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4.1. Adaptation through Generalization - Ryszard Michalski

The adaptation to be discussed occurs in a highly
structured environment, which provides a.lnt of information
to the object or organism or system that learns. The system
itself 1is equipped with Knowledge of various high-level
concepts. A very important part of learning is the ability
to generalize over tasks. The adaptive processes to be
considered are very general, applicable to solving all Kinds
of problems which produce generalizations of initial
information. We have tried to identify, 1in the wvarious
methods which have been developed in machine learning and
related fields, certain principles which are common ,
regardless of the application domain or the terminology used.

We think of learning as a process of building or
modifying or improving descriptions, which here will be of
the symbolic varietv, Inductive learning involves building a
new description from an initial one by a process of
generalization. In addition to greater generality, the new
description should meet the criterion of being the most
Plausible among the possibie generalizations.

A taxonomy of learning types includes: (1) learning by
creating a data base, through simple memorization or by being

Programmed; (2) learning by being taught, in which the system
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accommodates new information within a given high-level
conceptual organization: (3) learning by analegy, as in the
application of Ohm's law to fluid dynamics; (4) learning from
example, in which classification of new observations serves
to generalize a given set of concepts fe.g., diseases): and
(5) learning from observation, where the observations must be
categorized without benefit of a pre-existing conceptual
structure, |

Buchanan suggested that another dimension, cutting
across learning from example and observation, was the
presence or absence of a teacher to provide examples that
were already classified. Michalski felt that the presence of
a teacher was what actually characterized learning from
example, Buchanan said there was an intermediate case in
which non-classified examples and non-examples of a single
Known concept were encountered.

The types of inductive learning Michalski has found
dominant in the literature include: (1) concept acquisition,
in which there are several examples representing certain
concepts;  (2) classification learning, or learning
discriminating descriptions which contain sufficient
information to distinguish between already known concepts;
(3)  sequence prediction, or learning from a (possibly
non-deterministic) generating rule; and (4) "conceptual
clustering,” a type of learning from observation that reveals
a taxonomic structure underlying an arbitrary collection of

entities,
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A paradigm which seems to encompass these Kinds of
inductive 1learning has been developed. (See, for example,
[Michalski, "Pattern recognition as rule-guided inductive
inference," IEEE Transactlions on Pattern Analysis and Machine
Intelligence, PAMI-2, 349-361, 1980).) We start with data
rules, descriptions in the form of production rules, frames,
conditional statements, or the lTike. In learning
discriminant descriptions, there may be a fixed number of’
generalization classes; these are not wusually provided in
learning from observation. Another important component of
the paradigm is the set of (problem) Knowledge rules, which
include both specific Knowledge of available descriptors
(reflecting the semantics of the problem domain} and various
generalization rules (reflecting problem-solving knowledge).
The problem is to determine a new, more general set of
decision rules, called hypotheses, which are complete,
consistent, and in some sense preferable,

Consistency means that the hypotheses do not engender
violations of the classification scheme of the original
rules. Completeness means that the hypotheses do not fail to
classify anytﬁing Iclassified by the original rules. The
preference criterion is used to select among competing sets
of complete and consistent hypotheses. The preference
criterion varies with the problem domain and can involve a
priority ordered group of factors, such as the computational
simplicity of the rules, the cost of measuring information
needed for rule evaluation, and the degree-of-fit to the

data.
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Data rules, hypotheses, problem knowledge rules, and
generalization rules are all expressed in an extended version
of first order predicate calculus. The main extensions are
(1) typing of variables (and functions and predicates) to
handle domains which are unordered, linearly ordered, or
hierarchically structured; (2) numerical quantifiers which
can specify a range within a domain; and (3) the operators of
internal conjunction and internal disjunction.

The transformation of data rules into hypotheses
involves application of generalization rules, which transform
one or more decision rules associated with a given
generalization class into a new rule which is equivalent to,
or more general than, the initial ones. Generalization
rules, which are similar to processes by which people
generalize information, include (1) dropping one or more
conditions from descriptions which are logical products of
conditions to be satisfied; (2) turning constants into
variables, so that two descriptions referring to different
objects can be combined; (3) extending quantification to an
-interva1 between two extreme wvalues, in a linearly ordered
domain; ;{4} ;climbing up one or more levels in the
generalization tree, 1in a hierarchically organized domain;
(5) changing the representation space by deriving new
descriptors from combinations of old ones: and (6]
associating descriptors, as is done to infer physical laws
from correlations of variables,

A complete but simple example of these Kinds of

inductio~ orocesses is a program which incrementally learns a
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rule for diagnosing soybean diseases. Initially, the system
is given only a few cases of each of the several diseases,
where a case may involve on the order of 30 descriptors of
the symptoms. By dropping apparently irrelevant conditions,
the program generates a first set of rules, which
discriminate new cases with 864 accuracy. In a second
iteration, attention to the var ious kKinds of wrong
classifications produces a new, more complicated set of
rules, which now discriminate new data with 98% accuracy.
one more iteration leads to a final, and again simpler, set
of hypotheses which are 100% accurate. .

Buchanan asked if complete hnowledée of the instances
seen so far was retained, in order that a new iteration would
not destroy prior correct relations. Michalski said ves,
that to assume the system had such a memory was more
interesting than the alternative. MacLaren requested
clarification of how the representation space could be
changed. Michalski answered that this occurred when new
descriptors were derived. After some discussion, it became
clear fhat g2 bottom level of basic attributes, likKe color and
size, was not subject to medification but only to successive
levels of transformation. Martinez asked how the set of
pocssible transformations was determined. Michalski indicated
that it was dependent on the problem and the insight of the
investigators. De Jong followed this up with a comment that
some of the transformations seemed quite domain dependent,
such as one having to do with arithmetic. Michalski

responded that there were many domains in which counting made
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sense.

Another example involves a hypothetical organism
_ confronted with an environment containing two kinds of
étructural]y complex “cells," edible and inedible. The task
is to survive and prosper by discovering those properties of
the cells which discriminate with respect to edibility. The
process of learning here again involves repetition of a
three-phase cycle. The first phase is "focus of ﬁttention,“
in which the organism uses its extensive built-in Knowledge
of concepts, like the number of segments in a cell’'s
circumference, to generate a symbolic description of each
cell. In the second phase, the program alters the current
descriptors in an attempt to formulate partial hypotheses
which are preferable according to the criteria of being
logically irredundant and sufficient to distinguish between
the two types of cells. In the third phase, the hypotheses
are tested on new data. Then the cycle begins again.
4.2. Problems Illustrating the Potential Use of Reproductive

Plans - Hugo Martinez

Three kinds of problems will be described. The first
two are typical of information processing problems arising in
molecular biology and illustrate the need for efficient
search methods in high dimension spaces. Genetic algorithms
might be useful.

The first problem 1is the commonality problem, which
arises - in the comparative analyses of DNA segments
responsible for a given function, such as the promoter

sequences from a variety of species. You want to find out
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what 50 or so such sequences have in common, in order to
determine the functionally significant structural component.

For pairs of sequences, commonality has been analyzed in
terms of evolutionary distance, or Kinship. The question
becomes one of the minimum number of mutations (including
additions and deletions) to be made in either one of the two
sequences in order to render them alike. Useful algorithms
have been devised to solve this problem. But since the time
complexity 1is proportional to the product of the sequence
lengths, it is a much harder problem for many sequences with
lengths on the order of 100 bases each.

The common structure aspect is also complicated by the
fact that it may be necessary to view a linear sequence in
the context of geometrical constraints, such as those imposed
by a.helicaT three-dimensional form. There seems to be a
need for a uniform approach, starting perhaps'with a careful
assessment of how the structure of a linear sequence can be
characterized. An idea currently being considered is based
on the old string completion problem, which was alluded to by
Michalski. Given a finite sequence over a specified
alphabet, we would like to know what the next letter would be
if the sequence were extended in a manner conforming to its
structure. The notion of structure is thus made equivalent
to “rules of formation"; and a common structure corresponds
to a common set of rules. It may be possible to generalize
to multiple strings the "Adaptive Production Systems" of
Waterman [Proceedings of the Fourth IJCAI, pp. 296-303,

19751, which use a heuristic template for generating
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inference rules about string formation.

This contemplated generalization would use a search
space in which each point is a set of inference rules. Two
difficulties confronting application of genetic algorithms
are (1) the string representation of sets of inference rules
is not evident, and (2) it is not clear what would constitute
a critic for guiding the search in such a space,

The second problem to be discussed relates to the
secondary structure of RNA molecules, in particular transfer
RNA's. The bonding of complementary base sequences in such
molecules gives rise to double-helical stems, with attached
single-stranded loops. The number of three-base or longer
sequences which can participate in stem formation is about
the same as the number of bases in the molecule. This means
that a molecule N bases long has 2+*N possible secondary
structures. In addition, loops can interact to form tertiary
structures called HKnots; but approaches to date have
neglected tertiary structure simply because of the complexity
of the secondary structure problem itself. Out of all the
possible secondary structures, the biochemist is looking for
those th;t ar; most probable in that they have the least free
energy.

De Jong asked if it was necessary to find a single
global optimum, or if it was a satisficing situation, in
which you could be happy with something reasonably close.
Martinez said that, while you would always like to have one
to play with, the experimenter normally wants to see the

several, competing near-optimal structures, in order to
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choose  among them according to other considerations.
Michalski inquired whether experimental data could be used to
guide the search. Martinez noted that diffraction studies
could help, when recrystallization could be achieved. Morgan
said that mutation experiments could also be helpful, notably
when changes in structure could be associated with changes in
function. MaclLaren asked if there were both upper and lower
bounds on the size of the loop. Martinez said no, that it
was still a wide open game. Even very large molecules could
not usually be divided into subproblems.
~ Martinez has developed an algorithm for the problem
which contrasts with previous approaches (as described by
Studnicka, et al. ["Computer methods for predicting the
secondary structure of single-stranded RNA," Nucleic Acids
Research, 5, 3365-3387, 1978]1). The new algorithm canl be
implemented on a minicomputer because of space efficiency.
The computation time is reasonable [about an hour) for
problems with 200 or 300 potentially double-helical regions.
But significantly more powerful methods are needed to deal
with newly arising problems involving thousands of regions.
The algorithm 1limits the search for minimum energy
secondary configurations to "orthodox" structures, in which
no two double-helical regions overlap (have a base in common )
or form knots with one another. In a significant further
reduction of the search space, attention can be limited to
“maximum exclusion paths" of regions nested within larger
regions, without loss of generality. Loosely, a region's

maximal exclusion path 1is that linear sequence of least
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deeply nested non-intersecting subregions which most
completely spans the region; a rigorcus definition has been
developed in terms of the relative values and interrelations
of parameters specifying region endpoints. Also rigorously
developed is a series of recursive relations which determine
the minimum orthodox-structure free energy of an RNA strand,
ultimately in terms of the base pairing and stacking energies
of its component regions.

In a post-workshop discussion, De Jong and Martinez
developed a representation of the RNA secondary structure
search space which would allow fairly natural application of
genetic algorithms. The (totally ordered) N possible
double-helical regions can easily be found, and their free
energies precalculated. An  N-bit string represents a
secondary structure in which the regions corresponding to
ones participate. The critic simply sums the free energies
of the participating regions. Some complications arise in
insuring that evolving structures do not contain overlapping
or Knotting pairs of regions.

The third problem is the "navigation problem," which has
been devised to examine the potential of reproductive plans
in a setting which clearly requires maintaining information
in both the population and individual modes. Search is
carried out over a space of programs which are formulated in
a production system language like that used in the cognitive
system of Holland and Reitman. As in biological systems, a
program is assumed to have a "genome" and a “phenome": the

latter is partially derived from the genome through an
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internally directed developmental process. The underived
part of the phenome is a learning algorithm for carrying out
the task. |

In the simplest form of the navigation problem, a
population of "explorers" traverse an environment of points
specified as fixed length binary numbers. In one time step,
an explorer can move from a current point to one of its K
neighbors (by pushing one of K levers), remembering only the
binary label of the previous point and which lever was
pressed. Although most point labels can partially vary with
time (to introduce the complication of ‘focusing on the
relevant information), a subset designated as "ports" have
unique, invariant labels which are known to the explorer. In
an overall attempt to find the shortest paths between all
pairs of ports, each explorer reports the set of such paths
it was able to discover.

The randomly generated productions comprising the
initial explorers’ genomes have binary string conditions
which specify 0, 1, or "don’t care" with respect to point

label strings; the associated actions specify which lever to

push. The productions are randomly divided into as many
classes as there are ports. After being generated, an
explorer undergoes deve lopment . In the current

implementation, the genome is simply copied; but more
sophisticated phencme generation me thods are under
consideration. The resulting production system is the data

base part of the phenome.
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The other part of the phenome is the explorer’'s route
finding algorithm, which currently works as follows. Placed
initially at random in the environment, the explorer must
begin by finding a designated first port, in a semi-random
search that is biased by the initial structure of the
phenome. Once the first port 1is found, the label of the
immediately preceding position is rendered "familiar" by
addition to the phenome of a production whose condition
perfectly matches that label and whose action is the lever
actually wused to reach the port. Subsequently, positions
already familiar are used in the same way to cause "waves of
familiarity" to spread out from discovered ports, which are
sought in order. Eventually, each pair of ports will become
linked by a familiarity path. The length of these paths is
combined with the number of genome productions, the final
number of phenome productions, and the total exploration
time, producing an evaluation of the explorer that reflects
both the efficiency of its exploration and the goodness of
its solution.

The reproductive plan is then applied to the current
population of ‘explorers, producing offspring in proportion to
parental goodness and modifying them by mutation and
(optionally) crossover. New explorers whose performance is
superior to that of the worst performing parents replace them
in the population.

In this work, the genome is regarded as a generative

description of the phenome, a description on which genetic

operators should act, The critic selectively acts at ths



e e

4. Tuesday Afternoon _ 51

phenotype level. The collective set of genomes constitutes
the population memory, while that of the individual is the
individual genome expressed in the corresponding phenome.
Several generalizations of the above paradigm are envisaged.
A most important one would permit adaptive development of the
explorer’'s route finding procedure, through evolution of

alternatives to gradual familiarization.
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