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Abstract

A METHOD FOR ESTIMATING MOTIONS OF CONTOURS WITH AN APPLICATION
TO GAIT RECOGNITION

Sam Gelman

George Mason University, 2016

Thesis Director: Dr. Zoran Durić

In this thesis, I propose a novel method for estimating motions between image contours.

The method is fast and can handle both small and large displacements. It uses the distance

transform and its gradients to estimate correspondences between points. The distance

transform of a binary contour represents the distance of each pixel to the nearest contour

pixel. The gradient of the distance transform points in the direction normal to the contour.

By combining unit vectors obtained from the gradient with the original distance transform,

the method produces vectors that correspond to the normal displacement between pairs of

contours. This method can then be extended to compute true motion near corners as well

as parameterized motion models.

Experiments on various shape contours show the method’s efficacy in computing normal

displacements. Cases that do not correspond to normal motion are analyzed and corrected

through the use of contour normals and motion models. The method is also applied to gait

recognition, the goal of which is to identify people in videos based on their unique walking

pattern. Many gait recognition methods operate on sequences of binary silhouettes. Since

contours are easily obtainable from silhouettes, the proposed method is well-suited to the

task. I describe two representations, the Histogram of Motion and the Edge Motion Vector,



that allow for the comparison of contour motion between frames and sequences. These

representations are tested on a large gait recognition database and achieve rank 1 and rank

5 performance that is comparable to the state of the art. The success of the method on

gait recognition shows it is useful as a standalone representation, but it can also be used to

improve other techniques and for other applications - this is left to future work.



Chapter 1: Introduction

The goal of motion estimation is to compute displacement between corresponding features

in pairs of images. Motion estimation has a long history of research dating back to the

seminal works of Horn and Schunck [1] and Lucas and Kanade [2]. It has been used in a

wide range of application domains including video editing, action recognition, and person

identification. The motions of interest in most applications are the true motions of objects,

e.g. people, cars, robots. However, actual motion in three-dimensional space does not

necessarily correspond to apparent motion in two-dimensional images. Apparent motion

can be caused by a variety of factors including the changes in the lighting of a scene.

Motion estimation techniques are therefore concerned with finding the apparent projection

in the two-dimensional image of the actual motion in a three-dimensional scene.

Motion estimation techniques can be roughly divided into two categories: dense and

sparse. Dense techniques are concerned with finding a motion vector for each pixel in an

image. The resulting motion field is referred to as optical flow. These techniques establish

correspondences between pixel regions by assuming that the intensity of pixel regions re-

mains constant during displacement. This assumption is only valid for small translational

displacements. Conversely, sparse techniques are concerned with finding motion vectors

between a small number of select features. Once features are matched, displacement can

be computed for arbitrarily large distances. Some recent work on motion estimation has

focused on combining dense and sparse techniques.

Motion can also be represented parametrically based on motion vectors computed from

dense or sparse techniques. Such representations are useful for handling errors and com-

pactly describing motion. Parametric motion models are subject to a trade-off between

complexity and representativeness. A good balance between these factors usually limits
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the use of motion models to rigid objects. One of the most commonly used motion mod-

els for describing two-dimensional motion is the affine motion model. The affine model is

a six-parameter model that represents translation, rotation, scale, and shear. It assumes

the motion is that of a three-dimensional rigid planar surface projected orthographically

onto the image plane. In many applications, sparse and dense motion fields, along with

parametric motion models, are a basis from which meaningful information is extracted.

In this thesis, I propose a new method for estimating motions of object contours. The

method uses the distance transform and its gradients to establish correspondences between

point sets. The distance transform of a contour image computes, for each image pixel, the

distance to the nearest contour pixel. The gradient of the distance transform points in the

direction normal to the contour. By combining unit vectors obtained from those gradients

with the original values from the distance transform, the method produces vectors that

correspond to the normal displacement between pairs of contours.

The proposed method has several advantages compared to traditional optical flow tech-

niques. It computes motion that is denser than motion computed by sparse techniques,

but unlike dense techniques, it only computes motion for pixels of interest. The proposed

approach can handle both small and large displacements, and it is faster than traditional op-

tical flow techniques. Furthermore, the method can be used as a standalone representation

or to estimate parameterized motion models.

In addition to testing the method on images of shape contours and using it to compute

motion models, I show a practical utilization of the method by applying it to gait recog-

nition. The goal of gait recognition is to identify people in videos based on their unique

walking pattern. Many gait recognition methods are designed to work on sequences of

binary silhouette images. Since contours are easily extracted from silhouette images, the

proposed method is well-suited to the task. I show that my approach to gait recognition

achieves rank 1 and rank 5 performance that is comparable to the current state-of-the-art

when applied to a large gait recognition database.

The remainder of this thesis is organized as follows. The second chapter describes related
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work on motion estimation, distance transforms, and gait recognition. The third chapter

describes the method for estimating motions of contours in detail. The fourth chapter shows

how the method can be applied to gait recognition. The fifth chapter presents a conclusion

and discusses future work.
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Chapter 2: Related Work

Previous work on motion estimation has goals similar to the method presented in this thesis.

However, previous work on distance transforms is most closely related when it comes to

methodology. In the following sections, I review related work for both of these topics, as

well as related work on gait recognition.

2.1 Motion Estimation

Traditional dense flow techniques use an energy minimization framework first introduced

by Horn and Schunck [1]. These approaches establish correspondences between points by

assuming constancy of some image property and enforcing a smoothness constraint on the

motion. Lucas and Kanade [2] introduced a coarse to fine warping scheme to deal with

large displacements that is also a major component of most flow estimation techniques.

Many improvements have been made to the original formulations, including the use of

robust statistics to handle outliers [3] and a gradient constancy assumption [4] in addition

to the original brightness constancy assumed by Horn and Schunck. Further improvements

were made in the derivative computation and through the use of different penalty terms to

enforce smoothness [5]. These techniques have demonstrated increasing accuracy on optical

flow benchmarks, but they are usually quite slow and cannot handle large displacements.

Sparse descriptor matching approaches such as KLT [6] are faster and better at handling

large displacements, but establish few correspondences and are more susceptible to outliers.

Brox et al. [7] integrated point correspondences from descriptor matching into an energy

minimization framework to compute large displacement dense optical flow.

Methods for computing motion between contours differ methodologically from methods

described above, but they are faced with similar challenges. Motion along straight lines
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cannot be determined without integrating information from features such as corners or

textures. An early method for contour-based motion estimation [8] computed motion at

corners and propagated that motion along contours. Later methods [9–11] matched contours

using a criterion of minimum curvature differences. Epipolar geometric constraints obtained

from corner matching combined with contour end point constraints and contour distance

measures have also been used to match contours [12]. Liu et al. [13] computed local

estimates at edgelets and boundary fragments. Global motion estimates were then derived

by grouping edgelets and fragments into contours using a graphical model. In [14], contours

were divided into left-pointing and right-pointing parts and the distance transform was used

to estimate displacement. My method is an improvement of this work.

2.2 Distance Transforms

Distance transforms have been used extensively in computer vision, image processing, and

pattern recognition. Several distance transforms and their applications were discussed in

[15]. Efficient methods for computing Euclidean distance have appeared more recently [16].

The method proposed in this thesis was implemented using the distance transform algorithm

described in [17].

One common application of distance transforms is for image matching. Hierarchical

Chamfer Matching [18] convolves a binary contour of an object with a distance transform

image computed from a template. Test contours must be aligned for matching to work

well. Since matching is computationally expensive at high resolutions, a series of matches

starting at low resolutions was employed. In [19] Hausdorf distance was used to match

images. The Hausdorf distance was efficiently computed using the distance transform.

Distance transform derivatives have also been used to design efficient algorithms for robust

matching of points sets [20].
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2.3 Gait Recognition

Related work on gait recognition can be divided into two categories: model-based and

model-free. Model-based approaches incorporate an underlying model for gait recognition.

For example, these approaches may track individual limb segments, create a skeleton model

of the subject, or measure the stride length and cadence of gait. They rely on videos as

well as other methods, such as 3D marker-based motion capture systems, to collect data

[21]. Conversely, model-free approaches do not use an underlying model and are typically

based on analysis of silhouette images. These approaches have lower computational costs

than model-based methods, but are usually less robust to viewpoint and scale [21]. In

this thesis, I propose a model-free approach based on the proposed method for estimating

motion between contours.

Model-free approaches use representations that exploit both shape and motion features.

There are a number of approaches inspired by Motion Energy Images and Motion History

Images [22]. The Gait Energy Image (GEI) [23] is a grey-level average of select binary

silhouettes from a sequence. This representation is robust to noise, but it ignores sequen-

tial information between frames. Several improvements to the GEI have been proposed.

The Gait History Image (GHI) [24] was used to retain sequential information. The Frame

Difference Energy Image (FDEI) [25] was proposed to suppress influence of silhouette in-

completeness. The Gait Entropy Image (GEnI) [26] was proposed to be robust to unknown

covariate conditions that change appearance of silhouettes. The Active Energy Image (AEI)

[27] sought to address the problems of low quality silhouettes and insufficient dynamic

characteristics by focusing explicitly on active regions. The Chrono-Gait Image (CGI) [28]

preserves temporal information by encoding gait information into a multi-channel image.

These approaches use motion and shape implicitly as part of the representation.

There are several approaches that compute motion vectors explicitly. Bashir et al. [29]

compute optical flow on intensity images and generate five motion descriptors using the
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resulting flow field. Flow values are discretized into binary representations, thus magni-

tude and direction of motion are not compared directly. The Gait Flow Image (GFI) [30]

computes Horn and Schunck optical flow on silhouette images. This approach uses the

magnitude of motion as a threshold to generate binary images that are averaged together

similar to the Gait Energy Image. Direction of motion is discarded. The Flow Histogram

Energy Image (FHEI) [31] computes Lucas and Kanade optical flow on binary silhouettes.

Histograms of flow are used to represent motion per frame, then a sequence-level represen-

tation is computed by averaging frames together.

7



Chapter 3: Estimating Displacements Using the Distance

Transform

The proposed method estimates displacements between image contours. Contours can be

obtained from a variety of sources including silhouette boundaries, image edges, and bound-

aries between layers in depth images. For sample images in this chapter, I use the contours

of synthetically generated shapes. These shapes are pictured in Figure 3.1. The term “orig-

inal contour” to refers to the initial contour and the term “displaced contour” refers to the

contour after it has moved. The method works under the assumption that there is sufficient

similarity between the original and displaced contours so that computing motion between

them is meaningful.

Figure 3.1: Basic shape contours used throughout this chapter. Left: ellipse. Center:
triangle. Right: rectangle.

The basic method uses the distance transform and its gradients to establish correspon-

dences between the original and displaced contours. Although this approach is very fast (it

is linear in the number of pixels around the bounding box of the contour), the estimated

displacements are not consistent with true motion. Rather, the displacements correspond

to motion in a direction normal to the displaced contour, i.e. normal flow. This result is a
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consequence of the methodology used to compute displacements. As I will show, the basic

method can be improved to compute true motion near corners and points of high curvature.

However, like all motion estimation techniques, the proposed method is still susceptible to

the aperture problem. The aperture problem refers to the fact that the true global motion

of an object cannot be determined when only looking at local motions. Figure 3.2 is a classic

depiction of the aperture problem. I will show how the displacements computed using the

proposed method can be integrated over an entire object in the form of a motion model,

which yields true motion.

Figure 3.2: The aperture problem. Lateral motions along stretches of straight or low-
curvature contours cannot be determined without integrating motion from a larger area
that contains corners or other features. In these cases, only the normal component of
motion can be computed.

For sample images in this chapter, I use synthetic motions of the shapes presented in

Figure 3.1. Synthetic data are useful for analysis of the method as it provides a ground

truth against which it is possible to compare estimated displacements. Synthetic motions are

generated by applying affine transformations with known parameters to the original shape

contours. The parameters allow for the control of the rotation, scale, and translation of the

displacements. For analysis of the method’s output, and to understand intricacies related

9



to the distance transform, it is also useful to define the concepts of “inside” and “outside”

of a contour. According to the Jordan curve theorem [32], every simple closed curve divides

the plane into an interior region bounded by the curve and an exterior region containing all

other points. Any continuous path from one region to the other region intersects with the

contour.

The remainder of the chapter is organized as follows. In Section 3.1, I review the dis-

tance transform and its gradients, which are the foundations of the method. In Section

3.2, I explain the method and thoroughly analyze its output. In Section 3.3, I present an

improvement to the method which corrects certain errors when dealing with large displace-

ments. In Section 3.4, I show how the method can be used as a basis to compute affine

motion models.

3.1 Distance Transform and Its Gradients

3.1.1 Distance Transform

I use the definition of distance transform given in [17]. The distance transform of a binary

image specifies, for each pixel, the distance to the nearest non-zero pixel. Let G be a regular

grid and P ⊆ G a set of points on the grid. The distance transform associates to each grid

location the distance to the nearest point in P ,

DP (p) = min
q∈G

(d(p, q) + 1(q)),

where 1(q) is an indicator function for membership in P,

1(q) =

 0 if q ∈ P

∞ otherwise

and d(p, q) is the Euclidean distance, i.e. d(p, q) =
√

(xp − xq)2 + (yp − yq)2.

10



Figure 3.3: Examples of the distance transform computed for images of shape contours.
Distance from the contour is represented using shading, where darker shades correspond to
further distances.

Figure 3.3 shows the distance transform computed for images of shape contours. On the

outside of the contours, the distance transform increases smoothly in all directions. On the

inside of the contours, the distance transform increases until it reaches a ridge, i.e. a point

equidistant from the contours on the opposing sides. The ridge represents a local maximum

in the distance transform, and for closed contours, the ridge corresponds to the medial axis

of the shape. As I show in the following sections, the ridge formed by the distance transform

is an important factor when estimating displacements.

3.1.2 Gradient of the Distance Transform

The distance transform DP (·) is a smooth function on G and therefore has a gradient at

each point q ∈ G. The gradient

∇DP (q) =
∂DP (q)

∂x
~i+

∂DP (q)

∂y
~j (3.1)

can be computed at all points in G, but it is most meaningful at points for which DP (q) 6= 0.

Figure 3.4 shows the gradient of the distance transform represented as a vector field.

On the outside of the contour, the gradient vectors are normal to and point away from the

contour. The same is true on the inside of the contour, except for on and around the ridge

formed by the distance transform. Gradient vectors on and around the ridge are either

11



Figure 3.4: The gradient of the distance transform represented as a vector field.

12



zero, parallel to the medial axis, or not easily categorized. The ridge also represents the

partition at which gradient vectors on the inside of the contour change from being normal

to one side of the contour to being normal to a different side of the contour.

3.2 Estimating Displacements Using the Distance Transform

The observations from the previous section can be used to compute a vector pointing from

any point q ∈ G to the nearest point p ∈ P . If ‖∇DP (q)‖ > 0 then vector

~vP (q) = −DP (q)
∇DP (q)

‖∇DP (q)‖
(3.2)

corresponds to an approximate displacement between q and some point p ∈ P . For any

binary set Q ⊂ G we can compute a displacement field for all points q ∈ Q using Eq. 3.2.

Figure 3.5 shows an overview of the method for two contours c1 (original) and c2 (dis-

placed). First, the gradient of the distance transform is computed with respect to c2. The

gradient is then negated so that the gradient vectors point toward c2 rather than away from

it. Finally, the vectors at the location of c1 are scaled by c1’s distance to c2.

Figure 3.6 illustrates displacements computed using the proposed method. Most dis-

placements correspond to normal flow, i.e. motion in the direction normal to the displaced

contour. Some displacements correspond to true motion. The remaining displacements fall

into two categories. They either point to the wrong part of the contour, as in the bottom

right corner of the triangle in Figure 3.6, or they point to the correct contour but not in

the direction of normal flow. These errors stem from the ridge formed by the distance

transform.

As noted above, the distance transform is calculated with respect to the displaced con-

tour. Motion vectors can then originate from either inside or outside the displaced contour.

Figure 3.7 highlights which vectors originate inside the contour and which ones originate

outside the contour.

13



(a) The two contours for
which we wish to calculate
displacement

(b) The distance transform
with respect to the displaced
contour

(c) The gradient of the dis-
tance transform with respect
to the displaced contour

(d) The negated gradient

(e) The negated gradient at
the points corresponding to
the original contour

(f) Gradient vectors scaled by
each point’s distance to the
displaced contour

Figure 3.5: Overview of the proposed method.

3.2.1 Analysis of Vectors Originating Inside the Contour

Vectors originating inside the contour are subject to the effects of the ridges and the medial

axes of the shape. When a point from the original contour falls on a ridge, the resulting

displacement vector points in the direction of the ridge and does not correspond to true

motion or normal flow. When a point from the original contour crosses the medial axis

of the shape, it signifies that the point is closer to an opposing side of the contour rather

than the corresponding one. The resulting vector points to the wrong part of the displaced

contour.

The proportion of vectors affected by the distance transform ridge depends on the shape

14



Figure 3.6: Displacements computed using the proposed method represented as vectors.
The original contours are green, and the displaced contours are red.

Figure 3.7: Vectors originating inside vs. outside of the displaced contour.

(specifically, the curvature of the shape) and the magnitude of displacement. At corners,

points of high curvature, and for slim shapes, the ridge is very close to the opposing contours.

This means that even small displacements could result in the original contour crossing the

ridge, resulting in mismatched displacement vectors. This is generally not a problem along

stretches of low curvature points.

3.2.2 Analysis of Vectors Originating Outside the Contour

Since the distance transform increases smoothly on the outside of the contour, vectors

originating outside of the contour mostly correspond to normal flow. There are still instances

where vectors point to the wrong part of the contour. An example of such an instance is

15



the bottom left of the triangle in Figure 3.6. The vectors from the bottom contour of the

original triangle point to the left contour of the displaced triangle. Although the vectors

correspond to normal flow, they do not represent true motion.

Finally, as evidenced by the ellipse in Figure 3.6, vectors sometimes bunch up around cer-

tain points rather than distributing evenly along the displaced contour. This phenomenon

is due to points of the contour jutting out from the surrounding contour, and it is a common

occurrence when the method is applied to real data. A simple gaussian blur can smooth

the vectors so that they distribute evenly.

3.3 Using Contour Normals to Correct Displacements

Figure 3.8: Contour normal vectors. The normal vectors are orthogonal to the tangent
vector at any given point.

Some of the mismatches described in the previous section can be corrected by factoring

in contour normals. For any given point along a contour, there is a tangent vector and two

vectors normal to the tangent vector. The normal vectors point in opposite directions. For

closed contours, the normal vectors pointing outside the contour can be defined as positive,

and the normal vectors pointing inside the contour can be defined as negative. For open

contours, either normal vector can be defined as positive or negative so long as the labeling

is consistent. Figure 3.8 depicts positive and negative contour normals. When the term

contour normal is used in this section, it can refer to either the positive or negative normal,
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so long as the labeling is consistent between contours. In the context of silhouette images,

a contour normal can be defined as the gradient vector at a point along a contour.

When computing displacements between contours, it is clear that corresponding points

should have similar contour normals. However, this aspect is not captured inherently using

the distance transform. Vectors computed using the proposed method usually point toward

the nearest contour, even when the best matching contour in terms of contour normals

might be further away. Figure 3.9 shows how contour normals might differ at the origin and

destination of vectors computed using the proposed method. In this section, I describe a

modification to the proposed method that factors in contour normals. The modified method

often results in vectors that correspond to true motion, especially near corners and points

of high curvature.

Figure 3.9: A displaced contour with contour normals depicted at the origin, the destination
of the estimated displacement vector, and the destination of the true displacement vector.

Assume we have an original contour Q and a displaced contour P . The modified method

begins by computing displacement vectors between Q and P as described in the previous

section, without factoring in contour normals. Cases of contour normal mismatch are de-

tected by comparing contour normals at the origin q ∈ Q and destination p ∈ P of each

displacement vector. Let the contour normals at those points be ~np and ~nq. If for some
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vectors the difference in the directions of the normals at the origin and destination is greater

than a threshold, |∠(~np, ~nq)| < α0, those vectors are marked as incorrect and added to sub-

set Q1. For all points q ∈ Q1, we find all points P 1(q) ⊂ P which have similar orientations

and are within some distance d0 from q. The original method is then re-applied to each

point q ∈ Q1 and the corresponding set P 1(q) ⊂ P .

Figure 3.10: Displacements computed using the proposed method factoring in contour nor-
mals.

Figure 3.10 shows displacements computed using the modified method. Some of the

corrected displacements now correspond to true motion, while others correspond to normal

flow. There are some displacement vectors that are still incorrect due to being on a ridge

and not having a difference in contour normals.

Although factoring in contour normals improves the results, the method is still suscep-

tible to the aperture problem. In relation to the proposed method, the aperture problem

means the lateral motions along stretches of low-curvature contours cannot be detected

without integrating motion vectors over a larger area. To find true motion, we need the

information obtained from features like corners and high curvature points. When dealing

with rigid objects, one approach to integrating motion vectors is to compute affine motion

models over the entire object.
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3.4 Motion Models

As discussed in previous sections, the proposed method results in vectors that roughly

correspond to normal flow. To find true motion, the vectors can be integrated over the

entire shape in the form of a motion model. Motion models can have differing numbers

of parameters. The more parameters used, the more expressive power the model has. A

two parameter model can only represent translation. A six parameter model, typically

referred to as an affine model, can represent translation, rotation, scale, and shear. One

downside of using more parameters is that more vectors are required to accurately estimate

the parameters. For example, say the true motion of an object is a simple translation.

Both two and six parameter models can represent the motion, but in practice, factoring in

possible noise in computed vectors, the two parameter estimation tends to be more accurate.

I demonstrate both two and six parameter models. The two parameter model is defined

by Eq. 3.3, and the six parameter model is defined by Eq. 3.4. Coordinates of a point (x, y)

in the first frame move to (x′, y′) in the next frame. The vector w = (w1 w2)
T is the vector

of parameters for the two parameter model. The vector w = (w1 w2 w3 w4 w5 w6)
T is

the vector of parameters for the six parameter model. The values of these parameters are

estimated using the displacement vectors and a least squares approximation.

 x′

y′

 =

 w1

w2

 +

 x

y

 (3.3)

 x′

y′

 =

 w1

w4

 +

 w2 w3

w5 w6


 x

y

 (3.4)
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For the six parameter model, to obtain the displacement ~u(x, y) = (δx δy)T of (x, y)

we subtract (x y)T from both sides of (3.4). The left hand side of (3.4) is replaced by

(δx δy)T . On the right hand side, w2 and w6 get replaced by w1
2 = w2−1 and w1

6 = w6−1.

The normal displacement field at (x, y) is given by un(x, y) = δ~rn · ~n = nxδx + nyδy =

w1nx+w1
2xnx+w3ynx+w4ny +w5xny +w1

6yny = w ·p, where ~n = nx~ı+ny~ is the gradient

direction, p = (nx xnx ynx ny xny yny)T , and w = (w1 w
1
2 w3 w4 w5 w

1
6)T is the vector

of parameters.

For each edge point ~ri we have one normal flow value un,i, that we use as an estimate

of the normal displacement at the point, a vector pi computed from (xi, yi) and ~ni, and an

approximate equation w · pi ≈ un,i. Let the number of edge points be N ≥ 6. We need to

find a solution of Pw − b = e, where b is an N-element vector with elements un,i, P is an

N×6 parameter matrix with rows pi, and e is an N-element error vector. We seek the affine

model w that minimizes ‖e‖ = ‖b− Pw‖; the solution satisfies the system P TPw = P Tb

and corresponds to the linear least squares (LS) solution. A similar methodology is used for

estimating the parameters of the two parameter model. Once estimated, the affine model

can be reprojected into vector form.

(a) rot:0 scale:1 x:10 y:10 (b) rot:10 scale:1 x:0 y:10 (c) rot:0 scale:1.25 x:0 y:10

Figure 3.11: Displacements computed using the proposed method and a two parameter
motion model.

Figure 3.11 shows the reprojected vectors for a two parameter motion model. Notice
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the vectors for 3.11b and 3.11c do not capture rotation or scale of the shape. This is a

limitation of the two parameter model. For the translation-only movement in 3.11a, the

vectors correspond to true motion.

(a) rot:0 scale:1 x:10 y:10 (b) rot:0 scale:1.25 x:0 y:0 (c) rot:15 scale:1 x:0 y:0

Figure 3.12: Displacements computed using the proposed method and a six parameter
motion model.

Figure 3.12 shows the reprojected vectors for a six parameter motion model. These

vectors correspond to the true motion of the shapes. Rotation and scale are captured by

the model.

(a) two parameter model (b) six parameter model

Figure 3.13: Comparison between two and six parameter models for rot:0 scale:1 x:20 y:20

Figure 3.13 shows a comparison between the two parameter and the six parameter

models for a translation-only motion. As is evident from the figure, the two parameter
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model is a better estimate of true motion. However, both models have some degree of

error. This error can be quantified by comparing reprojected vectors from the estimated

affine model to the reprojected vectors from the true affine model. Since the motions of

the shapes are synthetic, the true affine model is available. For n motion vectors from the

estimated affine model e and n motion vectors from the true affine model t, the average

error is defined by

E(e, t) =
1

n

i∑
1

d(ei, ti)

where d(p, q) is the Euclidean distance, i.e. d(p, q) =
√

(xp − xq)2 + (yp − yq)2. For the

displacements in Figure 3.13, the average error for the two parameter model is 4.56 and the

average error for the six parameter model is 8.60.

(a) basic (b) contour normal corrected (c) six parameter affine

Figure 3.14: Comparison of basic, contour normal corrected, and affine displacements for
rot:0 scale:1 x:0 y:10

Figure 3.14 shows a comparison of the proposed approach, the proposed approach with

contour normals, and the proposed approach with affine modeling. The affine modeling

results in vectors that most closely correspond to the true motion.
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Chapter 4: Gait Recognition

The goal of gait recognition is to identify people in videos based on their unique walking

pattern. Gait has several advantages compared to other biometrics. Unlike fingerprint or

iris biometrics, gait does not require participation from the subject, and unlike face recog-

nition, gait can be analyzed in low resolution videos captured from different viewpoints

[21]. One downside is that a person’s gait can vary depending on clothing and environ-

mental conditions [23]. Regardless, gait recognition has many applications in security and

surveillance, and it has received increased attention in recent years [21].

Gait recognition typically consists of subject detection, silhouette extraction, feature

extraction, feature selection, and classification. While subject detection and silhouette

extraction are important aspects in a real gait recognition system, many gait recognition

databases have already completed these steps. Figure 4.1 shows a sample silhouette sequence

from the database used in this chapter. These silhouettes have been size-normalized and

stabilized on the torso.

Figure 4.1: Sample silhouette sequence from OU-ISIR Large Population Dataset [33].

A silhouette sequence is a time series composed of at least several frames. Single frames

represent static information such as shape and pose, while sequences capture dynamical

information about the motion of the silhouettes. Gait recognition methods use sequences
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as input, and many methods, including the one I propose, assume that the sequences contain

one full gait cycle. Given a sequence, which represents an individual’s gait, the objective of

gait recognition methods is to label the sequence with the correct identity.

It is important to make a distinction between frame-level features and sequence-level

features. Frame-level features are associated with a single frame. Motion computed between

a pair of frames is a frame-level feature. Sequence-level features are associated with the

entire sequence. A sequence level feature might be an ordered collection of frame-level

features. In this case, sequences could be compared using a time series analysis technique,

such as dynamic time warping [34]. Sequence-level features might alternatively be some

combination of frame-level features. For example, the Gait Energy Image is a sequence-level

feature obtained by averaging frame-level features into a single representation. Sequences

using this representation could then compared with Euclidean distance.

Both shape and motion are important factors in gait recognition. Some approaches use

motion information implicitly in the form of spatiotemporal representations, such as those

derived from the Motion Energy Image [23, 24]. There are also some approaches that use

motion information explicitly by computing traditional optical flow on silhouette images

[29,31].

I propose two approaches to gait recognition using displacements computed with the

method described in Chapter 3. Unlike traditional optical flow techniques, my method is

specifically designed to work on object contours, which are easily obtainable from silhou-

ette images. Additionally, my method is faster than traditional optical flow techniques,

supporting real-time gait recognition systems. I test my approaches on the OU-ISIR Large

Population Dataset [33] and show that I achieve rank 1 and rank 5 performance that is

comparable to the state-of-the-art.

4.1 Method

The dataset used in this experiment contains one gallery and one probe sequence per subject.

Gallery sequences are analogous to a training set while probe sequences are analogous to a
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testing set. The classifier can use the gallery sequences to model an individual’s gait and the

probe sequences to test its models. Since there is one gallery and one probe sequence per

subject, this naturally corresponds to a nearest neighbor classifier. In the nearest neighbor

framework, features are extracted for all gallery and probe sequences. Any given probe

sequence is then classified by computing the similarity between the probe sequence and

every gallery sequence. The label assigned to the probe sequence is the same as the one

belonging to the most similar (nearest) gallery sequence. Figure 4.2 shows an overview of

the framework.

Figure 4.2: Overview of gait recognition framework.

In this framework, the key aspect is how to compute similarity between sequences: fea-

ture extraction, feature selection, and distance metrics. I propose an approach based on

my method for computing displacements between contours. Contours are easily extracted

from silhouette images by tracing edge points. Displacements are then computed between
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contours in sequential pairs of frames and associated with the original frame. This process

results in a motion vector, consisting of an x and y component, for each point along the

contour in each frame. The last frame in the sequence is ignored because there is no suc-

cessive frame from which to compute motion. These frame-level features are then averaged

together to compute a sequence-level feature.

Figure 4.3: Displacements computed on frames from the silhouette sequence of Figure 4.1

Figure 4.3 shows displacements computed on frames from the silhouette sequence of

Figure 4.1. I chose to use the method that factors in contour normals due to curvature of

the silhouettes and the potential for large displacements when the individual moves quickly.

Additionally, it is straightforward to compute contour normals using the silhouette image

gradient. The threshold for contour normal difference was set to 30 degrees. The maximum

vector distance was limited to 15. The affine modeling approach was not selected because the

silhouette contour is not a rigid structure. Since the shapes of contours vary, they cannot

be directly compared between frames. I designed two representations, the Histogram of

Motion (HOM) and the Edge Motion Vector (EMV), that allow motion to be compared

between frames.
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4.1.1 Histogram of Motion

Figure 4.4: Overview of Histogram of Motion.

The Histogram of Motion (HOM) constructs histograms from motion vectors. Each

vector in a given frame is converted from an x, y representation into a magnitude, direction

representation. Magnitude is computed using

√
x2 + y2 (4.1)

and direction is computed using

arctan2(y, x) (4.2)

The image is divided into h evenly spaced, overlapping horizontal and v evenly spaced,

overlapping vertical patches. The purpose of using multiple patches is to preserve spatial

locality of the motions. A histogram with b bins is computed for each image patch. Each

bin corresponds to a direction of motion, with directions ranging from 0 to 360 degrees.

The bins are equal-width so that the entire range is divided evenly among all bins. Each

bin contains the sum of the magnitudes of vectors pointing in the bin’s direction. All of the
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h + v histograms are concatenated into a single feature vector of length (h + v) ∗ b. I use

v = 7 vertical patches, h = 12 horizontal patches, and b = 16 bins, resulting in a feature

vector length of 304. The feature vector f is normalized to sum to 1, thereby converting it

into a probability density function.

A histogram is computed for each frame of a sequence. Each frame-level histogram is

then averaged to construct a sequence-level histogram. If a sequence contains l frames, then

the corresponding Histogram of Motion is defined by

HOM =
1

l

l∑
i=1

fi (4.3)

At the cost of losing information, this process simplifies the time series into a single rep-

resentation per sequence. This is a common approach in literature [21], and as the results

will show, discriminatory information is still preserved.

Sequences are compared using Bhattacharyya distance. For probability distributions p

and q over the same domain X, Bhattacharyya distance is defined as

Db(p, q) = −ln(BC(p, q)) (4.4)

where

BC(p, q) =
∑
x∈X

√
p(x)q(x) (4.5)

is the Bhattacharyya coefficient. This distance metric is designed specifically to measure

distance between two probability distributions. Experimentation shows that this distance

metric works better than euclidean distance in this application.

4.1.2 Edge Motion Vector

The Edge Motion Vector directly compares motion vectors on the contour by projecting

the sides of the contour onto a line. Let h be the number of rows in the image and p and

28



Figure 4.5: Overview of Edge Motion Vector.

r be vectors of length h. For each row in the image, the leftmost contour point is placed

into the corresponding location in p, and the rightmost contour point is placed into the

corresponding location in r. If there are no contour points in a given row, zero is placed

into both p and r. If there is only one contour point in a given row, that point is placed

into both p and r. Like the Histogram of Motion approach, the contour points in both p

and r are converted from an x, y representation to a magnitude, direction representation

using Eq. 4.1 and 4.2. The points in p and r are then arranged into a feature vector f of

length h ∗ 4 = (l+ r) ∗ 2. The first h spots in f are the magnitudes of the points in p. The

second h spots in f are the magnitudes of the points in r. The third h spots in f are the

directions of the points in p. The last h spots in f are the directions of the points in r. The

images in the database are h = 128, making the feature vector length 512.

A feature vector is computed for each frame of a sequence. Each frame-level vector is

then averaged to construct a sequence-level vector. If a sequence contains l frames, then
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the corresponding Edge Motion Vector is defined by

EMV =
1

l

l∑
i=1

fi (4.6)

Sequences are compared using euclidean distance between Edge Motion Vectors.

4.2 Experimental Design

I evaluated my approaches on the OU-ISIR Large Population Dataset (Subset A) [33]. The

dataset consists of registered and size-normalized (128x88) silhouette sequences that have

been stabilized on the torso. There are four viewing angles v = 55, v = 65, v = 75, and

v = 85 degrees. There is a single gallery and a single probe sequence per viewing angle per

subject. Table 4.1 shows the number of subjects in the database.

Table 4.1: The number of subjects for each viewing angle in the database.

v # subjects

55 3714

65 3778

75 3759

85 3254

Performance was evaluated using the rank 1 and rank 5 evaluation metrics. This is a

common evaluation metric in gait recognition literature. The rank list is a ranking of all

gallery subjects in terms of distance to a given probe. Rank 1 corresponds to the percentage

of correct subjects appearing in the first spot of the rank list. Rank 5 corresponds to the

percentage of correct subjects appearing in any of the first five spots.

I ran several experiments to test my approaches. I compared the performance of my
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approaches, Histogram of Motion and Edge Motion Vector, for each viewing angle v = 55,

v = 65, v = 75, and v = 85 with n = 300 randomly selected subjects. I further tested the

better performing representation, the Edge Motion Vector, for all subjects and all viewing

angles and compared those results to the published results for gait energy image and gait

flow image. I also measured the rank 1 and rank 5 performance of the Edge Motion Vector

with varying numbers of subjects n. This revealed how the number of subjects affects

performance. For a 75 degree viewing angle, I tested the Edge Motion Vector with n = 10,

n = 100, n = 200, n = 300, n = 700, n = 1000, n = 2000, and n = 3759 subjects.

4.3 Results

Table 4.2 shows rank 1 and rank 5 performance of EMV and HOM for viewing angles

v = 55, 65, 75, 85 and n = 300 subjects. EMV achieves better performance for all viewing

angles. This result may be due to a variety of reasons including the fact that EMV directly

compares magnitudes and directions of corresponding vectors rather than binning vector

magnitudes like HOM.

Table 4.2: Performance of EMV and HOM for viewing angles v = 55, 65, 75, 85 and n = 300
subjects.

Rank 1 Rank 5

v EMV HOM EMV HOM

55 83 80 94 92

65 85 81 96 92

75 88 83 97 95

85 88 80 96 92

Table 4.3 shows rank 1 and rank 5 performance of EMV, Gait Energy Image (GEI),

and Gait Flow Image (GFI), as reported by [33]. EMV achieves better performance than
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GFI, which is an approach that also computes motion explicitly. Compared to GEI, EMV

performs 4.9-8.3 percent worse for rank 1 and 2.5-3.9 percent worse for rank 5.

Table 4.3: Performance of EMV, Gait Energy Image (GEI), and Gait Flow Image (GFI)
for v = 55, 65, 75, 85 and n = max subjects.

Rank 1 Rank 5

v EMV GEI GFI EMV GEI GFI

55 77.6 84.7 75.2 88.5 92.4 85.8

65 78.3 86.6 77.1 89.0 92.8 87.3

75 80.3 86.9 76.5 90.3 92.8 85.8

85 80.8 85.7 74.9 90.1 93.0 84.7

Figure 4.6 shows rank 1 and rank 5 performance of EMV for v = 75 degrees and n = 10,

n = 100, n = 200, n = 300, n = 700, n = 1000, n = 2000, and n = 3759 subjects. The rank

5 performance decreases steadily as the number of subjects is increased. This result reflects

the fact that the more subjects in the gallery, the more likely it is that there will be subjects

with similar gait profiles. Rank 1 performance also decreases as the number of subjects is

increased, but it is more volatile than the smooth decrease in rank 5 performance. This

difference is due to the nature of rank 1 and rank 5. For a successful rank 5 classification,

the true label can appear in any of the first 5 spots of the rank list. The number of subjects

with similar gait profiles required to make a rank 5 classification unsuccessful is more than

the number required to make a rank 1 classification unsuccessful. Additionally, the large

drop in rank 1 performance for the experiment with n = 2000 subjects can be explained

by the randomization of subjects for each experiment. The subjects used in the n = 2000

experiment contained proportionally more subjects that were hard to discriminate (that is,

subjects whose gait profiles are similar).
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Figure 4.6: Performance of EMV for v = 75 degrees and n = 10, n = 100, n = 200, n = 300,
n = 700, n = 1000, n = 2000, and n = 3759 subjects.

33



Chapter 5: Conclusion and Future Work

In this thesis, I presented a new method for estimating motions of object contours, and I

demonstrated the successful use of the method for gait recognition. The basic method uses

the distance transform to establish correspondences between point sets. The resulting dis-

placement vectors are mostly consistent with normal flow. I carefully analyzed the method’s

output and revealed how the medial axis and curvature of the object, as well as the mag-

nitude of motion, affect the computation of displacement vectors. This analysis led to an

extension of the method where contour orientation was used to correct some displacements.

Affine modeling was further used to compute the true motions of objects. After describing

the method in detail, I applied the method to the practical problem of gait recognition. The

method worked successfully on low resolution contours obtained from silhouette images. I

designed two representations, the Histogram of Motion and the Edge Motion Vector, to

compare features between frames and sequences. These approaches achieved promising re-

sults. The successful application of the method to gait recognition proves that the method’s

output is useful as a standalone representation.

The method has implications beyond being a standalone representation. Other tech-

niques for estimating motion as well as other application domains could benefit from the

proposed method. Optical flow techniques have used a coarse-to-fine estimation to speed

up computation. The proposed method could serve as a seed to such techniques. Chamfer

matching could also be sped up using the proposed method. An additional application

domain is action recognition, where preliminary work using the output of the proposed

method as input into a convolutional neural network has yielded encouraging results.

Outside of application to other domains, the method itself could benefit from several

improvements. Although the focus in this thesis has been on objects, contours can be

obtained from a variety of sources including image edges. As long as edges correspond to
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stable regions in an image, this modification could yield a denser motion field. Currently, the

motion modeling approach only works on rigid objects. This could be extended by applying

motion modeling to small patches in the image where a loose assumption of rigidity could be

made. As for gait recognition, a significant improvement could be made by applying a time

series analysis technique such as dynamic time warping rather than averaging frame-level

features. Such an approach would preserve sequential information. An approach using key

frames could provide a medium between dynamic time warping and averaging all frame-

level features. Furthermore, using more features such as shape features, could improve

performance.
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