

Efficient Inference For Hybrid Bayesian Networks

A dissertation submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy at George Mason University

By

Wei Sun

Master of Science in Operations Research
George Mason University, May 2003

Bachelor of Science in Electrical Engineering
Zhejiang University, China, July 1991

Director: Dr. KC Chang, Professor
Department of Systems Engineering and Operations Research

Fall Semester 2007
George Mason University

Fairfax, VA

Copyright c© 2007 by Wei Sun
All Rights Reserved

ii

Acknowledgments

First and foremost, my sincere gratitude goes to my advisor Dr.KC Chang. It is my
great luck to know him and have him as my supervisor, mentor, and eventually reliable
friend. His work ethic, academic integrity and inspirational vision have encouraged
and guided me through my study and research journey at GMU these years. He is
always available when I need guidance. In the mean time, he gave me the maximum
freedom to explore and develop. One thing for sure to me is that without his help,
this dissertation is not possible.

I would like to thank my committee members: Dr.Kathryn Laskey, Dr.Kristine Bell
and Dr.James Gentle. It is my honor and pleasure to have the chance to learn from
them. In particular, Dr.Laskey has taught me a lot about rigorous thinking, intuitive
modeling in her class and the student seminar organized by her as well. Dr.Bell led
me into the wonderful world of statistics and Dr.Gentle has shown me his excellence
in computational statistics. I really appreciate your insightful suggestions, generous
help and warm encouragement throughout the completion of this dissertation.

Special thanks are due to Dr.Karla Hoffman. It is she who provided me an admis-
sion and assistantship when I applied for the graduate program in operations research
at GMU. And it is she who led me the first step into the theoretical OR field when
I took her class OR541 in the first semester of my GMU study. Afterward, she is
always helpful and responsive for my academic queries and general questions as well.
She may not know how grateful I am for her instructions.

Finally and above all, I like to take this opportunity to express my deep appre-
ciation to my beloved parents and my wife Li, for their endless love and consistent
support. Also I would like to thank my brother and sister for their efforts to take
care of the family while I pursued my graduate study overseas. I love you! This
dissertation is dedicated to them.

iii

Table of Contents

Page

LIST OF ABBREVIATIONS . ix

Abstract . x

1 Introduction . 1

1.1 Motivation . 1

1.2 Research Objectives and Contribution 6

1.3 Dissertation Overview . 8

2 Bayesian Networks . 11

2.1 Brief Historical Retrospective of BN Research 12

2.2 Definition and Example . 13

2.3 Classification of BNs . 19

2.4 Probabilistic Inference using BNs . 24

2.4.1 Exact Inference . 26

2.4.2 Approximate Inference . 29

2.4.3 Mixed Inference . 34

2.4.4 Sequential Inference for Dynamic Bayesian Networks 35

2.4.5 Summary of Inference Algorithms 37

2.5 Challenges of BN Inference . 38

3 Unscented Message Passing . 41

3.1 Introduction . 41

3.1.1 Pearl’s Message Passing Review 42

3.1.2 Unscented Transformation . 48

3.1.3 Message Passing In Continuous Case 52

3.2 Unscented Message Passing Algorithm 56

3.3 Numerical Experiment . 57

3.3.1 Case 1: Linear Gaussian . 60

3.3.2 Case 2: Nonlinear Gaussian 62

3.4 Summary . 65

iv

4 Message Passing for General Hybrid Bayesian Networks 67

4.1 Introduction . 67

4.2 Hybrid Loopy Propagation Algorithm 69

4.2.1 Network Partition . 69

4.2.2 Hybrid Message Passing Algorithm 73

4.3 Numerical Experiments . 77

4.3.1 Experiment Method . 77

4.3.2 Experiment Results . 81

4.3.3 Complexity of HMP-BN . 84

4.4 Summary . 85

5 Performance Evaluation for Bayesian Networks 88

5.1 Introduction . 89

5.1.1 Performance Metric . 89

5.1.2 Gaussian Mixture Model . 90

5.2 Analytical Performance Modeling . 92

5.3 Numerical Evaluation . 96

5.4 Summary . 100

6 Conclusion . 102

6.1 Dissertation Summary . 102

6.2 Future Work . 104

Bibliography . 107

v

List of Tables

Table Page

3.1 Comparison of message propagation equations. 56

3.2 INCINERATOR: Average KL-divergence. 61

3.3 ALARM: Average KL-divergence. 62

3.4 Nonlinear INCINERATOR: KL comparison. 65

4.1 Average KL-divergence Comparison in Testing GHM-1 83

4.2 Average KL-divergence Comparison in Testing GHM-2 84

vi

List of Figures

Figure Page

1.1 ‘Fuji’ Apple Weighing Problem . 5

2.1 A simple Bayesian network example–Vehicle Identification. 16

2.2 (a) A simple singly-connected Bayesian network. (b) A Multiply-

connected Bayesian network. Note that two paths exist between A

to D and A to E2 . 20

2.3 A simple 3-node hybrid model . 20

2.4 Taxonomy for Bayesian networks. This dissertation focuses on infer-

ence for conditional hybrid model. 23

3.1 (a) 4 sub-networks divided by node X and arc T → X. Orange is UX ;

yellow is U TX ; green is DTX ; pink is DX . (b) A typical node X with

m parents and n children in a polytree. 43

3.2 A typical node X with m parents and n children. 46

3.3 Demonstration of Unscented Transformation. 53

3.4 Unscented Message Passing Algorithm 58

3.5 INCINERATOR . 59

3.6 ALARM: a network for monitoring patients in intensive care. 59

3.7 INCINERATOR-Linear Gaussian: Performance comparison. The ground

true is provided by Junction tree. 61

3.8 ALARM-Linear Gaussian: Performance comparison. The ground true

is provided by Junction tree. 62

3.9 Convergence demonstration by brute force Likelihood Weighting. . . . 63

3.10 INCINERATOR-Nonlinear: Performance Comparison. The ground

true is well approximated by LW with 20-million samples. 64

4.1 A partitioned conditional hybrid Bayesian network. 71

4.2 Demonstration of interface nodes and network partition 72

4.3 Synthetic hybrid Bayesian networks-1. 74

vii

4.4 Transformed model with dummy node. 76

4.5 Hybrid Message Passing Algorithm for General Mixed Bayesian Network 78

4.6 GHM-2 . 79

4.7 Posterior probability of hidden discrete variables in two typical runs. 81

4.8 GHM-1 Performance Comparison for 10 random runs. (the ground

true is provided by Junction tree). 82

4.9 GHM-1: Performance Comparison Given Unlikely Evidence. 83

4.10 GHM-2 Performance Comparison for 5 random runs. (the benchmark

is well approximated by LW with 20-million samples) 84

4.11 ALARM: a network constructed by medical expert for monitoring pa-

tients in intensive care. 86

5.1 An example of two-dimension Gaussian mixture density with 3 com-

ponents. 91

5.2 Synthetic hybrid model of target identification: ‘TT’ is the discrete

target variable; ‘COA’,‘COB’,‘COC’,‘COD’,‘COE’ and ‘COF’ are ob-

servable continuous attributes. 97

5.3 PCC comparison between analytical method with GMMs and simula-

tion using inference algorithm. 99

viii

LIST OF ABBREVIATIONS

AI Artificial Intelligence

BN Bayesian Network

CHM Conditional hybrid Bayesian network model

CLG Conditional Linear Gaussian

CPD Conditional Probability Distribution

CPT Conditional Probability Table

DAG Directed Acyclic Graph

DBN Dynamic Bayesian Network

GMU George Mason University

HMM Hidden Markov Model

ICPD Important Conditional Probability Distribution

ICPT Important Conditional Probability Table

ID Influence Diagram

PDBN Partial Dynamic Bayesian Network

PF Particle Filter

UKF Unscented Kalman Filter

ix

Abstract

EFFICIENT INFERENCE FOR HYBRID BAYESIAN NETWORKS

Wei Sun, PhD

George Mason University, 2007

Dissertation Director: Dr. KC Chang

Uncertainty is everywhere in real life so we have to use stochastic model for most

real-world problems. In general, both the systems mechanism and the observable

measurements involve random noise. Therefore, probability theory and statistical

estimation play important roles in decision making. First of all, we need a good

knowledge representation to integrate information under uncertainty; then we need

to conduct efficient reasoning about the state of the world given noisy observations.

Bayesian networks (BNs) provide a compact, efficient and easy-to-interpret way to

model the joint probability distribution of random variables over a problem domain.

A Bayesian network encodes dependency relationship between random variables into

a graphical probabilistic model. The structural properties and expressive power of

Bayesian network make it an excellent knowledge base for effective probabilistic in-

ference. Over the past several decades, a number of exact and approximate inference

algorithms have been proposed and applied for inference in different types of Bayesian

networks. However, in general, BN probabilistic inference is NP-hard. In particular,

probabilistic reasoning for BNs with nonlinear non-Gaussian hybrid model is known

to be one of the most difficult problems. First, no exact method is possible to compute

the posterior distributions in such case. Second, relatively little research has been

done for general hybrid models. Unfortunately, most real-world problems are natu-

rally modeled with both categorical variables and continuous variables with typically

nonlinear relationship.

This dissertation focuses on the hybrid Bayesian networks containing both discrete

and continuous random variables. The hybrid model may involve nonlinear functions

in conditional probability distributions and the distributions could be arbitrary. I first

give a thorough introduction to Bayesian networks and review of the state-of-the-art

inference algorithms in the literature. Then a suite of efficient algorithms is proposed

to compute the posterior distributions of hidden variables for arbitrary continuous

and hybrid Bayesian networks. Moreover, in order to evaluate the performance of

the algorithms with hybrid Bayesian networks, I present an approximate analytical

method to estimate the performance bound. This method can help the decision

maker to understand the prediction performance of a BN model without extensive

simulation. It can also help the modeler to build and validate a model effectively.

Solid theoretical derivations and promising numerical experimental results show that

the research in this dissertation is fundamentally sound and can be applied in various

decision support systems.

Chapter 1: Introduction

1.1 Motivation

Consider the following problem:

A mortgage company likes to know the default probability for an indi-

vidual who applies for a loan. They have vast amounts of historical data

including customer’s information such as age, financial behavior, payment

history, credit score and macro-economical data such as interest rate, em-

ployment index at the corresponding period, etc. The question is which

prediction model should they use to fulfill this task?

Conventional statisticians usually build a logit or probit model for predicting the

probability if the dependent variable, also called exposure or response variable, is

binomial or multinomial. These models require a fixed form of link function. Then

from data, they usually estimate the corresponding parameters using a maximum

likelihood estimation method. When using the model to compute the predicted prob-

ability, they need to know the values of all independent variables. In general, all

parametric regression models require that the dependent variable is a function of all

independent variables and typically can only handle a limited number of variables.

However, it is usually difficult to estimate a function, especially when there might be

many variables involved. And most of the time the random variables interact with

1

each other; for example, some variables may have causal relationship. Moreover, not

all independent variables are observable.

Along with the fast growing computing power and rapid accumulation of data in

recent decades, machine learning techniques have been applied in discovering hidden

pattern in voluminous databases. Artificial neural network (ANN) [JMM96,Hay98],

a nonparametric model originally inspired by biological networks of neurons in the

human brain, is an adaptive procedure to model the relationship between input and

output variables without any specific structure. It is free from the assumption of

normality or linearity. Although ANN can explore complex nonlinear structures, its

“Black-box” mechanism learned at an “unconscious” level and its free parameters

without physical meaning related to problem make it difficult to understand and

interpret the results.

Fortunately, another powerful probabilistic modeling tool called Bayesian network

(BN) [Pearl88, Jensen96] emerged in early 1980s in the field of artificial intelligence

(formal definition and thorough introduction of BNs will be given in Chapter 2). It is

being called “Bayesian” originally because Bayes’ rule was used to compute the pos-

terior probability distribution of variables of interest given observations. A Bayesian

network achieves the task of modeling complex relationship between variables by de-

composing the joint probability distribution of random variables into local conditional

distributions. It is not necessary in BNs to model one variable depending on all other

variables like statistical regression-based model does. Instead, only variables having

direct dependence relationships are modeled as parent and child nodes in a graphical

framework, and the local dependence relationship between child and its parents could

be learned by using regression-based methods individually. The intrinsic interactions

2

between variables (dependency and independency) are explicitly expressed by the

network structure and local conditional probability distributions.

A Bayesian network is a directed acyclic graph (DAG) in which nodes represent

random variables, directed arcs between nodes represent dependence relationships,

mathematically described by conditional probability distributions (CPDs). The net-

work structure and CPDs could be learned from data as well as elicitated from the

domain expert. BNs have the transparent architecture for knowledge representation

and probabilistic reasoning. So the inference results provided by BNs are interpretable

to obtain insights. As a modeling tool, BNs are not limited to predefined structure

and number, type, or relationship of variables. In last several decades, development

of machine learning methods and inference algorithms has made BN popular in solv-

ing realistic problems. Subsequently, BN has proven its power in many applications,

such as data fusion, space navigation, medical diagnosis, fraud detection, software

engineering, visual tracking, etc. For an overview and comprehensive description of

real-world BN applications, see [Haddawy99] and the March 1995 special issue of

Communication of ACM [CACM95].

Bayesian inference as an important statistical method has been used in many fields

since Bayesian probability theory was proposed about 250 years ago. To illustrate,

let us take a look at a very simple example:

From historical data, we know the weight of ‘Fuji’ apple is normally dis-

tributed with mean 350 grams and variance 10 (grams)2. John picked up

a ‘Fuji’ from the tree in the farm. He wants to know the weight of this

apple. But he only has a bad scale available, which is very inaccurate

with measurement variance to 20 (grams)2. The bad scale showed 330

3

grams when weighing the apple. What do you think the true weight of

this apple is?

The mathematical model for this problem is: X, represents the weight of ‘Fuji’ apple,

has a prior distribution P (X) as Normal(350, 10); Y , represents the measured weight,

has a conditional probability distribution P (Y |X) as Normal(X, 20). A simple two-

node Bayesian networks in Figure 1.1 illustrates this relationship. The query we

need to answer in the problem is equivalent to computing the posterior distribution

P (X|Y = 330). Applying Bayes’ rule, it is straightforward to show that:

P (X|Y = 330) =
P (Y = 330|X)P (X)

P (Y = 330)

=

1√
2π×20

e−
(330−X)2

2×20 1√
2π×10

e−
(X−350)2

2×10

∫∞
−∞

1√
2π×20

e−
(330−X)2

2×20 1√
2π×10

e−
(X−350)2

2×10 dx

=
1√
2πV

e−
(X−u)2

2×V (1.1)

where u ≈ 343.33, and V ≈ 6.667. Therefore, given the noisy measurement 330, the

updated belief about the apple weight is a Normal random number with mean 343.33

and variance 6.667.

We can find the exact analytical answer in Equation 1.1 because it is a linear Gaus-

sian problem. When nonlinear function is involved between variables, and/or random

variables have distributions other than Gaussian, it is very difficult or impossible to

find closed-form analytical solution.

4

X

Y

P(X) ~ N(350, 10)

P(Y|X) ~ N(X, 20)

Figure 1.1: ‘Fuji’ Apple Weighing Problem

Moreover, most real-world decision problems modeled by BNs naturally have both

discrete and continuous variables. In modern applications, the networks become big-

ger and more complex. Some can easily have hundreds or even thousands of variables

with typically nonlinear relationships [LM-etc02]. The nonlinearity and hybrid na-

tures of BN models make the inference computation very difficult. In general, both

exact and approximate inference for Bayesian networks are NP-hard. However, for

specific classes of BNs such as pure discrete networks or linear Gaussian continuous

networks, many efficient inference algorithms have been developed. For general hy-

brid models, only approximate methods are possible. So far, relatively little research

has been done in this area. Practitioners usually discretize continuous variables, lin-

earize the nonlinear functions, simplify the model by removing weak arcs, or conduct

Morte Carlo simulations for hybrid model inference. Obviously, these approaches ei-

ther lose fidelity due to model simplification or incur significant cost due to extensive

simulation.

5

1.2 Research Objectives and Contribution

This dissertation focuses on the inference problems for hybrid Bayesian networks. Our

goal is to develop efficient approximate inference algorithms that perform acceptably

on problems with nonlinearity and heterogeneity. So far in the literature, researchers

have proposed some algorithms for hybrid BN inference. They include methods us-

ing numerical integration [YD06], density approximation techniques such as Gaussian

mixture [Poland94, Shenoy06], mixture of truncated exponential [CS06], and impor-

tance sampling [YD07]. We know numerical integration are computational intensive

with high dimensional problems, and function estimations involve learning process.

In this dissertation, we adopted different approaches based on the framework of mes-

sage passing originally proposed by Pearl [Pearl88]. In our algorithms, estimation

techniques such as unscented transformation, function estimation, Gaussian mixture

model are integrated in a unified manner.

In summary, the major contribution of this dissertation is twofold. The first is for

the algorithmic benefit: we have developed two novel efficient algorithms for hybrid

BNs. The other is for theoretical benefit: we have derived an approximate analytical

method to estimate the performance bound for model evaluation. Specific research

achievements are the following:

• When continuous variables are present in the BNs, because their dependence

relationships could be nonlinear and their probability distributions could be

arbitrary, no exact inference is possible. One of the most popular methods in

this case is stochastic sampling such as Likelihood Weighting algorithm. But

with unlikely evidence, simulation methods could be very slow to converge. We

6

propose an efficient approximate inference algorithm called Unscented Message

Passing (UMP-BN) [SC07a] for Bayesian network with arbitrary continuous

variables. UMP-BN combines unscented transformation—a deterministic sam-

pling method, and Pearl’s message passing algorithm to provide estimates of

the first two moments of the posterior distributions. We test this algorithm

with several networks including one with nonlinear relationships and/or non-

Gaussian variables. The numerical experiments show that UMP-BN converges

very fast and produces promising results.

• When mixed random variables (continuous and discrete variables) are present in

the Bayesian network, there is no theoretical sound method so far for efficient

message passing. Based on UMP-BN, we propose a novel approach, called

Hybrid Message Passing (HMP-BN), to compute, propagate and integrate the

messages for hybrid models [SC07b]. Specifically, we first partition the network

into separate parts by introducing the concept of interface nodes. Then different

inference algorithm can be applied for each sub-network. Finally HMP-BN

integrates the information through the channel of interface nodes and then

calculate the posterior distributions for all hidden variables. This algorithm uses

the concept of conditioning for problem decomposition. For decision problems,

which usually have few discrete variables with many continuous factors, our

numerical experiments show that the algorithm is very efficient and accurate in

choosing the right decision.

• The accuracy of the computed posterior probability distributions provided by

an inference algorithm is essential since the correct decision under a partially

7

observable environment depends on this distribution. However, there is no gen-

eral evaluation methodology available to predict the inference performance for

a BN other than extensive Monte Carlo simulation methods. This dissertation

also presents an approximate analytical method to estimate the performance

bound [CS04]. It can help the decision maker to understand the model predic-

tion performance without extensive simulation and help the modeler to build

and validate the model effectively.

• Most work in this dissertation research has been implemented in MATLAB us-

ing Bayesian Network Toolbox (BNT) [Mur01].1 Therefore, as a by-product, the

algorithms developed in the dissertation have been added in the BNT as alter-

native inference engines. It is accessible for further research from my personal

webpage: http://mason.gmu.edu/~wsun/research.htm.

1.3 Dissertation Overview

The remainder of this dissertation is organized as the follows. Chapter 2 gives a

thorough introduction to Bayesian networks. We classify BNs into different types and

review the state-of-the-art inference algorithms available in the literature. Chapter

3 describes the message passing algorithm for arbitrary continuous BNs in detail.

For general hybrid BNs, Chapter 4 first introduces the network partition schemes.

And then message integration procedure between discrete and continuous variables

is presented. We summarize the hybrid message passing algorithm with numerical

experiments and discuss the complexity of the algorithm at the end of Chapter 4.

Chapter 5 derives an approximate analytical method to provide performance bound.

1Thanks to Kevin Murphy, etc. for developing and maintaining BNT.

8

Finally, in Chapter 6, we conclude the dissertation and discuss several potential future

research directions.

Conference and journal papers published/submitted about the research in this

dissertation are listed as below:

• Wei Sun and KC Chang. Message Passing for General Bayesian Networks:

Representation, Propagation and Integration. Submitted to IEEE Transactions

on Aerospace Electronic Systems. September, 2007.

• Wei Sun and KC Chang. Convergence Study of Message Passing in Arbi-

trary Continuous Bayesian Networks. To appear in SPIE Conference, Orlando,

March, 2008.

• Wei Sun and KC Chang. Hybrid Message Passing for Mixed Bayesian Net-

works. In Proceedings of the 10th International Conference on Information

Fusion, Quebec, Canada, July 2007.

• Wei Sun and KC Chang. Unscented Message Passing for Arbitrary Continuous

Variables in Bayesian Networks. In Proceedings of the 22nd AAAI Conference

on Artificial Intelligence, Vancouver, Canada, July 2007.

• Wei Sun and KC Chang. Probabilistic Inference Using Importance Sampling for

Hybrid Bayesian Networks. In Proceedings of SPIE Conference, Volume 5809,

Orlando, 2005.

• KC Chang and Wei Sun. Performance Modeling for Dynamic Bayesian Net-

works. In Proceedings of SPIE Conference, Volume 5429, Orlando, 2004.

9

• KC Chang and Wei Sun. Comparing Probabilistic Inference for Mixed Bayesian

Networks. In Proceedings of SPIE Conference, Volume 5096, Orlando, 2003.

10

Chapter 2: Bayesian Networks

Human exploration of Nature never stops. Unfortunately, the exact mechanisms of

many natural processes are too complicated to model. For example, people won’t

know for sure whether or not it will rain tomorrow; meteorologist forecasts it with

a probability: for example, 70% chance of rain. Born of the marriage of probability

theory and graph theory, Bayesian networks (BNs) [Pearl88, Ne90], also known as

belief networks, causal networks, directed Markov field, are a probabilistic modeling

language at the cutting edge of artificial intelligence (AI) and statistics. Using a

graphical model benefits both knowledge representation and reasoning because of the

following features:

• Modularity: variables can be divided into subsets by their probabilistic depen-

dence relationships. The qualitative structure and the quantitative parameters

make the complex model to be consisted of smaller components.

• Decomposability: because of the conditional independence between variables,

the joint distribution over the domain could be expressed as the product of

conditional probability distributions (CPDs) according to the chain rule. This

property saves computations significantly.

• Visualization: graphical models encode the independence explicitly using a vi-

sual representation. They are easy to understand and interpret and therefore

11

they are very appealing to non-technical users. Also the clear semantics of

graphical representations make the model easy to construct.

• Inference efficiency: probabilistic inference algorithms could be developed by

taking advantage of the topology of the model. They are more efficient than

brute force statistical methods for general probability models.

In this chapter, we will first briefly introduce the historical evolution of Bayesian

networks. Then we will present the formal definition of BN with a simple example

of pure discrete BN model. After that, we will discuss the classification of various

BNs and review probabilistic inference methods for different BNs. At the end of this

chapter, we will present the current challenging problems in BN inference.

2.1 Brief Historical Retrospective of BN Research

The origins of Bayesian networks can be traced back as far as the early decades of

the 20th century. Geneticist Sewell Wright used graphical representation and causal

modeling for path analysis to aid the biometric study of genetic inheritance in 1920s

[Wri21,Wri23]. His methods were formalized by economists after the Second World

War [Haa43,Koo50] and adopted by social scientists in the 1970s [Gol72,Dun75]. In-

fluence diagrams (IDs) as a formalism to model decision problems with uncertainty

were introduced by Howard and Matheson in 1981 [HM81]. Influence diagrams com-

mand a unique position in the history of graphical models. On the one hand, they

can be seen as an extension of path diagrams. On the other hand, because an influ-

ence diagram without decision variables and utility functions is a Bayesian network,

it can also be viewed as the precursor to Bayesian networks. But since the complex

12

representation and lack of inference efficiency, influence diagram has had only mild

influence on automated reasoning (see the historical retrospection [Pearl05,HM05]).

In 1980s, the concepts of causal network, d-separation and amenable algorithms

to propagate probabilistic information through the graph were introduced [Pearl82,

Pearl86, Pearl88, Co84]. Around the same time, the machine-learning community

developed sound methods to learn BNs from data. These developments put Bayesian

networks at the forefront of AI research. Since then, much progress has been made

on research about modeling and inference algorithms using Bayesian networks.

2.2 Definition and Example

There are two main types of graphical model: undirected and directed. Undirected

graphical models, also known as Markov networks or Markov random fields, are more

popular with the physics and vision communities. Bayesian Networks are directed

graphical models in which directed arcs are used to model probabilistic dependency.

Because the directed representation is natural for modeling causality, BNs are some-

times called the causal belief networks. Any ordering can be used in which knowledge

of a parent node influences the probability of a child node. This influence could be

logical, physical, temporal or simply conceptual in that it may be most appropriate

to think of the conditional probability of a child node given its parents. We adopt the

name Pearl uses, Bayesian networks, on the grounds that the name is general. How-

ever, Bayesian networks do not necessarily imply using Bayesian statistics; Indeed,

it is common to use frequentists methods to estimate the parameters of the CPDs.

They are so called because they use Bayes’ rule for probabilistic inference.

A Bayesian network is a directed acyclic graphs (DAG) consisting of nodes and

13

arcs where nodes represent the random variables and arcs represent the probabilistic

relationships between variables. Associated with each node in a Bayesian network,

a conditional probability distribution (CPD) is defined to specify the probabilistic

relationship between this variable and its parents. If a node has no parents, we call

such a node root node and a prior distribution for this node is specified. A joint

distribution over all the random variables is determined by a fully specified Bayesian

network.

The notations used in this dissertation generally follow the conventions. We denote

random variables by capital letters or indexed capital letters such as A,Bi or X. The

corresponding lower case letters such as a, bi, x denote the particular instantiations

of the random variables. Bold capital letters (e.g., A,Bi,X) are used to denote sets

of random variables and bold lower case letters such as a,bi,x denote their realized

values. We use R(A) to denote the set of all possible values that A can take. In this

dissertation, we focus on hybrid models where both discrete and continuous random

variables are involved. We usually use letters from the beginning of the alphabet

(e.g., A,B,C,D) for discrete variables and letters from the end of the alphabet (e.g.,

W,X, Y, Z) for continuous variables. However, if we have context for the model,

descriptive abbreviated letters are used for variables. The bold Greek letter ∆ refers

to all the discrete variables and Γ refers to all the continuous variables. In conducting

inference, we usually use E to denote the set of evidence nodes and T to refer the set

of target nodes of our interest.

P (X) will be used to denote the probability mass function of X in the discrete case

or the probability density function of X in the continuous case. Some researchers use

generalized probability density function [DeGr70] regardless of the types of random

14

variables. Actually, probability mass function can be viewed as a probability density

function with respect to counting measures. For a discrete random variable, P (X = x)

(or P (x) in short) refers to the probability that X takes the value x. L(X|θ) refers

to the likelihood function of X given some parameter θ. The conditional probability

distribution of X given Y is denoted by P (X|Y). In Bayesian networks, all nodes

pointing to a particular node A are called the parents of node A. We denote the set

of parents of node A by Pa(A). So the conditional probability distribution (CPD) of

node A is denoted by P (A|Pa(A)).

Now we are ready to give the formal definition of a Bayesian network:

Definition 2.1. A Bayesian network B over the domain of the set of random vari-

ables X = {X1, X2,, Xn} is a pair 〈G, θ〉. G is a directed acyclic graph with each

node for a random variable Xi ∈ X. θ = {θ1, θ2,, θn} is a set of conditional prob-

ability distributions where θi is the conditional probability distribution of Xi given its

parents P (Xi|Pa(Xi)).

The DAG G encodes the conditional independence of the joint probability distri-

bution via the structure of the networks. In a BN, every node is independent of its

non-descendants given its parents. According to the probability chain rule, the joint

probability distribution induced by a Bayesian network can be decomposed as the

product of CPDs for every node in the domain:

P (X1, X2, ..., Xn) =
n∏

i=1

P (Xi|Pa(Xi)) (2.1)

This might be the most important property of Bayesian networks because it provides

the theoretical basis for computationally efficient inference algorithms.

15

Vehicle Type Weather

T W

G R

S

I mage ReportTerrain Type

Speed

P(T)

wheeled 0.5

tracked 0.5

P(W)

clear 0.75

cloudy 0.25

P(R |T,W)
wheeled tracked

clear cloudy clear cloudy

wheeled 0.85 0.6 0.15 0.4

tracked 0.15 0.4 0.85 0.6

P(S |T,G)
road offroad tough

wheeled tracked wheeled tracked wheeled tracked

slow 0.1 0.3 0.3 0.3 0.7 0.4

medium 0.3 0.4 0.4 0.4 0.25 0.4

fast 0.6 0.3 0.3 0.3 0.05 0.2

P(G|T) wheeled tracked

road 0.85 0.5

offroad 0.1 0.4

tough 0.05 0.1

Figure 2.1: A simple Bayesian network example–Vehicle Identification.

Let us take a simple vehicle identification problem as a concrete example. Suppose

we want to distinguish between two types of vehicles on the ground. The vehicles

of our interests are: wheeled vehicle such as truck and tracked vehicle such as tank.

The weather condition affects the quality of image sent by the image sensor. And we

know wheeled vehicle tends to be on the normal road, while tracked vehicle is able

to be driven offroad or even on very rough terrain. Furthermore, the vehicle speed is

influenced by the vehicle type and the road condition as well.

A Bayesian network to model the above problem is shown in Figure 2.1. For

demonstration purpose, we discretized the originally continuous variable (Speed) to

make this model a pure discrete BN. As one can see, each node in the network

16

has a table to parameterize its dependence relationship with its parents. Logically,

the terrain type on which the vehicle is being driven is highly correlated with the

image report by the sensor. This is because if the image sensor reported that the

vehicle is a wheeled vehicle, then we are more certain that the vehicle is on the

normal road than in the case that tracked vehicle is reported. But if we are given

the information that the vehicle is indeed a wheeled vehicle, then from the structure

of the network, one could easily understand that terrain type is now independent of

the image report. This is also consistent with our intuition. In other words, given

the fact that the vehicle is wheeled, then no matter what report sent by the image

sensor, it has no influence on what type of terrain this vehicle is likely to be driven

on. As another example, it is clear that vehicle type is independent of weather.

But if we receive from the image sensor that a wheeled vehicle is reported, then the

vehicle type is now related to weather. Regarding the quantitative aspect, those tables

in the network are conditional distributions of the discrete variables: for instances,

P (T = wheeled) = 0.5, P (R = wheeled|T = wheeled,W = cloudy) = 0.6.

From this BN model, one can easily see the relationships between all variables

involved in the problem. Prior knowledge is well modeled intuitively. Influences

between various variables are easy to interpret. Of course, for complex problems and

huge databases, network structure need to be learned from data as well as validated

by experts. However, this simple BN model already shows the expressive power and

transparent process of reasoning using BN as an excellent knowledge base. Note that

without the Bayesian network model, the joint distribution over those 5 variables will

be a probability table with a size of 2×2×2×3×3 = 72, in which 71 probabilities need

to be specified. But using BN model, only 22 probabilities are needed. In realistic

17

problems where the corresponding BN model could be much larger, the savings in

modeling and computations can be very significant.

Let us examine a few examples to show how to compute the joint and marginal

probabilities in the vehicle identification model. Suppose we want to know the prob-

ability of a certain atomic event, e.g., T = wheeled, W = cloudy,G = road, R =

tracked, S = fast. This can be easily computed using Equation 2.1.

P (T = wheeled, W = cloudy,G = road,R = tracked, S = fast)

= P (T = wheeled)·P (W = cloudy)·P (G = road|T = wheeled)·

P (R = tracked|T = wheeled, W = cloudy)·P (S = fast|T = wheeled, G = road)

= 0.5× 0.25× 0.85× 0.4× 0.5

= 0.02125

Similarly, we can compute the probability of any atomic event in this way. Fur-

thermore, we can compute the marginal distributions of subsets of nodes by summing

out the variables we are not interested in. However, summing out variables by brute

force is not always computationally feasible because of the exponentially increasing

size of the joint probability distributions. Furthermore, it is usually impossible to

obtain closed-form results when integrating out variables if nonlinear functions or

non-Gaussian distributions are involved.

In BN inference, we usually have a set of observations. The posterior distributions

of the target variables of interest may change drastically given different observations.

18

Because the corresponding decision highly depends on the accurate posterior dis-

tributions, how to compute these distributions is one of the most important tasks

using BNs. Theoretically, if we can compute the marginal distributions of subsets,

we can compute the conditional probability distribution according to the definition:

P (X|Y) =
P (X,Y)

P (Y)
. Unfortunately, this is in general NP-hard [Co90,DL93]. Only

for special classes of BNs, inference is tractable.

2.3 Classification of BNs

Bayesian networks can be classified into various categories from different perspectives.

It is impossible to develop a general efficient inference algorithm that works for all

types of BNs because of the NP-hardness of the problem. We know efficient inference

algorithms are highly model-dependent. In this section, we discuss several main

classes of BNs.

First, from the perspective of network structure, we have singly-connected Bayesian

networks and multiply-connected Bayesian networks. Singly-connected Bayesian net-

works, also called polytrees, have no more than one path between any two nodes.

On the other hand, multiply-connected Bayesian networks contain at least one pair

of nodes that have more than one path between them. Two examples are shown in

Figure 2.2. In general, multiply-connected Bayesian networks have more interactions

between variables than singly-connected Bayesian networks, and inference is more

computationally intensive because more variables need to be summed or integrated

out. In fact, singly-connected Bayesian network with pure discrete variables or pure

linear Gaussian variables, are the only special BN classes for which exact inference

19

A

B

D

C

A

B

D

C

(a) (b)

E1 E2E1 E2

Figure 2.2: (a) A simple singly-connected Bayesian network. (b) A Multiply-

connected Bayesian network. Note that two paths exist between A to D and A

to E2

can be done in linear time.

Second, according to the types of random variables in the model, there are pure

discrete, pure continuous, and hybrid Bayesian networks respectively. Hybrid BNs

contain both discrete and continuous variables simultaneously.

If a random variable and its parents are discrete, the CPD is usually specified

as a probability table in which the entries are probabilities for values of the child

K T

R

Figure 2.3: A simple 3-node hybrid model

20

conditional on values of its parents. But the CPD of a continuous variable usually

includes a functional relationship with its parents. We show a simple hybrid model

with 3 nodes in Figure 2.3. Following the convention, we will use squares or rectangles

to depict discrete variables and circles or ellipses to depict continuous variables. Note

that, K is a discrete variable. Without loss of generality, let us assume it has two

values: true or false with probability 0.8, 0.2 respectively. Suppose the prior of node

T is Gaussian with mean 30 and variance 3 denoted as N (30, 3). We define the CPDs

of R as the following:

P (R|K, T) =

{
N (T, 1) K = true

N (
√

T − 3, 9) K = false

Note when K takes value of “false”, the mean of R will be 3 subtracted from the

square root of T . Through this example, we show that there could be simple linear

function or complicated nonlinear function involved in CPDs for continuous variables.

Also, the distributions of continuous variables are not necessarily Gaussian. The

simplest hybrid model is conditional linear Gaussian model (CLG) where given all

the discrete parents, the distribution of a continuous variable is a linear combination

of its continuous parents with a Gaussian noise. But in general, hybrid model could

be nonlinear, non-Gaussian. Since CLG is a very important hybrid model and we

will use it as a basic model, here we give a formal definition of CLG:

Definition 2.2 (CLG). A conditional linear Gaussian (CLG) is a hybrid Bayesian

network containing both discrete variables (denoted as ∆) and continous variables

(denoted as Γ), with the following restrictions:

• A discrete node can not have any continuous parent; thus, all the CPDs for

21

discrete nodes can be represented as probability tables.

• The CPD of any continuous variable is a linear Gaussian CPD given any com-

bination of all of its discrete parents. More formally, if a continuous variable

Y has discrete parents D = {D1, D2, ..., Dm} ⊆ ∆ and continuous parents X =

{X1, X2, ..., Xn} ⊆ Γ, and for every d ∈ Dom(D), we have βd,0, βd,1, ..., βd,n

and σ2
d, then the CPD of Y is defined as:

P (Y | x,d) = N (Y ; βd,0 +
n∑

i=1

βd,ixi, σ2
d)

Obviously, a CLG is reduced to a multivariate Normal distribution given any

assignment of all discrete variables in the model. It follows that the joint distribu-

tion represented by a CLG is a Gaussian mixture where each Gaussian component

corresponds to an instantiation of all discrete variables.

This dissertation focuses on a special class of hybrid BN models in which no

discrete node has any continuous parent. We call this special hybrid BN conditional

hybrid model (CHM).

Definition 2.3 (Conditional Hybrid Model). A conditional hybrid model (CHM) is a

hybrid Bayesian network containing both discrete variables and continuous variables

with the only restriction that no discrete variable may have a continuous parent.

Obviously, the CLG is a special case of the CHM. In CHMs, we may have nonlinear

functional relationships or non-Gaussian variables.

Third, from the process point of view, static Bayesian networks could be extended

to dynamic Bayesian networks (DBNs) to model stochastic process. Partially dynamic

22

Bayesian

Networks

Singly-connected

Multiply-connected

Pure Discrete

Pure Continuous

Hybrid model

Static

Dynamic

Node Types

Network Structures

Temporal Perspective

different perspect ive,
not exclusive ly

Conditional Linear Gaussian

Conditional Hybrid Model

General Hybrid Model

Figure 2.4: Taxonomy for Bayesian networks. This dissertation focuses on inference

for conditional hybrid model.

Bayesian network (PDBN) is a special class of DBN, also called temporal Bayesian

network, in which some of the nodes do not change their values over time (but their

beliefs do change). Many applications such as systems diagnosis, target tracking,

vision and speech recognition use PDBN models. Also, DBNs generalize hidden

Markov model (HMM) and state space model; for details, see [Mur02].

Furthermore, it is natural to have any combination of the above mentioned Bayesian

networks to model complicated situations. It is well known that one of the most dif-

ficult BN models is the hybrid nonlinear non-Gaussian dynamic Bayesian network.

23

As a summary, a taxonomy tree for various Bayesian networks is shown in Figure

2.4. Please note that these different perspectives are not exclusive and they could be

combined to formulate complicated BN models.

2.4 Probabilistic Inference using BNs

One of the main purposes of constructing Bayesian networks is to perform proba-

bilistic inference. A typical inference problem is to compute the posterior probability

distribution of a set of query variables of interest given observations for a set of evi-

dence nodes. For example, in the vehicle identification model shown in Figure 2.1, if

we observed that the vehicle was fast on the road and received an image report by the

sensor showing that the vehicle was wheeled, we would like to know the probability

that it is indeed a wheeled vehicle. This is equivalent to computing the posterior

probability P (T = wheeled|S = fast, R = wheeled). Since the vehicle identification

model is a simple pure discrete BN, exact inference can be done. It turns out that

the posterior probability of being a wheeled vehicle given the above observations is

87.4%, while its prior probability is 50%.

Over the last several decades, a variety of inference algorithms has been proposed

in the literature. Unfortunately, it has been proven that in general both exact and

approximate inference for Bayesian networks are NP–hard [Co90, DL93]. Formally,

given a Bayesian network B over the variables X, we have some query variables Q

and a set of evidence variables E where Q, E ⊆ X. Typically we need to compute

the posterior probability distribution P (Q | E = e). But even in the simplest case

when E = ∅, the inference is still NP–hard.

Theorem 2.1. Given a Bayesian network B over variables X and some variables

24

Q ⊆ X, then in general computing P (Q) is NP–hard, even if |Q| = 1.

This theorem was proven by Cooper in [Co90]. Furthermore, the seemly easier

approximate inference in Bayesian networks is NP–hard too. The following theorem

was proven by Dagum and Luby in [DL93].

Theorem 2.2. Given a Bayesian network B over binary discrete variables X and

some variables A and E where A, E ⊆ X, then unless NP ⊆ P , there does not exist

any polynomial-time approximate inference algorithm to compute P (A | E = e) with

absolute error less than 0.5, even if |A| = 1 and |E| = 1.

Also, although exact inference in discrete polytree Bayesian networks can be done

in linear time, Lerner proved in his PhD dissertation [Lern02] that both exact and

approximate inference in polytree CLG models are NP–hard.

Theorem 2.3. Given a polytree CLG T with some binary discrete variables A and

some evidence set E, then computing P (A | E = e) is NP–hard. Furthermore, unless

NP ⊆ P , there does not exist any polynomial-time approximate inference algorithm

with absolute error less than 0.5.

These hardness results might make one conclude that probabilistic inference using

Bayesian networks is a lost game. Fortunately, this is not true. The correct implica-

tion from the proven NP-hardness is that developing an efficient inference algorithm

applied to all classes of Bayesian networks seems unlikely. Knowing the NP-hardness

suggests us to avoid searching for a general algorithm and we should focus on infer-

ence for special classes of Bayesian networks which have special structure or features

we can exploit to design efficient algorithms. The real-life problems we deal with are

25

usually simpler than the ones used in NP-hardness proofs. And of course, we could

deliberately model the problem into the special classes for which we can conduct in-

ference in an efficient way. In fact, researchers have proposed a number of inference

algorithms for various classes of Bayesian networks in the literature. In the remainder

of this section, we will review these methods for exact and approximate inference and

elucidate the relationships between them.

2.4.1 Exact Inference

The first exact inference algorithm is Pearl’s belief propagation, also known as Pearl’s

message passing, presented in early 1980s; details of the algorithm are well summa-

rized in [Pearl88]. For polytree pure discrete or pure linear Gaussian BN, Pearl’s

message passing algorithm guarantees to return the correct marginal distribution for

every hidden node in a finite number of iterations of message propagation between

all variables. The algorithm can be implemented in a centralized fashion in which

case it converges in two iterations [PS91]. It is also amenable to parallel updating.

Unfortunately, Pearl’s message passing algorithm was designed originally for polytree

Bayesian networks and exact results can be obtained only for this particular network

class.

Pearl also proposed an exact inference method for multiply connected networks,

called loop cutset conditioning [Pearl86]. A selected subset referred as cutset is in-

stantiated, and then the original network is changed to be singly connected by con-

ditioning. Inference solutions of these singly connected networks are combined by

weighing the prior probabilities of the cutset. The cutset conditioning algorithm can

provide exact inference but its complexity grows exponentially with the size of the

26

cutset.

The most popular exact inference algorithm for multiply connected discrete Bayesian

networks is clique tree algorithm introduced by Lauritzen and Spiegelhalter [LS88,

SS90]. It is also called Junction tree or clustering algorithm. Clique tree algorithm

transforms the original multiply-connected network into an undirected singly con-

nected graph, called clique tree. First, an underlying undirected graph is obtained by

replacing directed edges in Bayesian networks with undirected edges. Next, parents

of the common node are connected pairwisely. Connecting, or marrying, the parents

leads the name of this process moralization. And then, loops in the undirected graph

that have 4 or more nodes are broken up into loops containing at most 3 nodes. In

other word, some chords are inserted in the loops and it makes the undirected graph

chordal. A descriptive name of this process is called triangulation. How to triangulate

the undirected graph aims to induce small cliques. Cliques are then formulated as

factors over the related variables from the moralized, triangulated undirected graph.

The clique tree built from a Bayesian networks is not necessarily unique. Finding the

optimal clique tree, which has the smallest maximal clique, is NP–hard. This is not

surprising because finding the optimal variable elimination order is NP–hard.

A clique tree is an undirected tree consisting of nodes and edges. Each node in

a clique tree is a clique or a cluster. Each clique is associated with a factor, called

potential, over the variables the clique contains. Each edge is associated with a factor,

called sepset, over the intersection of the variables of two cliques it connects. After

building the corresponding clique tree from a Bayesian network, clique tree algorithm

performs message propagation between cliques. Each clique sends a message to its

neighbors after receiving messages from its other neighbors. After a total of 2n − 2

27

messages passing if we have n cliques connected by n− 1 edges, then each potential

and each sepset in the clique tree converges to the correct marginal distribution over

its variables respectively.

There are several algorithms closely related to the clique tree algorithm, such as

arc reversal by Shachter [Sh86,Sh90], variable elimination algorithm [ZP94], and sym-

bolic probabilistic inference (SPI) by Shachter et al. [SD90]. Arc reversal algorithm

applies a sequence of operations using Bayes’ Rule to reverse the links. The pro-

cess continues till network is reduced to only the query nodes and evidence nodes as

directed predecessors. Variable elimination algorithm eliminates other variables one

by one by summing them out. An optimal elimination ordering results in the least

computational complexity. However, it is NP-hard, as mentioned earlier. SPI for-

mulates the probabilistic inference problem as a combinatorial optimization problem

and solves it by finding the optimal factoring.

For pure continuous model, if all variables are Gaussian and the relationship be-

tween every variable and its parents is linear, then the joint distribution represented

by the Bayesian networks is a multivariate Gaussian. Therefore all inference can be

done using this joint Gaussian distribution. Alternatively, we can use clique tree al-

gorithm with special form of representations of factors for potentials and sepset over

Gaussian variables.

Regarding hybrid models, relatively little has been done so far. The simplest

hybrid model is conditional linear Gaussians (CLGs) and it is a hybrid model for

which exact inference could be done. In general, even approximate inference for

polytree CLGs is NP–hard. The state of art algorithm for exact inference in CLGs

is Lauritzen’s algorithm [Lau92, LJ01]. Lauritzen’s algorithm is based on the clique

28

tree algorithm [LS88,SS90,HD96] originally developed for discrete Bayesian networks.

Lauritzen’s algorithm returns the exact answer in the sense that the first and second

moments of the posterior distribution are correct, while the true distribution might

be a mixture of Gaussians. However, a workable clique tree for Lauritzen’s algorithm

may be exponentially large, making the algorithm intractable.

In general the complexity of all exact inference algorithms is exponential in the

size of the largest clique of the triangulated moral graph, which is also called the

induced width of the graph [LS88]. For networks with many loops or general hybrid

models, intractability rules out the use of any exact inference algorithm. Therefore,

approximate inference methods come to the stage.

2.4.2 Approximate Inference

The major approximate inference methods for Bayesian networks include model sim-

plification, stochastic sampling and loopy belief propagation.

Model simplification methods first simplify the model until exact methods become

feasible and then apply an exact algorithm. Some commonly applied simplification

methods include removal of weak dependency or arc removal, discretization of con-

tinuous nodes, linearization of nonlinear relationships, and state space abstraction.

Stochastic sampling, also called Monte Carlo simulation, is the most popular

method for approximate inference and it has been used extensively for probabilistic

inference. In general, this method is applicable to every class of Bayesian networks

except some specialized sampling methods that may use techniques limited to partic-

ular types of BNs. However, sampling algorithms may take a long time to converge

to reliable answers. Especially with very unlikely evidence, sampling algorithms may

29

not converge even with huge sample sizes. Basically, stochastic sampling algorithms

first generate a set of random samples or instantiation of the network according to

some pre-selected distributions, and then approximate the posterior distributions of

the query nodes by the frequencies of appearances in the samples. The accuracy

of the inference depends on the sample size and the selected distributions used for

sampling, but it can be irrespective of the structure of the networks and the CPDs of

variables. Stochastic sampling can be further divided into two categories: importance

sampling algorithms and Markov Chain Monte Carlo methods (MCMC) [GRS96].

The first sampling algorithm for Bayesian network was proposed by Henrion in

1988 [Hen88], and is called logic sampling. Logic sampling uses simple forward sam-

pling according to the prior distribution of the network and simply discards the sam-

ples not consistent with the evidence. It is very inefficient and performs poorly when

evidence is unlikely. Logic sampling is not feasible when we have evidence for con-

tinuous variables because the probability of generating the same continuous value is

zero. As an improved version, the likelihood weighting (LW) [FC89, SP90] method

was designed to overcome the problems of logic sampling. LW does not sample the

nodes already observed. Instead, it takes the observed value of evidence node and

weights the sample by the likelihood of evidence conditional on the sample. LW per-

forms significantly better than logic sampling and can handle very large, complicated

networks. But it still converges slowly for unlikely evidence since LW uses the prior

distribution to generate samples as well. When evidence is very unlikely, LW may

hardly have the representative samples of the unknown posterior distributions given

the evidence because the weight of random sample is very small.

Both logic sampling and LW use the prior distribution of the network to generate

30

samples. This is the reason why it performs poorly with unlikely evidence because the

true distribution given unlikely evidence could be far away from the prior distribu-

tions. It is well-known that the performance of sampling methods depends not only

on the sample size, but more so on the sampling distribution. Instead of using the

prior, another idea originated from the finite-dimensional integral, is to use an “im-

portance” function for sampling. This leads to the concept of importance sampling.

In importance sampling, an importance function is a known probability distribution

we could use for sampling. In principle, the closer the importance function to the

true unknown distribution, the more efficient and accurate the sampling algorithm

will be.

The state-of-the-art importance sampling algorithm to deal with unlikely evidence

for purely discrete networks is Adaptive Importance Sampling for Bayesian Networks

(AIS-BN) proposed by Jian Cheng and Marek Druzdzel [CD00]. In AIS-BN, they

proposed a concept of Importance Conditional Probability Table (ICPT) defined as

the conditional probability table for every node given its parents as well as evidence.

And based on the assumption that the network structure does not change after ab-

sorbing the evidence, AIS-BN uses the product of ICPTs as the importance function

for sampling. ICPT for every node could be learned during the sampling and the

importance function is updated accordingly. Their experiments show good results for

very large networks with extremely unlikely evidence.

Based on AIS-BN, another method called Evidence Pre-propagation Importance

Sampling Algorithm (EPIS-BN) was proposed in 2003 [YD03]. In EPIS-BN, the

learning stage of ICPTs is avoided because it uses loopy propagation to compute

ICPTs directly. Their experimental results show that EPIS-BN saves computations

31

and time without losing performance compared with AIS-BN.

All of the above mentioned sampling methods are under the framework of im-

portance sampling, in which samples are independently generated. They only differ

in how they choose and update the importance function and how they generate and

weigh the sample. Logic sampling and likelihood weighting choose the prior distribu-

tion as the importance function and never update the function. AIS-BN and EPIS-BN

choose and update the importance function by learning or loopy propagation and they

perform very well even with extremely unlikely evidence. Unfortunately, AIS-BN and

EPIS-BN only work for pure discrete networks.

Importance sampling algorithms generate independent random samples for ap-

proximate inference. But another stochastic sampling approach, called Markov Chain

Monte Carlo (MCMC), generates dependent random samples for approximate infer-

ence. In particular, MCMC uses Markov Chain to generate the samples. The station-

ary distribution of the Markov Chain is the target distribution from which we want

to sample. MCMC usually needs certain amount of time before generating useful

samples. This is called burning time. Two popular MCMC methods are Metropolis-

Hasting sampling [MRR+53,Hast70] and Gibbs sampling [GG84]. Pearl proposed an

approximate inference method for BNs using Gibbs sampling in [Pearl87].

The third main category of approximate inference for BNs is loopy belief propa-

gation (LBP). Recall that Pearl’s message passing works exactly for polytree discrete

BN. When loops (undirected cycles) are present in the network (multiply-connected

BN), local propagation may run into problem due to the non-unique path. As Pearl

noted, the messages propagated between variables in the loops may not be correct:

When loops are present, the network is no longer singly connected, and

32

local propagaion schemes will invariably run into trouble. The reason is

both architectural and semantic. If we ignore the existence of loops and

permit the nodes to continue communicating with each other as if the net-

work were singly connected, messages may circulate indefinitely around

these loops, and the process may not converge to a stable equilibrium.

. . . Such oscillations do not normally occur in probabilistic networks be-

cause of the stochastic nature of the link matrices, which tend to bring all

messages toward some stable equilibrium as time goes on. However, this

asymptotic equilibrium is not coherent, in the sense that it does not rep-

resent the posterior probabilities of all nodes of the network. The reason

for this is simple: all of our propagation equations were based on some

conditional independence assumptions that might be violated in multiply

connected networks. [Pearl88, p.195]

However, researchers still use this algorithm as an approximate inference method for

multiply connect BNs. This extended method is so-called loopy belief propagation

(LBP). In recent years, loopy belief propagation – applying Pearl’s message passing

algorithm for the networks with loops – has become a popular topic in the literature

[MWJ99,WF99] because of its simplicity of implementation and its good performance.

Researchers have found that loopy belief propagation usually converges, and when it

converges, it provides good estimation empirically. In this dissertation, we propose

two approximate inference algorithms under the framework of message passing to deal

with nonlinear and non-Gaussian variables in hybrid BN models.

33

2.4.3 Mixed Inference

For complicated networks, under some circumstances such as conditioning or density

approximation, we can use exact inference for at least part of the networks. In these

cases, a general approach combining both exact and approximate inference may be the

most appropriate method. We call this approach mixed inference. Mixed inference

may achieve the best of both worlds.

Recall that the popular clique tree algorithm works for discrete networks and its

extended version Lauritzen’s algorithm works for the simplest hybrid model CLG. For

arbitrary hybrid Bayesian networks, it is possible to use the same algorithmic frame-

work if we can represent the clique potentials by appropriate distributions. [KL99]

proposed a generalized clique tree algorithm for hybrid BNs. They used approximate

inference, such as importance sampling, to estimate the densities in each clique and

messages sent between cliques. Their approach is a general schema which can be

instantiated in different ways based on the representation formats and different ways

to manipulate.

Theoretically, we know Gaussian mixture can approximate any continuous distri-

bution at arbitrary accuracy with sufficient number of Gaussian components. [Poland94,

Shenoy06] proposed using finite mixture of Gaussians to fit arbitrary continuous dis-

tributions in hybrid BNs. They then conduct exact inference using Lauritzen’s algo-

rithm.

Similarly, researchers proposed that mixture of truncated exponentials (MTE)

can approximate any probability density function and it is very useful for inference

in hybrid BNs [MRS01,MRS02,CS06]. MTE can always be marginalized in closed-

form. Therefore, it allows message propagation can be done exactly using the same

34

architecture of clique tree algorithm.

Another instantiation of mixed inference algorithm is called cutset sampling [BD06],

which combines sampling method and exact polytree algorithm. Cutset sampling can

be viewed as the an anytime approximation of exact cutset conditioning algorithm

[Pearl86]. It applies Gibbs sampling [Neal93] on a selected loop cutset and performs

exact inference on the rest of the network. Their experimental results show that cut-

set sampling outperform AIS-BN with unlikely evidence. However, it only works for

discrete Bayesian networks.

Mixed inference takes advantage of the best features from both approximate and

exact inference. Like approximate method, it can deal with complex domain, includ-

ing different type of variables such as sampling methods; while exact inference can

exploit the locality structure of BNs to reduce the dimensionality of the probability

densities such as clique tree algorithm.

2.4.4 Sequential Inference for Dynamic Bayesian Networks

When some or all random variables in Bayesian networks change their values over

time, it becomes dynamic Bayesian network (DBN). Sequential inference is the most

popular framework for DBNs because it is not feasible to unroll the network for

all time slices during the dynamic process. Sequential inference is to estimate the

posterior distribution recursively when next observations become available based on

the estimation at the current time. Sequential inference could be exact in special

cases: if we can obtain the exact posterior distribution for the unrolled two-time-

step networks after absorbing evidence at the current time slice, then we can do

exact rollup for the next time slice for dynamic Bayesian networks [TAW02]. As an

35

example, Kalman Filter provides exact answers for linear Gaussian model [Kal60,

AM79,BLK01].

In the past few years, a new filtering method called Unscented Kalman Fitler

(UKF) has been developed to deal with nonlinear dynamic transition for Gaussian

model [JU96,JU97,Julier02]. UKF uses deterministic sampling method and can per-

form estimation with accuracy up to the second moment of the continuous distri-

bution. It is one of the best performing sequential inference algorithms to date for

nonlinear Gaussian models.

In general, we have to approximate the posterior distribution to make inference

tractable. This is because the belief state will become fully correlated only after

a few time slices in dynamic Bayesian networks. Boyen-Koller’s method provides a

general approximate rollup framework for sequential inference [BK98]. Boyen-Koller’s

method proved that the estimation error resulting from the approximation remains

bounded because of the stochasticity of the process. However, it runs into trouble

when the process is close to deterministic (error bound will be meaninglessly too big

in this case).

Particle filter (PF), also known as sequential Monte Carlo simulation, is a gen-

eral method of sequential inference [DFG01a,DFG01b,AMG02]. In particle filtering,

random samples called particles are generated and propagated through the dynamic

process. Then the particles survived after resampling are taken as the samples to es-

timate the posterior distribution. Theoretically, if we use infinite number of particles,

PF will converge to the exact answer. But in practice, particle filter often encounter

the problems of particle degeneracy. Particle degeneracy means that only few paricles

have significant weights, whereas the majority of particles are weighted close to zero.

36

This causes that the particles are not representative for a distribution. To overcome

this weakness, there are many variants of particle filter proposed in the literature such

as auxiliary particle filter [PS99], unscented particle filter [MDFW00], and particle

filter with move by MCMC [GB01]. They differ in how they choose the proposal

function for sampling and how they resample the particles. Among them, unscented

particle filter (UPF) combines the methods of unscented kalman filter and particle

filter. It uses the estimated distribution by unscented kalman filter as the proposal

sampling distribution, and then generate the random samples correspondingly. Their

experimental results show that UPF performs very well in tracking, option pricing.

2.4.5 Summary of Inference Algorithms

Inference methods proposed in the literature differ in many ways. Here are some of

the main aspects:

• What topologies can it handle?

• What node types can it handle?

• Does it provide exact or approximate inference?

The NP-hardness of probabilistic inference for Bayesian networks suggests that

it is not likely to find a general inference algorithm works for all situations. Indeed,

the efficient methods are highly model-dependent. The best approach is to take

advantages of the special features of a particular model and seek the efficient inference

methods accordingly.

37

2.5 Challenges of BN Inference

Since the introduction of Bayesian networks in 1980s, a great deal of research work

has focused on inference problems. But the overwhelming majority of them consider

the case of pure discrete Bayesian networks. Both exact and approximate inference al-

gorithms for discrete Bayesian networks are now very well understood and developed.

However, many real-world problems have continuous attributes as well. Unfortu-

nately, at the current edge, very little is done for general hybrid models. Only for

the simplest hybrid model-CLG, exact inference may be obtained but not guaran-

teed by Lauritzen’s algorithm. Generally speaking, no exact inference is possible for

nonlinear, non-Gaussian hybrid Bayesian networks.

In modern applications, the size of realistic BN models is becoming larger and

larger. Network structures may be of any complicated topology. Different types of

variables may be mixed together in a model and their distributions could be arbi-

trary. To address these challenges, this dissertation presents an approximate inference

framework for efficient computation and sampling.

As mentioned earlier, sampling algorithm is an ultimate alternative when all other

approaches fail. This is because of its special features:

• Sampling algorithms can be model-free. The performance of sampling methods

is generally improved by increasing the sample size, irrespective to the topology

and types of nodes of the model. The complexity is linear in the number of

samples.

• Sampling algorithms are any-time methods. That is, they can return results at

any time. This is very important in time-critical applications.

38

• Sampling algorithms can converge very quickly if a good proposal function is

used for sampling.

AIS-BN [CD00], EPIS-BN [YD03], and cutset sampling [BD06] are the most ef-

ficient sampling algorithms for pure discrete networks reported so far. AIS-BN and

EPIS-BN can deal with extremely unlikely evidence by learning or computing a good

importance function. However, for a continuous node in a hybrid model, given its

discrete parents, a functional relationship between a continuous node and its contin-

uous parents may be involved. How to learn or estimate the relationship will be the

key for sampling in a hybrid model. We did some related studies in our paper [SC05],

in which we proposed a way to approximate general nonlinear relationships by linear

functions.

As well-known, the performance of sampling algorithms depends on the sample

size and sampling distribution. In practice, how to find a good importance function

is key. It could reduce the sample size and thereby save significantly on computation

and time.

In this dissertation, we focus on another direction inspired by the traditional mes-

sage passing [Pearl88]. As mentioned earlier in this chapter, loopy belief propagation

has been very popular for approximate inference in recent years. In this algorithm,

probabilities and likelihood encoded in messages are propagated between variables.

Every variable in a BN model sends messages to its neighbors, while receiving mes-

sages from its parents and children in the mean time. After a finite number of

iterations, message passing usually converges. If it converges, empirical experience

indicates that the marginal distributions computed by the final messages are very

close to the true marginal distributions. However, to apply message passing in a

39

hybrid BN, we first need to address two important issues: (1) How to represent and

propagate messages for continuous variables; and (2) How to integrate/combine mes-

sages between different types of variables. We will discuss these issues in the next

several chapters.

40

Chapter 3: Unscented Message Passing

3.1 Introduction

Pearl’s message passing algorithm [Pearl88] is the first exact inference algorithm for

Bayesian networks. It provides correct inference results for discrete BNs with poly-

tree network structure. Applying Pearl’s algorithm to a network with loops provides

approximate answers. This method is called loopy belief propagation. Due to its sim-

plicity of implementation and its good performance, loopy propagation has become

very popular in recent years [MWJ99, WF99]. In discrete case, messages are rep-

resented and manipulated by probability vectors and conditional probability tables

(CPTs), which is relatively straightforward mathematically and algorithmically. But

when applying Pearl’s algorithm for continuous variables, it is more complicated to

represent and manipulate the messages. In this chapter, we present an approximate

algorithm to extend Pearl’s message passing for handling continuous variables. First,

we propose to use the first two moments, the mean and variance of a probability dis-

tribution, to represent message for a continuous distribution. When the distribution

is Gaussian, the mean and variance is sufficient to characterize the distribution. How-

ever, if the distribution is arbitrary continuous distribution, theoretically we can use

Gaussian mixture to approximate it at any accuracy with enough number of Gaussian

components. Secondly, we propose to integrate messages by weighting them accord-

ing to the inverse of their uncertainty (variance). The computational manipulations

41

in message propagation equations include product of messages and multiplication of

messages with the conditional probability distribution that also represented approx-

imately by the mean and variance in continuous case. The product of messages is

essentially the data fusion for multiple estimates. And the computations involving

CPDs may need to consider functional transformations because the specification of

a CPD for a continuous variable may include function. To deal with the potentially

nonlinear functional relationship between continuous variables, we propose to use

the unscented transformation [JU96, Julier02] to derive the corresponding messages.

The unscented transformation uses a deterministic sampling scheme and can provide

good approximations of the first two moments for a continuous variable subjected to

a nonlinear transformation.

In this novel algorithm, unscented transformation plays a key role for computing

continuous messages. This is why we call the new developed algorithm ‘Unscented

Message Passing’ (UMP) [SC07a]. This chapter describes how UMP computes and

propagates messages for arbitrary continuous variables. We will first review Pearl’s

message passing algorithm, and then show how UMP can extend this algorithm in

the continuous case.

3.1.1 Pearl’s Message Passing Review

Pearl’s message passing, also called Belief propagation, was originally developed for

polytree discrete BN. In a polytree network, any node X partitions the network into

two separate parts UX and DX , where UX denotes the network “above” X and DX

denotes the network “below” X. One important property by this partition is X d-

separates variables in UX from variables in DX . Similarly, a link T → X also divides

42

the network into two parts: UTX and DTX . It is easy to see that erasing the arc

T → X breaks the network into two entirely disjoint sub-networks. UTX is the sub-

network from which the arc T → X emanates and DTX is the one to which the arc

T → X points. Figure 3.1 (a) illustrates those sub-networks. Obviously,

U TX = U T + (DT −DTX)

DTX = DX + (UX − U TX)

X

T

(b)

X

T1
T2

Tn...

Y1 Y2 Ym
...

(a)

Figure 3.1: (a) 4 sub-networks divided by node X and arc T → X. Orange is UX ;

yellow is U TX ; green is DTX ; pink is DX . (b) A typical node X with m parents and

n children in a polytree.

Assume we have evidence observed as e. For a node X in the polytree, we could

divide e into two separate sets e+
X , e−X , where e+

X represents the observations from UX

and e−X stands for observations from DX . Also, given an arc T → X, evidence e can be

43

divided into e+
TX and e−TX . Here, e+

TX denotes the observations from the sub-network

on the tail side of the link T → X (UTX) and e−TX denotes the observations from

the sub-network on the head side of the link T → X (DTX). Note e−X ⊆ e−TX ⊆ e−T ,

e+
T ⊆ e+

TX ⊆ e+
X .

In Pearl’s message passing algorithm, each node maintains two values called the λ

value and the π value. The λ of node X is λ(X) = P (e−X |X), which is the likelihood

of observations e−X given X. The π of node X is π(X) = P (X| e+
X), which is the con-

ditional probability of X given e+
X . Therefore, the belief of X (posterior distribution

of X given evidence) denoted by BEL(X) is

BEL(X) ≡ P (X| e+
X , e−X) = αP (e−X |X, e+

X)P (X| e+
X) = αP (X| e+

X)P (e−X |X)

= απ(X)λ(X)

where α is a normalization constant. The third equality follows from the fact that X

d-separates e−X from e+
X . Usually, we do not know π(X), λ(X) directly unless e+

X is

the only parent of X and X is the only parent of e−X .

Let us choose a typical node X with m parents and n children illustrated in Figure

3.1 (b), where T1, T2, ..., Tm denote m parents of X and Y1, Y2, ..., Yn denote n children

of X. We will show that π(X) and λ(X) could be computed using π and λ messages

sent from its parents and children.

It is easy to see that e+
X and e−X can be further decomposed as the following:

e+
X = {e+

T1X , e+
T2X , ..., e+

TmX}, e−X = {e−XY1
, e−XY2

, ..., e−XYn
}

44

Then

λ(X) ≡ P (e−X |X)

= P (e−XY1
, e−XY2

, ..., e−XYn
|X)

= P (e−XY1
|X) · P (e−XY2

|X) · · · P (e−XYn
|X)

=
n∏

j=1

λYj
(X) (3.1)

where

λYj
(X) = P (e−XYj

|X) (3.2)

The quantity λYj
(X) is the λ message sent to X from its child Yj. Also

π(X) ≡ P (X| e+
X)

=
∑

T1,T2,...,Tm

P (X| T1, T2, ..., Tm)P (T1, T2, ..., Tm| e+
T1X , e+

T2X , ..., e+
TmX)

=
∑

T1,T2,...,Tm

P (X|T1, T2, ..., Tm)P (T1| e+
T1X) · P (T2| e+

T2X) · · · P (Tm| e+
TmX)

=
∑
T

P (X| T)
m∏

i=1

πX(Ti) (3.3)

where T = {T1, T2, ..., Tm} and

πX(Ti) = P (Ti| e+
TiX

) (3.4)

The quantity πX(Ti) is the π message sent to X from its parent Ti.

45

Figure 3.2: A typical node X with m parents and n children.

From Equations 3.1 to 3.4, we see that computing λ value of one node requires the

corresponding λ messages sent from all of its children. Furthermore, computing the

π value of one node needs the corresponding π messages sent from all of its parents.

Essentially, λ message is propagated from child to parent; while π message is passed

from parent to child. The propagating messages for a typical node X in a polytree

network are illustrated in Figure 3.2, where T(T1, T2, ..., Tm) are the m parents of X

and Y(Y1, Y2, ..., Yn) are X’s n children.

As a summary, the conventional propagation equations of Pearl’s message passing

algorithm are the following [Pearl88, p183] (For detailed derivation, see [Pearl88]):

BEL(X) = απ(X)λ(X) (3.5)

λ(X) =
n∏

j=1

λYj
(X) (3.6)

π(X) =
∑
T

P (X| T)
m∏

i=1

πX(Ti) (3.7)

46

λX(Ti) =
∑
X

λ(X)
∑

Tk: k 6=i

P (X|T)
∏

k 6=i

πX(Tk) (3.8)

πYj
(X) = α

[∏

k 6=j

λYk
(X)

]
π(X) (3.9)

where λYj
(X) is the λ message sent to node X from its child Yj, λX(Ti) is the λ

message sent to its parent Ti from node X; πX(Ti) is the π message sent to node X

from its parent Ti, πYj
(X) is the π message sent to its child Yj from node X; and α

is a normalization constant.

When this algorithm is applied to polytree discrete network, the algorithm con-

verges in one upward and one downward pass. And the marginal belief of every

hidden node is equal to the true posterior probability distribution given evidence.

For a network with loops, we can still apply this algorithm. This is the so-called

“loopy propagation”. In general, loopy propagation will not provide exact inference

results. But empirical investigations on its performance have reported surprisingly

good results.

For discrete variables, messages could be represented by probability vectors and

CPTs, which are conditional probability tables with finite entries. Therefore the cal-

culations in the above formulae involve product of vectors and multiplication of vec-

tor and matrices. These are straightforward to implement. However, for continuous

variables, message representation and the corresponding calculations are much more

complicated. First, integrals replaces the summations in the above equations. Fur-

thermore, since a continuous variable could have an arbitrary distribution over a con-

tinuous space, it is usually not possible to obtain closed-form analytical results when

47

multiplying different continuous distributions together. In order to make the compu-

tations feasible while keeping the key information, we use the first two moments, the

mean and variance of a continuous distribution, to represent message for a continuous

variable regardless of the original distribution. Then, by assuming they are Gaussians,

the multiplications of different continuous distributions could be approximated sim-

ilar to fusing multiple estimates. Note that in the continuous case, P (X| T) is a

continuous conditional probability distribution and it may encode arbitrary function

of continuous variables. To integrate the product of continuous distributions as shown

in Equations (3.7) and (3.8), it has to take into account the functional transforma-

tion of continuous variables. Fortunately, unscented transformation [JU96, Julier02]

provides good estimates of means and variances for continuous variables subjected

to nonlinear transformation. In the proposed algorithm, the unscented transforma-

tion plays a key role for computing continuous messages. Specifically, we use it to

formulate and compute the π and λ messages since both computations involve con-

ditional probability distribution whose specification may encode nonlinear functions.

For completeness, we briefly review the method of unscented transformation next.

3.1.2 Unscented Transformation

Proposed in 1996 by Julier and Uhlmann [JU96], the unscented transformation (UT)

is a deterministic sampling method to estimate the mean and variance of a continuous

random variable obtained by applying a nonlinear transformation to a random vari-

able with given mean and variance. Consider the following problem: a continuous

random variable x with mean x̄ and covariance matrix Σx undergoes an arbitrary

nonlinear transformation, written as y = g(x); then what is the mean and covariance

48

of y?

From probability theory, we have

p(y) =

∫

x

p(y|x)p(x) dx.

However, in general the above integral may be difficult to compute analytically and

may not always have a closed-form solution. Therefore, instead of finding the dis-

tribution, we retreat to estimating its mean and variance. Based on the principle

that it is easier to approximate a probability distribution than an arbitrary nonlin-

ear function, the unscented transformation uses a nonparametric method to estimate

the distribution, but leave the original function unchanged. Another method in the

literature, called extended Kalman filter (EKF), linearizes the nonlinear function in-

stead. It has been reported that EKF always performs worse than UT in terms of

accuracy and computational costs [JU96,JU97,dMer04]. Because of the poor perfor-

mance of EKF for nonlinear estimation, Julier was joking that linearization methods

smell ‘bad’. This is why they call the new estimation method for a random variable

subject to nonlinear functional transformation Unscented Transformation.

UT uses a minimal set of deterministically chosen sample points called sigma

points with the sample mean and the sample covariance equal to the true mean

and the true covariance of the prior distribution, respectively. The number of needed

sigma points is determined by the dimension of random variable (If it is L-dimensional

multivariate distribution, only 2L + 1 sigma points are needed). Those sigma points

are propagated through the original functional transformation individually. Using

a Taylor expansion of the function, it can be shown that the posterior mean and

49

covariance calculated using these propagated sigma points are accurate to the 2nd

order for any nonlinearity [JU96]. In the special case where the function is linear, the

posterior mean and variance are exact.

The original unscented transformation encounters difficulties with high dimen-

sional variables, so the scaled unscented transformation was developed soon afterward

[Julier02]. The scaled unscented transformation is a generalization of the original un-

scented transformation. We will use two terms interchangeably, but both mean scaled

unscented transformation in the remainder of this paper.

Now let us describe the formulae of unscented transformation. Assume X is a

L-dimensional multivariate continuous variable with mean vector x̄ and covariance

matrix Σx. First, a set of 2L + 1 sigma points denoted as X are selected by the

following scheme:

λ = α2(L + κ)− L

X =





X0 = x̄ i = 0

Xi = x̄ +
(√

(L + λ)Σx

)
i

i = 1, . . . , L

Xi = x̄−
(√

(L + λ)Σx

)
i

i = L + 1, . . . , 2L

(3.10)

and the associated weights for these 2L + 1 sigma points are:

w
(m)
0 = λ

L+λ
i = 0

w
(c)
0 = λ

L+λ
+ (1− α2 + β) i = 0

w
(m)
0 = w

(c)
0 = 1

2(L+λ)
i = 1, . . . , 2L

(3.11)

where α, β, κ are scaling parameters and the superscripts ‘(m)’, ‘(c)’ indicate the

50

weights for computing posterior mean and covariance respectively; i is the index of

the sigma point. The values of scaling parameters satisfy 0 ≤ α ≤ 1, β ≥ 0 and κ ≥ 0.

It has been shown empirically that the specific values chosen for the parameters are

not critical because unscented transformation is not sensitive to those parameters.

We choose α = .8, β = 2 (optimal for Gaussian prior [Julier02]) and κ = 0 in all of

our experiments.

After selecting sigma points, they are propagated through the functional trans-

formation:

Yi = g(Xi) i = 0, . . . , 2L (3.12)

Finally, the posterior mean and covariance are estimated by combining the propagated

sigma points as follows:

ȳ ≈
2L∑
i=0

w
(m)
i Yi (3.13)

Σy ≈
2L∑
i=0

w
(c)
i (Yi − ȳ)(Yi − ȳ)T (3.14)

Σxy ≈
2L∑
i=0

w
(c)
i (Xi − x̄)(Yi − ȳ)T (3.15)

As a shorthand, we denote the unscented transformation for X undergoing a

functional transformation Y = g(X) as the following:

(Y.mu, Y.cov) = UT (X
g(X)−→ Y) (3.16)

In the following, we shall demonstrate the unscented transformation by a simple

51

two-dimensional example. Let x = [x1 x2] be a Gaussian random variable with mean

and covariance matrix given as,

x̄ =

[
3
1

]
Σx =

[
1 −1
−1 2

]
.

In order to show the robustness of unscented transformation, we choose a set of

functions with severe nonlinearity shown as below:

y1 = log (x2
1) cos (x2) , y2 =

√
exp (x2) sin (x1x2)

The true posterior statistics are approximated very closely by brute force Monte Carlo

simulation using 100, 000 sample points drawn from the prior distribution and then

propagated through the nonlinear mapping. We compare them with the estimates

calculated by unscented transformation with only 5 sigma points. Figure 3.3 shows

that the mean calculated by transformed sigma points is very close to the true mean

and the posterior covariance seems consistent and efficient because the sigma-point

covariance ellipse is bigger but still tight around the true posterior covariance ellipse.

3.1.3 Message Passing In Continuous Case

As mentioned at the end of Section 3.1.1, message representation and propagation for

continuous variables are different from the ones in discrete case. Pearl’s conventional

equations shown in Equation (3.5) to (3.9), must be modified for continuous variables.

First of all, obviously, integral replaces summation in the above equations for continu-

ous variable. Now let us take a closer look at these equations one by one. In recursive

Bayesian inference, π message represents prior information and λ message represents

52

−1 0 1 2 3 4 5 6 7
−4

−3

−2

−1

0

1

2

3

4

5

6
Prior Distribution

Sample Points

Prior mean

Prior covariance

Sigma points

−4 −3 −2 −1 0 1 2 3 4
−10

−5

0

5

10

15

20
After Transformation

sample points

true mean

true covariance

sigma points

sp mean

sp covariance

(a) Prior distribution (b) After nonlinear transformation

Figure 3.3: Demonstration of Unscented Transformation.

evidential support in the form of a likelihood function. Equations (3.5), (3.6), and

(3.9) are essentially the combination of different messages by multiplication. They

are similar to the data fusion concept where estimates received from multiple sources

are combined.

Under the assumption of Gaussian distribution, the fusion formula is relatively

straightforward [BLK01]. Specifically, Equations (3.5), (3.6), and (3.9) can be rewrit-

ten in terms of the first two moments of the probability distributions as the following:

BEL(X)





cov =
(

1
π(X).cov

+ 1
λ(X).cov

)−1

mu = cov
[

π(X).mu
π(X).cov

+ λ(X).mu
λ(X).cov

] (3.17)

λ(X)





cov =
(∑n

j=1
1

λYj
(X).cov

)−1

mu = cov
[∑n

j=1

λYj
(X).mu

λYj
(X).cov

] (3.18)

53

πYj
(X)





cov =

(
1

π(X).cov
+

∑

k 6=j

1

λYk
(X).cov

)−1

mu = cov

[
π(X).mu
π(X).cov

+
∑

k 6=j

λYk
(X).mu

λYk
(X).cov

] (3.19)

Equation (3.7) computes the π value for node X. Analytically, this is equivalent

to treating X as a functional transformation of T and the function is the one defined

in CPD of X denoted as h(X). We take T as a multivariate random variable with

a mean vector and a covariance matrix; then by using unscented transformation, we

obtain an estimate of mean and variance of X to serve as the π value for node X.

In Equation (3.7), πX(Ti) is the π messages sent to X from its parent Ti, which is

also represented by ‘mean’ and ‘variance’. By combining all the incoming πX(Ti)

messages, we can estimate the mean vector and covariance matrix of T. Obviously,

the simplest way is to view all parents as independent variables; then take their means

to compose the mean vector, and put their variances at the diagonal positions to form

a diagonal matrix as the covariance matrix.1 With that, we can compute the π value

of node X by

(π(X).mu, π(X).cov) = UT (T
h(X)−→ X) (3.20)

Similarly but a bit more complicated, Equation (3.8) computes the λ message

sent to its parent from node X. Note here that we integrate out X and all of its

parents except the one (Ti) to which we are sending λ message. Theoretically, this

is equivalent to regarding Ti as a functional transformation of X and T\Ti. It is

1This is actually how the original loopy algorithm works and why it is not exact. To improve the

algorithm, we can estimate the correlations between all parents and pass them into the covariance

matrix of T. This could be an interesting future work.

54

necessary to mention that the function used for transformation is the inverse function

of the original one with Ti as the dependent variable. We denote this inverse function

as v(X,T\Ti). Note that this is the key difference from the transformation used in

computing π(X). In practical applications, there is no guarantee that the inverse

function is unique and the function may not be invertible. We assume that functions

specified in CPDs in a CHM are invertible. To compute the message, we first augment

X with T\Ti to obtain a new multivariate random variable called TX; then the

mean vector and covariance matrix of TX are estimated by combining λ(X) and

πX(Tk)(k 6= i). After applying the unscented transformation to TX with the new

inverse function v(X,T\Ti), we obtain an estimate of the ‘mean’ and ‘variance’ for

Ti serving as the λX(Ti) message as below,

(λX(Ti).mu, λX(Ti).cov) = UT (TX
v(X,T\Ti)−→ Ti) (3.21)

With Equations (3.17) to (3.21), we can now compute all messages for continu-

ous variables. For comparison, we summarize the message propagation equations for

discrete and continuous cases, respectively, in Table 3.1. These derived propagation

equations are one of the key contributions of this dissertation to extend message pass-

ing algorithm for continuous variables. As you may notice, unscented transformation

plays a key role here. This is why we name this algorithm Unscented Massing Passing

for Bayesian Network (UMP-BN).

55

Message propagation equations for a node X in Bayesian networks.

X has parents T1, T2, . . . Tm and children Y1, Y2, . . . , Yn.

All variables are discrete All variables are continuous

BEL(X) = απ(X)λ(X) BEL(X)





cov =
(

1
π(X).cov

+ 1
λ(X).cov

)−1

mu = cov
[

π(X).mu
π(X).cov

+ λ(X).mu
λ(X).cov

]

λ(X) =
n∏

j=1

λYj
(X) λ(X)





cov =
(∑n

j=1
1

λYj
(X).cov

)−1

mu = cov
[∑n

j=1

λYj
(X).mu

λYj
(X).cov

]

π(X) =
∑
T

P (X| T)
m∏

i=1

πX(Ti) (π(X).mu, π(X).cov) = UT (T
h(X)−→ X)

λX(Ti) =

(λX(Ti).mu, λX(Ti).cov) = UT (TX
v(X,T\Ti)−→ Ti)∑

X

λ(X)
∑

Tk: k 6=i

P (X|T)
∏

k 6=i

πX(Tk)

πYj
(X) = α

[∏

k 6=j

λYk
(X)

]
π(X) πYj

(X)





cov =

(
1

π(X).cov
+

∑

k 6=j

1

λYk
(X).cov

)−1

mu = cov

[
π(X).mu
π(X).cov

+
∑

k 6=j

λYk
(X).mu

λYk
(X).cov

]

Table 3.1: Comparison of message propagation equations.

3.2 Unscented Message Passing Algorithm

The first step of UMP-BN is to initialize the messages. To incorporate the evidence,

we allow a λ message sent to a node from itself. From the implementation perspective,

56

we compute 5 different messages for each node in the network: 1. π of the node; 2. λ

of the node; 3. λ-from-child message; 4. λ-from-self message; and 5. π-from-parent

message. Each message consists of two fields—mean and variance. Recall π message

is passed in the top-down direction and λ message is passed from leaf to the root. We

update messages for all nodes according to their topological order.

In Pearl’s algorithm, the initial message for discrete evidence node is set as a

vector of ‘1’ for observed state and 0’s for other states. All other messages in discrete

network are initialized as a vector of all 1’s. For continuous networks, we initialize

the message for the continuous evidence node with mean equal to the observed value

and variance equal to zero. Similarly, all other messages for continuous variables

are initialized as uniform (in particular, zero mean and infinity variance, so-called

diffusion prior). After initialization, we then use parallel updating for all nodes based

on the equations (3.18) to (3.21). Message passing continues till the posterior belief

has converged or a pre-defined maximum number of iterations is reached. We assess

the convergence by checking if the belief change is less than a pre-specified threshold

(say, 10−4).

The general UMP-BN algorithm is summarized in Figure 3.4.

3.3 Numerical Experiment

To test the algorithm, we use two popular real-world networks each has multiple

loops with different sizes. One is INCINERATOR, borrowed from [Lau92] in which

the author proposed the Junction Tree algorithm for conditional linear Gaussian net-

work (CLG). Another one is ALARM, used in the paper [BSC89] to compare various

inference algorithms. These networks are either CLGs or discrete networks originally.

57

Algorithm: Unscented Message Passing for arbitrary
continuous Bayesian networks (UMP-BN).

Input: Arbitrary continuous Bayesian network given
a set of evidence

Output: Estimated mean and variance of posterior
distribution for every hidden continuous node.

1. Order the nodes in the network according to their topological order.

2. Specify the iteration number/convergence condition.

3. Initialize messages for all node

4. while Not Converge do

Run parallel message updating for all hidden nodes using Equations (3.18) to

(3.21).

end while

5. Compute the posterior beliefs in terms of estimated mean and variance for every

hidden node using Equation (3.17).

Figure 3.4: Unscented Message Passing Algorithm

In our experiments, we leave the network structures unchanged but specify different

types of CPDs to see how the algorithm performs under different circumstances. The

network structures are shown in Figure 3.5, and 3.6 respectively. In our experiments,

we assume all leaf nodes in the network are observable evidence.

We use normalized error and Kullback-Leibler (KL) divergence as the performance

measures in all of the experiments. Normalized error is defined as the ratio of the

absolute error over the reference true value. It will be used in evaluating the accuracy

58

Waste Type

INCINERATOR

Mental Waste

Filter State

Efficiency

Burning Regime

CO2 Emission

Dust Emission

Metal Emission Light Penetrability

Figure 3.5: INCINERATOR

Error Low
OuputHeart Rate Error CauterHistory

HREKG
Pulmonary Capillary
Wedge Pressure Cardiac Output HRBP HRSat

Blood Pressure

Breathing Pressure
Pulmonary Artery
Pressure Shunt

VentTubePulmEmbolus Intubation

VentMach

MinVolSet

Central Venous
Pressure

Left Ventricular
End-diastolic volume StrokeVolume

Hypovolemia Catecholamine

Anest./Anelgesia
Insufficient

MinVolVentAlv

ArtCO2

Total Peripheral
Resistance

Left Ventricular
Failure

Anaphylaxis PVSat

FiO2

SaO2

VentLung

KinkedTube

Disconnection

ExpCO2

ALARM

Figure 3.6: ALARM: a network for monitoring patients in intensive care.

of estimation for mean and variance of the posterior distribution. KL divergence is

59

the well-known measure to assess the similarity between two distributions defined as:

DKL(P ||Q) =

∫

x

p(x)log
p(x)

q(x)
dx

where p(x), q(x) are two different probability density functions.

3.3.1 Case 1: Linear Gaussian

In this experiment, we first randomly generate linear Gaussian CPDs for all nodes

in the network so that the exact inference algorithm, Junction tree, can be used to

provide a true answer as the gold standard. We then sample the network and clamp

the evidence nodes with the sampled values. Given a set of evidence, we run UMP-

BN to compute the mean and variance of the posterior distribution for every hidden

continuous node. For comparison purpose, we also implement a sampling algorithm,

likelihood weighting (LW) [FC89,SP90] with various sample size.

For INCINERATOR, We found UMP-BN always converges with an average num-

ber of iterations about 9.2. Figure 3.7 shows the performance comparison in means

and variances of the posterior distributions for all hidden variables in 5 random runs.

We use 300 samples in LW so that the total amount of computation time is roughly

the same. As can be seen from the figure, UMP-BN always provides accurate esti-

mates of means, while the estimated variances deviate from the true somewhat but

still are better than LW in most cases. We also compare the average KL divergence

between the estimated distributions and the true ones. The results are summarized

in Table 3.2. It shows that UMP-BN performs almost two orders of magnitude better

than LW with roughly the same computation time.

60

1 2 3 4 5

−1

−0.5

0

0.5

1
INCINERATOR−Linear Gaussian: mean comparison

case index

no
rm

al
iz

ed
 e

rr
or

 o
f m

ea
n

UMP−BN

LW−300

1 2 3 4 5
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3
INCINERATOR−Linear Gaussian: variance comparison

case index

no
rm

al
iz

ed
 e

rr
or

 o
f v

ar
ia

nc
e

UMP−BN

LW−300

(a) mean comparison (b) variance comparison

Figure 3.7: INCINERATOR-Linear Gaussian: Performance comparison. The ground

true is provided by Junction tree.

Table 3.2: INCINERATOR: Average KL-divergence.

Average KL Divergence
UMP-BN 0.0017
LW-300 0.0711

For ALARM model, there are 11 leaf evidence nodes and 26 hidden nodes. Using

300 samples, LW performed very poorly in this case because the sample space is much

bigger than the one for the model INCINERATOR. Therefore, we use 1, 000 samples

instead for LW. With this sample size, LW takes about three times the computation

time of UMP-BN. We found UMP-BN always converges in this case with an average

number of iterations about 15.8. Figure 3.8 illustrates that UMP-BN still performs

significantly better than LW with 1, 000 samples in a typical run. We implement 5

random trials and the summarized average KL divergence is shown in Table 3.3.

61

0 5 10 15 20 25
−1

−0.5

0

0.5

1

1.5

ALARM: mean comparison

hidden node index

n
o

rm
al

iz
ed

 e
rr

o
r

o
f

m
ea

n
UMP−BN

LW−1k

0 5 10 15 20 25
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5
ALARM: variance comparison

hidden node index

n
o

rm
al

iz
ed

 e
rr

o
r

o
f

va
ri

an
ce

UMP−BN

LW−1k

(a) mean comparison (b) variance comparison

Figure 3.8: ALARM-Linear Gaussian: Performance comparison. The ground true is

provided by Junction tree.

Table 3.3: ALARM: Average KL-divergence.

Average KL Divergence
UMP-BN 0.0084
LW-1k 0.0576

3.3.2 Case 2: Nonlinear Gaussian

Note that UMP-BN is targeted for probabilistic inference dealing with arbitrary con-

tinuous Bayesian network. To test the algorithm robustness in the nonlinear case, we

purposely specify severe nonlinear functional relationships for continuous variables

62

listed as below:

F(FilterState) ∼ N (−10, 3)
W(WasteType) ∼ N (100, 10)

B(BurningRegime) ∼ N (50, 5)
E(Efficiency) ∼ N (W + 2F, 1)

C(CO2Emission) ∼ N (e
3√B, 3)

D(DustEmission) ∼ N (
√

W × log(E)−B, 5)

Min(MentalWaste) ∼ N (
√

W + 6, 3)
Mout(MentalEmission) ∼ N (0.5×D ×Min, 5)

L(LightPenetrability) ∼ N (−5×D, 5)

500 1k 5k 10k 50k 100k 300k 600k 1m 5m 10m 20m

99.3

99.4

99.5

99.6

99.7

99.8

99.9

100

100.1

100.2

sample size

p
o

st
er

io
r

m
ea

n

Converged Mean by Brute Force Likelihood Weighting

500 1k 5k 10k 50k 100k 300k 600k 1m 5m 10m 20m

1.1

1.15

1.2

1.25

1.3

sample size

p
o

st
er

io
r

va
ri

an
ce

Converged Variance by Brute Force Likelihood Weighting

(a) mean convergence (b) variance convergence

Figure 3.9: Convergence demonstration by brute force Likelihood Weighting.

Since no exact inference algorithm is available in this case, we use LW with a very

large sample size to compute an approximate true solution as the reference base. To

make sure the inference results are converged, we implement LW with monotonically

increasing sample sizes. Figure 3.9 shows that LW with a few millions samples will

start to converge for both mean and variance of the posterior distribution. To be

conservative, we use LW with 20-million samples to compute the approximate true

answers in our experiment.

63

1 2 3 4 5

−0.1

−0.05

0

0.05

0.1

0.15
INCINERATOR−Nonlinear: mean comparison

run index

no
rm

al
iz

ed
 e

rr
or

 o
f m

ea
n

UMP−BN

LW−300

LW−5k

1 2 3 4 5

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

INCINERATOR−Nonlinear: variance comparison

run index

no
rm

al
iz

ed
 e

rr
or

 o
f v

ar
ia

nc
e

UMP−BN

LW−300

LW−5k

(a) mean comparison (b) variance comparison

Figure 3.10: INCINERATOR-Nonlinear: Performance Comparison. The ground true

is well approximated by LW with 20-million samples.

Given each of the five sets of random observations generated by sampling the

network, we run UMP-BN and LW with 300 and 5, 000 samples respectively. The

experiment results show that UMP-BN performs significantly better than LW due

to its robust estimation under nonlinear transformations. From Figure 3.10, it is

obvious that even with 5, 000 samples (an order of magnitude more computation time

than UMP-BN), LW still performs worse. Furthermore, the average KL divergence

summarized in Table 3.4 shows the clear superiority in performance of UMP-BN. On

the other hand, LW has the advantage of being a model-independent algorithm. But

when the model space is large or when the evidence is unlikely, LW needs a large

number of samples to converge which could be a significant issue for time-critical

applications.

64

Table 3.4: Nonlinear INCINERATOR: KL comparison.

Average KL Divergence
UMP-BN 0.0056
LW-300 1.4965
LW-5k 0.0264

3.4 Summary

In this chapter, we propose a novel algorithm to solve the difficult inference problem

when nonlinear CPDs and/or non-Gaussian distributions are involved for the con-

tinuous variables in the Bayesian networks. The new algorithm, UMP-BN, uses the

first two moments of the probability distribution to represent the continuous message

and unifies the message passing framework with effective nonlinear transformation

method. In addition, the method is not limited to Gaussian distributions. For gen-

eral continuous distribution, it can always produce the estimates of the first two

moments. The algorithm is very computationally efficient because we use determin-

istic sampling method to capture the features of the distribution so that it is scaled

linearly to the size of the network.

For general hybrid Bayesian networks where both discrete and continuous vari-

ables are present, we proposed a general message passing framework [SC07b] discussed

in the next chapter (Chapter 4). In the framework, a set of the interface nodes will

be introduced to partition the network into independent segments so that differ-

ent appropriate algorithms (exact or approximate) can be applied for each network

segment. For difficult network segments such as those involving nonlinear and/or

non-Gaussian variables, UMP-BN algorithm proposed in this chapter can be applied

65

in a straightforward manner.

One interesting future work based on UMP-BN is to integrate the algorithm with

the stochastic sampling methods. While UMP-BN provides good estimates for mean

and variance, the true underlying distribution may have multiple modes. And prac-

tically, it might be more important to know where the probability mass is than just

knowing the first two moments. To do so, one idea is to take the intermediate mes-

sages computed in UMP-BN to develop a good importance function for sampling.

This could dramatically improve the sampling efficiency.

66

Chapter 4: Message Passing for General Hybrid

Bayesian Networks

4.1 Introduction

We described in detail how to implement message passing for arbitrary continuous

BN in Chapter 3. In this chapter, we will discuss an extension of message passing for

hybrid BN models. In a hybrid BN, because of the differences in message represen-

tation and manipulation for discrete and continuous variable, there is no simple and

efficient way to pass messages between them. For example, in [YD06], the authors

use general nonparametric form to represent messages and formulate their calculation

by numerical integrations for hybrid models. Their method includes many functional

estimations, sampling, numerical integrations and so it is very computationally in-

tensive.

Essentially, messages are likelihoods or probabilities. In the discrete case, mes-

sages are represented and manipulated by probability vectors and conditional prob-

ability tables (CPTs), which is relatively straightforward. For continuous variables,

as described in Chapter 3, we use the first two moments, the mean and variance of

a probability distribution, to represent the messages of a continuous variable regard-

less of its distribution. This simplification makes message calculation and propaga-

tion efficient between continuous variables while keeping key information about the

67

original distributions. Furthermore, to deal with possibly arbitrary functional rela-

tionships between continuous variables, we propose to use unscented transformation

[JU96, Julier02] to derive the corresponding messages. Unscented transformation is

very efficient in estimating the first two moments for the transformed continuous vari-

able through nonlinear function. For arbitrary continuous network, the approach we

called unscented message passing (UMP) in Chapter 3 works very well [SC07a]. But

in hybrid model, message propagation between discrete and continuous variables is

very difficult to do directly due to their different formats. To deal with this issue,

we propose to apply conditioning. First we partition the original hybrid Bayesian

network into separate discrete and continuous network segments by conditioning on

discrete parents of continuous variables [SC07b]. We can then process message passing

separately for each network segment before final integration.

One of the benefits to partitioning the network is to ensure that there is at least

one efficient inference method applicable to each network segment. In conditional hy-

brid model (CHM) defined in Chapter 2, a continuous node is not allowed to have any

discrete children. Therefore, the original networks can be partitioned into separate

parts by the discrete parents of continuous variables. We call these nodes the inter-

face nodes. Each network segment separated by the interface nodes consists of pure

discrete or continuous variables. By conditioning on interface nodes, the variables

in different network segments are independent of each other. We then can perform

inference using possible different algorithms for separate sub-networks. Finally, inter-

mediate results computed in different segments are integrated through the interface

nodes. We then estimate the posterior distribution of every hidden variable given

evidence in all network segments.

68

In this chapter, we present a hybrid message passing algorithm for CHMs. Next,

we will describe the methods of network partition and hybrid message passing by

conditioning and integration. Numerical simulations results show promising perfor-

mance of the proposed hybrid message passing algorithm. At the end of this chapter,

we will discuss the algorithm complexity and potential research directions to improve

the algorithm.

4.2 Hybrid Loopy Propagation Algorithm

4.2.1 Network Partition

First of all, as mentioned earlier, we know that in CHM, any discrete node can only

have discrete parent nodes in the hybrid models, which implies continuous variable

can not have any discrete child node. Two definitions are given as below:

Definition 4.1 (Discrete parent). In a conditional hybrid Bayesian network model

(CHM), a discrete variable is called a discrete parent if and only if it has at least one

continuous child node.

Definition 4.2 (Interface node). The set of all discrete parent nodes in a CHM is

called the interface nodes of the network.

It is well-known that Bayesian networks have an important property that every

node is independent of its non-descendant nodes given its parents. Therefore the

following theorem follows:

Theorem 4.1. Let I be the set of interface nodes in a CHM. Then I d-separates all

continuous nodes from other non-interface discrete nodes.

69

Proof:

Let us first review the definition of d-separation [Pearl88, p.117]:

Definition 4.3 (d-separation). if X,Y, and Z are three disjoint subsets of nodes in

a DAG D, then Z is said to d-separate X from Y, if there is no path between a node

in X and a node in Y along which the following two conditions hold: (1) every node

with converging arrows is in Z or has a descendent in Z and (2) every other node is

outside Z.

If a path satisfies the condition above, it is said to be active; otherwise, it is said

to be blocked by Z.

Let us denote the set of all non-descendant nodes of I as Sk. By definition, in a

CHM, there is no continuous parent for any discrete node. It follows that Sk must

be pure discrete because if there were continuous nodes in Sk, the continuous nodes

should be descendant nodes of I.

Because a CHM is a hybrid BN model, there must be continuous descendant nodes

of I. And the I’s continuous descendant nodes may have continuous predecessor

nodes that are not I’s descendant. We denote the set of all non-predecessor continuous

nodes of I as Si. Similarly, I may have discrete descendant nodes, and the I’s discrete

descendant nodes may have discrete predecessor nodes that are not the descendant

of I. We denotes the set of non-predecessor discrete nodes as Sj. By definition of

the CHM, Si can not have any descendant node in Sj and vice versa. This is because

if there were some nodes in Sj that are parents of nodes in Si, then these discrete

parent nodes should be in I. Therefore, I, Si, and Sj include all nodes in a CHM

and they are disjoint sets. Figure 4.1 shows the relationships of these sets clearly.

70

I

Sk

SjSi

Figure 4.1: A partitioned conditional hybrid Bayesian network.

According to Definition 4.3, any path between variable in Si and variable in Sk is

blocked by I. Then, Si is d-separated from Sk by I. Similarly, Sj is d-separated from

Sk by I; and Si is d-separated from Sj by I. Therefore, Si, Sj, and Sk are pairwisely

d-separated by I. This completes the proof.

The main purpose of introducing interface nodes is to separate the network seg-

ments consisting of pure continuous variables from a original CHM. Then given the

interface nodes, any continuous variable is conditionally independent with other dis-

crete variables. By this partition, we can choose the most appropriate inference

algorithm such as UMP-BN for the separated continuous sub-networks. For discrete

network segments, it is better to combine them together for computational conve-

nience because many well established inference algorithms work for pure discrete

BNs. Therefore, although interface nodes partition the discrete variables as well, we

consider the discrete sub-networks including the interface nodes as a network seg-

ment. An example is shown in Figure 4.2 where a 13-node hybrid model is presented.

Following the convention, we use squares or rectangles to depict discrete variables

and circles or ellipses to depict continuous variables. As can be seen, K, A and C

71

are the interface nodes in this example. The arcs between discrete parents and their

continuous children are shown as dotted lines. It can be seen that the interface nodes

partition all continuous variables from the network. We have four separate network

segments in this example — two discrete parts {H,B, F,K,G} and {J,A, C} and two

continuous parts {T, R, S} and {X,Y }.

K T

R

H B

F

G S

A

J C

X

Y

Figure 4.2: Demonstration of interface nodes and network partition

After the network is partitioned by the interface nodes, we choose the most ap-

propriate inference algorithm for each network segment. In fact, we can also combine

some network segments if the same algorithm works for all of them. Typically, con-

tinuous network segments with nonlinear and/or non-Gaussian CPDs are the most

difficult ones to deal with. For these segments, we can apply the unscented message

passing algorithm (UMP-BN) [SC07a], described in the previous chapter, to provide

an alternative for approximate solutions.

Finally, we need to summarize the prior and evidential information for each net-

work segment and encode it as messages to be propagated between network segments

through the interface nodes. This is similar to Pearl’s message passing algorithm and

72

can be integrated with the UMP-BN loopy algorithm mentioned above in a unified

manner.

4.2.2 Hybrid Message Passing Algorithm

For a hybrid model, without loss of generality, let us assume that the network is

partitioned into two parts denoted as D and C. Part D is a discrete network including

the interface nodes and it is solvable by appropriate algorithms such as junction tree

or discrete loopy propagation. Part C is an arbitrary continuous network. Let us

denote the observable evidence in part D as Ed, and the evidence from C as Ec.

Therefore the entire evidence set E consists of Ed and Ec. As mentioned before,

given interface nodes, variables from the two network segments are independent of

each other. The evidence from part D affects the posterior probability of hidden

nodes in part C only through the channel of the interface nodes and vice versa.

We therefore summarize the prior and evidence information of each network seg-

ment and encode it as either π or λ of the interface nodes. Assuming that the set

of interface nodes between two network segments is I, then λ(I) = P (Ec|I) and

π(I) = P (I|Ed). These messages are to be passed between network segments to fa-

cilitate information integration. As in Pearl’s algorithm, this approach can be easily

integrated with the UMP-BN loopy algorithm mentioned above in a unified manner.

We use the following concrete example to illustrate how to integrate messages from

different network segments. As can be seen in Figure 4.3, synthetic hybrid model-1

has K as the interface node which divides the network into a discrete part consisting

of H, B, F, K, G and a continuous part consisting of T, R, S, M, Y . For the purpose

of illustration, let us assume all discrete nodes are binary and all continuous nodes

73

are scalar Gaussian variables.

K T

R

H B

F

G S

M Y

Figure 4.3: Synthetic hybrid Bayesian networks-1.

Suppose the leaf nodes G,M, Y are observable evidence. We will first focus on

the continuous network segment. In this step, we will compute λ message sent to the

interface node K to propagate evidential information from continuous nodes. And

conditioning on each possible state of K, we estimate the posterior distributions for all

hidden continuous variables given continuous evidence. Under Gaussian assumption,

these posterior distributions are represented by means and variances and they are

intermediate results that will be combined after we obtain the a posterior probability

distribution of the interface node K given all evidence. Probabilities of all possible

states of K serve as the mixing weights, similar to computing the mean and variance

of a Gaussian mixture.

Given K, it is relatively straightforward to compute the likelihood of continuous

evidence M = m,Y = y because we can estimate the conditional probability distri-

bution of evidence node given interface nodes and other observations by applying an

appropriate inference algorithm for continuous Bayesian networks such as UMP-BN.

74

For example, let

L(M = m,Y = y|K = 1) = a

L(M = m,Y = y|K = 2) = b ,

then to incorporate the evidence likelihood is equivalent to adding a binary discrete

dummy node as the child of the interface node K with the conditional probability

table shown as the following:

Dummy
K 1 2
1 αa 1-αa
2 αb 1-αb

where α is a normalization constant.

By setting ‘Dummy’ to be observed as state 1, the continuous segment could be

replaced entirely by one discrete node ‘Dummy’. Dummy encodes the influence of

the continuous evidence to the discrete network segment. Then the original hybrid

Bayesian network can be transformed into a pure discrete model shown in Figure 4.4

in which ‘Dummy’ integrates all of continuous evidence information.

The second step is to compute the posterior distributions for all hidden discrete

nodes given G = g, Dummy = 1. We have several algorithms to choose for inference

depending on the complexity of the transformed model. In general, we can always

apply discrete loopy algorithm to produce approximate results regardless of network

topology. Note that the posterior distributions of the discrete nodes have taken into

account all evidence including the ones from continuous segment via the ‘Dummy’

node. Next, we need to send the updated information back to the continuous sub-

network via the set of interface nodes. This is done by computing the joint posterior

75

K

H B

F

G Dummy

Figure 4.4: Transformed model with dummy node.

probability distribution of the interface nodes denoted as P (I|E). It is essentially the

π messages to be sent to the continuous network segment.

With the messages encoded in the interface nodes, the last step is to go back to the

continuous segment to compute the a posterior probability distributions for all hidden

continuous variables. Recall that in the first step, for any hidden continuous variable

X, we already have P (X|I, Ec) computed and saved. The following derivation shows

how to compute P (X|E):

P (X|E) = P (X|Ec, Ed)

=
∑

I

P (X, I|Ec, Ed)

=
∑

I

P (X|I, Ec, Ed)P (I|Ec, Ed)

=
∑

I

P (X|I, Ec)P (I|E) (4.1)

The fourth equality is due to the fact that the set of interface node d-separates the

76

node X from Ed.

Suppose that given an instantiation of the set of interface nodes I= i, the condi-

tional probability distribution P (X|I = i, Ec) is a Gaussian distribution with mean

x̄i and variance σ2
i . Then Equation (4.1) is equivalent to computing the probability

density function of a Gaussian mixture with P (I = i|E) as the weighting factors. De-

noting P (I = i|E) as pi, the mean x̄ and the variance σ2
x of P (X|E) can be computed

as the following [BLK01, p56]:

x̄ =
∑

i

pix̄i (4.2)

σ2
x =

∑
i

piσ
2
i +

∑
i

pix̄
2
i − x̄2 (4.3)

In summary, the overall algorithm of hybrid message passing for general mixed

Bayesian networks (HMP-BN) is presented in Figure 4.5.

4.3 Numerical Experiments

4.3.1 Experiment Method

We use two synthetic hybrid models for experiments. One is the model shown in

Figure 4.3. We call it GHM-1 and used it as an example to illustrate the algorithm in

Section 4.2.2. GHM-1 has one loop in each network segment respectively (partitioned

by the interface node K). Another experimental model, called GHM-2, is shown in

Figure 4.6. GHM-2 has multiple loops in the continuous segment.

For GHM-1, we assume that the leaf nodes G,M, Y are observable evidence. We

model its continuous segment as a linear Gaussian network given the interface node

77

Algorithm: Hybrid Message Passing for General Mixed
Bayesian Network (HMP-BN).

Input: General hybrid Bayesian network given a set of evidence
Output: Posterior marginal distributions of all hidden nodes.

1. Determine the interface nodes and partition the network into independent seg-

ments by interface nodes. Choose the appropriate inference algorithm for each

network segment.

2. For each continuous network segment: compute the λ message to send to the

interface nodes and the intermediate posterior distribution of the hidden con-

tinuous variables given the interface nodes and the local evidence.

3. Transform the original network into an equivalent discrete model. In this new

model, each continuous network segment is replaced by a dummy node. And

every dummy node is added as a child of all discrete parents of the corresponding

continuous network segment. Dummy discrete nodes carry the λ message from

continuous evidence to the interface nodes.

4. Compute the posterior distribution for every hidden discrete variable using the

transformed discrete model. The joint posterior probability table of the discrete

parents of each continuous network segment is saved as the π message to be sent

back to the associated continuous network segment.

5. Compute the posterior distribution for every hidden continuous variable given

all evidence by integrating the final π messages of the interface nodes.

Figure 4.5: Hybrid Message Passing Algorithm for General Mixed Bayesian Network

78

E

Min

C

D

Mout L

W F B

M

H K

S

T

Figure 4.6: GHM-2

K. Therefore the original network is a CLG so that an exact inference algorithm (such

as Junction Tree) can be used to provide the true answer for performance evaluation.

The CPTs and CPDs for nodes in GHM-1 are randomly specified.

Note that our algorithm can handle general arbitrary hybrid models, not just

CLG. GHM-2 is designed specifically to test the algorithm in the case where nonlinear

CPDs are involved in the model. The structure of the continuous segment in GHM-2

is borrowed from [Lau92] in which the author proposed the Junction Tree algorithm

for CLG. The discrete nodes in the GHM-2 are binary and we randomly specify the

CPTs for them similarly as in GHM-1. But the CPDs for the continuous nodes are

deliberately specified using severe nonlinear functions to test the robustness of the

79

algorithm. These distributions are:

F ∼ N (−10, 3)
W ∼ N (100, 10)

B|K = 1 ∼ N (50, 5)
B|K = 2 ∼ N (60, 5)

E ∼ N (W + 2F, 1)

C ∼ N (e
3√B, 3)

D ∼ N (
√

W × log(E)−B, 5)

Min ∼ N (
√

W + 6, 3)
Mout ∼ N (0.5×D ×Min, 5)

L ∼ N (−5×D, 5)

We assume that the evidence set in the GHM-2 is {H, C, Mout, L}. Since no exact

algorithm is available for such model, we use brute force sampling method, likelihood

weighting, to obtain an approximate true solution with 20-million samples.

In our experiments, we first randomly sample the network and clamp the evidence

nodes by their sampled value. Then we run the HMP-BN to compute the posterior

distributions for the hidden nodes. It is important to mention that in both discrete

and continuous network segments, we implement HMP-BN using loopy algorithms to

make it general, although Junction tree could be used in network segment whenever it

is applicable. In addition, we run LW using as many samples as it can generate within

the roughly same amount of time HMP-BN consumes. There are 10 random runs for

GHM-1 and 5 random runs for GHM-2. We compare the average Kullback-Leibler

(KL) divergence of the posterior distributions by different algorithms.

Given unlikely evidence, it is well-known that the sampling methods converge

very slowly even with large sample size. We use GHM-1 to test the robustness of our

algorithm in this case because Junction tree can provide ground truth for GHM-1

no matter how unlikely its evidence is. We generate 10 random cases with evidence

80

likelihood between 10−5 ∼ 10−15 and run both HMP-BN and LW to compare the

performances.

4.3.2 Experiment Results

For model GHM-1, there are 4 hidden discrete nodes and 3 hidden continuous nodes.

Figure 4.7 illustrates the posterior probabilities of hidden discrete nodes computed

by Junction tree, HMP-BN and LW in two typical runs. Since GHM-1 is a simple

model and we did not use unlikely evidence, both HMP-BN and LW perform well.

1 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Posterior Probabilites of Hidden Discrete Nodes

case index

po
st

er
io

r
pr

ob
ab

ili
ty

Junction Tree

HMP−BN

LW

Figure 4.7: Posterior probability of hidden discrete variables in two typical runs.

For continuous variables in GHM-1, Figure 4.8 shows the performance comparisons

in means and variances of the posterior distributions for the hidden continuous nodes

in all of the 10 runs. The normalized error is defined as the ratio of the absolute error

over the reference true value. From the plot, it is evident that HMP-BN provides

accurate estimates of means, while the estimated variances deviate from the true

somewhat but HMP-BN is still better than LW in most cases.

We then demonstrate the robustness of HMP-BN by testing its performance given

81

1 2 3 4 5 6 7 8 9 10
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5
GHM−1: mean comparison

case index

no
rm

al
iz

ed
 e

rr
or

 o
f m

ea
n

HMP−BN

LW

1 2 3 4 5 6 7 8 9 10
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2
GHM−1: variance comparison

case index

no
rm

al
iz

ed
 e

rr
or

 o
f v

ar
ia

nc
e

HMP−BN

LW

(a) mean comparison (b) variance comparison

Figure 4.8: GHM-1 Performance Comparison for 10 random runs. (the ground true

is provided by Junction tree).

unlikely evidence shown in Figure 4.9. In this experiment, 10 random sets of evidence

are chosen with likelihood between 10−5 and 10−15. As can be seen, HMP-BN per-

forms significantly better than LW in this case. The average KL divergence are

consistently small with the maximum value less than 0.05. This is not surprising

because LW uses the prior to generate samples so that it hardly hits the area close

to evidence.

We summarize the performance results with GHM-1 in Table 4.1. Note that given

unlikely evidence, the average KL divergence by HMP-BN is more than one order of

magnitude better than LW.

In GHM-2, due to the nonlinear nature of the model, no exact method exists to

provide a benchmark. We use LW with 20-million samples to obtain an approximation

to the true value. We implemented five simulation runs with randomly sampled evi-

dence. In this experiment, we employed the UMP-BN algorithm presented in Chapter

82

1e−015 1e−013 1e−011 1e−009 1e−007 1e−005

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

evidence likelihood

av
er

ag
e

K
L

di
ve

rg
en

ce

GHM−1: Performance Comparison Given Unlikely Evidence

HMP−BN

LW

Figure 4.9: GHM-1: Performance Comparison Given Unlikely Evidence.

Average Normal Evidence Unlikely Evidence
KL divergence > 10−5 10−5 ∼ 10−15

HMP-BN 0.0011 0.0108
LW 0.0052 0.67

Table 4.1: Average KL-divergence Comparison in Testing GHM-1

3 for inference in the continuous network segment. To evaluate the performance of

this new algorithm by hybrid messages passing, we implement LW with as many sam-

ples as it can generate in the roughly same time HMP-BN takes. Figure 4.10 shows

the performance comparison in means and variances of the posterior distribution for

the hidden continuous variables. Note that the benchmark is provided by LW with

20-million samples. Also, Table 4.2 summarizes the average KL divergence in testing

GHM-2. From the data, we see that HMP-BN combining with UMP-BN applied

in the continuous sub-network produces very good results. In this nonlinear model

with typical evidence, the new algorithm performs much better than LW despite its

83

advantages of being a model-free algorithm. However, we have to admit there is some

advantage for HMP-BN in these examples because there is only one interface node in

these models.

1 2 3 4 5
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1
GHM−2: Mean Comparison

case index

no
rm

al
iz

ed
 e

rr
or

 o
f m

ea
n

HMP−BN

LW

1 2 3 4 5
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5
GHM−2: Variance Comparison

case index

no
rm

al
iz

ed
 e

rr
or

 o
f v

ar
ia

nc
e

HMP−BN

LW

(a) mean comparison (b) variance comparison

Figure 4.10: GHM-2 Performance Comparison for 5 random runs. (the benchmark is

well approximated by LW with 20-million samples)

Average KL Divergence
HMP-BN 0.0056

LW 0.0639

Table 4.2: Average KL-divergence Comparison in Testing GHM-2

4.3.3 Complexity of HMP-BN

Conditioning on every possible combination of instantiations of all interface nodes,

HMP-BN computes the posterior distributions of hidden continuous variables given

continuous evidence. So the complexity of the algorithm is highly dependent on the

84

number of interface nodes and the size of the state space of the interface nodes. To

test how HMP-BN performs in case of more interface nodes, we borrowed a network

from the model ALARM [BSC89] shown in Figure 4.11, in which there are 37 nodes.

Then we randomly select whether every node is discrete or continuous, subject to

the requirement that continuous variables may not have any discrete children. In

this experiment, the average number of interface nodes is around 12. HMP-BN still

provided good estimates of the posterior distributions but it took much longer time

than the one with only one interface node. In general, if we have m interface nodes

K1, K2, . . . , Km with number of states n1, n2, . . . , nm respectively, the computational

complexity of HMP-BN is approximately O(n1×n2×n3 . . .×nm). This implies that

our algorithm is not scalable for large numbers of interface nodes. But our goal is not

to propose an algorithm for all models (NP-hard in general). However, there are sev-

eral ways to reduce the computational burden caused by the exponentially increased

size of interface nodes. One method is to assume that interface nodes are indepen-

dent of each other. Then we can propagate messages between continuous variables

and individual interface node respectively. We have developed some initial ideas to

compute generic messages between a continuous node and its discrete parents using

loopy methods instead of network partition. Nevertheless, the detailed development

of the corresponding algorithms is beyond the scope of this dissertation and will be

discussed in our future research.

4.4 Summary

In this chapter, we developed a hybrid belief propagation algorithm for general

Bayesian networks with mixed discrete and continuous variables. The algorithm first

85

Error Low
OuputHeart Rate Error CauterHistory

HREKG
Pulmonary Capillary
Wedge Pressure Cardiac Output HRBP HRSat

Blood Pressure

Breathing Pressure
Pulmonary Artery
Pressure Shunt

VentTubePulmEmbolus Intubation

VentMach

MinVolSet

Central Venous
Pressure

Left Ventricular
End-diastolic volume StrokeVolume

Hypovolemia Catecholamine

Anest./Anelgesia
Insufficient

MinVolVentAlv

ArtCO2

Total Peripheral
Resistance

Left Ventricular
Failure

Anaphylaxis PVSat

FiO2

SaO2

VentLung

KinkedTube

Disconnection

ExpCO2

ALARM

Figure 4.11: ALARM: a network constructed by medical expert for monitoring pa-

tients in intensive care.

partitions the network into discrete and continuous sub-networks by introducing in-

terface nodes. Message passing is then applied to each network segment. The updated

information is encoded as messages to be exchanged through the set of interface nodes.

Finally, the algorithm integrates the separate messages from different network seg-

ments and computes the a posteriori distributions for all hidden nodes. Preliminary

simulation results are encouraging and suggest that the algorithm will work well for

hybrid Bayesian networks.

The main contribution of this algorithm is to provide a general framework for

inference in hybrid models. Based on the principle of decomposing the complicated

problem into smaller, affordable parts, we introduce the set of interface nodes to parti-

tion the network into disjoint either discrete or continuous sub-networks. Therefore, it

86

is possible to apply exact inference algorithms such as Junction tree to some network

segments and continuous variables are partitioned out so that we can handle them

separately. For continuous network segment involving nonlinear and/or non-Gaussian

variables, UMP-BN serves as an alternative inference algorithm.

Although the bottleneck of our algorithm is the size of interface nodes, we believe

HMP-BN is a good option for nonlinear and/or non-Gaussian hybrid models since

there are not many choices to deal with this case, especially given unlikely evidence.

Note that the focus of this chapter was on developing a unified message passing

algorithm for general hybrid networks. While the algorithm works well to estimate

means and variances for hidden continuous variables, the true posterior distributions

may have multiple modes. In practice, it might be more important to know where

the probability mass is than just knowing mean and variance. One idea is to utilize

the messages computed in HMP-BN to obtain a good importance function and apply

importance sampling to estimate the probability distributions [SC07c].

87

Chapter 5: Performance Evaluation for Bayesian

Networks

In previous chapters, we focused on algorithm development for BN inference. Cer-

tainly, after building the model, it is very important to have an efficient way to

compute the posterior probability distributions for hidden variables given observa-

tions. However, for realistic applications, it is also important to predict the model

performance before applying it in inference algorithm. In many real-world decision

problems, there is a hidden discrete variable, called target variable, with several

categorical values representing the possible choices. One would like to know the

probability that this target variable takes each of its possible values. Examples of

such applications include target classification, medical diagnosis, marketing, etc. The

common feature of these kinds of decision problems is the following: there is a hid-

den discrete target variable of interest, and there are observable continuous and/or

discrete attributes. The values of observable features are caused directly or indirectly

by the true value of the target variable. Given observations, the posterior probability

distribution of the target variable is used to identify the causing class of the target

variable. This chapter proposes an approximate analytical method to estimate the

probability of correct classification for such decision models. The performance mea-

sure can help decision maker to understand the model’s capability to identify the

correct hypothesis without extensive simulation. The performance measure can also

help the modeler to build and validate the model effectively.

88

5.1 Introduction

5.1.1 Performance Metric

First, we define a performance metric called ‘probability of correct classification’

(PCC). For a BN model of a decision problem, let us denote the target variable as T

and a set of observable variables as E (evidence set). E consists of discrete attributes

Ed and continuous attributes Ec. Without loss of generality, we assume that T has

n different discrete states. It will be very helpful for decision maker to know how

well the model works. One indicator of performance is the probability that inferred

target type is Ti given the true target type is Tj, i.e., P (Tinferred = Ti|Ttrue = Tj).

Obviously, given a true target type, better model will obtain higher probability that

the inferred target type is being the same as the true target type. This indicator

measures how well the model can identify the correct target. Now we are ready to

give the formal definition of PCC:

Definition 5.1 (Probability of Correct Classification (PCC)). For a target variable T

with n discrete states in a Bayesian network model, probability of correct classification

(PCC) is defined as the conditional probability mass function of target type given the

true target type, denoted as PCC = P (Tinferred| Ttrue). PCC is a confusion table

with entries defined as PCCij = P (Tinferred = Ti| Ttrue = Tj).

It is obvious that the diagonal elements of PCC table, P (Tinferred = Ti| Ttrue =

Ti), indicate the model’s ability for correct identification.

89

5.1.2 Gaussian Mixture Model

In this section, let us deviate a little bit from BN inference and introduce an important

statistical method called Gaussian mixture model (GMM). We will see how Gaussian

mixture model is related to performance modeling for BN later in this chapter. GMM

is very useful in general statistical analysis and density estimation. In fact, we already

used it in computing the means and variances for continuous hidden variables in

hybrid message passing in Chapter 4.

Any probability density function can be a basis density function to form a mix-

ture. A mixture probability density function is a linear combination of basis density

functions with all non-negative coefficients summing up to unity. In a mixture model,

each basis density function is called a component. A k component Gaussian mixture

model is a mixture density function consisting of k Gaussian density functions shown

as below:

p(x) =
i=k∑
i=1

piN (x; x̄i, Σi) (5.1)

where pi is called mixing coefficient and

i=k∑
i=1

pi = 1, 0 < pi < 1 (5.2)

Typically, the parameters of every Gaussian component N (x; x̄i, Σi) are different. An

example of 3-component two dimensional Gaussian mixture model is shown in Figure

5.1.

The mean and covariance of a k-component GMM shown in Equation 5.1, denoted

90

0

5

10

15 0

5

10

15

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.02

0.04

0.06

0.08

0.1

0.12

Figure 5.1: An example of two-dimension Gaussian mixture density with 3 compo-

nents.

as x̄ and Σx, are summarized as the following:

x̄ =
i=k∑
i=1

pix̄i (5.3)

Σx =
i=k∑
i=1

piΣi +
i=k∑
i=1

pix̄ix̄
′
i − x̄x̄′ (5.4)

Arbitrary probability density functions may have multiple modes and it is usually

difficult to parameterize such density functions directly. GMM then plays an impor-

tant role for density estimation. Theoretically, Gaussian mixture can approximate

any density function arbitrarily closely provided it contains a sufficient number of

91

components [AM79, MB88]. There have been many papers about learning a GMM

from a data set [Dasg99, AK01, MP00]. One of the important learning issues is to

determine the number of Gaussian components. A tradeoff must be made to balance

the learning accuracy and the computational burden. Expectation-maximization, or

known as EM, algorithm [Demp77] is one of the most popular GMM learning algo-

rithms.

5.2 Analytical Performance Modeling

In this section, we show an analytical derivation to compute the probability of correct

classification (PCC) defined in Section 5.1.1 for a hybrid BN decision model.

First of all,

PCC = P (Tinferred| Ttrue) =

∫

E

P (Tinferred,E| Ttrue) dE

=

∫

E

P (Tinferred| E, Ttrue)P (E| Ttrue) dE (5.5)

The conditional distribution of the hidden target variable given the evidence is de-

termined no matter what the hidden true state is. Therefore, we have

P (Tinferred| E, Ttrue) = P (Tinferred| E).

Then, Equation 5.5 becomes:

PCC =

∫

E

P (Tinferred| E)P (E| Ttrue) dE

=
1

C

∫

E

P (E| Tinferred)P (Tinferred)P (E| Ttrue) dE (5.6)

92

where C is a normalization constant.

In general, E consists of discrete attributes Ed and continuous attributes Ec. We

will now derive the ijth entry in the PCC matrix as the following (From the second

equality, we drop the terms ‘inferred’ and ‘true’ and use Ti, Tj to represent different

states):

PCCi,j = P (Tinferred = Ti| Ttrue = Tj)

=

∫

E

P (Ti| E)P (E| Tj) dE

=
1

C

∫

E

P (E| Ti)P (Ti)P (E| Tj) dE

=
1

C
P (Ti)

∫

Ed,Ec

P (Ed,Ec| Ti)P (Ed,Ec| Tj) dEddEc

=
1

C
P (Ti)

∫

Ec

P (Ec|Ed, Ti)P (Ec|Ed, Tj)·

∑
Ed

P (Ed| Ti)P (Ed| Tj) dEc (5.7)

where C is a normalization constant and P (Ti) is the prior probability of the ith state

of T .

Equation 5.7 is the optimal analytical solution for PCC. However, it is not triv-

ial to derive P (Ed| T) and P (Ec| Ed, T) because typically there are intermediate

variables between T and evidence nodes Ed,Ec. Another key factor that makes the

computation difficult is the heterogeneity (discrete and continuous observations mixed

together). In the case of pure discrete observations or by discretizing continuous at-

tributes, some efficient ways were proposed to evaluate performance confusion matrix

93

[EC07].

In general, by forward sampling, we could approximate P (Ed| T) and P (Ec|Ed, T).

But the combination of Ed and T make the computational complexity exponential.

It is relatively easy if we can assume Ed,Ec are independent; then P (Ed,Ec| T) =

P (Ed| T)P (Ec| T) and P (Ed| T), P (Ec| T) could be estimated respectively. But this

is not always the case in most applications.

Since it is too difficult to compute the PCC matrix with hybrid observations,

here we solve a simplified problem by assuming all observations are continuous. Then

Equation 5.7 is reduced to:

PCCi,j =
1

C
P (Ti)

∫

E

P (E| Ti)P (E| Tj) dE (5.8)

If we can approximate the conditional probability distribution P (E| T) as a Gaus-

sian distribution with sufficient accuracy, then the above equation has a closed-form

analytical solution, because integral of a product of two Gaussian density functions

is also a Gaussian density function. Namely, suppose

P (E| Ti) ∼ N (ui, Pi), P (E| Tj) ∼ N (uj, Pj)

where ui, uj are mean vectors, Pi, Pj are covariance matrices. Then Equation 5.8

94

becomes:

PCCi,j =
1

C
P (Ti)

∫

E

N (ui, Pi)N (uj, Pj) dE

=
1

C
P (Ti)

1

2π
|PiPj|− 1

2

∫

E

e−
1
2 [(E−ui)

′Pi
−1(E−ui)−(E−uj)

′Pj
−1(E−uj)] dE

=
1

C
P (Ti)|2π(Pi + Pj)|− 1

2 e−
1
2
(ui−uj)

′(Pi+Pj)
−1(ui−uj) (5.9)

In reality, P (E|T) could be a complicated multi-dimensional mixture distribution

with possibly multiple modes. So it is usually not good enough to approximate

P (E| T) with one single Gaussian distribution. We know that a Gaussian mixture

model with appropriate number of components can approximate arbitrary probability

distribution to any accuracy. Let us assume P (E| Ti) and P (E| Tj) can be estimated

by m-component and n-component GMMs respectively, namely:

P (E| Ti) ∼
k=m∑

k=1

akN (uik, Pik), P (E| Tj) ∼
l=n∑

l=1

blN (ujl, Pjl) (5.10)

where ak, bl are mixing coefficients, uik, Pik are mean vectors and covariance matrices

of the kth Gaussian component of a GMM for P (E| Ti); similarly, ujl, Pjl are mean

vectors and covariance matrices of the lth Gaussian component of a GMM for P (E| Tj).

95

Then,

PCCi,j =
1

C
P (Ti)

∫

E

k=m∑

k=1

akN (uik, Pik)
l=n∑

l=1

blN (ujl, Pjl) dE

=
1

C
P (Ti)

k=m∑

k=1

ak

l=n∑

l=1

bl

∫

E

N (uik, Pik)N (ujl, Pjl) dE

=
1

C
P (Ti)

k=m∑

k=1

l=n∑

l=1

{akbl|2π(Pik + Pjl)|− 1
2 e−

1
2
(uik−ujl)

′(Pik+Pjl)
−1(uik−ujl)}

e−
1
2
(uik−ujl)

′(Pik+Pjl)
−1(uik−ujl)} (5.11)

Therefore, as derived above, we can obtain analytical solutions for the confusion ma-

trix PCC with the approximation coming from GMM learning. Obviously, additional

computational cost is paid to learn the corresponding GMMs and control the accu-

racy by determining the number of Gaussian components. We implement the learning

process by sampling and estimation. First, we generate random samples of E given

every state of T by forward sampling, then we apply EM algorithm to estimate the

corresponding GMMs by using a MATLAB toolbox called Netlab [Nab02]. Finally,

according to Equation 5.11, we compute PCC confusion matrix analytically.

5.3 Numerical Evaluation

To evaluate this approximate analytical method of performance modeling, we use a

16-node hybrid Bayesian network as the experimental model shown in Figure 5.2.

We have 6 observable attributes in this model and they are all continuous. Note

that ‘TT’(target type) is the discrete target variable of interest. We assume ‘TT’

96

has 10 discrete states with uniform prior distribution. Other nodes in this model are

linear Gaussian variables. So the experiment model is a CLG (for definition and other

details of CLG, see Chapter 2). For benchmark inference results, we use clique tree

algorithm [Lau92,LJ01] to compute the exact posterior distributions.1 Therefore, we

can conduct simulations to compare the model performance with analytical prediction

computed by Equation 5.11.

COB COE

CFA

DBDA

CFECFDCFB CFC

COA

CFF

COC COD COF

TTSDA

Figure 5.2: Synthetic hybrid model of target identification: ‘TT’ is the discrete tar-

get variable; ‘COA’,‘COB’,‘COC’,‘COD’,‘COE’ and ‘COF’ are observable continuous

attributes.

We evaluate PCC using two different methods. The first is to compute PCC

analytically by using Equation 5.11. In this step, no inference algorithm is needed

because we do not need to know the posterior probability distributions. However,

forward sampling is conducted to generate random samples of observations given

1Note that since this experimental model is a CLG, clique tree algorithm could be applied to

conduct exact inference.

97

every state of the target variable T . The complexity of forward sampling is linear

and it is straightforward to implement. From the random sample, we apply EM

algorithm to learn GMMs for estimating P (E|T). In our experiments, we use 3-

component GMMs and 10-component GMMs respectively. After we have learned the

GMMs to approximate the conditional distribution of evidence given target type, we

can compute the PCC matrix analytically using Equation 5.11.

The second method is to compute the PCC matrix by extensive simulation. In

this approach, we need to invoke an inference algorithm to compute the posterior

distribution of target type T given random sample of observations for each simula-

tion trial. So the computational complexity will depend on the complexity of the

inference algorithm too. In particular, given each target type Ti, we generate 1, 000

random samples of observations. Then given each set of observations, we use clique

tree algorithm to compute the exact posterior distribution of T . These posterior prob-

abilities are then averaged over these 1, 000 simulation trials to obtain the ith row of

the PCC matrix, P (Tinferred|Ti). This process takes significant more time than ana-

lytical method does and it is also an approximate performance estimation because of

two sources: 1. simulation; 2. the inference algorithm itself may be approximate.

We compare PCC matrices provided by these two different methods of perfor-

mance modeling. Especially, it is more interesting to compare the diagonal elements

of PCC matrix, P (Ti|Ti), i = 1, 2, ..., 10, because they indicate the model’s ability to

identify the correct target type. As illustrated in Figure 5.3, the diagonals of PCC

matrices are plotted for three cases respectively. The black line with circle points

represents PCC diagonal provided by 10 × 1000 simulation runs where within each

run clique tree algorithm is used to compute the posterior distribution. The blue

98

line with square points represents PCC diagonal provided by analytical method us-

ing 3-component GMM. The red line with diamond points represents PCC diagonal

provided by analytical method using 10-component GMM. From this diagram, we

see that the predictions of the analytical method with GMMs agree very closely to

predictions obtained by extensive simulation. It seems that 3-component GMM is

good enough in this case. In terms of time, the analytical method is certainly more

efficient in evaluating model performance.

1 2 3 4 5 6 7 8 9 10
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

PCC Comparison between Analytical Method and Simulation using Inference Algorithm

state of target node

PCC by Simulation using Clique Tree

PCC by Analytical 3−GMM

PCC by Analytical 10−GMM

Figure 5.3: PCC comparison between analytical method with GMMs and simulation

using inference algorithm.

Furthermore, note that given a state of target node, PCC(i, i) explicitly indicates

the probability of correctly identifying the ith true state. For example, it shows from

Figure 5.3, that the probability of correctly identifying the 7th state given the true

99

state is the 7th is about 0.7. Therefore, by estimating PCC confusion table, we can

understand the model prediction performance. This is very important in decision

making and model construction and evaluation.

5.4 Summary

Bayesian Network as a decision support tool has been popular for several decades.

In modeling decision problems, BNs usually have a discrete variable of the decision

maker’s interest, called target variable T , and a set of observable attributes, called

evidence E. The target node in a BN model is a hidden variable. One way to infer

the value of the target node is to compute its posterior distribution given the obser-

vations of evidence nodes. This is commonly referred to as Bayesian inference. It is

desirable to have a way to evaluate the inference performance for a BN model before

it is implemented. This will help in designing and analyzing a Bayesian classifica-

tion system. Take a senor fusion network as an example, understanding the model

performance can help to deploy the sensors accordingly.

In this chapter, we first present a performance metric called probability of correct

classification (PCC). We then propose an approximate analytical method to model

the inference performance for a BN model. This analytical method uses Gaussian

mixture model to estimate the conditional probability distribution of evidence given

target type P (E|T). The only approximation of this method is from GMM learning.

And the main computational tasks are random sample generation by forward sampling

and GMM learning by EM algorithm. This analytical GMM performance modeling

method does not need to apply any inference algorithm, while oppositely, performance

predictions by extensive simulation must apply inference algorithms to compute the

100

posterior distributions. Regarding the accuracy, the numerical experiment results

demonstrate promising performance.

When hybrid evidence is involved (continuous and discrete observations mixed

together), so far there is no efficient means to predict inference performance in the

literature. It would be interesting to explore some possible approaches such as contin-

uzing discrete attributes or discretizing continuous attributes. Moreover, for dynamic

BN, things become even more complicated. We expect that some filter-based methods

may be used for DBN performance modeling.

101

Chapter 6: Conclusion

6.1 Dissertation Summary

Although probabilistic inference using Bayesian networks is NP-hard in general, the

essential issue is the tradeoff of computational complexity and performance accu-

racy. In many real-world applications, which are usually not close to the theoretically

demonstrated worse cases, inference is tractable by either exact or approximate meth-

ods. In particular, efficient inference algorithms should take advantages of the network

topology and specific types of variables in the model.

Since there have been many well developed algorithms for pure discrete BNs and

the simplest hybrid model-CLGs, this dissertation concentrates on inference for hy-

brid BNs with arbitrary relationships and probability distributions. Our major con-

tributions are the development of approximate inference algorithms and analytical

performance bound estimation for hybrid BN models.

Three main categories for approximate BN inference are: (1) stochastic sampling;

(2) model simplification; (3) loopy belief propagation (LBP). The first one is an

ultimate option when all other inference methods fail. It is well known that the

efficiency of forward stochastic sampling algorithms depends highly on the chosen

sampling probability distribution function, the so-called importance function. Al-

though there are some methods proposed to find good importance functions for pure

discrete BNs such as AIS-BN and EPIS-BN, it is still an open issue for hybrid BNs.

102

The methodologies we used in this dissertation for efficient hybrid BN inference are

based on loopy belief propagation, also called message passing. Researchers have re-

ported surprisingly good results of loopy message passing for inference in pure discrete

BNs and other applications such as decoding, visual tracking as well. We proposed

an extension of loopy message passing in hybrid BN. First of all, we used the first

two moments of continuous variable to represent messages in continuous case. Then a

suite of algorithms was developed for messages propagation between arbitrary contin-

uous variables and messages integrations between discrete and continuous variables.

These approaches formulate a general framework of approximate inference for hy-

brid Bayesian networks. Compared with the model-free stochastic sampling method

- likelihood weighting, our algorithms achieve orders of magnitude improvement in

the majority of numerical test cases.

On the other hand, the ability to correctly identify the state of discrete variable

in BN models is very important in classification problems. In Chapter 5, we defined

a model performance measure as probability of correct classification (PCC). PCC

is a confusion table in which each row is the posterior probability mass function of

a discrete target variable given one of its states. To compute PCC efficiently, we

proposed an approximate analytical estimator of performance bound for hybrid BNs

with discrete target variable and continuous observations. This analytical perfor-

mance modeling method does not require the execution of an inference algorithm,

instead, it integrates Gaussian mixture models for density estimations. Therefore,

extensive simulation with possibly complicated inference algorithm is avoided. We

know that PCC depends on the constructed model including network structure and

103

CPDs. So the model performance bound can help the modeler to adjust the model ac-

cordingly and more importantly, it can help decision maker to understand the model

prediction power for practical applications.

In summary, this dissertation aims at the difficult problems with nonlinearity

and non-Gaussian in hybrid Bayesian network inference. We proposed a message-

passing-based framework to compute the posterior probability distribution for hybrid

BNs. Algorithms developed under this framework are general enough to deal with

hybrid model with any functional relationships and any type of variables. we believe

these algorithms can serve as good alternatives when other methods are either not

applicable or not sufficiently efficient.

6.2 Future Work

The inference problem for hybrid BN model is difficult enough so that there is room

for much work to be done. There are many potential interesting research directions

that build upon this dissertation. As follows, we outline a few research topics for

future work:

• Although surprisingly good results of convergence have been reported for loopy

belief propagation empirically, there lack a theoretical explanation or insight

for these good experimental results. There are cases in which loopy belief prop-

agation does not converge but exhibits oscillations between values that have

very little correlation with the correct marginal distributions. we believe that

theoretical derivation of loopy propagation is an important area for further re-

search. Exploratory idea and new theoretical insight on loopy propagation can

have significant impact on developing efficient inference methods.

104

• In UMP-BN, we assume that the parents of continuous variable are independent

and so establish the diagonal covariance matrix accordingly. This is not true in

general. One idea for future research is to estimate the correlations between the

parent variables and build the corresponding full covariance matrix. It would

be interesting to explore the tradeoff between performance and computational

costs for the resulting algorithm.

• Our algorithms return estimates of the first two moments for continuous vari-

ables. However, sometimes, it is more important to know the whole distributions

instead of just two moments. One approach for future study is to use Gaus-

sian mixture with more than one component and develop the corresponding

message propagation and integration algorithms. Also, to further improve the

performance, we always can apply the estimated distributions as the importance

function for additional importance sampling.

• The hybrid BNs we can deal with now is the CHM, in which there is no discrete

children for any continuous variable. Researchers have proposed some meth-

ods and conducted investigations for hybrid BN models without this restriction

[Lern02,CS06,YD06]. In this dissertation, the main reason for making this re-

striction is so that we could partition the original hybrid BNs into either pure

discrete or pure continuous network segments. In general, if one could develop

efficient methods to propagate messages directly between different types of vari-

ables, this could lead to the development of message-passing-based algorithms

for general hybrid BN models that relax this assumption.

• Probabilistic inference for dynamic Bayesian networks is typically conducted

105

sequentially and recursively. First of all, we need to have an efficient inference

algorithm for static BNs, which is one-time-slice of DBNs. Then under some

rollup mechanism or filter-typed framework, current inference results must be

propagated and integrated for the next time slice when new observations are

available. We expect that the algorithms developed in this dissertation could

be adapted for DBN inference.

Probabilistic reasoning is one of the most important issues in the fields of statistics,

operations research, and artificial intelligence. This dissertation proposed methods

to address computational difficulty caused by nonlinearity and non-Gaussian for in-

ference in hybrid Bayesian networks. We developed methodologies to approximate

the arbitrary distribution by Gaussian and achieve good estimates of the first two

moments for continuous variables in hybrid model. We believe that these inference

algorithms and analytical performance modeling developed in this dissertation signifi-

cantly extend the applicability, efficiency and understanding of approximate inference

for Bayesian networks.

106

Bibliography

107

Bibliography

[AM79] Brian D.O. Anderson and J.B. Moore. Optimal Filtering. Prentice-
Hall, Englewood Cliffs, NJ, 1979.

[AMG02] S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp. A Tutorial on
Particle Filters for on-line nonlinear/non-Gaussian Bayesian track-
ing. IEEE Trans. Signal Process., vol. 50, no. 2, pp. 174–188, Feb.
2002.

[AK01] S. Arora and R. Kannan. Learning Mixtures of Arbitrary Gaussians.
Symposium on Theory of Computing (STOC), 2001.

[BD06] Bozhena Bidyuk, Rina Dechter. Cutset Sampling for Bayesian Net-
works. In Proceedings of the 22nd Annual Conference on Uncertainty
in Artificial Intelligence (UAI-06), Arlington, Virginia, 2006.

[BK98] Xavier Boyen and Daphne Koller. Tractable inference for complex
stochastic processes. In Proceedings of the Fourteenth Conference on
Uncertainty in Artificial Intelligence, pages 33–42, Madison, WI, 1998.

[BLK01] Yaakov Bar-Shalom, X. R. Li, and T. Kirubarajan. Estimation with
Applications to Tracking and Navigation, Wiley, 2001.

[BSC89] I. Beinlich, G. Suermondt, R. Chavez, and G. Cooper. The Alarm
Monitoring System: A Case Study with Two Probabilistic Inference
techniques for Belief Networks. In Proceedings of 2nd European Con-
ference on AI and Medicine, 1989.

[CACM95] Communications of the ACM, Special Issue on Real-World Applica-
tions of Bayesian Networks, D. Heckerman, A. Mamdani, M. WEllman
(editors) 38(3), March 1995.

[CD00] Jian Cheng and Marek J. Druzdzel. AIS-BN: An adaptive importance
sampling algorithm for evidential reasoning in large Bayesian net-
works. Journal of Artificial Intelligence Research (JAIR), 13:155-188,
2000.

108

[CDLS99] Cowell, R. G., A. P. Dawid, S. L. Lauritzen, and D. J. Spiegelhalter.
Probabilistic Networks and Expert Systems. Statistics for Engineering
and Information Sciences. New York: Springer-Verlag, 1999.

[Cheng01] Jian Cheng, PhD dissertation, Efficient Stochastic Sampling Algo-
rithms for Bayesian networks, School of Information Sciences, Uni-
versity of Pittsburgh, 2001.

[CF95] K. Chang, R. Fung. Symbolic probabilistic inference with both discrete
and continuous variables. IEEE Transactions on Systems, Man, and
Cybernetics, vol. 25, pp. 910 - 916, 1995.

[Co84] G.F. Cooper, Nestor: A computer-based medical diagnosis aid that
integrates causal and probabilistic knowledge. Ph.D. dissertation, De-
partment of Computer Science, Stanford University, 1984.

[Co90] G. F. Cooper. The computational complexity of probabilistic inference
using Bayesian belief networks. Artificial Intelligence, vol. 42, pp. 393-
405, 1990.

[CS04] KC Chang and Wei Sun. Performance Modeling for Bayesian Net-
works. In Proceedings of SPIE Conference, Volume 5429, Orlando,
2004.

[CS06] Barry R. Cobb and Prakash P. Shenoy. Inference in Hybrid Bayesian
Networks with Mixtures of Truncated Exponentials. International
Journal of Approximate ReasoningVolume 41, Issue 3, , April 2006,
Pages 257-286.

[Dasg99] S. Dasgupta. Learning Mixtures of Gaussians. Proceedings of Sympo-
sium on Foundations of Computer Science (FOCS), 1999.

[DeGr70] Morris H. de Groot. Optimal Statistical Decisions. McGraw-Hill and
Company (1970).

[Demp77] Dempster, A.P. and N.M. Larid, D.B. Rubin. Maximum Likelihood
from Imcomplete data set via the EM algorithm. Journal of the Royal
Statistical Society. B 39(1), p1-38, 1977.

[DFG01a] A. Doucet, J. Freitas, and N. Gordon. A introduction to sequential
Monte Carlo methods in practice. In Sequential Monte Carlo Methods
in Practice, A. Doucet, J. Freitas, and N. Gordon, Eds., chapter 1.
Springer-Verlag, New York, 2001.

[DFG01b] A. Doucet, J. de Freitas, and N. Gordon. Sequential Monte Carlo
Methods in Practice. Springer-Verlag, New York, 2001.

109

[DL93] P. Dagum and M. Luby. Approximating probabilistic inference in
Bayesian belief networks is NP–hard.Artificial Intelligence, vol. 60,
pp. 141-153, 1993.

[dMer04] Rudolph van der Merwe. PhD thesis, Sigma-Point Kalman Filters for
Probabilistic Inference in Dynamic State-Space Models. Oregon Health
& Science University. 2004.

[Dun75] Duncan, O. Introduction to Structural Equation Models. New York:
Academic Press, 1975.

[EC07] Eswar Sivaraman and KC Chang. Performance Evaluation of Multi-
Sensor Classification Systems. IEEE Transactions on Aerospace and
Electronic Systems, November, 2007.

[FC89] R. Fung and K. C. Chang. Weighting and integrating evidence for
stochastic simulation in Bayesian networks. In Uncertainty in Arti-
ficial Intelligence 5,pages 209-219, New York, N. Y., 1989. Elsevier
Science Publishing Company, Inc., 1989.

[GB01] W. Gilks and C. Berzuini. Following a moving target–Monte Carlo
Inference for Bayesian Dynamic Models. Journal of Royal Statistic
Society B, vol. 63, pp. 127–146, 2001.

[GG84] S. Geman and D. Geman. Stochastic Relaxation, Gibbs Distributions,
and the Bayesian Restoration of Images. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 6:721-741, 1984.

[GH02] H. Guo and W. Hsu, A survey of algorithms for real-time Bayesian
network inference, AAAI/KDD/UAI–2002 Joint Workshop on Real-
Time Decision Support and Diagnosis Systems, Edmonton, Alberta,
Canada, 2002.

[GRS96] W.R. Gilks, S. Richardson, and David Spiegelhater. Markov Chain
Monte Carlo in Practice. Chapman & Hall/CRC, 1996.

[Gol72] Goldberger, A. Structural equation models in the social sciences.
Econometrica, 40: 979-1001, 1972.

[Haa43] Haavelmo, T. The statistical implications of a system of simultaneous
equations. Econometrica, 11: 1-12, 1943.

[Haddawy99] P. Haddawy. An Overview of Some Recent Developments in Bayesian
Problem-Solving Techniques. AI Magazine 20(2) p11-19, 1999.

[Hast70] W.K. Hastings. Monte Carlo Sampling Methods Using Markov Chains
and Their Applications. Biometrika, 57(1):97-109, 1970.

110

[Hay98] Simon Haykin. Neural Networks: A Comprehensive Foundation, Pren-
tice Hall PTR, NJ, isbn-0132733501, 1998.

[HD96] Cecil Huang and Adnan Darwiche. Inference in belief networks: A
procedural guide, International Journal of Approximate Reasoning,
15:225–263, 1996.

[Hen88] Max Henrion. Propagation of uncertainty in Bayesian networks by
probabilistic logic sampling. In Uncertainty in Artificial Intelligence,
vol. 2. Elvesier, 1988, pp. 149–163.

[HM81] Howard, R.A. and Matheson, J.E. Influence Diagrams, in Principles
and Applications of Decision Analysis, Manlo Park CA, Strategic De-
cision Group. 1981.

[HM05] Howard, R.A. and Matheson, J.E. Influence Diagram Retrospective,
INFORM Decision Analysis, Vol.2, No.3, pp.144-147, Sep., 2005.

[Jensen96] F.V. Jensen. An Introduction to Bayesian Networks. Springer-Verlag,
New York, 1996.

[JMM96] Jain, A.K.; Jianchang Mao; Mohiuddin, K.M., ”Artificial neural net-
works: a tutorial,” Computer , vol.29, no.3, pp.31-44, Mar 1996.

[JU96] S. J. Julier and J. K. Uhlmann. A General Method for Approximating
Nonlinear Transformations of Probability Distributions. Technical re-
port, RRG, Dept. of Engineering Science, University of Oxford, Nov
1996.

[JU97] S.J. Julier and J.K. Uhlmann. A New Extension of the Kalman Filter
to Nonlinear Systems. In The Proceedings of AeroSense: The 11th
International Symposium on Aerospace/Defense Sensing, Simulation
and Controls, (Orlando, Florida), 1997.

[Julier02] Julier, S. J. The Scaled Unscented Transformation. In Proceedings of
the American Control Conference, vol. 6, pp. 4555C4559. 2002.

[Kal60] Kalman, R. E. A new approach to linear filtering and prediction prob-
lems. Trans. ASME, Series D, Journal of Basis Engineering 82, 35–45,
1960.

[KF98] D. Koller and R. Fratkina, Using Learning for Approximation in
Stochastic Processes. In Proc. of the 15th International Conference
on Machine Learning (ICML–98), pages 287–295, Madison, Wiscon-
sin, July 1998.

111

[KL99] Dephne Koller, Uri Lerner, and Dragomir Angelov. A General Algo-
rithm for Approximate Inference and Its Application to Hybrid Bayes
Nets. In Proceedings of the Fifteenth Annual Conference on Uncer-
tainty in Artificial Intelligence (UAI-99), pages 324-333, Stockholm,
Sweden, July 30th - August 1st, 1999.

[Koo50] Koopmans, T. When is an equation system complete for statisti-
cal purposes?. In T. Koopmans (Ed.), Statistical inference in Dy-
namic Economic Models (Cowles Commission Monograph No. 10).
New York: Wiley.1950.

[Lau92] Steffen L. Lauritzen. Propagation of probabilities, means, and vari-
ances in mixed graphical association models. JASA, 87(420):1089–
1108, 1992.

[Lern02] Uri N. Lerner. Hybrid Bayesian Networks for Reasoning about Com-
plex Systems, Ph.D. Thesis, Stanford University, October 2002.

[LJ01] S. L. Lauritzen and F. Jensen. Stable local computations with condi-
tional Gaussian distributions. Statistics and Computing, vol.11, no.2,
pp191–203, April 2001.

[LM-etc02] U. Lerner, B.Moses, M.Scott, S. Mcllraith and D. Koller. Monitoring
a complex physical system using a hybrid dynamic Bayes net. In Pro-
ceedings of the 18th Annual Conference on Uncertainty in AI (UAI),
pages 301-310, 2002.

[LS88] S.L. Lauritzen and D.J. Spiegelhalter, Local Computations with Proba-
bilities on Graphical Structures and Their Applications to Expert Sys-
tems, Proceedings of the Royal Statistical Society, Series B., 50, 157-
224, 1988.

[MB88] McLachlan, G.J. and K. E. Basford. Mixture Models: Inference and
Applications to Clustering. New York: Marcel Dekker, 1988.

[MDFW00] Rudolph van der Merwe, A. Doucet, N. de Freitas, and E. Wan.
The Unscented Particle Filter. Tech. Rep., Department of engineering,
University of Cambridge CB2 1PZ Cambridge, 2000.

[MP00] G. McLachlan, D. Peel. Finite Mixture Models. Wiley, 2000.

[MRR+53] N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, and
E. Teller. Equations of State Calculations by Fast Computing Ma-
chines. Journal of Chemical Physics, 21(6):1087-1092, 1953.

112

[MRS01] S. Moral, R. Rumi, A. Salmeron (2001).Mixtures of truncated ex-
ponentials in hybrid Bayesian networks. Sixth European Conference
on Symbolic and Quantitative Approaches to Reasoning with Uncer-
tainty. Lecture Notes in Artificial Intelligence 2143, 156-167. Berling,
Springer-Verlag.

[MRS02] S. Moral, R. Rumı́, A. Salmerón. Estimating mixtures of truncated
exponentials from data. In: J.A. Gámez, A. Salmerón (Eds.), Pro-
ceedings of the First European Workshop on Probabilistic Graphical
Models (PGMC02), Cuenca, Spain, 2002, pp. 135C143.

[Mur98] Kevin Murphy. Inference and learning in hybrid bayesian networks.
Technical Report CSD-98-990, Department of Computer Science, U.C.
Berkeley, 1998.

[Mur01] Kevin Murphy. The Bayes Net Toolbox for Matlab. In Computing Sci-
ence and Statistics: Proceedings of the Interface, Volume 33, 2001.

[Mur02] Kevin Murphy, PhD Thesis, Dynamic Bayesian Networks: Represen-
tation, Inference and Learning. UC Berkeley, 2002.

[MWJ99] K. Murphy, Y. Weiss, and M. Jordan. Loopy belief propagation for
approximate inference:an empirical study. In UAI, 1999.

[Nab02] Ian T. Nabney. NETLAB: Algorithms for Pattern Recognition.
Springer, 2002.

[Ne90] R. E. Neapolitan. Probabilistic Reasoning in Expert Systems. John
Wiley & Sons, NY, 1990.

[Neal93] Radford M. Neal. Probabilistic Inference using Markov Chain Monte
Carlo Methods. Technical Report CRG-TR-93-1, University of
Toronto, 1993.

[Pearl82] Judea Pearl. Reverend bayes on inference engines: A distributed hier-
archical approach. In David Waltz, editor, Proceedings of the National
Conference on Artificial Intelligence, pages 133–136, Pittsburgh, PA,
August 1982. AAAI Press.

[Pearl86] J. Pearl, Fusion, propagation and structuring in belief networks, Arti-
ficial Intelligence, vol. 29, pp. 241-288, 1986.

[Pearl87] Judea Pearl. Evidential reasoning using stochastic simulation. Artifi-
cial Intelligence, pages 245–257, 32, 1987.

[Pearl88] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference, Morgan Kauffman, San Mateo, 1988.

113

[Pearl05] J. Pearl, Influence Diagrams–Historical and Personal Perspectives.
INFORM Decision Analysis, Vol.2, No.4, pp.232-234, Dec., 2005.

[Poland94] Poland, W.B. 1994. Mixture of Gaussians and Minimum Relative En-
tropy Techniques for Modeling Continuous distributions. PhD thesis,
Department of Engineering-Economic Systems, Stanford University.

[PS91] Mark A. Peot and Ross D. Shachter, Fusion and propagation with
multiple observations in belief networks. Artificial Intelligence, vol.48,
pp.299-318, 1991.

[PS99] M.K. Pitt and N. Shephard. Filtering via Simulation: Auxiliary Par-
ticle Filters. Journal of the American Statistical Association. Vol
94(446), pp 590–599, 1999.

[Rubin81] Rubinstein, R. Y. Simulation and the Monte Carlo Method. John Wi-
ley & Sons, 1981.

[SC05] Wei Sun and K.C. Chang, Probabilistic Inference using Linear Gaus-
sian Importance Sampling for General Hybrid Bayesian Networks.
SPIE Defense and Security Symposium, Vol.# 5809, Orlando, April
2005.

[SC07a] Wei Sun and KC Chang. Unscented Message Passing for Arbitrary
Continuous Bayesian Networks. Proceedings of the 22nd AAAI Con-
ference on Artificial Intelligence, Vancouver, Canada, 2007.

[SC07b] Wei Sun and KC Chang. Hybrid Message Passing for General Mixed
Bayesian Networks. Proceedings of the 10th International Conference
on Information Fusion, Quebec, Canada, 2007.

[SC07c] Wei Sun and KC Chang. Hybrid Loopy Importance Sampling for
Bayesian Networks. To be submitted.

[SC08a] Wei Sun and KC Chang. Convergence Study of Message Passing in
Arbitrary Continuous Bayesian Networks. Submitted to SPIE Confer-
ence, Orlando, March, 2008.

[SD90] R. D. Shachter, B. D’Ambrosio, and B. D. Del Favero. Symbolic Prob-
abilistic Inference in Belief Networks, Proc. 8th National Conference
on Artificial Intelligence, MIT Press, Boston, pp. 126131, 1990.

[Sh86] Ross D. Shachter. Intelligent probabilistic inference. In J. F. Lemmer
and L. N. Kanal, editors, Uncertainty in Artificial Intelligence, pages
371–382. North Holland, Amsterdam, 1986.

114

[Sh90] Ross D. Shachter. Evidence Absorption and Propagation through Ev-
idence Reversals. In M. Henrion,R. D. Shachter,J. F. Lemmer, & L.
N. Kanal (Eds.), Uncertainty in Artificial Intelligence 5 (pp. 173-190),
1990.

[Shenoy06] Prakash Shenoy. Inference in Hybrid Bayesian Networks Using Mix-

tures of Gaussians. Proceedings of the 22nd Annual Conference on
Uncertainty in Artificial Intelligence (UAI), 2006.

[SP90] R. D. Shachter and M. A. Peot, Simulation approaches to general
probabilistic inference on belief networks. In Proc. of the Conf. on
Uncertainty in AI,volume 5, 1990.

[SS90] P. P. Shenoy and G. R. Shafer. Axioms for probability and belief-
function propagation. In Proc. UAI, volume 4, pages 169-198, 1990.

[TAW02] M. Takikawa, B. DAmbrosio, and E. Wright. Real-time inference with
large-scale temporal bayes nets. In Proc. of the Conf. on Uncertainty
in AI, 2002.

[WF99] Weiss, Y. and W. T. Freeman. Correctness of Belief Propagation in
Gaussian Graphical Models of Arbitrary Topology. Technical Report,
UCB.CSD-99-1046, Berkeley Computer Science Dept. 1999.

[Wri21] Wright, Sewall. Correlation and causation. Journal of Agricultural
Research 20: 557-85, 1921.

[Wri23] Wright, Sewall. The theory of path coefficients: A reply to Niles crit-
icism. Genetics, 8: 239-55, 1923.

[Wri34] Wright, Sewall. The Method of Path Coefficients. Ann Math Statist,
5, 161-215, 1934.

[YD03] C. Yuan, M. J. Druzdzel. An Importance Sampling Algorithm Based
on Evidence Pre-propagation. In Proceedings of the 19th Annual Con-
ference on Uncertainty in Artificial Intelligence, pages 624-631, August
2003.

[YD06] C. Yuan and M. J. Druzdzel. Hybrid Loopy Belief Propagation. Pro-
ceedings of the third European Workshop on Probabilistic Graphical
Models (PGM-06), pages 317-324, 2006.

[YD07] Changhe Yuan, and Marek J. Druzdzel. Generalized Evidence Pre-
propagated Importance Sampling for Hybrid Bayesian Networks. In
Proceedings of the Twenty-second National Conference on Artificial
Intelligence (AAAI-07). Vancouver, Canada.

115

[ZP94] N. L. Zhang and D. Poole. A simple approach to Bayesian network
computations. In Proc. of the Tenth Canadian Conference on Artificial
Intelligence, pages 171–178, 1994.

116

Curriculum Vitae

Wei Sun received his Bachelor of Science in Electrical Engineering in 1991 from Zhe-
jiang University, Hangzhou city, China. He was employed as an electrical engineer in
Guizhou No.1 Power Plant Construction Company in China for several years before
he came to the United States for his graduate studies in 2001. Wei Sun obtained
his Master of Science in Operations Research from George Mason University in 2003.
Then he continued for the PhD program. He has been a teaching assistant and a re-
search assistant for the department of Systems Engineering and Operations Research
at GMU since 2001. His research interests include stochastic modeling, probabilistic
inference, Bayesian networks, and simulation.

117

