghai, China, in 2012. He received the M.S. degree in control
science and engineering from Shanghai Jiao Tong University, Shanghai, China, in 2015, and
in computer science from George Mason University, Fairfax, VA, USA, in 2018. His research
interests include task scheduling in networking, privacy and security in networking, feder-
ated learning applications in the Internet of Things (IoT) and performance optimization in
federated learning.

165


	Signed_Signature_Sheet-signed_hengrun
	Dissertation



