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ABSTRACT 

DISTRIBUTED INFORMATION FUSION IN COMMUNICATIONS NETWORKS 
WITH AD HOC CONNECTIVITY AND NON-DETERMINISTIC LINK 
CHARACTERISTICS 
 
Todd Martin 
 
George Mason University, 2005 
 
Thesis Director: Dr. Kuo-Chu Chang 

 

This thesis establishes algorithms and analytical methods for implementing and 

evaluating distributed information fusion in networks with non-deterministic 

communications connectivity.  The methods developed in this thesis encompass any 

sequence of fusion events within an arbitrary network resulting from random channel 

characteristics, network delays, and ad hoc networking.  

A distributed fusion approach is developed and proposed as a general solution for 

distributed fusion agents, enabling each agent to operate autonomously and 

collaboratively as network conditions allow.  The resulting Local Fusion Graph method 

enables fusion agents to exchange data on an ad hoc or opportunistic basis for distributed 

fusion.  The method’s decentralized approach is inherently able to overcome difficulties 

experienced by existing distributed fusion methods resulting from messages that are 

dropped, delayed, or received out of order.  The method provides an algorithm that can be 



 

implemented into distributed fusion agents without a priori knowledge of network 

architecture, membership, or communications patterns.  It also provides a graphical 

approach that can be used for analysis as well as simulation model development. 

A stochastic-based fusion formulation is similarly developed and proposed as a 

general solution for distributed estimation and trend analysis.  The method encapsulates 

the effects of non-deterministic behaviors and characteristics into probabilistic factors 

that are integrated into the fusion equations.  The resulting stochastic fusion method 

enables average estimation performance of distributed fusion networks having non-

deterministic characteristics and ad hoc connectivity.  The method also greatly simplifies 

the simulation and analysis performance approximations for distributed fusion by 

providing significant reductions in simulation complexity and computational 

requirements while using non-idealized communications characteristics. 

The two methods are implemented in computer-based models for distributed 

tracking in networks with non-deterministic connectivity.  The results of the computer 

models are used to assess general trends in estimation capabilities with respect to average 

network connectivity.  The analyses also address communications requirements relative 

to other distributed fusion approaches in the context of estimation accuracy. 

The results of this thesis are the ability to implement, model, and assess 

distributed information fusion in arbitrary communications networks with realistic 

communications characterizations.  The solutions proposed in this thesis demonstrate 

increased estimation capabilities under non-ideal networking conditions that are 

characteristic of wireless mobile networking environments. 
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1 INTRODUCTION 

Distributed information and data fusion provide core capabilities to numerous 

applications such as robotics, inference and reasoning, situational awareness, medical 

diagnostics, navigation, and tracking.  The increasing capabilities and ubiquity of 

computing technologies and data networks continue to advance information exploitation 

abilities for combining data from multiple remote sources to produce increased value.  In 

particular, information fusion is a key enabler for the United States Department of 

Defense (US DoD) network-centric Command, Control, Communications and 

Intelligence (C3I) capabilities that are under development [1]. 

The DoD Network Centric Warfare (NCW) concept combines the operational 

aspects of distributed operations and information processing with emerging networking 

and communications technologies [2-5].  NCW utilizes common situational awareness 

that is developed by integrating shared information across geographically-dispersed 

forces, sensors, platforms, and decision aids to achieve intended objectives [3,6].  The 

concept aims to utilize every entity – whether a solder, weapon, or satellite – as an 

information source and simultaneously decrease information volume via local processing 

of the data sources to achieve actionable results.  These results can then be passed 

throughout the network to other entities for which the information is relevant [3]. 
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Because of the high degree of mobility and highly-distributed nature of tactical 

operations, most future military information fusion applications will be hosted on 

wireless tactical networks.  While all communications networks are inherently 

probabilistic in nature, mobile wireless tactical networks rarely provide the same degree 

of connectivity as wired ones.  For wireless networks, signal propagation becomes a 

primary factor in determining network connectivity.  Signal propagation is affected by a 

number of random processes including signal attenuation, deflection, and fading as well 

as unwanted noise from sources causing intentional and unintentional interference [7-10].  

The wireless signal propagation effects are combined with network behaviors that are 

characterized by stochastic concepts such as delay and queuing theory [11].   

In addition to these stochastic factors, mobile wireless tactical networks must 

contend with non-deterministic factors – and perhaps non-predictable factors – that arise 

from implementation.  For many of the mobile tactical platforms, communications 

capabilities are supporting functions that enable the primary operations of the platform.  

As such, communications capabilities are ideally determined by an organization’s 

operations and will not be the primary planning factor or constraining capability.  Thus 

wireless networks and their applications must be adaptive to the inherent uncertainty that 

results from operational implementations.  This added degree of uncertainty is especially 

pronounced for ground-based communications, which must adapt to the combined effects 

of mobility, propagation limitations, and terrain.  Of particular note are communications 

conditions in urban operations where buildings and background noise are significant 

nuisances for wireless communications [12]. 
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Reliable communications for such uncertain military and commercial applications 

environments are being address via a number of communications and networking 

technology development areas.  These efforts seek to eliminate RF spectrum, network 

functionality, network disruptions, and dynamic mobility as fundamental constraints on 

tactical wireless communications capabilities [13-26]. The trend is therefore away from 

highly robust but inflexible communications systems to highly-tolerant and adaptive 

networks of flexible communications systems [27].  Rather than engineer radios and 

networks that produce highly-reliable connectivity but constrain operational 

implementations, new technologies are creating the ability to operate in the presence of 

the frequent disruptions and uncertainty created by unpredictable operational 

implementations. 

Chief among these technologies are those under development for enabling mobile 

ad hoc networking (MANET).  A number of recent demonstrations and simulation 

studies provide valuable insight into future military tactical MANET network 

characteristics.  The first of these studies is an assessment of the Defense Advanced 

Research Projects Agency (DARPA) Small Unit Operations Situational Awareness 

System (SUO SAS) Program.  The SUO SAS Program developed MANET-based 

technologies that furthered the ability to establish reliable and flexible communications in 

restrictive tactical environments [17,19,21-23].  Program demonstration results reported 

successful achievement of the program’s goals for voice, data, and geolocation 

capabilities, but also revealed average network connectivity levels ranging from 73% to 

81% in the test environment [17]. 
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Another demonstration of MANET capabilities is found in the DARPA Future 

Combat System (FCS) scalable mobile network demonstrations [26].  Like the SUO SAS 

demonstrations, the FCS demonstration focused on the assessment of communications 

connectivity, quality of service, and robustness of a military MANET in an operational 

environment that was representative of realistic tactical implementations.  The 

demonstration results presented in Table 1 and Figure 1 show that message delivery rates 

(MDR) in military tactical MANETS connectivity fluctuate widely with time and rarely 

provide communications nodes with full connectivity.  Subnets with shorter link ranges 

fared better than longer-range inter-subnet connections but still experienced significant 

network disruptions.  In general, the rapid fluctuations in network connectivity are 

attributed to the confluence of factors such as the relative mobility of nodes, 

communications range, propagation changes, and terrain masking which are not generally 

predictable [26]. 

Table 1: Message Delivery Rate Statistics Summary for the FCS Scalable Mobile 

Network Demonstration [26]. 

Network Type Max. MDR Min. MDR Avg. MDR MDR Std. Dev. 

Intra-Subnet 100% 69% 95% 11 
Inter-Subnet 100% 0% 68% 25 
Total Network 96% 74% 85% 8 
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Figure 1: Message Delivery Rates vs. Time for the FCS Scalable Mobile Network 

Demonstration [26]. 

Comparable results are found in simulation-based studies of MANET capabilities.  

In simulations performed for [28], the FCS demonstration data was used as a basis for 

examining the performance of various network protocols in the FCS MANET 

environment.  Average packet delivery success rates range from 55% to 93% using a 

range of networking protocols with delivery times ranging across three orders of 

magnitude from 5 msec to over 10 s.  The study demonstrated a high variability of 

performance across communications nodes in the scenario: some nodes experienced 90% 

message loss while others maintained near-perfect connectivity.  With similar 

performance results for each of the protocols examined, the unpredictable variability is 
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once again attributed to the combination of in situ conditions including range, 

propagation, and line-of-site with other nodes. 

The results of the FCS studies are consistent with those presented in [29].  This 

study simulated MANET operations in a military tactical environment, and produced 

results showing message delivery rates of 79% to 97% for voice-based traffic and 81% to 

91% for IP-based traffic.  Of particular note is that the model did not implement 

transmission security (TRANSEC), network security (NETSEC), or communications 

security (COMSEC) elements [29].  The associated overheads for these security features 

would create additional delays and perhaps further reduced delivery rates. 

Despite the stark network connectivity achievable by state-of-the-art MANET 

technologies, each of the referenced studies demonstrated the ability to run various 

distributed applications across the networks [26,28,29].  These applications were 

designed to handle the frequent disruptions and delays experienced in tactical MANET 

environments.  Had they been designed otherwise, they surely would not have been able 

to function. 

Given the results of these programs and studies, it is clear that distributed 

information fusion applications hosted on these networks must be able to operate in the 

presence of significant and non-deterministic disruptions and delays.  Maintaining fusion 

capabilities in the presence of disruptions and delays, however, still remains a challenge 

[30,31].  Furthermore, the inclusion of non-ideal networking conditions is largely absent 

from core information fusion texts [32-35].  The texts will occasionally acknowledge 

uncertainty in distributed fusion communications, but the formulations assume a priori 
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knowledge of communications architectures and certainty of fusion and communications 

events.  As such these fusion methods do not adequately address the uncertain nature of 

information fusion in wireless networks. 

Thus there is a need to develop a general approach to distributed information 

fusion in networks with non-deterministic communications characteristics that are 

unknown a priori.  The method must be valid for networks with delays and disruptions 

brought about by a number of different factors such as mobility, dynamic membership of 

networks, message delays, dynamic routing, and realistic communications channel 

characteristics. 

The following chapters develop and evaluate two distributed fusion methods that 

incorporate the uncertainties introduced by wireless networking delays, disruptions, and 

uncertain connectivity.  Chapter 2 surveys existing distributed fusion approaches and 

develops a distributed fusion method that can be directly implemented in distributed 

fusion agents connected by any arbitrary communications network.  Chapter 3 describes 

the incorporation of the resulting algorithms into a computer-based model and presents an 

analysis of simulation results.  Chapter 4 develops a stochastic-based distributed fusion 

formulation that simplifies analyses of average estimation capabilities.  A simplified form 

is developed for ad hoc networks and the results of a computer-based implementation are  

analyzed in light of the results from Chapter 3. 
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2 DISTRIBUTED FUSION ALGORITHM FOR NETWORKS WITH NON-

DETERMINISTIC CONNECTIVITY 

The fundamental purpose of this chapter is to develop the essential concepts and 

algorithms that enable fusion agents to operate in a distributed manner with ad hoc 

interactions and non-deterministic communications channels.  These algorithms do not 

require a priori knowledge of communications patterns or data flow, nor do they require a 

priori knowledge of fusion agent interactions and fusion events.  They also seek to limit 

the amount of data communicated between agents as well as the processing required of 

each agent.  The resulting algorithms demonstrate consistency with known information 

fusion fundamentals and known formulations for deterministic connectivity. 

The discussion begins with a description of the fusion fundamentals that are 

foundational to the approach that is derived herein, followed by an assessment of existing 

approaches to distributed fusion in the presence of imperfect communications.  A 

distributed fusion methodology that is both analytically tractable and can be readily 

implemented in distributed fusion agents is derived and proposed as a general solution for 

distributed fusion systems.  The chapter closes out with a discussion of observations and 

considerations pertaining to the proposed solution and leads into the simulation and 

analysis presented in the next chapter. 
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2.1 Relevant Fusion Fundamentals 

The theoretic fundamentals of distributed information fusion are well documented 

and have been studied in depth.  Of particular significance to the work presented here are 

[36-41].  The theories developed in those works are independent of information flow 

patterns, including non-deterministic patterns.  It is noted, however, that practical 

applications of these theoretical results to non-deterministic information flows has 

remained a challenge.  The need to identify and remove common information from the 

data sets to be fused while minimizing the amount of data exchanged between agents is 

the primary difficulty.   

The basic fusion process as described in [36] follows from set theory, where the 

combination of n event probabilities Φ(Ii) can be represented as: 

∑
=
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ji IIS ,…, ( )nn IIIS K∩∩Φ= 21  [42-43].  The alternating addition and 

subtraction of joint probabilities from Equation (1) removes conditional dependencies 

from the data sets, which is in the form of common information.  In [36] and [37], the 

application of this elementary property to the fusion of linear Gaussian state estimate and 

covariance ( )(ˆ kx  and P(k), respectively) at time k gives the following fusion equations: 
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where the following conventions are used: 

)(ˆ kjx  and Pj(k) are the fused state (vector) estimate and covariance (matrix) for 

agent j at time k; 

)|(ˆ kkix  and Pi(k|k) are the local state estimate and covariance for agent i at time k; 

)(kjx  and )(kjP  are the time-updated state estimate and covariance from prior times 

that are shared among the various combinations of n information sets being fused 

at time k by agent j. 

While the removal of duplicative information is straightforward in the theoretical 

formulation, identification of the duplicative information for distributed estimation 

systems can be difficult in arbitrary implementations.  The difficulty is due to the need to 

know the values of the data sets as well as their interrelationships resulting from past 

fusion events. 

The Information Graph technique presented in [36,37] provides an analytical tool 

for identifying duplicative information in distributed estimation systems.  The approach is 

a symbolic representation of the collection, propagation, and fusing of data among a set 

of fusion agents.  An example of an Information Graph is shown in Figure 2, where a 

cyclical communications pattern is demonstrated.  Each numbered row of symbols 
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represents the events of a given agent, where squares are sensing events, solid circles are 

transmission events, and open circles are fusion events.  The hexagonal symbols 

represent the state of the observed object, and the horizontal sequencing of symbols 

represents time progression.  Within each time step, each agent may perform time 

updates of estimates, receive sensor data, perform measurement updates of estimates, 

transmit the resulting local estimate to other agents, and fuse estimates received from 

other agents. 

k1 k2 k3

1

2

3

k4

Local Sensor Measurement Data Transmission

Data Reception & Fusion

S1 S2 S3 S4

St Observed Object State

k1 k2 k3

1

2

3

k4

Local Sensor Measurement Data Transmission

Data Reception & Fusion

S1 S2 S3 S4

St Observed Object State  

Figure 2: Information Graph of Cyclical Communications in a Distributed 

Estimation Network of Three Fusion Agents [36,37]. 

Common information is found by recursively tracing information flow paths in 

reverse from the fusion node of interest and locating nodes in the graph where two or 
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more branches of these paths intersect.  When common a node is found, the search for 

common elements terminates at that node while searches may continue along other 

branches that do not intersect at the common node.  The process continues until the 

search paths terminate at common nodes or the time origin of the graph has been reached 

[36,37].  Representing the transmission nodes as a set of agent-time pairs given as 

(agent_id, time), the common information for agents 1 and 2 at time k4 in Figure 2 is the 

set {(1,k2), (2,k3)}.  Applying the set theoretic formulation in Equation 1: 

( ) ( )
( ) ( ) ( )),(),(),(),(

),(),()(

442441442441

44244141

kkIkkIkkIkkI
kkIkkIkI

∩Φ−Φ+Φ=
∪Φ=Φ

. (4) 

From the example, the common elements are represented as: 

( ) ( )
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332221332221

332221442441

kk

k

kkIkkIkkIkkI

kkIkkIkkIkkI

∩Φ−Φ+Φ=

∪Φ=∩Φ
 (5) 

where the subscripts k3 for the first term and k4 for the entire expression indicate time-

update operations.  The update of the information at (2,k2) is performed so that it can be 

combined with (1,k3), and the update of the entire expression must be performed such that 

the prior terms are at the same time reference as the two original information sets being 

fused.   

The algorithm for properly translating prior sets is straightforward for single 

common information sets but is more complex for multiple common information sets, 

particularly if the sets have dissimilar time references.  Thus the derivation is presented in 

Appendix A and the results are summarized here: 
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1) Single Common Prior: Valuation is found through the recursive application of the 

transition function.  This function is given as the prediction function for estimation in 

linear dynamic systems. 

2) Multiple Common Priors with Same Reference Frame:  The common prior sets are 

first fused at their originating reference then recursively updated to the current 

reference frame. 

3) Multiple Common Priors with Different Reference Frames:  The common prior sets 

are translated to the reference frame of the most recent set and then fused before 

being recursively updated to the current fusion reference frame. 

Thus information sets are fused and time-updated according to their order and pedigree of 

occurrence in the iterative equation that results from identifying prior information.  As an 

example, consider the iterative set of equations for fusing three arbitrary covariance 

matrices is given by: 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ){ } ( )321323121

321

3

1

IIIIIIIII

IIIII
i

i

∩∩Φ+∩Φ+∩Φ+∩Φ

−Φ+Φ+Φ=Φ=Φ
=
U  (6) 

Proper fusion requires that the time indices for each set or term in Equation (6) are 

consistent with each other.  Likewise, the time indices of the elements within a given 

conjunctive term must be consistent before they can be fused to produce the conjunctive 

result.  Thus the elements of )...( nji III ∩∩Φ  must all have identical time indices 

before they can be fused. 
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Thus returning to the example and Equation (5), the common information search 

process must be performed for {(1,k2), (2,k3)} to determine if they contain shared 

information.  Conducting this search produces the set {(1,k1), (2,k1)} giving the following 

result: 

( ) ( )
( ) ( ) ( ))(),(),(

),(),(),(),(

11112111

112111332221

kIkkIkkI
kkIkkIkkIkkI

Φ=Φ+Φ=
∪Φ=∩Φ

 (7) 

By recognizing that ( )),(),( 112111 kkIkkI ∪Φ  is simply the fused result for agent 1 at time 

k1, the final relationship becomes: 
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where the subscript k4 applied to the second term (i.e. the common information from prior 

time steps) indicates a time update of the associated parenthetic results.  Applying the 

fusion Equations (2) and (3) for Gaussian state estimation produces the following 

solution for fused result for agent 1 at time k4: 
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From this analytical perspective, the Information Graph provides the ability to 

identify common information elements and produce the needed formulations to ensure 

that the fused data contains no duplicative information.  Furthermore, the Information 

Graph can be used with any arbitrary distributed fusion process.  The realization of the 

approach in actual networks of distributed fusion nodes, however, is prohibitive because 

the Information Graph method is a centralized process that builds upon a global or 

omniscient view of events within the network rather than upon the perspective of the 

local agents.  Individual fusion agents do not typically have the global perspective 

required for the Information Graph, and obtaining it from neighboring agents is costly in 

terms of communications resources. 

2.2 Existing Distributed Information Fusion Methods 

Two recent approaches have been proposed for allowing distributed agents to 

identify and remove common information in a communications-efficient manner. The 

works, however, focus on removing dependencies due to measurement correlations rather 

than due to correlations in communications histories.  While the efforts are not 

comprehensive in scope, they do provide insight regarding information dependencies in 

distributed fusion. 

The first approach presented in [44,45] utilizes a five-step process for filtering out 

duplicate information from remote estimates sent by other fusion agents.  The approach 

combines the local measurement with measurements extracted from the incoming 

estimates using the technique described in [46]: 
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T
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where all model parameters at times k and k-1 are assumed to be known at the fusing 

agent.  Once all the measurements from the other network participants are known, the 

agent calculates the fused estimate and propagates it back into the network.  The 

technique is presented in the context of a fully-connected and decentralize sensor network 

with potentially random delays in message delivery between agents.  This method is 

extended in [47], which utilizes evidence propagation techniques of Bayesian Networks 

as means for identifying common measurements data and calculating estimates within a 

fusion agent. 

While the techniques in [44,45,47] address some issues associated with imperfect 

and non-deterministic communications, they are not broadly applicable to arbitrary 

network connectivity.3ee  First and foremost, the method is limited to fully connected 

networks comprising a known set of fusion agents.  Without knowing the participants in 

the network, a fusion agent is unable to fully identify and remove duplicate information 

from the estimation calculation.  Second, the method does not address the concern of 

missed messages from other agents.  As discussed previously, networks of wireless 

sensors and fusion agents will experience message losses due to link reliability.  In 

addition to these two fundamental issues, other concerns affecting performance and scope 

of applicability exist but are not fully known: 

1) The method may not be able to process estimates in networks with highly-variable 

and unpredictable message delay times.  Since they must wait until all measurements 
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at a given time step have been found, fusion agents may need to sacrifice accuracy 

and fuse an incomplete measurements set or accept long time windows between 

fusion events.   

2) The method may not be applicable to networks comprising a heterogeneous collection 

of fusion agents with very different rates of estimation transmission.  Similarly, the 

differing model parameters and performance capabilities of the agents must be known 

a priori. 

3) The method cannot process data received out of order if it has already been fused into 

the estimate at a prior time [45].  While out-of-order data is treated as an exception in 

the discussion, this type of data delivery is likely to be very common in MANETS 

[15-23,26,48]. 

A second distributed fusion method for the removal of data dependencies is 

presented in [39].  Like [47], the approach utilizes Bayesian Networks to establish 

independence in measurements data.  It clearly delineates the removal of dependencies 

due to communications histories from dependencies due to non-deterministic state and 

measurement behaviors.  The Information Graph is presented as a solution for managing 

communications-related data dependencies, and Bayesian Networks are developed as a 

means for managing measurements-related data dependencies. While use of the 

Information Graph for information management in distributed networks is proposed on a 

conceptual level, there is no development of its application in an tactical fashion beyond 

[36,37].  In both sources, the architecture-independent derivation ends with a presentation 

the fusion equations given by Equations (2) and (3), and then transitions to discussions of 
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fixed communications structures among a set of known agents as implementation 

examples.  Furthermore, the communications channels continue to be modeled with 

assured message delivery and no delay. 

Given the survey results of efforts that address correlation between fusion data in 

distributed fusion networks, it is clear that an approach has yet to be fully developed that 

enables distributed fusion in networks with unpredictable communications patters.  As 

such, reliable distributed information fusion in the presence of non-deterministic 

communications connectivity remains a challenge [30,31].  The Information Graph 

approach provides a theoretical basis for identifying and removing data correlations due 

to communications histories, but it has not been demonstrated beyond deterministic 

communications patterns.  The efforts presented in [44,45,47] do address delays in 

communications networks, but the technique appears to break down in cases where data 

is received out of order.  Furthermore, its applicability to wireless MANET-type 

networks is doubtful due to highly-dynamic network behaviors, rapidly-varying channel 

characteristics, and changing membership of MANETs.  

2.3 Overview of the Local Fusion Graph Method 

As discussed in the previous section, the goal of this effort is to develop a 

distributed fusion method that is able to remove dependencies in estimation data for any 

arbitrary communications pattern.  The method must be applicable to distributed fusion in 

networks with non-deterministic characteristics that are unknown a priori.  The 

uncertainty may be brought about by a number of different factors such as agent mobility, 

network dynamics, and communications channel characteristics.  The method must also 
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show that it holds to the theoretical fusion results and is consistent with results derived in 

deterministic cases.  

The intent in developing the method – termed “Local Fusion Graph” method – is 

to impose a minimal number of assumptions and restrictions.  It will be shown that the 

Local Fusion Graph method is applicable to any flow of information and associated 

fusion techniques.  Thus it can be applied to networked agents with arbitrary connectivity 

and message delays as well as random or non-synchronous local sensing and 

communication rates.  The method adheres foremost to the fundamental principles 

represented in Equations (1) through (3) and makes no known assumptions that restrict 

the extent of its applicability within the realm of distributed fusion networks. 

As previously mentioned, one key principle is that the algorithms must be 

applicable to individual fusion agents.  As a result, each fusion agent organizes the 

history of fusion events and associated information into the form of a graph containing 

sets of interconnected nodes.  Similar to the Information Graph, the nodes of the graph 

represent information for a given agent-time pair.  During a fusion event, the local agent 

receives the essential data from other agents, and grafts unique information into the local 

fusion graph, and identifies common information to be incorporated into the fusion 

equations.  The result is a unique fusion graph for each agent containing non-duplicative 

information. 

The algorithms for performing these actions are derived in the next section.  An 

abbreviated derivation is also presented in [49], which provides a very early precursor of 

the Local Fusion Graph method.  The algorithms described in [49], however, are used for 
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building fusion trees rather than fusion graphs.  While the general algorithms are 

consistent with those presented here the graphical representation has been refined to more 

closely represent the underlying algorithms and data relationships.  Additionally, the 

derivation presented here is expanded to address a wider range of considerations and 

more fully represent the capabilities of the technique. 

2.4 Derivation of the Local Fusion Graph Method 

The derivation and explanation of how the local fusion graphs are developed and 

maintained are best done using an example.  Consider the network of three distributed 

fusion agents shown in Figure 3.  The communications links connecting them each 

comprise two characteristics of interest:  

1) Message delivery or link probability, which is given as the probability that a message 

is transmitted by one agent and is received by another.  This probability can be a 

function of mobility, physical channel characteristics such as noise and fading, 

receiver characteristics, and network performance [7-9,11,50]. 

2) Message delay, which is given as the elapsed time between message transmission at 

the source agent and reception at the receiving agent.  The theoretical and practical 

foundations of network delay problems that result from factors such as network 

congestion, routing, and link quality are also well developed [11]. 

Each of these factors is characterized by uncertainties that may change as a function of 

time and may be unique to each transmitter-receiver pair. 
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Figure 3: Example Network of Distributed Fusion Agents. 

To generate a sample scenario for the derivation, the series of communications 

events across four consecutive time steps shown in Figure 4 is presented.  The links 

shown between nodes are successfully achieved with some probability of success and 

delay.  The solid links indicate successful message transmission and reception within the 

same time step, while dashed links indicate that the message transmission and reception 

occur in different time steps as indicated by the associated labels.  The absence of a link 

indicates data was either not sent or that data was sent but not received. 
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Figure 4: Example Communications Events across Four Time Steps. 
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Converting the communication events of the four time steps into an Information 

Graph produces Figure 5.  From this view, several features can be seen.  First, successful 

communication events occur in purely random patterns for this example.  Second, some 

messages are delayed across several time steps, specifically from (2,k2) to (1,k3) and 

(3,k4).  Finally, some messages are delivered out of order due to time-varying delays 

between agents 2 and 3, where the message from (2,k3) arrives before the message from 

(2,k2) at agent 3. 

k1 k2 k3

1

2

3

k4

S1 S2 S3 S4

Local Sensor Measurement Data Transmission

Data Reception & FusionSt Observed Object State

k1 k2 k3

1

2

3

k4

S1 S2 S3 S4

Local Sensor Measurement Data Transmission

Data Reception & FusionSt Observed Object State  

Figure 5: Example Information Graph across Four Time Steps. 

Before beginning the derivation, an explanation of the notational conventions and 

simplifying assumptions used throughout this process is in order.  While there are many 

similarities to those used in [36,37] for the Information Graph, some modifications and 

clarifications are made to keep the Local Fusion Graph representation compact.  While all 



 23

the nodes of an information graph can be represented in the local fusion graphs, only a 

single node representing each local estimate is used.  It will be demonstrated that agents 

only need to exchange local estimates and their interrelationships to maintain distributed 

fusion capabilities without loss of information.  As discussed in [39], measurements may 

be conditionally dependent due to state variables.  In such cases, the fusion graphs should 

contain measurement nodes as part of the representation.  To maintain clarity in the 

derivation, however, measurements nodes will be excluded at this juncture but will be 

addressed later. 

The key assumption of the approach developed here is that data exchanges 

between agents include sets of data nodes and pointers.  The nodes contain the data of 

interest (e.g., local estimates) generated locally by a fusion agent, and the pointers 

connect the nodes to form a network, thus indicating the pedigree of the data.  In wireless 

networks, the size of data communications is a large concern, so transmitting the 

minimum data set is desired.  The factors influencing communications protocols and their 

impacts on communications requirements are presented in Section 3.3.  For the purposes 

of the derivation, full data sets will be used to demonstrate how they are combined. 

To begin the derivation, a network representation of the communications (or 

fusion) events at time k1 is created for each of the fusion agents based on Figure 4.  Each 

agent fuses the incoming data with its local information and stores the data in memory 

along with data indicating the sending agent and time references as shown in Figure 6.  

Note that the subscript “f” is used in the figures to indicate fused data and is only a 

temporary node in the graphs, while the remaining nodes depict local data. 
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Figure 6: Local Fusion Graphs for Time k1. 

At time k2, each agent uses the new fused information from k1 to calculate the 

local data based on time updates and measurements.  The agents then exchange data in 

accordance with the events shown in Figure 4.  At this time step, agent 2 sends data to 

agents 1 and 3, but the data delivery is delayed beyond the current time step.  Agent 2 

does not receive any incoming data and thus performs no fusion operations at time k2.  

Agent 1, however, receives data from agent 3 and fuses it with its local information.  

Before the data can be fused, agent 1 must identify any shared information contained in 

the data sets.  As shown in Figure 7, the two sets both contain data for (2,k1), which is the 

data associated with node 2 at time k1.  The time-updated value of this data must be 

removed as in Equation (1) to create a complete and non-duplicative data set: 

( ) ( )
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2
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)()|()|(
)|()|()(

112223221
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Φ−Φ+Φ=

Φ=Φ U

 (12) 

Agent 1 then adds the new information to its local fusion network, providing the agent 

with an understanding of its data pedigree for use in future fusion events.  Since agent 3 

receives data from agent 1 at this time step, the above process is repeated at agent 3, 

resulting in the final fusion nets at time k2 for each agent as shown in Figure 8. 
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Figure 7: Fusion Event for Agent 1 at Time k2. 

1,2

1,1 3,1

1,2f

3,2

2,1

1,2

1,1 3,1

1,2f

3,2

2,1 3,1

2,2

2,1

2,2f

3,1

2,2

2,1

2,2f

3,12,1

1,2

1,1

3,2f

3,2

3,12,1

1,2

1,1

3,2f

3,2

 

Figure 8: Local Fusion Graphs for Time k2. 

At time k3, agent 1 receives the delayed data set associated with (2,k2).  As shown 

in Figure 9, the common information in the two data sets is {(2,k1),(3,k1)}.  In addition to 

performing a time-update operation on the common information (2,k1)U (3,k1), the agent 

must also perform the extra step of time-updating the delayed data (2,k2) from k2 to k3 

before in can be fused with (1,k3), resulting in the following fusion equation: 

( )( ) ( ) ( ) ( ) ( )[ ]
33

)|()|()|()|( 11311222233131 kk kkIkkIkkIkkIkI Φ+Φ−Φ+Φ=Φ  (13) 

And since it has been shown in the previous time step and from Figure 9 that: 
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( ) ( ) ( ))()|()|( 22113112 kIkkIkkI Φ=Φ+Φ  (14) 

Equation (13) becomes: 
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Figure 9: Common Information for (1,k3)U (2,k2). 

Agent 2 receives data from agents 1 and 3 at k3.  By the set theory described in 

Equation (1), common data must be identified in all possible combinations of data sets: 

{(1,k3),(2,k3)}, {(1,k3),(3,k3)}, {(2,k3),(3,k3)}, and {(1,k3),(2,k3),(3,k3)}.  The common 

information sets from the three pairwise combinations are shown in Figure 10.  The 

combinations (1,k3)U (2,k3) and (2,k3)U (3,k3) both produce the same common sets.  The 

combination (1,k3)U (3,k3), however, has a more complex solution because the common 

sets {(1,k2),(3,k2)} have prior information that must also be searched. This secondary 

search yields (2,k1) as shown in the bottom of Figure 10.  In Figure 11, the joint common 

information across all three data sets is shown to be {(2,k1),(3,k1)}.  The resulting fusion 

equation is given as: 
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Since identical data sets are fused at agents 2 and 3, ( ))( 33 kIΦ  is given as Equation (16). 
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Figure 10: Common Information for (1,k3)U (2,k3), (2,k3)U (3,k3), and (1,k3)U (3,k3). 
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Figure 11: Common Information for (1,k3)U (2,k3)U (3,k3). 
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Figure 12: Local Fusion Graphs for Time k3. 

For time k4, agent 1 receives data associated with (2,k4) and (3,k4).  The shared 

data among (1,k4) and (2,k4) is shown in Figure 13 to be {(1,k3),(2,k2)} with the 

subsequent common information (1,k3)I (2,k2) shown to be {(2,k1),(3,k1)}.  Inspection of 

the history associated with (3,k4) shows a history identical to (2,k4).  Thus, the same 

results are found for (1,k4)I (3,k4) as with (1,k4)I (2,k4).  Additionally, the shared 

information (2,k4)I (3,k4) is {(1,k3),(2,k3),(3,k3)}, which is equivalent to the fused results 
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for agents 2 and 3 at k3.  Referring again to Figure 13, the common information shared 

among all three data sets to be fused is found to be {(1,k3),(2,k2)} with {(2,k1),(3,k1)} as 

the subsequent common information (1,k3)I (2,k2).  Thus the resulting equation for agent 

1 is given as: 
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Figure 13: Common Information for (1,k4)U (2,k4). 
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Agent 2 receives data only from agent 3 at k4.  From the prior analysis for agent 1, 

it is easily shown that: 

( ) ( ) ( ) ( )
( ) ( ) ( ))|()|()|(

)()|()|()(

342443442

43,244344242

kkIkkIkkI
kIkkIkkIkI
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Φ−Φ+Φ=Φ
 (18) 

Agent 3 receives data from agent 2 at the current time step, but Figure 4 and 

Figure 5 show that it also receives the delayed data set (2,k2).  Figure 14 provides an 

analysis of the common information sets for this scenario.  It is shown that (2,k2) is 

common among all the data sets, and (2,k4)I (3,k4) has been previously found to be 

equivalent the fused results for agents 2 and 3 at k3.  Representing the delayed data with 

the subscript “d” the fusion equation that results is then given as: 
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Combining these results yields: 

( ) ( ) ( ) ( ))|()|()|()( 34344344243 kkIkkIkkIkI Φ−Φ+Φ=Φ  (20) 
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Figure 14: Common Information for (2,k4)U (3,k4) and (2,k4)U (2,k2)U (3,k4). 
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Figure 15: Local Fusion Graphs for Time k4. 
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The process described above for developing the local fusion graphs and using 

them to formulate the fusion equations can be summarized in the following steps [49]: 

1) Select a node from the receiving agent’s local graph starting at the most recent time 

and search the received fusion data to determine if common information exists. 

2) If common information is found: 

• Store the common information for fusion calculations per Equations (2) and (3). 

• Prune any common information (nodes and pointers) from the received data. 

• Remove the ancestral information of the common node from further use in the 

current selection process. 

3) Repeat the selection and search (steps 1 and 2) to find all common elements of the 

two fusion graphs. 

4) Fuse the new information in the incoming data set elements into agent’s local fusion 

graph. 

5) If two or more common nodes were found in the original search, then repeat steps 1-3 

to detect subsequent common elements for each of the node combinations per 

Equation (1).  Recursively continue steps 1-3 until the search terminates at a single 

node or no further common nodes are found. 

6) Apply the sequencing of the common information to Equations (2) and (3) to produce 

the fusion equations. 

The Local Fusion Graph algorithm preserves the data and their relationships with 

each other as required for distributed data fusion.  As previously mentioned, the example 
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used for the derivation in does not represent measurement dependencies resulting from 

the observed object’s state in the local fusion graphs.  To maintain clarity in the 

derivation, no measurements dependencies were assumed.  As discussed in [39], 

however, dependencies may exist within the fused estimates due to state model 

representation.  These dependencies are easily incorporated into the Local Fusion Graph 

as shown in Figure 16. 
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Figure 16: Example Local Fusion Graphs with Object State Dependencies. 

From the figure and prior derivation of fusion equations, it is apparent that any 

inter-agent dependencies in the state measurements must be addressed.  Given the 

Information Graph or Local Fusion Graph methods, these dependencies can potentially 

be identified and removed a priori per [39].  Another technique for dependency 



 34

identification in linear estimation systems using Kalman Filter (KF) techniques is by 

deriving the virtual measurement using the technique described in [46].  Thus each agent 

would need to remove the measurements dependencies prior to fusing the estimates using 

the operations presented in the previous section.  While the mathematical operations 

differ between removal of dependencies due to measurements and dependencies due to 

communications, both types of dependencies are found using the same technique for the 

Local Fusion Graph. 

2.5 Local Fusion Graph Summary  

As discussed in the introduction, distributed information fusion implementations 

must address the realistic characteristics of wireless networks.  MANETS add complexity 

to fusion solutions due to the absence of an a priori communications structure.  The non-

deterministic nature of these networks results in uncertain message delivery and out-of-

sequence data.  Distributed fusion techniques found to date, however, are not generally 

applicable to these dynamic communications architectures. 

The Local Fusion Graph approach is proposed here as a general solution to 

distributed fusion.  It makes no a priori assumptions regarding communications 

architectures, network membership, or network connectivity.  Its ability to handle 

arbitrary network connectivity and message delays without a prior knowledge allows 

fusion agents to operate collaboratively as well as independently.  Its foundations in the 

logic of the Information Graph approach [36,37] lend to the pedigree of the technique. 

An analysis of estimation performance using the Local Fusion Graph algorithm is 

presented in the next chapter.  The algorithms are implemented in a computer-based 
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model, and results are analyzed to show consistency with other techniques where 

possible.  Insights into estimation performance in networks with ad hoc connectivity and 

stochastic link characteristics are also discussed along with communications requirements 

for the Local Fusion Graph. 
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3 SIMULATION OF THE LOCAL FUSION GRAPH METHOD AND ANALYSES 

OF RESULTS  

The Local Fusion Graph approach was developed into a computer-based model to 

validate and assess the methodology’s performance and to understand the basic 

characteristics of estimation capabilities in distributed fusion networks with varying 

degrees of average connectivity.  A first-order assessment of data exchange needs is also 

made to understand the communications impacts of the method. 

The performance comparisons are made relative to known solutions in order to 

validate the results of the Local Fusion Graph method.  Because no general solutions are 

available for uncertain network connectivity, broadcast and cyclical communications 

architectures are used for comparison with the Local Fusion Graph under full 

connectivity conditions.  Similarly, stand-alone estimation solutions are used for 

comparison under conditions with no connectivity. 

Distributed fusion characteristics in stochastic networking conditions are explored 

through investigations of estimation capabilities with respect to time and network 

connectivity.  In addition to the broadcast and cyclical architectures that are used for 

validation purposes, an ad hoc architecture is used for estimation performance 

examinations.  The analyses focus on ascertaining general trends in estimation 

performance as evidenced by state estimates, average estimation errors, and estimation 
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covariance.  The analyses are conducted under transient and steady-state estimation 

conditions. 

Because data communications are a major factor in distributed fusion operations, 

the communications requirements of the Local Fusion Graph are explored.  The 

assessments provide insight into the relative impact of network connectivity on data 

exchange requirements among the fusion agents.  The resulting relationship between data 

exchange and estimation performance is also explored.  For comparison purposes, the 

communications requirements and resulting estimation performance of the Local Fusion 

Graph are compared with those of the naïve fusion algorithm. 

The simulation model used for the analysis is described in the next section.  The 

subsequent two sections provide an analysis of the estimation results and 

communications requirements. 

3.1 Model Description 

The Local Fusion Graph algorithm, known solutions, and KF estimation 

formulations were developed in the MATLAB® programming environment.  The 

resulting routines can be applied to any distributed fusion network regardless of 

communications patterns and number of fusion agents.  To complete the model, a 

communications event generator was created to feed the fusion routine and the resulting 

output is applied to a linear KF estimation routine.  The model uses a Monte Carlo 

approach to randomize communications events over a user-defined number of simulation 

runs and determine average outcomes.  A functional block diagram of the resulting 

system is shown in Figure 17. 



 38

Communications 
Event Generator

Scenario
Input 

Parameters

Local Fusion 
Graphs 

Algorithm

Linear KF 
Estimationk=kmax?

New 
Run

?

Local 
Fusion 
Graphs

End
Y N

YN

(Write)

(Read)
(Read)

Start

 

Figure 17: Local Fusion Graph Simulation Model Block Diagram. 

The scenario input parameters define the particular options to be used in the 

scenario.  The scenario parameters include the models and associated parameter values 

that define the true state to be estimated as well as the measurements model for each time 

step in the scenario.  For the results of this study, linear state and measurement models 

used by the estimation routine are the familiar form given as: 

)()()()()1()()( kkkkkkk vGuBxFx ++−=  (21) 

)()()()( kkkk wxHz +=  (22) 

where the notation is as follows: 

x(k): state vector at time k 

F(k): state transition matrix at time k 
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B(k): input control matrix at time k 

u(k): input (or forcing) vector at time k 

G(k): process noise gain matrix at time k 

v(k): process noise vector at time k 

z(k): measurements (or observation) vector at time k 

H(k): measurements (or observation) model at time k 

w(k): measurements noise vector at time k 

For the purposes of the model, the noises are assumed to be zero mean Gaussian, that is 

( ))(,0~)( kNk Qv  and ( ))(,0~)( kNk Rw .   

The communications event generator develops a communications connectivity 

matrix at each simulation time step to determine successful message deliveries between 

each pair of agents.  The module utilizes a comparison between average connectivity 

statistics given for the scenario and a random number generated from a uniform 

distribution function.  The model applies the random draws at each time step to the fusion 

agents according to the assumptions of the communications architecture. 

As previously mentioned, three architectures are modeled.  The basic ad hoc 

architecture modeled here is a point-to-multipoint communication system.  Fusion agents 

in the ad hoc network transmit messages that are intended for one or more other agents in 

the network.  The broadcast network also employs a point-to-multipoint scheme, but 

transmitted messages are intended for all other agents in the scenario.  In the cyclic 

architecture, each fusion agent communicates with only one other agent throughout the 

scenario, thus creating a network as shown in Figure 18. 
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Figure 18:  Cyclic Fusion Network Architecture. 

The communications event generator uses the three basic architectures as 

templates to which it applies random connectivity effects.  For the ad hoc 

communications architecture, a random draw is performed for each possible transmitter-

receiver pair at each time step.  A successful draw signifies that the message is 

successfully delivered from the sending agent to the receiving agent.  The result models a 

multicast transmission scheme where some intended receivers may not receive the 

message due to any number of wireless communications phenomena that affect message 

reception. 

Under the broadcast communications architecture, a random draw is performed 

for each transmitter at each time step.  If the draw indicates a success, then the agent 

transmits a message that is received by all other agents in the scenario.  Otherwise no 

transmission occurs.  The effect is that of a broadcast scheme with an average transmit 

duty cycle and assured delivery given the transmission. 

Because each fusion agent communicates with only one other the cyclic 

communications architecture, the random draw is applied only to the appropriate 
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transmitter-receiver pairs.  In this case, the random draw can be interpreted as either the 

result of propagation effects or an average transmission duty cycle. 

Once the communications event matrix is completed, the fusion routine receives 

the communications matrix for the current time step and builds the local fusion networks 

for each agent.  It does so by combining the each agent’s locally-stored fusion network 

with the fusion networks received from other agents.  The resulting new information is 

stored along with an associated vector containing the common nodes and pointers 

required for constructing the fusion equation.  

The estimation routine is initiated after the Local Fusion Graph routine has 

iterated through the complete time history for each node.  The estimation routine iterates 

through each time step, performing a time-update and measurements update using a KF 

algorithm: 

)()()()()1()()1|(ˆ kkkkkkkk vGuBxFx ++−=−  (23) 

)()()()()1()()1|( kkkkkkkk GQGFPFP ′+′−=−  (24) 

and 

( ))1|(ˆ)()()()1|(ˆ)|(ˆ −−+−= kkkkkkkkk xHzKxx  (25) 

( ) )1|()()()|( −−= kkkkkk PHKIP  (26) 

for: 

[ ] 1)()()1|()()()1|()( −
+−−= kkkkkkkkk TT RHPHHPK  (27) 
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The estimation module then develops the fusion equations for each agent at each time 

step according to Equations (2) and (3) and uses the local estimates from Equations (24) 

and (25) as inputs.  The estimation also performs time-updates on the common prior 

information contained in the data sets being fused.  These time-updated estimates relating 

to common data in the fusion set are incorporated into the fusion algorithm.  The results 

are stored for output to data files as well as a standard set of graphs. 

As a means of comparison, the estimation module also generates covariance and 

state estimates from known formulae for the broadcast and cyclic communications 

architectures [36].  The results of these calculations can be compared to those produced 

by the Local Fusion Graph algorithms under full network connectivity to validate results.  

Similarly, stand-alone (single agent) predictions are generated based on a standard KF 

routine for validation of the Local Fusion Graph algorithms under the condition of no 

network connectivity.  The equations used for fusion in broadcast and cyclical 

communications architectures are covered quite extensively in [36,37], so only the 

resulting formulations used in the model are presented here. 

In the broadcast communications architecture, each agent sends its most recent 

local estimate to every other agent in the network for every time step [36,37].  For time 

k1, no prior common information exists and the fusion equations simplify to the 

following: 

1

1
11

1
1 )|()(

−

=

−
⎥
⎦

⎤
⎢
⎣

⎡
= ∑

n

i
ij kkk PP  (28) 



 43

⎥
⎦

⎤
⎢
⎣

⎡
= ∑

=

−
n

i
iijj kkkkkk

1
1111

1
11 )|(ˆ)|()()(ˆ xPPx  (29) 

For times greater than k1, the common prior information is found to be the prior 

fused estimate, resulting in the following fusion equations [36,37]: 

1

1

1

1

1 )1|()|()(

−

≠
=

−

=

−

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−−= ∑∑

n

ji
i

i

n

i
ij kkkkk PPP  (30) 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−−−= ∑∑

≠
=

−

=

−
n

ji
i

ii

n

i
iijj kkkkkkkkkk

1

1

1

1 )1|(ˆ)1|()|(ˆ)|()()(ˆ xPxPPx  (31) 

In cyclic communications architectures [36,37], each fusion agent sends its local 

estimate to only one other agent creating a singly-connected network as shown in Figure 

18.  For time k1, no priors exist and the formulation is equivalent to Equations (28) and 

(29).  The basic equation for all other times is given by Equations (2) and (3) where the 

prior information terms are time updates of the local estimates per Equations (23) and 

(24).  The prior information terms change for the first few time steps until the pattern is 

complete.  For time k2 the fusion equations are given as1: 

)()()()()|()()|()( 222211121112 2
kkkkkkkkkk jkjj GQGFPFPP ′+′== ++  (32) 

)()()()()|(ˆ)()|(ˆ)( 222211121112 2
kkkkkkkkkk jkjj vGuBxFxx ++== ++  (33) 

                                                 

1 Note that for j=n, the index j+1 refers to the initial index j=1 
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For time k3, the common prior covariance information is given by: 
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where 

( ) 1
222211211
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The common prior state estimate is given by: 
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where 

)()()()()|(ˆ)()|(ˆ 222211211 2
kkkkkkkkk jkj vGuBxFx ++=  

For times greater than k4, the common prior covariance information is given by: 
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where  
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The common prior state estimate is given by: 
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Where the state estimates are updated to the most recent common time k-1 by: 
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The equations for these three architectures as well as the state model form the basis of the 

estimation routines. 

To determine averaged results, multiple simulations of the scenario are conducted 

in a Monte Carlo fashion.  For each Monte Carlo, the randomized communications events 

create new communications event matrices.  Thus each Monte Carlo produces new Local 

Fusion Graphs and estimation results.  The results from all Monte Carlo simulations are 

averaged for graphing and analyses.  Note that the model utilizes the exact same true state 

and measurements results in its calculations for each Monte Carlo.  The state and 

measurements are held constant so that randomized communications events are the only 

factor influencing results between simulation runs.  Thus the impacts of randomized 
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communications events are easier to discern than if they were coupled with other 

randomized factors. Using the same true state and measurements also benefits 

comparisons made with an approximation method presented later in Chapter 4.  The 

following section presents the averaged results produced by Monte Carlo simulations of 

the model under various conditions.   

3.2 Estimation Performance Capabilities for Non-Deterministic Network Connectivity 

The model and assumptions described in the previous section were exercised 

using the scenarios defined by the parameters presented in Table 2.  The parameter values 

are selected to establish a simple model and allow the behavior of estimation for non-

deterministic connectivity to be determined with minimal dependence on the effects of 

scenario complexity. 

Table 2: Parameter Values for Local Fusion Graph Simulations. 

Parameter Value  Parameter Value 
B,F,G,H 1  x(0) 1000+N(0,Q) 

u 0  Monte Carlos 1000 

v, Q N(0,Q), 25  Fusion Agents 3 

w, R N(0,R), 100  k0, kmax 1, 5 

Ptrans(k0), )(ˆ 0trans kx  R, N(0,R)  Message Delay 0 

Pss(k0), )(ˆ 0ss kx  45, x(0)+N(0,45)  Network Connectivity 0, 0.25, 0.5, 0.75, 1 

 

The simulations and analyses are separated into two scenarios, which are 

differentiated by the initial covariance and state estimate provided to the model.  The first 

scenario investigates the simulation results during the transient phase of the estimation 
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process, while the second investigates the results during steady-state estimation.  The 

transient phase is given by the initial state and covariance parameters in Table 2 with the 

subscript “trans,” and is defined as estimation operations that occur while estimates are 

well outside of the achievable limits.  Under these conditions, the estimated state and 

covariance typically converge rapidly toward the theoretically-achievable limits along a 

smooth curve.  The steady-state phase is defined by ongoing estimation within the 

theoretically-achievable state and covariance estimation limits.  Under steady-state 

estimation conditions, state estimates do not necessarily converge in an orderly manner, 

but often fluctuate within a small range as a result of small changes resulting from system 

and measurement noises. 

Each set of simulations encompasses 1000 Monte Carlo runs, and the data 

presented are the averages for those results.  The three communications architectures 

discussed previously – namely ad hoc, broadcast, and cyclical architectures – are 

modeled and analyzed.  Each Monte Carlo simulates five time steps for the selected 

architecture.  If run for greater than five time steps, the transient estimation scenario 

begins to covert into steady-state conditions.  The steady-state estimation scenario thus 

uses five time steps to maintain consistency for comparing of the results produced under 

the two scenarios. 

The following two sections present the results of the two scenarios.  The first 

section presents the results obtained under transient estimation conditions.  The primary 

elements of interest in the analyses are the characteristic trends and performance of state 
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estimations and covariance.  The state estimates are presented in terms of absolute 

magnitude and are further characterized by the average RMS error defined here as [51]: 

( )∑
=

−=
M

m
RMS xx

M
e

1

2ˆ1~  (39) 

The second section presents the results obtained under steady-state estimation conditions.  

The results are assessed in a similar manner, and comparisons are made with the results 

obtained under transient estimation conditions to identify trends resulting from network 

connectivity variations. 

3.2.1 Analysis of Local Fusion Graphs under Transient Estimation Conditions 

The simulation of transient estimation conditions is designed to provide an 

assessment of distributed fusion characteristics in networks with various degrees of 

connectivity while the estimates are significantly outside the bounds of achievable 

accuracy.  Under the transition conditions modeled here, the average estimates typically 

converge on the actual state at significant rates in a constant and consistent manner.  As 

the estimates become closer to achievable limits, the rate of convergence decreases and 

eventually reaches a steady-state. 

Figure 19 presents a snapshot of covariance versus time for a single simulation 

run of a network operating in ad hoc mode with average network connectivity varying 

from 0% to 100% in 25% increments.  The data demonstrates the familiar non-linear 

reduction in covariance at 0% and 100% connectivity, with a wide fluctuation in the 

characteristics of the data associated with the other three connectivity levels.  The 
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randomness of the 25%, 50%, and 75% connectivity cases is the direct result of uncertain 

network connectivity over time.  It is noted from the graph that the estimates from these 

three cases are bounded by the 0% and 100% connectivity cases.  That result fits with the 

observation that the covariance of a group of agents should be no greater than the 

covariance of a single node, nor should the covariance ever be less than that obtained for 

a fully-connected network of agents for KF-based estimation. 
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Figure 19: Sample Covariance vs. Time for Various Network Connectivity Values in an 

Ad Hoc Network (Single Simulation Run). 

While the covariance for individual simulation runs shows arbitrary 

characteristics due to random network communication events, the covariance data 

averaged across the 1000 simulation runs as shown in Figure 20 through Figure 22 

demonstrate orderly characteristics for all three network architectures.  Of primary note is 
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the absolute agreement between the event-driven results of the Local Fusion Graph 

method in the deterministic (i.e., 100% and 0% connectivity) cases and those of the 

known algorithms, thus validating the Local Fusion Graph approach.  Secondly, the data 

sets of the three random connectivity cases demonstrate a non-linear reduction in 

covariance across time in all three communications architectures.  The data indicate a 

clear dependence between the reduction in covariance and the average connectivity of the 

network: higher average network connectivity produces better (smaller) covariance 

estimates, but with performance gains that are non-linear relative to increases in average 

network connectivity. 
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Figure 20: Covariance vs. Time for Various Network Connectivity Values in an Ad Hoc 

Network under Transient Estimation Conditions. 
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Figure 21: Covariance vs. Time for Various Network Connectivity Values in a Broadcast 

Network under Transient Estimation Conditions. 
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Figure 22: Covariance vs. Time for Various Network Connectivity Values in a Cyclical 

Network under Transient Estimation Conditions. 
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The data presented in Figure 23 through Figure 25 provide further insight 

regarding covariance as a function of network connectivity at each of the five time steps.  

The covariance data in these figures are normalized relative to the highest covariance 

(i.e., at 0% connectivity) for each associated time step to aid the comparison among time 

steps.  The nonlinearity in the relationship between network connectivity and covariance 

is slight for the initial time step, and increases with time.  The observed change is due to 

the fact that the connectivity probabilities accumulate over time.  Thus the initial 

variances are nearly linear in proportion to network connectivity, while those at later time 

steps contain the compounded effect of the average network connectivity.  The ad hoc 

and broadcast cases produce nearly identical trends, while the cyclic architecture shows a 

much more pronounced change between the first two time steps and a more linear 

relationship between connectivity and covariance at each of the time steps.  In all three 

cases, the reduction in covariance with increasing connectivity appears to converge to a 

constant relationship as time progresses.  The convergence is evidenced in Figure 23 

through Figure 25 by the decreasing difference in the curves with each successive time 

step. 

The resulting effect of the increasing non-linearity with time is that the degree of 

covariance improvement achieved with increased connectivity is slightly decreased with 

each time step.  Thus the impact of connectivity on covariance is greatest at early time 

steps.  A further implication is that the marginal benefit of increased network 

connectivity is reduced as connectivity increases and the estimate progresses toward  
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Figure 23: Normalized Covariance vs. Average Network Connectivity for Each Time 

Step in an Ad Hoc Network under Transient Estimation Conditions. 
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Figure 24: Normalized Covariance vs. Average Network Connectivity for Each Time 

Step in a Broadcast Network under Transient Estimation Conditions. 
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Figure 25: Normalized Covariance vs. Average Network Connectivity for Each Time 

Step in a Cyclical Network under Transient Estimation Conditions. 

steady-state conditions.  The ad hoc and broadcast data show that approximately 70% of 

the reduction in covariance is achieved by increasing network connectivity from 0% to 

only 50%.  The additional 30% reduction – which is still significant – is achieved by 

increasing average connectivity from 50% to 100%.  From a practical perspective, these 

trends allow trades to be made between gains in covariance and the costs of 

implementing highly-robust networks. 

The investigation of trends in covariance, however, must be accompanied by the 

impacts of network connectivity and the Local Fusion Graph method on state estimation.  

Figure 26 through Figure 28 present the results of average state estimation versus time for 

the three network architectures.  As with the average covariance results, the state 

estimates of the Local Fusion Graph model at 0% and 100% connectivity are the same as 
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those of the closed form algorithms and confirm the soundness of the Local Fusion Graph 

approach. 

The state estimation results show that average estimation capabilities do not 

necessarily improve with increasing network connectivity.  The estimates from the ad hoc 

and broadcast architectures show that estimates under 0% network connectivity are more 

accurate than at 25% connectivity for some time steps.  Similarly, results from the 

cyclical architecture show that estimates calculated at 0%, 25%, and 50% connectivity 

are relatively consistent. 

Further insight into these estimation trends can be measured by the RMS error of 

the estimates.   The RMS error values are calculated according to Equation (39) and are 
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Figure 26: State Estimate vs. Time for Various Network Connectivity Values in an Ad 

Hoc Network under Transient Estimation Conditions. 
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Figure 27: State Estimate vs. Time for Various Network Connectivity Values in a 

Broadcast Network under Transient Estimation Conditions. 
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Figure 28: State Estimate vs. Time for Various Network Connectivity Values in a 

Cyclical Network under Transient Estimation Conditions. 
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collated for each connectivity level and each time step.  The results for the RMS error 

versus time for each connectivity level are shown in Figure 29 through Figure 31.   

Overall the RMS errors show a general consistency with absolute state estimates shown 

in Figure 26 through Figure 28 with some noted exceptions.  Like the state estimate, a 

general increase in state estimation RMS error results from increased network 

connectivity.  Likewise the RMS error data indicates that the 25% connectivity case 

results in greater estimation errors than that of the 0% connectivity case.  Additionally, 

the RMS errors for the 0%, 25%, and 50% connectivity cases under the cyclic 

architecture are shown to be quite similar in magnitude for each of the five time steps. 
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Figure 29: State Estimate RMS Average Error vs. Time for Various Network 

Connectivity Values in an Ad Hoc Network under Transient Estimation Conditions. 
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Figure 30: State Estimate RMS Average Error vs. Time for Various Network 

Connectivity Values in a Broadcast Network under Transient Estimation Conditions. 
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Figure 31: State Estimate RMS Average Error vs. Time for Various Network 

Connectivity Values in a Cyclical Network under Transient Estimation Conditions. 
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To better understand the relationship between average network connectivity and 

estimation performance, the RMS errors are averaged across the last four time steps for 

each connectivity level as shown in Figure 32.  The initial time step was excluded from 

the data to reduce bias resulting from the initial state estimates chosen for the scenario. 

The data shown by the graph present a rather interesting result.  Specifically, the time-

averaged RMS errors are shown to initially increase at low non-zero average connectivity 

levels relative to 0% connectivity.  The time-averaged RMS errors are greatest at 25% 

connectivity for the ad hoc and broadcast cases, which are also noted to be nearly 

identical.  For the cyclic communications architecture, the averaged RMS errors at 50% 

connectivity continue to be greater than that at 0% network connectivity.  Beyond the  
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Figure 32: Time-Averaged RMS Estimation Error vs. Network Connectivity in Ad Hoc, 

Broadcast, and Cyclical Networks under Transient Estimation Conditions. 
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peak RMS error at 25% connectivity, the estimation performance improves at an 

increasing rate with incremental growth in average network connectivity.  

Additional simulations were performed to better characterize the trend in average 

RMS error at low network connectivity levels.  The data shown in Figure 33 demonstrate 

the characteristics of time-averaged RMS error under the same conditions as Figure 32, 

but at five increments between 0% and 50% connectivity.  The peak RMS error actually 

occurs at or near 12.5% connectivity for ad hoc and broadcast architectures but occur at 

25% for the cyclical architecture.  
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Figure 33: Time-Averaged RMS Estimation Error vs. Network Connectivity Between 0% 

and 50% under Transient Estimation Conditions. 

Further exploration of the KF algorithm, fusion equations, and simulations using a 

range of scenario parameters provides insight into the general behavior of the average 

RMS trends.  The key to understanding the phenomena is found from individual 
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simulation runs rather than the data averaged across all 1000 Monte Carlo runs.  For 

individual simulation runs, the covariance for a fusion agent in the randomly connected 

networks fluctuates based on how often it communicates with other agents as well as the 

prior history of the data it inherits.  Communication (e.g. fusion) events lower the 

covariance while time steps without fusion events will often increase it (or not decrease it 

as rapidly). Using Figure 19 as an example, the 75% connectivity case has fusion events 

at the first three time steps, but not a the fourth.  Thus the covariance increases at k=4.  

Similarly, the 25% connectivity case has a fusion event at k=1 but not at k=2, thus the 

covariance reduction is not as significant as that at k=1. 

In these cases, the covariance does not match the changing network conditions.  If 

a fusion event at one time step is followed by a situation where no fusion events occur at 

the next time step, the covariance may then be “optimistic” for the stand-alone 

estimation.  The reduced covariance produces a smaller filter gain and the measurement 

(innovation) therefore has a lesser impact on the state estimate than would be expected.  

Thus agents with no connectivity may have a more accurate state estimate than agents 

with sporadic connectivity if the measured state is more accurate than the predicted state. 

The impact of the connectivity characteristics vary based on the ratio between 

process and measurement noises.  The ratio of process to measurement noise used for the 

simulations is 1:4.  As an excursion, three different noise ratios were used for the 

transient estimation scenario and the resulting average RMS errors are presented in 

Figure 34 and Figure 35.  As shown, increasing process noise relative to measurement 

noise produces the increased inaccuracies at low network connectivity levels. 
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Figure 34: Time-Averaged RMS Estimation Error vs. Network Connectivity for Various 

Noise Ratios in an Ad Hoc or Broadcast Communications Network. 
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Figure 35: Time-Averaged RMS Estimation Error vs. Network Connectivity for Various 

Noise Ratios in Cyclical Communications Network. 
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Overall, the data produced by the computer model provide significant insight 

regarding estimation capabilities relative to network connectivity under transient 

estimation conditions.  First and foremost, the Local Fusion Graph methodology is seen 

to be consistent with known estimation solutions for deterministic network connectivity.  

Additionally, reductions in covariance are found to be non-linear with respect to network 

connectivity.  State estimates, however, demonstrate that estimation errors for networks 

with low non-zero average connectivity are larger than that of stand-alone estimation.  

Estimation performance then increases as average network connectivity exceeds 12.5%.  

Also of significance is the finding that the average estimation capabilities under the ad 

hoc and broadcast network architectures are essentially identical.  While the limited data 

presented here is insufficient to declare that many of the observed estimation 

characteristics and trends are general to all estimation scenarios, the data produced for 

steady-state estimation conditions in the following section provide further insight. 

3.2.2 Analysis of Local Fusion Graphs under Steady-State Estimation Conditions 

As previously described, the simulation of steady-state estimation conditions 

provides data on the characteristics of distributed fusion in networks with various degrees 

of connectivity while the estimates are within the bounds of achievable accuracy.  The 

analysis also provides further insight into the previous section’s findings, thus helping to 

discern general trends from scenario-dependent results.  As such, the analysis follows the 

same line of inquiry as the analyses of transient conditions, which investigated 

covariance, state estimates, and state estimate RMS errors averaged across 1000 Monte 

Carlo runs. 
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Figure 36 through Figure 38 depict the average covariance under steady-state 

estimation conditions.  Because the initial covariance is close to achievable levels, the 

variances are little changed with respect to time.  As with transient conditions, however, 

significant changes in covariance with respect to network connectivity are found.  Figure 

39 through Figure 41 demonstrate the relationship of covariance versus network 

connectivity for each of the five time steps.  Excluding the first time step, which is 

influenced by initial conditions, the trends in covariance reduction with increasing 

network connectivity are very similar for each to the remaining four time steps.  As 

postulated in the analysis for transient conditions, it is apparent that the relationship 

between covariance and connectivity converge to a steady-state over time.  That fact is 

further supported by the equivalence shown in covariance reductions achieved at k=5 

under transient conditions in Figure 23 through Figure 25 with those achieved under 

steady-state conditions in Figure 39 through Figure 41. 

Unlike the state estimates produced under transient estimation conditions, the 

state estimates found under steady-state conditions and presented in Figure 42 through 

Figure 44 are characterized by rapid but small variations in response to similar changes in 

the true state.  Given that the same state and measurement models were used across all 

Monte Carlos and all network connectivity cases, the figures demonstrate that greater 

degrees of network connectivity result in more rapid responses to differences between the 

true and estimated states as well as to changes in the true state.  Increased response to 

differences between true state and the estimate is shown in the state estimate graphs as  
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Figure 36: Covariance vs. Time for Various Network Connectivity Values in an Ad Hoc 

Network under Steady-State Estimation Conditions. 
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Figure 37: Covariance vs. Time for Various Network Connectivity Values in a Broadcast 

Network under Steady-State Estimation Conditions. 



 66

0

10

20

30

40

50

60

70

1 2 3 4 5

Time Step

C
o
va

ri
a
n
ce

0% Conn.
25% Conn.
50% Conn.
75% Conn.
100% Conn.
Stand-Alone
Full-Rate

 

Figure 38: Covariance vs. Time for Various Network Connectivity Values in a Cyclical 

Network under Steady-State Estimation Conditions. 
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Figure 39: Normalized Covariance vs. Average Network Connectivity for Each Time 

Step in an Ad Hoc Network under Steady-State Estimation Conditions. 
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Figure 40: Normalized Covariance vs. Average Network Connectivity for Each Time 

Step in a Broadcast Network under Steady-State Estimation Conditions. 
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Figure 41: Normalized Covariance vs. Average Network Connectivity for Each Time 

Step in a Cyclical Network under Steady-State Estimation Conditions. 



 68

well as the RMS average error data shown in Figure 45 through Figure 47.  The RMS 

error is shown to decrease more rapidly with greater network connectivity where the true 

state maintains a position in the direction of the state estimation trajectory.  That 

condition is essentially the same trait that is found under transient estimation conditions.   

The tendency for increased response to changes in true state with increased 

network connectivity are shown by the estimate changes from k=1 to k=2.  In this 

situation, all connectivity values have the same initial estimate but respond to the true 

state differently despite the fact that the same measurement is used for all connectivity 

cases.    For the scenario data presented here, the RMS error decreases for 75% and 100% 

connectivity, but increases for the other three cases.  Furthermore, the RMS error for 25%  
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Figure 42: State Estimate vs. Time for Various Network Connectivity Values in an Ad 

Hoc Network under Steady-State Estimation Conditions. 
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Figure 43: State Estimate vs. Time for Various Network Connectivity Values in a 

Broadcast Network under Steady-State Estimation Conditions. 
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Figure 44: State Estimate vs. Time for Various Network Connectivity Values in a 

Cyclical Network under Steady-State Estimation Conditions. 
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Figure 45: State Estimate RMS Average Error vs. Time for Various Network 

Connectivity Values in an Ad Hoc Network under Steady-State Estimation Conditions. 
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Figure 46: State Estimate RMS Average Error vs. Time for Various Network 

Connectivity Values in a Broadcast Network under Steady-State Estimation Conditions. 
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Figure 47: State Estimate RMS Average Error vs. Time for Various Network 

Connectivity Values in a Cyclical Network under Steady-State Estimation Conditions. 

connectivity is greater than that of 0% connectivity, which is consistent with the findings 

discussed for transient estimation conditions. 

It is cautioned, however, that better connectivity, does not guarantee better 

estimation results at all time steps for the other connectivity levels.  Changes in state such 

as that shown for k=5 combined with measurement noises may create temporary 

fluctuations of state estimation accuracy with respect to network connectivity.  That 

effect is common for conditions modeled by the steady state scenario.  The statistic of 

time-averaged RMS is therefore an important metric for evaluating estimation 

capabilities with respect to average network connectivity. 

The characteristics of state RMS average error versus network connectivity are 

very similar between the steady-state and transient estimation conditions.  While the 
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scales of the errors are very different, the change in RMS average error with network 

connectivity under steady-state conditions shown in Figure 48 mirrors the trends found 

for transient conditions demonstrated in Figure 32.  The initial increase in average RMS 

error is found as network connectivity increases from 0% to 25%, followed by an 

increasingly rapid drop-off for the remainder of the connectivity values. 
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Figure 48: Time-Averaged RMS Estimate Error vs. Average Network Connectivity in Ad 

Hoc, Broadcast, and Cyclical Networks under Steady-State Estimation Conditions. 

While improved capability is the ultimate goal of a distributed data fusion system, 

the communications requirements for supporting the exchange of data must be 

considered.  As discussed in Chapter 1, systems that are reliant upon wireless 

communications are encumbered with many issues that limit data transfer capabilities.  

The communications needs for the Local Fusion Graph method are of particular 
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importance since they are intended to be used for distributed wireless systems.  The next 

section provides an assessment of data exchange requirements for the Local Fusion 

Graph method to provide some basic insight into communications needs. 

3.3 Communications Considerations for the Local Fusion Graph Method 

Communications in support of distributed information fusion nodes utilize 

resources in terms of energy, network capacity, and spectrum when exchanging data.  

These resources are very limited in many cases and are therefore very valuable for 

wireless networks.  Thus, understanding the impact of the Local Fusion Graph method on 

communications requirements is vital.  

The derivation example in Chapter 2 shows that the size of the local fusion graphs 

grow according to O(n⋅k), making the transmission of the entire graph impractical.  

Optimally, it is desirable for agents to only exchange information that is new to the 

receiving agent(s) rather than exchanging significant amounts of data that will be 

discarded because it is redundant.  While this optimal condition is unlikely to be 

practical, a number of techniques and communications protocols can be employed to 

reduce communications loads. 

The most obvious technique is to use a sliding time window to determine which 

data is included in each transmission.  In this technique, agents determine how much of 

the time history is required to maintain a desired accuracy in the estimate.  The data 

messages therefore contain only the information required to achieve the accuracy 

threshold.  A second simple technique is for agents not to send data to an agent that 

originated the data.  For example, if agent A maintains estimates from agent B in its local 
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fusion graph, it need not send data related to agent B back to agent B since each agent 

inherently preserves its own information locally. 

In addition to these techniques, communications protocols can be designed to 

minimize communications requirements.  For the first protocol, agents exchange data 

control messages that allow the sender of the fusion data to determine which data is 

required at the receiving agent.  The messages from the intended recipient of the fusion 

data would contain the unique identifiers of the most recent nodes in its local fusion 

graph.  The provider of the fusion data would then only send data associated with more 

recent estimates.  Note that this technique works similar to packet acknowledgement 

protocols and is only applicable to point-to-point communications links. 

A protocol that is applicable to wireless broadcast networks is for all agents to 

glean information from a common data exchange channel.  In this protocol, an agent 

broadcasts its fusion messages on a channel that is shared among a group of agents.  All 

other agents within reception range demodulate the message and check it for new data.  

By monitoring the channel, agents can gain an understanding of what data has been sent 

to the group in past transmissions and assemble future messages to exclude the 

previously-transmitted data from its message.  From a practical perspective, each agent 

may be in range of multiple subnets, multiple sections of a mesh network, or may be a 

mobile agent and thus hear multiple messages, each with different data.  Transmitting a 

set of data that is new to all nodes within reception range is therefore not likely to be 

possible.  The nodes, however, may be able to construct messages that contain the most 

new data and smallest duplication of data. 
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The best method for a given fusion network is dependent upon the capabilities of 

the agents’ communications systems, the capacity of the network, and the performance 

requirements of the fusion process.  Fusion processes that operate in extremely fast cycles 

may need to utilize fixed network topologies with known message contents or must limit 

their accuracy by employing heuristics.  Other fusion processes may be able to utilize 

communications protocols to manage the amount of data transmitted.  In practice, the 

protocol implemented in the network will be designed to fit the communications 

capabilities.  In fact, there is likely to be no single best protocol that fits all distributed 

fusion networks.  Instead, different techniques will be effective under different 

assumptions and network designs.  The methods presented here are not intended to be an 

exhaustive list, but ones that illuminate some of the fundamental considerations.   

While designing communications protocols for the efficient exchange of fusion 

data is beyond the scope of this effort, a basic assessment of data exchange needs is in 

order.  The next section examines the data exchange needs of the Local Fusion Graph 

method to determine the minimum amount of data that must be exchanged between 

agents for completely efficient communications.  Section 3.3.2 then compares 

communications needs with respect to estimation performance for the Local Fusion 

Graph and naïve fusion methods. 

3.3.1 Examination of Local Fusion Graph Communications Requirements 

Given that the analysis of multiple communications protocols and a determination 

of a “best” technique are beyond the scope of this thesis, communications requirements 

were assessed in terms of the amount of new data acquired by the receiving agent.  This 
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approach provides an assessment of relative communications data rate requirements with 

respect to network connectivity.  Because the new data acquired by an agent depends on 

the current and prior data sets, it was found that the initial three to five time steps bias the 

results due to the shorter time history of the early local fusion graphs.  Therefore, the 

simulation model was run for 10 time steps at 1000 Monte Carlos, and the first five time 

steps were excluded from the data sets. 

The communications requirements are defined here in terms of the number of 

time-agent nodes in the fusion graph that must be sent in a message at each time step by 

an agent in the network.  The metric is given as nodes per message, abbreviated as 

nodes/msg.  It is important to note that the data transmitted in the message includes the 

local estimation data associated with the respective node in the local fusion graph as well 

as the relevant pointers connecting the node to the rest of the graph. 

The histograms of the average message size required for each agent in terms of 

nodes/msg are presented in Figure 49 through Figure 51 for various degrees of network 

connectivity in ad hoc, broadcast, and cyclical communications architectures.  Only the 

distributions for non-deterministic network connectivity levels are presented; the 

distributions for 0% and 100% connectivity are merely unit impulses at 0 and 2 

nodes/msg, respectively. 

The distributions for each successive increase in network connectivity are shown 

to change with network connectivity.  As demonstrated in Figure 52 and Table 3, the 

mean message size shifts from 0 nodes/msg to 2 nodes/msg with increasing network  
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Figure 49: Histogram of Message Size for the Local Fusion Graph Method in an Ad Hoc 

Communications Network. 
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Figure 50: Histogram of Message Size for the Local Fusion Graph Method in a Broadcast 

Communications Network. 



 78

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 1 2 3 4 5 6 7 8 9 10

Nodes per Message

P
ro

b
a
b
ili

ty
 o

f 
O

cc
u
ra

n
ce

25% Conn.
50% Conn.
75% Conn.

 

Figure 51: Histogram of Message Size for the Local Fusion Graph Method in a Cyclical 

Communications Network. 
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Figure 52: Network Connectivity vs. Average Message Size for the Local  

Fusion Graph Method. 



 79

Table 3: Message Size (Nodes/Msg) Statistics for Local Fusion Graph Communications. 

Ad Hoc Broadcast Cyclic Conn. Mean Max Std Dev Mean Max Std Dev Mean Max Std Dev 
0% 0.000 0 0.000 0.000 0 0.000 0.000 0 0.000 

25% 1.820 22 2.843 1.823 24 2.896 1.491 23 3.432 
50% 1.992 16 1.974 1.991 18 1.970 1.858 21 2.766 
75% 1.988 8 1.146 1.982 9 1.154 1.943 11 1.694 

100% 2.000 2 0.000 2.000 2 0.000 2.000 2 0.000 
 

 

connectivity.  Two primary observations are made from this data.  First, the mean 

message size is always less than that of a fully-connected network.  Second, the increase 

in mean message size is rapid, with an average of 1.8 nodes/msg at 25% network 

connectivity.  Thus there is little difference in the average message size in the three 

network connectivity values modeled here. 

While the average message size is comparable for the three cases examined, the 

maximum message size changes significantly with an inverse relationship relative to 

network connectivity.  The result is fairly intuitive: as agents exchange data less often, 

the average message size decreases due to reduced number of messages being sent;  

When agents do communicate, however, message sizes are greatly increased because 

they must contain greater amounts of data to complete the fusion graph at each agent.  

Thus there is an inverse relationship between the peak and average message sizes 

required to support the Local Fusion Graph method. 

Cumulative probability distributions along with mean and maximum message size 

data provide further insight into message sizes.  The distributions are shown in Figure 53 

through Figure 55 and can have a couple interpretations.  For variable message size 
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communications, the figures show the probability that messages are of the given size or 

smaller.  As an example, Figure 53 shows that approximately 90% of the messages in an 

ad hoc network with 75% connectivity would be no more than 3 nodes/msg.  For fixed 

message size communications, the figures indicate the probability that messages of the 

given size are sufficient for exchanging the unique data between agents.  Thus Figure 53 

shows that a message size of 3 nodes/msg is sufficient for 90% of the data exchanges in 

an ad hoc network with 75% connectivity.   
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Figure 53: Cumulative Distribution for Local Fusion Graph Message Size in an Ad Hoc 

Communications Network. 
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Figure 54: Cumulative Distribution for Local Fusion Graph Message Size in a Broadcast 

Communications Network. 
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Figure 55: Cumulative Distribution for Local Fusion Graph Message Size in a Cyclical 

Communications Network. 
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Two caveats are attached to the communications assessments.  First, the data 

represents a lower bound on the statistics for actual implementations.  The data presented 

in the analysis is derived from the number of new nodes added to an agent’s fusion graph 

at each time step.  If the sending agent doesn’t know exactly which data is needed by the 

receiving agent, then it will likely send duplicative data to increase the probability of 

providing sufficient data and thus increase the data contained in each message.  

Furthermore, the sending agent would need to know which node data needs to be sent.  

The analysis here simply quantified the number of nodes, but made no distinction as to 

their location in the local fusion graph. Further analysis is required to determine how 

agents can provide all needed data with the least amount of unnecessary data. 

The second caveat is that the data does not indicate how the probability 

distributions scale with the number of nodes in the network.  Attempts were made to 

characterize the communications requirements distributions produced by the Local 

Fusion Graph algorithm, but the distributions of the simulation data could not be 

accurately fit to a common distribution.  For the first simulation time step, the probability 

distribution is given by the binomial: 

( ) mnm

m
n

nm −−−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=− 1)1(

1
),1;( µµµβ  (40) 

where µ is the average probability of message delivery (e.g., the average network 

connectivity), m is the expected number of nodes in the message, and n is the total 

number of fusion agents in the network.  At subsequent steps, however, the formulation 
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must also incorporate the probability of each possible combination of messages at all 

prior time steps.  Thus the distribution is the binomial for the current time step plus 

additional binomial terms that characterize the probability of all possible prior events.  

This line of reasoning is supported by the consistency between the simulation results of 0 

nodes/msg at k=1 shown in Figure 49 through Figure 51 and β(0;n-1,µ), given as: 

1)1(),1;0( −−=− nn µµβ  (41) 

While a complete statistical characterization is yet to be performed, the development of a 

stochastic fusion method in Chapter 4 sheds further light on the communications 

characteristics.  

3.3.2 Comparison of Local Fusion Graph and Naïve Fusion Communications 

The assessments in the prior section provide valuable insight for communications 

in the Local Fusion Graph method.  Further observations can be provided by a 

comparison with other distributed fusion methods.  Because naïve fusion is the most 

common method found in literature and is adaptable to ad hoc communications networks, 

it is chosen for comparison with respect to data exchange needs in light of the accuracy of 

the resulting estimates. 

In a naïve fusion algorithm, fusion agents exchange only the most recent 

estimates with other fusion agents without regard for possible data dependencies [32].  

Thus the fusion equations become: 
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Figure 56 and Figure 57 present the results for transient estimation conditions, 

and Figure 58 and Figure 59 present the results for the steady-state estimation conditions.  

The trends in covariance are similar to those of the Local Fusion Graph method, with 

non-linear reductions relative to increasing time and network connectivity levels.  Naïve 

covariance, however, decreases more rapidly.  It is shown in Figure 56 that the reductions 

in naïve covariance exceed known solutions. Similarly, the naïve state estimates are 
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Figure 56: Naïve Communications Covariance Estimate versus Time for an Ad Hoc 

Communications Architecture under Transient Estimation Conditions. 
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Figure 57: Naïve Communications State Estimate versus Time for an Ad Hoc 

Communications Architecture under Transient Estimation Conditions. 

0

10

20

30

40

50

60

70

1 2 3 4 5

Time Step

C
o
va

ri
a
n
ce

0% Conn.
25% Conn.
50% Conn.
75% Conn.
100% Conn.
Stand-Alone
Full-Rate

 

Figure 58: Naïve Communications Covariance Estimate versus Time for an Ad Hoc 

Communications Architecture under Steady-State Estimation Conditions. 
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Figure 59: Naïve Communications State Estimate vs. Time for an Ad Hoc 

Communications Architecture under Steady-State Estimation Conditions. 

significantly different from the Local Fusion Graph and optimal estimates for full-rate 

network connectivity. State estimation data actually shows decreasing estimation 

performance with increasing network connectivity for the naïve fusion method. 

The reason for the poor performance of the naïve fusion method is that Equations 

(42) and (43) hold only if the fused estimates are mutually independent.  With the 

presence of common process and observation noises, these assumptions do not hold [32].  

Nonetheless, a comparative examination of communications requirements and estimation 

capabilities relative to the Local Fusion Graph is useful if only because of the popularity 

and simplicity of the naïve method. 

Unlike the Local Fusion Graph, naïve fusion information exchanges contain no 

data relating to prior time steps.  Thus the probability distribution of communication data 
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rate for naïve fusion relative to network connectivity is given simply as a binomial 

distribution.  The mean and maximum message sizes are thus given as (n-1)⋅µ and n-1, 

respectively. 

The mean message size relative to network connectivity is presented along with 

that of the Local Fusion Graph method in Figure 60.  The data demonstrates that the 

average message size for naïve fusion in the ad hoc and broadcast networks is less than 

30% of the Local Fusion Graph message size at 25% connectivity.  The ratio increases to 

about a 75% at 75% connectivity because the Local Fusion Graph average message size 

quickly approaches the maximum while naïve data rate growth remains linear relative to 

network connectivity.   
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Figure 60: Network Connectivity vs. Average Message Size for Local Fusion Graph and 

Naïve Fusion Methods. 
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Given the accuracy and communications requirements together, it is observed that 

naïve fusion reduces communications requirements for distributed fusion networks 

relative to other approaches at the expense of estimation accuracy.  The notional 

communications cost of the Local Fusion Graph, however, must be weighed against the 

increase in estimation performance.  A comparison of the relationship between the two 

methods’ communications requirements and average RMS error is shown in Figure 61 

and Figure 62.  Because the average message size increases with increasing network 

connectivity, Local Fusion Graph average RMS error trends with respect to message size 

are similar to RMS error trends relative to network connectivity.  Naïve fusion average 

RMS error, however, is seen to increase in both the transient and steady-state scenarios 

with respect to average message size.  
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Figure 61: Distribution of Communications Load vs. Average Estimate RMS Error under 

Transient Estimation Conditions. 
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Figure 62: Distribution of Communications Load vs. Average Estimate RMS Error under 

Steady-State Estimation Conditions. 

Under transient and steady-state estimation conditions modeled here, the RMS 

error reductions of the Local Fusion Graph are significant relative to any of the naïve 

fusion estimates.  The primary reason for the difference in estimation performance is due 

to the presence of common estimates among the fusion agents.  If no such dependencies 

were present, the results of the two methods would be comparable.  In realistic 

implementations, however, such dependencies do exists.  The added complexity of the 

Local Fusion Graph method is therefore worthy of consideration for the added estimation 

capabilities it provides. 
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3.4 Summary of Local Fusion Graph Simulation and Analysis 

The results of the computer-based simulation of the Local Fusion Graph 

algorithm demonstrate the validity of the method for performing data fusion.  The model 

implemented the estimation of a simple linear dynamic system in the presence of 

Gaussian state and measurement noises.  The model’s results are shown to precisely 

match those of known solutions at full network connectivity as well as the results for 

stand-alone estimation (e.g., no network connectivity).  Further evidence of the method’s 

validity is provided by its foundations in the Information Graph [36] and by the intuitive 

characteristics of the results produced for instances of non-deterministic network 

connectivity. 

The performance of the Local Fusion Graph algorithm for non-deterministic 

network connectivity is demonstrated across a range of average network connectivity 

levels in transition and steady-state estimation conditions.  In all cases, the average 

covariance is found to decrease in a non-linear manner with respect to increasing network 

connectivity.  State estimates, however, demonstrate a more complex relationship with 

respect to network connectivity.  If process noise is high relative to measurement noise, 

the state estimates are shown to increase a low non-zero average network connectivity 

levels relative to other connectivity levels.  For lower ratios of process to measurement 

noise, however, the state estimates are shown to consistently decrease with respect to 

network connectivity.  

The model also provided data for a first-order assessment of communication 

requirements of the Local Fusion Graph.  While the assessment is limited in scope due to 
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the dependence of actual bandwidth on protocol assumptions, the analysis demonstrates 

the trends in data rate relative to network connectivity.  Specifically, average Local 

Fusion Graph communications requirements for network connectivity levels remain less 

than that of full-rate communications requirements.  The peak data rate, however, will 

likely increase the communications requirements above that of full rate communications 

requirements.  The comparison of communication requirements for the Local Fusion 

Graph and naïve fusion algorithms demonstrates the trades between communications 

loads and estimation performance.   

The results of the communication analysis lead to some issues for further 

research.  First, the statistical distributions of required information per message as a 

function of network connectivity could be used to develop a communications protocol 

that optimizes the amount of data exchanged between fusion agents.  Further 

characterization of information needs relative to network size, connectivity, and mobility 

are required.   A second yet related issue for further understanding is the characterization 

of missing data impacts on the Local Fusion Graph method.  The analysis performed here 

considered only the case where all required data is received by each fusion agent.  If a 

statistics-based protocol is used for inter-agent information exchange, agents may not 

always have complete data sets.  The missing data will prevent the agents from 

identifying some common prior information sets, thus resulting in reduced estimation 

accuracy. 
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4 DERIVATION AND EVALUATION OF A STOCHASTIC FUSION 

FORMULATION  

The aggregate behavior of communications networks are characterized by a 

number of stochastic phenomena.  Network delay models are largely based upon queuing 

theory [11], and wireless channel characteristics are modeled by various random process 

models [7-9].  Since distributed information fusion is a function of communications 

capabilities, distributed fusion formulations should likewise contain those stochastic 

characteristics. 

Chapter 2 develops an algorithm that enables the implementation and modeling of 

distributed fusion networks independent of communications characteristics.  While the 

technique enables distributed fusion in the presence of ad hoc and stochastic 

communications characteristics, it does not produce an analytical formulation that is 

easily applied to estimation performance predictions.  Predictions and analysis of average 

performance expectations such as those shown in Chapter 3 require non-trivial computer 

code development and large numbers of simulations.  Therefore, a more compact or 

analytical solution is desired that reduces the complexity and computational requirements 

of simulation models and analyses. 

For that purpose, this chapter develops a general formulation that captures the 

average behavior of distributed fusion in communications networks with arbitrary 
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connectivity and stochastic link characteristics.  The chapter further explores the use of 

some basic assumptions to produce a simplified stochastic formulation of distributed 

fusion in ad hoc networks.  The simplified formulation is then developed into a 

computer-based model and the results are assessed relative to their consistency with the 

results found in Chapter 3.  The assessments are accompanied by discussions for 

furthering the development and scope of the stochastic formulation. 

4.1 Derivation of the Stochastic Fusion Formulation 

Communications between fusion agents is characterized by transmit and receive 

probabilities as well as message delay probabilities.  The effect of these stochastic 

characteristics was demonstrated in the example used for the Local Fusion Graph 

derivation.  Combining the three local fusion graphs into a composite or centralized view 

is shown in Figure 63. 
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Figure 63: Example Composite Fusion Graph. 

To conduct the derivation of a stochastic fusion formulation, an arbitrary fusion 

graph such as the one in Figure 63 is supposed.  For simplicity in notation, each of the J 
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nodes in the fusion graph is given an index value j such that 1<=j<=J.  Similarly, the 

node representing the fusion event in question is designated by the index i.  

As shown, data is transferred between nodes in the local fusion graph based on 

the probability of transmission, reception, and delay.  To simplify the derivation of a 

stochastic fusion formulation without losing generality of its application, the aggregate 

effect of the various stochastic characteristics is captured in a single link probability 

factor.  The average probability that data will be successfully transferred from node j to 

node i is given as µij.  Thus the average result for fusing information from node j at time 

kj into node i at time ki with some average probability µij is given quite simply as: 

( ) ( ) ( ){ })|()|()( jijiiiijii kkIkkIkI ΦΦ=Φ Uµ  (44) 

The overall average result at node j, however, must consider all possible 

outcomes.  Each outcome includes a set S of nodes that transfer data to node i, and a set 

¬S of nodes that do not transfer data directly to node i which will be designated by.  

Assuming that all possible events are independent, the joint probability of data exchange 

events is given as: 

∏
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Similarly, the joint probability of the events with no data exchanges is given as: 
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For M possible outcomes, each defined by a unique fusion graph, the expected result at a 

given node across all possible outcomes is thus given as: 
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Applying Equations (47) to the fusion equations from (2) and (3) results in the 

following stochastic fusion equations: 
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While this formulation appears simple, its practical implementation can become 

very complex if the probability factors for each node pair are different.  The solution 

becomes even more complex if delays are present.  If the probability all possible node 

pairs is non-zero, then a fusion graph containing n fusion agents and a history of ki time 

steps must evaluate as many as )1(2 −nki  possible outcomes for each node in the fusion 

graph.  Furthermore, Equations (48) and (49) do not enumerate the common prior 
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information that must be found for each possible combination of fusion events.  Each set 

S that is fused has multiple possible prior histories that must be considered.  Developing a 

stochastic representation of the common prior information for these histories cannot be 

represented in any simple formulation.  Instead, methodical searches using computer-

based algorithms may be the only means for valuating the common prior information. 

The extensive efforts required for developing a stochastic representation of the 

common prior information is not pursued here due to the scope of the current thesis work.  

Instead, some simplifying assumptions are applied to Equation (47) in the next section to 

develop an approximation for distributed fusion in ad hoc networks.  The resulting 

formula is implemented in a computer-based model and the results are presented.  

Assessments are provided relative to the Local Fusion Graph results for comparisons of 

the simplified stochastic formulation’s estimation capabilities. 

4.2 Derivation of a Simplified Stochastic Formulation for Distributed Fusion in Ad 

Hoc Networks 

The derivation of the general stochastic formulation in the previous section allows 

for each node pair in the fusion graph to have a unique link probability value.  By 

properly selecting the link probabilities, any type of communications pattern can be 

represented.  In essence, the communications event generator used in the Local Fusion 

Graph simulation model applies this approach.  It allows the user to establish templates 

for communications patterns where some links are disabled by setting µij=0 and others 

are implemented with some non-zero link probability.  Thus applying similar 
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assumptions to the general stochastic formulation in Equation (47) should yield the same 

results as the Local Fusion Graph model. 

Three basic assumptions were made for the data produced by the Local Fusion 

Graph model: 

1) Fusion agents utilize equivalent state and measurements models, including initial 

estimates and covariance; 

2) The connectivity probabilities between agents are equivalent for all agent pairs; 

3) Messages are sent and received within the same time step. 

The assumptions establish uniformity across the fusion agents and allow the effects of 

average connectivity to be the primary factor in the resulting data trends.  With the 

second and third assumptions, the link probability factors for each combination 

represented in Equation (47) can be simplified to a binomial.  The joint probability of m 

data sets received by node i for fusion is then given by: 

( ) mn
S

m
SSSS m

n
nm −−

¬ −⎟⎟
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1
),1;( µµµβµµ  (50) 

The uniformity assumptions also result in all agents having the same value at a given 

time step.  Thus, removing the subscripts from Equation (47) and applying Equation (50) 

yields the simplified stochastic formulation for ad hoc networks: 
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While the simplifying assumptions reduce the order of the common prior 

information in Equation (51), they do not provide a simplified statistical formulation in 

determining the value of the common prior information.  Therefore, an approximate 

valuation of the prior information must be made.  Given the very similar results of ad hoc 

and broadcast network models in the Local Fusion Graph analysis, the common data term 

for a fully-connected fusion network operating in broadcast mode is used: 

( ) ( ) ( ))1|(1)( −Φ⋅−=Φ iiiii kkImkI  (52) 

Applying Equations (51) and (52) to the fusion equations from (2) and (3) results in the 

following simplified stochastic fusion equations: 
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The simplified stochastic fusion formulation presented by Equations (53) and (54) 

are thus proposed as distributed estimation performance approximations for ad hoc and 



 99

broadcast networks with non-deterministic connectivity.  The following section describes 

the development of these formulations into a simulation model and provides an analysis 

of their accuracy. 

4.3 Performance Analysis of the Simplified Stochastic Ad Hoc Fusion Formulation 

As with the Local Fusion Graph method, the stochastic fusion formulation was 

developed into a computer-based model to assess its performance.  The stochastic model, 

shown in Figure 64, is implemented in MATLAB® and uses the same state and 

measurements model as the Local Fusion Graph model.  The stochastic model, however, 

uses a connectivity matrix containing the connectivity probabilities (e.g., µij) between 

each agent for each time step in the simulation rather than the event-based 

communications generator used in the Local Fusion Graph model.  The model calculates 

the state and covariance estimates using the communications matrix and Equations (53)  
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Figure 64: Stochastic Fusion Simulation Model Block Diagram. 
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and (54) at each time step.  Because the model uses a stochastic representation of 

communications events rather than event-based one, multiple Monte Carlo runs not 

required for a given state and measurements model. 

In the cases presented here, the state and measurements models used in Chapter 3 

are also used here to allow for a direct comparison between the two models.  Table 4 

presents the values used in the simulations.  Of particular note is the fact that the results 

obtained from 1000 Monte Carlos of the Local Fusion Graph model that require a total 

run time of approximately 12,000 seconds can now be approximated with a single run of 

the stochastic model of less than 2 seconds.  The reduced simulation time is accompanied 

by a significant reduction in coding complexity. 

Table 4: Parameter Values for Stochastic Fusion Simulations. 

Parameter Value  Parameter Value 
B, F,G,H 1  x(0) 1000+N(0,Q) 

u 0  Monte Carlos 1 

v, Q N(0,Q), 25  Fusion Agents 3 

w, R N(0,R), 100  k0, kmax 1, 5 

Ptrans(k0), )(ˆ 0ktransx  R, N(0,R)  Message Delay 0 

Pss(k0), )(ˆ 0kssx  45, x(0)+N(0,45)  µij(k) 0, 0.25, 0.5, 0.75, 1 

 

 

As with the Local Fusion Graph analyses, the analysis of results from the 

simplified stochastic fusion approximation include covariance and state estimation for a 

number of network connectivity levels.  The comparisons of the two models are 
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performed using an ad hoc communications architecture under transient and steady state 

conditions.  As discussed in the derivation of the simplified stochastic formulation, the 

formulation’s results hold for both broadcast and ad hoc network architectures due to 

their statistically similar results. 

Two types of comparisons are made between the models.  First, comparisons of 

predicted results are made to assess the magnitude of any differences.  These 

comparisons provide insight into how well the simplified stochastic fusion method 

replicates the estimation performance of the Local Fusion Graph approach.  The second 

comparison type assesses how well the stochastic fusion graph imitates the trends of the 

Local Fusion Graph relative to network connectivity. 

Comparisons of the covariance estimations for the Local Fusion Graph and 

simplified stochastic algorithm in an ad hoc communications architecture under transient 

and steady-state estimation conditions is shown in Figure 65 and Figure 66, respectively.  

The data demonstrate significant agreement between the two models under both 

estimation conditions.  At k=1, the simplified stochastic model and average Local Fusion 

Graph results are precisely the same because no common prior information exists among 

the fusion agents.  Thus no difference will exist in the simulation data provided both 

models utilize the same initial conditions.  The difference between them is shown to 

increase in the first few time steps due to the approximation made for the common prior 

information.  With the exception of the 25% connectivity case, the stochastic 

approximations and Local Fusion Graph estimates are then seen to converge with time. 
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Figure 65: Comparison of Ad Hoc Covariance vs. Time for the Local Fusion Graph and 

Simplified Stochastic Fusion Methods under Transient Estimation Conditions. 

0

10

20

30

40

50

60

70

1 2 3 4 5

Time Step

C
o
va

ri
a
n
ce

0% Conn. - Stoch. 25% Conn. - Stoch.

50% Conn. - Stoch. 75% Conn. - Stoch.

100% Conn. - Stoch. 0% Conn. - LFG

25% Conn. - LFG 50% Conn. - LFG

75% Conn. - LFG 100% Conn. - LFG

 

Figure 66: Comparison of Ad Hoc Covariance vs. Time for the Local Fusion Graph and 

Simplified Stochastic Fusion Methods under Steady-State Estimation Conditions. 
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Differences in results can also be seen in Figure 67, which compares the trends in 

covariance averaged across time versus connectivity under transient and steady-state 

estimation conditions, respectively.  Again the data demonstrate similar trends and 

magnitudes of covariance relative to network connectivity.  Under the random 

connectivity cases, the simplified stochastic formulation covariance approximations are 

shown to be more accurate at high network connectivity levels.  Figure 68 presents the 

covariance differences of the two methods at each connectivity level normalized by the 

initial covariance.  The data demonstrates that the maximum difference between the two 

covariance results occurs at 25% connectivity. 
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Figure 67: Normalized Average Covariance vs. Connectivity under Transient and Steady-

State Estimation Conditions. 
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Figure 68: Normalized Covariance Estimation Difference vs. Connectivity under 

Transient and Steady-State Estimation Conditions. 

As with the covariance approximations, the simplified stochastic formulation 

closely approximates the state estimates at each of the time steps as shown in Figure 69 

and Figure 70.  A comparison of the normalized RMS errors produced by the two 

methods relative to network connectivity, however, demonstrates a difference in trends as 

shown in Figure 71.  While the Local Fusion Graph produces an initial increase in RMS 

error at 25% connectivity for both cases, the simplified stochastic formulation predicts a 

sizeable decrease.  The resulting difference in RMS error is plotted at each connectivity 

level in Figure 72.  
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Figure 69: Comparison of Ad Hoc State vs. Time for the Local Fusion Graph and 

Simplified Stochastic Fusion Methods under Transient Estimation Conditions. 
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Figure 70: Comparison of Ad Hoc State vs. Time for the Local Fusion Graph and 

Simplified Stochastic Fusion Methods under Steady-State Estimation Conditions. 
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Figure 71: Average State RMS Error Estimates vs. Network Connectivity under Transient 

and Steady-State Estimation Conditions. 
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Figure 72: Differences in Average State RMS Error Estimates vs. Network Connectivity 

under Transient and Steady-State Estimation Conditions. 
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The reason for these differences can be understood in light of the discussion 

presented in Chapter 3 regarding the increased average RMS error at low network 

connectivity levels.  The results of Local Fusion Graph stem from impacts to the filter 

gain calculation due to inconsistent network connectivity experienced in individual event-

based simulations.  The stochastic formulation, however, utilizes an average connectivity 

at each time step rather than the connectivity fluctuations that produce the increased RMS 

errors in the Local Fusion Graph results.  

Regardless of the difference in estimation trends, the data presented in the 

comparative analysis demonstrates that the simplified stochastic formulation provides a 

close approximation of the Local Fusion Graph estimates for ad hoc networks provided 

the simplifying assumptions are applicable.  Comparisons of covariance and state 

estimates show only small variations in the magnitude of their differences, with the 

maximum occurring at low network connectivity levels.  As evidenced throughout the 

Local Fusion Graph analysis, the results for ad hoc and broadcast networks are nearly 

identical.  Thus the simplified stochastic method is applicable for estimation 

approximations for broadcast networks as well. 

4.4 Summary of Stochastic Fusion Formulation and Analysis 

A stochastic fusion formulation is proposed that incorporates average network 

connectivity and message delay into the fusion equations.  The resulting equations are the 

probability-weighted sums of all possible outcomes at each time step and are given in 

Equations (48) and (49) as: 
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Implementations therefore comprise combinatory sets of current and common prior 

estimates that grow exponentially with time and the number of fusion agents in the 

network.  Furthermore, identification of the prior information in a stochastic manner is 

not easily represented in any simple probability formulation since the occurrence of 

common prior information is a function of the specific histories.  While these equations 

enable analyses of estimation performance in networks with stochastic characteristics, 

they require a computer-based implementation for practical assessments. 

To reduce the computational complexity, a simplified stochastic formulation for 

ad hoc networks was derived and implemented in a computer-based model.  The 

simplified formulation is achieved by assuming no message delays, homogenous 

estimation capabilities for each agent, and equivalent message delivery probabilities for 

all agent pairs.  The resulting stochastic fusion formulations are given in Equations (53) 

and (54) as: 
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Comparisons of the simplified formulation results with those of the Local Fusion 

Graph demonstrate the ability to closely approximate the average distributed estimation 

performance in ad hoc and broadcast networks.  One notable exception is that the 

stochastic method does not replicate the increase in average RMS error that is 

encountered at low network connectivity levels for some scenarios.  In addition to the 

good approximation capabilities, the stochastic method is much simpler to code into a 

computer-based model than the Local Fusion Graph method, and the processing time is 

reduced by a factor of 6000. 
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5 SUMMARY AND RECOMMENDATIONS 

This thesis proposes two complimentary approaches as general solutions to 

distributed information fusion in networks with ad hoc connectivity and stochastic link 

characteristics.  The Local Fusion Graph method is a means for implementing 

information fusion in distributed fusion agents without requiring a priori knowledge of 

network membership, connectivity, or communications patterns.  The stochastic fusion 

formulation incorporates average message delay and delivery probabilities into the fusion 

equations and permits analyses of expected estimation performance in fusion networks 

having non-deterministic connectivity.  Both methods are derived and the resulting 

formulations are implemented in computer-based models.  The results of the models are 

analyzed to assess the validity of the techniques and gain insight into distributed 

estimation capabilities under non-ideal network connectivity conditions. 

5.1 Summary of Local Fusion Graph Findings 

The Local Fusion Graph methodology is proposed as a general solution for 

distributed fusion in networks with non-deterministic communications connectivity such 

as mobile ad hoc networks. The method is grounded in set-theoretic derivations of 

information fusion.  More specifically, the methodology is based in large part on the logic 

of the Information Graph proposed in [36].  Where the Information Graph is used to 

provide a centralized view of distributed fusion events from an omniscient perspective, 
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the Local Fusion Graph approach allows each fusion agent to build and maintain its own 

localized graph.  The local fusion graph provides all information required for calculating 

the locally-fused estimate at each agent.  The technique requires no a priori knowledge of 

network membership, connectivity, or communications patterns and is applicable to any 

arbitrary distributed fusion network regardless of communications patterns or message 

delays. 

The validity and performance capabilities of the Local Fusion Graph are 

demonstrated through mathematical and analytical assessments.  The method’s basis in 

the set-theoretic principles and utilization of the Information Graph logic as a foundation 

lend to its credibility.  It is shown that the Local Fusion Graph can be used to produce 

fusion equations consistent with known solutions.  Furthermore, the results of a 

computer-based simulation demonstrate consistency with results from the known 

formulations. 

The benefits of the Local Fusion Graph are apparent in the analysis of the 

computer-based simulation results.  Where current methods are only accurate in networks 

with deterministic connectivity, the Local Fusion Graph method can perform under any 

communications networking conditions.  The analysis characterizes the method’s 

performance capabilities for conducting distributed estimation under transient and steady-

state estimation conditions.  It also demonstrated decay in the accuracy of distributed 

estimations based on the Kalman Filter at low network connectivity levels.  A first-order 

analysis of Local Fusion Graph communications requirements shows that the average 

data rate for the local fusion graph may be comparable with that of a fully-connected 
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network, but peak rates can exceed the average rates by an order of magnitude in some 

cases.  Overall, the Local Fusion Graph provides significant benefit for information 

fusion in uncertain networking environments.  The resulting algorithms are able to be 

implemented in distributed fusion agents without a priori knowledge of communications 

infrastructures, and provide the ability to perform fusion operations in challenging 

network environments. 

5.2 Summary of Stochastic Fusion Formulation Findings 

Given the results of the Local Fusion Graph, an analytical approach to predicting 

and assessing distributed estimation in networks with stochastic connectivity was 

explored.  The examination sought to produce a relatively simple representation of 

distributed fusion premised upon the stochastic nature of wireless communications.  The 

fundamental factors driving the uncertainty in distributed fusion networks are 

encapsulated in message delivery and delay probabilities.  A stochastic formulation is 

proposed that captures the probabilistic characteristics, but a compact formulation of 

common prior information could not be represented in a stochastic manner.  The 

occurrence of common prior information is found to be a combinatoric function of the 

specific histories, and producing them in a complete and general manner is beyond the 

scope of this effort. 

A simplified variant of the general stochastic fusion formulation was developed to 

explore approximate results for ad hoc networks.  The simplified form is derived by 

assuming homogenous network connectivity, message delays, and state models.  

Additionally, the common prior information is approximated using the common priors 
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term of the broadcast formulation.  The resulting simplified stochastic formulation is 

compact and greatly reduces the complexity of distributed estimation analysis in ad hoc 

networks. 

A computer-based model was developed to assess the simplified stochastic 

formulation’s ability to approximate Local Fusion Graph results.  Analysis demonstrated 

that the formulation results closely approximate the averaged results of the Local Fusion 

Graph with few exceptions.  Additionally, coding the stochastic method into a computer-

based model is much simpler than the Local Fusion Graph model, and the processing 

time is reduced by three orders of magnitude.  Thus the simplified stochastic fusion 

formulation has the ability to enable relatively simple analyses of estimation capabilities 

and trends in ad hoc networks.   

5.3 Recommendations for Future Research 

While the derivations, analysis, and results of this study captured a wide range of 

issues related to distributed estimation in networks with stochastic connectivity, a number 

of open questions for further research still remain.  The analyses performed here 

established a basic understanding of the algorithm’s performance and related issues.  

Extending the findings into general characteristics and principles requires a more 

thorough treatment than is practical in this effort. 

The first area to explore is to determine if the Local Fusion Graph preserves 

optimality of estimation models with respect to the underlying network connectivity.  

Whether the method produces locally-optimal results given the information available to 

each fusion agent may depend on the application that utilizes the algorithms.  Estimation 
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formulations that are optimal under fully-connected networks may not be optimal under 

varying network connectivity conditions.  Chapter 3 demonstrated that RMS errors can 

increase at low non-zero connectivity levels relative to stand-alone estimation.  Thus 

dynamic network connectivity conditions may preclude optimality for some estimation 

techniques. 

The second area for research is the establishment of an effort to further 

characterize Local Fusion Graph performance.  The analysis conducted here was 

necessarily focused in scope and purpose.  It was conducted primarily for validating the 

Local Fusion Graph algorithms and providing a first-order assessment of the trends 

regarding estimation performance relative to network connectivity.  Aspects to be 

investigated include scalability of performance relative to the number of fusion agents, 

accuracy of the method in the presence of missing data, and stability of the estimates 

under a range of network conditions.   

Future efforts should also investigate efficient communications and computational 

aspects of the Local Fusion Graph method such as the design of efficient data encoding 

techniques and communications protocols.  Because the method utilizes a graph to 

organize the data, graph-based coding theories such as those used for bioinformatics [52] 

may lead to efficient searches for common prior data sets as well as efficient message 

encoding.  Another technique for message encoding is to utilize a probabilistic approach 

similar digital message encoding, where the level of information redundancy can be 

varied based on the desired probability of success. 
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A fourth avenue for investigation is the exploration of alternative estimation 

techniques under the Local Fusion Graph construct.  Among them is whether the method 

can be approached from a Bayesian Network perspective.  The combination of the 

Information Graph and Bayesian Network concepts for identifying communications and 

measurements dependencies in [39] should be extensible to the Local Fusion Graph.  

With an initial inspection, the entire Local Fusion Graph may lend itself to be viewed as a 

Bayesian Network [53].  Thus it may be possible to construct the fusion algorithms in a 

manner that avoids the lengthy process of recursively searching for and removing 

common data elements.  Resulting methods would need to be assessed in the context of 

enabling simplified analysis as well as implementation in distributed fusion networks. 

A final area for further investigation of the Local Fusion Graph approach is to 

determine the applicability and impact of the method on higher level fusion.  The method 

is inherently designed to manage information for each local fusion agent and should 

therefore be applicable to managing information such as evidence and beliefs for 

distributed reasoning approaches [53].  The Local Fusion Graph may provide increased 

abilities to conduct distributed reasoning in ad hoc networks. 

In addition to the Local Fusion Graph, the stochastic formulation should be 

pursued and developed further.  An effort should be taken up to compactly and 

analytically characterize common prior data for the general stochastic fusion formulation.  

If that effort produces simplified results relative to the initial efforts of this study, then the 

ability to accurately predict estimation performance in any networking environment will 

be greatly simplified. 
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APPENDIX A:  PRINCIPLES FOR DETERMINING THE TIME-UPDATED VALUE 

OF INFORMATION 

As presented throughout the main sections of this document, effective distributed 

information fusion requires that common information elements be identified and removed 

before the sets are fused.  The common information elements for the class of estimation 

systems addressed here are estimations that were determined at some prior time.  While 

the estimates were of a certain value at the time of their calculation, that estimate may 

have a different value at subsequent times.  Therefore, the removal of the common prior 

estimates must utilize the present (or “time-updated”) value of the common prior 

estimate.   

A search for the mechanisms and principles for managing and calculating the 

value of prior estimates produced little insight.  The sources used throughout this 

document discuss the need to determine the present value of common prior estimates, but 

no methods or discussions of algorithms are presented.  Given these facts, this appendix 

provides a derivation of the time-update formulations used in the distributed fusion 

graphs and models.  While the following discourses are not designed as formal proofs, 

they adhere to mathematical and logical theories to provide evidence for divining 

appropriate principles and methods. 
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The fusion of information sets containing data dependencies produce common 

prior sets that can be categorized into the following three general classes: 

1) Single common prior information set 

2) Multiple common prior information sets with common time references 

3) Multiple common prior information sets with dissimilar time references 

Valuation of single common prior sets is rather trivial as they are easily found through 

recursive applications of prediction operations of the estimation method.  The discussion 

of that case, however, is used as a basis for understanding the other two cases and is 

necessarily included. 

All three cases use a collection of information sets and associated transitions 

between them, such as that shown in Figure 73.  The sets are grouped according to 

common reference frames (such as state or time) as indicated by the dashed lines.  As the 

information from a set crosses these boundaries, its value transitions into one or more sets 

in the new reference frame.  For derivation purposes, the equation governing the 

transitions from some set “X” into set “Y” across a boundary is given as: 
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with arbitrary coefficients ak.  This equation is used as the basis for determining the 

appropriate approach in all three priors cases. 
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Figure 73: Network of Information Sets with a Single Common Prior. 

Valuation of Single Common Priors  

The valuation of single common priors can be determined by considering the 

network shown in Figure 73.  The value of information set A (represented as IA) is given 

by applying Equation (1) to fuse the current values of IB and IC as follows: 
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The values of IA(B) and IA(C) are found by Equation (55): 
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Similarly, IB and IC are determined by IB(D)U IB(E) and IC(E)U IC(F) respectively.  With 

independence between ID, IE, and IF, Equation (57) then becomes: 



 119

( )

( ) ∑ ∑∑∑

∑ ∑∑∑

= ===

= ===

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
==

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
==

M

k

k
M

j

j
Fj

M

j

j
Ejk

M

k

k
CCkA

M

k

k
M

j

j
Ej

M

j

j
Djk

M

k

k
BBkA

IaIaaFIEIaCI

IaIaaEIDIaBI

0 000

0 000

)()()(

)()()(

UU

UU

 (58) 

From Equation (58), it can be seen that the common information is a function of the 

transformed value of IE.  For linear dynamic systems (M = 1) such as those addressed in 

this paper, the common information is easily formulated to be: 
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It is therefore shown that the value of common information to be removed from a 

fused data set is found by recursively transforming its value at the original reference 

frame to the reference frame of the fusion event.  For KF-based estimation, Equation (59) 

can be shown as: 

( ) GvBuGvBuxFFx ++++= EA ˆ  (60) 

( ) GGQFGGQFFPFP ′+′′+′= EA  (61) 

Valuation of Multiple Common Priors with Common Time References  

The approach used for single common prior set valuation is extended to fusion 

events with multiple common prior sets that contain the same time reference.  Using the 

graph shown in Figure 74, the information sets IF and IG are the common sets for IB, IC, 

and ID when fused into IA.  The question at hand is whether IF and IG are fused at the 
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original reference frame and then transformed to the current reference frame, or if the 

transformation is performed on the two data sets before they are fused.   
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E F G

D

H   

Figure 74: Network of Information Sets with Multiple Common Priors at  

the Same Reference Frame. 

The two update options can be represented respectively as follows: 
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The consequences of the different prior formulations in the context of the 

transformations used here are given as follows: 
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These two formulations are not generally equivalent.  For example, the equations in (63) 

applied to linear systems become: 
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To determine the appropriate valuation of IF and IG in the fused sets IA(B), IA(C), 

and IA(D), the fusion of the three sets at IA are given as: 

[ ] )()()()()()( CIDIBIDICIBII AAAAAAA UUUU ==  (65) 

From Figure 74 it is given that IA(B) and IA(D) are independent, and the formulation 

becomes: 

[ ] )()()()()()( CIDIBIDICIBII AAAAAAA I+−++=  (66) 

Further investigation of the diagram shows that IC is composed entirely of the common 

elements IF and IG.  Thus the fusion equation given by (66) becomes: 
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The implication is that and the common information is equivalent to IA(C): 
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Noting that Equation (68) is equivalent to the first formulation from (63), the method for 

valuating the multiple common prior sets is given as: 
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Namely, the valuation of multiple common prior sets with common reference 

frames is found by first fusing the information sets at their originating reference frames 

before translating to the reference frame of the current fusion event.  For KF-based 

estimation, the equations are given as the following: 

( )( )[ ] GvBuxPxPPPFx +++= −−
GGFFGFA ˆˆ 11U  (70) 

( ) ( ) ( )[ ] GGQFGGQFFPGGQFFPFPPP ′+′′+′+′+′==
−−− 111

GFAGFA U  (71) 

Valuation of Multiple Common Priors with Different Time References  

The results of the above analysis can be used with minor alterations to assess the 

proper valuation of common priors that have different reference frames.  For the graph 

shown in Figure 75,  the common prior sets for  IA  are  IG  and  IJ.    As with the previous 
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Figure 75: Network of Information Sets with Multiple Common Priors at Different 

Reference Frames. 
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example, IA is given as the union of IB, IC, and ID.  Similarly, IB and ID are independent 

while IC is composed entirely by the set of common information. 

In this scenario, the following two valuation options are considered: 
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The first formulation translates the value of IJ to the same reference frame as IG, fuses the 

two sets, and then translates them to the IA reference frame.  The second formulation 

translates the two prior sets to the IA reference frame and then fuses them. 

As with the previous analysis, the fusion at IA is given as: 
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Thus once again the value of the common prior data to be removed is equivalent to value 

of IA(C) and is given as: 
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Noting that Equation (74) is equivalent to the first formulation from (72), the 

method for valuating the multiple common prior sets is given as: 
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Namely, the valuation of multiple common prior sets with different reference frames is 

found by the following three steps: 

1) Translate the priors to a common reference frame which is defined by the most 

“recent” information set; 

2) Fuse the common priors; 

3) Translate the fused set of priors to the current reference frame for removal from the 

fusion set. 

For KF-based estimation, the equations are given as the following by the two 

formulations: 

( ) ( )( )[ ] GvBuGvBuxFPxPPPFx +++++= −−
JFGGGFA ˆˆ 11U  (76) 
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Summary of Common Priors Valuation 

A formal reference upon which to base the techniques used for valuating common 

prior sets was not found in literature.  This appendix developed the valuation methods 
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used in the Local Fusion Graph derivation and in the computer-based model.  Three 

fundamental cases were investigated that cover the range of common prior 

configurations. 

1) Single Common Prior: Valuation is found through the recursive application of the 

transition function.  This function is given as the prediction function for estimation in 

linear dynamic systems. 

2) Multiple Common Priors with Same Reference Frame:  The common prior sets are 

first fused at their originating reference then recursively updated to the current 

reference frame. 

3) Multiple Common Priors with Different Reference Frames:  The common prior sets 

are translated to the reference frame of the most recent set and then fused before 

being recursively updated to the current fusion reference frame. 

While formal proofs are not used, fundamental mathematical operations are applied to 

networks of information sets in a manner that demonstrates the correctness of the 

solutions. 
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LIST OF VARIABLES AND SYMBOLS 

ak Generalized coefficient of order k 
ẽRMS Average root-mean-square (RMS) error 
F(k) State transition matrix 
G(k) State control matrix 
H(k) Measurement (observation) matrix 
I Generalized information set 
i, j, m Index variables  
K(k) Filter gain 
N Node quantity 
O(k) Function growth of order k 
P(k) Covariance matrix, fused estimate 

)(kP  Covariance matrix, common prior estimate 
P(ki|kj) Covariance matrix, time updated from time kj to time ki 
P(ki|ki) Covariance matrix, local estimate at time ki 
Q(k) Covariance of the state (process) noise 
R(k) Covariance of the measurement (observation) noise 
ki Time reference for time ki 
u(k) State input (or forcing) vector 
v(k) State (process) noise vector 
w(k) Measurement (observation) noise vector 
x(k) State vector 

)(ˆ kx  State vector, fused estimate 
)(kx  State vector, common prior estimate 

)|(ˆ ji kkx  State vector estimate, time updated from time kj to time ki 
)|(ˆ ii kkx  State vector, local estimate 

z(k) State measurement vector 
 
β(x;n,µ) Binomial distribution with n possible states and average probability of µ 
Φ(x) Probability of x 
µ Mean (average) probability 
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LIST OF ACRONYMS AND ABBREVIATIONS 

C3I  Command, Control, Communications and Intelligence 
COMSEC Communications security 
DARPA Defense Advanced Research Projects Agency 
DoD Department of Defense 
DSO Defense Spectrum Office (DoD) 
DTN Disruption Tolerant Networking 
FAA Federal Aviation Administration 
FCS Future Combat System 
KF Kalman Filter 
IETF Internet Engineering Task Force 
IP Internet Protocol 
MANET  Mobile Ad Hoc Network 
MC Monte Carlo 
MDR Message Delivery Rate 
msec Millisecond 
msg Message 
NASA National Aeronautics and Space Administration 
NCW Network Centric Warfare 
NETSEC Network security 
NSF National Science Foundation 
NeTS Networking Technology and Systems 
OSD Office of the Secretary of Defense (DoD) 
ProWiN Programmable Wireless Networking 
RF Radio frequency 
RMS Root-mean square 
s Second(s) 
SUO SAS Small Unit Operations Situational Awareness System 
TRANSEC Transmission security 
US United States (of America) 
XG neXt Generation (Communications Program) 
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