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ABSTRACT 
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Dissertation Director: Dr. Barry Haack 

 

The fusion of electro-optical (EO) multi-spectral satellite imagery with Synthetic 

Aperture Radar (SAR) data was explored with the working hypothesis that the addition of 

multi-band SAR will increase the land-cover (LC) classification accuracy compared to 

EO alone. Three satellite sources for SAR imagery were used: X-band from TerraSAR-X, 

C-band from RADARSAT-2, and L-band from PALSAR. Images from the RapidEye 

satellites were the source of the EO imagery. Imagery from the GeoEye-1 and 

WorldView-2 satellites aided the selection of ground truth. 

Three study areas were chosen: Wad Medani, Sudan; Campinas, Brazil; and 

Fresno- Kings Counties, USA. EO imagery were radiometrically calibrated, 

atmospherically compensated, orthorectifed, co-registered, and clipped to a common area 

of interest (AOI). SAR imagery were radiometrically calibrated, and geometrically 

corrected for terrain and incidence angle by converting to ground range and Sigma 
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Naught (σ
0
). The original SAR HH data were included in the fused image stack after 

despeckling with a 3x3 Enhanced Lee filter. The variance and Gray-Level-Co-occurrence 

Matrix (GLCM) texture measures of contrast, entropy, and correlation were derived from 

the non-despeckled SAR HH bands. Data fusion was done with layer stacking and all 

data were resampled to a common spatial resolution. The Support Vector Machine 

(SVM) decision rule was used for the supervised classifications. 

Similar LC classes were identified and tested for each study area. For Wad 

Medani, nine classes were tested: low and medium intensity urban, sparse forest, water, 

barren ground, and four agriculture classes (fallow, bare agricultural ground, green crops, 

and orchards). For Campinas, Brazil, five generic classes were tested: urban, agriculture, 

forest, water, and barren ground.  For the Fresno-Kings Counties location 11 classes were 

studied:  three generic classes (urban, water, barren land), and eight specific crops.  

In all cases the addition of SAR to EO resulted in higher overall classification 

accuracies. In many cases using more than a single SAR band also improved the 

classification accuracy. There was no single best SAR band for all cases; for specific 

study areas or LC classes, different SAR bands were better. For Wad Medani, the overall 

accuracy increased nearly 25% over EO by using all three SAR bands and GLCM 

texture. For Campinas, the improvement over EO was 4.3%; the large areas of vegetation 

were classified by EO with good accuracy. At Fresno-Kings Counties, EO+SAR fusion 

improved the overall classification accuracy by 7%.  

For times or regions where EO is not available due to extended cloud cover, 

classification with SAR is often the only option; note that SAR alone typically results in 
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lower classification accuracies than when using EO or EO-SAR fusion. Fusion of EO and 

SAR was especially important to improve the separability of orchards from other crops, 

and separating urban areas with buildings from bare soil; those classes are difficult to 

accurately separate with EO. 

The outcome of this dissertation contributes to the understanding of the benefits 

of combining data from EO imagery with different SAR bands and SAR derived texture 

data to identify different LC classes. In times of increased public and private budget 

constraints and industry consolidation, this dissertation provides insight as to which band 

packages could be most useful for increased accuracy in LC classification.  
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1 INTRODUCTION 

As the human population grows, and land and water resources become more 

limited, an accurate understanding of what covers the Earth becomes critical to 

understand and manage the human impact on not only those limited resources, but also 

the health of our planet. Why land cover is distributed the way it is? How and when did it 

develop? What cover is natural and what is the result of human activities? What has 

changed and how fast? What caused the changes? Can we predict future changes in land 

cover? Ryerson and Aronoff (2010) provide an excellent discussion of these questions 

and how remote sensing technologies can be used. 

1.1 Background 
Land cover maps are valuable tools to help answers these questions, and over the 

years, science and technology has made the creation and upkeep of land cover (LC) maps 

much more manageable. Remote sensing has provided a way to observe large expanses of 

the Earth much faster with higher accuracy than previously possible with manual boots-

on-the-ground methodologies. Ryerson and Haack (2016) present an enlightening 

summary of the successes and limitations of using remote sensing around the world. The 

analysis of national programs is critical to better establish the application of geospatial 

science for the betterment of the human condition. 
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The Landsat program has provided over 40 years of medium spatial resolution 

satellite imagery that has been essential to our understanding of LC and how it changes 

with time (USGS, 2013). Nevertheless, available technology was limited to passive data 

collection in the visible and near-infrared (VNIR) wavelengths which while valuable, 

represent a small portion of the electromagnetic spectrum (EMS). Adding more regions 

of the EMS contributes to and enhances the analysis of the spectra reflected and scattered 

from materials on the Earth. The development of active RADAR imaging during the 2nd 

World War, and later synthetic aperture RADAR (SAR) was followed by the commercial 

availability of data in the RADAR bands important to describe other characteristics of the 

Earth’s surface (Lewis and Henderson, 1998; Woodhouse, 2006). Combining SAR data 

with electro-optical (EO) data from the VNIR wavelengths, allows for better 

characterization of the LC by including more of the electromagnetic spectrum. EO and 

SAR information are complimentary because they respond to different phenomenology; 

optical wavelengths are differentially absorbed and reflected due to the materials 

chemistry, while microwave energy from SAR is scattered due to the material’s texture, 

dielectric properties, and physical structure or shape.  

1.2 Dissertation Scope 
Data fusion of EO multi-spectral satellite imagery with SAR imagery was  

explored with the working hypothesis that the addition of multi-band SAR imagery will 

increase the classification accuracy for individual LC classes. Three satellite sources for 

SAR imagery were used, each of a different band: L-band from PALSAR; C-band from 
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RADARSAT-2; and X-band from TerraSAR-X. RapidEye imagery was used as the 

source of the EO imagery.   

The outcome of this dissertation adds to the understanding of the benefits of 

combining data from the VNIR with SAR to identify different classes of LC. Particularly 

the understanding of which SAR bands can be best fused with the VNIR bands to identify 

specific LC classes is clarified. This dissertation further contributes to the methodology 

for identification, quantification, and mapping of LC features and thus may provide some 

assistance in our search to better understand the Earth, and better support sustainable 

resource management in the future. 

1.3 Organization 
The proposed research is organized in sections that address several questions 

using the classification accuracy assessment as the evaluation metric. Each study area is 

presented in a separate section. First EO imagery was classified to provide the baseline 

accuracy. Then the impact of using three different SAR despeckled HH bands was 

evaluated and the individual and combined impact of each SAR satellite was assessed. 

Third adding the variance texture measure of each SAR band was tested. Fourth a set of 

Gray-Level-Co-occurrence-Matrix (GLCM) texture measures was assessed and 

compared to the more traditional variance texture measure. The impact of three texture 

window sizes (7x7, 11x11, and 21x21) was investigated for Wad Medani only. Neither 

texture nor other derived bands from the EO imagery were included in this research given 

the primary focus was on contribution of information from SAR. 
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Fifth, the effect of combining EO, SAR despeckled HH with both SAR-derived 

variance and GLCM texture was evaluated. Sixth the classification accuracy from using 

SAR and SAR texture only was tested as the SAR baseline. Often there is a need to 

assess and map a specific material so overall regional classification accuracy for all 

classes is not sufficient. The band combination that best classified each individual LC 

class in user’s and producer’s accuracy for each study site, was determined and 

compared. In the global discussion, the transportability of the general methodology and 

procedures performed in this research to other regions and climates are evaluated. Lastly 

thoughts for future lines of research are discussed. 
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2 LITERATURE REVIEW 

2.1 Remote Sensing Basics 
A general definition of remote sensing is the observation of something without 

physically touching it. Most people have had the experience of medical imaging, which 

may simply be before and after pictures of a patient undergoing surgery using X-Rays or 

Magnetic Resonance Imagery, for example. Microscopes of varying degrees of 

magnification have permitted researchers and physicians to observe very tiny structures 

… these are examples of remote sensing in the medical and biological domains. 

Likewise, remote sensing technology has made human observation of the Earth, the 

moon, other planets, and even the Cosmos possible.  

Campbell and Wynne (2011) explain that in the practical sense, application of 

remote sensing needs to be documented as its development follows closely the 

development of photography. The first aerial photograph was taken from a balloon by 

Gaspard-Félix Tournachon in 1858. Campbell and Wynne (2011) provide a clear 

definition of remote sensing with the focus on understanding the Earth as follows: 

“Remote Sensing is the practice of deriving information about the Earth’s land and water 

surfaces using images acquired from an overhead perspective, using electromagnetic 

radiation in one or more regions of the electromagnetic spectrum, reflected or emitted 

from the Earth’s surface.” 
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To understand remote sensing and its application one must have a basic 

understanding of the electromagnetic spectrum (EMS).  Figure 1 shows portions of the 

EMS from gamma rays to beyond AM radio. Visible light is typically described as 

between 380-720 nm (Campbell and Wynne, 2011), and microwaves (RADAR) between 

1-30 cm although P-band RADAR can extend into the FM radio region. 

 

 
Figure 1. The Electromagnetic Spectrum with details on visible and RADAR bands. By Phillip Ronan; used 

under CC Attribution-Share Alike 3.0 Unported license. Modified by Hammann, added  RADAR bands and 

some annotations were deleted. 

 

EO imaging satellites operate in the VNIR region of the EMS and passively (only 

looking) detect the energy reflected from the Earth’s surface as well as everything 

between the satellite and the ground. The Sun’s energy or transmitted irradiance is shown 

https://commons.wikimedia.org/wiki/File:EM_spectrum.svg#/media/File:EM_spectrum.svg
https://en.wikipedia.org/wiki/en:Creative_Commons
https://creativecommons.org/licenses/by-sa/3.0/deed.en
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in Figure 2 as well as regions where the Earth’s atmosphere absorbs that energy. Regions 

where much of the Sun’s energy is able to reach the ground are called atmospheric 

windows and EO satellite bands are selected to be mostly within those regions of the 

EMS. Ozone, water vapor, O2, and CO2 are the gases most responsible for atmospheric 

absorption. EO sensors require sunlight so they can only be used during daylight in good 

weather; they cannot view the Earth’s surface through clouds. 

Absorption is not the only process in the atmosphere that alters the energy 

ultimately detected by the satellite by passive sensors. Scattering from molecules and 

particles (aerosols) in the atmosphere is also an important consideration. The pathway of 

energy from the Sun, to the Earth and back to space where it can be detected by a satellite 

sensor is called the Energy Flow Profile (Haack, 2016) and needs to be understood in 

order to interpret the data obtained from the satellite (Figure 3). This process has also 

been called the solar energy profile (Schott, 2007) and the path radiance (Jenson, 2005). 

What the sensor actually detects is called the Top-of-the-Atmosphere (TOA) radiance 

although typically the data are delivered as sensor counts and have to be converted to 

radiance units. 
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Figure 2. The Sun’s radiation from the Top of the Atmosphere, and the Earth’s surface at sea level. By Robert 

A. Rohde used under the  CC Attribution-Share Alike 3.0 Unported license.  

 

 
Figure 3. Energy flow profile of light from the Sun to the Earth and back to the satellite. By UCAR/COMET 

used under the  UCAR/COMET license. Modified by Hammann, added the satellite and the energy path to the 

satellite. 

 

http://commons.wikimedia.org/wiki/File:Solar_Spectrum.png
https://en.wikipedia.org/wiki/User:Dragons_flight
https://en.wikipedia.org/wiki/User:Dragons_flight
file:///C:/Users/Greg/Documents/GMU_PhD/Docs/Dissertation/CC
https://creativecommons.org/licenses/by-sa/3.0/deed.en
http://www.ucar.edu/learn/1_3_1.htm
https://www.meted.ucar.edu/about_legal.php#B
//upload.wikimedia.org/wikipedia/commons/4/4c/Solar_Spectrum.png
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2.2 Atmospheric Compensation 
Although imaging satellites directly measure the TOA radiances, scientists really 

need to understand the materials on the Earth’s surface which are best described, when 

using EO sensors, by the reflectance of VNIR light. Spectral libraries are produced in 

terms of ground reflectance. There are multiple ways to compensate for the effect of the 

atmosphere and convert the TOA radiances to ground reflectance. These methods are 

amply described in the literature, remote sensing text books, and image processing 

software manuals (Liang, 2004; Jensen, 2005; Schott, 2007; ITT, 2009; ITT, 2010; 

ERDAS, 2010; Campbell and Wynne, 2011; Richards, 2013). In some cases, with rather 

clear skies and no desire to compare the imagery to other dates or locations, no 

atmospheric compensation may be necessary. The dark-body subtraction method is very 

simple and works well by subtracting the amount of detected radiance from a very dark 

pixel like water in the NIR band. Because water should absorb the entire NIR signal, any 

signal detected by the sensor is likely to be from the atmosphere, and that amount is 

subtracted from the other bands.  Band ratios are another good way to compensate for the 

atmosphere in the sense that light from all wavelengths must travel through the same 

atmosphere so dividing one band by another lets the atmospheric component cancel itself 

out … x divided by x is 1.  

Lastly there are more comprehensive procedures that often are additional modules 

to image processing software that typically must be purchased for an additional price. 

The ENVI software has a module called the Atmospheric Correction Module (ACM) 

which includes two more advanced algorithms (ITT, 2009): the Quick Atmospheric 

Correction (QUAC) tool and the Fast Line-of-sight Atmospheric Analysis of Spectral 
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Hypercubes (FLAASH). QUAC determines the compensation parameters from the image 

data without additional input and works well with multispectral EO imagery. FLAASH is 

based on radiative transfer models developed by the US Air Force Research Laboratory 

and the MODTRAN model (ITT, 2009); FLAASH is used most commonly for 

hyperspectral imagery. 

While the dark-subtract method of atmospheric compensation is most often 

sufficient, the QUAC tool was used for better EO image quality consistency between 

sites. 

2.3 SAR Basics 
SAR sensors work in a similar fashion to LiDAR and SONAR. RADAR means 

RAdio Detection and Ranging; LiDAR is LIght Detection And Ranging, and SONAR is 

SOund Navigation and Ranging. These devices are active detectors because they provide 

their own energy source and transmit pulses of energy and measure the time for each 

pulse to return to the receiving antenna. Table 1 contrasts passive EO and active SAR 

satellites.  

SAR uses microwave energy to bathe an area with pulses and measure the time 

and amount of pulses scattered back to the receiver, or the backscatter. Henderson and 

Lewis (1998) and Woodhouse (2006) provide excellent references for imaging RADAR. 

SAR instruments are side-looking and can arrange the transmitting antennas in a different 

vertical/horizontal orientation from the receiving antennas; this arrangement allows for 

polarization. When the transmit and receive antennas are in the same orientation it is 

called a ‘like’ view; for example, both are either in a vertical or horizontal position. The 
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SAR polarizations are labeled according to the antenna orientation so despeckled HH and 

VV are ‘like’ orientations in the horizontal and vertical planes, respectively.  When the 

transmit and receive antennas are oriented orthogonal to each other it is called a ‘cross’ 

view. For example, an HV view is when the transmit antenna is set to horizontal and the 

receive antenna to vertical. Dual and quad-pole SAR research has been reported by 

several authors (Sheoran, 2005; Haack and Khatiwada, 2010; Sawaya, et al., 2010; 

Sheoran and Haack, 2013a; Sheoran and Haack, 2013b; Idol, et al., 2015a; Idol, et al., 

2015b).  

SAR satellites typically have several data collection modes which basically 

represent a trade-off between spatial resolution and swath coverage. SAR backscattering 

is partly determined by the wavelength where longer wavelengths penetrate more than 

shorter wavelengths (Figure 4). Figure 5 shows the basic SAR geometry terminology; it 

is important to distinguish between slant and ground range because only ground range 

data can be projected on a map. The side-looking nature of SAR causes geometric 

distortions over variable terrain where the data can appear to be in another location. 

Figure 6 shows geometric distortions in slant range: layover, foreshortening and shadow 

(Halounová, 2009). These concepts are amply described in Henderson and Lewis (1998) 

and Woodhouse (2006). Layover is where an elevated surface appears closer to the 

instrument’s nadir position because those returns are received before returns from 

features on the ground. Elevated surfaces can prevent the pulses from ever reaching the 

ground behind them causing shadow or areas of no data. Foreshortening is when the 

RADAR pulse hits a slope directly facing the RADAR. 
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A characteristic of SAR is a salt-and-pepper appearance with black and white 

pixels called speckle. Speckle is an artifact of coherence in the SAR design and often can 

hide the true textural features. Given that each SAR instrument has a number of 

transponders and receivers, the data can be averaged across them to virtually create a 

greater number of looks; the spatial resolution of a multi-look SAR scene is lower but the 

speckle is reduced. Speckle, texture, and EO-SAR fusion will be discussed in the 

following sections. 

 

Table 1. Comparison between EO and SAR imaging satellites. 

 
 

2.4 Speckle Reduction 
Interpretation of SAR imagery is more complicated than EO imagery because 

SAR texture measures include both a component of surface roughness and speckle due to 

the coherence of the RADAR and processing system. When RADAR pulse returns 

coincide, a bright spot speckle is created; when RADAR pulse returns are of opposite 

signs, they can cancel each other out resulting in a dark spot speckle. 

Electro-Optical SAR

Sensor Type Passive Active

Day/Night Acquisition Day only Day & Night

Impacted by Clouds Yes No

Viewing Angles Nadir to 30 deg  off Nadir Side looking Geometry

Detected Physical Parameter Reflectance Backscatter

Physical Phenomenology
Chemical composition and 

thermal properties

Target physical

properties (roughness, shape &

 dielectric constant)

DEM Creation w/Stereo views
w/Stereo views &                                      

coherent phase measurements
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Figure 4. Forest penetration is stronger with longer wavelengths. By USGS (Palma, 2011); used under the ‘Fair 

Use’ doctrine. The graphics were reordered to show increasing forest penetration by Hammann.   

 

The issue of speckle is difficult because the analyst does not really know how 

much of the measured texture is from the material in the scene or how much is from the 

speckle. Much work has been done on despeckling to find balance and prevent removing 

the textural information from the image while attempting to reduce the speckle. 

Nyoungui et al. (2002) reviewed methods of despeckling and texture measures for SAR 

https://vhub.org/resources/818/download/Lu_INSAR1.pdf
http://www.copyright.gov/fair-use/more-info.html
http://www.copyright.gov/fair-use/more-info.html
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imagery. Idol (2012) determined it was best to use the original SAR data for texture 

derivation but use despeckled SAR as image bands for LULC classification.  

 

 
Figure 5. SAR geometry terminology. By USGS (Palma, 2011); used under the ‘Fair Use’ doctrine.  

 

2.5 Texture Measures 
Photo interpretation is an old practice and analysts employ their experience and 

several cues for their interpretations. Several elements of image interpretation are used: 

geographic location, tone and color, texture, size, shape, pattern, and association with the 

surrounding pixels (Campbell and Wynne, 2011). Jensen (2005, 2007) also considers 

https://vhub.org/resources/818/download/Lu_INSAR1.pdf
http://www.copyright.gov/fair-use/more-info.html
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height/depth/volume as another cue which is measureable with other sensors such as 

LiDAR and stereo image collections. A qualitative definition of texture is the apparent 

smoothness or roughness of a region of interest. These interpretations are affected 

however by the illumination angle and contrast of the scene. Low collection angles also 

make texture analysis more difficult or impossible to view. 

 

 
Figure 6. SAR geometric distortions with slant range. By Halounová (2009); used under the ‘Fair Use’ doctrine. 

 

With digital image processing, different algorithms have been determined to 

derive quantitative measures of texture allowing their inclusion in digital classification 

efforts as additional derived bands. Jensen (2005) discussed a wide variety of texture 

measures including mean and variance, and measures in the spatial domain such as gray-

http://earth.esa.int/landtraining09/D1La1_Halounova_SARBasics.pdf
http://www.copyright.gov/fair-use/more-info.html
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level co-occurrence-matrices (GLCM), fractals, and variograms. Schott (2007) discussed 

GLCM texture measures. Texture is an important factor for machine vision and different 

GLCM algorithms have been tested (Jain et al., 1995).  

Much research supporting many applications of texture extraction from EO and 

SAR imagery has been done. Texture from EO imagery has been used for studying forest 

canopies (Franklin et al., 2001), defoliation (Moskal and Franklin, 2004), LC with 

Landsat Thematic Mapper (TM) (Berberoglu et al., 2007), and a variety of environmental 

applications using Ikonos imagery (Wulder et al., 2004). Ojala et al. (1996) compared 

several methods of texture derivation and contrasted one-dimensional measures such as 

means and variances, with two-dimensional measures such as GLCM. Ojala et al. (2002) 

reported further work on exploiting two-dimensional measures of texture in industrial, 

medical, and remote sensing applications. Puissant et al. (2005) reported on using texture 

analysis with high to very high spatial resolution (1-10m) EO imagery to improve 

classifications. 

SAR texture describes the variation in tone and is similar to texture in EO images. 

Raney (1998) describes tone and texture as being critical first and second order averages 

of the spatial brightness in the scene. Much work has been done using SAR texture as a 

derived band(s) in fused images for LC classification (Solberg et al., 1994; Haack et al., 

2000; Haack and Bechdol, 2000; Haack et al., 2002; Herold et al., 2005; Haack, 2007; 

Haack and Khatiwada, 2010; Idol, 2012). Haack and Bechdol (2000) as well as Sheoran 

(2005) explored three texture measures available in ERDAS Imagine from SAR imagery, 

and found that the variance measure was more valuable for increasing classification 
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accuracy. Villiger (2008) used the variance texture measure and found that classification 

accuracy increased until a window size of 15x15 and then further increases in window 

size did not help. Clausi (2002) explored seven GLCM measures of texture and found 

that no single texture measure improved classification accuracy but a set of three 

(contrast, correlation, and entropy) showed favorable results.  

2.6 EO-SAR Fusion 
Image or data fusion is typically defined as combining two or more images with 

complementary spectra or other features in a way that their best characteristics are 

retained with minimal information loss from each, resulting in greater information 

content than each image alone (Pohl and Van Genderen, 1998; Pajares and de la Cruz, 

2004; Amolins et al., 2007; Haack and Khatiwada, 2010). The Pohl and Van Genderen 

1998 review is very complete and widely cited in the literature. For newer 

methodologies, Amolins et al. (2007) and Pajares and de la Cruz (2004) include a 

discussion and comparison with standard methodologies.  A recent review on data fusion 

can be found in Klein (2013). The methods from those references are summarized in the 

following text.   

Image fusion can occur at different levels in the processing chain: pixel, feature, 

or decision level; this study involves pixel level image fusion. There are many methods 

for image fusion and they fall into two main categories: color or visualization techniques, 

and statistic-based techniques. Among the color techniques are Red-Green-Blue (RGB) 

composites, where different bands are selected for different display color channel 

assignments resulting in more (or less) intuitive visual interpretations. Another color 
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technique is Intensity-Hue-Saturation (IHS) which attempts to separate the spatial and 

spectral information from the traditional RGB image; an example is explained in ENVI 

(2013). In addition to the direct conversion from RGB space to IHS color coordinates, 

another method substitutes one of the original IHS bands with a fourth band from another 

sensor. There are variations on this theme when the bands are contrast stretched and the 

substitution occurs for the different IHS bands. A difficulty for these color techniques is 

that they are limited to producing a fused image with only three bands.  

Among the statistical methods, the Principal Component Analysis (PCA) has been 

used as a way to decorrelate the image bands and generate a new set of orthogonal axes. 

Pal et al. (2007) used PCA image fusion to improve geological image interpretations. 

Several techniques have been used to sharpen the images by replacing one band with a 

band from another sensor of higher spatial resolution. In general, techniques that involve 

a forward transformation, a band replacement, and a backward transformation are called a 

COmponent Substitution (COS) technique originally coined by Shettigara (1992). The 

High Pass Filtering (HPF), Regression Variable Substitution (RVS), and Canonical 

Variate Substitution are among COS methods. Lastly wavelets have been increasingly 

used to determine structure and other image details in a combined band image (Pajares 

and de la Cruz, 2004). The statistically based techniques are not limited by the number of 

bands and thus were used in this research. 
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3 METHODOLOGY 

The following software programs were used for data processing and map 

production in this dissertation:  

ArcGIS v10.3.1 from ESRI, Inc. 

ENVI+IDL v5.3 from the Harris, Corp. 

NEST - Next ESA SAR Toolbox v5.1 from Array Systems Computing (2016) 

3.1 Sensor Specifications 
For this study data from six satellites were used.  RapidEye was the source for the 

EO data for the classifications; data sources for SAR were TerraSAR-X X-band, 

RADARSAT-2 C-band, and PALSAR L-band.  For ground truth (GT) data were obtained 

from the very high spatial resolution satellites GeoEye-1 and WorldView-2. Google Earth 

was not utilized for GT due to the lack of a band in the Near-Infrared (NIR). 

3.1.1 GeoEye-1 
GeoEye-1 is an EO satellite, and detects light in the VNIR wavelengths. GeoEye-

1 has a panchromatic (PAN) band, three visible color bands (blue, green, and red) and a 

single NIR band (LandInfo, 2016a). Figure 7 shows the spectral response of the GeoEye-

1 bands (Hammann, unpublished. using ENVI software).  The commercial spatial 

resolution of GeoEye-1 is 0.5 m PAN and 2 m for the VNIR bands. The native 

radiometric resolution is 11 bits. GeoEye-1 is owned and operated by DigitalGlobe, Inc. 
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Figure 7. Spectral response of the GeoEye-1 camera and detector array. Hammann, Unpublished. 

 

3.1.2 WorldView-2 
WorldView-2 is an EO satellite, detecting light in the VNIR wavelengths. It 

carries a camera with a 0.50 m PAN band, six visible color bands (coastal blue, blue, 

green, yellow, red, and red-edge) and a two NIR bands (LandInfo, 2016b). Figure 8 

shows the spectral response of the WorldView-2 bands (Hammann, unpublished, using 

ENVI software).  The commercial spatial resolution of WorldView-2 is 0.5 m PAN and 2 

m for the VNIR bands. The native radiometric resolution is 11 bits. WorldView-2 is 

owned and operated by DigitalGlobe, Inc. 
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Figure 8. Spectral response of the WorldView-2 camera and detector array. Hammann, Unpublished. 

 

3.1.3 RapidEye 
The RapidEye constellation consists of five identical EO satellites each with five 

bands: four visible color bands (blue, green, red, and red-edge) and a single NIR band. 

The native spatial resolution is 6.5 m but the level 3A orthorectified products are 

delivered at 5 m spatial resolution. The radiometric resolution is 12 bits (Planet, 2016). 

Figure 9 shows the spectral response of the RapidEye bands (Hammann, unpublished, 

using ENVI software).  The RapidEye constellation is owned and operated by Planet 
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Labs Inc. Table 2 compares the bands of the three EO satellites to be used for this 

research. 

 

  
Figure 9. Spectral response of the RapidEye camera and detector array. Hammann, Unpublished. 

 

Table 2. Spectral bands for RapidEye, GeoEye-1, and WorldView-2. 

 

Spectral Range (nm) RapidEye GeoEye-1 WorldView-2

Panchromatic --- 450-800 450-800

Coastal Blue --- --- 400-625

Blue 440-510 450-510 450-510

Green 420-590 510-580 510-580

Yellow --- --- 585-625

Red 630-685 655-690 630-690

Red-Edge --- 690-730 705-745

NIR-1 760-850 780-920 770-895

NIR-2 --- --- 860-1040
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3.1.4 PALSAR 
PALSAR is the acronym for the Phased Array Type L-Band Synthetic Aperture 

Radar. PALSAR is one of three instruments carried aboard the Japan Aerospace 

Exploration Agency (JAXA) satellite Advanced Land Observing Satellite (ALOS).  

PALSAR is a SAR sensor detecting scattered microwave energy in the L-band operating 

in the frequency range between 1-2 GHz and wavelengths 15.0 to 30.0 cm (JAXA, 2008). 

PALSAR has three scanning modes: fine resolution mode, ScanSAR mode, and the 

Polarimetric mode (Figure 10). In the fine resolution mode, the spatial resolution is 6.25 

m, 12.5 m, or 205 m, for single, dual, or quad polarization data collection, respectively. 

The ScanSAR mode is a wide area scanning mode and is only available in a single 

polarization with 100 m spatial resolution. PALSAR collects data by scanning to the right 

of the satellite’s nadir position. Data can be obtained with the processing level 1.5 in 16-

bit radiometric resolution.  

3.1.5 RADARSAT-2 
RADARSAT-2 is owned and operated by MacDonald, Dettwiler and Associates 

Ltd. (MDA), a commercial Canadian company. It is a SAR satellite using the RADAR C-

band with a frequency of 5.405 GHz and wavelengths between 3.75 to 7.3 cm.  

RADARSAT-2 offers 11 different scanning modes from single polarization to quad-

polarization with a spatial resolution between 3–100 m (Figure 11). RADARSAT-2 is 

able to collect imagery by scanning to the left or right of the satellite and can collect 

Quad-Pole imagery. Data are delivered with a radiometric resolution of 16 bits (MDA, 

2011). 
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Figure 10. PALSAR scanning modes. Source: Japan Space Systems (2012); used under the ‘Fair Use’ doctrine. 

 

 
Figure 11. RADARSAT-2 scanning modes.  Source: MDA (2011); used under the ‘Fair Use’ doctrine. 

 

http://www.copyright.gov/fair-use/more-info.html
http://www.copyright.gov/fair-use/more-info.html
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3.1.6 TerraSAR-X 
TerraSAR-X is a commercial SAR satellite operated by Airbus A.S, a French 

company. This sensor operates in the RADAR X-band between the frequencies of 8-12 

GHz and wavelengths between 2.50 - 3.75 cm. TerraSAR-X nominally collects imagery 

in either single or dual polarization; it has five scanning modes (Figure 12) between 1.1 

m resolution for the “HighRes Spotlight” mode to the 18.5 m spatial resolution in the 

“ScanSAR” mode (InfoTerra, 2009). 

 

 

 
Figure 12. TerraSAR-X scanning modes.  Source: InfoTerra (2009); used under the ‘Fair Use’ doctrine. 

 

3.2 Study Sites 
Three test areas were selected from different geographic locations and climate 

characteristics: dry desert climate at Wad Medani, Sudan; humid tropical climate at 

Campinas, Brazil; and the Mediterranean climate of Fresno and Kings Counties, CA 

USA. In this research, the term “Area of Interest” (AOI) is used to define the extents of 

http://www.copyright.gov/fair-use/more-info.html
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the study areas. The term “Region of Interest” (ROI) refers the polygons drawn to gather 

pixels for classification training and GT for accuracy assessments. 

3.2.1 Wad Medani, Sudan 
Wad Medani is the capital of the Sudanese state of Al-Jazirah. It is located at 

33
o
30’N and 14

o
30’E (Figure 13) on the west bank of the Blue Nile in the country’s 

major cotton growing area (Metz, 1992). The British established the Gezira irrigation 

scheme which is based on a network of canals that flow by gravity from the Blue Nile 

(Metz, 1992). Figure 14 is a natural color satellite view from Google Earth of the area 

around Wad Medani, including the capital city, Khartoum. The contrast of the 

agricultural area between the rivers and the surrounding areas is striking. According to 

the Global Administrative Areas database (GADM, 2013), Wad Medani had a population 

of 423,863 in 2009.  
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Figure 13. Left - Location of Sudan, the state of Al Jazirah, Wad Medani City, rivers. Right: settlements in 

Sudan. Hammann, unpublished. 

 

 
Figure 14. Natural color image of the terrain around Wad Medani, Sudan.  Source: Google Earth.  
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3.2.2 Campinas, Brazil 
 

Campinas City is in Campinas County, State of São Paulo (Figure 15).   The city 

coordinates are 22°54′ S, 47°3′ W. The 2010 population was estimated at 1,080,999 

(IBGE, 2010) with over 98.3% in the urban area. The population density was 1,359 

inhabitants per sq. km for 2010 (IBGE, 2012). The municipal area of Campinas covers 

796 sq. km. A Google Earth natural color image for Campinas (Figure 16) highlights the 

between vegetation and areas of urban development. 

 

 
Figure 15. Map of South America highlighting Brazil and the state of São Paolo. The insert shows the location of  

Campinas, the study area. Hammann, unpublished. 

 

http://en.wikipedia.org/wiki/IBGE
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Figure 16. Natural color image of the terrain around Campinas, Brazil. Source: Google Earth.  

 

3.2.3 Fresno and Kings Counties, California, USA 
The Fresno-Kings Counties study area AOI is centered on 36

o
11’N, 119

o 
52

’
W 

(Figure 17). Fresno and Kings Counties are among the top ten producing agricultural 

counties in California being in 3
rd

 and 10
th

 place respectively (CDFA, 2015). Figure 18 

shows a natural color image from Google Earth. 
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Figure 17. Location of the study AOI in California, crossing Fresno-Kings Counties, USA. Hammann, 

unpublished.  

 

3.3 Climate 
Temperature and precipitation for the three study sites are shown in Figure 19. 

The climate of Wad Medani is due to the inland location and no proximity to mountain 

ranges. The Köppen-Geiger climate classification (Kottek et al., 2006) is BWh – Arid, 

Desert, and Hot Arid. The temperatures are between 15-40
o
C; the annual total 

precipitation is 345 mm during the summer mostly in July and August (Figure 19). The 
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warmest months are during spring. The Nile River water is loaded with suspended 

material. The soil is of the expansive type and has high clay content (Mohamedzein, et al. 

1999) which helps retain water in the canals. 

 

 
Figure 18. Natural color image of the terrain around Fresno-Kings Counties, USA. The green line is the county 

border. Source: Google Earth. 
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The climate of Campinas, Brazil is driven by the inland and leeward side of a 

coastal mountain range location. The Köppen-Geiger climate classification (Kottek et al., 

2006) is Cfb - Warm Temperate, Fully Humid, and Warm Summer. The temperatures are 

rather mild and stable between 13-30
o 
C; the annual total precipitation is 801 mm (Figure 

19). The rainy season is during the austral summer and has the warmest temperatures. No 

river feeds into the Campinas area, although the great level of rainfall makes irrigation 

unnecessary. The warm temperatures, high annual rainfall, and dense vegetation create 

soils with a high fraction of histosols and organic content (Valladares et al., 2007; 

Instituto Agronômico de Campinas, 2007). 

In central California, Fresno-Kings Counties, the climate is dominated by the 

inland and leeward side of the coastal mountain range location. The Köppen-Geiger 

climate classification (Kottek et al., 2006) is Bsh – semi-arid, steppe, hot-dry summers; a 

Mediterranean climate. The temperatures range between about 3-37
o
C and the annual 

total precipitation is 294 mm (Figure 19). The rainy season is during the winter as is 

typical for Mediterranean climates. No river flows directly into the Fresno-Kings 

Counties area, but there is a network of artificial irrigation canals. The San Joaquin 

Valley was historically covered by a large water body and many streams carried material 

from the Coast Range Mountains (Strahorn et al., 1914) creating the soils found today. 

Strahorn et al. (1914) described the dominant soil being from the San Joaquin series 

sandy loam and clay loam.  
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Figure 19. Average climate indicators for Fresno, CA, Campinas, Brazil, and Wad Medani, Sudan. a) Mean 

monthly high and low temperatures; b) monthly mean precipitation. Data are consolidated from Weather.com 

(2016) and Weather-and-Climate.com (2016). 

 

3.4 Data Sources 
To create the location maps, the administrative, water body, and road shapefiles 

were obtained from DIVA GIS (2016). For each location, satellite data were obtained for 

dates as close together as possible. When data were not available for a given sensor 

during the same month, data from the same climate season in other years were used, as 

available. RapidEye L3A orthorectified imagery was used for the source of EO imagery. 

SAR data for all three study sites were from the PALSAR, TerraSAR-X, and 

RADARSAT-2 satellites. Tables 3, 4, and 5 show the details of the source data for Wad 

Medani, Campinas, and Fresno-Kings Counties respectively. RADARSAT-2 data at 

similar spatial resolutions was not available for Campinas, Brazil because RADARSAT-2 

is used there primarily for maritime surveillance; the only available SAR images were 

ScanSAR at 25 m spatial resolution.  
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Table 3. Data sources for Wad Medani, Sudan. Blue highlight is for the GT image. 

Source Date of 
Collection 

Type or ID /Polarization Incidence 
Angle 

Pixel 
Size 

Wad 
Medani 

Sudan Fused resolution: 12.5m, 16 bit   

GeoEye-1 10 Aug 2009 2009100808232421603031601661  0.5 m 
RapidEye 
L3A 

10 Mar 2010 
14 Mar 2011 

VNIR Level 3a 16 bit - 2 scenes  5.0 m 

PALSAR 24 Jul 2009 ALPSRP186390270 HH Level 1.5  38.74o
 12.5 m 

RADARSAT-2 6 Jun 2009 Multi-Look Fine HH ID: 40502  30.85o 6.25 m 
TerraSAR-X 20 Apr 2010 

03 Jun 2010 
ScanSAR HH EEC_RE_SC_S_SRA 
ScanSAR HH EEC_RE_SC_S_SRA 

29.16 -
40.40o 

8.25 m 
8.25 m 

 

Table 4. Data sources for Campinas, Brazil. Blue highlight is for the  GT image. 

Source Date of 
Collection 

Type or ID/Polarization Incidence 
Angle 

Pixel 
Size 

Campinas Brazil Fused resolution: 25m, 16 bit   

GeoEye-1 31 Jul 2010 2010073113110181603031602551  0.5 m 
RapidEye L3A 17 Apr 2010 

25 Apr 2010 
VNIR Level 3a 16 bit - 6 scenes  5.0 m 

PALSAR 13 May 2010 ALPSRP229016720 HH Level 1.5 38.91o 12.5 m 
RADARSAT-2  30 Apr 2011 ScanSAR Narrow HH ID: 130875  39.57o 25.0 m 
TerraSAR-X 12 May 2008 ScanSAR HH EEC_RE_SC_S_SRA 29.16 -

40.40o 
8.25 m 

 

Table 5. Data sources for Fresno-Kings Counties, USA. Blue highlight is for the GT image. 

Source Date of 
Collection 

Type or ID/Polarization Incidence 
Angle 

Pixel 
Size 

Fresno/Kings 
Counties CA 

USA Fused resolution: 12.5m, 16 bit   

WorldView-2 26 Apr 2010 20300100F56BDC00  0.5 m 
RapidEye L3A 09 Jun 2010 VNIR Level 3a 16 bit - 4 scenes  5.0 m 
PALSAR 14 May 2010 

31 May 2010 
ALPSRP229190720  HH Level 1.5 
ALPSRP231670710  HH Level 1.5 

38.68o 

38.70o 
12.5 m 
12.5 m 

RADARSAT-2 01 Jul 2010 Multi-Look Fine HH ID: 87853  37.13o 6.25 m 
TerraSAR-X 23 Mar 2010 ScanSAR HH EEC_RE_SC_S_SRA 29.16 -

40.40o 
8.25 m 
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The fused AOI for each study region was the maximum area where all data 

sources overlapped. The coverage area for Wad Medani was 470 sq. km
 
and shown in 

Figures 20 and 21.  The overlap coverage for Campinas, Brazil (2,346 sq. km) is shown 

in Figures 22 and 23. Lastly, for Fresno-Kings Counties, CA, 1040 sq. km was covered 

by all image sources (Figs. 24 and 25). 

 

 
Figure 20. Overlap AOI in Wad Medani, Sudan. Hammann, unpublished. 
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Figure 21. RapidEye EO natural color image of the common AOI in Wad Medani, Sudan. RGB: Red, Green, 

Blue bands. Hammann, unpublished. 
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Figure 22. Overlap AOI in Campinas, Brazil. Hammann, unpublished. 
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Figure 23. Landsat 5 TM EO natural color image of the common AOI in Campinas Brazil; RGB: Red, Green, 

Blue bands. The Campinas municipality is shown with a color infrared composite using Landsat 5 TM; RGB: 

NIR, Red, Green. Hammann, unpublished. 

 

3.5 Image Pre-Processing 

3.5.1 Overview 
Source imagery was acquired at different processing levels from the different 

suppliers. RapidEye EO orthorectifed imagery was received as radiometrically TOA 

calibrated sensor counts. SAR imagery was multi-look and calibrated to represent 

amplitude and intensity in either digital numbers or Beta Naught (β0, also called radar 
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brightness) representing the intensity of the radar backscatter in slant range, and accounts 

for differences in the sensor’s incidence angle, flight geometry, and look directions. 

All image scenes were orthorectifed to a common UTM map projection for the 

corresponding area and resampled with the nearest neighbor algorithm to the same spatial 

resolution. All images were clipped to their common AOI as previously shown, and co-

registered to the corresponding UTM WSG84 projection before data fusion. All bands 

including RADAR texture were combined using layer-stacking into a single multi-band 

image file for each study area. 

 

 
Figure 24. Overlap AOI in Fresno-Kings Counties, USA. Hammann, unpublished. 
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Figure 25. RapidEye EO natural color image of the common AOI in Fresno-Kings Counties, USA. RGB: Red, 

Green, Blue bands. The green line is the county boundary. Hammann, unpublished. 
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3.5.2 Radiometric Calibrations  
RapidEye L3A TOA sensor counts were converted to TOA radiance using the 

gains and offsets in the image metadata. EO images were converted to ground reflectance 

using QUAC in the ENVI software. SAR imagery were converted to ground range and 

Sigma Naught (σ0) identifying the pixels affected by shadow, layover, and 

foreshortening. 

3.5.3 Geometric Calibration and Orthorectification 
Basic geometric calibrations were done by the data providers using the sensor 

model and telemetry. Orthorectification converts the image from a spherical satellite view 

to a common 2-dimensional map projection, and adjusts for the local terrain with a digital 

elevation model (DEM). This process minimizes the pixel distortion from off-nadir 

collections and terrain viewing angle. The output pixel size is adjusted during the 

orthorectifcation processes and alterations in the spectral information are minimized. 

In this research all images were projected using the datum WGS84 and the UTM 

map projection for the corresponding UTM zone. Some of the SAR images and the 

RapidEye images were delivered orthorectified using the Shuttle Radar Topography 

Mission DEM (SRTM) with a 90 m posting. For any images not orthorectified, the 

SRTM DEM was utilized for consistency. 

3.5.4 Resampling 
This research involves four different satellite sources for data fusion: one electro-

optical and three different bands of SAR. RapidEye has a native resolution of 6.5 m and 

is delivered as a 5.0 m spatial resolution orthorectified product. EO images from the 

RapidEye constellation were under-sampled using the pixel aggregation algorithm to 
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match the largest spatial resolution of the available SAR data over each study site. 

Resampling error due is minimized by under-sampling to the coarsest resolution for the 

fused layer stack and the closest match in spatial resolution for the other data sources; 

this is the most conservative approach but some information from the higher resolution 

data is lost. For Fresno-Kings Counties and Wad Medani, images were under-sampled to 

the same 12.5 m native spatial resolution as the PALSAR data. For Campinas, Brazil, 

images were under-sampled to match the 25.0 m resolution of the ScanSAR data from 

RADARSAT-2 (Table 6).  

 

Table 6. Original spatial resolution of data sources (in meters) from different satellites for the three study areas 

and resampled pixel size for the fused layer stack. 

Site RapidEye PALSAR TerraSAR-X RADARSAT-2 Fused (m) 

Wad 

Medani 
5.0 12.5 8.25 6.25 12.5 

Campinas 5.0 12.5 8.25 25.0 25.0 

Fresno-

Kings 
5.0 12.5 8.25 6.25 12.5 

 

3.5.5 Image-to-Image Registration 
With different sensors and orbital geometry, as well as different local view angles 

during data collection, a small geographic offset between images over the same area is 

typical. In order to combine all images in a layer stack and perform further analyses, each 

pixel must represent the same location on the ground. The error should be minimal after 

orthorectifcation but is still likely to exist. All imagery was evaluated for any errors in the 

relative position between them and corrected as necessary; the RapidEye EO image was 
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used as the reference. In some cases no adjustments were necessary. Image-to-Image 

registration was performed using a polynomial transformation of 1 or 3 degrees. When 

positional errors were found to be a consistent x/y shift throughout the image, a “rotation, 

scaling, and translation” (RST) procedure was used with 5 tie points; this uses a 1 degree 

polynomial. When the positional errors were not consistent throughout the image, image 

warping was done using a 3
rd

 degree polynomial transformation after editing, deleting or 

adding at least 25 Ground Control Points (GCP) to derive a Root Mean Squared Error 

(RMSE) less than 1.0. 

3.5.6 SAR Speckle Reduction (Despeckling) 
The SAR despeckled HH band was despeckled using the Enhanced Lee filter with 

a 3x3 kernel. Speckle is not data but noise, and can contaminate the signal in a measure 

of texture. The PALSAR data at 12.5 m is a multi-look product (4-looks) not likely to 

require despeckling.  However, the data from RADARSAT-2 and TerraSAR-X, while 

considered multi-look, only use two looks and continue to show a great deal of speckle. 

Visual examination showed that data from these two satellites benefited from 

despeckling. For consistency, the same treatment was done to the PALSAR data. Texture 

measures were calculated on the source SAR data, not the despeckled data.  

3.5.7 Texture Derivation 
For the Wad Medani study site, three GLCM measures of texture (contrast, 

correlation, and entropy), as recommended by Clausi (2002), were performed on the SAR 

HH image band from each SAR satellite; variance texture was also calculated. Idol 

(2012) described the difficulty of determining a-priori the best kernel size for texture 
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measures so three different kernels (7x7, 11x11, and 21x21) were applied for data in Wad 

Medani; all three kernel window sizes were added to the layer stack and the classification 

accuracy was compared between them. The 21x21 texture kernel size was selected for 

use for the other two sites. The three GLCM texture measures were used together as a set 

but their different impacts on accuracy were also determined. The GLCM measures uses 

an offset parameter of 1 pixel in the x/y direction and 64 levels of gray scale. In a process 

of elimination and simplification, contrast was eliminated from the data for Campinas 

and Fresno-Kings Counties, and correlation was eliminated from the Fresno-Kings 

Counties data leaving only entropy. 

3.5.8 Image Fusion in  Layer Stacks 
For the supervised classification, the multiple bands that have been pre-processed 

to the same spatial and radiometric resolution were combined in a layer stack (ERDAS, 

2010). Any data analysis including classification on the layer stack results is a derived 

product that represents the information from all the bands through the extraction of the 

combined signatures. The resulting products are the result of a fusion of all data during 

the analysis. 

3.6 Classification 

3.6.1 Feature Class Definition 
The LC classification of each study site follows the structural elements of the 

Anderson et al. (1976) classification scheme but not the exact numbering of classes; it 

used those classes dominant in each of the three study areas in this research. Different 

band combinations for each study area were visualized to best determine the relevant land 

cover classes and aided the signature extraction. 



45 

 

3.6.1.1 Wad Medani, Sudan 
Wad Medani is found in the Al Jazirah (or Gezira) state, and is home of the 

famous gravity-fed irrigation canal network established in 1925 with the damming of the 

Blue Nile River; it is the largest irrigated agriculture area in The Sudan and even in sub-

Saharan Africa (Metz, 1992; FAO, 2005; UNEP, 2007). The major agricultural products 

of Sudan are cotton, groundnuts (peanuts), sorghum, millet, wheat, gum arabic, 

sugarcane, cassava (tapioca), mangoes, papaya, bananas, sweet potatoes, and sesame 

(CIA, 2016). In the area of Wad Medani the main agricultural products are cotton, 

sorghum, wheat, peanuts, vegetables, and fruits (UNEP, 2007).  There are also urban 

areas, water areas from the Nile River, and the agriculture canals, Eucalyptus orchards, 

and sparse forest on the banks of the river (Herold et al., 2005; Idol, 2012). Table 7 

shows nine land cover classes that were identified and used for classification is this study 

in the general Anderson classification structure. 

 

Table 7. Land Cover classes for Wad Medani, Sudan. 

Level I Level II Level III Level IV 

1 Urban 11 Residential  111 Low Density  

  112 Medium Density  

2 Agricultural 

Land 

21 Cropland & 

Pasture 

211 Cropland 2111 Green Crops 

   2112 Fallow 

   2113 Bare Agriculture 

Soil 

 22 Orchards & Trees   

4 Sparse Forest     

5 Water    

6 Barren 

Ground 
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3.6.1.2 Campinas, Brazil 
Campinas City in located in the state of São Paolo, Brazil. It is a relatively 

modern city with over one million residents. The Amazon forest is found to the northeast 

and evidence of frog-leaping urban sprawl had been described (Hammann, 2011) and can 

be observed in Figure 23 on page 38. All crops were combined into a single crop 

category - agriculture. Given the lower spatial resolution of the RADARSAT-2 data the 

all-band image layer stack was produced at 25.0 m spatial resolution and five general 

classification levels were used: urban, green agriculture, forest, water, and barren ground. 

3.6.1.3  Fresno-Kings Counties, USA 
For the case of the Fresno-Kings Counties study site, 11 classes including specific 

crops were classified. The USDA CropScape – Cropland Data Layer (CDL) (Boryan et 

al., 2011; Han et al., 2012; USDA, 2013) was used both to identify crops in the image 

stack layer for training areas as well as for GT. Figure 26 shows the proportions of the 

most abundant crops in the fused AOI for the study area in  Fresno-Kings Counties. 

Figure 27 is a map of the crops grown during 2010 created using data in the CDL. 

Cotton, tomatoes, corn, winter wheat, pistachios, almonds, and alfalfa (Table 8) were 

selected for classification, in addition to classes for developed areas, water, fallow and 

barren land. All other crops identified in the 2010 CDL were combined into a single class 

labeled ‘other’, and used as an image mask to remove those areas from the classification 

process in the fused image.  
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Figure 26. Major crops in the common AOI of study area in  Fresno-Kings Counties. From data in the 2010 

CDL; Hammann, unpublished. 

 

3.6.2 Signature Extraction from Training Areas 
Natural color and infrared color composite (ICC) images were evaluated to 

determine the training AOIs; other band combinations were also used during this 

evaluation process. At least five homogeneous training areas were selected for each class, 

and the total number of pixels was similar when possible.  
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Table 8. Land Cover classes for Fresno-Kings Counties, CA, USA.  

Level I Level II Level III Level IV 

1 Urban     

2 Agriculture 21 Cropland and Pasture 211 Cropland 2111 Other Growing 

   2112 Fallow 

   2113 Cotton 

   2114 Tomatoes 

   2115 Winter Wheat 

   2116 Alfalfa 

   2117 Corn 

  212 Pasture  

 22 Orchards 224 Pistachios  

  225 Almonds  

    

5 Water    

6 Barren Ground    

 

3.6.3 Supervised Classification 
A supervised classification for each study area was employed using the extracted 

spectral signatures. For the Wad Medani test site, several decision rules were compared 

using the entire band stack and the best performer was used in the rest of the study. From 

the fused layer stack, different sets of bands were used for each test classification.   

3.6.4 Ground Truth 
Pixels were collected in polygons for GT over a high spatial resolution image from 

GeoEye-1 at the Pan-Sharpened (PS) resolution of 0.5 m.  Each polygon was coded with 

the corresponding class code and saved as a thematic map using the same class codes as 

used for the training polygons and classifications. For the Fresno-Kings Counties study 

area the Cropland Data Layer (Boryan, et al., 2011), as shown in Figure 27, was used in 

addition of WorldView-2 imagery to build the GT thematic map. The GT map was 

resampled to the same fused spatial resolution as the data in each study site. The GT data 



49 

 

were compared statistically to the classification thematic maps to determine the 

classification errors. 

3.6.5 Accuracy Assessments 
Congalton and Green (1999) provided a detailed description of the accuracy 

assessment errors of omission and commission. As indicated and very generally used by 

other workers, the accuracy assessment was carried out by the statistical comparison of 

pixels collected in polygons assigned to specific classes and data from ground-truth 

samples collected from a reference image and from different locations from the training 

sites. The Confusion (or error) Matrix and the Kappa coefficient were calculated for each 

tested band combination and summarized in tables showing the user’s and producer’s 

accuracies for each trial for each LULC class. The Kappa coefficient is only included as a 

comparative metric. 
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Figure 27. Cropland Data Layer for the common AOI of study area in Fresno-Kings Counties, USA. Hammann, 

unpublished. 
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4 RESULTS 

4.1 Wad Medani, Sudan 

4.1.1 Test Series 
Table 9 shows the data used and objectives for seven series of tests. The 

classification using EO imagery formed the baseline assessment - test series one. Series 

two added the despeckled HH band from the three SAR sensors separately and combined. 

The third test series added the variance texture measure for each of three kernel sizes 

separately and combined. The fourth series tested the impact in classification accuracy 

from the three GLCM texture measures used together without the variance texture, 

testing each kernel size separately and combined. In the fifth series, all texture data 

(variance and GLCM) were used for the classification testing the texture kernels 

separately and combined. The sixth and seventh series looked at the classification 

accuracy using only SAR data, including the different texture measures. Series seven 

tested the different textures measures separately. Table 10 shows the test matrix with the 

bands selected for each test. There were 119 different classification tests for Wad 

Medani. 
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Table 9. Classification Tests Band Packages for Wad Medani, Sudan. 

Test Data Objective # Tests 

1 EO Bands 1-5 EO baseline 1 

2 EO+SAR Despeckled HH 
Test effect of adding to EO each SAR band 

individually and combined  

7 

3 

EO + SAR Despeckled 

HH + SAR variance 7x7, 

11x11, 21x21 kernels  

Test effect of adding SAR variance texture: 

- Each kernel size per SAR band 

- Each kernel size with SAR band 

combinations 

- Combined kernel sizes with all SAR bands 

- All kernel sizes with all SAR bands w/o SAR 

despeckled HH 

 

 

 

26 

4 

EO + SAR Despeckled 

HH + SAR GLCM 7x7, 

11x11, 21x21 kernels  

Test effect of adding SAR GLCM texture: 

- Each kernel size per SAR band 

- Each kernel size with SAR band 

combinations 

- Combined kernel sizes with all SAR bands 

- All kernel sizes with all SAR bands w/o 

despeckled HH 

 

 

 

26 

5 

EO + SAR Despeckled 

HH + SAR Variance +All 

GLCM 7x7, 11x11, 

21x21 kernels  

Test effect of adding SAR V + GLCM texture: 

- Each kernel size per SAR band 

- Each kernel size with SAR band 

combinations 

- Combined kernel sizes with all SAR bands 

- All kernel sizes with all SAR bands w/o 

despeckled HH 

 

 

 

26 

6 

SAR Despeckled HH + 

SAR Variance + GLCM 

7x7, 11x11, 21x21 

kernels  

SAR baseline: 

- Each kernel size per SAR band 

- Each kernel size with SAR band 

combinations 

- Combined kernel sizes with all SAR bands 

- All kernel sizes with all SAR bands w/o 

despeckled HH 

 

 

 

9 

7 

EO + SAR Despeckled 

HH  + SAR variance + 

GLCM individually 

(using all kernel sizes 

combined) 

Test effect of each GLCM measure: 

- Each GLCM measure per SAR band 

- Each GLCM measure with SAR band 

combinations 

- Combined kernel sizes with all SAR bands 

 

 

 

24 

  Total Tests 119 
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Table 10. Test Matrix for Wad Medani, Sudan. 

 
 

 

 

 

 

 

 

 

TerraSar-X RADARSAT-2 PALSAR

Test RapidEye HH VAR7 VAR11 VAR21 GLCM7 GLCM11 GLCM21 HH VAR7 VAR11 VAR21 GLCM7 GLCM11 GLCM21 HH VAR7 VAR11 VAR21 GLCM7 GLCM11 GLCM21

EO ALONE

1 X

EO + SAR-HH

2a X X

2b X X

2c X X

2d X X X

2e X X X

2f X X X

2g X X X X

EO+SAR-HH+3XVAR

3a-7 X X X

3a-11 X X X

3a-21 X X X

3b-7 X X X

3b-11 X X X

3b-21 X X X

3c-7 X X X

3c-11 X X X

3c-21 X X X

3d-7 X X X X X

3d-11 X X X X X

3d-21 X X X X X

3e-7 X X X X X

3e-11 X X X X X

3e-21 X X X X X

3f-7 X X X X X

3f-11 X X X X X

3f-21 X X X X X

3g-7 X X X X X X X

3g-11 X X X X X X X

3g-21 X X X X X X X

3h-7+11 X X X X X X X X X X

3h-7+21 X X X X X X X X X X

3h-11+21 X X X X X X X X X X

3h-7+11+21 X X X X X X X X X X X X X

3i-7+11+21 X X X X X X X X X X

EO+SAR-HH+GLCM

4a-7 X X X

4a-11 X X X

4a-21 X X X

4b-7 X X X

4b-11 X X X

4b-21 X X X

4c-7 X X X

4c-11 X X X

4c-21 X X X

4d-7 X X X X X

4d-11 X X X X X

4d-21 X X X X X

4e-7 X X X X X

4e-11 X X X X X

4e-21 X X X X X

4f-7 X X X X X

4f-11 X X X X X

4f-21 X X X X X

4g-7 X X X X X X X

4g-11 X X X X X X X

4g-21 X X X X X X X

4h-7+11 X X X X X X X X X X

4h-7+21 X X X X X X X X X X

4h-11+21 X X X X X X X X X X

4h-7+11+21 X X X X X X X X X X X X X

4i-7+11+21 X X X X X X X X X X
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Table. 10. Test Matrix for Wad Medani, Sudan. Continued 

 
 

 

TerraSar-X RADARSAT-2 PALSAR

Test RapidEye HH VAR7 VAR11 VAR21 GLCM7 GLCM11 GLCM21 HH VAR7 VAR11 VAR21 GLCM7 GLCM11 GLCM21 HH VAR7 VAR11 VAR21 GLCM7 GLCM11 GLCM21

EO+SAR-HH+1XVAR+GLCM

5a-7 X X X X

5a-11 X X X X

5a-21 X X X X

5b-7 X X X X

5b-11 X X X X

5b-21 X X X X

5c-7 X X X X

5c-11 X X X X

5c-21 X X X X

5d-7 X X X X X X X

5d-11 X X X X X X X

5d-21 X X X X X X X

5e-7 X X X X X X

5e-11 X X X X X X X

5e-21 X X X X X X X

5f-7 X X X X X X X

5f-11 X X X X X X X

5f-21 X X X X X X X

5g-7 X X X X X X X X X X

5g-11 X X X X X X X X X X

5g-21 X X X X X X X X X X

5h-7+11 X X X X X X X X X X X X X X X X

5h-7+21 X X X X X X X X X X X X X X X X

5h-11+21 X X X X X X X X X X X X X X X X

5h-7+11+21 X X X X X X X X X X X X X X X X X X X X X X

5i-7+11+21 X X X X X X X X X X X X X X X X X X X

SAR-HH+1VAR+GLCM

6a X X X

6b X X X X X X X

6c X X X X X X X

6d X X X X X X X

6e X X X X X X X X X X X X X

6f X X X X X X X X X X X X

6g X X X X X X X X X X X X X X

6h X X X X X X X X X X X X X X X X X X X X X

6i X X X X X X X X X X X X X X X X X X

SAR-HH+1VAR+GLCM HH VAR7 VAR11 VAR21 CONTR ENTROPY CORR HH VAR7 VAR11 VAR21 CONTR ENTROPY CORR HH VAR7 VAR11 VAR21 CONTR ENTROPY CORR

7a-C X X X X X X

7a-E X X X X X X

7a-R X X X X X X

7b-C X X X X X X

7b-E X X X X X X

7b-R X X X X X X

7c-C X X X X X X

7c-E X X X X X X

7c-R X X X X X X

7d-C X X X X X X X X X X X

7d-E X X X X X X X X X X X

7d-R X X X X X X X X X X X

7e-C X X X X X X X X X X X

7e-E X X X X X X X X X X X

7e-R X X X X X X X X X X X

7f-C X X X X X X X X X X X

7f-E X X X X X X X X X X X

7f-R X X X X X X X X X X X

7g-C X X X X X X X X X X X X X X X X

7g-E X X X X X X X X X X X X X X X X

7g-R X X X X X X X X X X X X X X X X

7h-CE X X X X X X X X X X X X X X X X X X X

7h-CR X X X X X X X X X X X X X X X X X X X

7h-ER X X X X X X X X X X X X X X X X X X X
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4.1.2 Spectral Signatures 
For the nine classes, pixels were collected from multiple polygons (ROI’s) over 

the 44 band image; SVM uses all the individual pixels assigned to each class, not their 

statistical attributes. Table 11 reports the means and standard deviations for the data in 

each band of the 44 band layer stack; Figure 28 shows the mean spectral signatures. 

Although many of the spectral signatures plotted in Figure 28 appear similar, differences 

are apparent in several bands. The signatures for water and urban areas seem the most 

different while, as expected, the vegetation classes appear the most similar. 

RADARSAT-2 and Palsar despeckled HH despeckled and variance data show low 

values; RADARSAT-2 entropy and Palsar correlation have high values. 

4.1.3 Training and Ground Truth  
Multiple polygons for each class were used to collect pixels for classification 

training covering the extents of the image (Figure 29) and all the pixels were analyzed. 

The locations of the GT polygons are shown in Figure 30 over a single the NIR band 

from the RapidEye EO image in the layer stack; classes were selected evaluating natural 

color and ICC images, as well as visualizations with SAR bands. The GT polygons were 

displayed alongside the training polygons over the test image to assure they were not 

located in the same places and were similarly distributed. Table 12 reports the number of 

pixels and area in square kilometers for the training and GT polygons. The number of 

pixels collected represented many times the number of classes. 

 



 

 

5
6
 

Table 11. Training ROI mean and standard deviation for each of the nine classes in Wad Medani.  

 

 

 

Band Data Type         Mean        Stdev         Mean        Stdev         Mean        Stdev         Mean        Stdev         Mean        Stdev         Mean        Stdev         Mean        Stdev         Mean        Stdev         Mean        Stdev

1 RapidEye_Blue 4,120.08    2,577.24    15,599.82 6,507.67    19,848.60 5,806.60    18,834.10 3,756.78    1,450.47    1,505.62    3,051.26    3,430.23    4,036.79    2,543.92    17,983.56 2,596.51    13,086.50 2,485.34    

2 RapidEye_Green 4,004.98    3,013.39    19,844.16 8,532.92    24,903.69 7,929.42    23,976.14 3,936.80    2,091.05    1,622.72    4,973.55    4,235.58    6,867.05    4,418.93    24,138.88 3,198.56    15,846.10 3,125.56    

3 RapidEye_Red 5,881.86    5,130.32    31,824.10 11,004.08 38,237.80 9,021.88    38,386.56 6,927.31    6,626.65    4,558.87    8,932.86    7,363.59    14,513.03 5,591.30    42,159.71 5,459.55    26,245.13 3,590.27    

4 RapidEye_RedEdge 765.72       3,081.87    21,047.22 7,993.05    26,340.26 6,892.89    26,364.44 3,065.29    2,790.43    3,823.36    11,525.46 7,178.75    14,083.95 7,374.10    29,051.50 3,728.80    16,678.49 4,855.78    

5 RapidEye_NIR 5,974.90    6,871.72    29,363.33 7,134.01    34,550.00 5,124.71    37,587.85 3,233.09    30,028.47 5,022.02    43,657.37 6,322.42    37,992.98 4,422.54    41,067.55 3,644.29    24,618.25 3,468.95    

6 TerraSar-X_HH_Despeckled 64.87          142.94       38.07          79.96          1,763.10    2,322.47    12,351.72 10,669.13 710.79       639.37       944.09       2,714.72    327.14       277.75       323.62       336.71       366.88       378.45       

7 TerraSar-X__Variance_7x7 5,045.34    7,972.27    2,261.66    2,523.60    12,509.92 7,324.13    2,669.76    3,876.77    4,143.27    1,921.65    4,576.58    2,694.52    4,154.94    2,107.44    3,982.21    2,153.56    3,519.02    1,928.02    

8 TerraSar-X__Variance_11x11 6,556.34    8,587.78    2,666.34    2,846.67    14,645.69 6,944.47    3,378.53    4,008.74    4,634.64    1,696.26    5,403.85    2,986.30    4,792.64    2,015.71    4,664.21    2,199.21    3,966.57    1,797.82    

9 TerraSar-X__Variance_21x21 10,512.43 9,012.30    3,354.81    3,362.54    17,086.49 5,882.76    4,616.92    4,141.37    5,299.57    1,706.82    7,020.19    3,952.94    5,882.36    2,226.51    5,786.90    2,413.96    4,746.61    1,722.43    

10 TerraSar-X__Contrast_7x7 4,720.99    5,567.35    3,542.71    3,051.00    18,328.37 9,507.63    4,981.90    6,280.12    7,811.81    3,383.17    7,906.95    4,272.12    7,169.99    3,300.06    6,871.30    3,296.30    6,128.32    3,020.73    

11 TerraSar-X__Entropy_7x7 6,860.48    6,457.27    4,913.20    3,551.35    24,977.93 10,117.54 7,343.79    6,788.58    10,765.19 3,443.85    10,945.41 4,517.84    9,844.17    3,319.03    9,399.07    3,465.75    8,453.76    3,231.64    

12 TerraSar-X__Correlation_7x7 10,741.27 6,313.64    6,933.45    4,030.15    34,324.67 9,981.27    11,625.92 7,688.20    15,012.78 3,480.42    15,806.48 4,647.82    13,901.18 3,273.67    13,242.48 3,610.60    12,095.40 3,297.20    

13 TerraSar-X__Contrast_11x11 60,777.47 3,401.77    62,909.45 2,013.01    51,825.21 14,469.50 20,615.81 14,465.66 57,675.46 8,816.31    51,922.15 12,427.68 61,481.65 8,011.53    62,532.89 6,416.60    61,163.60 11,041.81 

14 TerraSar-X__Entropy_11x11 58,753.56 3,782.70    61,452.46 1,807.64    51,581.93 11,955.97 20,742.34 11,294.51 56,280.25 8,014.59    50,893.78 10,503.62 60,567.98 6,843.71    61,823.34 5,212.11    60,336.72 10,441.58 

15 TerraSar-X__Correlation_11x11 56,589.75 4,330.30    58,966.01 2,091.37    52,063.08 8,814.75    22,693.89 9,859.46    54,226.38 7,909.50    49,947.51 8,893.42    59,357.76 5,102.10    60,829.29 3,875.37    59,300.55 9,300.42    

16 TerraSar-X__Contrast_21x21 43,759.66 10,430.22 39,840.88 8,476.22    41,436.89 10,808.38 31,174.66 15,026.84 35,973.27 8,999.77    37,139.11 10,338.23 38,786.02 8,820.01    38,696.43 8,683.96    38,189.66 8,942.04    

17 TerraSar-X__Entropy_21x21 43,631.06 10,316.92 37,047.88 7,588.16    39,340.08 9,736.93    23,658.03 14,297.52 32,141.44 7,608.59    34,025.92 10,036.68 35,658.27 8,050.53    36,177.00 7,763.11    34,421.26 8,325.54    

18 TerraSar-X__Correlation_21x21 50,552.49 7,110.16    38,838.54 6,282.31    41,846.64 5,979.63    28,165.13 12,864.46 32,545.07 5,499.28    36,870.53 8,546.68    37,261.05 6,856.02    38,032.07 6,791.02    35,819.05 6,215.29    

19 RadarSat-2_HH_Despeckled 661.75       1,853.06    523.92       701.86       2,850.42    5,999.41    3,132.50    3,617.84    2,713.01    2,506.91    3,873.03    4,197.47    2,778.88    3,193.15    3,049.62    3,696.79    2,894.06    2,961.05    

20 RadarSat-2__Variance_7x7 259.35       882.99       80.37          486.45       3,324.20    7,185.85    1,652.31    2,140.12    596.12       296.57       2,155.51    2,272.71    1,098.09    1,498.40    1,013.77    1,406.84    857.60       743.66       

21 RadarSat-2__Variance_11x11 476.59       1,034.94    137.81       700.01       4,785.15    9,247.42    2,701.02    2,518.21    911.32       358.64       3,464.41    2,937.21    1,767.47    2,096.27    1,544.86    1,791.79    1,422.79    1,054.75    

22 RadarSat-2__Variance_21x21 1,431.15    1,062.95    289.02       1,078.06    6,713.21    10,117.66 5,674.02    4,689.79    1,726.86    651.82       6,461.60    5,069.22    3,710.97    3,675.57    2,834.75    2,402.22    2,946.26    1,860.16    

23 RadarSat-2__Contrast_7x7 249.45       751.35       52.92          280.36       3,923.43    9,235.38    1,832.87    1,964.25    891.82       601.07       2,380.54    2,605.72    1,113.77    1,511.24    1,477.49    2,613.31    1,087.18    1,072.10    

24 RadarSat-2__Entropy_7x7 8,359.22    14,714.28 11,071.75 8,281.67    38,691.04 10,241.19 49,281.00 6,273.56    48,451.40 5,344.99    51,665.24 8,654.97    46,207.05 8,256.45    47,071.43 9,812.24    47,983.45 7,174.53    

25 RadarSat-2__Correlation_7x7 47,706.46 20,825.28 24,713.60 13,995.93 23,276.68 7,070.35    20,557.97 6,067.53    20,992.60 6,356.91    22,454.76 7,001.73    22,713.55 6,761.09    22,224.74 6,790.65    23,370.72 6,855.82    

26 RadarSat-2__Contrast_11x11 351.74       761.74       79.93          434.36       4,724.33    9,415.34    2,578.89    2,429.39    1,175.27    682.65       3,127.14    2,779.57    1,503.38    1,776.66    1,830.45    2,788.14    1,430.57    1,147.46    

27 RadarSat-2__Entropy_11x11 9,286.42    13,195.96 9,961.88    6,767.67    35,288.51 9,529.45    45,661.35 5,768.11    44,402.92 4,871.47    48,555.93 8,157.31    42,808.87 7,871.89    43,408.54 8,672.22    44,349.32 6,530.53    

28 RadarSat-2__Correlation_11x11 31,693.01 20,919.40 15,920.41 7,523.70    18,789.90 5,601.82    15,354.08 4,757.55    15,425.67 4,976.91    17,486.21 5,284.66    18,141.94 5,353.78    17,768.75 5,572.65    18,966.85 5,682.85    

29 RadarSat-2__Contrast_21x21 837.42       955.84       167.77       830.49       5,411.42    8,414.01    4,368.68    3,028.94    1,723.44    825.51       4,329.44    2,800.92    2,428.52    2,289.53    2,520.50    2,848.88    2,246.66    1,401.65    

30 RadarSat-2__Entropy_21x21 13,715.88 11,002.89 9,117.38    5,735.86    30,795.36 8,313.46    40,911.94 5,862.88    39,408.95 4,422.18    43,724.80 6,862.44    39,145.03 7,164.13    39,040.96 7,200.61    40,525.22 5,715.81    

31 RadarSat-2__Correlation_21x21 19,457.52 5,982.52    11,728.67 5,023.55    15,294.77 4,507.37    11,993.94 3,475.75    10,825.25 3,816.37    15,279.32 5,282.01    14,742.85 4,301.82    14,762.84 4,929.03    15,849.02 4,446.41    

32 Palsar_HH_Despeckled 55.92          91.90          36.56          61.97          1,608.68    1,761.37    11,948.21 8,625.98    725.38       613.93       967.55       2,662.50    321.67       250.14       318.17       302.67       363.90       348.71       

33 Palsar__Variance_7x7 7.91            45.41          1.23            24.33          506.45       1,285.95    14,678.74 13,242.91 22.24          27.56          549.86       3,442.41    4.67            7.87            21.85          406.68       8.37            14.48          

34 Palsar__Variance_11x11 14.04          48.49          2.45            34.75          685.29       1,606.83    15,350.13 10,803.66 25.73          27.72          657.78       3,947.10    6.02            13.29          54.40          586.60       11.09          24.11          

35 Palsar__Variance_21x21 42.40          156.80       10.40          99.37          2,009.06    4,625.36    25,550.60 13,291.47 63.04          63.99          1,603.16    8,233.29    23.71          66.49          167.57       950.73       46.93          199.54       

36 Palsar__Contrast_7x7 6.10            39.88          1.54            34.25          623.50       1,398.12    19,974.60 16,314.85 23.33          37.01          635.44       4,017.81    6.22            15.69          16.82          249.00       14.96          29.33          

37 Palsar__Entropy_7x7 894.09       3,347.04    127.38       1,391.98    32,856.28 12,972.35 61,710.82 2,802.59    9,254.36    12,048.35 10,955.90 14,429.96 3,102.86    6,406.09    3,060.32    6,927.06    5,951.76    9,166.25    

38 Palsar__Correlation_7x7 61,898.78 12,264.36 34,291.53 32,561.44 28,916.92 9,563.70    27,669.06 10,357.68 31,480.49 25,420.97 38,944.33 22,427.24 53,731.01 19,282.36 46,454.69 25,832.57 49,469.14 21,087.86 

39 Palsar__Contrast_11x11 12.61          49.24          2.87            42.26          838.20       1,864.30    21,206.27 14,273.13 26.29          39.73          683.92       4,138.35    8.12            28.10          43.56          482.97       18.39          34.66          

40 Palsar__Entropy_11x11 1,512.03    4,032.53    175.21       1,643.83    29,433.69 10,800.28 60,127.86 2,823.58    7,924.92    10,151.52 9,896.22    12,900.82 2,885.66    4,988.27    2,797.94    5,723.69    5,300.55    7,435.46    

41 Palsar__Correlation_11x11 57,883.40 16,597.59 33,296.94 32,480.69 24,481.09 8,538.02    24,547.53 10,259.88 27,160.42 25,396.26 27,581.29 21,320.47 44,746.07 24,467.92 39,325.78 27,450.03 40,913.93 24,929.24 

42 Palsar__Contrast_21x21 42.20          239.29       10.11          103.04       2,083.01    4,457.66    29,346.95 14,670.65 47.62          66.40          1,446.26    7,237.53    23.82          78.97          147.41       936.06       52.14          228.79       

43 Palsar__Entropy_21x21 2,375.24    3,896.50    337.91       2,189.23    25,482.62 8,529.54    56,888.12 4,281.67    6,886.18    8,531.34    8,775.20    11,706.51 2,922.67    3,679.09    2,334.20    4,229.09    4,954.57    5,767.11    

44 Palsar__Correlation_21x21 39,069.86 25,162.79 28,777.15 31,671.81 22,178.03 8,370.64    24,487.57 7,241.35    27,040.29 25,562.09 16,142.00 12,137.28 26,946.18 25,195.93 29,852.30 26,941.68 30,786.57 25,413.22 

GreenCrops Fallow BareSoilWater BarrenGnd UrbanLow UrbanMed SparseForest Orchard&Trees
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Figure 28. Mean spectral signatures for the 44 bands for nine classes in Wad Medani, Sudan. 

 

  
Figure 29. Training ROI’s for the nine land cover classes over the RapidEye NIR band from the image stack 

over Wad Medani, Sudan. Scene width ~ 30 km. 
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Figure 30. GT ROI’s for nine land cover classes over the RapidEye NIR band from the image stack over Wad 

Medani, Sudan. Scene width ~ 30 km. 

 

Table 12. Number of pixels and area for training and GT for each land cover class in Wad Medani, Sudan. 

 
 

Class Pixels sq km Pixels sq km

BareSoil 6,192 0.97               3,801 0.59

Fallow 4,835 0.76               2,587 0.40

GreenCrops 6,672 1.04               3,822 0.60

Orchards&Trees 1,446 0.23               1,594 0.25

SparseForest 1,596 0.25               1,951 0.30

UrbanMed 1,062 0.17               1,623 0.25

UrbanLow 2,528 0.40               4,369 0.68

BarrenGnd 16,043 2.51               10,415 1.63

Water 2,796 0.44               3,375 0.53

Training Ground Truth



 

59 

 

4.1.4 Decision Rule Evaluation 
The decision rule is the algorithm that assigns one of the classes to each pixel. 

Although the maximum likelihood algorithm is one of the most common does not always 

have the best performance. With the advance in the computational capability of personal 

computers and commercial-off-the-shelf (COTS) software, several other decision rule 

algorithms are available to the researcher. Four decision rules were compared in this 

study using the entire 44 band layer stacked image and the results are presented in Table 

13. The support vector machine (SVM) decision rule was the best algorithm in overall 

accuracy and in all but two of the classes (sparse forest and orchards&trees) in user’s 

accuracy. It was more accurate than the maximum likelihood algorithm in all classes but 

urban-med. For the rest of the tests for Wad Medani, the SVM decision rule was used. 

 

Table 13. User’s and producer’s accuracy for four different decision rules using all 44 bands for the Wad 

Medani study site. 

 
 

4.1.5 Classification Accuracy 

4.1.5.1 Test 1 - EO Imagery 
The first of seven test series was to establish the base-line classification 

accuracies for nine land-cover classes with EO imagery in five bands (blue, green, red, 

User's Accuracy Maximum Mahalanobis Neural Support Vector Producer's Accuracy Maximum Mahalanobis Neural Support Vector

Class/Decision Rule Liklihood Distance Network Machine Class/Decision Rule Liklihood Distance Network Machine

Water 98.23 95.86 97.77 98.25 Water 90.28 85.04 93.48 96.39

BarrenGnd 94.86 97.41 97.07 97.59 BarrenGnd 92.94 86.63 97.88 98.77

UrbanLow 89.37 98.54 94.57 97.08 UrbanLow 99.08 91.42 96.93 95.79

UrbanMed 99.15 99.14 96.28 97.63 UrbanMed 93.59 99.38 98.95 96.55

SparseForest 89.21 76.43 96.80 92.27 SparseForest 53.00 82.27 72.78 73.40

Orchards&Tree 44.56 50.22 63.60 56.18 Orchards&Tree 51.88 63.11 22.15 57.03

GreenCrops 69.99 67.69 69.52 77.46 GreenCrops 80.93 62.77 92.15 85.58

Fallow 80.76 55.48 88.29 93.02 Fallow 89.10 74.80 86.86 93.74

BareSoil 95.35 84.21 92.85 97.51 BareSoil 89.48 98.95 98.42 96.69

Overall Accuracy 87.17 84.10 90.86 92.45

Kappa Coefficient 0.85 0.81 0.89 0.91
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red-edge, and near-infrared). The error matrix results are in Table 14. The overall 

accuracy was 68%; water was classified with the highest accuracy and the urban-med 

class with the lowest (Table 15). Figure 31 contains the classification thematic map and 

class color legend using only EO data. The following test series have many possible 

combinations and comparisons so only the error matrix with the best overall accuracy is 

presented.  

 

Table 14. EO baseline error matrix for the for Wad Medani, Sudan. 

 
 

Table 15. Error matrix result summary for Wad Medani, Sudan using EO imagery. 

 
 

Number of Pixels

Class Water BarrenGnd UrbanLow UrbanMed SparseForest Orchards&Tree GreenCrops Fallow BareSoil Total User's Acc.

Water 3232 0 0 0 0 1 3 0 0 3236 99.88%

BarrenGnd 74 9766 3083 827 3 0 5 251 2049 16058 60.82%

UrbanLow 7 174 673 195 0 0 1 46 11 1107 60.79%

UrbanMed 1 28 226 211 1 11 3 94 0 575 36.70%

SparseForest 6 0 0 0 1087 4 101 0 0 1198 90.73%

Orchards&Tree 0 0 0 0 184 532 208 0 0 924 57.58%

GreenCrops 27 2 12 35 672 1023 3439 47 1 5258 65.41%

Fallow 0 433 372 311 4 23 61 2133 0 3337 63.92%

BareSoil 28 12 3 44 0 0 1 16 1740 1844 94.36%

Total 3375 10415 4369 1623 1951 1594 3822 2587 3801 33537 overall

Producer's Acc. 95.76% 93.77% 15.40% 13.00% 55.72% 33.38% 89.98% 82.45% 45.78% 68.02%

Overall Accuracy = (22813/33537)  68.02%  

Kappa Coefficient = 0.60
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Figure 31. Land cover classification thematic map for Wad Medani, Sudan using EO imagery. Scene width ~ 30 

km. 

 

4.1.5.2 Test Series 2 - EO + SAR-HH 
Test series 2 added despeckled HH SAR polarization data to EO imagery and 

compares between X, C, and L-band SAR as well as combinations of the different SAR 

bands. Table 16 summarizes the results of the seven tests. The best overall accuracy of 

84.1% was achieved using all three SAR bands with EO; the worst was with the C-band 

and EO but it was still 5.1% better than EO alone. 

X and L-band SAR individually improved the classification user’s accuracy by 

about same amount compared to EO alone while C-band SAR was less effective. The 
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combination of C-band with the other bands was slightly better than L-band with the 

other two. In all cases, the land cover classes that had poor accuracies with EO alone 

were classified better by adding SAR. The orchards&trees LC class had the worst 

accuracy even with the addition of the SAR bands; urban areas were classified much 

better. 

4.1.5.1 Test Series 3 – EO + SAR-HH + SAR-Variance 
Test series 3 added the variance texture calculated with three different kernel sizes 

from the original SAR despeckled HH data, not from the despeckled data. The addition of 

texture to EO and SAR despeckled HH was compared for each SAR band and each 

kernel size. Different combinations of variance kernel windows were compared using all 

SAR bands together. The main question was to understand the impact of kernel size on 

classification accuracy because each SAR band has a different wavelength, so the impact 

of kernel size could be different. The results for each SAR band and different kernel sizes 

are in Table 17.  

With the exception of the 7x7 kernel window and X-band SAR, there was less 

than 1% difference between the SAR bands and different kernel sizes. For X-band, the 

7x7 kernel window overall accuracy was about 5% higher than with the other kernel 

sizes, about 7% better than with L-band SAR, and about 14% better than with C-band 

SAR. Table 18 shows the results for the different variance texture kernels for all the SAR 

bands combined, and Table 19 reveals the results for combinations of the variance 

window kernels. The difference in classification accuracy between the different kernel 

windows was less than 1% when using all the SAR bands and different combinations of 
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the variance kernels. The best overall classification accuracy of 83.93% was 15.91% 

higher than using EO alone. 

 

Table 16. Classification results for Wad Medani, Sudan using EO imagery and SAR despeckled HH. 

 

 

 

Producers Accuracy 

Class X C L X+C C+L X+L X+C+L

Water 95.82 95.67 95.79 95.67 95.67 95.82 95.82

BarrenGnd 94.54 91.61 94.29 93.38 93.45 94.34 93.81

UrbanLow 81.09 36.74 78.12 78.35 73.22 82.03 80.45

UrbanMed 92.61 15.83 91.56 92.85 91.62 94.89 94.95

SparseForest 60.48 55.46 59.30 60.84 59.71 59.97 60.58

Orchards&Tree 38.14 33.38 36.83 38.14 37.77 38.27 38.39

GreenCrops 89.04 88.25 89.64 87.49 88.30 88.72 87.81

Fallow 86.01 81.37 85.85 85.35 85.35 86.01 85.16

BareSoil 43.36 73.59 43.30 73.38 73.32 47.28 73.51

Users Accuracy 

Class X C L X+C C+L X+L X+C+L

Water 99.91 99.88 99.91 99.88 99.88 99.91 99.91

BarrenGnd 78.62 75.05 78.16 85.97 85.17 79.74 86.45

UrbanLow 94.45 68.18 93.87 95.43 94.45 96.03 96.49

UrbanMed 95.92 37.03 95.13 95.87 95.08 97.10 97.16

SparseForest 93.50 90.77 93.08 93.10 93.27 94.58 94.48

Orchards&Tree 55.58 53.63 56.66 53.10 55.03 55.10 53.87

GreenCrops 67.55 64.95 66.91 67.18 66.73 67.16 67.08

Fallow 71.80 57.42 70.24 71.80 69.54 71.29 72.02

BareSoil 83.87 79.91 83.22 83.03 83.22 83.78 84.00

Overall Accuracy 81.07% 73.12% 80.48% 83.55% 82.85% 81.63% 84.09%

Kappa Coefficient 0.77 0.67 0.76 0.80 0.79 0.78 0.81
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Table 17. Classification results for Wad Medani, Sudan using EO imagery, SAR despeckled HH, and three 

texture variance kernels, per SAR band. 

 
 

Combining all SAR bands with at least one variance texture shows about a 1% 

improvement over using two SAR bands. The best classification accuracy for this test 

series was with X-band SAR and the 7x7 variance texture kernel although only about 2% 

better. Removing the despeckled SAR despeckled HH data from the test for this series 

resulted in a drop of about 2% in the classification accuracy using all variance texture 

kernels and all SAR bands. 

 

Producer's Accuracy X C L

Class 7 11 21 7 11 21 7 11 21

Water 97.60 95.97 95.73 95.61 95.59 95.67 95.73 95.73 95.73

BarrenGnd 95.30 92.02 91.83 91.51 91.41 91.55 94.53 94.53 93.93

UrbanLow 75.87 78.92 79.81 37.03 37.03 36.58 81.76 81.96 82.19

UrbanMed 88.32 92.73 92.91 14.60 14.73 15.34 93.10 92.67 92.85

SparseForest 84.27 59.10 61.92 55.30 55.51 55.20 60.69 61.51 62.22

Orchards&Tree 46.75 38.64 41.03 33.38 33.75 33.56 37.14 37.01 35.32
GreenCrops 96.45 87.99 86.11 87.18 87.10 87.10 88.33 88.33 88.93

Fallow 93.42 83.65 85.89 81.72 81.37 81.37 85.85 85.78 84.96

BareSoil 64.29 70.22 74.88 73.24 73.22 72.93 42.36 42.36 42.25

User's Accuracy X C L

Class 7 11 21 7 11 21 7 11 21

Water 97.60 99.72 99.72 99.88 99.88 99.85 99.91 99.91 99.91

BarrenGnd 95.30 84.94 86.58 74.94 74.85 74.63 78.50 78.39 78.08

UrbanLow 75.87 92.61 95.07 67.93 67.84 68.32 94.47 94.54 95.00

UrbanMed 88.32 95.92 95.93 36.52 36.43 37.50 98.24 99.60 99.41

SparseForest 84.27 93.06 92.71 90.60 90.78 90.73 92.79 92.88 92.96

Orchards&Tree 46.75 54.23 52.53 51.85 51.98 51.84 54.51 55.50 56.30

GreenCrops 96.45 67.21 68.00 64.50 64.60 64.52 67.05 67.01 66.78

Fallow 93.42 70.60 72.50 57.26 57.02 57.20 71.25 70.99 70.86

BareSoil 64.29 81.62 80.01 79.95 80.11 80.00 83.51 83.55 81.15

Overall 87.63% 82.72% 83.52% 72.92% 72.88% 72.84% 80.93% 80.97% 80.78%

Kappa 0.84 0.79 0.80 0.67 0.67 0.67 0.77 0.77 0.77
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Table 18. Classification results for Wad Medani, Sudan using EO imagery, SAR despeckled HH, and three 

texture variance kernels, per combinations of SAR bands. 

 
 

4.1.5.2 Test Series 4 - EO+SAR-HH+SAR-GLCM (w/o Variance) 
Test series 4 tested the impact of the Gray Level Co-occurrence Matrix texture 

measures (combined) using three kernel sizes without variance texture. Table 20 shows 

the results for the different kernel sizes for each SAR band alone. In this case, the 21x21 

kernel seemed to perform better and the accuracy improved with kernel size. For the X-

band SAR, there was a 3% increase to 84.2%. For C-band SAR the difference was less 

than 1% reaching 80.38%. The classification accuracy for the L-band SAR with the 

21x21 kernel size reached 88.32%, over a 4% improvement over the 7x7 kernel. 

 

Producer's Accuracy X+C C+L X+L

Class 7 11 21 7 11 21 7 11 21

Water 95.73 95.76 95.56 95.82 95.88 95.82 96.44 96.98 97.19

BarrenGnd 93.35 92.94 94.43 94.84 95.46 95.24 91.14 89.89 88.70

UrbanLow 77.73 76.75 77.20 80.89 81.92 83.66 87.32 88.17 82.79

UrbanMed 93.22 92.73 93.10 92.48 89.46 89.77 95.75 95.19 94.95

SparseForest 58.89 59.05 62.74 61.97 63.81 66.07 60.84 61.25 63.15

Orchards&Tree 38.21 38.64 40.59 37.20 37.33 35.70 36.95 38.21 43.16

GreenCrops 87.07 85.66 84.96 84.85 84.14 85.53 87.83 88.10 88.88

Fallow 83.61 83.88 86.16 84.19 83.76 83.92 85.62 85.70 85.16

BareSoil 79.87 82.24 79.69 73.22 73.03 69.51 58.35 59.25 63.67

User's Accuracy X+C C+L X+L

Class 7 11 21 7 11 21 7 11 21

Water 99.69 99.75 99.78 99.75 99.75 99.81 99.88 99.60 99.18

BarrenGnd 88.01 88.69 88.33 86.22 86.31 85.59 82.18 82.43 83.49

UrbanLow 92.61 92.65 95.01 95.54 94.09 92.34 92.80 91.91 87.71

UrbanMed 95.76 95.86 95.94 97.98 99.66 98.45 98.54 99.36 99.68

SparseForest 92.59 92.38 92.66 93.22 93.89 94.29 93.24 93.00 95.14

Orchards&Tree 52.59 50.74 51.07 48.33 48.37 51.12 53.06 54.91 60.03

GreenCrops 66.75 66.57 67.65 66.65 66.60 66.84 67.02 67.45 68.85

Fallow 72.12 70.50 72.02 73.91 74.70 76.85 73.49 72.76 68.10

BareSoil 83.89 83.67 85.04 85.11 86.02 85.95 84.21 82.98 83.88

Overall 83.93% 83.81% 84.44% 83.95% 84.11% 84.10% 82.54% 82.51% 82.34%

Kappa 0.81 0.81 0.81 0.81 0.81 0.81 0.79 0.79 0.79
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Table 19. Classification results for Wad Medani, Sudan using EO imagery, SAR despeckled HH, and three 

texture variance kernels, and all SAR bands. 

 
 

For the case using two SAR bands, as with the variance texture measures, the 

overall classification accuracy increased to 91.19% for C+X-band and the 21x21 kernel. 

For X+C and C+L the differences between the kernel for each pair of SAR bands varied 

less than 1%; however, for the X+L band combination the accuracy increased with kernel 

size up to 88.55%. The best SAR band combination with GLCM textures measures was 

the C+L bands (Table 21). 

 

Producer's Accuracy X+C+L W/O HH

Class 7 11 21 7+11 7+21 11+21 7+11+21 7+11+21

Water 96.44 96.98 97.3 96.92 97.24 97.16 97.19 97.21

BarrenGnd 94.09 95.01 94.97 94.9 94.93 95.1 95.03 93.9

UrbanLow 89.72 92.06 93.22 92.13 93.59 93.45 93.18 86.54

UrbanMed 94.89 91.99 91.13 91.68 89.28 88.42 88.6 87.55

SparseForest 62.02 63.2 64.74 62.58 65.25 64.38 63.81 56.79

Orchards&Tree 36.76 38.02 43.6 38.83 42.16 43.16 42.47 40.09

GreenCrops 84.77 85.06 86.29 83.99 85.06 84.82 84.46 83.57

Fallow 84.04 83.84 85.16 83.84 84.89 84.69 84.77 84.62

BareSoil 75.95 74.98 71.01 75.66 72.3 72.93 73.72 70.17

User's Accuracy X+C+L W/O HH

Class 7 11 21 7+11 7+21 11+21 7+11+21 7+11+21

Water 99.85 99.63 98.83 99.76 99.42 99.06 99.36 99.3

BarrenGnd 87.58 87.75 87.18 87.87 87.4 87.68 87.86 86.2

UrbanLow 93.62 92.93 91.2 92.76 90.77 90.77 91.11 87.48

UrbanMed 98.21 99.53 99.4 99.4 99.66 99.65 99.79 99.79

SparseForest 93.15 94.12 95.39 93.49 95 94.94 94.97 91.87

Orchards&Tree 47.84 49.35 55.82 47.95 52.38 52.08 50.19 49.23

GreenCrops 66.49 66.91 68.82 66.82 68.54 68.7 68.3 65.49

Fallow 78.37 79.92 81.47 80.1 81.36 81.24 80.65 74.91

BareSoil 91.27 93.84 94.7 93.86 94.76 94.54 94.73 93.97

Overall 85.31% 85.85% 86.13% 85.77% 86.02% 86.03% 85.97% 83.67%

Kappa 0.82 0.83 0.83 0.83 0.83 0.83 0.83 0.80
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Table 20. Classification results for Wad Medani, Sudan using EO imagery, SAR despeckled HH, and three 

texture GLCM kernels, per SAR band. 

 
 

Testing with all three SAR bands combined (Table 22) the best classification 

overall accuracy (92.7%) resulted from the 21x21 kernel, although combining with the 

7x7 kernel the accuracy was nearly the same. The best overall classification accuracy 

using the GLCM texture measures together was 6.57% higher than the best accuracy 

using the variance measure (86.13%). 

 

Producer's Accuracy X C L

Class 7x7 11x11 21x21 7x7 11x11 21x21 7x7 11x11 21x21

Water 95.85 96.00 95.97 95.61 95.32 95.82 96.50 96.86 97.27

BarrenGnd 93.36 91.45 90.38 94.34 94.90 95.63 90.03 89.92 90.85

UrbanLow 94.64 96.15 98.58 51.13 61.50 48.39 86.52 89.36 95.40

UrbanMed 95.93 96.12 91.37 41.28 27.48 37.15 93.96 94.64 94.58

SparseForest 60.74 64.07 65.61 62.99 58.94 63.71 65.15 67.09 66.32

Orchards&Tree 35.82 36.89 37.26 37.95 37.45 44.10 48.93 50.94 49.87

GreenCrops 89.53 88.91 89.93 82.10 81.66 83.52 91.26 90.55 91.08

Fallow 85.93 86.01 81.18 82.14 83.88 86.32 85.78 86.43 88.75

BareSoil 30.26 40.75 62.75 94.98 96.55 96.66 65.80 74.69 87.00

 User's Accuracy  X C L

Class 7x7 11x11 21x21 7x7 11x11 21x21 7x7 11x11 21x21

Water 99.81 99.57 99.66 99.75 99.69 99.75 99.75 99.15 98.18

BarrenGnd 76.26 78.75 84.58 95.76 97.66 94.70 83.82 87.05 92.74

UrbanLow 96.84 97.09 91.52 74.24 72.80 72.65 91.55 93.11 95.05

UrbanMed 99.05 100.00 100.00 47.38 46.51 34.72 94.02 93.94 98.59

SparseForest 90.94 91.44 94.60 88.16 89.84 89.81 93.80 94.10 96.57

Orchards&Tree 55.38 56.65 60.00 50.46 48.81 56.88 62.85 60.87 58.89

GreenCrops 67.66 68.04 68.05 65.59 63.85 67.41 72.62 73.75 73.73

Fallow 74.25 72.12 79.13 53.98 58.41 63.64 74.87 75.72 76.38

BareSoil 87.19 85.30 81.65 83.88 82.79 86.10 84.18 86.48 91.08

Overall Accuracy 81.11% 82.11% 84.20% 79.51% 80.34% 80.38% 84.08% 85.67% 88.32%

Kappa Coefficient 0.77 0.78 0.81 0.76 0.77 0.77 0.81 0.83 0.86
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Table 21. Classification results for Wad Medani, Sudan using EO imagery, SAR despeckled HH and three 

texture GLCM kernels, for combinations of SAR bands. 

 
 

4.1.5.1 Test Series 5 – EO+SAR-HH+SAR-Variance+SAR GLCM 
In test series 5 the combined contribution of variance texture and GLCM texture 

was tested, using the three kernel sizes and the three SAR bands. The kernel sizes used 

for all the texture measures were the same for each test. Table 23 shows the results per 

individual SAR band. 

As previously reported, the differences within each SAR band between the kernel 

sizes were very small but greater between the SAR bands; the overall accuracy slightly 

increased with kernel size. The highest overall accuracy using a single SAR band was 

86.28% for X-band using the 21x21 kernel window. The SAR band that resulted in the 

Producer's Accuracy X+C C+L X+L

Class 7x7 11x11 21x21 7x7 11x11 21x21 7x7 11x11 21x21

Water 95.97 95.76 95.97 96.18 96.62 97.24 96.65 97.07 97.07

BarrenGnd 96.68 97.05 98.31 96.66 97.17 98.84 91.08 89.82 91.03

UrbanLow 92.93 96.45 87.14 83.84 89.63 80.04 96.13 97.18 98.67

UrbanMed 94.64 95.87 94.89 94.02 93.59 92.85 95.93 95.44 97.72

SparseForest 65.81 66.38 65.86 69.66 72.12 72.37 61.56 67.35 67.45

Orchards&Tree 37.83 38.83 42.10 51.38 49.44 57.90 47.11 50.19 53.89

GreenCrops 83.10 82.21 87.36 88.72 88.23 90.71 90.74 89.09 83.70

Fallow 85.81 87.86 89.91 88.02 90.72 95.40 85.00 85.58 88.94

BareSoil 94.55 97.53 94.55 94.58 97.68 98.21 62.17 74.77 88.61

 User's Accuracy  X+C C+L X+L

Class 7x7 11x11 21x21 7x7 11x11 21x21 7x7 11x11 21x21

Water 99.78 99.57 99.51 99.39 98.76 97.42 99.69 99.15 98.56

BarrenGnd 95.47 97.30 93.21 95.58 97.80 98.70 84.11 88.06 93.58

UrbanLow 96.07 97.39 95.37 95.54 95.75 95.68 96.82 96.04 96.57

UrbanMed 98.65 99.81 97.59 92.04 92.85 95.62 98.79 99.94 99.81

SparseForest 92.31 92.30 96.62 92.07 91.54 92.05 93.39 93.32 96.13

Orchards&Tree 47.29 48.21 55.96 63.69 61.61 68.12 60.27 60.38 50.09

GreenCrops 67.06 66.62 68.85 73.27 73.26 77.04 71.34 73.02 74.05

Fallow 81.05 84.72 89.63 75.52 83.23 74.90 77.54 76.29 79.92

BareSoil 94.08 94.30 95.76 93.60 94.67 97.65 83.09 85.06 89.91

Overall Accuracy 88.80% 89.89% 89.57% 89.28% 90.77% 91.19% 84.94% 86.47% 88.55%

Kappa Coefficient 0.87 0.88 0.87 0.87 0.89 0.89 0.82 0.84 0.86
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higher accuracy was the X-band for all kernels sizes, followed by L-band and then the C-

band. 

 

Table 22. Classification results for Wad Medani, Sudan using EO imagery, SAR despeckled HH, and three 

texture GLCM kernels, for all SAR bands together. 

 
 

 

Producer's Accuracy X+C+L W/O HH

Class 7x7 11x11 21x21 7+11 7+21 11+21 7+11+21 7+11+21

Water 96.41 97.01 96.98 97.30 96.59 97.24 96.86 96.95

BarrenGnd 97.07 97.57 98.60 98.39 98.80 99.13 98.53 98.50

UrbanLow 95.10 97.85 96.38 93.36 96.80 92.90 95.28 94.62

UrbanMed 94.58 95.81 97.84 95.19 97.04 97.91 96.43 94.52

SparseForest 67.56 72.37 73.60 71.76 72.22 71.86 71.40 69.91

Orchards&Tree 48.18 49.50 57.34 51.76 56.84 52.57 55.14 55.52

GreenCrops 88.41 87.91 84.43 89.06 83.75 83.86 83.99 83.62

Fallow 87.55 90.26 95.05 91.38 96.02 94.86 94.74 94.86

BareSoil 94.16 97.82 97.66 95.79 98.13 96.76 96.55 96.37

 User's Accuracy  X+C+L W/O HH

Class 7x7 11x11 21x21 7+11 7+21 11+21 7+11+21 7+11+21

Water 99.33 98.85 97.56 98.41 97.99 97.71 97.90 97.91

BarrenGnd 95.68 97.91 97.98 97.31 98.57 97.93 97.94 97.89

UrbanLow 96.36 96.68 97.66 96.32 97.74 98.16 97.04 96.41

UrbanMed 98.27 99.62 99.69 98.47 98.81 98.03 97.81 97.40

SparseForest 93.14 92.65 95.35 93.71 94.44 94.28 94.19 94.26

Orchards&Tree 59.21 59.82 55.83 60.89 53.77 50.60 51.55 50.00

GreenCrops 72.08 73.57 76.29 75.06 76.47 75.39 76.34 76.30

Fallow 85.05 89.84 93.68 88.27 92.89 90.29 91.66 91.19

BareSoil 95.26 96.47 97.74 95.72 97.82 97.61 97.43 97.55

Overall Accuracy 90.54% 92.08% 92.70% 91.81% 92.69% 91.93% 92.02% 91.72%

Kappa Coefficient 0.89 0.91 0.91 0.90 0.91 0.90 0.90 0.90
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Table 23. Classification results for Wad Medani, Sudan using EO imagery, SAR despeckled HH, and three 

texture GLCM kernels, and texture variance per SAR band. 

 
 

The results for the tests using two and three SAR bands are shown in Table 24. In 

all cases the overall accuracy was higher than using a single SAR band. The best 

accuracy was 91.33% combining all three SAR bands using the 11x11 kernel. The 

difference in accuracy between the three kernel sizes was <1% for each SAR band and 

did not increase with kernel size. The overall classification accuracy for the two SAR 

band cases X+C and C+L was about the same while L+X was slightly lower. By adding a 

second SAR band, the overall accuracy was improved by 3.69%; adding a third SAR 

satellite source improved the accuracy only by 1.36%. 

Producer's Accuracy X C L

Class 7x7 11x11 21x21 7x7 11x11 21x21 7x7 11x11 21x21

Water 95.73 95.82 96.03 95.44 95.32 95.67 95.59 95.61 96.09

BarrenGnd 91.93 92.38 92.94 94.34 94.97 95.65 90.92 93.92 93.65

UrbanLow 94.76 96.22 98.40 51.02 61.66 50.79 95.10 96.73 98.63

UrbanMed 96.12 95.93 92.11 41.34 26.62 35.98 88.23 83.49 78.43

SparseForest 60.58 64.38 65.91 62.94 59.15 63.61 54.59 57.15 62.89

Orchards&Tree 38.90 39.52 39.40 37.83 37.33 41.97 37.14 36.95 36.20

GreenCrops 87.23 87.81 88.10 81.74 81.32 82.31 86.50 86.21 88.67

Fallow 80.98 80.60 82.53 81.64 84.31 86.39 82.84 79.32 80.25

BareSoil 63.38 70.48 73.77 94.90 96.55 96.79 53.01 45.91 56.59

User's Accuracy X C L

Class 7x7 11x11 21x21 7x7 11x11 21x21 7x7 11x11 21x21

Water 99.72 99.63 99.69 99.75 99.75 99.78 99.85 99.78 99.69

BarrenGnd 83.83 86.13 88.66 95.76 97.66 95.95 80.90 79.37 82.50

UrbanLow 96.73 97.02 91.70 74.15 72.56 73.53 95.80 94.99 91.80

UrbanMed 99.17 100.00 100.00 47.19 46.15 34.43 99.31 100.00 100.00

SparseForest 90.44 91.61 94.63 87.84 89.46 90.06 87.37 87.93 93.38

Orchards&Tree 53.08 56.60 56.22 50.33 48.41 53.52 51.21 50.82 56.13

GreenCrops 67.92 68.36 68.45 65.34 63.81 66.51 65.88 65.91 66.67

Fallow 76.74 75.71 80.29 53.78 58.64 62.98 72.94 76.00 76.55

BareSoil 82.84 86.87 89.56 83.57 82.92 85.62 80.89 85.21 91.26

Overall Accuracy 83.93% 85.34% 86.28% 79.38% 80.34% 80.40% 81.71% 81.66% 83.49%

Kappa Coefficient 0.81 0.82 0.84 0.75 0.77 0.77 0.78 0.78 0.80
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Table 24. Classification results for Wad Medani, Sudan using EO imagery, SAR despeckled HH, and three 

texture GLCM kernels, and variance for combinations of SAR bands. 

 
 

Using all three SAR bands Table 25 presents the results combining texture kernel 

sizes along with the test removing the despeckled HH SAR data. The results are within 

0.22%, but compared to the previous tests accuracy increased to 92.26%, an increase of 

only 0.93% over the three SAR band example and nearly 6% compared to the case with a 

single SAR band. A practical implication for the researcher is that adding the third SAR 

band is less important that using multiple kernel sizes.  

 

Producer's Accuracy X+C X+L C+L X+C+L

Class 7x7 11x11 21x21 7x7 11x11 21x21 7x7 11x11 21x21 7x7 11x11 21x21

Water 95.88 95.94 95.91 95.79 95.91 96.03 96.50 97.10 97.57 96.00 97.30 97.45

BarrenGnd 97.11 97.18 98.43 96.88 97.82 98.19 88.81 93.57 91.45 97.46 98.76 98.88

UrbanLow 92.74 96.34 88.65 94.19 95.17 84.53 97.32 97.21 98.74 96.96 96.13 96.34

UrbanMed 94.45 96.12 95.07 87.99 85.09 81.64 92.36 88.11 81.82 91.81 88.60 83.18

SparseForest 66.43 66.17 66.79 61.10 65.91 64.68 56.23 56.23 64.58 62.94 65.04 66.17

Orchards&Tree 38.90 40.34 43.35 36.32 35.88 37.14 42.10 49.56 46.61 40.03 53.39 47.11

GreenCrops 83.07 82.47 86.29 81.97 79.98 84.72 82.78 87.96 87.96 80.51 87.26 83.96

Fallow 84.65 87.28 89.37 86.05 85.31 89.83 86.43 82.95 85.23 88.71 88.60 94.40

BareSoil 94.98 97.34 94.19 96.19 96.74 95.61 87.11 74.43 78.74 97.03 96.71 95.69

User's Accuracy X+C X+L C+L X+C+L

Class 7x7 11x11 21x21 7x7 11x11 21x21 7x7 11x11 21x21 7x7 11x11 21x21

Water 99.81 99.60 99.54 99.39 99.48 99.26 99.66 98.56 95.45 99.75 98.95 97.54

BarrenGnd 95.44 97.08 93.58 96.20 96.14 92.42 91.92 87.70 90.02 96.69 96.99 97.55

UrbanLow 95.81 97.21 95.75 95.76 95.39 93.59 97.19 96.63 93.56 97.49 97.27 96.54

UrbanMed 98.71 99.68 98.28 98.89 99.07 100.00 99.14 99.58 100.00 98.48 96.70 100.00

SparseForest 92.11 92.74 96.52 89.36 88.51 89.69 86.86 91.34 92.44 88.03 92.83 90.72

Orchards&Tree 48.02 49.61 54.84 43.27 44.20 52.07 46.86 50.48 57.02 44.27 53.12 53.60

GreenCrops 67.44 67.02 69.24 66.25 65.50 66.71 67.35 72.18 70.42 67.21 74.38 70.16

Fallow 81.99 85.43 89.09 81.15 82.85 84.72 69.44 77.00 77.72 85.32 89.36 88.25

BareSoil 94.03 94.10 95.54 93.50 95.38 95.76 89.34 92.51 90.95 96.29 96.99 97.43

Overall Accuracy 88.93% 89.97% 89.72% 88.42% 88.75% 88.07% 85.69% 86.24% 86.54% 89.58% 91.33% 90.87%

Kappa Coefficient 0.87 0.88 0.88 0.86 0.87 0.86 0.83 0.83 0.84 0.88 0.90 0.89
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Table 25. Classification results for Wad Medani, Sudan using EO imagery, SAR despeckled HH, and three 

texture GLCM kernels, and variance for all SAR bands together. 

 
 

4.1.5.2 Test Series 6 - SAR-HH+SAR-Variance+SAR-GLCM (w/o EO) 
Using all the texture measures and the SAR despeckled HH this test series 

eliminated EO and showed a baseline for the classification accuracies possible using SAR 

alone (Table 26). The accuracy using the despeckled HH bands alone and all the texture 

without the despeckled HH bands were also tested. The lowest user’s accuracy was 

derived from the despeckled HH band alone (49.3%), and the highest accuracy achieved 

was 60.63%. The removal of the despeckled HH bands increased the accuracy by 2%. 

Producer's Accuracy w/o hh

Class 7+11 7+21 11+21 7+11+21 7+11+21

Water 96.80 96.53 97.33 96.53 96.50

BarrenGnd 98.95 98.98 98.81 98.88 98.91

UrbanLow 96.20 97.85 96.68 96.68 96.66

UrbanMed 89.22 84.78 86.57 87.00 86.14

SparseForest 67.86 69.66 74.27 75.24 74.68

Orchards&Tree 55.14 44.98 60.35 57.59 57.78

GreenCrops 85.53 83.12 82.81 83.94 83.70

Fallow 90.10 95.17 94.74 95.05 95.13

BareSoil 97.74 98.53 95.69 97.26 97.24

User's Accuracy w/o hh

Class 7+11 7+21 11+21 7+11+21 7+11+21

Water 99.27 98.46 98.41 98.43 98.52

BarrenGnd 97.34 98.65 97.60 98.07 98.04

UrbanLow 97.54 97.00 96.59 96.35 96.15

UrbanMed 96.73 99.64 97.23 97.58 97.08

SparseForest 89.82 92.26 93.42 93.38 93.10

Orchards&Tree 51.22 50.14 54.32 54.45 53.83

GreenCrops 76.56 70.69 77.55 77.53 77.51

Fallow 90.98 89.85 90.81 91.34 91.69

BareSoil 97.00 97.20 97.38 97.11 97.14

Overall Accuracy 92.26% 92.18% 92.04% 92.26% 92.18%

Kappa Coefficient 0.91         0.91         0.90         0.91         0.91         

X+C+L

X+C+L
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However, a greater accuracy was achieved using the X-band despeckled HH and texture 

bands (69.61%). The C-band data alone were almost as accurate as the X-band data at 

69.02%, and the L-band SAR data were more than 12% less accurate. 

 

Table 26. Classification results for Wad Medani, Sudan using SAR despeckled HH, and three texture GLCM 

kernels, and texture variance per SAR band, band combinations and all SAR bands. All texture measures were 

combined. 

 
 

4.1.5.3 Test Series 7 - EO+SAR-HH+SAR-Variance+SAR-GLCM 
The last test series attempted to determine the impact of each individual GLCM 

texture measure on the classification accuracy. The highest overall accuracy for EO plus 

a single SAR band was for 88.23% for X-band (Table 27); entropy resulted in higher 

accuracy for the two SAR cases with X+C and X+L bands as well as for the three band 

Producer's Error L+C+X

Class L C X L+C C+X L+X L+C+X  w/o HH

Water 41.96             79.32          79.38            67.41            68.50              65.87 80.33 78.61

BarrenGnd 86.36             95.50          95.83            91.90            83.20              82.3 96.00 95.58

UrbanLow 67.54             73.29          71.41            66.74            80.09              82.01 75.94 75.3

UrbanMed 97.41             96.98          96.92            97.23            94.70              94.52 85.52 95.13

SparseForest 24.96             43.67          45.77            36.80            47.72              37.01 44.08 42.49

Orchards&Trees 3.70               39.77          45.04            7.28              38.83              34.38 41.84 44.1

GreenCrops 57.14             44.92          47.44            56.23            46.42              54.63 38.12 43.85

Fallow 3.56               29.65          30.65            23.66            23.70              18.9 36.10 32.93

BareSoil 38.17             46.80          46.70            36.70            34.18              36.67 34.04 48.67

User's Error L+C+X

Class L C X L+C C+X L+X L+C+X  w/o HH

Water 73.56             81.89          84.43            70.87            78.48              78.36 82.96 81.43

BarrenGnd 70.30             92.73          92.21            88.83            84.47              80.38 93.19 91.59

UrbanLow 71.42             94.82          95.44            90.81            91.96              91.43 95.67 95.03

UrbanMed 96.52             98.99          98.99            99.81            99.29              98.71 98.51 97.66

SparseForest 44.97             60.94          61.59            64.11            51.35              59.18 62.55 60.47

Orchards&Trees 9.59               27.39          27.62            7.79              31.96              35.79 25.65 28.88

GreenCrops 30.48             32.89          34.57            36.34            33.89              34.07 31.54 34.27

Fallow 13.79             32.69          35.18            25.04            24.63              21.03 29.88 35.96

BareSoil 41.26             53.99          56.64            36.78            37.05              41.51 43.97 56.01

Overall Accuracy 57.29% 69.02% 69.61% 63.60% 63.36% 63.07% 67.47% 69.63%

Kappa Coefficient 0.48 0.63 0.64 0.56 0.56 0.56 0.61 0.64
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SAR combination with 92.86% (Table 28). The correlation texture measure performed 

better for the combination with C+L band SAR.  

 

Table 27. Classification results for Wad Medani, Sudan using EO imagery, SAR despeckled HH and three 

combined kernels for variance and GLCM texture, per GLCM texture measures separately per SAR band. 

 

 
 

Combining texture from two or three GLCM measures did better than using a 

single measure alone for all three SAR satellite cases (Table 29). 

 

Producer's Accuracy X C L

Class Contrast Entropy Corr. Contrast Entropy Corr. Contrast Entropy Corr.

Water 97.39 97.30 97.51 95.59 95.50 95.11 95.59 95.67 95.91

BarrenGnd 87.83 87.81 90.83 94.79 95.26 89.34 94.04 93.13 93.42

UrbanLow 82.93 86.63 95.01 52.53 41.75 46.21 81.55 97.99 91.74

UrbanMed 94.52 94.02 93.47 29.14 40.17 14.05 81.15 84.04 87.12

SparseForest 65.20 66.07 65.81 57.25 67.15 55.87 62.38 59.25 59.46

Orchards&Tree 50.94 52.07 52.51 35.19 39.40 34.19 34.88 33.31 39.02

GreenCrops 91.50 90.42 90.82 81.45 82.65 84.12 86.16 86.60 86.92

Fallow 85.70 86.20 89.06 82.37 84.34 80.83 84.62 84.00 80.79

BareSoil 73.48 78.85 86.14 76.98 95.74 76.87 44.15 31.78 68.93

User's Accuracy X C L

Class Contrast Entropy Corr. Contrast Entropy Corr. Contrast Entropy Corr.

Water 99.46 98.06 98.44 99.85 99.78 99.78 99.94 99.91 99.75

BarrenGnd 85.68 87.96 92.38 85.14 98.74 76.99 77.92 76.46 85.93

UrbanLow 88.09 90.03 95.38 73.63 66.16 67.75 91.10 95.22 92.61

UrbanMed 92.63 95.14 98.44 37.96 39.71 43.68 99.92 100.00 99.93

SparseForest 94.22 94.92 94.76 90.96 88.27 90.91 92.83 92.33 88.69

Orchards&Tree 62.13 59.67 59.15 45.87 55.67 50.09 49.69 47.75 52.89

GreenCrops 73.67 74.05 74.90 62.95 66.67 63.27 66.10 65.87 66.71

Fallow 70.58 71.70 74.73 62.26 53.93 57.87 70.16 73.24 75.26

BareSoil 86.15 86.69 91.61 82.91 81.52 77.90 84.83 86.16 87.77

Overall Accuracy 84.03% 85.11% 88.23% 76.67% 79.13% 73.43% 80.01% 80.37% 84.10%

Kappa Coefficient 0.81 0.82 0.86 0.72 0.75 0.68 0.76 0.76 0.81



 

75 

 

Table 28. Classification results for Wad Medani, Sudan using EO imagery, SAR despeckled HH and three 

combined kernels for variance and GLCM texture, per GLCM texture measures separately per SAR band 

combinations. 

 
 

4.1.6 Best Band Combination per Class 
Although comparisons with overall accuracy are useful and provide guidance as 

to which combinations of different satellite sources make an optimal use of a budget, 

often the researcher or field practitioner needs to find the best classification for specific 

land cover classes. Table 30 documents which band combinations achieved the best 

classification accuracy for EO or SAR alone, without data fusion. Bare soil and water are 

best classified with EO (94.36% and 99.88% user’s accuracy respectively) although SAR 

classified water with >80% user’s accuracy. Both SAR and EO were good at classifying 

sparse forest (93.1% and 90.73% user’s accuracy). SAR was better than EO at classifying 

barren ground, fallow, and urban areas. Green crops and orchards & trees were poorly 

classified by both EO and SAR (<80%).  

Producer's Accuracy X+C X+L C+L X+C+L

Class Contrast Entropy Corr. Contrast Entropy Corr. Contrast Entropy Corr. Contrast Entropy Corr.

Water 97.19 97.04 96.95 95.76 95.70 95.88 97.13 97.10 97.57 97.16 97.07 96.50

BarrenGnd 94.50 98.02 95.14 95.72 98.04 95.45 88.31 89.76 92.54 95.09 98.70 96.23

UrbanLow 88.01 86.70 96.89 82.88 96.91 92.72 84.28 98.24 97.02 92.63 97.76 97.62

UrbanMed 92.79 88.60 87.92 75.91 83.12 86.81 85.71 87.55 91.93 79.79 86.26 94.64

SparseForest 69.50 78.88 75.04 64.58 69.81 61.51 66.99 66.79 59.05 70.68 78.63 76.93

Orchards&Tree 48.56 55.14 49.94 34.63 36.26 34.82 51.76 49.50 53.83 49.87 51.13 50.25

GreenCrops 88.78 87.47 87.15 82.94 82.60 82.52 90.69 90.32 84.30 88.70 88.30 82.91

Fallow 86.32 93.82 89.10 84.19 91.15 82.57 84.23 83.61 86.78 85.74 94.12 86.59

BareSoil 81.35 98.63 83.82 74.80 98.92 74.95 71.74 64.59 88.32 78.95 98.82 85.21

User's Accuracy X+C X+L C+L X+C+L

Class Contrast Entropy Corr. Contrast Entropy Corr. Contrast Entropy Corr. Contrast Entropy Corr.

Water 99.06 97.07 98.97 99.69 99.81 99.63 99.54 97.44 98.65 99.30 98.76 99.00

BarrenGnd 90.08 97.55 91.80 87.39 97.69 88.18 85.29 84.83 92.88 89.23 98.08 91.71

UrbanLow 90.15 93.25 94.21 89.25 94.89 90.79 85.63 95.95 94.35 88.34 96.19 96.43

UrbanMed 87.71 88.17 97.54 99.92 99.63 99.86 99.93 99.65 99.27 99.69 100.00 98.52

SparseForest 93.78 91.50 91.56 93.54 90.86 89.69 95.19 95.46 92.68 94.65 93.65 92.65

Orchards&Tree 58.20 61.95 59.45 44.27 44.91 45.09 61.29 56.48 47.22 57.48 59.19 51.64

GreenCrops 73.28 77.31 74.25 65.75 68.82 65.15 73.70 73.92 73.41 73.63 76.37 74.63

Fallow 83.85 88.87 84.00 75.86 86.09 80.97 68.72 74.33 79.78 83.92 93.01 86.69

BareSoil 95.17 97.40 96.17 85.87 95.89 92.08 85.92 84.28 94.22 94.73 97.63 97.09

Overall Accuracy 87.43% 91.38% 89.22% 83.66% 90.17% 85.07% 83.65% 84.98% 87.95% 87.39% 92.86% 89.54%

Kappa Coefficient 0.85 0.90 0.87 0.80 0.88 0.82 0.80 0.82 0.86 0.85 0.91 0.87
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Table 29. Classification results for tests 7h & 5h for Wad Medani, Sudan using EO imagery, SAR despeckled 

HH, and three combined kernels for variance and GLCM texture, per combinations of GLCM texture 

measures. (C=Contrast, E=Entropy, R=Correlation) 

 

 

 

Producer's Accuracy All

Class CE CR ER Texture

Water 96.98      96.36      96.59 96.53      

BarrenGnd 98.71      96.33      98.89 98.88      

UrbanLow 97.00      97.28      96.84 96.68      

UrbanMed 85.52      90.39      86.69 87.00      

SparseForest 79.19      76.78      74.53 75.24      

Orchards&Tree 51.63      53.14      57.84 57.59      

GreenCrops 88.38      83.10      83.59 83.94      

Fallow 94.12      86.70      95.17 95.05      

BareSoil 98.90      86.53      96.63 97.26      

User's Accuracy All Satellites All

Class CE CR ER Texture

Water 99.06      98.84      98.43 98.43      

BarrenGnd 97.94      92.15      98.03 98.07      

UrbanLow 95.88      96.18      96.44 96.35      

UrbanMed 99.28      98.32      97.44 97.58      

SparseForest 93.75      92.30      93.44 93.38      

Orchards&Tree 60.96      50.90      53.51 54.45      

GreenCrops 76.67      75.53      77.23 77.53      

Fallow 91.54      87.31      91.52 91.34      

BareSoil 97.54      97.11      97.12 97.11      

Overall Accuracy 92.79% 89.62% 92.15% 92.26%

Kappa Coefficient 0.91 0.88 0.91 0.91

All Satellites



 

77 

 

Table 30. User’s accuracy for Wad Medani , Sudan per land cover class and data type using SAR or EO data 

alone.  

 
 

4.1.7  Summary 
Table 31 summarizes the main results of the different test series. The accuracy 

from using only the SAR despeckled HH band was the lowest within that group, but the 

accuracy was improved by using all three SAR bands (49.33%). The EO information did 

better than SAR alone although, as mentioned earlier, not for all the land cover classes. 

Using variance and three measures of GLCM texture improved the accuracy compared to 

using the despeckled data alone and the X-band resulted in the highest accuracy of the 

group (69.61%).  

Fusing EO and SAR greatly improved the classification accuracy by more than 

14% when adding the despeckled HH bands from all three SAR satellites. Using three 

SAR bands was better than using one or two bands. Adding variance with the largest 

kernel size of 21x21 pixels increased the overall accuracy by another 2%. Using together 

all three GLCM texture measures with two kernel windows (11x11 and 21x21) increased 

accuracy more than the variance texture measure; 8.6% higher compared to 2.04%. 

Combining variance and GLCM texture for all three SAR bands and the three kernels 

Orchards Sparse

Data Source BaseSoil BarrenGnd Fallow GreenCrops & Trees Forest UrbanLow UrbanMed Water

SAR LCX HH 16.81 98.04 91.69 77.51 53.83 93.10 96.15 97.08 0.00

SAR L HHVG 41.26 58.24 10.53 28.23 2.47 22.09 66.74 97.86 73.56

SAR C HHVG 53.99 70.30 13.79 30.48 9.59 44.97 71.42 96.52 73.56

SAR X HHVG 56.64 92.73 32.69 32.89 27.39 60.94 94.82 98.99 81.89

SAR LC HHVG 36.78 92.21 35.18 34.57 27.62 61.59 95.44 98.99 84.43

SAR CX HHVG 37.05 88.83 25.04 36.34 7.79 64.11 90.81 99.81 70.87

SAR LX HHVG 56.64 84.47 24.63 33.89 31.96 51.35 91.96 99.29 78.48

SAR LCX HHVG 56.64 92.21 35.18 34.57 27.62 61.59 95.44 98.99 84.43

SAR LCX VG 56.46 92.21 35.18 34.57 27.62 61.59 95.44 98.99 84.43

EO 94.36 60.82 63.92 65.41 57.58 90.73 60.79 36.70 99.88

Key: EO Electro-optical HH Despeckled SAR HH polarization

L L-band SAR V Variance Texture

C C-band SAR G GLCM, Gray Level Co-ocurrence Matrix

X X-band SAR
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slightly decreased the accuracy from using GLCM texture alone by 0.43%. Finally using 

contrast and entropy GLCM texture measures slightly improved (0.53%) classification 

accuracy using all three kernel sizes and all three SAR bands. The best land cover 

classification for Wad Medani (92.79 overall accuracy) was achieved using all three SAR 

bands, and all three variance kernels (Table 31); this represented an improvement over 

EO alone of 24.77%. The resulting thematic map is Figure 32and the corresponding error 

matrix is Table 32. 

 

Table 31. Summary of the classification results for each test series for Wad Medani, Sudan.  

 

 

Test # 1 2g 3d 4d 5h 6a 7h

Band Combo EO+HH EO+HH SAR-X HH EO+HH

Producer's Acc EO EO+SAR HH EO+HH+V21 +GLCM721 +V+GLCM +V+GLCM +CE71121

Class X, C, L X, C, L X, C, L X, C, L X, C, L X, C, L

Water 95.76 95.82 97.30 96.59 96.53 79.38 96.98

BarrenGnd 93.77 93.81 94.97 98.80 98.88 95.83 98.71

UrbanLow 15.40 80.45 93.22 96.80 96.68 71.41 97.00

UrbanMed 13.00 94.95 91.13 97.04 87.00 96.92 85.52

SparseForest 55.72 60.58 64.74 72.22 75.24 45.77 79.19

Orchards&Tree 33.38 38.39 43.60 56.84 57.59 45.04 51.63

GreenCrops 89.98 87.81 86.29 83.75 83.94 47.44 88.38

Fallow 82.45 85.16 85.16 96.02 95.05 30.65 94.12

BareSoil 45.78 73.51 71.01 98.13 97.26 46.70 98.90

User's Acc

Class

Water 99.88 95.82 98.83 97.99 98.43 84.43 99.06

BarrenGnd 60.82 93.81 87.18 98.57 98.07 92.21 97.94

UrbanLow 60.79 80.45 91.20 97.74 96.35 95.44 95.88

UrbanMed 36.70 94.95 99.40 98.81 97.58 98.99 99.28

SparseForest 90.73 60.58 95.39 94.44 93.38 61.59 93.75

Orchards&Tree 57.58 38.39 55.82 53.77 54.45 27.62 60.96

GreenCrops 65.41 87.81 68.82 76.47 77.53 34.57 76.67

Fallow 63.92 85.16 81.47 92.89 91.34 35.18 91.54

BareSoil 94.36 73.51 94.70 97.82 97.11 56.64 97.54

Overall Accuracy 68.02% 84.09% 86.13% 92.69% 92.26% 69.61% 92.79%

Kappa Coefficient 0.60 0.81 0.83 0.91 0.91 0.64 0.91
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Figure 32. Best land cover classification thematic map for Wad Medani, Sudan using EO + SAR despeckled HH 

+ SAR texture. Scene width ~ 30 km. 

 

Table 32. Error matrix for the best classification for Wad Medani, Sudan, using EO, despeckled SAR HH, CE, 

and XCL bands. 

 

Ground Truth (Pixels)

Class Water BarrenGnd UrbanLow UrbanMed SparseForest Orchards&Trees GreenCrops Fallow BareSoil Total User's Acc

Water 3273 1 0 0 0 4 4 0 22 3304 99.06%

BarrenGnd 23 10281 70 47 0 6 1 54 15 10497 97.94%

UrbanLow 1 68 4238 107 0 6 0 0 0 4420 95.88%

UrbanMed 0 0 10 1388 0 0 0 0 0 1398 99.28%

SparseForest 8 0 0 0 1545 15 80 0 0 1648 93.75%

Orchards&Trees 3 0 26 21 157 823 320 0 0 1350 60.96%

GreenCrops 20 0 1 0 241 706 3378 58 2 4406 76.67%

Fallow 3 65 20 60 5 33 36 2435 3 2660 91.54%

BareSoil 44 0 4 0 3 1 3 40 3759 3854 97.54%

Total 3375 10415 4369 1623 1951 1594 3822 2587 3801 33537

Producer's Acc 96.98% 98.71% 97.00% 85.52% 79.19% 51.63% 88.38% 94.12% 98.90% Overall 92.79%

Overall Accuracy = (31120/33537)  92.79%  

Kappa Coefficient = 0.91
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4.2 Campinas, Brazil 

4.2.1 Test Series 
Six test series with specific bands were carried out, each with specific objectives 

(Table 33). As before, test 1 was to establish the EO baseline. Then in test series 2 the 

effect of adding despeckled HH SAR band from each SAR satellite was evaluated. SAR 

variance was added in test series 3; only the 21x21 kernel was used because after 

extensive testing from 3x3 to 51x51 kernels (not reported in this dissertation) no clear 

trend with kernel size was found. The 21x21 kernel gave good results for Wad Medani. 

Tests were made for each SAR satellite as well as combinations. Test series 4 evaluated 

adding the GLCM texture measures of entropy and correlation, separately and combined. 

For simplification the contrast GLCM measure was eliminated, and for consistency the 

same 21x21 kernel used for variance was used for the GLCM texture measures. Test 

series 5 included both variance and GLCM with EO and SAR despeckled HH. The 

accuracy of using SAR alone, without EO was evaluated in test series 6, with and without 

variance and with GLCM entropy, correlation, and combined, as in earlier tests.  
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Table 33. Classification tests band packages for Campinas, Brazil. 

Test Data Objective # Tests 

1 EO Bands 1-5 EO baseline 1 

2 EO+SAR Despeckled HH 
Test effect of adding each SAR band 

individually and combined to EO 
7 

3 
EO + SAR Despeckled HH + 

SAR variance 21x21 kernel  

Test effect of adding SAR variance 

texture to EO + SAR despeckled HH 
7 

4 

EO + SAR Despeckled HH + 

SAR GLCM entropy and 

correlation 21x21 kernel 

Test effect of adding SAR GLCM 

entropy and correlation texture to EO 

+ SAR despeckled HH 

i. entropy 

ii. correlation 

iii. entropy and correlation 

21 

5 

EO + SAR Despeckled HH + 

SAR variance + GLCM 

entropy and correlation 21x21 

kernel 

Test effect of adding SAR variance + 

GLCM entropy and correlation 

texture to EO + SAR despeckled HH 

i. entropy 

ii. correlation 

iii. entropy and correlation 

21 

6 

SAR Despeckled HH + SAR 

variance + GLCM entropy 

and correlation 21x21 kernel 

SAR baseline for each SAR satellite, 

variance and GLCM texture and 

combinations 

16 

  Total 73 

 

The test matrix shows the bands used for each test with EO (Table 34), and for the 

tests with only SAR (Table 35). 
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Table 34.  Campinas test matrix with EO, and EO+SAR images for Campinas, Brazil. 

 

Test RapidEye HH V21 E21 R21 HH V21 E21 R21 HH V21 E21 R21

Test 1  - EO ALONE

1 X

Test 2 - EO + SAR-HH

2a X X

2b X X

2c X X

2d X X X

2e X X X

2f X X X

2g X X X X

Test 3 - EO+SAR-HH+VAR

3a X X X

3b X X X

3c X X X

3d X X X X X

3e X X X X X

3f X X X X X

3g X X X X X X X

Test 4i - EO+SAR-HH+GLCM Entropy

4i-a X X X

4i-b X X X

4i-c X X X

4i-d X X X X

4i-e X X X X

4i-f X X X X

4i-g X X X X X X

Test 4ii - EO+SAR-HH+GLCM Correlation

4ii-a X X X

4ii-b X X X

4ii-c X X X

4ii-d X X X X X

4ii-e X X X X X

4ii-f X X X X X

4ii-g X X X X X X X

Test 4iii - EO+SAR-HH+GLCM Entropy & Correlation

4iii-a X X X X

4iii-b X X X X

4iii-c X X X X

4iii-d X X X X X X

4iii-e X X X X X X

4iii-f X X X X X X

4iii-g X X X X X X X X X

Test 5i - EO+SAR-HH+V+GLCM Entropy

5i-a X X X X

5i-b X X X X

5i-c X X X X

5i-d X X X X X X X

5i-e X X X X X X X

5i-f X X X X X X X

5i-g X X X X X X X X X X

Test 5ii - EO+SAR-HH+V+GLCM  Correlation

5ii-a X X X X

5ii-b X X X X

5ii-c X X X X

5ii-d X X X X X X X

5ii-e X X X X X X X

5ii-f X X X X X X X

5ii-g X X X X X X X X X X

Test 5iii - EO+SAR-HH+V+GLCM  Entropy & Correlation

5iii-a X X X X X

5iii-b X X X X X

5iii-c X X X X X

5iii-d X X X X X X X X X

5iii-e X X X X X X X X X

5iii-f X X X X X X X X X

5iii-g X X X X X X X X X X X X X

TerraSar-X RADARSAT-2 PALSAR
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Table 35.  Campinas test matrix for SAR only images for Campinas, Brazil. 

 
 

4.2.2 Spectral Signatures  
The mean spectral signatures for the training pixels of the five land cover classes 

were extracted from the image stack and the means and standard deviations were 

calculated (Figure 33, Table 36). Although some classes show similar intensities in 

certain bands, the 17 band signatures are noticeably different.  

 

Table 36. Training ROI mean and standard deviation of the for each of the five classes in Campinas, Brazil. 

 
 

Test 6 - SAR w/o EO

RapideEye HH V21 E21 R21 HH V21 E21 R21 HH V21 E21 R21

6a X

6b X

6c X

6d X X

6e X X

6f X X

6g X X

6h X X

6i X X

6j X X

6k X X

6l X X

6m X X X X

6n X X X X

6o X X X X

All Sar Bands & Kernels X X X X X X X X X X X X

TerraSar-X RADARSAT-2 PALSAR

Band DataType Mean StdDev Mean StdDev Mean StdDev Mean StdDev Mean StdDev

1 RapidEye_Blue 30763.73 12898.40 19244.15 10939.69 3681.94 3546.74 17441.31 6683.31 44432.61 11911.66

2 RapidEye_Green 34434.68 16249.98 21411.13 15347.23 3133.61 3850.89 24564.82 9071.13 41898.88 11581.98

3 RapidEye_Red 42119.33 16883.72 13608.32 10133.60 2022.35 2756.27 21090.63 8920.47 42805.66 12682.79

4 RapidEye_RedEdge 40177.63 19572.40 3226.23 6206.51 5701.68 5533.44 31802.47 10786.50 38540.94 13474.77

5 RapidEye_NIR 28481.44 18724.45 891.29 4371.11 35289.39 16325.14 42147.35 19918.74 22841.62 10758.18

6 TerraSar-X_HH_Despeckled 16974.03 8260.74 2490.62 5256.14 23702.83 9693.61 17006.03 8499.66 29599.22 20909.24

7 RadarSat-2_HH_Despeckled 2023.40 10119.50 41.83 1156.32 1125.96 7191.20 1.00 0.00 12408.12 20153.08

8 Palsar_HH_Despeckled 6608.05 5446.77 2689.71 6606.91 14839.72 8865.28 8054.40 14003.73 28923.50 22986.55

9 TerraSar-X_Variance_21x21 3038.01 13053.70 3970.11 15057.37 2809.85 10263.75 398.50 1876.67 22356.18 19104.31

10 TerraSar-X_Entropy_21x21 9425.35 9037.50 11068.91 10616.29 18589.77 11585.92 7839.62 8179.86 41006.01 21403.03

11 TerraSar-X_Correlation_21x21 23887.45 19808.92 15044.91 13508.95 23197.21 15947.38 16430.61 16972.29 29873.35 16229.15

12 RadarSat-2_Variance_21x21 63.65 206.38 52.61 194.36 34.91 83.91 10.05 5.46 776.37 1197.05

13 RadarSat-2_Entropy_21x21 1111.52 3467.03 611.23 3219.05 489.81 2399.69 4.84 76.88 18257.71 15088.97

14 RadarSat-2_Correlation_21x21 55687.14 21119.59 56252.40 21818.93 62327.84 12605.60 65331.77 3637.73 29935.12 20583.81

15 Palsar_Variance_21x21 2029.41 10728.52 392.50 2266.48 2400.11 9143.21 3143.04 13687.43 5308.46 11638.14

16 Palsar_Entropy_21x21 1619.26 5430.16 3347.44 6647.61 5134.22 8991.73 4250.57 13712.26 30362.65 23213.08

17 Palsar_Correlation_21x21 32655.69 31008.74 20169.73 26112.51 17857.15 24489.58 38740.23 29311.17 18096.84 14786.65

BareGround Water Forest Agriculture Urban
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Figure 33. Mean spectral signatures for the 17 bands for five land cover classes for Campinas, Brazil. 

 

4.2.3 Training and Ground Truth  
Training pixels were collected from multiple polygons per class distributed over 

the AOI for the five land cover classes to be separated (Figure 34). The locations of the 

ROI’s for the GT polygons were selected separately from training ROI’s and distributed 

over the AOI (Figure 35). About 1,600 pixels representing 1 sq. km were used for the 

training and GT (Table 37). 
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Figure 34. Training ROI’s over the NIR band image in the image stack for Campinas, Brazil for the five land 

cover classes. Scene width ~ 55 km. 

 

Table 37. Number of pixels and area for training and GT polygons for each land cover class at Campinas, 

Brazil. 

 
 

Class Pixels sq km Pixels sq km

Urban 1,611 1.007 1,622 1.014

Agriculture 1,606 1.004 1,651 1.032

Forest 1,602 1.001 1,651 1.032

Water 1,605 1.003 1,602 1.001

BareGnd 1,604 1.003 1,654 1.034

Training Areas Ground Truth
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Figure 35. GT ROI’s over the NIR band image for Campinas, Brazil. Scene width ~ 55 km. 

 

4.2.4 Classification Accuracy 

4.2.4.1 Test 1 - EO Imagery 
Using EO alone an overall accuracy of 83.8% was achieved. User’s accuracy 

ranged between 78.5% for urban areas and as high as 95.2% for water; the producer’s 

accuracy was between 67.5% for bare ground and 99.0% for forest areas (Table 38).  

Bare ground was confused mostly with urban areas because many roads were made of 

dirt and other areas clearly under development were also dirt surfaces. This suggests 

confusion between land cover and land use in the selection of the training areas and class 

definition. The resulting land cover thematic map is Figure 36. 
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Table 38.  EO baseline error matrix for the land cover classification at Campinas, Brazil. 

 
 

4.2.4.2 Test Series 2 - EO + SAR-HH 
This test series added the despeckled HH SAR bands individually. The addition of 

SAR resulted in a slightly higher overall accuracy compared to EO alone (+0.46% to 

4.06%). The user’s and producer’s accuracy for each class were very similar (Table 39). 

The addition of the C-band had no effect in the classification accuracy compared to EO 

alone. The addition of L-band despeckled HH data, however improved the EO 

classification by 3.2%; bare ground was better separated from urban areas, and 

agriculture and forest areas were better separated. Using two SAR bands improved the 

classification accuracy more than with a single SAR band. Using all three bands an 

overall accuracy of 87.86% was achieved although this was only 0.22% better than the 

combination of X and L-band so the additional expense and processing of the third band 

was not warranted. Compared to the EO-only classification, bare ground was better 

separated from urban areas (Table 40) with the addition of SAR. 

 

Class BareGnd Water Forest Agriculture Urban Total User's Acc

BareGnd 1117 73 0 15 191 1396 80.01%

Water 54 1315 0 0 12 1381 95.22%

Forest 6 74 1635 242 2 1959 83.46%

Agriculture 143 100 11 1393 26 1673 83.26%

Urban 334 40 5 1 1391 1771 78.54%

Total 1654 1602 1651 1651 1622 8180

Producer's Acc 67.5% 82.1% 99.0% 84.4% 85.8% Overall 83.75%

Overall Accuracy = (6851/8180)  83.75%  

Kappa Coefficient = 0.80
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Figure 36.  Classification image using only EO bands for Campinas, Brazil. Scene width ~ 55 km. 

 

Table 39.   Classification results comparison for Campinas, Brazil, using EO + SAR despeckled HH.  

 

Producer's Accuracy

Test a b c d e f g

Class X C L X+C X+L C+L X+C+L

BareGnd 69.35 67.59 74.73 76.36 76.84 72.61 77.21

Water 82.77 82.08 83.27 82.71 84.96 84.96 84.77

Forest 99.03 99.03 99.33 98.61 99.09 98.43 98.73

Agriculture 84.07 84.31 87.89 88.31 88.01 87.28 88.19

Urban 85.88 85.76 89.40 87.79 89.27 88.96 90.38

User's Accuracy

BareGnd 81.17 80.03 85.18 84.59 86.23 84.40 87.35

Water 95.40 95.22 94.74 97.57 97.21 95.64 96.93

Forest 83.25 83.46 86.73 86.18 86.88 87.27 87.21

Agriculture 83.11 83.20 84.71 84.77 86.49 83.97 85.70

Urban 79.92 78.59 84.45 82.79 83.08 82.18 83.82

Overall Accuracy 84.22% 83.75% 86.93% 86.77% 87.64% 86.44% 87.86%

Kappa Coefficient 0.80 0.80 0.84 0.83 0.85 0.83 0.85
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Table 40.   Error matrix for Campinas, Brazil using EO + X, C, and L-band SAR despeckled HH. 

 
 

4.2.4.1 Test Series 3 – EO + SAR-HH + Variance 21x21 
With the exception of the C-band, adding SAR variance improved the overall 

classification accuracy compared to EO alone and EO+L-band despeckled HH (Table 

41). Using C-band variance there was a minimal difference compared to EO + C-band 

despeckled HH. The greatest improvement in overall accuracy was from using all three 

SAR bands despeckled HH and variance with an overall accuracy of 87.69%, although 

accuracies from the X and L-bands were close. Using EO + SAR despeckled HH + SAR 

21x21 variance from all three SAR bands, water was classified with a 96.7% user’s 

accuracy; the other classes were classified with an overall accuracy of over 80% (Table 

42). The greatest improvement from EO alone was in the separation of bare ground and 

urban areas. 

 

Class BareGnd Water Forest Agriculture Urban Total User's Acc

BareGnd 1277 37 0 29 119 1462 87.35%

Water 28 1358 4 2 9 1401 96.93%

Forest 3 73 1630 162 1 1869 87.21%

Agriculture 114 92 10 1456 27 1699 85.70%

Urban 232 42 7 2 1466 1749 83.82%

Total 1654 1602 1651 1651 1622 8180

Producer's Acc 77.2% 84.8% 98.7% 88.2% 90.4% Overall 87.86%

Overall Accuracy = (7187/8180)  87.86%  

Kappa Coefficient = 0.85
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Table 41.   Classification results comparison for Campinas, Brazil, using EO + SAR despeckled HH + 21x21 

variance. 

 
 

4.2.4.1 Test Series 4 - EO+SAR-HH+SAR-21x21 GLCM  
Adding GLCM entropy texture measure to EO and SAR despeckled HH 

improved classification accuracy more than did variance. The best result in overall 

accuracy (88.08%) was found using entropy from X-band SAR (Table 42). This 

represented an improvement of 4.3% over using EO alone. Using EO and SAR X-band 

imagery and entropy texture water had the highest user’s accuracy; all classes were 

separated with greater than 80% accuracy (Table 44).  

 

Producer's Accuracy

Test a b c d e f g

Class X C L X+C X+L C+L X+C+L

BareGnd 70.37      67.71      74.73      70.56      74.61      75.63      74.73      

Water 83.83      82.08      83.15      83.77      83.77      83.08      83.90      

Forest 99.15      99.03      99.39      99.15      99.33      99.33      99.33      

Agriculture 84.31      84.31      87.95      84.07      88.19      87.95      88.19      

Urban 89.83      85.76      89.83      90.01      91.86      89.95      92.29      

User's Accuracy

BareGnd 86.35      80.06      85.71      86.57      87.89      85.98      88.41      

Water 95.59      95.22      94.67      95.58      94.91      94.67      94.78      

Forest 83.48      83.46      86.69      83.31      86.68      86.63      86.73      

Agriculture 83.35      83.20      84.62      83.26      84.80      84.62      84.85      

Urban 81.12      78.68      84.61      81.29      85.00      85.32      85.20      

Overall Accuracy 85.49% 83.78% 87.02% 85.50% 87.56% 87.20% 87.69%

Kappa Coefficient 0.82         0.80         0.84         0.82         0.84         0.84         0.85         
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Table 42.   Error matrix for Campinas, Brazil, using EO + X, C, and L-band SAR despeckled HH and variance 

imagery. 

 
 

Table 43.   Classification results comparison for Campinas, Brazil, using EO + SAR despeckled HH + entropy. 

 
 

Ground Truth (Pixels)  

Class BareGnd Water Forest Agriculture Urban Total User's Acc

BareGnd 1236 58 0 20 84 1398 88.41%

Water 57 1344 0 2 15 1418 94.78%

Forest 5 72 1640 171 3 1891 86.73%

Agriculture 155 76 6 1456 23 1716 84.85%

Urban 201 52 5 2 1497 1757 85.20%

Total 1654 1602 1651 1651 1622 8180

Producer's Acc 74.7% 83.9% 99.3% 88.2% 92.3% Overall 87.69%

Overall Accuracy = (7173/8180)  87.69%  

Kappa Coefficient = 0.85  

Producer's Accuracy

Test a b c d e f g

Class X C L X+C X+L C+L X+C+L

BareGnd 84.95      72.37      74.61      89.78      81.32      77.45      82.77      

Water 81.15      83.58      84.21      81.09      77.09      85.77      78.71      

Forest 99.39      99.27      98.61      99.33      98.43      98.91      98.24      

Agriculture 81.65      82.25      84.25      82.80      81.65      84.37      81.59      

Urban 93.16      87.92      94.08      82.37      92.05      89.46      85.64      

User's Accuracy

BareGnd 87.21      85.38      91.54      84.76      87.28      90.59      86.54      

Water 95.52      93.77      94.80      88.37      93.70      90.22      90.33      

Forest 81.72      83.03      83.66      82.83      79.11      83.06      77.53      

Agriculture 89.04      83.67      83.74      88.19      87.02      84.42      85.80      

Urban 89.62      81.35      84.68      93.56      86.90      89.18      90.19      

Overall Accuracy 88.08% 85.07% 87.14% 87.13% 86.14% 87.19% 85.43%

Kappa Coefficient 0.85         0.81         0.84         0.84         0.83         0.84         0.82         
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Table 44.   Error matrix for Campinas, Brazil, using EO + X-band SAR despeckled HH + entropy. 

 
 

Adding the GLCM correlation measure helped less than entropy although the best 

overall accuracy using SAR L-band correlation was 86.63%, still better than EO alone 

(Table 45). User’s and producer’s accuracies were slightly lower using correlation (Table 

45) than entropy (see Table 44). Adding both entropy and correlation slightly improved 

the best classification accuracy using entropy with EO and SAR despeckled HH. In this 

case the best classification was found using the X-band GLCM texture measures (Table 

47). The user’s and producer’s accuracies for all land cover classes were above 80%, 

water had the highest user’s accuracy, and forest the highest producer’s accuracy (Table 

48). 

 

Ground Truth (Pixels)  

Class BareGnd Water Forest Agriculture Urban Total User's Acc

BareGnd 1405 113 0 13 80 1611 87.21%

Water 46 1300 1 3 11 1361 95.52%

Forest 5 88 1641 270 4 2008 81.72%

Agriculture 80 65 5 1348 16 1514 89.04%

Urban 118 36 4 17 1511 1686 89.62%

Total 1654 1602 1651 1651 1622 8180

Producer's Acc 84.95% 81.15% 99.39% 81.65% 93.16% Overall 88.08%

Overall Accuracy = (7205/8180)  88.08%  

Kappa Coefficient = 0.85
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Table 45.   Classification results comparison for Campinas, Brazil, using EO + SAR despeckled HH + 21x21 

correlation. 

 
 

Table 46.   Error matrix for Campinas, Brazil, using EO + L-band SAR despeckled HH + correlation. 

 
 

 

Producer's Accuracy

Test a b c d e f g

Class X C L X+C X+L C+L X+C+L

BareGnd 75.39      72.19      77.57      76.78      77.75      78.78      74.61      

Water 79.90      80.96      81.90      81.40      77.22      81.90      79.65      

Forest 99.03      98.91      98.85      98.36      93.82      95.94      90.19      

Agriculture 84.25      85.52      86.74      83.16      85.34      82.50      82.68      

Urban 84.96      91.49      87.98      87.42      90.94      84.28      85.82      

User's Accuracy

BareGnd 81.34      88.58      85.59      89.06      91.99      84.61      87.83      

Water 96.24      93.11      93.18      89.07      83.19      87.64      79.35      

Forest 83.59      85.99      84.96      83.67      85.16      83.94      83.05      

Agriculture 83.85      84.10      84.68      82.71      82.21      84.02      81.49      

Urban 80.96      79.74      85.91      83.96      83.71      83.61      81.93      

Overall Accuracy 84.73% 85.82% 86.63% 85.44% 85.04% 84.69% 82.59%

Kappa Coefficient 0.81         0.82         0.83         0.82         0.81         0.81         0.78         

Ground Truth (Pixels)  

Class BareGnd Water Forest Agriculture Urban Total User's Acc

BareGnd 1283 74 0 14 128 1499 85.59%

Water 56 1312 0 0 40 1408 93.18%

Forest 4 78 1632 202 5 1921 84.96%

Agriculture 173 50 14 1432 22 1691 84.68%

Urban 138 88 5 3 1427 1661 85.91%

Total 1654 1602 1651 1651 1622 8180

Producer's Acc 77.57% 81.90% 98.85% 86.74% 87.98% overall 86.63%

Overall Accuracy = (7086/8180)  86.63%  

Kappa Coefficient = 0.83 
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Table 47.   Classification results comparison for Campinas, Brazil, using EO + SAR despeckled HH + 21x21 

entropy and 21x21 correlation. 

 
 

Table 48.   Error Matrix for Campinas, Brazil, using EO + X-band SAR despeckled HH + entropy and 

correlation. 

 
 

4.2.4.2 Test Series 5– EO+SAR despeckled HH+SAR Variance & GLCM 
Test series 5 added back the variance texture and combined with GLCM texture 

measure along with EO and SAR despeckled HH. Using GLCM entropy, the best result 

Producer's Accuracy

Test a b c d e f g

Class X C L X+C X+L C+L X+C+L

BareGnd 85.67      71.70      76.84      79.93      75.09      73.34      72.43      

Water 81.96      81.21      81.46      80.34      78.46      80.96      79.34      

Forest 99.03      98.85      98.49      98.18      91.88      93.94      88.25      

Agriculture 82.13      85.71      84.01      82.74      82.86      81.53      81.28      

Urban 92.60      92.36      91.62      87.30      90.14      85.82      85.64      

User's Accuracy

BareGnd 90.54      89.11      89.89      88.25      91.59      85.79      89.14      

Water 94.39      93.40      92.68      88.88      83.08      88.17      81.47      

Forest 81.51      86.39      82.62      82.70      78.60      82.02      76.81      

Agriculture 88.34      84.18      84.16      87.12      81.62      84.18      81.53      

Urban 89.25      79.43      85.30      83.00      85.75      77.12      80.15      

Overall Accuracy 88.30% 85.97% 86.49% 85.72% 83.69% 83.12% 81.38%

Kappa Coefficient 0.85         0.82         0.83         0.82         0.80         0.79         0.77         

Ground Truth (Pixels)  

Class BareGnd Water Forest Agriculture Urban Total User's Acc

BareGnd 1417 40 0 12 96 1565 90.54%

Water 69 1313 1 1 7 1391 94.39%

Forest 5 93 1635 270 3 2006 81.51%

Agriculture 83 72 10 1356 14 1535 88.34%

Urban 80 84 5 12 1502 1683 89.25%

Total 1654 1602 1651 1651 1622 8180

Producer's Acc 85.67% 81.96% 99.03% 82.13% 92.60% overall 88.30%

Overall Accuracy = (7223/8180)  88.30%  

Kappa Coefficient = 0.85
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was from X-band SAR with an overall accuracy of 88.03% (Table 49); this was a 4.23% 

improvement over EO alone. The error matrix is Table 50.                  

                                                                                                                                                                                          

Table 49.   Classification results comparison for Campinas, Brazil, using EO + SAR despeckled HH + variance 

and entropy. 

 
 

Table 50.   Error matrix for Campinas, Brazil, using EO + X-band SAR despeckled HH + variance and entropy. 

 
 

Producer's Accuracy

Test a b c d e f g

Class X C L X+C X+L C+L X+C+L

BareGnd 84.70      72.37      74.37      89.66      81.38      77.51      82.65      

Water 81.46      83.58      84.33      81.15      76.40      85.83      78.40      

Forest 99.33      99.27      98.67      99.27      98.43      98.91      98.36      

Agriculture 81.59      82.25      84.19      82.80      81.59      84.37      81.41      

Urban 92.97      87.92      94.02      82.49      91.12      89.21      85.39      

User's Accuracy

BareGnd 87.62      85.38      91.52      84.60      86.95      90.66      86.36      

Water 95.33      93.77      94.81      88.44      93.58      90.28      90.17      

Forest 81.51      83.03      83.54      82.78      78.09      82.89      77.37      

Agriculture 88.97      83.67      83.48      88.25      86.79      84.22      85.66      

Urban 89.44      81.35      84.91      93.70      87.40      89.38      90.17      

Overall Accuracy 88.03% 85.07% 87.10% 87.13% 85.82% 87.16% 85.28%

Kappa Coefficient 0.85         0.81         0.84         0.84         0.82         0.84         0.82         

Ground Truth (Pixels)  

Class BareGnd Water Forest Agriculture Urban Total User's Acc

BareGnd 1401 105 0 13 80 1599 87.62%

Water 46 1305 1 3 14 1369 95.33%

Forest 5 92 1640 271 4 2012 81.51%

Agriculture 82 63 6 1347 16 1514 88.97%

Urban 120 37 4 17 1508 1686 89.44%

Total 1654 1602 1651 1651 1622 8180

Producer's Acc 84.70% 81.46% 99.33% 81.59% 92.97% overall 88.03%

Overall Accuracy = (7201/8180)  88.03%  

Kappa Coefficient = 0.85
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The L-band SAR resulted in the best (86.74%) classification accuracy when using 

variance and GLCM correlation with EO and SAR despeckled HH (Table 51); although 

better than using EO alone, the overall accuracy was lower than when using entropy. 

Bare ground was confused more with agriculture and urban areas (Table 52). 

 

Table 51. Classification results comparison for Campinas, Brazil, using EO + SAR despeckled HH + variance 

and correlation. 

 
 

Table 52.   Error matrix for Campinas, Brazil, using EO + L-band SAR despeckled HH + variance and 

correlation. 

 

Producer's Accuracy

Test a b c d e f g

Class X C L X+C X+L C+L X+C+L

BareGnd 74.24      72.19      78.42      77.33      77.27      78.72      74.49      

Water 79.96      80.96      81.71      81.15      77.53      81.65      79.59      

Forest 99.09      98.91      98.85      98.43      93.76      95.03      89.76      

Agriculture 84.19      85.52      86.74      83.16      85.10      82.50      82.80      

Urban 88.35      91.49      87.85      88.53      91.25      85.02      85.76      

User's Accuracy

BareGnd 84.17      88.58      85.78      89.50      92.01      84.71      87.13      

Water 96.17      93.11      93.17      89.41      83.41      88.26      79.14      

Forest 83.68      85.99      84.82      83.59      85.05      83.77      83.16      

Agriculture 83.79      84.10      84.73      83.01      81.83      84.02      82.00      

Urban 80.73      79.74      86.42      84.52      83.85      82.72      81.54      

Overall Accuracy 85.18% 85.82% 86.74% 85.73% 85.00% 84.60% 82.48%

Kappa Coefficient 0.81         0.82         0.83         0.82         0.81         0.81         0.78         

Ground Truth (Pixels)  

Class BareGnd Water Forest Agriculture Urban Total User's Acc

BareGnd 1297 74 0 14 127 1512 85.78%

Water 56 1309 0 0 40 1405 93.17%

Forest 4 78 1632 202 8 1924 84.82%

Agriculture 172 50 14 1432 22 1690 84.73%

Urban 125 91 5 3 1425 1649 86.42%

Total 1654 1602 1651 1651 1622 8180

Producer's Acc 78.42% 81.71% 98.85% 86.74% 87.85% overall 86.74%

Overall Accuracy = (7095/8180)  86.74%  

Kappa Coefficient = 0.83
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The classification accuracy using all texture measures and SAR despeckled HH 

with EO imagery were tested, as were combinations of the three SAR bands with the four 

texture measures. In this case the best land cover classification was 88.33% when using 

X-band data (Table 53), an improvement of 4.53% over EO alone. Classification 

accuracy was lower when combining multiple SAR bands. The corresponding error 

matrix is presented in Table 54; the classes that most benefited from the addition of X-

band SAR were bare ground and urban. 

 

Table 53.   Classification results comparison for Campinas, Brazil, using EO + SAR despeckled HH + variance, 

entropy, and correlation. 

 
 

Producer's Accuracy

Test a b c d e f g

Class X C L X+C X+L C+L X+C+L

BareGnd 85.67      71.70      76.66      79.93      75.33      73.40      72.49      

Water 81.77      81.21      81.21      80.34      77.90      80.77      78.71      

Forest 98.91      98.85      98.49      98.12      92.00      93.94      88.25      

Agriculture 82.68      85.71      84.25      82.68      82.86      81.53      81.28      

Urban 92.48      92.36      91.49      87.24      90.07      85.76      85.88      

User's Accuracy

BareGnd 90.72      89.11      89.87      88.19      91.62      85.86      89.28      

Water 94.04      93.40      92.60      88.70      82.54      88.15      81.35      

Forest 81.85      86.39      82.50      82.65      78.58      81.72      76.40      

Agriculture 88.46      84.18      84.25      87.16      81.77      84.28      81.63      

Urban 88.92      79.43      85.19      83.04      85.84      77.15      80.24      

Overall Accuracy 88.33% 85.97% 86.43% 85.68% 83.64% 83.08% 81.32%

Kappa Coefficient 0.85         0.82         0.83         0.82         0.80         0.79         0.77         
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Table 54.   Error matrix for Campinas, Brazil, using EO + X-band SAR despeckled HH + variance, entropy and 

correlation. 

 
 

4.2.4.3 Test Series 6 –SAR Combination w/o EO 
For regions with consistent cloud cover EO satellite imagery is difficult to collect 

and aerial missions are expensive; in those cases satellite based SAR is an excellent 

option. Test series 6 analyzed the land cover classification accuracy using only SAR from 

three different bands corresponding with three different satellites.  The best single SAR 

band was the X-band with variance and the GLCM texture entropy and correlation 

measures with an overall accuracy of 57.71% (Table 55); the results from L-band with 

texture were close with 56.6%.   Using SAR alone the overall classification accuracies 

ranged from 26.25% using C-band despeckled HH to 57.71% using data derived from X-

band. Using all derived data from the C-band only achieved an overall accuracy of 

32.30%.  The error matrix using X-band SAR derived layers illustrated the greatest 

degree of confusion between the bare ground and agriculture classes (Table 56); this is 

explained by the lack of spectral information in SAR versus EO. 

 

Ground Truth (Pixels)  

Class BareGnd Water Forest Agriculture Urban Total User's Acc

BareGnd 1417 40 0 12 93 1562 90.72%

Water 69 1310 1 1 12 1393 94.04%

Forest 4 95 1633 260 3 1995 81.85%

Agriculture 83 71 10 1365 14 1543 88.46%

Urban 81 86 7 13 1500 1687 88.92%

Total 1654 1602 1651 1651 1622 8180

Producer's Acc 85.67% 81.77% 98.91% 82.68% 92.48% overall 88.33%

Overall Accuracy = (7225/8180)  88.32%  

Kappa Coefficient = 0.85
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Table 55. Classification results comparison for Campinas, Brazil, using SAR despeckled HH + variance, entropy 

and correlation. 

 
 

Producer's Accuracy

Test a b c d e f g h

Class X C L X+V C+V L+V X+E C+E

BareGnd 55.44 0.00 31.44 3.02 0.00 32.53 24.79 1.03

Water 76.97 0.00 46.57 59.86 0.00 46.44 68.66 0.00

Forest 64.20 99.52 70.75 64.20 99.52 70.50 64.51 0.42

Agriculture 0.00 0.00 15.93 71.05 0.00 15.75 52.21 93.76

Urban 23.98 31.07 42.73 62.08 34.59 41.99 71.21 63.01

User's Accuracy

BareGnd 32.45 0.00 31.34 12.76 0.00 30.41 41.88 7.39

Water 50.49 0.00 45.46 87.82 0.00 45.45 72.94 0.00

Forest 43.84 21.58 39.00 51.53 21.75 39.32 49.51 11.11

Agriculture 0.00 0.00 30.02 33.91 0.00 32.06 42.03 23.60

Urban 78.74 88.73 68.68 85.34 89.76 67.90 77.46 77.02

Overall Accuracy 44.00% 26.25% 41.44% 51.94% 26.94% 41.41% 56.14% 31.71%

Kappa Coefficient 0.30         0.08         0.27         0.40         0.09         0.27         0.45         0.15          

Producer's Accuracy

Test i j k l m n o p

Class L+E X+R C+R L+R X+V+E+R C+V+E+R L+V+E+R All SAR 

BareGnd 28.17 20.56 0.00 29.63 34.22 0.00 42.02 36.09

Water 48.75 64.36 0.00 45.19 65.36 0.56 56.55 55.62

Forest 69.78 46.21 0.00 42.52 63.05 4.72 59.84 69.59

Agriculture 16.96 59.06 95.34 30.65 55.42 95.34 53.00 53.60

Urban 79.22 38.16 70.04 64.61 71.02 60.48 71.89 73.24

User's Accuracy

BareGnd 30.18 34.45 0.00 26.81 56.26 0.00 53.63 47.53

Water 45.91 64.44 0.00 43.38 72.26 15.25 51.74 62.00

Forest 47.92 41.60 0.00 41.74 51.84 27.66 49.18 54.71

Agriculture 32.04 34.50 24.20 37.93 42.76 24.09 55.10 48.23

Urban 77.55 66.35 68.11 62.87 73.05 78.54 75.91 76.55

Overall Accuracy 48.46% 45.57% 33.13% 42.42% 57.71% 32.30% 56.60% 57.58%

Kappa Coefficient 0.36 0.32 0.16 0.28 0.47 0.15 0.46 0.47
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Table 56.   Error matrix for Campinas, Brazil, using SAR despeckled HH + X-band variance, entropy, and 

correlation. 

 
 

4.2.5 Best Band Combination per Class 
 

In most cases the best band combination was not the same for the best producer’s 

or user’s accuracy (Table 57). For bare ground, EO fused with X and C-band SAR 

despeckled HH and entropy texture resulted in a producer’s accuracy of 89.9%, while EO 

fused with X and L band SAR despeckled HH and the variance and correlation texture 

measures derived 92.0%. The common denominator was EO fusion with the X-band 

SAR. Without EO, the X-band SAR gave a producer’s accuracy of 55.4% and with the 

addition of the three texture measures, resulted in a user’s accuracy of 56.3%. 

For the water class, EO with C and L-band SAR despeckled HH and entropy, and 

EO with X-band SAR despeckled HH with variance and correlation texture resulted in a 

producer’s accuracy of 85.8% and user’s accuracy of 96.2%, respectively. Using X-band 

SAR alone, a producer’s and user’s accuracy of 77.0% and 87.8% was achieved. 

Both L-band and X-band SAR with a texture measure fused with EO resulted in a 

99.4% producer’s accuracy while EO and L, X+L, and X+C+L band SAR with variance 

                     Ground Truth (Pixels)  

Class BareGnd Water Forest Agriculture Urban Total User's Acc

BareGnd 566 33 94 268 45 1006 56.26%

Water 120 1047 35 94 153 1449 72.26%

Forest 224 263 1041 278 202 2008 51.84%

Agriculture 711 178 266 915 70 2140 42.76%

Urban 33 81 215 96 1152 1577 73.05%

Total 1654 1602 1651 1651 1622 8180 57.71%

Producer's Acc 34.22% 65.36% 63.05% 55.42% 71.02% overall 57.71%

Overall Accuracy = (4721/8180)  57.7%  

Kappa Coefficient = 0.47
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resulted in a user’s accuracy of 86.7% for the forest class. Using SAR alone, the C-band 

resulted in 99.5% producer’s accuracy but even using all SAR data available from the 

three bands, only a user’s accuracy of 54.7% was achieved without EO.  

Land with agriculture cover was best classified in the producer’s perspective with 

EO and the X and L-band SAR, and variance (88.2%); the addition of the C-band did not 

make a difference in this case. EO with X-band SAR with variance and entropy resulted 

in a user’s accuracy of 89.0%. Without EO, C-band SAR with variance gave a user’s 

accuracy of 95.3%, while L-band SAR with all three texture measures only resulted in a 

user’s accuracy of 55.1%. The greater roughness of forest cover contributed to more 

backscatter. 

Lastly the urban class was classified best fusing EO with L-band SAR and 

entropy, and resulted in a producer’s accuracy of 94.1%. The user’s accuracy was 93.6% 

when EO was fused with X and C-band SAR, and the entropy texture measure. Without 

EO, L-band SAR with entropy resulted in a producer’s accuracy of 79.2% but C-band 

SAR with variance had a user’s accuracy of 89.8%.  

All classes were classified greater than 85% when SAR was fused with EO 

imagery. Without EO, however, bare ground was not well classified (<60% for both 

producer’s and user’s accuracy), and from the map user’s perspective, only water and 

urban classes could be classified with better than 85% accuracy. 
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Table 57.   Band combinations with the best producer’s or user’s classification accuracy for EO+SAR (left) and 

SAR alone (right) tests for Campinas, Brazil. 

 
 

4.2.6  Summary 
A comparison of the results for land cover classification overall accuracy are in 

Figure 37 by EO+SAR band and texture measures. In general, at least for Campinas, 

Brazil, EO fusion with the SAR X-band out-performed the C and L-band SAR while the 

C-band was the least beneficial. The only case where combining all three SAR bands was 

beneficial was when using the variance texture measure. However doing that requires 

obtaining data from three SAR satellites compared to including more measures from a 

single source.  

Another way to synthesize these results is to compare the best results from each of 

the test series. The highest overall classification accuracy of 88.33% was derived when 

using X-band despeckled HH, variance, and both GLCM texture measures (Table 58). 

The addition of any SAR data represented at least an improvement of 2.88%. Figure 38 

summarizes the results of the SAR-only test; the X-band produced the best overall 

accuracy with entropy or all texture. The L-band results were very similar with all the 

Producer's Accuracy Producer's Accuracy

Class \                      EO + SAR Bands % Acc Class                  w/o EO SAR Bands % Acc

BareGnd +XC+E 89.8% BareGnd X 55.4%

Water +CL+E 85.8% Water X 77.0%

Forest +L+V, +X+E 99.4% Forest C 99.5%

Agriculture +XL+V, +XCL+V 88.2% Agriculture C+VER 95.3%

Urban +L+E 94.1% Urban L+E 79.2%

User's Accuracy User's Accuracy

BareGnd +XL+VR 92.0% BareGnd X+VER 56.3%

Water +X+VR 96.2% Water X+V 87.8%

Forest +L+V, +XL+V, +XCL+V 86.7% Forest All SAR Data 54.7%

Agriculture +X+VE 89.0% Agriculture L+VER 55.1%

Urban +XC+E 93.6% Urban C+V 89.8%
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texture measure. The thematic land cover classification map for Campinas, Brazil using 

EO+X-band despeckled HH, SAR variance, entropy, and correlation is Figure 39. 

 

Table 58.  Comparison of the best overall accuracy results from test series 1-6 with EO and fusion with SAR 

data for Campinas, Brazil. 
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Figure 37.  Overall accuracy comparison for test fusing EO bands with SAR for Campinas, Brazil. 

 

 

 
Figure 38.  Overall accuracy comparison for SAR only tests for Campinas, Brazil. 
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Figure 39.  Classification map from EO+X-band despeckled HH, SAR variance, entropy, and correlation for 

Campinas, Brazil. Scene width ~ 55 km. 

 

4.3 Fresno and Kings Counties, California, USA 

4.3.1 Test Series 
For Fresno-Kings Counties greater effort was placed on evaluating specific 

agriculture land cover leveraging the USDA 2010 CropScape – Cropland Data Layer 

(Boryan et al., 2011).  

Various questions were investigated in six test series (Table 59). Test series 1 was 

to establish the baseline with EO imagery. For simplification the GLCM correlation 

texture measure was eliminated. Test series 2 added the three SAR band despeckled HH 
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data, followed by test series 3 which added the 21x21 kernel texture variance measure. 

Test series 4 replaced variance texture with GLCM entropy and test series 5 used both 

variance and GLCM entropy texture. Lastly, SAR alone was evaluated in test series 6. 

The test matrix of the bands used for each test is in Table 60.  

 

Table 59. Classification tests band combinations for Fresno-Kings Counties, USA. 

Test Data Objective No. Tests 

1 EO Bands 1-5 EO baseline 1 

2 EO + SAR Despeckled HH 
Test effect of adding each SAR 

band to EO 
7 

3 

EO + SAR Despeckled HH 

+SAR variance texture 21x21 

kernel per SAR satellite 

Test effect of adding SAR 21x21 

variance for each SAR band and 

combinations 

 

7 

4 

EO + SAR Despeckled HH 

+SAR GLCM Entropy 21x21 

kernel per SAR satellite 

Test effect of adding SAR 21x21 

GLCM entropy for each SAR 

band and combinations 

 

7 

5 

EO + SAR Despeckled HH 

+SAR variance and GLCM 

Entropy 21x21 kernel per SAR 

satellite 

Test effect of adding SAR 21x21 

variances and GLCM entropy for 

each SAR band and 

combinations 

7 

6 

SAR Despeckled HH +SAR 

21x21Variance + GLCM 

Entropy & Correlation 21x21 

Texture  

SAR baseline with 

 21x21 variance & GLCM 

entropy for each SAR band 

individually and combined 

16 

  Total 45 
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Table 60. Classification test matrix for Fresno-Kings Counties, USA. 

 

Test RapidEye HH V21 E21 HH V21 E21 HH V21 E21

Test 1  - EO ALONE

1 X

Test 2 - EO + SAR-HH

2a X X

2b X X

2c X X

2d X X X

2e X X X

2f X X X

g X X X X

Test 3 - EO+SAR-HH+VAR

3a X X X

3b X X X

3c X X X

3d X X X X X

3e X X X X X

3f X X X X X

3g X X X X X X X

Test 4 - EO+SAR-HH+GLCM Entropy

4a X X X

4b X X X

4c X X X

4d X X X X X

4e X X X X X

4f X X X X X

4g X X X X X X X

Test 5 - EO+SAR-HH+V+GLCM Entropy

5a X X X X

5b X X X X

5c X X X X

5d X X X X X X X

5e X X X X X X X

5f X X X X X X X

5g X X X X X X X X X X

Test 6 - SAR w/o EO TerraSar-X RadarSat-2 PALSAR

Test RapideEye HH V21 E21 HH V21 E21 HH V21 E21

6a X

6b X

6c X

6d X X

6e X X

6f X X

6g X X

6h X X

6i X X

6j X X X

6k X X X

6l X X X

6m X X X X X X

6n X X X X X X

6o X X X X X X

All Sar Bands & Kernels X X X X X X X X X

TerraSar-X RADARSAT-2 PALSAR
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4.3.2 Spectral Signatures  
The mean spectral signatures for the training pixels of the 11 land cover classes 

are in Figure 40; Table 61 contains the means and standard deviations.  

 

 
Figure 40. Mean spectral signatures for 11 classes in Fresno-Kings Counties, USA. 

 

4.3.3 Training and Ground Truth  
The training (a) and the GT (b) ROI’s were distributed over the AOI assuring that 

there was no overlap (Figure 41). Over 3,500 pixels representing at least 0.5 sq. km were 

collected for each class with the exception of pistachios which was the least abundant class in 

the area (Table 62).  
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Table 61. Training ROI mean and standard deviation for Fresno-Kings Counties, USA. 

 
 

4.3.4 Classification Accuracy 
As in previous sections classifications were compared using their overall 

accuracy. Individual classes were compared by looking at their user’s and producer’s 

accuracy. To facilitate the comparison of the greater number of classes studied in the 

Fresno-Kings Counties region; the average of the user’s and producer’s accuracy was 

calculated as a ‘Fitness Index’ (FI) of the overall capability to accurately classify each 

specific class accounting for both the errors of omission and commission. Sorting classes 

by their FI provides a ranking of the classes best classified. 

 

Bands DataType Mean StdDev Mean StdDev Mean StdDev Mean StdDev Mean StdDev Mean StdDev

1 RapidEye_Blue 500.64 113.14 423.35 86.71 614.42 248.96 592.12 211.94 958.22 199.07 1290.19 826.69

2 RapidEye_Green 823.97 127.92 706.47 104.83 865.34 346.00 765.44 316.83 1294.31 263.71 1552.41 802.79

3 RapidEye_Red 919.89 387.63 689.03 188.26 1119.14 526.12 759.37 344.26 1862.50 392.41 1939.09 877.89

4 RapidEye_RedEdge 1694.90 289.29 1381.24 131.99 1448.03 353.69 845.84 441.47 2037.47 434.04 2086.70 813.32

5 RapidEye_NIR 3800.71 587.30 3705.85 579.44 2315.59 399.36 690.20 468.94 2271.76 494.32 2343.25 805.61

6 TerraSar-X_HH_Despeckled 1543.89 589.33 1487.89 339.79 1630.11 440.33 456.21 373.95 1079.58 267.00 1216.51 1051.99

7 RadarSat-2_HH_Despeckled 2290.75 762.20 2778.41 821.78 1923.00 353.36 342.50 393.35 834.03 351.73 2035.49 4841.37

8 Palsar_HH_Despeckled 978.48 667.42 1152.88 658.73 1908.36 1123.77 323.48 371.86 261.36 162.92 1826.31 4010.23

9 TerraSar-X_Variance_21x21 280.10 91.49 300.69 46.48 284.53 40.76 222.49 185.82 167.84 55.45 453.77 593.30

10 TerraSar-X_Entropy_21x21 394.79 135.61 441.89 81.74 412.71 67.79 233.47 108.49 215.54 95.53 304.70 175.04

11 RadarSat-2_Variance_21x21 101.87 23.69 118.14 50.35 110.89 40.78 165.27 345.76 102.63 36.28 6569.69 20613.27

12 RadarSat-2_Entropy_21x21 109.60 74.31 290.88 505.19 162.06 213.99 302.33 397.39 109.09 76.65 1987.73 3020.44

13 Palsar_Variance_21x21 114.28 49.42 103.65 16.99 169.91 112.67 134.02 113.73 100.41 4.09 9405.44 36432.63

14 Palsar_Entropy_21x21 244.61 469.55 142.68 192.98 795.96 1016.36 274.45 480.70 105.33 48.25 3322.92 5174.86

Bands DataType Mean StdDev Mean StdDev Mean StdDev Mean StdDev Mean StdDev

1 RapidEye_Blue 644.77 121.64 380.93 92.87 1230.49 1282.29 363.79 77.62 365.27 115.30

2 RapidEye_Green 973.13 147.31 628.73 95.72 1503.80 1261.02 593.83 113.51 578.39 127.25

3 RapidEye_Red 1195.48 240.28 528.85 170.50 2083.63 1335.21 583.63 150.66 469.92 233.01

4 RapidEye_RedEdge 1666.60 95.24 1358.10 145.63 2296.67 1274.04 1252.32 155.83 1330.11 149.12

5 RapidEye_NIR 2836.38 612.11 4132.44 734.67 2568.16 1192.81 3362.24 275.00 3654.05 576.84

6 TerraSar-X_HH_Despeckled 1481.75 588.31 1528.73 465.24 787.76 306.81 1412.97 281.38 1307.49 263.77

7 RadarSat-2_HH_Despeckled 2708.65 1894.60 2437.74 581.58 516.94 285.70 2423.97 441.17 1013.12 370.39

8 Palsar_HH_Despeckled 616.26 435.51 1246.26 473.76 227.88 127.57 2456.11 795.50 311.42 157.46

9 TerraSar-X_Variance_21x21 265.23 64.02 289.74 90.48 120.29 25.95 303.06 43.35 258.05 65.57

10 TerraSar-X_Entropy_21x21 370.07 77.62 400.71 129.67 132.89 38.64 446.50 71.05 377.78 116.96

11 RadarSat-2_Variance_21x21 438.41 1259.74 112.19 70.49 103.01 21.41 101.07 4.80 103.40 25.02

12 RadarSat-2_Entropy_21x21 811.87 1664.27 175.53 271.50 118.82 115.05 114.62 64.02 118.82 88.20

13 Palsar_Variance_21x21 100.12 2.21 106.51 59.27 101.04 8.93 134.56 44.87 100.60 3.64

14 Palsar_Entropy_21x21 101.06 20.64 127.89 213.68 114.67 107.36 502.72 451.21 108.63 50.16

Developed

Cotton Corn Barren Almonds Alfalfa

Winter Wheat Tomatoes Pistachios Water Fallow
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Figure 41.  a) Training ROI’s, and b) GT ROI’s for Fresno-Kings Counties, USA. Scene width ~ 25 km. 

 

Table 62. Number of pixels and area for training and GT polygons for each land cover class for Fresno-Kings 

Counties, USA 

 

Class Pixels sq km

Alfalfa 3,943 0.616

Almonds 5,187 0.810

Barren 5,669 0.886

Corn 5,078 0.793

Cotton 5,096 0.796

Developed 4,246 0.663

Fallow 5,939 0.928

Water 3,674 0.574

Pistachios 1,451 0.227

Tomatoes 4,247 0.664

WinterWheat 5,064 0.791
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4.3.4.1 Test 1 - EO Imagery 
Using EO alone an overall accuracy of 64.4% was achieved. The user’s accuracy 

ranged between 54.99% for barren ground and 89.6% for Alfalfa (Table 63). Producer’s 

accuracy ranged between 44.9% for corn and 92.6% for water. Bare ground was confused 

with fallow and developed areas. Tomatoes were confused with winter wheat, corn, 

almonds, and cotton.  Water had a fitness index greater than 85%, alfalfa greater than 

80%; winter wheat and pistachios greater than 75%, and the remaining classes between 

50-69% (Table 64). Figure 42 is the thematic map for the land cover classification using 

only the EO bands.  

 

Table 63. EO baseline classification error matrix for Fresno-Kings Counties, USA. 

 
 

Ground Truth (Pixels)

Class WinterWheat Tomatoes Pistachios Water Fallow Developed Cotton Corn Barren Almonds Alfalfa Total User's Acc

WinterWheat 3052 288 0 0 0 19 452 116 0 210 70 4207 72.5%

Tomatoes 355 2122 0 0 0 19 237 857 0 168 0 3758 56.5%

Pistachios 0 15 587 1 6 8 51 205 0 0 36 909 64.6%

Water 0 27 0 1170 0 54 0 0 197 0 0 1448 80.8%

Fallow 3 0 37 42 1878 306 61 0 750 0 0 3077 61.0%

Developed 4 0 3 50 548 2222 138 1 479 0 2 3447 64.5%

Cotton 0 352 10 0 44 94 1068 4 0 17 131 1720 74.7%

Corn 251 382 0 0 0 2 0 1284 0 0 11 1930 66.5%

Barren 56 0 1 1 965 241 0 0 1544 0 0 2808 55.0%

Almonds 140 484 0 0 0 10 249 317 0 1956 307 3463 56.5%

Alfalfa 5 1 0 0 0 0 0 73 0 97 1518 1694 89.6%

Total 3866 3671 667 1264 3441 2975 2256 2857 2970 2517 2075 28559

Producer's Acc 78.9% 57.8% 88.0% 92.6% 54.6% 74.7% 47.3% 44.9% 52.0% 77.7% 73.2% 18401

Overall Accuracy (18401/28559) = 64.4315% Overall 64.43%

Kappa Coefficient = 0.60
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Table 64. Classification fitness ranking using EO for Fresno-Kings Counties, USA. 

 
 

4.3.4.2 Test Series 2 - EO + SAR-HH 
Test series 2 added the despeckled HH SAR bands individually to EO. The overall 

accuracy of the X-band resulted in 65.7%, only 1.24% better than EO alone (Table 65). The 

C-band plus EO had a 69.8% overall accuracy, improving the EO overall accuracy by 5.35%. 

With the addition of the SAR despeckled HH the class FI’s changed and are compared in 

Table 64; the EO results are repeated for reference. Table 66 is the error matrix for this test 

series. 

 

Sorted by FI

Class User's Producer's FI

Water 80.8% 92.6% 86.7%

Alfalfa 89.6% 73.2% 81.4%

Pistachios 64.6% 88.0% 76.3%

WinterWheat 72.5% 78.9% 75.7%

Developed 64.5% 74.7% 69.6%

Almonds 56.5% 77.7% 67.1%

Cotton 74.7% 47.3% 61.0%

Fallow 61.0% 54.6% 57.8%

Tomatoes 56.5% 57.8% 57.1%

Corn 66.5% 44.9% 55.7%

Barren 55.0% 52.0% 53.5%

Overall 64.4%
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Figure 42.  Land cover classification thematic map using EO imagery for Fresno-Kings Counties, USA. Overall 

accuracy 64.4%. Scene width ~ 25 km. 
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Table 65.  Comparison of classification results with EO + SAR for Fresno-Kings Counties, USA. 

 
 

Table 67 contains the class FI ranking for each test. With the X-band, water increased 

to 88.2% and three more classes passed 70% than with EO alone. Both water and alfalfa had 

FI’s greater than 85% with the C-band, and seven classes were between 69-79%. Only 

tomatoes and corn were less than 65%. With EO plus the L-band, water and alfalfa had a FI 

greater than 85%; three classes were above 75% and the remaining classes were below 70%. 

 

Producer's Accuracy

Subtest 1 a b c d e f g

Class / Bands EO X C L X+C X+L C+L X+C+L

WinterWheat 78.94 73.02 79.69 79.33 72.37 70.95 73.54 72.61

Tomatoes 57.80 56.12 57.12 62.41 38.35 46.64 40.32 40.04

Pistachios 88.01 91.30 79.91 88.01 86.66 65.37 79.16 87.86

Water 92.56 94.86 95.49 92.56 92.41 92.96 91.93 92.48

Fallow 54.58 53.27 60.45 54.32 68.88 65.68 67.83 68.70

Developed 74.69 80.24 77.92 74.96 59.36 57.92 60.24 59.60

Cotton 47.34 51.60 55.81 49.02 54.03 51.37 54.61 54.08

Corn 44.94 46.94 57.54 44.91 58.87 55.65 59.64 60.20

Barren 51.99 60.00 71.85 52.05 73.43 63.97 70.74 72.86

Almonds 77.71 79.54 78.35 82.72 80.45 78.19 82.84 82.96

Alfalfa 73.16 74.94 76.92 80.92 68.53 70.89 68.63 68.34

User's Accuracy

WinterWheat 72.55 72.61 76.38 75.36 73.17 71.49 73.94 73.73

Tomatoes 56.47 52.48 54.91 55.51 47.33 48.35 47.59 47.59

Pistachios 64.58 68.50 65.80 64.72 73.82 67.70 74.58 75.71

Water 80.80 81.45 81.94 80.80 82.37 82.23 80.98 82.15

Fallow 61.03 69.80 83.37 60.98 68.38 61.05 66.48 67.97

Developed 64.46 62.36 61.86 64.53 78.87 79.51 78.70 78.94

Cotton 62.09 66.40 70.81 62.34 68.83 58.04 69.64 68.97

Corn 66.53 64.60 68.79 65.29 51.72 54.03 51.59 51.47

Barren 54.99 61.13 68.62 55.17 58.74 54.74 58.01 58.82

Almonds 56.48 62.60 61.61 68.87 57.51 63.71 61.96 62.07

Alfalfa 89.61 82.28 99.38 92.00 94.67 89.48 93.75 94.98

Overall Accuracy 64.43% 65.67% 69.75% 66.21% 65.19% 63.51% 65.43% 65.76%

Kappa Coefficient 0.60 0.62 0.66 0.62 0.61 0.59 0.62 0.62
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Table 66.   Error matrix for Fresno-Kings Counties,, USA, using EO + SAR despeckled HH L-band. 

 
 

Table 67.  Comparison of  FI for Fresno-Kings Counties,, USA, for classifications with EO and SAR despeckled 

HH. Classes are sorted by FI for each test. 

 
 

4.3.4.3 Test Series 3 – EO + SAR-HH + SAR Variance 
For test series 3 the individual test results for user’s and producer’s accuracy for 

each class are compared in a single table. The addition of variance to the EO and SAR 

despeckled HH data improved the overall accuracy (Table 68). The C-band variance had 

the highest overall accuracy of 67.1%, 2.7% over EO. Using despeckled HH and variance 

from more than a single SAR band increased further the classification accuracy with the 

Ground Truth (Pixels)

Class WinterWheat Tomatoes Pistachios Water Fallow Developed Cotton Corn Barren Almonds Alfalfa Total User's Acc

WinterWheat 3067 288 0 0 0 17 326 93 0 210 69 4070 75.4%

Tomatoes 459 2291 0 0 0 24 236 1043 0 74 0 4127 55.5%

Pistachios 0 16 587 1 5 7 56 203 0 0 32 907 64.7%

Water 0 27 0 1170 0 54 0 0 197 0 0 1448 80.8%

Fallow 3 0 37 42 1869 303 61 0 750 0 0 3065 61.0%

Developed 4 0 4 50 550 2230 138 1 477 0 2 3456 64.5%

Cotton 0 351 9 0 50 95 1106 4 0 28 131 1774 72.3%

Corn 277 385 0 0 0 2 0 1283 0 0 18 1965 65.3%

Barren 54 0 1 1 967 233 0 0 1546 0 0 2802 55.2%

Almonds 0 313 0 0 0 10 333 141 0 2082 144 3023 68.9%

Alfalfa 2 0 0 0 0 0 0 89 0 55 1679 1825 92.0%

Total 3866 3671 667 1264 3441 2975 2256 2857 2970 2517 2075 28,559   

Producer's Acc 79.3% 62.4% 88.0% 92.6% 54.3% 75.0% 49.0% 44.9% 52.1% 82.7% 80.9% Overall 66.21%

Overall Accuracy =   66.21%

Kappa Coefficient = 0.62

Class FI Class FI Class FI Class FI

Water 86.7% Water 88.2% Water 88.7% Water 86.7%

Alfalfa 81.4% Pistachios 79.9% Alfalfa 88.1% Alfalfa 86.5%

Pistachios 76.3% Alfalfa 78.6% WinterWheat 78.0% WinterWheat 77.3%

WinterWheat 75.7% WinterWheat 72.8% Cotton 74.1% Pistachios 76.4%

Developed 69.6% Developed 71.3% Pistachios 72.9% Almonds 75.8%

Almonds 67.1% Almonds 71.1% Fallow 71.9% Developed 69.7%

Cotton 61.0% Cotton 64.0% Barren 70.2% Cotton 60.7%

Fallow 57.8% Fallow 61.5% Almonds 70.0% Tomatoes 59.0%

Tomatoes 57.1% Barren 60.6% Developed 69.9% Fallow 57.6%

Corn 55.7% Corn 55.8% Corn 63.2% Corn 55.1%

Barren 53.5% Tomatoes 54.3% Tomatoes 56.0% Barren 53.6%

EO EO+X-band EO+C-band EO+L-band 
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exception of the combination of C-band and L-band. X-band with C-band variance raised 

the overall accuracy to 69.9%. Using all three SAR bands and variance only increased the 

overall accuracy by 0.33% so the additional cost for using more data from an additional 

satellite (L-band) would not be justified. 

 

Table 68.  Comparison of classification results with  EO + SAR + 21x21 Variance, for Fresno-Kings Counties, 

USA. 

 

EO + HH + V

Producer's Accuracy

sub-test a b c d e f g

Class / Bands X C L X+C X+L C+L X+C+L

WinterWheat 72.79 78.40 78.56 70.33 72.79 79.00 67.85

Tomatoes 55.52 35.88 46.55 60.99 59.11 48.82 63.66

Pistachios 90.85 82.16 88.01 74.06 91.15 65.07 73.31

Water 95.02 93.91 96.28 96.99 95.02 96.68 96.99

Fallow 53.01 73.35 56.18 68.00 53.33 65.53 67.51

Developed 81.21 63.36 74.15 76.94 81.85 73.01 78.66

Cotton 51.82 56.16 48.58 57.23 53.72 57.40 57.58

Corn 47.32 60.94 62.27 54.92 47.22 54.67 55.79

Barren 60.54 69.53 61.82 73.64 60.54 73.47 73.74

Almonds 79.54 82.60 79.06 78.67 82.16 80.65 79.46

Alfalfa 75.04 73.69 82.17 78.51 82.94 86.75 78.84

User's Accuracy

WinterWheat 72.40 75.30 78.76 75.51 74.72 80.54 76.36

Tomatoes 52.16 44.95 50.18 49.37 53.12 49.23 51.50

Pistachios 68.40 88.39 64.15 63.50 68.55 59.21 63.26

Water 81.53 81.69 81.30 82.17 81.53 81.79 81.95

Fallow 70.95 68.01 67.54 78.81 71.29 74.52 79.47

Developed 62.22 79.37 68.04 69.83 62.74 71.87 70.12

Cotton 67.18 62.82 70.85 72.53 68.17 77.41 71.02

Corn 63.15 56.56 53.70 71.61 63.39 49.13 69.64

Barren 61.49 63.75 56.56 69.85 61.47 65.58 69.88

Almonds 63.41 60.95 69.27 64.35 70.63 73.15 65.10

Alfalfa 82.34 95.62 99.94 99.88 84.53 99.89 99.94

Overall Accuracy 65.75% 67.13% 66.86% 69.90% 67.27% 69.32% 70.23%

Kappa Coefficient 0.62 0.63 0.63 0.66 0.64 0.66 0.67
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4.3.4.4 Test Series 4 – EO + SAR-HH + SAR Entropy 
Test series 4 investigated the effect of GLCM entropy texture measure fused with EO and 

SAR-HH data. Again the C-band texture had the greatest improvement on the overall 

accuracy of 67.9% (Table 69). As was the case with variance, the combination of X-band 

and C-band entropy resulted in the highest overall accuracy (71.7%). Other combinations 

resulted about the same; using a third SAR band was not an improvement. 

4.3.4.5 Test Series 5 – EO + SAR-HH + SAR Variance + SAR Entropy 
Classification with variance, and GLCM entropy texture measures was tested in 

series 5. In general the overall accuracies from the different tests were similar to those 

with entropy alone (Table 70). The addition of C-band variance and entropy resulted in 

an overall accuracy of 69.8%, and the combination of X-band, C-band, and L-band 

despeckled HH, variance and entropy achieved the best overall accuracy of 71.7%. 

Removing the L-band, the overall accuracy was 71.4%. The highest user’s accuracy was 

for alfalfa at 91%; the best producer’s accuracy was 95.5% for water (Table 71). The 

thematic classification map is Figure 43. 

4.3.4.6 Test Series 6 – SAR despeckled HH + Texture 
SAR is especially valuable when consistent cloud cover makes collecting usable EO 

imagery from satellites impossible. Using SAR alone, Table 72 presents the results from 

16 classification tests using different band combinations. The best overall classification 

achieved using a single SAR band was 33.3% using C-band despeckled HH and entropy. 

Combing all three SAR bands despeckled HH, variance, and entropy texture an overall 

accuracy of 45.69% was achieved.   
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Table 69.  Comparison of classification results with EO + SAR + 21x21 entropy for Fresno-Kings Counties, 

USA. 

 
 

Using the C-band, the best user’s accuracy was found for fallow; the developed 

area class showed the best producer’s accuracy (Table 73). In the error matrix for the 

three SAR bands together, several classes had better results for user’s and producer’s 

accuracy (Table 74). The developed area class showed the highest user’s accuracies 

EO + HH + E

Producer's Accuracy

sub-test a b c d e f g

Class / Bands X C L X+C X+L C+L X+C+L

WinterWheat 77.57 77.34 76.46 75.53 75.81 77.44 77.73

Tomatoes 49.09 43.67 53.06 63.25 52.33 50.80 58.87

Pistachios 86.66 62.52 57.27 90.85 79.61 61.17 71.81

Water 93.51 96.04 94.15 94.86 94.54 94.46 93.59

Fallow 67.86 73.09 71.26 72.68 72.28 71.61 70.36

Developed 64.24 69.21 69.98 73.55 71.56 74.39 80.44

Cotton 54.70 55.05 51.73 62.32 55.05 54.21 62.68

Corn 52.12 52.89 56.46 54.08 56.49 51.52 30.38

Barren 62.19 72.96 55.62 74.75 61.72 71.52 71.18

Almonds 78.63 81.88 84.35 81.68 84.27 81.33 72.31

Alfalfa 68.10 77.35 77.25 72.92 77.73 79.52 83.66

User's Accuracy

WinterWheat 75.09 78.40 74.68 76.98 75.27 77.63 77.63

Tomatoes 50.58 48.41 50.10 55.72 49.23 51.85 56.22

Pistachios 72.43 54.16 98.71 68.71 93.32 54.69 67.18

Water 83.53 82.25 82.47 82.18 83.10 79.76 81.47

Fallow 61.94 71.63 55.85 82.81 61.64 72.30 80.41

Developed 78.06 79.07 89.20 73.77 88.86 80.47 77.14

Cotton 53.77 73.19 61.32 67.66 56.71 75.22 63.10

Corn 65.11 50.08 59.06 66.57 63.79 47.26 46.27

Barren 60.90 66.57 56.08 71.31 60.74 65.41 69.70

Almonds 60.35 63.69 75.26 67.54 73.01 73.40 72.16

Alfalfa 90.00 90.52 97.03 93.34 95.90 90.07 62.11

Overall Accuracy 65.72% 67.87% 67.12% 71.70% 68.69% 68.82% 68.61%

Kappa Coefficient 0.62 0.64 0.63 0.68 0.65 0.65 0.65
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(77.66%) and the best producer’s accuracy was found for the barren ground and almond 

classes. Figure 44 is the corresponding thematic classification map. 

 

Table 70.  Comparison of classification results with EO + SAR + 21x21 variance and entropy for Fresno-Kings 

Counties, USA. 

 
 

EO + HH + VE

Producer's Accuracy

sub-test a b c d e f g

Class / Bands X C L X+C X+L C+L X+C+L

WinterWheat 78.32 75.97 78.38 75.50 77.73 78.19 74.47

Tomatoes 60.28 58.43 64.34 63.28 58.87 38.46 71.13

Pistachios 80.96 73.46 86.96 91.00 71.81 81.26 60.42

Water 94.22 94.94 93.20 95.17 93.59 93.91 96.52

Fallow 56.87 67.97 47.66 67.83 70.36 74.28 77.22

Developed 80.54 75.80 76.47 76.00 80.44 71.66 74.69

Cotton 55.94 55.36 49.78 61.88 62.68 55.90 60.95

Corn 31.12 56.00 46.66 54.36 30.38 61.71 39.27

Barren 69.76 72.63 61.25 74.34 71.18 69.19 74.41

Almonds 72.55 80.14 83.08 81.68 72.31 86.09 85.62

Alfalfa 77.69 74.60 84.29 73.11 83.66 68.29 78.31

User's Accuracy

WinterWheat 77.17 74.69 75.62 76.84 77.63 75.67 84.30

Tomatoes 58.84 51.56 55.71 55.79 56.22 45.50 53.62

Pistachios 63.31 54.02 64.44 68.51 67.18 91.86 61.43

Water 81.24 81.91 80.35 82.34 81.47 82.72 82.27

Fallow 81.07 78.25 63.44 81.78 80.41 67.67 73.50

Developed 63.54 70.82 66.74 71.17 77.14 86.60 82.45

Cotton 63.26 72.36 63.05 69.14 63.10 62.86 72.14

Corn 49.06 73.29 66.55 65.47 46.27 53.96 52.65

Barren 68.77 68.67 55.09 71.00 69.70 64.99 70.40

Almonds 64.45 65.72 72.13 68.62 72.16 73.14 77.83

Alfalfa 61.55 90.63 93.48 93.30 62.11 83.50 90.99

Overall Accuracy 66.48% 69.81% 67.16% 71.35% 68.61% 68.33% 71.71%

Kappa Coefficient 0.627 0.664 0.634 0.681 0.651 0.647 0.685
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Table 71.  Error matrix for the classification with EO + X, C, and L-band SAR + 21x21 variance and entropy 

for Fresno-Kings Counties, USA. 

 
 

Table 72.  Comparison of classification results with SAR + 21x21 variance and entropy for Fresno-Kings 

Counties, USA. 

 
 

Ground Truth (Pixels)

Class WinterWheat Tomatoes Pistachios Water Fallow Developed Cotton Corn Barren Almonds Alfalfa Total User's Acc

WinterWheat 2879 105 0 0 0 4 166 56 0 202 3 3415 84.30%

Tomatoes 355 2611 0 0 0 0 317 1449 0 56 81 4869 53.62%

Pistachios 0 1 403 0 0 1 65 170 0 0 16 656 61.43%

Water 0 24 0 1220 0 38 0 0 201 0 0 1483 82.27%

Fallow 10 0 200 0 2657 520 6 0 222 0 0 3615 73.50%

Developed 0 0 36 41 52 2222 7 0 337 0 0 2695 82.45%

Cotton 54 302 0 0 0 4 1375 0 0 37 134 1906 72.14%

Corn 548 355 0 0 0 0 41 1122 0 0 65 2131 52.65%

Barren 16 0 0 3 732 178 0 0 2210 0 0 3139 70.40%

Almonds 3 181 0 0 0 8 211 60 0 2155 151 2769 77.83%

Alfalfa 1 92 0 0 0 0 68 0 0 0 1625 1786 90.99%

Total 3866 3671 667 1264 3441 2975 2256 2857 2970 2517 2075 28559

Producer's Acc 74.47% 71.13% 60.42% 96.52% 77.22% 74.69% 60.95% 39.27% 74.41% 85.62% 78.31% Overall 71.71%

Overall Accuracy(20479/28559)= 71.71%

Kappa Coefficient = 0.69

HH + VE

Producer's Accuracy

sub-test a b c d e f g h i j k l m n o p

Class / Bands X C L X+V C+V L+V X+E C+E L+E XVE CVE LVE XCVE XLVE CLVE XCLVE

WinterWheat 0.00 7.17 0.00 0.00 6.23 0.00 0.00 21.75 0.57 0.00 21.75 0.57 21.44 5.30 22.01 5.59

Tomatoes 53.01 36.12 0.00 0.00 12.18 0.00 0.00 5.56 0.00 6.40 5.39 0.00 6.02 55.49 16.07 53.36

Pistachios 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.65 0.00 0.00 1.65 0.00 0.00 9.00 14.24

Water 43.35 0.00 0.00 48.81 0.87 0.00 52.37 16.61 4.03 54.51 28.64 4.03 46.68 46.76 33.15 59.41

Fallow 34.93 59.02 100.00 45.10 84.02 100.00 38.04 81.05 97.38 32.98 57.40 97.38 59.29 42.81 57.25 51.26

Developed 0.00 3.80 0.00 25.24 31.09 15.09 0.00 43.63 51.56 29.48 49.58 51.66 51.09 58.69 57.01 58.32

Cotton 18.35 8.20 0.00 23.54 17.33 0.00 40.87 14.67 0.00 41.27 14.18 0.00 15.03 30.41 13.61 28.24

Corn 0.00 0.00 0.00 26.25 0.00 0.00 9.52 1.47 0.00 4.83 1.61 0.00 19.46 16.17 34.69 22.89

Barren 70.07 89.73 0.00 68.65 74.18 0.00 80.61 71.11 0.00 77.21 85.86 0.00 84.11 80.81 86.09 80.91

Almonds 34.13 47.16 84.51 17.36 65.04 82.72 66.75 42.59 82.84 51.37 42.59 82.84 61.10 70.88 82.64 78.70

Alfalfa 0.00 0.00 0.00 47.18 0.00 0.00 0.00 2.02 0.00 14.02 2.41 0.00 39.37 26.02 0.14 41.20

User's Accuracy

WinterWheat 0.00 8.60 0.00 0.00 8.24 0.00 0.00 13.94 4.36 0.00 13.91 4.36 27.30 37.48 17.96 32.53

Tomatoes 23.51 23.70 0.00 0.00 21.84 0.00 0.00 33.28 0.00 27.01 32.84 0.00 39.89 44.11 33.39 32.95

Pistachios 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 7.24 0.00 0.00 7.38 0.00 0.00 39.47 38.00

Water 41.70 0.00 0.00 44.04 55.00 0.00 57.12 43.66 22.97 54.38 56.04 22.97 68.37 69.61 70.30 66.34

Fallow 20.69 34.39 14.68 26.01 36.84 14.87 26.32 39.14 15.59 27.46 38.36 15.59 41.06 29.15 38.81 40.58

Developed 0.00 100.00 0.00 86.82 98.51 100.00 0.00 73.04 78.79 88.23 79.17 78.82 68.81 77.43 75.38 77.66

Cotton 41.99 48.18 0.00 34.73 37.03 0.00 19.01 49.70 0.00 15.53 64.65 0.00 42.27 23.92 43.24 24.49

Corn 0.00 0.00 0.00 26.39 0.00 0.00 20.39 24.00 0.00 9.08 25.56 0.00 26.77 27.03 24.83 23.12

Barren 34.01 38.88 0.00 40.05 51.86 0.00 46.99 57.07 0.00 47.95 45.00 0.00 63.99 49.58 46.33 64.03

Almonds 14.42 18.30 41.51 15.37 17.45 42.71 15.47 14.54 50.34 19.55 14.54 50.34 18.52 61.20 60.80 69.56

Alfalfa 0.00 0.00 0.00 12.40 0.00 0.00 0.00 8.12 0.00 12.89 11.31 0.00 46.90 20.19 1.23 45.97

Overall Accuracy 24.69% 27.26% 19.50% 26.81% 30.62% 20.91% 25.35% 31.31% 24.70% 27.60% 31.13% 24.71% 38.33% 41.75% 40.35% 45.69%

Kappa Coefficient 0.16 0.18 0.09 0.19 0.22 0.11 0.18 0.23 0.15 0.20 0.23 0.15 0.31 0.35 0.33 0.39
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Figure 43.  Land cover classification using EO, X, C, and L-band SAR and 21x21 variance and entropy texture 

measures for Fresno-Kings Counties, USA. Overall accuracy was 71.7%. Test 5g. Scene width ~ 25 km. 
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Table 73.  Error matrix with C-band SAR + 21x21 entropy for Fresno-Kings Counties, USA. 

 
 

Table 74.  Error matrix with X, C, and L-band SAR + 21x21 variance and entropy for Fresno-Kings Counties, 

USA. 

 
 

 

 

Ground Truth (Pixels)

Class WinterWheat Tomatoes Pistachios Water Fallow Developed Cotton Corn Barren Almonds Alfalfa Total User's Acc

Unclassified 0 0 29 0 0 0 0 0 0 67 0 96

WinterWheat 841 1427 384 12 99 77 591 875 4 1189 534 6033 13.94%

Tomatoes 16 204 0 11 0 12 156 14 0 136 64 613 33.28%

Pistachios 0 0 0 0 0 0 0 0 0 0 0 0 0.00%

Water 0 0 0 210 28 131 0 0 112 0 0 481 43.66%

Fallow 1183 13 86 78 2789 588 223 178 731 7 1250 7126 39.14%

Developed 1 73 0 352 11 1298 15 27 0 0 0 1777 73.04%

Cotton 0 2 0 68 0 232 331 0 0 0 33 666 49.70%

Corn 27 20 31 1 0 0 3 42 0 46 5 175 24.00%

Barren 0 0 0 496 451 560 0 0 2112 0 82 3701 57.07%

Almonds 1754 1889 23 6 0 1 863 1701 0 1072 65 7374 14.54%

Alfalfa 44 43 114 30 63 76 74 20 11 0 42 517 8.12%

Total 3866 3671 667 1264 3441 2975 2256 2857 2970 2517 2075 28559

Producer's Acc 21.75% 5.56% 0.00% 16.61% 81.05% 43.63% 14.67% 1.47% 71.11% 42.59% 2.02% Overall 31.31%

Overall Accuracy (8941/28559) =  31.31%

Kappa Coefficient = 0.23

Ground Truth (Pixels)

Class WinterWheat Tomatoes Pistachios Water Fallow Developed Cotton Corn Barren Almonds Alfalfa Total User's Acc

WinterWheat 216 97 1 5 70 22 2 17 31 21 182 664 32.53%

Tomatoes 778 1959 16 2 69 5 1041 1365 0 270 440 5945 32.95%

Pistachios 51 25 95 15 2 20 0 17 0 12 13 250 38.00%

Water 0 0 0 751 1 79 0 0 301 0 0 1132 66.34%

Fallow 1068 1 23 34 1764 403 222 153 235 6 438 4347 40.58%

Developed 44 0 34 314 90 1735 0 13 0 0 4 2234 77.66%

Cotton 601 606 56 73 58 59 637 318 0 117 76 2601 24.49%

Corn 910 679 178 8 6 7 297 654 0 38 52 2829 23.12%

Barren 71 0 0 27 757 480 0 0 2403 0 15 3753 64.03%

Almonds 127 209 227 0 0 0 5 299 0 1981 0 2848 69.56%

Alfalfa 0 94 9 35 624 165 52 21 0 5 855 1860 45.97%

Total 3866 3671 667 1264 3441 2975 2256 2857 2970 2517 2075 28559

Producer's Acc 5.59% 53.36% 14.24% 59.41% 51.26% 58.32% 28.24% 22.89% 80.91% 78.70% 41.20% Overall 45.69%

Overall Accuracy (13050/28559) =  45.69%

Kappa Coefficient = 0.39
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Figure 44.  Land cover classification using X, C, and L-band SAR and 21x21 variance and entropy texture 

measures for Fresno-Kings Counties, USA. Overall accuracy was 45.7%.Test 6p.  Scene width ~ 25 km. 
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4.3.5 Best Band Combination per Class 
The FI was used to compare band combinations for each class to account for both 

user’s and producer’s accuracy, representing both errors of commission and omission. 

Using EO, the highest FI was 86.68% for water; the lowest FI was 53.49 for barren 

ground (Table 75). For EO+SAR, alfalfa had the highest FI (93.3%), followed by water, 

pistachios, almonds, and developed areas. Tomatoes, corn and cotton were the most 

difficult classes to identify using EO+SAR. Using only SAR, almonds and barren ground 

had the highest FI just over 74%; corn, pistachios and winter wheat, were the most 

difficult classes to separate using SAR alone.  

 

Table 75.  Best band combinations for each class based on the FI using EO+SAR and SAR alone for Fresno-

Kings Counties, USA. The table is sorted on FI.  

 
 

Alfalfa and Water 

C-band despeckled HH was the best single SAR band to use individually to 

classify alfalfa; the combination of C and L-band with variance, however resulted, in the 

highest FI of 93.3% (Figure 45). Water was best classified by SAR C-band with EO; the 

EO

Class FI Class Best Bands FI Class Best Bands FI

Water 86.68% Alfalfa EO+CLV 93.32 Almonds XCLVE 74.13

Alfalfa 81.38% Water EO+XCVL 89.58 Barren XCVE 74.05

Pistachios 76.29% Pistachios EO+CLVE 86.56 Developed XLVE 68.06

WinterWheat 75.75% Almonds EO+XCLVE 81.73 Water XCLVE 62.88

Developed 69.58% Developed EO+XLE 80.21 Fallow CV 60.43

Almonds 67.10% WinterWheat EO+CLV 79.77 Tomatoes XLVE 49.80

Cotton 61.00% Fallow EO+XCE 77.75 Alfalfa XCLVE 43.59

Fallow 57.81% Barren EO+XCE 73.03 Cotton CVE 39.42

Tomatoes 57.14% Cotton EO+CLV 67.41 Corn CLVE 29.76

Corn 55.74% Corn EO+CVE 64.65 Pistachios XCLVE 26.12

Barren 53.49% Tomatoes EO+XCVL 62.38 WinterWheat XCVE 24.37

SAR OnlyEO+SAR
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best band combination was X plus C-band despeckled HH and variance with a FI of 

89.58% (Figure 46). 

 

Pistachios and Almonds 

For Pistachios, the X-band SAR despeckled HH was the best individual SAR 

contributor with EO but the C-band with variance, and the X and L band with despeckled 

HH and entropy was better (Figure 47). C and L-band despeckled HH, variance, and 

entropy, however, did slightly better with a FI of 86.56%. Almonds were best classified 

when fusing EO with an individual SAR by the L-band SAR despeckled HH. Entropy 

texture increased the FI more than variance (Figure 48). When all SAR bands despeckled 

HH, variance, and entropy texture were fused with EO the highest FI of 81.73% was 

achieved (see Table 75).  

 

Developed Areas and Winter Wheat 

The single best SAR band to identify developed areas when fused with EO was 

the X-band (Figure 49). Variance texture increased the FI but entropy texture did better 

with L-band and the best FI was found with X and L-band SAR despeckled HH and 

entropy with EO. For winter wheat, the C-band SAR despeckled HH was the best 

individual SAR band to fuse with EO but the FI increased to nearly 80% by also using 

the L-band and variance from both SAR bands (Figure 50).   
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Figure 45.  FI for alfalfa using different band combinations for Fresno-Kings Counties, USA. 

 

 
Figure 46.  FI for water using different band combinations for Fresno-Kings Counties, USA. 
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Figure 47.  FI for pistachios using different band combinations for Fresno-Kings Counties, USA. 

 

 
Figure 48.  FI for almonds using different band combinations for Fresno-Kings Counties, USA. 
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Figure 49.  FI for developed areas using different band combinations for Fresno-Kings Counties, USA. 

 

 
Figure 50.  FI for winter wheat using different band combinations for Fresno-Kings Counties, USA. 
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Fallow and Barren Ground 

For fallow, the C-band despeckled HH made the best individual improvement 

when fused with EO (Figure 51); the X and C-band despeckled HH with entropy had the 

highest FI of 77.75%. Barren ground was best classified by fusing EO with C-band SAR 

despeckled HH (Figure 52). Some combinations of EO + SAR with variance gained 

better FI but the best FI was with X and C-band despeckled HH and entropy with 73% 

(see Table 75). 

 

Cotton and Corn 

C-band SAR was also the best individual SAR band for cotton (Figure 53) and 

corn (Figure 54). The addition of the L-band and variance was the best band combination 

for cotton while C-band despeckled HH, variance and entropy texture had the best FI for 

corn. Tomatoes were harder to classify than the other classes; the L-band SAR 

despeckled HH helped the most compared to the other two SAR bands. X and C-band 

despeckled HH with entropy did better, but fusion with data from all three SAR bands, 

plus variance and entropy texture was the best classifier reaching 62.38% FI (Figure 55, 

see Table 75).  
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Figure 51.  FI for fallow using different band combinations for Fresno-Kings Counties, USA. 

 

 
Figure 52.  FI for barren ground using different band combinations for Fresno-Kings Counties, USA. 
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Figure 53.  FI for cotton using different band combinations for Fresno-Kings Counties, USA. 

 

 
Figure 54.  FI for corn using different band combinations for Fresno-Kings Counties, USA. 

 



 

132 

 

 
Figure 55.  FI for tomatoes using different band combinations for Fresno-Kings Counties, USA. 

 

4.3.6 Summary 
SAR alone, as expected, had the lowest overall accuracy compared to EO and 

EO+SAR (Figure 56, Table 76). All three SAR bands despeckled HH and texture 

measures were necessary to reach an overall accuracy of 45.7%. EO alone had an overall 

accuracy of 64.4% and adding X-band SAR with variance and entropy texture increased 

the overall accuracy by 7.3% to 71.71%. At least for the Fresno-Kings Counties study 

site, the C-band had the best individual effect compared to the other two SAR bands.  Of 

course once satellite imagery has been obtained, using derived bands represents no 

additional cost and should be explored. 
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Figure 56.  Overall accuracy comparison between different band combinations for Fresno-Kings Counties, USA. 
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Table 76.  Best band combinations for each test based on the overall accuracy using EO+SAR and SAR alone for 

Fresno-Kings Counties, USA. 

 
 

 

Producer's Accuracy 1 2 3 4 5 6

Class \ Fusion with: EO +C-HH +XCL-V +XC-E XCL+VE SAR-XCLVE

WinterWheat 78.94 79.69 67.85 75.53 74.47 5.59

Tomatoes 57.80 57.12 63.66 63.25 71.13 53.36

Pistachios 88.01 79.91 73.31 90.85 60.42 14.24

Water 92.56 95.49 96.99 94.86 96.52 59.41

Fallow 54.58 60.45 67.51 72.68 77.22 51.26

Developed 74.69 77.92 78.66 73.55 74.69 58.32

Cotton 47.34 55.81 57.58 62.32 60.95 28.24

Corn 44.94 57.54 55.79 54.08 39.27 22.89

Barren 51.99 71.85 73.74 74.75 74.41 80.91

Almonds 77.71 78.35 79.46 81.68 85.62 78.70

Alfalfa 73.16 76.92 78.84 72.92 78.31 41.20

User's Accuracy

WinterWheat 72.55 76.38 76.36 76.98 84.30 32.53

Tomatoes 56.47 54.91 51.50 55.72 53.62 32.95

Pistachios 64.58 65.80 63.26 68.71 61.43 38.00

Water 80.80 81.94 81.95 82.18 82.27 66.34

Fallow 61.03 83.37 79.47 82.81 73.50 40.58

Developed 64.46 61.86 70.12 73.77 82.45 77.66

Cotton 62.09 70.81 71.02 67.66 72.14 24.49

Corn 66.53 68.79 69.64 66.57 52.65 23.12

Barren 54.99 68.62 69.88 71.31 70.40 64.03

Almonds 56.48 61.61 65.10 67.54 77.83 69.56

Alfalfa 89.61 99.38 99.94 93.34 90.99 45.97

Overall Accuracy 64.43% 69.75% 70.23% 71.70% 71.71% 45.69%

Kappa Coefficient 0.60 0.66 0.67 0.68 0.68 0.39

Key to tests: Bands Notes

Series 1 EO EO = electro-optical

Series 2 EO+HH X = X-band SAR

Series 3 EOHH+V C = C-band SAR

Series 4 EOHH+E L - L-band SAR

Series 5 EOHH+VE HH = SAR despeckled HH

Series 6 SAR-XCLVE V = variance
E = entropy
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5 DISCUSSION AND FUTURE RESEARCH 

5.1 Discussion 
As reported in the literature for other locations (Anys and He, 1995; Haack and 

Bechdol, 1999; Haack and Bechdol, 2000; Herold and Haack, 2002; Herold, et al., 2004; 

Sawaya, et al., 2010; Sheoran and Haack, 2014; Idol, et al., 2015a; Idol, et al., 2015b) the 

fusion of SAR data with EO increased the classification accuracy in all three of the sites 

investigated in this dissertation (Table 77). Additionally as more information content was 

added, for example different texture measures or additional SAR bands, the classification 

accuracy also increased. Using SAR alone, the overall accuracy was 46% in Fresno-

Kings Counties using C-band; 58% and 70% using X-band in Campinas and Wad 

Medani, respectively. Using only EO, Campinas was classified the best (84%), then Wad 

Medani, and lastly Fresno-Kings Counties with 68% and 65% overall accuracies. 

However using all available data, the best overall classification was achieved at Wad 

Medani (92%), followed by Campinas with 87% and lastly an overall classification 

accuracy in Fresno-Kings Counties of 72%. 

One concern with the present study is that only the despeckled HH polarization 

from each microwave wavelength was used; multiple polarizations were not available 

from the data sources of the three SAR bands used. Nevertheless, testing with three 

wavelength bands together (X, C and L) from the same location has not been done before 

this study. 
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Table 77. Study site comparison of the best band combinations for each test based on the overall accuracy using 

EO, EO+SAR, and SAR alone.  

 

 

It is important to examine some differences between the data and LC classes 

between the study sites. The first issue is the difference in the spatial resolution for 

Campinas where the C-band SAR was only available from ScanSAR data with a spatial 

resolution of 25.0 m instead of 6.25 m as was available for the other two sites. According 

to the proposed methodology during the data fusion process all data was under-sampled 

to the lowest spatial resolution of the available data to minimize resampling errors, so for 

Campinas classifications were carried out with a spatial resolution of 25.0 m. Larger 

pixel sizes results in including more classes in the same pixels; i.e. more mixed pixels 

making classification more difficult. 

There was also a difference between the study sites in the number of classes to be 

tested. For Campinas five general LC classes were analyzed; in Wad Medani, based on 

examination of the imagery, more specificity was investigated for urban and agriculture 

areas and nine classes were tested. For the Fresno-Kings Counties study site, 

classifications of eight specific crops were attempted given the detailed GT information 

from the USDA CDL (Boryan, et al., 2011). One should note however that the CDL was 

Best Test Results

Data Type Best SAR Best  Combo Overall Acc % Best SAR Best  Combo Overall Acc % Best SAR Best  Combo Overall Acc %

SAR X X, VCER71121 69.61% X X, VER21 57.71% C XCL, VE21 45.69%

EO -- -- 68.02% -- -- 83.75% -- -- 64.43%

EO+HH X XCL 84.09% L XCL 86.93% C C 69.75%

EO+HH+V X X, V7 87.63% L XCL, V21 87.69% C XC, V21 69.90%

EO+HH+GLCM L XCL, CER721 92.69% X X, E21 88.08% C XC, E21 71.70%

EO+HH+V+GLCM X XCL, VCER711 92.26% L L, VE21 86.63% C XCL, VE21 71.71%

Definitions: V = Variance

C = Contrast

E = Entropy

R = Correlation

Wad Medani, Sudan Campinas, Brazil Frenso & King's Counties, USA
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based on Landsat TM imagery with 30 m spatial resolution (Boryan, et al., 2011) while 

the data to be classified was of 12.5 m spatial resolution. In addition to using the CDL for 

GT, 0.5 m spatial resolution PS imagery from Worldview-2 was utilized, but the CDL 

was the only information reporting the exact crops for each field. Of further concern is 

that CDL is a yearly report and a single crop label is assigned to fields that are used for 

multiple crops throughout the year. Thus the crop label for a given field might not 

correspond with the actual crop detected on the date of the satellite imagery (Boryan, et 

al., 2011). Attempts were made to account for this issue when selecting pixels for GT.  

The original EO imagery at 5.0 m and the 0.5 m PS WV-2 imagery were compared with 

the CLD information and care was taken to not select GT pixels from areas where the LC 

appeared to be very different than the rest of the polygons for the same LC. The increased 

number and specificity of classes and the difficulty of assuring accuracy in GT may 

explain the overall lower classification accuracy results for Fresno-Kings Counties. 

Three SAR bands were tested individually and combined; X, C, and L-bands. The 

X-band provided the best SAR-only overall classification for Wad Medani and Campinas 

(Table 77), while the C-band did the best for Fresno-Kings Counties. When combined 

with EO, the X-band was best for Wad Medani, the L-band for Campinas, and the C-band 

was the best single SAR band for the Fresno-Kings Counties area. Combining all three 

SAR bands resulted in a better classification for Wad Medani and Campinas although 

only slightly better than using two bands; using two SAR bands was better than one. For 

Fresno-Kings Counties, however, adding other SAR bands to the C-band resulted in 
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lower accuracy; in this case X-band data were collected from March which was likely too 

early in the growth season.  

Four texture measures were tested for the Wad Medani test site; the parametric 2
nd

 

order variance, and three GLCM texture measures: contrast, entropy, and correlation. For 

the Wad Medani test site kernel sizes of 7x7, 11x11, and 21x21 pixels were tested for all 

four texture measures. As described for Wad Medani, texture improved the classification 

accuracy but the difference between the different kernel sizes was small; for the other two 

test areas only the 21x21 kernel size was used. Variance texture improved the 

classification accuracy for all three study sites. Three GLMC measures improved 

classification accuracy slightly more than variance (Table 78); using both variance and 

GLMC showed a small improvement compared to using either measure alone. The 

different GLCM measures were tested individually for the Wad Medani site and it was 

found that contrast resulted in lower classification accuracies as well as making ROI 

training locations more difficult to assess. For Campinas only entropy and correlation 

were used, and based on those results, only entropy was used for Fresno-Kings Counties. 

Table 78 also compares the results in overall accuracy for the different texture 

measures. Neither variance nor GLCM texture measures were consistently superior to the 

other, but on a case by case basis one usually resulted in better classification accuracy. 

There were also cases where the combination of variance with GLCM was superior to 

each measure alone suggesting that using both types of texture measures is important 

especially because there is little additional cost in creating derived image layers once a 

given source of data has been acquired. Although Clausi (2002) found that contrast, 
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entropy, and correlation together were good; ; the present research found that entropy 

seemed to perform the best.  Inconsistent results for texture measures and kernel sizes 

have been reported in the literature (Haack and Bechdol, 2000; Franklin, et al., 2001; 

Herold, et al., 2004; Berberoglu, et al., 2007; Idol, et al., 2015a; Idol, et al., 2015b); no 

general rule for best practices can be determined other than on a case-by-case basis the 

derived data layers that contribute the most must be determined before final 

classifications are made. 

The methodology for this research was to under-sample the higher spatial 

resolution data to match that of the lowest spatial resolution data in order to minimize 

errors due to resampling. Nevertheless much information is lost by doing so and 

increasing the processed pixel size increases error from mixed pixels. Given the lost 

information content it seems that the error from under-sampling is likely to be greater 

than the resampling error especially when larger pixels are broken into smaller pixels of 

the same value and no interpolation is used. This problem was most serious for the 

Campinas study area where only ScanSAR data were available for the C-band so the EO 

data at 5.0 m spatial resolution were under-sampled to 25.0 m spatial resolution. Even for 

the Fresno-Kings Counties area, increasing the amount of mixture in LC classes in the 

pixels degrading from 5.0 to 12.5 m may have hampered the ability to reach higher 

classification accuracy.  
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Table 78. Study site comparison of overall accuracy for different texture measures. 

 

 

Different LC classes were investigated in the three study sites, from generic 

classes of water and bare soil, to more detailed classes in developed areas and agriculture. 

Water, fallow, and barren ground were common to all three study sites. In Wad Medani 

two classes of urban areas were separated (low and medium) and orchards&trees were 

separated from sparse forest; an attempt was made to separate bare agricultural land from 

EO + SAR Band

V Contrast Entropy Correlation All GLCM V+GLCM

EO + X 83.52% 84.03% 85.11% 88.23% 84.20% 86.28%

EO + C 72.84% 76.67% 79.13% 73.43% 80.38% 80.40%

EO + L 80.78% 80.01% 80.37% 84.10% 88.32% 83.49%

EO + X+C 84.44% 87.43% 91.38% 89.22% 89.57% 89.72%

EO + X+L 84.10% 83.66% 90.17% 85.07% 91.19% 88.07%

EO + C+L 82.34% 83.65% 84.98% 87.95% 88.55% 86.54%

EO + X+C+L 86.13% 87.39% 92.86% 89.54% 92.70% 90.87%

V Contrast Entropy Correlation All GLCM V+GLCM

EO + X 84.22% -- 88.08% 84.73% 88.30% 88.30%

EO + C 83.75% -- 85.07% 85.82% 85.97% 85.97%

EO + L 86.93% -- 87.14% 86.63% 86.49% 86.49%

EO + X+C 86.77% -- 87.13% 85.44% 85.72% 85.72%

EO + X+L 87.64% -- 86.14% 85.04% 83.69% 83.69%

EO + C+L 86.44% -- 87.19% 84.69% 83.12% 83.12%

EO + X+C+L 87.86% -- 85.43% 82.59% 81.38% 81.38%

V Contrast Entropy Correlation All GLCM V+GLCM

EO + X 65.75% -- 65.72% -- -- 66.48%

EO + C 67.13% -- 67.87% -- -- 69.81%

EO + L 66.86% -- 67.12% -- -- 67.16%

EO + X+C 69.90% -- 71.70% -- -- 71.35%

EO + X+L 67.27% -- 68.69% -- -- 68.61%

EO + C+L 69.32% -- 68.82% -- -- 68.33%

EO + X+C+L 70.23% -- 68.61% -- -- 71.71%

Wad Medani (21x21)

Campinas (21x21)

Frenso-Kings Counties (21x21)
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barren ground. Due to many years operating under the Gezira irrigation scheme, 

agricultural land in Wad Medani has higher moisture and carbon content than unused or 

abandoned land and their spectral signatures are different. In Campinas, basic classes 

were urban and green agriculture, forest, and a general barren ground class. For 

simplicity sake, barren ground included uses for agriculture (bare fields) and urban areas 

(areas cleared for roads and urban development). In Fresno-Kings Counties, water, a 

single urban class, and a general barren ground classes were separated while agricultural 

lands were classified into fallow and five crops (cotton, tomatoes, winter wheat, alfalfa, 

and corn). Orchards with pistachios or almonds were also separated.  

The ability to separate different classes at each study area is important.  At the 

Wad Medani location, using EO, all SAR bands, contrast and entropy an overall accuracy 

of 92.79% was achieved (see Table 32, page 79). All classes were classified to about 90% 

in user’s accuracy except for orchards&trees and green crops which were confused with 

each other and with sparse forest. Bare ground and bare agricultural soil were separated 

nicely with above 95% in both user’s and producer’s accuracy  

For Campinas, Brazil, reported earlier (see Table 53, page 97), forest areas were 

confused with agriculture (81.85% and 88.46% user’s accuracy), and urban areas were 

confused with bare ground and water. Water had a producer’s accuracy of 81.77% 

compared to a user’s accuracy of 94.04% suggesting the ROI’s for the training or GT 

could have been improved.  For California, Fresno-Kings Counties, the highest overall 

accuracy was found using EO with all SAR bands and the texture measures variance and 

entropy. Water had the best producer’s accuracy of 96.5%, and alfalfa had the best user’s 
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accuracy of 91.0%. Corn had the lowest producer’s accuracy (39.3%) being confused 

with tomatoes, and also with winter wheat in the case of user’s accuracy (see Table 70, 

page 119).  

The selection of pixels representative of each land cover class for training and GT 

areas, while challenging, is foundational for land cover classification (Congalton and 

Green, 1999; Campbell and Wynne, 2011; Canty, 2014). Haack et al. (2015) described 

remote sensing as “both an art and a science” referring to the task of selecting pixels (or 

polygons) for class training and GT. Those authors recognized that LULC often does not 

result in consistent results as was the case in the present study. More iterations and 

refinements in the training and GT ROIs in the present study may have resulted in higher 

classification accuracies, especially between crops in California. 

EO and SAR sensors measure energy from very different regions of the EMS and 

thus are capable of detecting very different phenomenology from materials within their 

field of view (Richards, 2013). EO systems passively detect energy reflected by materials 

while SAR systems actively transmit energy and measure as backscatter the energy 

received. EO systems measure the variations in the colors reflected by materials based on 

its chemistry and the absorption of different wavelengths of visible light. Materials 

scatter radar energy in relation to their surface roughness, dielectric constant, and shape; 

physical properties rather than chemical properties (Woodhouse, 2006). SAR and EO are 

complimentary and through data fusion a more complete picture of the ground is 

collected as shown in the results of the present research. EO does very well in separating 
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material of different colors but different materials of similar colors are very difficult to 

discern.  

In Wad Medani SAR and EO alone performed about the same given similar 

proportions of bare soil and urban areas, and vegetation (69.6% and 68.0% respectively); 

however, the overall accuracy reached 92.3% when combined. SAR was instrumental in 

separating urban areas with man-made buildings and roads. Buildings scatter SAR 

especially well due to their corner reflector effect (Woodhouse, 2006; Richards, 2013) 

and in Wad Medani this allowed for the separation of low and medium urban intensity 

areas. Soil of different moisture content and different dielectric constant was also better 

separated using SAR; trees stood out with SAR because of the increased roughness 

compared to green fields. In Campinas green vegetation dominated the study area and 

soil and urban areas were different enough that EO was able to achieve good 

classification accuracy (83.8%). In this case the addition of SAR helped but only added 

4.3%. SAR alone had only 57.7% overall accuracy. As previously discussed, accuracies 

were lower in Fresno-Kings Counties but EO alone out performed SAR alone (64.4% vs 

45.7%). Man-made structures and orchards were separated better using SAR than with 

EO alone. In all three study areas the fusion of EO and SAR resulted in higher 

classification accuracies than either EO or SAR alone. 

5.2 Future Research 
This research focused on the use of three different SAR bands, X, C, and L. 

Because dual or quad polarization data were not available for the study sites for all three 

SAR bands, only the despeckled HH polarization was used. Many studies have shown the 
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importance and improvement in classification accuracy by using dual or quad 

polarization because more information is represented from the different views (Sheoran, 

2005; Haack and Khatiwada, 2010; Sawaya, et al., 2010; Sheoran and Haack, 2013a; 

Sheoran and Haack, 2013b; Idol, et al., 2015a; Idol, et al., 2015b). It cannot be 

determined from the present work if using more than one SAR band provides the same or 

better improvement than using dual or quad polarimetric data from a single source; using 

a single source of satellite data however, is likely to be more cost effective in material 

costs and data processing effort than obtaining data from different providers. Future 

research should attempt to acquire dual or quad polarimetric data from multiple SAR 

bands to investigate this question. 

Another aspect that was not included in this research is the use of derived layers 

from the EO data such as the Normalized Difference Vegetation Index (NDVI), band 

ratios, impervious surface index, and texture based on EO. Given that derived data from 

SAR were investigated, the best classification possible using EO alone should also be 

included. In that sense a large set of original and derived layers can be generated to 

enhance the classification decision rule process. Gounaridis and Kougloulas (2016) tested 

classification adding different database, vector and image layers including LC maps 

derived from other studies, population, road network, and an impervious surface layer. 

Aksoy et al. (2009) performed LC classification using EO plus the DEM, NDVI, band 

indices, and Gabor texture layers. 

With the ever increasing availability of satellite imagery, scalable cloud-based 

computation power to derive multiple data layers, the number of variables and possible 
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combinations become unmanageable to process manually. In the present research IDL 

(ITT, 2010; Canty, 2014) was used to write processing scripts to automate many of the 

processing steps but including every possible test combinations in the script is 

challenging as the number of variables increases. The linear processing of so many tests 

becomes computationally inefficient and manually comparing and summarizing the 

results is difficult. Big data analytics, data mining, and machine learning (Witten et al., 

2011) have become popular to extract information from large data sets. Machine learning 

techniques including decision trees (Aksoy et al., 2009; Sun, et al., 2011; Cervone and 

Haack, 2012; Kostas, 2016) and, for example random forests (Breiman, 2001; Liaw and 

Wiener, 2002; Gounaridis and Koukoulas, 2016; Ludwig, et al., 2016) techniques have 

great potential to determine the best data layer combinations in a LC classification 

exercise. 

5.3 Conclusions 
The overall conclusions from this research are: 

1. The decision rule classifier Support Vector Machine was superior to Maximum 

Likelihood, Mahalanobis Distance, and Neural Net classifiers although processing 

time was greater. 

2. Using more than a single SAR band improved the classification accuracy 

although the best SAR band alone or combined was not consistent between the 

three study areas or land cover classes. 

3. The addition of GLCM texture to variance improved the classification accuracy 

more than using variance texture alone.  
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4. Different texture kernel sizes and combinations are useful to improve 

classification accuracy but not in a consistent manner.  

5. Classification with SAR alone typically results in lower accuracy than when using 

EO; however, under cloudy conditions when no EO is available SAR provides the 

only satellite-based option. The addition of texture to SAR despeckled HH was 

important. 

6. The combination of EO with SAR typically results in higher overall classification 

accuracies, although on a per class basis EO or SAR may be better. 
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