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CONCEPTUAL CLUSTERING:
A THEORETICAL FOUNDATION AND A METHOD i
FOR PARTITIONING DATA INTO CONJUNCTIVE CONCEPTS

Ryszard 8. MICHALSKI

University of llinois
Urbana, Il., U.S.A.

Then he took the seven loaves

and the fish, and when he had given
thanks, he broke thewm snd gave theu
to the dlaciples, and they in kurn
to the people.

Mathew 15:35

1. INTRODUCTION

Clustering ia the {ntelligent partitionfng of 2 collection of
entities. Specifically, It is the process of dividing entities {objects,
obssrvatlons, mossurements, data, =t¢.) into categorles tiat aze weaningful
or ueseful For some purpose, it s ane of the fundamental gperations
people use to almplify descripcions of their envircument, and by that, «te
faprove the efficlency of thelr declsion making. Appropriate clusterling
reveals tlie underlying wtructure of the given set of objeets, and hence

clustering can be viewed as a [orm of kaowledge acyulsition.

Clustering problens pervade many (lelds, particularly experimental
ociences such as blology, chemistry, goolegy, medficine, ete. Incedligent

patiltioning of cbjects can also bu i leportant capablllity of autonomous
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or semi-autonomous robate designed for exploratlon of speclal environmeats
(e<g., the botfow of an pcean or the surface of a planer). Consequenrly,
undecstanding the nature of <lustering L[a not only of ecientific {nterest

but alsoc of significant pracrleal tmporcance.

A conventfonal wiew of clusterlng 1s that 1t Ly a process of
partitioning objects Into groups such that the degres of almilarity (or
“natural assoclatlon™) is high smong obJects af the same group, and low
among the objects of diffecedt groups. The notion of the degree of
simtlarity s therefore fundamentel to thils viewpolne. A great varlery of
different similarity wmeasures have besn developed and used In wvarlous
clusterlng techniques. Frequently a reciprocal 0f & distance measurs 1a
used =25 a almilarity fuactlon. The ﬁlstaﬂcc measure for such purposes,
however, does not hawe to satlsfy all 'the postulates of a dlstance
fuactlon (specifically, the triangle fnequality). A comprehenslve review
of varicus distance and siallarity measures is provided fn Diday and Simen
[I] and Anderberg [2). Backer {1] desccibdes a fuzzy sioliarity weasure

bssed an the theory of fuzzy sets:

To detzrmine the similarity of objects, & méasure of sintlarity i=
applled Fo nymbollc descciptions of objects ({data paolnts). Such
deseriptlons are typlcally vectors, whose componenis represent acorss on
selected qualltative or quadtitative varlables vsed to describe objects.
The underiylng assumprion fs that Lf the gimilarity functlon has high value
for the given descriprions, then the objecta represented by lﬁe
descriptions are similar. The almiiaricy relatlonahip betveen any two
objlects In the populatlon to be clustered Ls thus reduced to a slogle

number == the value of the slaflacity functian applled to amymbolle
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descriptions of cbjects.

Conventional messures of distance are “context=free,” l.e:, the
dlstance between any Lwo dats points A and B ls a function of these pointe
ouly, and does not depend on the relatlonshlp of these points to other data

polineas
Slmtlarkey(A,B) = E{A,R) (4]

For example, for any conventlaonal distance  measure, the distance

betvaen points A and B 1s the sate a3 between B and € (Fig.1).

‘l Ll
o.:k~:\~:Hﬁ.’,/,,,,: s 8
L

&n illustration of the context—free distance
Fig.1l
Receatly aome -authors have heun introduclng “context-sensitive”

seasuras of slnilacity:
Similarity({&,B) = E(A,B,E) (2)

where the similarity between A and B depends not only on A and B, bur zlso
on the ralstioashlp of A and B to other dats polnts, represented Ln (2) by

For example, Guwda and Krishna [4] defined cthe so-called "mirual
neighborhood™ distance meagure. 1f polat A is the nth closest point to B

and B is the mth closest point to A, then the mutusl neighborhood distance
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between A and 8 Ll ntm These authors have demonstrated that a method uslng
such = distance geasure can solve some clustertng problems which methods

dazed on the “context—free” distance cannol-

Both prévious eclustering approaches cluater data points only on the
bpasls of knowledge of the individual datka polnts. Therefore such methods
sre fundamentally unable to capture Lhe “Ceatalt prepecty” of objects,
i.e., a propsrty which (s chacracterintle to cectaln conflgurations of
points consldered as a whole, and not as a collection of -1ndependent
points. In order to detect such properties, the system wmust koow not
only the data polats, but alse certaln “concepts”. To Lllustrate this

goint, let us coansider a problem of clustering dsts pofats la Fig. 2.

A person considering the problem In Fig, 2 would typlcally describe (¢

as "a ¢lrele on top of a rectangle,”

e & 0§ & 9 72 o & & & B

e & ¢ & © 9 8 9 @ 0o B % &

An fllustratlon of conceptual clusteciag

Fig-2

Thus, the palnts A sad A, although being very close, are placed In separats

clusters. lere, human solution finvolves partitloning the data polnts loro
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groups not on the basls of palrwise distance hetween polnts, bot on the
basis oF "eoncept wenbership.” That meaas that the polnts are placed fn the
page cluster (f together Lhey represent the same concept. In our example,

the concepis are a circle end 3 rectangle.

The approach to clustering which clusters objects inte groups
representlng a prierl defined conceptuel cntltles 1s called ':oncept;al
clustecing.™ A llnk batween conceptual c¢lustering and distance-hased
clustering methods can be established by stating that La conceptual
¢lustering the similarity between the data polnts is a function ofF these

points, context ¥, and & set of predefined concepts C:
Statlarity(4,B) = £(A,8,E,C) )

The approach has been fatroduced by Michalski |5]. It evolved from
earller work by the author and his collaborators: on the problem of
genecating Tunlclass cuvers;“.Such covers ate dlsjunctive descriptions of
l- class of objects learned f[row only positive exawples of rthe class. Stepp
[6] describes a computer program and vericua expecimeatal zesuvits om
detzrmining unlclags covers. His work {s concerned with what can be called

“free™™ conceptual clustering.

Tha fdea that the wimllarity mcasures of the type (1) or (2) (the
“concept={ree" ncasyrea) may be fnadequate for some clustering problems s
not neiw. In the past, several suthors moticed this problem it and proposed
verious solutlons. For example, Waranabe (7,8] propased the concept of

“cohesioa™ to measuce cthe “degree of cluaternesa”™ of polats, whlch

*In "free” clusteciog the number of clusters ls not predefined, as opposed
to “constraint™ clustering where the number of clusters is sasumed a
priori.
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utilizes the cnitopy weasure. Uslng this concept he vas shle to resolve
the “three glrla f£n -the dacmltory™ parsdox, which cannot be malved by
"concept-free” methods . Other measures of “coheslveness™ of objects wexe
proposed on the bazis of graph—theoretlc-consideratlnns, e.g-, Marula [9],

Auguston and Minker [X0], Zabn [11]j, Cheng [12}.

This psper presents 4 theoretical basis and an algoritha for
conceptual clustering, where conceptual entcitles are conjunctive statements
in variable-valued lople caleulus VLl [L3] (which 1sx a typed ﬁnny valued
loglc extenslon of propositlonal caleculus). These statements, called VI.t
complexes, are logleal products of relational statements lInvoiving discrete
variables of an acbltracy aumbetr of valuea (definitfon 2 and 3 in the next
cheptar). Complexes have a ciople llngulstic Interpretation and ace azble
to esxpress conslsely & large <clasas oF relatlonshipe among discrete
varlables. The algaciths comblnes the methodology of optimlzatlon of
variable-valued loglc expressions [t4] with the dynsmlc clustering method
(1) 1ts thecrecical foundatfon Ls o special property of compleres

fomylated a5 the Sufflclency Principle (sectlon 3.

l. COMPLEXES AS CONCEP{EEE ENTITIES FOR CLUSTERING: SASLIC DEFINITIONS

Let Kpo Kou wvsy X deniote discrete variables which are selected to

2r

dasceibe oblects in the populatlon to bhé clustered. For each variable a

value set or domatn ls deflned, which eontalne all possible values this

varlable can take for any object s the popularion. We shall assume that

the value nets of varlables x , (=1,%,...,n are [falze, and ctherefore can

1’

be represented as:
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D.'l. - {D,I,---.,lii, S 1.2.---.!‘! (“J

n general, the value sets may diffes not only with respect to thelr alze,
ot also with respect to the attucture relating thelr elements (reflecting
e scale of mensurement). In this paper we will restrict ourselvea only to
he case of nominal or linear varfables (l.e., variables with snordered ot
inearly ordeced domalns, fespectively). A sequence of values of varlables
O TR L 2 called sn eventt

L (fli Tys sveey rl‘l') (%)
thexe L Dl' L= 1,2,00a,n

The set of all posslble events, &, is called the event space:

(6)

4
E=dehig

here 4 = dl-dz'...-dn (the slzg.of the event set) and dl = ‘1 + 1.

jefinitfon 1, Given two =vents =, &, ia E, the syntactic. distance,

ﬁ(el,nz) batween e and €y is deflined aa the nusber of vdrtables which have

d{fferent values in e, and e,.

Definition 2. A relatlonal expression
l*i / Ryl ' (7)

wheza Rl' called the ceference set, is one or more elements From the domaln

Py and # stands Eor one of the relational cperatocs = } > £, 1is called a

YL, selectsc® or, briefly, a sslector.

1

= i
{ #tands ot vatiahle-valued loglc system VLI [13] which wuses such

seleczors..
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llece are a Fev exanples of s selector, In which varlables and their
values are répresented_hy-llngulstlc terme!
. [height = tell]
{eolor = blue, red) {read: color s blue or red)
[length > 2]
[size # medlum]

[welpht = 2..5] k

The operator .. Ln the last selector denofes the range of values fron
2 ro 3%, Aincluslvely. It s used when the domaln of the varlable fs a
1lneacly ordered set. A selector (x; s R,] 18 sald to be satlsfled by an

event = = (al,xz,..-.xn), {f the value of x in e, s {n relatton # with

any 2lement of Rt'
Definttion 3, A loglcal product of selectors 13 called a VL, kers:

A fx, # R
et + O F )
vhers 1 ¢ [£,2,+-+.0], and Rl 3 Di' A set of events which satlisly a ”LI

term 15 called 3 EEl complex or, briefly, s cnmplex.

Thus a ?Ll term Ia a formal representatlion of a complex. Since these
two aotlons have 4 one te one corrfespondence, we will use them
fnterchangeahly, uniesn Lt leads to a confuszloon, Thecelfare, 1f & set-
thegeetlec notation L3 applied to & term, if moans that the cperation Is
applled Lo the corremsponding complex (l.e., a sel of events satlafylng the

term). A complex ( le term ) o i3 said to cover an event &, Lf the values

of vaclables ln ¢ matlefy the relational statements (selectors) In the
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complex (term).

For example, event e = (2,7,0,1,5,4,6) satlafies 'the complex

(%, =2,3][xy < 3]{xg = 3.8,

Let E be a set of events Ln £, which are data polints to be clusterad.

The events in E are called data events (or observed events) and events in

I VE (L.e., events in I vhich are wot data cventy) are called empty events

{or unobserved evencs ). .

Lek a be a complex which covers some data events and some emply

evenrs.

Beflaitlion i. The number of empty aveats coversd by a 18 called the

sparseness of a and denoted by s(a).

Let p{a) denote the number of data events covered by o, and &{a)
dencte the total onumber of events coversd by a. We have then
t{a}) = p{a) + s{a). The total number of events satisfying the complex

a= A [z, §R] {8
fex i i

Ha) = M (R I 4

11 151 (2)

where
Ic {1,2,.00,u]

.c(nlj =~ the cardinallcy of Rl

d, - the cardinslity of the value set of wvarfable x

i i
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Definition 2. The degree 2£ generallty g(o) of complex a [s defined:

t{a) s{a)
3 = - - {1 + —— 10
g{a) = log p(a) log { pla) (1o
The value %%z% speclfies how many events are In the complex per one data

event. Thus, the degree of generallty g(a) specifles the uncertalnty of the
location of the dats polnts In the complex. The grester the degree of
generallty of & complex, the greater ls the dncgtta!nty. if g=0, then
all the events Ia the complex are dats events. We can see (rom (10) that
for a fixed pl{a) the degree of generality is a monotonlcally groving

function of wparseness.

Let L be @ set of complexes (or events], and R be the set of all the

1

distinct values which varfable x, takes In these complexes {or evenis).

Deflnltion 6. The opecation whleh tranaforms 1, lata che compléex
n

A [xi - Rl] ia called yrefereace wnilon or refusnlon. The resulting
=1

complex ls called the minlmal coverlng complex or mc-complex for L aod

denoted RU{L) (reflunion].

1f any kl - Di' then the corresponding selector {5 vremoved from the
complex, The refunlon is thue a trensformatlon which transforms a set of

complexes (or eveuts) Llato the minimsl coverlng complex.

Theorem L. The me-complex of an event set has the minlmun sparseness anmeng

al)l conplexcy coverlop this set.

Proof: Let o be the mec=cample (ar an event set E:
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a
a =RUGE) = A [x=R ]
Gy A8 (1
n
hace B, ¢ D, (the domaln of x,). Suppose that p= A [x;~F.] 18 =&
1= i S

ooplex Which covers E agd has a smaller aparseness than a. If thls Is
rue, then there must exist PL such that P, ¢ R+ Bur Ry according to the
efinition 6, cootalns all values thnt-xi takes Un events tn E. Therelfore,

fe, c'R;, then complex a could not possibly cover all eveuts In F, which

i L

4 & contradictlon. .

=t E be data evants which are covered by a complex o' .

Yefinltion 1. The sat E s called the core of w, and the complex a* = RU(E}

{3 called the trimmed o,

From Theorem 1 we have a* c a.

Thearem E: Lf El and Ez are twp disjolnt event sets them:
I(RU(EI)) *-SCKU(EZ)) £ s(RUCE, u EzJJ (12}

reooli Accocdlng te Theoresm 1, RU(El) and RINE,) have the snallest possible
sparsensss among all complexes covering El {nd E:' regpectively. Since El

snd E;

2 are disjoint, then (12) must hold. [3

The property exprsssed by Theofen 2 has an analogy {0 statliatical
c¢luatering, where with the' lncreaslag nunber of clusters the “fle” between
each cluster and the probabiiley distribution “fleted” te che cluster aleo

{acreanea.

Theores 3: let a; and oy ke two lntersecting complexes, whose union covera

L

an event set E. let El (Ez} denote the set of events in oy (uz) which are
covered only by this complex (the relative core of the complex). Let o
and e, be any Ltup disjolnt complexes covering the same event set E. 1f

RU(El) and RD(EI)'are dlsloint complexes, then:
s(RU(El)) + l(RU(Ez)) £ s(u‘J + 5(02) ()

Proaf: The theorem is an lumedlate consequence of Theorem 2 and_ the premise

thet oy and a, are disjoint complexés. L]

wa will next LIntroduce two baslic concepts for the conceptuzl
clustering algocithm preaented in saction 6. Tihey are the stag of an event

sgalnst an avent eet and a cover of an event set agalnst another evenl sez.

Let F be a proper subset of the event space £, and e an event out'slde

of F, 1l.e., & & F.

peflnltion B, The scac G(el¥} of e sgatnst F is the set ol all max kral
@nder lacluslon complexes coverlng the event e and not covering any event

in F. (A complex g Is maximal under imelusian with respect Co property %

Lf theteé does not extst a complex a* with property P, &uch thst a c a*.)

Let El and 82 be two disjelat event setla, El(\ ﬂz -4

peflnition 3. A cover COV(E |R,) of E agalnst E, ts any aet of complexen,
{Gj]JtJ' such that fer each eveni e :-El there (s & complex ﬂj' jed,

covering lt, and none ot the complexes ::l_J cover any event ln-Ez. Thud we

have:



— 2B5 -

E, ¢ U a, ¢ I\E

1=y (14)

A cover In which all complexen ave patrelise dlsjolnt nets la called a
disjoint g¢over. If set F, is empty, then the cover BO?(EIIEZ) - COV(ELIG}

is simply denoted &3 CO?{Ei).

pefinition 10. The sparsencss (EEE depree of genarallity } of & cover 1w

defined as the sum of the sparsencsses (the degrees of generallty) of

conplexes Ln the cever.

3. SUFF[CIENCT.QE_CDHPLEXES AS CLUSTER REPRESENTATIONS

Firar, we will observe the followlng propecty of complexes:

Theorea 4. For any glven eveat apace £ and Lnteger k < dl'dz"'dn (where dl
is the cardinslity of the value set of ‘variable xi}, there exist k palruise
dlsjoint complexee @yp Bpa teta ay whilch completely £111 up the space I,

f.e.,

g1 7 (s)

Proof: Iﬁg theorem s equivalent to saying that any evenl space ¢an be
pattitloéed Into an arblirafy number of complexes (but, of courss, not
Yarger than the cardilnalicy of £). To mee thls, take any subsat of
variables such thet the arithmetic product of cortesponding dl—u is preater
than or equel to ki Lat Rj' J=1,2,:++ denora skl posaible sequences of

values of variables x,, 1 1.
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Construct c¢omplexes:

(16)

where T Le I, J=1,2,..., denotes & value of wariable x in the

iy {

fequence RJ. Obviously, the complexes cJ ate pairwise disfolnt and f111 up

the space L. 1If k* > k, then k™ ~ k complexes are Jolned with the

remaining ones into siugle cosplexes, according to the formula:

Blx, = a] ¥ B[xl e b} = Ble - a,b) 7y

¢
where B denotes a conjunction of selectors lnvolving variables other than
x

This 1s always possible, because :for any x L € F, thare sre d

L 1 L

complenes Gj' which differ oaly in the value of Xy ®

From the view of clusterlng, a more {nt=restlng questlon Ls whether
for any glven event set K {n the apace I, there alvays exist an arbitrary
nusibier k ¢ ¢{B) of palrulse disjolnt complexes, such that they not only
f1ll up the space I, but also partition the set K fnto k non-empty subsets.
A positive answer to thls questlon would iwply that any glven event set can
be partitioned Into sn a priocl sssumed number of subsets, each cavered by
a alople complex, dlsjoint from other complexes. The answer Lls lndesd
positive. in fact, even a wtronper propecty holds, ss scated by the

(pllowing theorem.

Theocem 3. (The Sulflclency Princlple)

For an event space [ and any data eveat set F = {cl. e ...,'ek};

E c L there exists at least one szt of k. palreise disjoint complexes

o &
| L T Ty, auch thar sach conplen contains one dats evenl:
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ej € ujl j - I,2,---.k {181

and the snlon of comglexes fL11s up the space [L:

1 (19)
Proof:

The basie idea of the proof 1s to show that fer any
£ = [el.ez,....ek}, E ¢ L, it ls aluays poselble to construct a tree, In
which nodes are ssslgned the varlables X 1€ 1,2,+:03n, branches of mnude

x, ate assigned elements of & partition of Qi (the value set of il). and

/1
the leaves represent complexes nj. such that each complex covers o single

event ej, and the union of complexes fills up the space L.

Suppose, 11 - {xlj'xZJ"°"xnj)’ 3=1,2,-24,%, and xL1 € DI'

Take any varishle, szay xp, which has different values for events In E.
Suppose these values are 81y By, eney By Partition the wvalue setr, np of

L into gubsets (al}, [12}, weey {a_ 1, k:' where & ¢ A, and A_ 18 & n=t

=1
DP \ “1"1"3"‘°"=—1}' It is obvlous that complexes
[:P - ‘1]' pr - ‘zi- —nirid p [xp = Az], partltion both, the event set E a3

the event space [ Into 2z non-empty subsets, Suppose these complerzs

paztlition E inte El . E. s ey E‘ and £ 1into Eq ’ ;a o very L
1 2 z i 2

A’ whegrs
z

Variable ‘P ia assigned to the,coot of a tree. Branches Fron the rog
ste assigned valuwes By 8y ey A - Leaves ol thle tres corvrespond ta

cospletes [xb = ‘ll' [xp - azl, FEN [gp - az]. covering event seng

Enl‘ E.z' By EA:' respectively (Fig. 3).

[ Xp=a, L 2By]

Constructing & Erée for the prool of the sufffciency principle
Fig.3
for every one of the above event sels which hag more than one element
repeat the above process with the (ollowing modiflcatlon. Supposse Eal has
mare than one element and x: takea values bl. h!' ssry B for events fin

4

Eil' Asplgn x_ to the root of a new teee, and artach the tres to the leaf
cocrespoading to Enl (l.#., to the Leaf marked by [xp - 311 in Fig 3}.
Assign Lhe branches ecmanaling from this root values bl' bz, seay ‘y' vhere

Br - ny \ [bs’bZ""'by—1|° 1t 'Ls obvious that complexen:
I‘P -'nllixr - bll' lKP - al]Ixr - bzlv htl ol | [‘p - .lilxr = BI} (20)
partition both, the set Eal and the set Ial fnte y disjoint subsets.

Thia process is continued until leaves of the oltained tree correapond
to coaplexes, each of wilch coverlny only one event from E. Bepause every

step of this process pactitions sloulisnecusly events Ln f oand In I, the
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unfon of the obtalned complexes covers E and f1lls up the whole aspace E.

Yhus, these complexes constitute the desired set [al,uz,...,nh}. -

This above Ctheorem asserts that the space of sll c¢omplexes in
auffictent to be e space of cluster representatlona, becsuse any event sel
can be clustared into an arbltraty nusber of complexes. The theovem I
used as the theoretical basis for the clusteclng algorithm described in

section 6.

As the above proof indlcates, there wsually will be many covers which
conatitute & k-partltion of any given event aet. Therefore, 2 question
ariges as to which cover to select as the most desirable. In order to

anawsr this questlon, a crltecion of the guallty of a cover 1is needed.

4. A CRITERION FOR EVALUATING QUALITY OF CLUSTERLNG

Léet E be the set of data points, and COV(E) a disjofnt cover wof E.
Such a cover fmplies a partitfon of € fato clusters, each cluyster belng the
event met contained in one couplex. The spaciencss (or® the degree of
geaerality) of the cover could be used for defining a criterion of quality
of a partitlon. However, 1f E 1% partitioned intc fndividual events,
then, obviously, the sparseneas ( as well as the degree of genecallty)

will be zero. Consequently, this kind of crlteclon can be used only If the

nuaber of cluaters Ls wssumed a priori, l.e., for s coastralped clustering

probles: In this case the problem is to find & disjolnt cover of E with k
complexes, whose saparseness (or the degree of generality) is mlnlimm. TIn
the case of a free clusterlng problem (i.e., when the nuaber of clusters is

not assumed a prierd), a critecion of quality of partitioning has to
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Lovolve, in additlon to sparaeness (or the degres of generality), also scme
"cost” functlon dependent on Che number of clustecs, e.g., a mzasure of
complexity of & cover. [In this paper we are concerned only with the
constralnt clustecing problem. Although 1t may secs otherwise, this iz not
a seriows limitatlon becausze Lntecesting practical solutioas of
clustering problems should not produce more than just a few cluatecs (this
is 8o, bacause when the number of clusters fa large, humans prefer to
organize them iatc .an hiararchy). Consequently, to obtalna genceal
sclution, a constraint clustering slgocithm should be repeated for
saveral different %, and the best obtalned particion smlocted as the

general solution.

The aparseness (or the degreo of genetrailty) moy not be sufficlent as
the &ole celterlon for sclecting & cover, ©Onc may seck a cover which
exhibits other propertles than mlnimum sparseness. 1In order to use several
criterla for selectlng i cover simultaneously, we adgpr the lexicographic

cost Functlonal deflded En [14].

A lexjcograghle evaluatlon functional ( LEF) ls defined as a patr of

two Ltscs:
A = &a-ltst,1—list> (21)

where a=11ist = (‘IJHZ""'nI)’ La & ilet of atteibures used
to evaluate a cover
t~1i{st = (rl,tz,...,tl), ts a Llist of "tolerances” asafigned to

the ateributes nl.renptt;lwely. 0 £ T < 1.
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Let ?j, §=1,2,... denote all possible disjoint covers of Lhe cvent

set E. Let V denote one of the covers, and let al(¥ } denote the value of

i

attribute a for cover V. Cover V Is said to be optimal (mlninal) wunder

]
functional A Lf for every 1:

AV LAy (22)

jJ
where
A(V) = (iliv). ﬂz(v).-*-.al(V}J

ﬂ(vJJ - (.le)’ a_z(vj)l"'lan_(vj))l j -llzl"'b

and & (n & relation, called the lexlcographic order with tolerances, which

holds 1F:
&1{?3} = ar(V) > T1
or laxurj) AT and m (V) - a0 T,
OF sasaschas
(23)

OE snveassassns inasn reeis d ! = )
Chere an a‘(VJ) altv) 20
TL = 1!'(.imax-nluln)’ L= L2001
8 ax " ujx[ai(Uj)},

® fmin = ';“{.ltvj)}

Note that LF 1 = (0,0,..,,0) then % dengtes the Lexlcographle order

in the usual sense. Tn this case, A can be speclfied Just ss A = <a—lliatd>.
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To specify the a Functional A one lelec:a.l aet of attrlbutes, puts
thea §n the desirable order In the s-1let, 'mnd sets the values for

tolerances in the t-llst.

Relatlon & partitions sll covers into equivalence classes and orders
the classes llnearly, with the flrat class contalnlog one or @otr= aptimal

covars, and the next classes contsinlng consecutively less optimsl covers-
Relow are a few criteria which may be used ta assemble an a-llst:

® Spargeness (or genzrality g) of a cover. Minimlzing sparseness will
ptoduce complexes whlch "fit™ se closely as possldle to clusters of data
events. This criterion is an sdnglog to the crirerfon of minimlzling lntra=

dlscances la the conventional dlstance=-baaed clusteving.

® Intersectlon, defined as the averape degcee of intersectlon (DT} between
sny two couplexes {n the cover. The U1 betweoen two complexes [e the total
nunber of selectnrs which remaln in both complexes alter reaoving every
patr  of dlsjoint selectors (selectors whose reference esets do 'nat
{ntersect). For example, the degree of Llatersection between complexes

[%,=2, 3| [%,*3.5, 7] {2, =2..3]
and 2 Lo s ?

3
[%, =3 = =1][%, %5 -12][x. =L}
4

in 3, (= >

The introductlon of DI as & ceiterfon for clustering comes Eroa the
observatlon, that people tend te prefer partlitons of oblects, in which
¢lustecs Alffer aot En Just one, byt In many characteristics. This
crltecfon la an analop to the rriterion of maximiziog cluster Iater—

distances (n distance-based clustering.
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» Imbalance, defined as

-

&
e ) H/xee(E) = eff nap)l
t=1 (26)

shete ¢{E) i3 the slze of the event set, and c(E “1) ts rthe number of
{ata events covered by complex ag (the cardinality of the core of aij. The

{whalance measures the vaclahility of cluster glzes.

» Dimenshonality , defined as the total number af different variahlas

tavolved in the complexes of the cover. The dimenslonality tells us how

sany varlables are used to describe clugters, and, thus, how many variahles

have to he measurad to classify objects Into these clusters.

§. PROCEDURES STAR and NID

Before degseribiag an algorithm for conceptunl clustering {next
sectlon) we shall flesr describe two importanat peacedures usad in this
algorithu: STAR and NIN. Procedure STAR generates the star (def, 8) of a
data event againsct a set of other date events, and procedure NID gransforms
i non~dilsjolnt cover, whenever possible, into a disjolnr coverc with the

same number of complexes.

Procedurs STAR:

This procedure ls bassd on the algovithm descclbed {n [L4].

L2t €. be an evént and a & complex. The operallon ., {= o (read: e,

extended in a 1s defined:
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a, ife £a
o
e la-= (25)

4, otherwlise

Let event ¢, = (T 4Fy, 00,0 ) and e # e, The operation e, — e,
fread: e extended sgalnst el) {5 ideflned:

e°-4 e, ~ [\ (e, b= e, #0,1)

¥ fel (26)

Let Gu(eIF.) denote the unlen of coemplexes ErumI the star Glelg). It

can be shown thag:

celey = A (e eJ)
e 7E 2n

3
Ta ohtaln the star GlelB) frun c"(elﬁ), the right—hand side of (27)
must he converted to the unlon of miximal (under In¢lualon) complexes.

Such a uninn Is obtalned when the set-theorecical wmultiplicacion 13 done

with the application eof absocptlon laws.
Procedure N
(A transfocmatlen of o won-disjolnt cover inte a Jisjolnt caver)

Let ‘-“1'“2-“‘-":' be o set of not necessarbly disjolat complexes,

which L3 a cover nf o data event set F.
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Lat c(ulj, L= 1,2, &, denote the cardloallicy ot ay (che total
aumber of eventz covered). Detevamlne the (acithmerle) sun of
Eprdlnaltthg:
L : )
sc = ) cix,) (28)
i
i=1
and ths Egrdlnallty of the (eet-theoretic) suvm of complexes:
k4
. cs = el il a,) [¢4:5]
i=1

LE sc = ca then 5TOP: U is already o dis]oknt cuver.

For L = 1,2,«:s,t, deteculne the relative core, CDREi, of complex
ul,t.e., the set contalning data events covered by complex 3, and oaly
by this complex. Tet RESIDUE donote the ser of remainlng events,

| 2
L., RESIDUE = F N U CORE, .
1=1 '

For each CORF.I dotermine lte me-complex (def. 6):

u‘; = RU(CORE), L = L, 2,.e0st (30)

1f any two complexes uT tntersect, then STOP. The disjolnt cover

cannot be obalned. (This s a direct consequence of Theorem 1)

Select an event fros RESINUE and call it &. Deléte e From RESINVE.

o
For each palr (c,uL), P o= 1,2, 000,08, determlne the coverlng complex:

u} = autle] 0 D) (31)

)
Delete cvery o, which Lhterspcts wlth any nj. £ 1. LE sll a‘ are

L
deleted chen STGP: a disjolat cover cannat be obtalned.
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9. Select the best complex, Rest-u, among complexes n}t scéording to  the
LEf:
{(4spats, —res, ’5’°l)"'1"2n‘3))
where
) 0
Appars — the diffecence between the sparseness ol ci and ay
ren - the number of events Lo RESIHUE eovered by ui
Anel - the difference betwesn the nunher of selectors In 01 Al
1
o,
11,12,13 — telerances are set to O by defaalt.

The sign “=" in [ront nf rés and Gsel ‘indicates that

the algoriche

will waximize these criterla (by minimizing the nugative value).

10. Suppose Nast-o waa created by jolning e with n:. Assign to dz & new

value Best=o.

11. 1f RESIDUE =4, then END, othernilye go to f.

The outpnt Ffrom this pracedure 1s elther &

dls joint

cover

fu;,n;,--..nfl of set F, or an Indicatlon thar such cover cannot be

obtatned from the faltial cover Iul,qz,....n‘].

6. AN ALGORLTHM FOR CUNJUNCEIVE CONCEPTUAL CLUSTRRLNG

6.1, fg_ﬁvcrvlew

Bamed on the ldean describod [n previoua acctlons, we

an algocithm for con junct lve coaceptunl clustering, catied

have deoveloped

PAF.* Clven

]
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get, E, of events from an arbltrary event space, and an lnteger ke, PAF
partitione T {oto k éluaters, esch of which has a conjunctive descriptlon
in the form of & vLI complex. The obtalned poarticion ‘is optimal or
suboptimal with regard to a lexicographic evaluation functlonal, assembled

by & usar from the criterfa llsted In the previous sectlion.

The general structure of the algocithm Is hased on' the mulcleriteris
dynamic clustering wmethod developed hy Diday and his collahorators (Niday
and Simen [1], Henani [15]). Underlylng notloms of the dynaulce clustecleg

method are two functlons:

g - the represcntation functlon, which, glven % cluatecs of a partition

of E (a k-partitlon) produces s ser of &k cluster representatlons,
called keenels. There may be difecent kinds of kernels, e.g., the
center of gravity of # cluster, s few selected polats from a cluster, a
probability disecibutlon best fletlng the cluster, a Ilnecar mantfold of
mlnlmal lnercia, etc.

f — the allocation Function, whlch, glven a set of kernels,

particions B tnko k clusters, "best {ltting™ these kernels.

The method werks {teratlvely, startlog with a sec of % Inftlal,
randomly chosen kerngls (ol a glven kind). A single iteration consists of
an application of functlon f to glven kersels, and thea eof [function g to
the obtained partltion. An Lteratfon ends wlth a new set of kernels. The
process contlnoea untlil the chosen ceiteclon of quality of a partitlon, M,
ceases to fwprove. (Cciterion ¥ meagures the “F{t" belween a pavtition and
Wernels.) It has been proven {l], tho: this method slways converges Lo =&

local optimum.
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The measure W can be a single criterion, or a sequence of crlteria.
In the mltlcriterla case, for eachh criterion an approprlute type of

kernela 18 uscd (Hananl [15]).

The algorithm PAF applies a multicriteclia dynamle clustecleg method,
In which the bastc and final ‘cluster represcatatlon Is a VL, conplex.
Internediate representatlons Include the geometrical center of a cluster
(using the syntactic distance; def.l} ond the "movt outatazading™ event

{most dletant from the ceater) la s clusted,

The uvge of the Iattfr representatlion 15 ‘an appllcation of an
“adversity principie.” Thils pelnclple states that L[ the most outstunding
evant truly belongs to the glvea cluster, then (€ Lt serves as the cluster
reptencatation, then tche TFlr™ bhetwcen Lt and other events In the same
eluster should still be better than the "fit"™ betwesn it and events of amy

nther cluster.

in the algorithm PAF, the measure of “fit” betveea a data event and 3
kernel (a \'Ll complex) 1s 5 binhary sessure, deflaed by a pradicate
speckliylng whegher an cvent satisfies the complex or not. A complex [s a
form, which can describe 4 very lacge nuabec of cunflgurattons of events.
For n varlables, each taklng d dlstlnet wvalues, thcre ace H = {23_1}9
differeut complexcs. For example, L6 n = 1Q and d = 7, chea &= 1020. Such
a large size of the “concept spice”™ adkes con Jancttve clustering
campytatlonlly  Jn sxtrencly complex  problem. Te ‘obtaln a Feaslhie
practical solution, [ ls necessary to apply a comhlaatlea of carefully

dusigned heuristie wmearch methods.  In PAF, one of the methods used (s a

wvell knpwn “best flest™ seareh techalgue  developed In  artiflclal
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{ntelligence [16].

5,2 Description of PAF

L.

A flow diagram of algorithm PAF is shown ln Fig. 4y

In the [lest step (blpeck 1), a set of k data eveols
E = "1"2""'°k}' called peeds, is selected from che evand set E.
Saeds can b2 selected scbltearlly, oe¢ they can he chosen a3 events
whieh are most distant syntactically (def.l )} from each other. 1n the
latter case the algorithm will pgenerally converge [aster. For

selectling such events program ESEL [(t7] can be useds

For €ach seed g I =1,2,.44,%, a star 1a generated against the

rematning seeds (using procedure STAR described ln asc. 5):

Gy - c(elleb \ e, 1Dy e 1,2, 000,k
From each stac a complex §s melected, such cthat the zesultling set oF k

complexes:
(L) 1s = disjolnt cover of £

(Li) Ts an optimal or suboptimal cover among all posslble such covers,
accordlng to an sssumed criterion LEF {coastLructed by 8 user Erom
criteria listed in scc.4: sparseness oc genercality, intecsectlon,
Llmhalance and dimenslonallty). This ks the most dLE[leult and
computatlonally costly step of the algoritha. 1t caa  be
pecformed In & nunber of different ways. We will diatinguish
hetween three Alfferant procedires: P (parallel), PS (parallsl-

sequential) and 5 (sequentlal). These procedures are descrlbed
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Given:

E — a ser of dika gvents
k = the desleed nre of clusters
A = klie evaluation funclional

/

Choose k "seed" events from E

14

\z/
Using peocadure STAR deteemine Lhe star
of cach scwl apainst ehe remalndog secds.
Seleet Mrom vach s1A0 e cpup lex, s
et the eheilmed colleetron, Foof b
comppiexes will e tle YbesU™ disjoi
cover of E {with help of NIN procedure).

2/
Is the toentinat bom

celterion applicd
o I watisfled?

Is Llteratinn

add or cven
?

L/ e
Charse k new seed
events which are

Chougtie bk now seed
events which are
cventral in tlne exteeme in the
comprlaxes o I cumpiexes in ¥

i ;

A flow diagram of algoritm PAF

Figure 4.
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tn the next sectlon.

& A ter;lnatton_crlterlon of the algorithm [s applled to the obtained
cover. Tha termlnatlon criteilon Is a pair of parameters (b,p), where
b (che base) 1s a standard aumber of f[rerations the algorithm always
performs, and p (Che probe) is the number of {rerations beyond b,
whlch the algorithm pecforms, after each Lteratlon which prodaces -an

Improved cover.

s A new set of seeds [s datecmlned. 1f the lreratlon 13 odd, then the
new gegds are datu evenrs la the centers of complexes In the cover
(atcordlng to the syntactle dlstance). If the ltecatlon 1s even, then
the new seeds are data events maximally dlstant Erom the centers

(accoerding to the madverslty principle”}).

7. PROCEDURES P, SP AKD S

ALl three procedures use hounded stars, that 1s stars whese sike is
Limited by special parameter MAXSTAR. The reasan 1s that the size of stars
may he very large when the nomber of variables n fs hlgh. As can bhe seen
from peocedure STAR, the upper bound on the numbec of complencs In a star
grows exponantlally with k {che mumber of clusters); namely nk. The alze
of any star Is controlled by nob allowing Lt Eo have more than MAXSTAR
complexes. Whepever a star exceads thls number, complexes ace ordeced ln
the ordecr of ascendlng spdcseneds, and only Elest HAXSTAR vomplexes are
cetalned. Tt s also agsumedl that all compliexes Ln stars Gre trlousd {Leew,
tlie grelualoa opecatlion Is applled to che cofe of ecach comples, aml then

the resulting me-complex s used to replace the ociglnal conplex In the
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star; sce def.7).

To simplify the description of procedures’ we will assume that Che
eriterion of clugterlng optimaliry Is minfmizing the sparseness of the
disjoint cover (cepresenting a partition). The procesdures can bhe extended
for & mltleriteris case by using a criterfon LEF (whlch ioposes a 1inear
erder between equivalence clsses of sets af covplexes). In such a
multleeiterla case, howaver, Sparséness should he used as the prloary

criterion in order to retaln the propertlen of the desccibed pfocedures.
Procedure P

The procedure is applicable for relacively small MAXSTAR and k. It Is

patticulacly useful For executlon on a petallel processor. Let atar

ci - C(eiiﬁo \ (gi]) be a set Ini,u:,...,u;l}, 1 = 1,2,..04ks Assume that

. 1
conplexes nj, j-f.'l.l,...,g1 are ordered Ln ascending ordec on sparsensss.
The posltlon of a coumplex in the star so ordeced {Indlcated by a subseclpr,
which counts frem ©0), 1is called the rank of the complax (thug, e.g-,

complex q;-hgs rank 2).

Taking one symbol n; Erom each star Gl, t =1,2,0..,4, at a viwss,

generate all possible sequences:

o 2 k
ad_.....ao']
2 k-1 k&

L) Nt )
a o

‘Po-(n

Pi = {a_,o

g =g -

(32)
PS " “‘lo"'zl T l'\k )
k . ¢ By

[ 2 I

.= la’ .«
LI ) 8y

r

whete [ = f&l+l)(g1+|’__‘(sk+l)
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The aym of the tanks of complexes Lln any such sequence is called the

pathrank.  Assume that sequences P]' y = 1,2, -4e, are now artenged 1in

ascend{ng order on their pathrank, with sequences of equal pathraak ordeced

arhitravily. As Dbefore, Po has pathrank 0 (because all cumplexeu (n Po

have

r

cenk 0). PI'PZ""'Pk' however, denote sequences with pathrank 1, and

? denutes a sequence with pathrank g eyt ey

Considering sequences Pj in the ascendlnpg order on thelr  pathrank,

the following opecatlons srée pecformed on each sequence!

{t) AP

(11)

3 {8 tested whether it ls a cover of E. This ca&n be done by
consecutively removing [rom E data events covuered by sach eoeplex in
?1. If at the end E becomes the empiy set, PJ ls & cover. 1f a Pj is

wot a cover, it is removed fram further cangideration.

A PJ ls teated whether (¢t is a disjolnt cover. 1F it 1s, 1its
sparseness ls calculated. Tf it 1 not, 2 lower bound (1.b.) on the
sparseneas of 3 posslble disjoint cover 1a calculated (without

actually determinip the disjolint cover).

The 1.b. 18 computed by determlnlng the vtelatlve cote of each
complex (l.e., date events covered only by the given complex and: not
by any other complexes), and tien computing the sparseness of the we—
complex of the core. The l.b. is the sum of 80 obtzlned spacrsenesses

¢{tnis computallon i3 based on theocrem 3). [The pucpese of using the

. 1.5. fs ko avoid, whenever possible; the computationally costly

procedure HIN}
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($11) Tf the computed sparseéness {or l.b5.) L8 uwot a new alnimum (l.e., Is
not smaller tlian the spatseness of the best cover obtalned so Far),
then the cover is removed (rom Fuctlier consideratlon. Othecwlse, (I
ft Ls a disjofat cover, Lt La retalned as the best cover; and (f Lt ia
a non-dis lolnt cover, it ls transformed by NIR, Lf possible, Loto a
disjolnt cover (note that sume operatlons of the NID procedure vere
alresdy done Im (11)}. 1f the sparacness of the obtalned disjolot
cover stlll represents a now oinimum, the dover i3 retalned az the
best so0 Far. 1F the sparseness is aot a new minlmum, or NP falls Lo
produce a dIsjolnt cover, the cover 'Is reisoved From furtlier

conslderation.

The disjelnt cover retalned at the and of the above se;r:h [iracess
through =sequonces PJ fz the output of Ehe procedure. 1t la a mlnlmum
sparseness cover whlch can be assembled from complexes in the glven stars.
The oxlstence of at least one disjolnt cover [s assured by the safflciency
principle. An advantage of the above described ordering ef sequences FJ
Le that the hest cover will most llkely bhe close to the bepglanlng of the
Iist. Therefore, (f the number of seguences s very large, the search can

stop befoure reachlhg the end, with a low clsk of loesing the optimal

solutlon.

Procedure IS

in procedure P, all sequences P were pgeénceaved Flest, and then

J

Vinearly svarched In order to deternfae the best cover. In this procedure,

the searclh Far the hest cover ks dong «tacing the process of generating the
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pequences, uslng the T“hesr €lrst™ search strategy (Wlaston  [16])-
Specifically, the search is based on the algorithm A* (NLlssan [18]). At
step a complex fa added to the partial cov;r (a partlal geguence after
applicatioa of NID) which most likely leads the optimal cover {according to
an evaluatlion Eunctiynl. This process avolds testing <{usuvally many)
sequences PJ, for which Lt fis possible to predict that they will not
produce sp optimal cover. The procedurs PS5 Is especially applicable when

stars G, are large.

Fig. 5 {llustrates the search process. Branches emanating from 8 node
at lavel L represent complexess Lln star GLJ A path fcom the root to a uode
at lével L represents & partial disJoint cover with i conplexes. When I=%,
the path represeats & complete disjolnt cover {cortespondlng (o some

sequence Pj to vhich NID was applied).

In the Eirst step, sequence Pﬂ - (u?.a;,....u:) iz gensrated. (It L3
the sequeace of complexes of the smallest apatseness). The celative core
of each complex ix dg}ermlned and than the mc—complex is constructed Ffor
each «core. Lat sl,iz....,sk denote the sparsanesses of the obtalned me-
conplexes. On the hasis of theorem 3, the gun':l + 5, Eae s gpeclifles

a lover bound on the sparsenssa of thie best dlajolat cover vhich can be

bullt Erom complexes of glven stars.

In the next step, node (1) (fig, 3) ia expanded, l.e., af ts palred
with ‘every complex in cz. procedure NIU La applied to each palr, and then
the sparsensas ls calculated {oc the obLalned disjolnt palr. 1f NID falls,
the path is abandoned. The ohtafned pale 1s & partlal cover with i=2

complexes, Nodes corresponding to generated partial covears {Includlng the

25 B
»
°
L
LJ

Gs) (41 /09y (21)
OPTIMAL COVER
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{20

-
L]
L]

(24)

tz2). @20 09
*

@n

(LEVEL 1)

(LEVEL2)

(LEVEL 3)

&% 50 085 5

qf (LEVELK)

(24)
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.
ressinlng complexes Iln Cl) are assigned a value of the evalvation function

£f=h+g (33)

whete

h = is the sparseness of the obtalned partial disjolnt cover

g = ie the sun 5,51 + ‘1+2 F oaes Bir where | {5 the nimber of complexes
in the partisl cover.
{g represeénta s l.b. oo the sparseness of the remaining complexes toO

be determined, {.e., complexes that are needed to complete the cover

under construction}

Accordlng to the best first strategy, the node to be expanded st each
step is the one which 1s assoclated with thé lowest value of cthe
evaluation function. It 1s proven that such strategy will produce the
optimsl cover [18]. The order of expanding nodes Ln the tree in Fig. 5 ls
shown by numbars f{n clreles. The wvalue of the evaluation functlon

assoclated with each node Ls given in parentheses.

Procedure 5

This procedure [a Lllke procedure ?5, with the exception that stars are
not generated baforehand. When espandlng & node in the sesrch tree, rather
than taking complexes fcoiz already determined stars, an appropriata star €]
generated each time. This rtequires a multiple repetition of the stac
genecatlon procesn, but maves on the memory for storlng all gtars (vhich

may be largs sets).
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8. A NOTE ON IMPLEMENTATION AND AN EXAMPLE

The algorithe has been Implemented by R. Stepp 1in PASCAL for Cyber
175. Tha detalls on the fwplementation are {n [19]. For tllustration we
will briefly descrlbe two examples, whlch were used in testlng experiments

with the progran.

Figure G& represents a diagrammatlc Tepresentatfion [20] wof an eveng
‘space, espanned over varfables XpiXparKaa¥,, with domalo sizes 2, 35, 6, 2,
vespectively. Rach cell represents one event. Calls marked by 1 cepresent
data events, remalning celis reprement enpty events. Flg: fie also shows a
cover obtalned from the Elrst Itecatfon of the algorithm. The remzining
figures show results froa the consecutive [rerutions. Cells representing
seed events f{n each (reratlon are marked by + . The partitlion evaluatlon
criterion was a LRF;

C(sparsencss, labalance, dimensfonallty) (0, 0, 0 )>
Accarding to this criterion, the best partitlon is the one shown Ln
Fig. he. The partltlon {4 spectified by complexes:
o] = Iz =0l{x, = 1]{x, = 0]

2 = Iz = 00ix, = 2y = 1..3]

o
3
o

“3 [xl l.][x2 = 1..3]

Another experiment with the program involied clusterfag 47 cases of
soybean dlseases. These cases represented Tour different diseases, asg
determined by plant patholoplste (thw program wia not, af course, glven
thia informatian}. Each case wam ceprescnted by an event of 35 meny~valued

vaciables., Wlth ke&, the prograz partitloned sll cases Into  four

categorles. These four categorles turned out to be precisely the
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categotles corresponding to Lndividual dliseases. The complexes defining
the categories invelved known characteristic wymptoms of the corrssponding

diseases.

9. CONCLUSION

The paper presented 8 thenretlcal foundation and an algocithm faor
conceptual clustering, [n which entitles are assenbled Lptoe clasges
described by slagle conjunctive concepts (VLJ complexes). Thus, the
proposed approach produces ¢lusters together with thelr deecriptfons. The
descriptlons are conjunctive statemsenta {nvolving relations on variahles

characterizing the entltles, and have a sieple lingulstle Interprecation.

The presented aligocithm has been Implemsnted and tested on varlous
examples. The results Indicate that the metlhod provides an valuable
altecrnagive to the conventlonal ciustering merhoda, &nd has a potential for

application In varlety nf clustering praoblems.
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