

The Impact of Affect, Scenario and Task Characteristics on Developer Decision-Making

A Thesis submitted in partial fulfillment of the requirements for the degree of Master of
Science at George Mason University

by

Cassandra Bailey
Bachelor of Science

George Mason University, 2017

Director: Thomas LaToza, Professor
Department of Computer Science

Summer Semester 2020
George Mason University

Fairfax, VA

ii

Copyright 2020 Cassandra Bailey

All Rights Reserved

iii

ACKNOWLEDGEMENTS

I would like to thank the numerous friends, coworkers, and colleagues who assisted me in
my research. Dr. LaToza was of invaluable help – many thanks to his excellent
mentorship and guidance. Special thanks to Abdulaziz for his analytical assistance, and to
the rest of the Developer Experience Design Lab for their review. Finally, thanks go out
to the amazing faculty of the CS and SWE departments at GMU for encouraging me,
supporting me, and humbling me with their passion, experience and wisdom.

iv

TABLE OF CONTENTS

Page
List of Tables .. v
List of Figures .. vi
Abstract ... vii
I INTRODUCTION ... 1
II THE CONTEXTUAL FACTORS ... 5

III RELATED WORK ... 8
IV EXPERIMENTAL DESIGN .. 12

B. Materials ... 13
C. Deployment ... 16
D. Participants .. 16
E. Procedure .. 17
F. Data Analysis .. 17

V RESULTS .. 19
VI THREATS TO VALIDITY .. 29
VII DISCUSSION ... 32
VIII CONCLUSIONS .. 35
References ... 36

v

LIST OF TABLES

Table Page
Table 1 Combinatorial representation of each question in Part I 13
Table 2 Names of strategies and corresponding full text .. 15
Table 3 Linear regression analysis for Check documentation strategy 23
Table 4 Linear regression analysis for Use dev tools strategy .. 23
Table 5 Linear regression analysis for Search online forum strategy 24
Table 6 Linear regression analysis for Create diagrams strategy 24
Table 7 Linear regression analysis for Add print statements strategy 26
Table 8 Linear regression analysis for Read surrounding code strategy 26
Table 9 Linear regression analysis for Experiment with edits strategy 27
Table 10 Linear regression analysis for Ask for help strategy .. 27

vi

LIST OF FIGURES

Figure Page
Figure 1 Two-dimensional representation of affect [27] .. 7
Figure 2 Sample Question: task: Debugging, code scenario: My Code 14
Figure 3 Part II follow-up survey questions ... 16
Figure 4 Top and bottom strategy choice frequency .. 20
Figure 5 Per-rank strategy choice frequency for random-order subset 21
Figure 6 Per-rank strategy choice frequency for set-order subset 22

vii

ABSTRACT

THE IMPACT OF AFFECT, SCENARIO AND TASK CHARACTERISTICS ON
DEVELOPER DECISION-MAKING

Cassandra Bailey, M.S.

George Mason University, 2020

Thesis Director: Dr. Thomas LaToza

Decision-making and strategy choice during software development are influenced

by many factors, from the technologies we use to our own personal qualities. Better

understanding these factors may help enable better understanding how and when

development tools help developers. The goal of this thesis was to identify the relationship

between contextual factors and the strategy selections that determine how developers

approach problems. The factors that were examined were programming task, code

scenario, and affect (mood). Task is the actual development task, such as debugging,

implementing, or testing. Code scenario is a way to describe the type of code; our survey

examines three scenarios: self-written code, framework code, and code containing

callbacks. Affect describes psychological mood; it can be activated or deactivated

(arousal), as well as positive or negative (valence). Our findings show that all three

factors influenced the strategies participants chose. Participants with a highly positive

viii

affect were over twice as likely to ask for help. Participants were twice as likely to use

developer tools for a debugging task, as in an implementation task. Participants rarely

wished to create diagrams when dealing with framework code, as compared to their own

code. These findings deepen our understanding of developer strategy choice; these

insights can be used to improve recommendation systems, IDE’s, and other developer

tools not only by improving the recommendations and content itself, but also by gaining

more insight about when a developer might use those systems.

1

I INTRODUCTION

Decision-making by software developers has long been a focus of software

engineering research [3][10][22]. Developers make many choices as they create and

maintain software; each is an opportunity to improve developer experience and

performance, and the quality of the software. For example, a developer might be asked to

create a new widget for their company’s application. Some developers may begin by

looking at documentation or the existing surrounding code. Others may start by talking to

the teammate that developed the related code. The task itself, creating a new feature,

lends itself to certain strategies more than others. These differing strategies, and the

factors that impact how they are selected, are the focus of this research.

First, we ask the question, what types of factors impact developers and/or

development work? There are many factors that impact the productivity of developers:

personal characteristics, such as mood or years of experience, as well as the

characteristics of their work, like technologies used [7]. Developer qualities like affect

and experience have been studied as a factor in software development [11][14][16] and in

general human decision-making extensively [26][3][8][24][23]. The impact of these

factors has primarily been examined through measuring its impact on job satisfaction,

task completion, and performance [1][11][14][16]. While this documents the importance

2

of these factors, it does less to explain the mechanisms by which these factors impact

development. That is, how does changing affect help developers to be more productive?

In this thesis, we examine how contextual factors impact development work by

investigating how they impact strategy selection. Our study focuses on three contextual

factors: affect (mood), task, and scenario. A contextual factor is some element that

creates or adds to the context of a programming problem and can be intrinsic (the

programming patterns used in the code) or extrinsic (for example, characteristics or state

of the developer). Task is the actual development task, such as debugging, implementing,

or testing. Task characteristics have been examined as contextual factors previously [26].

Code scenario is a way to describe the type of code; our survey examines three scenarios:

self-written code, framework code, and code containing callbacks. Affect describes

psychological mood; it can be activated or deactivated (arousal), as well as positive or

negative (valence).

The questions asked in this paper correspond to the three potential factors:

RQ1. Does the type of programming task (Debugging, testing/verification,

implementation) impact the strategy choice developers use?

RQ2. Does code scenario (i.e., code you own, framework code, code with callbacks)

impact the strategy choice developers use?

RQ3. Do changes in affect impact the strategy choice developers use?

Each of these research questions share a commonality – the impact of strategy choice.

In this context, a strategy is a generalization of some development work. Similarly to the

factors, we examined decision-making in such a way that it could be generalizable to

3

many software development situations, rather than a specific process(es). This led to the

definition of strategies as a general action that can be taken when presented with any

development problem in any scenario. While some strategies may coincide better with

certain factors (for example, Use dev tools and the debugging task), the strategies were

worded in such a way to mitigate these inherent relationships.

We conducted a study where participants were provided questions that

represented different tasks and scenarios. For example, a question would include a code

snippet representing the code scenario and then describe a simple task, like finding and

fixing a bug. For each question, participants were asked to rank order the provided

strategies based on the likelihood of their use to complete the task as it relates to the code

snippet. This provides an examination of RQ1 and RQ2. In order to investigate RQ3,

participants were randomly assigned one of five treatments: four different affect

treatments, which are enumerated in SECTION III, or a control of no affect treatment,

and were shown a corresponding affect-inducing video clip. Short video clips for

inducing affect have been used previously in similar research [11][27][13].

We found that strategy selections varied, often substantially, depending on

contextual factors, particularly in relation to the programming task. Participants were

nearly four times as likely to search an online forum when presented with a code scenario

using third-party libraries than a scenario containing only self-written code. Participants

were nearly three times as likely to use print statements for debugging tasks than

implementation tasks. Other strategies were avoided in specific situations - for example,

4

participants were very unlikely to read documentation or other artifacts for the debugging

tasks.

Affect had an impact on some of the strategy choice as well. Participants with a

slightly negative affect were very unlikely to select the Experiment with edits strategy.

This suggests a complement to previous research that shows a slightly positive affect

boosts creative thinking [26][24]. Additionally, the highly positive affect-induced

participants were over twice as likely to ask for help from a colleague than those in the

control group.

Improvements to recommendation systems and other supplementary systems

could be made by using insights from these results. For example, one study found that

altering the mood of participants improved their ability to predict the outcome of running

algorithms [17]. Developers can use these insights to approach problems with different

affects, as their decision-making will likely change. Recommendation systems can use

knowledge about the code scenario, like the framework, to provide links to

documentation and other resources. In addition, this research helps deepen our

understanding of decision-making in developers. This, coupled with the ability to define

and measure factors of a software development context, enables processes, IDE’s,

workplaces, and teams to better tailor themselves to developers.

5

II THE CONTEXTUAL FACTORS

In this thesis, we examine the impact of three contextual factors on strategy

selection. These include both factors intrinsic to the software (the programming style in

which it is written), as well as extrinsic factors about the disposition and goal of the

developer. They are task, code scenario, and affect.

A. Task

We examined three different types of programming tasks: implementation,

verification, and debugging. Implementation involves writing new code, with new

functionality. Successfully completing an implementation task results in new

functionality. Verification is the task of testing or verifying the behavior of a certain

component of the system, e.g. a class, method, or module. Successful completion ensures

that the code artifact meets its requirements. For example, to verify a method, the

requirements defining error handling, expected return values, expected inputs, and any

edge cases should be met. Debugging is the task of localizing and fixing a defect.

Successfully completing a debugging task results in the program no longer behaving in

an unexpected way.

6

B. Code Scenario

Code scenario refers to the type of code that encompasses or is otherwise related

focally to the task at hand. The situation faced by the programmer that requires some

strategy to be chosen is often in the midst of existing code.

Three typical coding scenarios are examined here: Code that is entirely written

and owned by the programmer (referred to in SECTION IV as “M”, for “My Code”),

code that involves using a framework not written by the programmer (referred to in

SECTION IV as “F”, for “Framework Code”), and code that involves concurrency and

callbacks (referred to in SECTION IV as “C”, for “Callbacks/Concurrency”). The first

two scenarios are complements of each other; the third scenario was selected because of

the unique challenges and workflow of dealing with concurrency [1]. Though a typical

software development task may encompass multiple code scenarios as they are defined

here, the scenarios were purposefully developed to be simple and atomic, such that each

scenario was accurately represented.

C. Affect

Affect defines the current emotional state or mood of a person. Affect is measured

on two dimensions: valence and arousal. Valence measures the positive or negative

nature of the emotion; for example, a “happy” affect corresponds to a positive valence,

whereas a “sad” affect implies a negative valence. Arousal measures the extent to which

the emotion is felt, or the intensity of the emotion. This two-dimensional representation

defines four types of affect, which we examine in this thesis. Each dimension may be

high or low. For arousal, these correspond to “Activated” and “Deactivated” in Figure 1

7

respectively. For valence, these correspond to “Pleasant” and “Unpleasant” respectively.

This creates four types of affect: high valence/high arousal (HVHA), e.g., excited, low

valence/low arousal (LVLA), e.g., sad or depressed, high valence/low arousal (HVLA),

e.g., calm, and low valence/high arousal (LVHA), e.g., stressed or nervous. These

abbreviations will be used throughout this paper to refer to the four affect treatments.

Figure 1 Two-dimensional representation of affect [27]

8

III RELATED WORK

Research has examined the impact of affect on decision-making and task

performance, both generally and as it relates to software development. Other work has

examined the different strategies developers may use to solve problems.

Affect has been extensively examined in psychology, with an abundance of work

examining its impact on decision making. A positive affect has been shown to improve

and boost creative thinking [7][24][14][23]. There is a lack of consensus about negative

affect, though some literature suggests that it is more conducive to evaluative thinking, as

people tend to focus on drawbacks and negative qualities during evaluation [24][4][8].

One study found that a negative affect improved evaluation of existing ideas and

strategies; participants with a negative affect were able to more accurately assess ideas

for their usefulness, whereas the positive-affect participants tended to overestimate

usefulness [7].

In software development, affect can impact the behavior and decisions made by

developers [17]. Research that examined the relationship between affect and debugging

performance found that higher arousal (independent of valence) increased the number of

debugging tasks that participants completed from 3.03 tasks to 4.59 tasks [16]. One study

used physical activity to induce affect and found that higher valence and arousal leads to

significantly improved debugging performance [16]. Other work has focused on

9

measuring affect in developers, with applications to improving developer experience.

One study measured the affect of developers using mouse and keystrokes, and in a

separate experiment showed that inducing positive affect had a positive impact on

developer performance. This study, like the debugging performance study, also induced

affect using video clips, and categorized treatments in two dimensions: valence and

arousal. It found that arousal, not valence, was a significant factor in programming

performance. A correlation was also found between self-reported mood levels and

mouse/keyboard interactions [17].

Another body of work has examined the programming strategies that characterize

how developers, teams, and industries work. Early work grouped programming strategies

into differences into a programming persona which characterizes a work style:

opportunistic, pragmatic, or systematic [9]. Opportunistic developers are exploratory in

nature and focus on solving business problems. Systematic developers write code

defensively and strive to build elegant solutions and gain deep understanding. Pragmatic

developers are methodical, but not as much as systematic programmers, taking a “just-

enough” investigation approach. One study found additional evidence that these

distinctions exist (opportunistic and systematic developers were observed), independent

of years of experience and domain knowledge. Opportunistic developers tended to try

experimenting immediately, copying some sample code from the documentation and

modifying it, building their code incrementally on top. Systematic developers spent

significantly more time on the Concepts page of the documentation than opportunistic

programmers (between 12.5% to 42.9%, versus 0% and 5.6%, respectively) [9].

10

Identifying programming personas has been argued to be beneficial, as it allows the

developer to relate to an end-user (and other developers) in a personal sense, and to better

anticipate the behaviors and use cases for them [12].

Other research has focused on conceptualizing programming strategies. One study

defines explicit programming strategies as a process developers use [19]. Another focuses

specifically on self-regulation and self-explanation strategies; monitoring and evaluating

one’s understanding, and explaining instructional material, respectively [6]. These

conceptualizations capture the goal and task relationships to strategy choice and

definition; these relationships are explored in our study, along with coding scenario and

developer characteristics (affect), as contextual factors that influence the strategy choice,

rather than inherent to the strategies.

The research on decision-making and problem-solving in software development

varies widely on the factors used to define the context. Some researchers focused entirely

upon intrinsic factors like keywords in the code, stack traces, and logs [24]. Other

research has defined some meta-characteristics of tasks that are subjective but still

inherent to the task itself, rather than the developer. One study used contextual

characteristics within an IDE to provide web resources to developers [7]. The system for

recommending the proper resources was developed to analyze stack traces within the

IDE, taking into account the exceptions, references, and degrees of importance of the

former. Such a recommendation system could be further improved by including factors

for other contextual factors, such as those researched in this paper. Another study

developed a Design- Pattern Recommender (DPR) process to recommend software

11

design patterns based on a problem context [24]. This context was established based upon

aforementioned intrinsic characteristics like keywords and object usage. Since

recommendations are inherently context-specific, researching better ways to identify,

measure, and interpret contextual factors will improve recommendation accuracy and

quality.

12

IV EXPERIMENTAL DESIGN

We conducted an experiment consisting of two parts: Part I, the main

questionnaire, and Part II, the follow-up survey. The online research experiment was

performed in Part I. In Part II, a follow-up survey was sent to participants that voluntarily

provided their email, to gain insight on what participants thought about the contextual

factors and their impact on strategy choice.

A. Design

 To answer each of the research questions, survey questions were developed to

address RQ1 and RQ3, and the video clips were used to address RQ2. The survey

questions developed each represent exactly one task and one code scenario; for example,

one question asks the participant to do a debugging task, given the “My Code” code

scenario.

Each question provided the same set of eight programming strategies for the

participant to rank order, from most likely to least likely to use for the given scenario and

task. Twenty-nine of the 45 total participants saw the strategies in the same order as

presented in Table 2. The other 19 respondents saw the strategies in a randomized order

for each question. This change is discussed in SECTION VI, and the data explored

further in SECTION V.

13

B. Materials

The Part I questionnaire consisted of 9 questions. Each question represents a

treatment of both code scenario (RQ2) and task (RQ1). Table 1 shows the cross-product

of code scenario and task. Each entry in this table corresponds to precisely one question.

Table 1 Combinatorial representation of each question in Part I

 RQ2 – Code Scenario

RQ1 - Task M (my code) F (framework code) C (Callback)

D (debug) DM DF DC

V (verification) VM VF VC

I (implementation) IM IF IC

A code scenario is presented to the participant in the form of a code snippet and

some descriptive text. A series of three questions, each representing a task, is then

presented to the participant to imagine themselves working on the task in the context of

the given code scenario. This format is repeated twice more, for the remaining two

scenarios. The order of the scenarios, as well as the tasks, were randomized using the

Latin Square method [15].

14

Figure 2 Sample Question: task: Debugging, code scenario: My Code

The strategies were presented as a list, which the participant ranked by

rearranging each item of the list to form the order in which they would try each strategy

for that question. Each item is simply the text shown in the Strategy column of Table 2.

Throughout the paper, for brevity, the strategies will be referred to by their Name in

Table 2.

15

Table 2 Names of strategies and corresponding full text

Name Strategy

Experiment with edits Experiment with various edits to see if those address the issue

Add print statements Add print/logging statements to existing code

Read surrounding code Read the immediately surrounding code

Check documentation
Check design documents, bug descriptions, email
correspondence, or other artifacts

Search online forum Search an online forum (e.g., Stack Overflow)

Use dev tools
Use developer tools (e.g., debugger, interface inspector,
code/component graphs)

Ask for help Ask for help from a colleague

Create diagrams Create detailed diagrams manually

Part II of the experiment gathered the participant’s opinions about their strategy

choices. Figure 3 shows the questions given to the participants that opted in to Part II. We

asked about strategy choice during the experiment as well as during development in

general, to see if developers feel that factors like mood or task have an impact on their

strategy choice.

Part II

1. What do you think is the biggest influence on which strategies you chose?
2. For each of the options you were given (refer to the list below), do you feel that there

would be a certain programming task or scenario where you would choose each option
first? If so, what would those scenarios be?

3. Did you feel like watching the video(s) affected your mood? Do you think it may have
changed how you answered the questions?

4. When you’re particularly frustrated or in an otherwise “bad” mood, do you think it
affects how you code and the strategies you employ when coding? If so, how so?

5. What were your overall thoughts about the survey experience?

16

6. Were you surprised by the programming persona you were given? Why or why not?
Figure 3 Part II follow-up survey questions

C. Deployment

The study was administered remotely via a survey link, which was distributed

through email and social media. To incentivize participation, the end of the survey

redirects to a results page that ascribes a “programming style” to the participant:

experimental, resourceful, or calculated, along with a corresponding description. Each of

these styles were calculated by adding the “scores” (inverse of rank) each participant

gave to each strategy for each question. Each style then corresponded to 2-3 strategies;

for example, the Resourceful style included the following strategies: Search online

forum, Use dev tools, and Ask for help.

The results page gave participants an overall style, as well as one for each type of

task (Debugging, Implementation, Verification). It also showed a statistical breakdown of

responses that fell into each category, overall and per task. This provided a way for the

participant to compare their results with others. The page also provided multiple ways to

share on social media or by copying the survey link directly. This was intended to

incentivize participants to take the survey as well as to share it.

D. Participants

We recruited developers through postings on various social media platforms, as

well as developer and engineering subgroups and mailing lists. A total of 45 participants

completed the questionnaire. One-hundred and fifty respondents began the survey but

exited before submitting answers. This includes those that chose not to participate after

17

reading the consent form. Web studies have greater access to potential participants, but

the highly accessible and voluntary nature of a purely remote, asynchronous web study

also increases the dropout rate [25][18]. Seventeen participants provided their email

addresses after the questionnaire and Part II of the experiment was emailed to them. A

total of six responses were recorded for Part II.

E. Procedure

Before answering the questions, participants were asked to watch either one or

two video clips, depending on their condition. All participants were given the first video

clip, as an affect neutralizer [29]. Participants in the control condition were advanced to

the questionnaire after the first clip, while other participants were asked to watch one

additional video to administer the affect treatment. After the completion of the Part I

questionnaire, participants were asked to optionally provide their email. Those that

provided their email were sent Part II of the study.

After completing Part I, participants were directed to a results page, where they

could view their results, compare with the aggregated results of other participants, and

share their results. Part II was distributed to those who provided their email and opted in

to be contacted for a follow-up. Part II was also distributed via a survey link.

F. Data Analysis

To investigate the impact of each contextual factor on strategy selection, response

data from Part I was collected for each participant. Each participant’s response represents

one affect treatment, as well as three task and three scenario treatments, for a total of 9

unique treatments per participant. Regression models were built for each of the strategies

18

to analyze the relative likelihood of that strategy being used, given the task, scenario, and

affect. In addition, we examined the overall frequency of each of the strategies. This

analysis was performed again, on the random-order and set-order subsets of the

responses. Qualitative analysis was performed for the data collected in Part II.

19

V RESULTS

We first examine the overall frequency of strategy selections, and then examine

the impact of each contextual factors or strategy selection. Figure 4 shows the frequency

at which each strategy was selected in the top two or bottom two. The green bar

represents the percentage of the time the strategy was ranked as either the number one or

number two choice. The red bar similarly corresponds to the last and next-to-last ranks.

Read surrounding code was the most popular, while Create detailed diagrams was most

frequently ranked last. Note also that the green bars shrink, while the red bars grow,

moving down Figure 4. This trend supports the idea that showing the participants the

strategies in a particular order may have had an impact on their choice, since this was the

set order for the strategies.

20

Figure 4 Top and bottom strategy choice frequency

To determine whether the randomization had an impact, the data was subdivided

into responses for which the strategies were randomized, and those for which the

strategies appeared in the order shown in Figure 4. Rank analysis was performed

separately for each of the two subsets of data: respondents who received randomized

order questions (36% of respondents) and those who received strategies in the set order.

Figures 5 and 6 show these breakdowns for each strategy and rank. Each bar represents a

rank, the bottom bar corresponding to the lowest rank, and the top bar to the highest rank.

Comparing these charts to Figure 4 shows that the randomization had some impact on

strategy selection, particularly for the strategies at the bottom of the non-randomized

order. Create detailed diagrams, the strategy presented at the bottom of the ordered list,

21

went from being ranked last from 51% of the time to 36% of the time when the order was

randomized.

Figure 5 Per-rank strategy choice frequency for random-order subset

22

Figure 6 Per-rank strategy choice frequency for set-order subset

Next, we examine how scenario, task, and affect impacted strategy selection. A

regression model was built for each strategy and the odds ratio (OR) examined to

determine how much more likely that strategy would be used for different particular

tasks, scenarios, and affects. Tables 3-10 depict these analyses.

RQ1: Does the type of programming task (Debugging, testing/verification,

implementation) impact the strategy choice developers use?

Intuitively, different programming tasks call for different strategies. Our results

offer evidence that this occurs in practice. Significant strategy choice variation was

found for both non-baseline tasks. Add print statements, was nearly three times as likely

to be used for the Debugging task than for the baseline Implementation task. Check

23

documentation was one fifth as likely to be used in the Debugging task as compared to

the baseline (OR = 0.202, p = 0.000000000039337). Verification tasks were significantly

more likely to involve use of the Create detailed diagrams strategy (OR = 1.7, p =

0.03205).

Table 3 Linear regression analysis for Check documentation strategy

Check documentation

Variables Odds ratio SE ß Wald Sig. (p)

HVHA 1.45 0.29 0.37 0.2
HVLA 1.41 0.31 0.34 0.28

LVHA 0.88 0.33 -0.13 0.68
LVLA 2.1 0.36 0.74 0.04

Callback 0.81 0.22 -0.21 0.36
Framework 1.57 0.23 0.45 0.05

Debug 0.2 0.24 -1.6 < 0.01
Verification 0.4099 0.24 -0.89 < 0.01

Table 4 Linear regression analysis for Use dev tools strategy

Use dev tools

Variables Odds ratio SE ß Wald Sig. (p)

HVHA 0.72 0.28 -0.33 0.24
HVLA 0.68 0.3 -0.38 2.08
LVHA 1.13 0.32 0.13 0.7

LVLA 1 0.35 < 0.01 0.99
Callback 0.73 0.23 -0.31 0.17

Framework 0.97 0.23 -0.02 0.9
Debug 2.01 0.23 0.7 < 0.01

Verification 1.64 0.22 0.49 0.03

24

RQ2: How does code scenario (i.e., code you own, framework code, code with callbacks)

impact programming strategy selection?

Code scenario had a significant impact on strategy selection. For framework code,

participants were 3.84 times as likely to Search an online forum, relative to my code, or

code they own (p = 0.00000001818). Participants were also half as likely (OR = 0.51,

p=0.0074) to use Create detailed diagrams when faced with the framework code

scenario. Strategy selection for code with callbacks did not vary significantly from the

baseline.

Table 5 Linear regression analysis for Search online forum strategy

Search online forum

Variables Odds ratio SE ß Wald Sig. (p)

HVHA 0.77 0.28 -0.26 0.34
HVLA 1.66 0.3 0.51 0.1

LVHA 1.55 0.32 0.44 0.18
LVLA 0.99 0.39 -0.01 0.99

Callback 1.25 0.23 0.22 0.33

Framework 3.84 0.24 1.34 < 0.01
Debug 1.55 0.23 -0.01 -0.95

Verification 0.7 0.24 -0.82 < 0.01

Table 6 Linear regression analysis for Create diagrams strategy

Create diagrams

Variables Odds ratio SE ß Wald Sig. (p)

HVHA 0.63 0.32 -0.46 0.15
HVLA 1.04 0.33 0.04 0.9
LVHA 1.18 0.35 0.17 0.63

25

LVLA 1.54 0.39 0.44 0.26

Callback 0.79 0.25 -0.23 0.35
Framework 0.51 0.25 -0.67 < 0.01

Debug 0.7 0.25 -0.35 0.17

Verification 1.7 0.25 0.53 0.03

In Part II of the experiment, one question asked participants to imagine certain

tasks or scenarios where they would use that strategy first. Five of the six responses

mention some specific task or situation where they would use a particular strategy. While

some responses are related to a particular task, 4 of the 6 responses specifically describe

code scenarios. For example, one participant said that they would try edits or print

statements when working with an unknown language. Another mentioned that the code

being authored by a particular developer would make them more inclined to reach out to

that developer for help.

RQ3: How does affect impact programming strategy selection?

To examine the impact of affect on strategy choice, we built a regression model,

using neutral affect as the control. Compared to neutral affect participants, participants

with the two low valence treatments showed some significant changes in strategy

selection. Additionally, one of the high valence treatments had an impact on strategy

choice. Participants with the LVHA affect were 2.42 times more likely to Add print

statements (p = 0.0049) as compared to the control condition.

26

Table 7 Linear regression analysis for Add print statements strategy

Add print statements

Variables Odds ratio SE ß Wald Sig. (p)

HVHA 1.68 0.27 0.52 0.06
HVLA 1.29 0.31 0.25 0.42
LVHA 2.42 0.31 0.89 < 0.01

LVLA 1.25 0.35 0.23 0.52
Callback 1.42 0.23 0.35 0.13

Framework 0.68 0.23 -0.39 0.09
Debug 2.76 0.23 1.02 < 0.01

Verification 1.64 0.23 0.49 0.03

The LVHA group was also much less likely to Read surrounding code (OR =

0.171, p = 0.0000005454). The LVLA group also had a strong aversion to one specific

strategy: Experiment with edits (OR = 0.09, p = 0.000000014186). This strategy was

otherwise ranked higher than most of the other strategies in general (see Figure 2).

Table 8 Linear regression analysis for Read surrounding code strategy

Read surrounding code

Variables Odds ratio SE ß Wald Sig. (p)

HVHA 0.63 0.31 -0.47 0.13

HVLA 0.41 0.33 -0.89 0.01
LVHA 0.17 0.35 -1.77 < 0.01
LVLA 2.27 0.44 0.82 0.06

Callback 1.1 0.23 0.09 0.68

Framework 0.57 0.24 -0.55 0.02
Debug 1.11 0.24 0.1 0.67

27

Verification 1.02 0.24 0.02 0.92

Table 9 Linear regression analysis for Experiment with edits strategy

Experiment with Edits

Variables Odds ratio SE ß Wald Sig. (p)

HVHA 0.58 0.28 -0.55 0.05

HVLA 0.53 0.3 -0.64 0.34
LVHA 1.26 0.33 0.23 0.48
LVLA 0.09 0.42 -2.4 < 0.001

Callback 1.15 0.23 0.14 0.53

Framework 0.97 0.23 -0.03 0.9
Debug 1.41 0.23 0.34 0.13

Verification 1.22 0.23 0.19 0.39

The HVHA group, the highly activated positive affect treatment group, was 2.13

times more likely to Ask for help from a colleague. This strategy was generally

unpopular, but the excited, enthusiastic affect correlated to the Ask for help strategy being

ranked higher more frequently.

Table 10 Linear regression analysis for Ask for help strategy

Ask for help

Variables Odds ratio SE ß Wald Sig. (p)

HVHA 2.13 0.29 0.76 0.01
HVLA 1.56 0.31 0.45 0.16
LVHA 1.43 0.33 0.39 0.28

LVLA 1.39 0.36 0.33 0.35

28

Callback 0.92 0.23 0.07 0.75

Framework 0.77 0.23 -0.27 0.25
Debug 0.72 0.22 -0.32 0.15

Verification 0.95 0.23 -0.04 0.83

29

VI THREATS TO VALIDITY

This study is subject to a number of potential threats to internal and external

validity. The survey design and administration could potentially have uncontrolled

factors. Initially, the survey gave each participant the list of strategies to rank for each

question in a deterministic order; in other words, the participant saw the strategies

initially in the same order for every question. However, some participant feedback

revealed that this may have an impact on how the participants were ordering the

strategies, especially so for the bottom ranks. After receiving this participant feedback,

the strategies were randomized. Sixteen responses included this randomization (36%).

Analyzing the data separately does show some correlation between the non-random order

and the rank ascribed to the strategy; however, most of the observations from the overall

dataset remained apparent in the randomized subset.

There are also some inherent threats to validity of administering the survey

remotely via an anonymous survey link. We attempted to mitigate these concerns in a

few ways. First, in order to ensure participants were watching the entirety of the video

clips, we placed a timer in the survey that prevented advancement to the next page for the

duration of the clip. While this ensures that participants cannot immediately skip past the

videos, there were some usability issues, particularly on mobile devices, that made it

30

difficult for some users to advance to the next pages. We also limited each IP address to

one response, to mitigate the potential for retakes.

Another threat to the internal validity of the experiment arise from a lack of

explicit validation for some of the experimental materials. Four of the clips in this

experiment were used to induce the four affect treatments, HVHA, HVLA, LVHA, and

LVLA. Clips used to induce these exact treatments were validated in previous research

[16]. However, two of these clips were in poor video/audio quality, so similar clips were

selected for this experiment. For HVLA, the former clip, “Landscapes”, was a slideshow

of nature landscapes set to soothing classical music. A clip similar to this was found

online and used for our experiment. For HVHA, the former clip was a series of pranks on

strangers, and the replacement was also a prank video. I did not independently validate

these two replacement clips - the latter of which requires particular scrutiny. This

comedic video depicts a series of pranks in which the pranksters eat food loudly in a quiet

library, filming reactions of strangers as they do. We chose to use this clip because of its

similarity to a HVHA treatment used previously [16].

An additional potentially confounding variable is the level of Java experience of

the participant. Participants were not screened for their Java knowledge, so it is unclear

what impact, if any, varying skill levels have on strategy choice.

Another concern with the internal validity of the study is the possibility of

participant fatigue. Due to the same tasks and scenarios being used in different

combinations, and the same eight strategies being provided for every question, the

repetition could have had a confounding impact. This concern is exacerbated by the

31

remote participation, where participants cannot be monitored, and they may be more

likely to get distracted or fatigued.

32

VII DISCUSSION

This study further extends the body of work to understand developer tendencies,

decisions, and styles, with a broad range of applications in recommendation systems, IDE

improvement, and process framework development. Developers tend to change their

strategies based on some of the contextual factors we explored, but there was also a level

of uniformity to the responses (mean std. dev. = 1.4), implying that there are certain

strategies that are preferable, independent of any factors we explored. One possibility is

that there are indeed programming styles, e.g. opportunistic, pragmatic, and systemic. A

strategy like Experiment with edits is more likely to be used by an opportunistic

developer, and opportunistic developers are more common [12][9].

Previous research on affect and decision-making has often identified a

relationship between positive affect and creative thinking [26][24][14][23]. Our results

showed that those with the HVHA treatment – a positive, excited affect – were 2.13 times

more likely to ask for help from a colleague. Participants with either of the two negative

affect treatments tended to use different strategies as well. For the low-valence, high-

arousal affect (LVHA), the Add print statements strategy was 2.42 times more likely to

be used. Negative moods have been shown in the past to correlate to evaluative, rather

than generative (creative) thinking. When adding print statements, a developer already

has some idea of how to proceed, or at least what information they might need to

33

proceed. In other words, using print statements is a more evaluative strategy than a

creative one. This might contribute to its increased usage in the LVHA group. The LVHA

group also experienced a sharp decrease in usage of the Read surrounding code strategy,

an otherwise popular strategy. This strategy falls on the opposite side of the evaluation-

ideation spectrum. A developer may not know what they are looking for, and the first

step of idea generation is to gather information - this developer may start by reading the

surrounding code. However, developers that are less likely to use this strategy may be

less inclined to use such an open-ended strategy. Those in the LVHA group, perhaps,

were more inclined to immediately begin evaluating their initial idea(s) rather than trying

to introduce more.

The other low valence affect also had a significant impact on one strategy choice

in particular. The LVLA group was significantly less likely to Experiment with edits (OR

= 0.09). This lower-energy negative mood thus had a different impact than its higher-

energy counterpart, LVHA. This could be due to the proactive nature of the Experiment

with Edits strategy, making it unappealing to participants with a deactivated mood.

Not only are developers likely to have different strategies depending on their

mood, the efficacy of actually executing those strategies changes [6]. This research could

be used to provide mood-specific suggestions and support for developers, especially if

mood can be measured passively as some research has shown [17].

Of the three contextual factors examined, task had the strongest impact on

strategy selection. The relationship between task and strategy choice is intuitive; Use dev

tools and Add print statements both were more likely to be used for the Debugging task,

34

while Check documentation was much less likely. One of the less popular strategies

overall, Create detailed diagrams, was more likely to be used for the Verification task.

This could be due to the way strategies are often generalized: with respect to tasks rather

than any other contextual factor [7][19][6]. The findings of this research support this

intuition; anticipating the strategies a developer might use in a given context is

significantly easier with knowledge of the task at hand, even without additional context.

Part II of the experiment showed that when given the opportunity to enumerate examples

of tasks or scenarios, participants tended to enumerate scenarios more than tasks.

This research could be further extended by determining ways to identify the type

of task being performed, and subsequently provide contextual support and

recommendations to the developer. Leveraging this insight can benefit the software

engineering practice as a whole, by advising the design of IDE’s and plugins for features

like recommendation systems, autofill and autocomplete, and other assistance

mechanisms. Deepening our understanding of how developers make decisions and why

strategies are chosen also provides greater clarity on impactful factors for further

research, like affect. Furthermore, the strategies developed in the course of this

experiment could be used in future research about developer decision-making.

35

VIII CONCLUSIONS

Our research builds upon the interdisciplinary body of work that examines

developer behaviors and decision-making. Decision-making is performed in a context,

one that can be augmented with recommendations for that context; our research sought to

explore definitions, measurements, and relationships to that context that would be

leverageable to improve developer experience. Understanding the strategies developers

use (as well as the measurable, actionable factors that influence them) is critical as the

amount of developers, technologies, and software increase to meet the demand of the

modern world. As we further this understanding, systems developers use and take part in

can be made more efficient, effective, and tailored to each developer, thus improving

software quality and the software development practice overall.

36

REFERENCES

[1] Ahmed, S. and Bagherzadeh, M. 2018. What do concurrency developers ask about?

a large-scale study using stack overflow. Empirical Software Engineering and
Measurement (ESEM ’18). Association for Computing Machinery. pp. 1-10.

[2] Alaboudi, A. and LaToza, T. 2020. Using Hypotheses as a Debugging Aid. IEEE
Symposium on Visual Languages and Human-Centric Computing (VL/HCC).

[3] Ashoori, M., Bellamy, R. K. E., and Weisz, J. D. 2015. Creating the Mood: Design
for a Cognitive Meeting Room. Human Factors in Computing Systems (CHI EA
’15), Extended Abstracts. Association for Computing Machinery. pp. 2001-2006.

[4] Bartolic, E., 1999. Effects of experimentally-induced emotional states on frontal
lobe cognitive task performance. Neuropsychologia, vol. 37 no. 6, pp.677-683.

[5] Beck, K., Beedle, M., Van Bennekum, A., Cockburn, A., Cunningham, W.,
Fowler, M., Grenning, J., Highsmith, J., Hunt, A., Jeffries, R., et al. 2001.
Manifesto for agile software development.

[6] Bielaczyc, K., Pirolli, P. and Brown, A., 1995. Training in Self-Explanation and
Self-Regulation Strategies: Investigating the Effects of Knowledge Acquisition
Activities on Problem Solving. Cognition and Instruction, vol. 13, no. 2, pp.221-
252.

[7] Cheney, P. H. 1984. Effects of individual characteristics, organizational factors and
task characteristics on computer programmer productivity and job satisfaction.
Information & Management, 7(4), pp. 209-214.

[8] Clapham, M. M. 2001. The effects of affect manipulation and information
exposure on divergent thinking. Creativity Research Journal, vol. 13, no. 3-4, pp.
335–350.

[9] Clarke, S. 2007. “What is an End User Software Engineer?”. Dagstuhl Seminar
Proceedings. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany.

[10] Cordeiro, J., Antunes, B., and Gomes, P. 2012. Context-based recommendation to
support problem solving in software development. Recommendation Systems for
Software Engineering (RSSE). pp. 85-89.

37

[11] Dieste, O., Aranda, A.M., Uyaguari, F., Turhan, B., Tosun, A., Fucci, D., Oivo, M.,
Juristo, N. 2017. Empirical evaluation of the effects of experience on code quality
and programmer productivity: An exploratory study. ESE. pp. 1–86.

[12] Grudin, J. 2006. Why Personas Work: The Psychological Evidence. pp. 642-664.

[13] Hewig, Johannes & Hagemann, Dirk & Seifert, Jan & Gollwitzer, Mario &
Naumann, Ewald & Bartussek, Dieter, 2005. A Revised Film Set for the Induction
of Basic Emotions. Cognition and Emotion, vol. 19.

[14] Isen, A., Johnson, M., Mertz, E. and Robinson, G.. 1985. The influence of positive
affect on the unusualness of word associations. Journal of Personality and Social
Psychology, vol. 48, no. 6, pp. 1413-1426.

[15] Jacobson, M. T.; Matthews, P. 1996. "Generating uniformly distributed random
latin squares". Journal of Combinatorial Designs, vol.4, pp. 405-437.

[16] Khan, I.A., Brinkman, W.P., and Hierons, R. M. 2011. “Do moods affect
programmers’ debug performance?,” Cognition, Technology & Work, vol. 13, no.
4, pp. 245–258.

[17] Khan, I. A. 2016. Towards A Mood Sensitive IDE To Enhance The Performance Of
Programmers. LAP Lambert Academic Publishing.

[18] Krantz J. H., Dalal, R. 2000. Validity of web-based psychological
research. Birnbaum MH (ed) Psychological experiments on
the internet. pp. 35–6

[19] LaToza, T., Arab, M., Loska, D., and Ko, A. J. 2020. Explicit Programming
Strategies.

[20] Leutenmayr, S. and Bry, F. 2011. Liquid decision making: an exploratory study.
Information Integration and Web-based Applications and Services (iiWAS ’11).
Association for Computing Machinery. pp. 391–394.

[21] Maranzato, R.P., Neubert, M., Herculano, P. 2011. Moving back to scrum and
scaling to scrum of scrums in less than one year. Object oriented programming
systems, languages, and applications companion (OOPSLA ‘11). pp. 125-130

[22] Meng, M., Steinhardt, S. and Schubert, A., 2019. How developers use API
documentation. Communication Design Quarterly, vol. 7, no.2, pp. 40-49.

[23] Phillips, L., Bull, R., Adams, E. and Fraser, L.. 2002. Positive mood and executive
function: Evidence from Stroop and fluency tasks. Emotion, vol. 2, no. 1, pp. 12-
22.

[24] Politis, J. and Houtz, J. C. 2015. “Effects of Positive Mood on Generative and

38

Evaluative Thinking in Creative Problem Solving,” SAGE Open, vol. 5, no. 2.

[25] Reips, U. D. 2000. The web experiment method: advantages, disad-
vantages, and solutions. Birnbaum MH (ed) Psychological
experiments on the internet. pp. 89–117

[26] Snowden, P. and Dawson, L. 2011. Creative feelings: The effect of mood on
creative ideation and evaluation. ACM: Creativity and Cognition. pp. 393-394.

[27] Trimmer, P.C., Paul, E. S., Mendl, M. T., McNamara, J. M., and Houston, A. I.
2013. On the Evolution and Optimality of Mood States. Behavioral Sciences. no. 3.
pp. 501-521.

39

BIOGRAPHY

Cassandra Bailey graduated from Battlefield High School, Haymarket, Virginia, in 2011.
She received her Bachelor of Science from George Mason University in 2017. She has
been employed as a software engineer since graduation.

