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Abstract

A CLASS OF OPERATORS WITH SYMBOL ON THE BLOCH SPACE OF A BOUNDED
HOMOGENEOUS DOMAIN

Robert Francis Allen, PhD

George Mason University, 2009

Dissertation Director: Dr. Flavia Colonna

Let X be a Banach space of holomorphic functions on a domain D in Cn. If ψ is a

holomorphic function on D, and ϕ is a holomorphic self-map of D, we define the weighted

composition operator on X with symbols ψ and ϕ by Wψ,ϕf = ψ(f ◦ ϕ). This operator

is a generalization of the multiplication operator Mψf = ψf and the composition operator

Cϕf = f ◦ ϕ, which are known as degenerate weighted composition operators.

The weighted composition operators have been an object of interest since the early 30’s

with their connection to the isometries of various spaces of analytic functions on the unit

disk. The Bloch space has been of interest since the early 70’s to function theorists and to

operator theorists. However, these two concepts did not meet until 2001.

Classical operator theory on spaces of holomorphic functions in several complex variables

is typically carried out on the unit ball and the unit polydisk. The respective function

theories are very different. In this dissertation, we attempt to unify the operator theory on

the Bloch space on these domains and extend it further to bounded homogeneous domains

in Cn.



In this unified manner, we study the fundamental properties of the weighted composition

operators:

1. For what symbols ψ and ϕ is Wψ,ϕ bounded?

2. For what symbols ψ and ϕ is Wψ,ϕ compact?

3. What is an expression for ||Wψ,ϕ||?

4. For what symbols ψ and ϕ is Wψ,ϕ an isometry?

5. What is the spectrum of Wψ,ϕ?

It is our hope that this work will mark the beginning of a paradigm shift in operator

theory research in several complex variables. This will bring in new fields of study such as

differential geometry into the study of operators, thus enriching the field.



Chapter 1: Introduction

The goal of this dissertation is to study the multiplication, composition, and weighted

composition operators on the Bloch space of bounded homogeneous domains in Cn. We

study these operators on a bounded homogeneous domain in a first attempt at unifying

operator theory research in several complex variables. Historically, when studying operators

on function spaces in several variables, either the unit ball or the unit polydisk is chosen as

the ambient space. Results from this research apply to both of these domains, as well as to

a large class of domains not typically considered.

• In Chapter 2, we recall the notion of a Bloch function, and provide historical perspec-

tive. We then give an overview of the linear structure of the space of Bloch functions

in one and higher dimensions.

• In Chapter 3, we collect pertinent definitions and results from function theory and

operator theory which are used throughout the dissertation. We then give a formal

definition of the operators studied in this dissertation.

• In Chapter 4, we study the multiplication operator on the Bloch space of the unit disk.

We extend what is known about this operator to include operator norm estimates,

the determination of the spectrum, and a characterization of the isometries amongst

the multiplication operators.

• In Chapter 5, we present the results from Chapter 4 extended to the Bloch space and

∗-little Bloch space of a bounded homogeneous domain. We characterize the bounded

and the compact multiplication operators, determine operator norm estimates and

the spectrum, and characterize the isometric multiplication operators on a large class

of bounded symmetric domains.
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• In Chapter 6, we study the spectrum of a composition operator on the Bloch space of

the unit disk, unit ball, and unit polydisk. We determine the spectrum of the isometric

composition operators for the unit disk, and a large class of isometric composition

operators on the unit polydisk. In the case of the unit ball, we determine the spectrum

for the isometric composition operator induced by an automorphism.

• In Chapter 7, we study the weighted composition operators on the unit disk. We de-

termine operator norm estimates, provide an alternative characterization for bounded-

ness and compactness to what is currently known, as well as determine the spectrum

of a large class of isometric weighted composition operators.

• In Chapter 8, we study the weighted composition operators from the Bloch space and

∗-little Bloch space of a bounded homogeneous domain into the space of bounded

holomorphic functions. We characterize boundedness, determine the operator norm,

and provide a sufficient condition for compactness. We also consider what these prop-

erties become when restricting to the unit ball and the unit polydisk. In addition, we

analyze what these results say about the multiplication and composition operators.

Finally, we show that in the environment of the unit polydisk, there are no isomet-

ric weighted composition operators from the Bloch space to the space of bounded

holomorphic functions.

• In Chapter 9, we analyze the weighted composition operators on the Bloch space

and ∗-little Bloch space of a general bounded homogeneous domain. From the re-

sults in Chapter 7, we determine a necessary and a sufficient condition for a weighted

composition operator to be bounded. We conjecture these two conditions to be a

characterization for boundedness. We also determine operator norm estimates. Fi-

nally, we establish a sufficient condition for compactness of the weighted composition

operator. We conjecture this condition to be necessary as well.

• In Chapter 10, we prove the conjectures presented in Chapter 9 in the case of the unit

ball and the unit polydisk.
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• In Chapter 11, we discuss topics which require further research, and possible strategies

for studying them.
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Chapter 2: Bloch Functions and the Bloch Space

2.1 The Bloch Constant

Let D = {z ∈ C : |z| < 1} denote the open unit disk in C. For a domain Ω in C, we define

H(Ω) to be the set of analytic functions on Ω and H∞(Ω) to be the Banach algebra of

bounded analytic functions on Ω, with the supremum norm

||f ||∞ = sup
z∈Ω
|f(z)| .

Consider the functions f ∈ H(D), by which we mean f is a function analytic on some

domain containing D, satisfying f(0) = 0 and f ′(0) = 1. All such functions are non-

constant since f ′(0) 6= 0, and thus are open by the Open Mapping Theorem (c.f. [31]). So

f(D) must contain a disk of positive radius. Is there a positive number r such that the

image of each such function contains a disk of radius r?

In 1925, André Bloch [14] answered the above question in the affirmative under more

general assumptions.

Definition 2.1.1. Let f be analytic on D. A schlicht disk in the image f(D) is an open

disk ∆ ⊂ f(D) such that there exists a domain Ω ⊂ D with f mapping Ω bijectively onto

∆. We denote the radius of the largest schlicht disk centered at f(z0) associated to f by

df (z0).

Definition 2.1.2. For a function f analytic on D, we define the Bloch number of f by

β(f) = sup
z∈D

df (z).
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Theorem 2.1.3. (Bloch’s Theorem) Let F denote the family of functions f analytic on D

such that f ′(0) = 1. Then the Bloch constant

B := inf
f∈F

β(f)

is strictly positive.

Bloch’s Theorem says that every function in F contains a schlicht disk of positive radius.

In fact, the proof of Bloch’s Theorem in [50] shows that B ≥ 0.21. Thus, we see that in the

image of D under any f in F , there exists a schlicht disk of radius at least 0.21.

Shortly after Bloch’s Theorem appeared, several papers were published establishing

bounds on the Bloch constant. In 1929, Landau [59] showed that B > .397. Then Ahlfors

[1] obtained the sharper bound B ≥
√

3/4. Subsequently, Heins [50] proved that the Bloch

number is strictly greater than
√

3/4. In 1990, Bonk showed that B >
√

3/4 + 10−14 [15]

and in 1996, Chen and Gauthier obtained B >
√

3/4 + 2 × 10−4 ≈ 0.4332127 [18]. As for

an upper bound on B, Ahlfors and Grunsky [2] established the inequality

B <
1√

1 +
√

3

Γ
(

1
3

)
Γ
(

11
12

)
Γ
(

1
4

) ≈ 0.471862

where Γ is the gamma function. They also conjectured that the value of B is this upper

limit. To this day, the exact value of B remains an open question.

2.2 Bloch Function on the Unit Disk

Definition 2.2.1. An analytic function f : D→ C is called Bloch if

βf := sup
z∈D

(1− |z|2)
∣∣f ′(z)∣∣ <∞. (2.1)
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The mapping f 7→ βf is called the Bloch semi-norm of f . The set of Bloch functions on D

is denoted by B(D), or simply B when the domain is understood.

From the definition of the Bloch semi-norm, we see that if f and g are Bloch functions,

then so are f + g and αf , where α ∈ C. Thus, B(D) is a complex vector space called the

Bloch space.

As suggested by its name, the Bloch semi-norm is a semi-norm on B(D). It fails to be

a norm because it cannot distinguish between constant functions; βf = 0 for any constant

function f . Define the equivalence relation ∼ on B(D) by f ∼ g if and only if f − g is

constant. Then the Bloch semi-norm is a norm on B(D)/ ∼ that is, the Bloch semi-norm

is a norm on the Bloch functions modulo the constants.

We wish to define a norm on the Bloch space itself. For f ∈ B(D), define

||f ||B = |f(0)|+ βf .

Then the map f 7→ ||f ||B is a norm called the Bloch norm. Thus, the Bloch space is a

normed linear space. Under this norm, the Bloch space is complete, and so is a Banach

space [8].

As we now show, the complex polynomials are also Bloch functions.

Proposition 2.2.2. Let f(z) = a0 + a1z + a2z
2 + · · ·+ anz

n. Then f is Bloch with

βf ≤ |a1|+
n∑
k=2

2k |ak|
k + 1

(
k − 1
k + 1

) k−1
2

.

Proof. First note that βαf = |α|βf and βf+g ≤ βf + βg for any complex number α and

functions f, g ∈ H(D). So, we must compute the Bloch semi-norm for the monomials
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pk(z) = zk. Clearly, βp1 = 1. Let k ≥ 2. By direct calculation,

βpk = sup
z∈D

(1− |z|2)
∣∣∣kzk−1

∣∣∣ = k sup
z∈D

(1− |z|2) |z|k−1 .

We can define the function f̃k : [0, 1]→ R as f̃k(x) = (1− x2)xk−1, and rewrite βpk as

βpk = k max
x∈[0,1]

f̃k(x).

By elementary calculus, we see that f̃k(x) has an absolute maximum in [0, 1] at
(
k−1
k+1

)1/2
.

Thus, we have

βf ≤
n∑
k=0

|ak|βpk ≤ |a1|+
n∑
k=2

2k |ak|
k + 1

(
k − 1
k + 1

) k−1
2

,

as desired.

A common tool used in analyzing Bloch functions is the Schwarz-Pick Lemma, which

we recall shortly. First, we define the automorphism group of D.

Definition 2.2.3. The set Aut(D) of bijective analytic self-maps of D is a group under

composition called the automorphism group of D.

Theorem 2.2.4. [31] Every element in Aut(D) can be written as ϕ(z) = λLa(z), for z ∈ D,

where |λ| = 1, a ∈ D and

La(z) =
a− z
1− az

.

Note that La in an involution which interchanges 0 and a.

Theorem 2.2.5. (Schwarz-Pick Lemma) Let f be an analytic function from D into D.

Then

(1− |z|2)
∣∣f ′(z)∣∣ ≤ 1− |f(z)|2
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for all z ∈ D. Furthermore, if f ∈ Aut(D), then equality holds for each z ∈ D; otherwise

the inequality is strict for all z ∈ D.

An application of the Schwarz-Pick Lemma illustrates the richness of the set of Bloch

functions; the bounded analytic functions on D are all Bloch functions.

Proposition 2.2.6. If f is an element of H∞(D), then f is Bloch. Moreover, βf ≤ ||f ||∞.

Proof. If ||f ||∞ = 0 then f is identically 0. Thus βf = 0. Now suppose 0 < ||f ||∞ < ∞.

Define g(z) = 1
||f ||∞

f(z). It is clear that ||g||∞ = 1, and so g maps D into D. By linearity

and the Schwarz-Pick Lemma, we have

1
||f ||∞

βf = βg = sup
z∈D

(1− |z|2)
∣∣g′(z)∣∣ ≤ sup

z∈D
(1− |g(z)|2) ≤ 1.

Therefore, we have βf ≤ ||f ||∞, as desired.

The containment of H∞(D) in B(D) is proper. Indeed, consider the function f(z) =

1
2Log(1−z) where Log denotes the principal branch of the logarithm. Then f is unbounded,

yet βf ≤ 1.

We use the Schwarz-Pick Lemma to show that the set of Bloch functions is Möbius

invariant, that is, invariant under the action of Aut(D).

Proposition 2.2.7. Let f be a Bloch function and ϕ an analytic self-map of D. Then f ◦ϕ

is Bloch. Moreover, βf◦ϕ ≤ βf and equality holds when ϕ ∈ Aut(D).

Proof. By direct calculation, and appealing to the Schwarz-Pick Lemma, we have

βf◦ϕ = sup
z∈D

(1− |z|2)
∣∣(f ◦ ϕ)′(z)

∣∣ = sup
z∈D

(1− |z|2)
∣∣ϕ′(z)∣∣ ∣∣f ′(ϕ(z))

∣∣
≤ sup

z∈D
(1− |ϕ(z)|2)

∣∣f ′(ϕ(z))
∣∣ = sup

w∈ϕ(D)
(1− |w|2)

∣∣f ′(w)
∣∣

≤ sup
w∈D

(1− |w|2)
∣∣f ′(w)

∣∣ = βf .
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If ϕ ∈ Aut(D), then (1 − |z|2) |ϕ′(z)| = 1 − |ϕ(z)|2 for all z ∈ D and ϕ(D) = D. Thus the

above inequalities are all equalities.

As we shall see, Bloch functions have several characterizations some of which are geo-

metric in nature, whereas some are purely function-theoretic. This is one reason why Bloch

functions are widely studied. The first characterization relates the Bloch semi-norm to the

radii of schlicht disks in the image of f .

Theorem 2.2.8. [85] Let f be analytic on D. Then the following are equivalent:

(a) The function f is Bloch.

(b) The radius of the largest schlicht disk in f(D) is bounded above, i.e., sup
z∈D

df (z) <∞.

The unit disk in C can be made into a metric space in several ways. Specifically, we can

make D into a metric space via the hyperbolic metric. The hyperbolic metric (also known

as the Poincaré metric and Bergman distance), between points z, w in D is defined as

ρ(z, w) =
1
2

log
1 + |Lz(w)|
1− |Lz(w)|

=
1
2

log
1 +

∣∣∣ z−w1−zw

∣∣∣
1−

∣∣∣ z−w1−zw

∣∣∣ . (2.2)

Theorem 2.2.9. [8] Let f be analytic in D. Then f is Bloch if and only if f is uniformly

continuous as a map from the metric space (D, ρ) to the metric space (C, d), where d is the

Euclidean distance d(z, w) = |z − w|, for z, w ∈ C.

Theorem 2.2.10. [27] Let f be analytic in D. Then f is Bloch if and only if it is Lipschitz

with respect to the hyperbolic metric of D and the Euclidean metric in C, that is, there exists

M > 0 such that

|f(z)− f(w)| ≤Mρ(z, w)
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for all z, w ∈ D. Furthermore the Bloch semi-norm is precisely the Lipschitz number

βf = sup
z 6=w

|f(z)− f(w)|
ρ(z, w)

.

The Riemann sphere Ĉ is the one-point compactification of the complex plane, that is

Ĉ = C ∪ {∞}. The Riemann sphere is compact under the chordal metric, defined by

χ(u, v) =
2 |u− v|√

(1 + |u|2)(1 + |v|2)
, for u, v ∈ C

and

χ(u,∞) =
2√

1 + |u|2
, for u ∈ C.

Definition 2.2.11. Let D be a domain in C. A function f : D → Ĉ is meromorphic on D

if f is analytic on D except possibly at isolated singularities, each of which is a pole.

Definition 2.2.12. [31] A family F of meromorphic functions on domain D is normal on

D if every sequence in F has either a subsequence that converges uniformly on compact

subsets, with respect to the chordal metric, of D to an analytic function or a subsequence

that converges uniformly on compact subsets, with respect to the chordal metric, of D to

∞.

The next characterization of Bloch functions is a purely function-theoretic result.

Theorem 2.2.13. [74] Let f be analytic on D. Then the following are equivalent:

(a) The function f is Bloch.

(b) The family {(f ◦ ϕ)(z)− (f ◦ ϕ)(0) : ϕ ∈ Aut(D)} is normal on D.
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(c) There exists a constant α > 0 and a univalent (one-one) analytic function g on D

such that f(z) = α log g′(z).

The last characterization of Bloch functions on the unit disk that we present is both

geometric and function-theoretic in nature.

Theorem 2.2.14. [9] A function f analytic on D is Bloch if and only if the family


n∑
j=1

aj(f ◦ ϕj)(z) : ϕj ∈ Aut(D), aj ∈ C,
n∑
j=1

|aj | ≤ 1, n ∈ N


is normal on D.

Definition 2.2.15. Let V be a complex vector space and S a subset of V .

(a) S is said to be balanced if αS ⊆ S for all scalars α such that |α| ≤ 1, where αS =

{αs : s ∈ S}.

(b) S is said to be convex if for all points u, v ∈ S, the line segment {tu+(1−t)v : t ∈ (0, 1)}

is contained in S.

(c) S is said to be absolutely convex if it is convex and balanced and the absolute convex

hull of S is the intersection of all absolutely convex sets containing S.

It turns out the family of functions in Theorem 2.2.14 is the absolute convex hull of the

orbit of f under Aut(D), which is defined as {f ◦ ϕ : ϕ ∈ Aut(D)}.

So, in summary, Bloch functions have several characterizations, which we compile here.

Theorem 2.2.16. Let f be analytic on D. Then the following are equivalent:

(a) The function f is Bloch.

(b) The radii of the schlicht disks in f(D) are bounded above.
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(c) The function f is uniformly continuous as a map from the metric space (D, ρ) to the

metric space (C, d), where ρ is the hyperbolic distance on D and d is the Euclidean

distance in C.

(d) The function f is Lipschitz as a function between the metric spaces (D, ρ) and (C, d).

(e) The family {(f ◦ ϕ)(z)− (f ◦ ϕ)(0) : ϕ ∈ Aut(D)} is normal on D.

(f) There exists a constant α > 0 and a univalent analytic function g on D such that

f(z) = α log g′(z).

(g) The absolute convex hull of the orbit of f under Aut(D) is a normal family on D.

2.3 Bloch Functions in Higher Dimensions

Definition 2.3.1. [58] Let Ω be a domain in Cn. A function f : Ω → C is holomorphic

if f is analytic in each variable separately, that is, for each j ∈ {1, . . . , n} and each fixed

z1, . . . , zj−1, zj+1, . . . , zn the function

η 7→ f(z1, . . . , zj−1, η, zj+1, . . . , zn)

is analytic on the set

{η ∈ C : (z1, . . . , zj−1, η, zj+1, . . . , zn) ∈ Ω}.

It is natural to wonder how one might generalize the notion of a Bloch function to higher

dimensions. A consequence of the Riemann Mapping Theorem is that every proper, simply-

connected domain Ω in C is biholomorphic to D, that is, there is a bijective holomorphic

map Φ : Ω → D. This is one reason why we study Bloch functions primarily on the unit

disk. However, in higher dimensions, there is no analog to the Riemann Mapping Theorem.

This complicates how the unit disk is generalized in Cn. There are two very natural

generalizations of D in Cn:
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(1) The unit ball

Bn =

(z1, . . . , zn) ∈ Cn :
n∑
j=1

|zj |2 < 1

 .

(2) The unit polydisk

Dn = D× · · · ×D︸ ︷︷ ︸
n-times

= {(z1, . . . , zn) ∈ Cn : |zj | < 1, j = 1, . . . , n} .

Poincaré’s Theorem states that for n ≥ 2, Bn and Dn are not biholomorphic. In fact, the

set of biholomorphic equivalence classes of domains close to the ball in any reasonable sense

is uncountable [58]. Thus, we look for a type of domain which includes Bn and Dn, but

gives more choices which do not have restrictions to D in the complex plane.

If we choose a bounded domain D in Cn, it must have a geometry which resembles the

hyperbolic geometry on D induced by the Poincaré metric ρ. This leads us to the Bergman

metric on bounded subsets of Cn.

Definition 2.3.2. A Hermitian form on a complex vector space V is a function f : V ×V →

C which satisfies the following properties for all u, v, w ∈ V , and α, β ∈ C:

(a) f(αu+ βv,w) = αf(u,w) + βf(v, w),

(b) f(u, v) = f(v, u).

A Hermitian metric on D ⊂ Cn is given by assigning to each point z ∈ C a positive-definite

Hermitian form Hz(u, v) on Cn in such a way that the entries of the matrix of Hz are

infinitely differentiable functions of z.

Let D be a bounded domain in Cn and {φk} be an arbitrary orthonormal basis for the
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Hilbert space

H =
{
f ∈ H(D) :

∫
D
|f(z)|2 dV (z) <∞

}
,

where dV denotes Lebesgue measure on Cn. For all z ∈ D, the Bergman kernel on D at z

is defined as

K(z, z) =
∞∑
k=1

φk(z)φk(z).

The Bergman metric is the Hermitian metric whose matrix, with respect to the usual basis

for Cn, has (j, k)-th entry

1
2

∂2

∂zj∂zk
logK(z, z).

Remark 2.3.3. On initial inspection, it may not be apparent how the Bergman kernel

is dependent on z. Since ϕk is a holomorphic function on D, then it has a power series

representation

φk(z) =
∞∑
j=0

ajz
j .

Thus, we can write the conjugate as

φk(z) =
∞∑
j=0

ajz
j ,

and thus we see the dependence on z.

Every bounded domain D of Cn has an associated Bergman metric Hz [51].
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Example 2.3.4. The Bergman metric on Bn is

Hz(u, v) =
n+ 1

2
· (1− ||z||2) 〈u, v〉+ 〈u, z〉 〈z, v〉

(1− ||z||2)2
,

where u, v ∈ Cn, z ∈ Bn and 〈u, v〉 =
n∑
k=1

ukvk is the standard inner product in Cn.

Example 2.3.5. The Bergman metric on Dn is

Hz(u, v) =
n∑
j=1

ujvj

(1− |zj |2)2
, (2.3)

where u, v ∈ Cn and z ∈ Dn.

Example 2.3.6. For n = 1, the expressions of the Bergman metric on Bn and Dn reduce

to

Hz(u, u) =
|u|2

(1− |z|2)2
(2.4)

for u ∈ C, which is the Poincaré metric on D.

If γ : [0, 1]→ D is a piecewise smooth curve, then the length of γ in the Bergman metric

is given by

`(γ) =
∫ 1

0
Hγ(t)(γ

′(t), γ′(t))1/2 dt.

The Bergman distance function on D is defined for z, w ∈ D by

ρ(z, w) = inf{`(γ) : γ : [0, 1]→ D, γ piecewise smooth, γ(0) = z, γ(1) = w}.
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Definition 2.3.7. Let D be a domain in Cn. The automorphism group of D is defined as

Aut(D) = {ϕ : D → D | ϕ biholomorphic}.

Example 2.3.8. [82] The automorphism group of Bn is

Aut(Bn) = {U ◦ ϕa : U unitary, a ∈ Bn},

where for z ∈ Bn, ϕ0(z) = z and for a ∈ Bn \ {0}

ϕa(z) =
a− Pa(z)− (1− ||a||2)1/2Qa(z)

1− 〈z, a〉
,

with Pa(z) =
〈z, a〉
||a||2

· a and Qa(z) = z − Pa(z).

Example 2.3.9. [81] The automorphism group of Dn is

Aut(Dn) = {(T1(zτ(1)), . . . , Tn(zτ(n))) : Tk ∈ Aut(D), τ ∈ Sn},

where Sn is the group of permutations of the set {1, 2, . . . , n}.

Definition 2.3.10. For any function ϕ = (ϕ1, . . . , ϕn) mapping a domain D ⊂ Cn into Cn

and for z ∈ D, we define the Jacobian matrix of ϕ at z, to be the n×n matrix Jϕ(z) whose

(j, k)-entry is
∂ϕj
∂zk

(z).

Definition 2.3.11. A domain D in Cn is called homogeneous if Aut(D) acts transitively on

D, that is, for every z and w in D there exists an automorphism ϕ of D such that ϕ(z) = w.

We note that the spaces Bn and Dn are homogeneous since for each of their points a

there exists an automorphism ϕa that interchanges a and 0, and hence for each pair of
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points z and w in their respective domains, the automorphism ϕw ◦ ϕz maps z to w.

Much work has been done in defining Bloch functions on domains in Cn. The notion

of Bloch functions on bounded homogeneous domains was introduced in 1975 by Hahn [45]

using terminology and notation from differential geometry. In 1980, Timoney (cf. [88] and

[89]) defined Bloch functions on bounded homogeneous domains using an approach more in

line with the definition of Bloch function on the unit disk.

Bloch functions have been defined on more general domains in Cn. Krantz and Ma

[57] defined Bloch functions on strongly pseudoconvex domains. Such domains, however,

have automorphism groups which can be sparse or even trivial and more geometric tools

are needed for the study of Bloch functions. For this reason, we restrict our attention to

bounded homogeneous domains. We will follow the approach of Timoney, which we outline

now.

Definition 2.3.12. Let f : D → C be a holomorphic function on a bounded homogeneous

domain D in Cn. Then for z ∈ D, define

Qf (z) = sup
u∈Cn\{0}

|∇(f)(z)u|
Hz(u, u)1/2

where ∇(f)(z)u =
n∑
j=1

∂f

∂zj
(z)uj . The function f is called Bloch if

βf = sup
z∈D

Qf (z) <∞.

The mapping f 7→ βf is called the Bloch semi-norm. With the Bloch semi-norm being

defined in terms of the linear operator ∇, it is easily verified that for f and g Bloch functions

on D, βf+g ≤ βf + βg and βαf = |α|βf where α ∈ C. Thus, the space B(D) is a complex

vector space. The mapping f 7→ βf is a semi-norm on B(D). Timoney [88] showed that

B(D) is a Banach space under βf , modulo the constants.
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Recalling the one-dimensional case, to make a norm which distinguishes constant func-

tions, the term |f(0)| is added. If D is a bounded homogeneous domain, it is not necessarily

the case that 0 ∈ D. Instead, we fix a point z0 ∈ D and define ||f ||B = |f(z0)|+ βf . Under

this norm, the set of Bloch functions is a Banach space. For convenience, we shall assume

throughout that 0 ∈ D and take z0 = 0.

If we consider the Bergman metric on D from (2.4), we see that for z ∈ D and f ∈ H(D),

Qf (z) = sup
u∈C\{0}

|f ′(z)| |u|
|u|

1−|z|2
= (1− |z|2)

∣∣f ′(z)∣∣ ,

and f is a Bloch function if and only if sup
z∈D

(1 − |z|2)
∣∣f ′(z)∣∣ < ∞, which is the familiar

condition (2.1).

Definition 2.3.13. Let D be a bounded homogeneous domain and ϕ a holomorphic self-

map of D. The Bergman constant Bϕ of ϕ is defined by Bϕ = sup
z∈D

Bϕ(z), where

Bϕ(z) = sup
u∈Cn\{0}

Hϕ(z)(Jϕ(z)u, Jϕ(z)u)1/2

Hz(u, u)1/2
.

Theorem 2.3.14. [88] Let D be a bounded homogeneous domain and ϕ a holomorphic

self-map of D. Then there exists c > 0, depending only on D, such that

Hϕ(z)(Jϕ(z)u, Jϕ(z)u) ≤ cHz(u, u),

for all z ∈ D and u ∈ Cn. Furthermore, if ϕ ∈ Aut(D), then

Hϕ(z)(Jϕ(z)u, Jϕ(z)u) = Hz(u, u),

for all z ∈ D and u ∈ Cn.
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The following is a consequence of Definition 2.3.13 and Theorem 2.3.14.

Corollary 2.3.15. Let D be a bounded homogeneous domain and ϕ a holomorphic self-map

of D. Then the Bergman constant Bϕ of D is bounded above by a constant depending only

on D. Furthermore, if ϕ ∈ Aut(D), then Bϕ = 1.

The following result shows that the set of Bloch functions is invariant under composition

with holomorphic self-maps of the domain.

Proposition 2.3.16. Let D be a bounded homogeneous domain, ϕ a holomorphic self-map

of D, and f a Bloch function on D. Then f ◦ ϕ is Bloch.

Proof. Let z ∈ D and u ∈ Cn \ {0}. Then for Jϕ(z)u 6= 0,

|∇(f ◦ ϕ)(z)u|
Hz(u, u)1/2

=
|∇(f)(ϕ(z))Jϕ(z)u|

Hz(u, u)1/2

=

(
Hϕ(z)(Jϕ(z)u, Jϕ(z)u)1/2

Hz(u, u)1/2

)
|∇(f)(ϕ(z))Jϕ(z)u|

Hϕ(z)(Jϕ(z)u, Jϕ(z)u)1/2

≤ Bϕ(z)
|∇(f)(ϕ(z))Jϕ(z)u|

Hϕ(z)(Jϕ(z)u, Jϕ(z)u)1/2

≤ Bϕ(z)Qf (ϕ(z)).

Taking the supremum over all u ∈ Cn \ {0}, we obtain

Qf◦ϕ(z) ≤ Bϕ(z)βf . (2.5)

Taking the supremum over all z ∈ D, we have Qf◦ϕ ≤ Bϕβf . By Corollary 2.3.15, Bϕ is

bounded above by a constant independent of f and ϕ, so f ◦ ϕ is Bloch.

Let D be a bounded homogeneous domain in Cn. Given two holomorphic functions f

and g on D, and z ∈ D, we wish to have an upper bound on Qfg(z). Using the product

19



rule, we see that for z ∈ D

Qfg(z) = sup
u∈Cn\{0}

|∇(fg)(z)u|
Hz(u, u)1/2

= sup
u∈Cn\{0}

|f(z)∇(g)(z)u+ g(z)∇(f)(z)u|
Hz(u, u)1/2

≤ sup
u∈Cn\{0}

|f(z)∇(g)(z)u|
Hz(u, u)1/2

+ sup
u∈Cn\{0}

|g(z)∇(f)(z)u|
Hz(u, u)1/2

= |f(z)| sup
u∈Cn\{0}

|∇(g)(z)u|
Hz(u, u)1/2

+ |g(z)| sup
u∈Cn\{0}

|∇(f)(z)u|
Hz(u, u)1/2

.

Thus,

Qfg(z) ≤ |f(z)|Qg(z) + |g(z)|Qf (z). (2.6)

If we restrict our attention to the unit ball Bn, we have a useful alternative definition

of Qf (z) and characterization of Bloch functions..

Theorem 2.3.17. [100] Let f : Bn → C be holomorphic. For all z ∈ Bn

Qf (z) =
[
(1− ||z||2)

(
||∇f(z)||2 − |〈∇(f)(z), z〉|2

)]1/2
.

Theorem 2.3.18. [100] Let f be holomorphic on Bn. Then the following conditions are

equivalent:

(a) f is Bloch.

(b) (1− ||z||2) ||∇(f)(z)|| is bounded in Bn.

(c) (1− ||z||2) |〈∇(f)(z), z〉| is bounded in Bn.

This formulation is useful when trying to verify certain holomorphic functions are Bloch.

Its main advantage is the elimination of the supremum over all u ∈ Cn \{0}, which appears
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in both the numerator and denominator of the original definition of Qf (z). We will use

Theorem 2.3.17 to show that a particular function that will be very useful in later chapters

is Bloch.

Lemma 2.3.19. Let ϕ be a holomorphic self-map of Bn and λ ∈ Bn. Then the function

f(z) = Log
1

1− 〈z, ϕ(λ)〉
, z ∈ Bn,

is Bloch and ||f ||B ≤ 2.

Proof. We note that if ϕ(λ) = 0, then f is the constant function 0, and thus Bloch with

Bloch norm 0. So we assume ϕ(λ) 6= 0. For convenience, we will calculate

Qf (z)2 = (1− ||z||2)
[
||∇f(z)||2 − |〈∇(f)(z), z〉|2

]
.

Since

∂f

∂zk
(z) =

ϕk(λ)
1− 〈z, ϕ(λ)〉

for all k ∈ {1, . . . , n}, we obtain

∇(f)(z) =
ϕ(λ)

1− 〈z, ϕ(λ)〉

and

||∇f(z)||2 =
||ϕ(λ)||2

|1− 〈z, ϕ(λ)〉|2
.
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Furthermore,

〈∇(f)(z), z〉 =
n∑
k=1

zk
∂f

∂zk
(z) =

n∑
k=1

zkϕk(λ)
1− 〈z, ϕ(λ)〉

=
〈z, ϕ(λ)〉

1− 〈z, ϕ(λ)〉
.

Finally, we have

Qf (z)2 = (1− ||z||2)

(
||ϕ(λ)||2 − |〈z, ϕ(λ)〉|2

|1− 〈z, ϕ(λ)〉|2

)
. (2.7)

By the Cauchy-Schwarz inequality, |〈z, ϕ(λ)〉| ≤ ||z|| ||ϕ(λ)||. So

|1− 〈z, ϕ(λ)〉| ≥ 1− |〈z, ϕ(λ)〉| ≥ 1− ||z|| ||ϕ(λ)|| . (2.8)

Since z and ϕ(λ) are both elements of the unit ball, (2.8) yields

|1− 〈z, ϕ(λ)〉| ≥ 1− ||z|| . (2.9)

In applying (2.9), we get

1− ||z||2

|1− 〈z, ϕ(λ)〉|
≤ (1− ||z||)(1 + ||z||)

1− ||z||
= 1 + ||z|| ≤ 2. (2.10)

Furthermore, using (2.9), the inequality ||ϕ(λ)|| − |〈z, ϕ(λ)〉| ≤ 1 − |〈z, ϕ(λ)〉|, and (2.10),
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from (2.7) we obtain

Qf (z)2 ≤ 1− ||z||2

|1− 〈z, ϕ(λ)〉|
||ϕ(λ)||2 − |〈z, ϕ(λ)〉|2

1− |〈z, ϕ(λ)〉|

≤
2
(
||ϕ(λ)||2 − |〈z, ϕ(λ)〉|2

)
1− |〈z, ϕ(λ)〉|

=
2 (||ϕ(λ)||+ |〈z, ϕ(λ)〉|) (||ϕ(λ)|| − |〈z, ϕ(λ)〉|)

1− |〈z, ϕ(λ)〉|

≤ 2 (||ϕ(λ)||+ |〈z, ϕ(λ)〉|)

≤ 4.

Hence ||f ||B = |f(0)|+ supz∈Bn Qf (z) ≤ 2.

Definition 2.3.20. Let D be a domain in Cn and for j ∈ {1, . . . , n} define the projection

map pj : Cn → C to be pj(z1, . . . , zn) = zj . A function g : D→ D is holomorphic if for each

j ∈ {1, . . . , n}, pj ◦ g : D→ C is analytic.

Definition 2.3.21. Given a domain D in Cn, let f ∈ H(D), r > 0 and w0 ∈ C. The set

∆w0(r) = {w ∈ C : |w − w0| < r}

is called a schlicht disk in the range of f if there exists a holomorphic function g : D → D

such that f ◦ g maps D bijectively onto ∆w0(r).

Definition 2.3.22. [58] Let Ω ⊆ Cn be an open set. A family of holomorphic functions F

from Ω to D is normal if every sequence in F contains either a subsequence that converges

uniformly on compact subsets to a holomorphic function from Ω to D or a subsequence {fj}

such that for every K1 relatively compact in Ω and K2 relatively compact in D, there is a

J > 0 that satisfies fj(K1) ∩K2 = ∅ when j ≥ J .
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We have the following characterizations of Bloch functions on bounded homogeneous do-

mains.

Theorem 2.3.23. Let D be a bounded homogeneous domain in Cn and let f : D → C be a

holomorphic function. Then the following conditions on f are equivalent:

(a) The function f is Bloch.

(b) The radii of the schlicht disks in the range of f are bounded above.

(c) As a function from the metric space (D, ρ) (where ρ is the distance function associated

with the Bergman metric on D) to the metric space (C, d) (where d is Euclidean

distance), the function f is uniformly continuous.

(d) The function f is a Lipschitz map as a function from D under the Bergman metric

to C under the Euclidean metric. Furthermore

βf = sup
z 6=w

|f(z)− f(w)|
ρ(z, w)

.

(e) The family

{(f ◦ ϕ)(z)− (f ◦ ϕ)(z) : ϕ ∈ Aut(D)}

is normal for every z ∈ D.

(f) The supremum

sup {||∇(f ◦ ϕ)(z)|| : ϕ ∈ Aut(D)}

is finite for every z ∈ D.

(g) The set {f ◦ g | g : D → D, g holomorphic} is a family of Bloch functions with

uniformly bounded Bloch norm.

(h) The family {(f ◦ g)(z)− (f ◦ g)(0) | g : D→ D, g holomorphic} is normal.
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Note that this theorem is an analog to Theorem 2.2.16, for the one-dimensional case. Char-

acterization (d) is due to Allen and Colonna [4], and the others are due to Timoney [88].

The study of Bloch functions on general bounded homogeneous domains is complicated

by the fact that these domains and their automorphism groups do not have a canonical

representation. To overcome this complication, when more structure is needed, we restrict

our study to Bloch functions on bounded symmetric domains in Cn.

Definition 2.3.24. A domain D ⊆ Cn is called symmetric at z0 ∈ D if there exists an

automorphism ϕ of D such that ϕ ◦ ϕ is the identity map on D and z0 is an isolated fixed

point of ϕ. The domain D is called symmetric if it is symmetric at each z ∈ D.

Any bounded symmetric domain in Cn is homogeneous [51]. Conversely, any bounded

homogeneous domain which is symmetric at a point is symmetric. Thus Bn and Dn are

symmetric since they are homogeneous and symmetric at the origin via the automorphism

ϕ(z) = −z. While bounded homogeneous domains in dimensions 2 and 3 are symmetric,

there are examples of bounded homogeneous domains in dimensions greater than 3 which

are not symmetric [73].

Definition 2.3.25. A bounded symmetric domain D is irreducible if it can not be written

as the direct product of other bounded symmetric domains.

Cartan [17] showed that every bounded symmetric domain in Cn is biholomorphic to a

finite product of irreducible bounded symmetric domains, unique up to order. Moreover,

Cartan classified the irreducible bounded symmetric domains into six classes. Four of the

classes are referred to as Cartan classical domains, whereas the other two, each consisting

of a single domain of dimension 16 and 27, respectively, are referred to as the exceptional

domains.

Let Mm,n(C) denote the set of m × n matrices with entries in C, and let Mn(C) =

Mn,n(C). The Cartan classical domains, and their corresponding Bergman metrics are
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defined as follows:

R1 = {Z ∈Mm,n(C) : Im − ZZ∗ > 0}, for m ≥ n ≥ 1,

HZ(U, V ) =
m+ n

2
Trace

[
(Im − ZZ∗)−1U(In − Z∗Z)−1V ∗

]
.

R2 = {Z ∈Mn(C) : Z = ZT , In − ZZ∗ > 0}, for n ≥ 2,

HZ(U, V ) =
n+ 1

2
Trace

[
(In − ZZ∗)−1U(In − Z∗Z)−1V ∗

]
.

R3 = {Z ∈Mn(C) : Z = −ZT , In − ZZ∗ > 0}, for n ≥ 5,

HZ(U, V ) =
n− 1

2
Trace

[
(In − ZZ∗)−1U(In − Z∗Z)−1V ∗

]
.

R4 =
{
z ∈ Cn : A > 0,

∣∣∣∑ z2
j

∣∣∣2 < 1, n ≥ 5
}
,

Hz(u, v) = nAu[A(In − zT z) + (In − zT z)Z∗z(In − zT z)]v∗,

where the superscript T indicates the transpose, the superscript ∗ is the conjugate transpose,

and A =
∣∣∣∑ z2

j

∣∣∣2+1−2 ||z||2. Here we use Kobayashi’s definitions, except that the Bergman

metrics have been divided by 4 [55]. Also, we require n ≥ 2 for domains in R2 and n ≥ 5 for

domains in R3 and R4. These restrictions guarantee that the irreducible domains belong to

a single class of domains.

The descriptions of the exceptional domains involves the construction of certain non-

associative algebras, and thus we will not describe them here. The reader is referred to [36]

for a description of the exceptional domains. We denote by R5 the exceptional domain of

dimension 16, and by R6 the exceptional domain of dimension 27.

A bounded symmetric domain D is said to be in standard form if it can be written as

D = D1×D2×· · ·×Dk where each factor Dj is a Cartan classical domain or an exceptional

domain.
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Definition 2.3.26. If D is a bounded symmetric domain, we define the Bloch constant of

D as

cD = sup {βf : f ∈ H(D), f(D) ⊆ D}

and the inner radius of D as

rD = inf {H0(u, u)1/2 : u ∈ ∂D′}

where D′ is a bounded symmetric domain in standard form biholomorphically equivalent

to D and ∂D′ is the boundary of D′.

Cohen and Colonna in [24] showed that for any bounded symmetric domain D,

cD ≤
1
rD

and if D is a Cartan classical domain, then

cD =
1
rD

=



√
2/(m+ n), if D ∈ R1√
2/(n+ 1), if D ∈ R2√
1/(n− 1), if D ∈ R3√
2/n, if D ∈ R4.

(2.11)

In [93] Zhang extended this result to the exceptional domains, for which he calculated

the Bloch constants to be

cD =
1
rD

=


1/
√

6, if D = R5

1/3, if D = R6.

(2.12)
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Theorem 2.3.27. If D = D1×· · ·×Dk is a bounded symmetric domain in standard form,

then

cD = max
1≤j≤k

cDj ,

where D1, . . . , Dk are the irreducible factors of D.

The statement and the proof of Theorem 2.3.27 under the hypothesis that D has no

exceptional factors was given in [24]. However, the proof can be easily extended to include

the exceptional factors.

2.4 Important Subspace of the Bloch Space

In this section, we discuss important subspaces of the Bloch space, both on the unit disk

and on bounded homogeneous domains.

2.4.1 The Little Bloch Space

Definition 2.4.1. The little Bloch space is the subspace B0(D) of B(D) consisting of all

functions f satisfying

lim
|z|→1

(1− |z|2)
∣∣f ′(z)∣∣ = 0.

It is an immediate consequence of the Schwarz-Pick Lemma that B0(D) is Möbius in-

variant, i.e., if f is a function in the little Bloch space and ϕ is an automorphism of D then

f ◦ϕ is in the little Bloch space. From the definition, it is immediate that B0(D) contains all

Bloch functions whose derivatives are bounded on D. In particular, the set of polynomials

is contained in B0(D). In fact, B0(D) is the closure of the polynomials in B(D) and the

little Bloch functions can be approximated by dilations of Bloch functions.

Theorem 2.4.2. [8] B0(D) is a separable (strongly) closed nowhere dense subspace of B(D)

and is equal to the closure of the polynomials in the Bloch norm. Furthermore, f ∈ B0(D)
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if and only if

||f(z)− f(zζ)||B → 0 as ζ → 1, |ζ| ≤ 1.

There is a relation between the Bloch space and the little Bloch space in terms of dual

spaces. For a complex vector space V , the dual space V ∗ of V is the vector space of linear

functionals on V .

Theorem 2.4.3. [80] The double dual space of the little Bloch space is isomorphic to the

Bloch space, that is, B∗∗0 (D) ∼= B(D).

Definition 2.4.4. A bounded linear operator T : X → Y between normed linear spaces is

called an isometry if

||Tx||Y = ||x||X

for all x ∈ X.

The isometries on the subspace B̃0 of the little Bloch space consisting of the functions

which fix the origin are characterized in the following result.

Theorem 2.4.5. [22] If S : B̃0 → B̃0 is an isometry, then there exists a conformal auto-

morphism ϕ of D and λ ∈ ∂D such that Sf = λ(f ◦ ϕ− f(ϕ(0))) for all f ∈ B0(D).

2.4.2 The Besov Space

Definition 2.4.6. For 1 < p < ∞, the analytic Besov space Bp is defined as the set of

analytic functions f on D such that

||f ||pp =
∫
D

∣∣f ′(z)∣∣p (1− |z|2)p−2 dA(z)

=
∫
D

∣∣f ′(z)∣∣p (1− |z|2)p dµ(z) <∞,
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where dA denotes the normalized 2-dimensional Lebesgue measure and

dµ(z) =
1

(1− |z|2)2
dA(z).

In the limiting cases of p = 1 and p =∞, we define the Besov spaces as

B1 =
{
f ∈ H(D) :

∫
D

∣∣f ′′(z)∣∣ dA(z) <∞
}
, and

B∞ = B(D).

Since the function f(z) =
1

1− |z|2
is the density for the hyperbolic metric on D, dµ can

be considered as the hyperbolic area density. The Besov space Bp is a Banach space under

the norm

||f ||Bp =



∫
D

∣∣f ′′(z)∣∣ dA(z), for p = 1

|f(0)|+ ||f ||p , for 1 < p <∞

|f(0)|+ βf , for p =∞.

The Besov space B2 is a Hilbert space, called the Dirichlet space D under the inner

product

〈f, g〉D = f(0)g(0) +
∫
D

f ′(z)g′(z) dA

for f, g ∈ D. It is the only Besov space that is a Hilbert space.

We have the following subspace relationship amongst the Besov spaces and the Bloch

space.
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Proposition 2.4.7. [90] For 1 < p < q, Bp ⊂ Bq ⊂ B, and for f ∈ Bp,

βf ≤ c1 ||f ||q ≤ c2 ||f ||p .

The ∗-Little Bloch Space

Definition 2.4.8. [89] Let D be a bounded symmetric domain in Cn. Define the little

Bloch space B0(D) of D to be the closure of the polynomials in B(D).

In the special case of the unit ball, the little Bloch space can be characterized in an

analogous manner to the case of the unit disk. In fact, Timoney used the following charac-

terization as the definition of the little Bloch space on Bn.

Theorem 2.4.9. [89] A function f ∈ H(Bn) is in B0(Bn) if and only if

lim
||z||→1

Qf (z) = 0.

In analogy to the little Bloch space of D, B0(Bn) is invariant under the action of Aut(Bn)

and is a separable Banach space. Furthermore, B∗∗0 (Bn) ∼= B(Bn). In the case of a bounded

symmetric domain D 6= Bn, the little Bloch space B0(D) is invariant under Aut(D) and

separable, but the second dual of the little Bloch space is not isomorphic to the Bloch space

[89].

Theorem 2.4.10. [89] If D is a bounded symmetric domain in Cn other than Bn, then

{
f ∈ B(D) : lim

z→∂D
Qf (z) = 0

}

is the set of constant functions on D.

The above theorem illustrates the need for defining the little Bloch space on a bounded

symmetric domain as the closure of the polynomials in B(D). However, a limit condition is
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easier to test than checking whether a function is a limit of polynomials in the Bloch norm.

So we wish to define a space which is analogous to the little Bloch space on Bn.

Definition 2.4.11. Let D be a bounded domain in Cn. The distinguished boundary ∂∗D

is the smallest closed subset of ∂D such that

sup
z∈D
|f(z)| = sup

z∈∂∗D
|f(z)|

for each function f continuous on D and holomorphic on D.

Definition 2.4.12. For a bounded homogeneous domain D, the ∗-little Bloch space B0∗(D)

is defined as

B0∗(D) =
{
f ∈ B(D) : lim

z→∂∗D
Qf (z) = 0

}
.

If D is the unit ball, then ∂D = ∂∗D and thus B0(D) = B0∗(D), while when D 6= Bn,

B0(D) is a proper subspace of B0∗(D), and B0∗(D) is a non-separable subspace of B(D)

[89].
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Chapter 3: Bounded Operators on Banach Spaces

In this chapter, we collect relevant definitions and results from functional analysis and

operator theory. This is by no means a complete list of topics, and the reader is directed

to [31] and [61] for complete treatments of the subject. We focus on the idea of bounded

operators, compact operators, isometric operators, and the spectrum of bounded operators,

all on Banach spaces of holomorphic functions on domains in Cn. We conclude the chapter

with a discussion of the operators of interest in this dissertation, the weighted composition

operators and their component operators: the multiplication and the composition operators.

3.1 Bounded Linear Operators and the Operator Norm

The object of study in this dissertation is the bounded linear operator.

Definition 3.1.1. Let X and Y be complex-Banach spaces and T a function from X to Y .

(a) T is a linear operator if T (αx1 + βx2) = αT (x1) + βT (x2) for all x1, x2 ∈ X and

α, β ∈ C.

(b) The linear operator T is continuous at x0 if for every ε > 0 there exists δ > 0 such

that ||T (x)− T (x0)|| < ε whenever ||x− x0|| < δ. The operator T is continuous if it

is continuous at every point x0 ∈ X.

(c) The linear operator T is bounded if there exists a positive constant C such that

||Tx|| ≤ C ||x|| for all x ∈ X. A bounded operator on X is a bounded operator from

X to itself.

It is an immediate consequence of linearity that T (0) = T (x − x) = T (x) − T (x) = 0.

Also, the boundedness of the linear operators is equivalent to continuity, as we see in the

following theorem.
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Theorem 3.1.2. If T : X → Y is a linear operator between complex Banach spaces, the

following are equivalent:

(a) T is bounded.

(b) T is continuous.

(c) T is continuous at 0.

Definition 3.1.3. If T : X → Y is a bounded linear operator between complex Banach

spaces, the operator norm of T is defined as

||T || = sup
||x||=1

||T (x)|| .

The operator norm of a bounded linear operator can be formulated in the following

different ways [31]:

||T || =



sup
||x||≤1

||T (x)||

sup
x 6=0

∣∣∣∣∣∣∣∣T ( x

||x||

)∣∣∣∣∣∣∣∣
inf {C : ||T (x)|| ≤ C ||x|| for all x ∈ X}.

Definition 3.1.4. Let X and Y be Banach spaces and T : X → Y a bounded linear

operator. We say T is invertible if T is bijective.

As we will see from Theorem 3.2.4, if T is bijective, then T−1 is a bounded linear

operator from Y to X. So, we assume in the definition of invertibility that if T is invertible,

then T−1 is a bounded operator. The condition of being a bijection can be weakened to the

operator T being bounded below and having dense range.

Definition 3.1.5. Let T : X → Y be a bounded linear operator between Banach spaces.

We say T is bounded below if there exists δ > 0 such that ||Tx|| ≥ δ ||x|| for all x ∈ X.
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As an immediate consequence of the definition, if T is bounded below then T is injective.

The converse is false. For example, if H is a Hilbert space with orthonormal basis {en},

the diagonal operator T : H →H defined by Ten = 1
nen and extended linearly, is injective

but not bounded below.

Definition 3.1.6. Let T : X → Y be a bounded linear operator between Banach spaces.

We say T has dense range if T (X) is dense in Y .

Theorem 3.1.7. [61] Let T : X → Y be a bounded linear operator between Banach spaces.

Then T is invertible if and only if T is bounded below and has dense range.

3.2 The Big Three

The results known as the Hahn-Banach theorem, the Principle of Uniform Boundedness,

and the Open Mapping Theorem are quite often referred to as the “Big Three” theorems

in functional analysis.

Theorem 3.2.1. (The Hahn-Banach Theorem) Let X be a complex-Banach space and Y

a proper subspace of X. If λ : Y → C is a bounded linear functional, then there exists a

bounded linear functional Λ : X → C with Λ
∣∣
Y

= λ and ||Λ|| = ||λ||.

Theorem 3.2.2. (Principle of Uniform Boundedness) Suppose X is a Banach space and

F is a family of bounded linear operators from X to some Banach space Y . If for every

x ∈ X,

sup
T∈F
||Tx|| <∞,

then

sup
T∈F
||T || <∞.

Theorem 3.2.3. (Open Mapping Theorem) Suppose X and Y are Banach spaces and T

is a bounded linear operator from X to Y . If T maps X onto Y , then T (G) is open in Y

whenever G is open in X.
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The following two results are consequences of the Open Mapping Theorem.

Theorem 3.2.4. (Bounded Inverse Theorem) Suppose X and Y are Banach spaces and T

is a bounded linear operator from X to Y . If T is bijective, then T−1 is a bounded linear

operator from Y to X.

Definition 3.2.5. Let X and Y be Banach spaces and T : X → Y a linear map. The graph

of T is defined as

gra(T ) = {(x, Tx) : x ∈ X}.

Theorem 3.2.6. (Closed Graph Theorem) Suppose X and Y are Banach spaces and T :

X → Y is a linear map. Then T is bounded if and only if gra(T ) is closed in X × Y .

3.3 Spectrum of a Bounded Operator

Definition 3.3.1. Let T be a bounded linear operator on a Banach space X. The spectrum

of T is defined as

σ(T ) = {λ ∈ C : T − λI is not invertible},

where I is the identity operator on X. The resolvent of T is defined as ρ(T ) = C \ σ(T ).

Theorem 3.3.2. [61] If T is a bounded linear operator on a Banach space X, then its

spectrum is a nonempty, compact subset of C, which is contained in the closed disk {z :

|z| ≤ ||T ||}.

Theorem 3.3.3. (Spectral Mapping Theorem) Let T be a bounded linear operator on a

Banach space X, B(X) the space of bounded linear operators on X, C(σ(T )) the space of

complex-valued functions analytic on a neighborhood of σ(T ), and f ∈ C(σ(T )). Then there

exists a unique map Φ : C(σ(T ))→ B(X) such that

σ[Φ(f)] = {f(λ) : λ ∈ σ(T )}.

For ease of notation, we denote Φ(f) = f ◦ T .
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Remark 3.3.4. The map Φ has many properties, and the reader is referred to [30] for

further treatment. As a consequence, if T is a bounded linear operator and 0 6∈ σ(T ), then

the function f(z) = z−1 is an element of C(σ(T )). Thus

σ(f ◦ T ) = σ(T−1) = {λ−1 : λ ∈ σ(T )}.

From Theorem 3.1.7, λ is an element of the spectrum of the operator T either if T − λI

is not bounded below or does not have dense range. This results in a decomposition of the

spectrum.

Definition 3.3.5. Let T be a bounded linear operator on a Banach space X. Then the

point spectrum of T is defined as

σp(T ) = {λ ∈ C : ker(T − λI) 6= {0}}.

The elements of σp(T ) are called eigenvalues. For λ ∈ σp(T ), the non-zero vectors in

ker(T − λI) are called eigenvectors associated with the eigenvalue λ.

Definition 3.3.6. Let T be a bounded linear operator on a Banach space X. The approx-

imate point spectrum of T is defined as

σap(T ) = {λ ∈ C : T − λI is not bounded below}.

Proposition 3.3.7. [30] If T is a bounded linear operator on a Banach space X, then

λ ∈ σap(T ) if and only if there exists a sequence {xn} in X such that ||xn|| = 1 for all

n ∈ N and ||(T − λI)xn|| → 0 as n→∞.

If λ is an eigenvalue of T and x is an eigenvector associated with λ, then the constant

sequence xn = x
||x|| is such that ||xn|| = 1 for all n and ||(T − λI)xn|| = 0. Thus σp(T ) ⊆

σap(T ).
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Proposition 3.3.8. [30] If T is a bounded linear operator on a Banach space X, then

∂σ(T ) ⊆ σap(T ).

Definition 3.3.9. Let T : X → X be a bounded linear operator on a Banach space X.

The residual spectrum of T is defined as

σr(T ) = {λ ∈ C : T − λI does not have dense range}.

Since the eigenvalues are contained in the approximate point spectrum, the spectrum

of a bounded linear operator is σ(T ) = σap(T ) ∪ σr(T ).

3.4 Isometries

An immediate consequence of Definition 2.4.4 is that isometries are injective, since their

kernel is trivial.

Theorem 3.4.1. Let X be a complex Banach space and suppose T : X → X is an isometry.

If T is invertible, then σ(T ) ⊆ ∂D. If T is not invertible, then σ(T ) = D.

Proof. Suppose T is an invertible isometry on X. Then 0 6∈ σ(T ), and so the function

z 7→ z−1 is analytic in some neighborhood of σ(T ). By the Spectral Mapping Theorem

(Theorem 3.3.3) we have σ(f ◦ T ) = f(σ(T )), and so

σ(T−1) = σ(T )−1 = {λ−1 : λ ∈ σ(T )}.

Since T−1 exists and is an isometry, we have σ(T−1) ⊆ D. Therefore σ(T ) ⊆ ∂D.

Next, suppose T is not invertible. In order to prove that σ(T ) = D, it suffices to show

that D ⊆ σ(T ). For λ ∈ D, T − λI is bounded below by 1 − |λ|. Thus, λ 6∈ σap(T ). By

Proposition 3.3.8, we deduce ∂σ(T ) ⊆ σap(T ) ⊆ ∂D.

Since T is not invertible, 0 ∈ σ(T ). Assume λ ∈ D ∩ ρ(T ). Note that λ 6∈ ∂σ(T ) since

∂σ(T ) = σ(T ) ∩ ρ(T ). Consider Γ = {tλ : t ∈ [0,∞)}, the radial line through λ. Since
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σ(T ) is closed, there exists t ∈ [0, 1) such that tλ ∈ ∂σ(T ). This contradicts the fact that

∂σ(T ) ⊆ ∂D. Consequently, D ∩ ρ(T ) = ∅, whence D ⊆ σ(T ).

3.5 Compact Operators and Essential Norm

An important class of bounded operators are known as the compact operators.

Definition 3.5.1. The unit ball of a Banach space X is the set {x ∈ X : ||x|| ≤ 1}.

Definition 3.5.2. A linear operator T : X → Y between Banach spaces is compact if the

image of the unit ball of X under T has compact closure in Y .

For X and Y complex Banach spaces, B(X,Y ) denotes the algebra of bounded linear

operators from X to Y , and K (X,Y ) denotes the subspace of compact linear operators.

Theorem 3.5.3. [30] Let X, Y , and L be Banach spaces.

(a) K (X,Y ) is a closed linear subspace of B(X,Y ).

(b) If K ∈ K (X,Y ) and T ∈ B(Y,L), then TK ∈ K (X,L).

(c) If K ∈ K (X,Y ) and T ∈ B(L,X), then KT ∈ K (L, Y ).

Definition 3.5.4. Let T ∈ B(X,Y ). The essential norm of T is the distance of T from

K (X,Y ), that is

||T ||e = inf
K∈K (X,Y )

||T −K|| .

As an immediate corollary of Theorem 3.5.3, K (X,X) is a two-sided ideal in B(X,X). If we

let B = B(X,X) and K = K (X,X), then we can form the quotient algebra C = B/K ,

called the Calkin algebra. By definition, if T ∈ K , then ||T ||e = 0.

We conclude this section with a spectral theorem for compact operators due to F. Riesz.

Theorem 3.5.5. [30] If X is an infinite-dimensional Banach space and T ∈ K , then one

and only one of the following possibilities occurs.
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(a) σ(T ) = {0}.

(b) σ(T ) = {0, λ1, . . . , λn}, where for 1 ≤ k ≤ n, λk 6= 0, each λk is an eigenvalue of T

and dim ker(T − λkI) <∞.

(c) σ(T ) = {0, λ1, λ2, . . . }, where for each k ≥ 1, λk is an eigenvalue of T , dim ker(T −

λkI) <∞, and lim
k→∞

λk = 0.

Corollary 3.5.6. If X is an infinite-dimensional Banach space and T ∈ K , then σ(T ) is

at most countably infinite. Moreover, if σ(T ) is a singleton, then σ(T ) = {0}.

3.6 Weighted Composition Operators

In this section, we formalize the notion of weighted composition operators on a Banach

space. Also, we show that the multiplication and composition operators are weighted com-

position operators, which may be considered as degenerate.

The study of weighted composition operators first began with Banach himself. In [13],

Banach proved that the surjective isometries on the space of continuous real-valued functions

on a compact metric space are certain weighted composition operators. For p ∈ R, 0 < p <

∞, the Hardy space Hp on the unit disk is defined as

Hp =
{
f ∈ H(D) : sup

0<r<1

1
2π

∫ 2π

0

∣∣∣f(reiθ)
∣∣∣p dθ <∞} ,

with norm

||f ||Hp =
(

sup
0<r<1

1
2π

∫ 2π

0

∣∣∣f(reiθ)
∣∣∣p dθ)1/p

.

The Bergman space Ap on the unit disk is defined as

Ap =
{
f ∈ H(D) :

∫
D

|f(z)|p dA <∞
}
,
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with norm

||f ||Ap =
(∫

D

|f(z)|p dA
)1/p

.

In [43], Forelli proved that for p 6= 2, the isometries on Hp are weighted composition

operators. Kolaski in [56] proved that for p 6= 2, the surjective isometries on Ap are also

weighted composition operators. For further treatment on the Hardy and Bergman spaces,

the reader is referred to [38] and [39].

This is not to say that the importance of weighted composition operators is restricted

to the study of isometries on spaces of analytic functions. In some sense, the study of

weighted composition operators is the natural progression of the field of composition op-

erators, which was begun by Nordgren in his doctoral dissertation, see [70]. Weighted

composition operators are found in applied fields such as dynamical systems and evolution

equations. The weighted composition operator is tied to the classification of dichotomies in

certain dynamical systems, see [19].

Let Ω be a bounded domain in Cn and let X be a Banach space of holomorphic functions

f : Ω→ C. For a fixed holomorphic function ψ on Ω and ϕ any fixed holomorphic self-map

of Ω, we define the weighted composition operator Wψ,ϕ on X as

Wψ,ϕf = ψ(f ◦ ϕ),

for all f in X. The function ψ is called the multiplication symbol of Wψ,ϕ, and the map ϕ

is called the composition symbol.

From the definition of the weighted composition operator, we can formulate the multi-

plication and composition operators on the space X. For ψ a fixed holomorphic function

from Ω into C, we define the multiplication operator Mψ as

Mψf = ψf,
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for all f ∈ X. The multiplication operator can be thought of as a weighted composition

operator whose composition symbol is the identity function, since in this case f ◦ ϕ = f .

Definition 3.6.1. A functional Banach space X is a Banach space of complex-valued

functions on a set Ω such that point evaluation is a bounded linear functional and there is

no point in Ω at which all functions in X vanish.

Proposition 3.6.2. [40] Let X be a functional Banach space on the set Ω and let ψ be

a complex-valued function on Ω such that ψX ⊂ X. Then the operator Mψ is a bounded

operator on X, and |ψ(s)| ≤ ||Mψ|| for all s ∈ Ω. In particular, ψ ∈ H∞(Ω).

For a fixed holomorphic self-map ϕ of Ω, we define the composition operator Cϕ on X

as

Cϕf = f ◦ ϕ,

for all f ∈ X. The composition operator can be viewed as a weighted composition operator

by taking the multiplication symbol to be the constant function 1. For further treatment of

the composition operator on spaces of analytic functions, the reader is referred to [86] and

[33].
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Chapter 4: Multiplication Operators on the Bloch Space of

the Unit Disk

In this chapter, we analyze the multiplication operator on the Bloch space on the unit disk.

The boundedness of the multiplication operators was first characterized by Arazy in [10].

Theorem 4.0.1. [10] If ψ ∈ H(D), then Mψ is bounded on B(D) if and only if ψ ∈ H∞(D)

and

sup
z∈D

1
2

(1− |z|2)
∣∣ψ′(z)∣∣ log

1 + |z|
1− |z|

<∞.

Independently, Brown and Shields characterized the bounded multiplication operators in

the following theorem.

Theorem 4.0.2. [16] If ψ ∈ H(D), then the following are equivalent:

(a) Mψ is bounded on B(D);

(b) Mψ is bounded on B0(D);

(c) ψ ∈ H∞(D) and

∣∣ψ′(z)∣∣ = O

(
1

(1− |z|) log 1
1−|z|

)
.

In the literature there are no further results concerning the multiplication operators on

the Bloch space of the unit disk until 2001, when Ohno and Zhao characterized the compact

multiplication operators on the Bloch space [72].

Proposition 4.0.3. [72] Let ψ ∈ H(D). Then the following are equivalent:

(a) Mψ is compact on B(D).
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(b) Mψ is compact on B0(D).

(c) ψ = 0.

We first wish to expand the boundedness conditions to include estimates on the norm

of the multiplication operator. We use these estimates to characterize the isometric multi-

plication operators, and determine the spectra.

4.1 Operator Norm Estimates

For an analytic function ψ : D→ C, we define the quantity

σψ = sup
z∈D

1
2

(1− |z|2)
∣∣ψ′(z)∣∣ log

1 + |z|
1− |z|

. (4.1)

A key ingredient to obtaining estimates on the norm of Mψ is the following lemma.

Lemma 4.1.1. If f ∈ B(D), then for all z ∈ D

|f(z)| ≤ |f(0)|+ 1
2
βf log

1 + |z|
1− |z|

. (4.2)

Proof. For z = 0, the inequality is satisfied trivially. So assume z 6= 0. From Theorem

2.2.10, we have that

|f(z)− f(0)|
ρ(z, 0)

≤ βf .

Thus

|f(z)− f(0)| ≤ βfρ(z, 0),

whence

|f(z)| ≤ |f(0)|+ |f(z)− f(0)| ≤ |f(0)|+ βfρ(z, 0).
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From (2.2), the Bergman distance from z to 0 is given by

ρ(z, 0) =
1
2

log
1 + |z|
1− |z|

, (4.3)

and we obtain (4.2).

We are now ready to prove the following estimates on the norm of the multiplication

operator.

Theorem 4.1.2. Suppose ψ is the symbol of a bounded multiplication operator Mψ on

B(D). Then

max{||ψ||B , ||ψ||∞} ≤ ||Mψ|| ≤ max{||ψ||B , ||ψ||∞ + σψ}.

In particular, if ψ(0) = 0, then

||ψ||∞ ≤ ||Mψ|| ≤ ||ψ||∞ + σψ.

Proof. Let f ∈ B(D) such that ||f ||B = 1. Then by Lemma 4.1.1, we have

||Mψf ||B = |ψ(0)| |f(0)|+ sup
z∈D

(1− |z|2)
∣∣(ψf)(z)′

∣∣
= |ψ(0)| |f(0)|+ sup

z∈D
(1− |z|2)

∣∣f(z)ψ′(z) + ψ(z)f ′(z)
∣∣

≤ |ψ(0)| |f(0)|+ sup
z∈D

(1− |z|2) |f(z)|
∣∣ψ′(z)∣∣+ sup

z∈D
(1− |z|2) |ψ(z)|

∣∣f ′(z)∣∣
≤ |ψ(0)| |f(0)|+ sup

z∈D
(1− |z|2)

(
|f(0)|+ 1

2
βf log

1 + |z|
1− |z|

) ∣∣ψ′(z)∣∣
+ sup
z∈D

(1− |z|2) |ψ(z)|
∣∣f ′(z)∣∣

≤ |ψ(0)| |f(0)|+ |f(0)|βψ + σψβf + ||ψ||∞ βf

= |f(0)| ||ψ||B + σψβf + ||ψ||∞ βf . (4.4)
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Since ||f ||B = 1, we have |f(0)| = 1− βf . Applying this to (4.4), we deduce

||Mψf ||B ≤ (1− βf ) ||ψ||B + σψβf + ||ψ||∞ βf

= ||ψ||B + (σψ + ||ψ||∞ − ||ψ||B)βf (4.5)

We have two cases to analyze. If σψ + ||ψ||∞ − ||ψ||B ≤ 0, then (4.5) yields

||Mψf ||B ≤ ||ψ||B = ||ψ||B ||f ||B .

Therefore ||Mψ|| ≤ ||ψ||B. On the other hand, if σψ + ||ψ||∞ − ||ψ||B ≥ 0, then

||Mψf ||B ≤ ||ψ||B + (σψ + ||ψ||∞ − ||ψ||B)βf

≤ ||ψ||B ||f ||B + (σψ + ||ψ||∞ − ||ψ||B) ||f ||B

= (σψ + ||ψ||∞) ||f ||B .

Thus ||Mψ|| ≤ ||ψ||∞ + σψ. Therefore

||Mψ|| ≤ max{||ψ||B , ||ψ||∞ + σψ},

as desired.

By Theorem 3.6.2, ||ψ||∞ ≤ ||Mψ||. To show that ||ψ||B ≤ ||Mψ||, we use the test

function f(z) = 1 for all z ∈ D. Since f is Bloch, we have ||Mψf ||B = ||ψ||B. Thus

||Mψ|| ≥ ||ψ||B. Therefore ||Mψ|| ≥ max{||ψ||B , ||ψ||∞}. If ψ(0) = 0, then by Proposition

2.2.6, ||ψ||B = βψ ≤ ||ψ||∞.
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4.2 Spectrum

In this section, we determine the spectrum of the multiplication operators on the Bloch

space and little Bloch space of the unit disk.

Theorem 4.2.1. Let ψ be the symbol of a bounded multiplication operator Mψ on B(D) or

B0(D). Then σ(Mψ) = ψ(D).

Proof. For λ ∈ C, the operator Mψ − λI can be rewritten as Mψ−λ. Thus λ ∈ σ(Mψ) if

and only if Mψ−λ is not invertible. Clearly, if M−1
ψ−λ exists, it is the multiplication operator

M(ψ−λ)−1 .

Let λ ∈ ψ(D). Then there exists z0 ∈ D such that ψ(z0) = λ. So (ψ − λ)−1 has a pole

at z0, which means M(ψ−λ)−1 is not a well-defined operator. Thus Mψ−λ is not invertible.

Since the spectrum is closed, this implies that ψ(D) ⊆ σ(Mψ).

Suppose λ 6∈ ψ(D). Then |ψ − λ| is bounded away from 0 by some positive constant c.

Thus the function g(z) = 1
ψ(z)−λ is bounded analytic on D. In addition, by the boundedness

of Mψ and Theorem 4.0.2, we obtain

∣∣g′(z)∣∣ =
|ψ′(z)|
|ψ(z)− λ|2

≤ 1
c2

∣∣ψ′(z)∣∣ = O

(
1

(1− |z|) log 1
1−|z|

)
.

So Mg = M(ψ−λ)−1 is a bounded operator on B(D). Thus λ 6∈ σ(Mψ). Therefore σ(Mψ) =

ψ(D).

4.3 Isometries

We end this chapter by characterizing the isometric multiplication operators on the Bloch

space on the unit disk. We show that the only isometric multiplication operators on the

Bloch space are those induced by constant functions of modulus 1. In a certain sense, the
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set of isometric multiplication operators on the Bloch space is small. By this, we mean

that there exist no non-trivial isometries on the Bloch space amongst the multiplication

operators.

In order to prove the characterization of the isometric multiplication operators, we need

the following lemmas.

Lemma 4.3.1. Let ψ be the symbol of an isometric multiplication operator on B(D). Then

||ψ||∞ ≤ 1 and
∣∣∣∣ψk∣∣∣∣B = 1 for all k ∈ N.

Proof. By the lower estimate in Theorem 4.1.2, we obtain ||ψ||∞ ≤ ||Mψ|| = 1. Since Mψ is

an isometry, we have ||ψ||B = ||Mψ1||B = ||1||B = 1 and
∣∣∣∣ψ2

∣∣∣∣
B = ||Mψ(ψ)||B = ||ψ||B = 1.

By induction, it follows that
∣∣∣∣ψk∣∣∣∣B = 1 for all k ∈ N.

Lemma 4.3.2. If ψ ∈ H∞(D) such that ||ψ||∞ ≤ 1 and ψ(0) = 0, then
∣∣∣∣ψk∣∣∣∣B < 1 for all

k ≥ 2.

Proof. By the Schwarz-Pick Lemma, for all k ∈ N, k ≥ 2, we have

βψk = sup
z∈D

(1− |z|2)k |ψ(z)|k−1
∣∣ψ′(z)∣∣ ≤ sup

z∈D
k(1− |ψ(z)|2) |ψ(z)|k−1

≤ k max
x∈[0,1]

(xk−1 − xk+1) =
2k
k + 1

(
k − 1
k + 1

) k−1
2

=
2k(k − 1)

k−1
2

(k + 1)
k+1
2

. (4.6)

For x and a positive real numbers and m a real number greater than 1, we have (x+a)m >

xm + amxm−1. Thus for k ≥ 2,

(k + 1)
k+1
2 > (k − 1)

k+1
2 + 2

(
k + 1

2

)
(k − 1)

k−1
2 = 2k(k − 1)

k−1
2 . (4.7)
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From (4.6) and (4.7), we deduce

βψk ≤
2k(k − 1)

k−1
2

(k + 1)
k+1
2

< 1.

Therefore,
∣∣∣∣ψk∣∣∣∣B = βψk < 1 for k ≥ 2.

Corollary 4.3.3. If ψ is the symbol of an isometric multiplication operator on B, then ψ

does not fix the origin.

Proof. Arguing by contradiction, assume ψ(0) = 0. By Lemma 4.3.1, ||ψ||∞ ≤ 1 and∣∣∣∣ψ2
∣∣∣∣
B = 1. However,

∣∣∣∣ψ2
∣∣∣∣
B < 1 by Lemma 4.3.2.

Theorem 4.3.4. [29] Let f be an analytic self-map of D such that βf = 1. Then either f

is a conformal automorphism of D, or the zeros of f form an infinite sequence {ak} such

that

lim sup
k→∞

(1− |ak|2)
∣∣f ′(ak)∣∣ = 1.

Lemma 4.3.5. Suppose ψ ∈ H∞(D) such that ||ψ||∞ ≤ 1 and the map g(z) = zψ(z) has

Bloch norm 1. Then either ψ is a constant of modulus 1, or ψ has infinitely many zeros

{ak} in D such that

βψ = lim sup
k→∞

(1− |ak|2)
∣∣ψ′(ak)∣∣ = 1.

If ψ is not a constant of modulus one and ||ψ||B = 1, then ψ(0) = 0.

Proof. Assume ψ is not a constant of modulus 1. Note that the function g maps D into

itself, fixes the origin, and by assumption has Bloch norm 1. By Theorem 4.3.4, there exists

an infinite sequence {ak} in D such that g(ak) = 0 and

lim sup
k→∞

(1− |ak|2)
∣∣g′(ak)∣∣ = 1. (4.8)
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Since a non-constant analytic function cannot have a zero set with an accumulation point

inside the domain, either |ak| → 1 as k → ∞ or else ψ is identically zero. The latter

case cannot occur because βg = 1. Since the non-zero zeros of g are also zeros of ψ, and

g′(z) = ψ(z) + zψ′(z) for z ∈ D, evaluation at the zeros ak yields g′(ak) = akψ
′(ak). Thus

(4.8) yields

βψ ≥ lim sup
k→∞

(1− |ak|2)
∣∣ψ′(ak)∣∣ = 1.

Since βψ ≤ ||ψ||∞ ≤ 1, we obtain

βψ = lim sup
k→∞

(1− |ak|2)
∣∣ψ′(ak)∣∣ = 1.

The conclusion for the case ||ψ||B = 1 follows at once.

We now prove the main theorem of this section.

Theorem 4.3.6. The multiplication operator Mψ is an isometry on B if and only if ψ is a

constant function of modulus 1.

Proof. Clearly, if ψ is a constant function of modulus 1 then Mψ is an isometry on B.

Conversely, suppose Mψ is an isometry on B and assume ψ is not a constant function of

modulus 1. Then by Lemma 4.3.1, ||ψ||∞ ≤ 1 and ||ψ||B = 1. Also, for g(z) = zψ(z),

||g||B = ||Mψ(id)||B = ||id||B = 1, where id is the identity map of D. Then by Lemma 4.3.5,

ψ(0) = 0, contradicting Corollary 4.3.3. Therefore, if Mψ is an isometry on B, then ψ must

be a constant function of modulus 1.

As an immediate consequence of Theorems 4.2.1 and 4.3.6, we obtain the following.

Corollary 4.3.7. Let Mψ be an isometric multiplication operator on the Bloch space. Then

σ(Mψ) = {η}, where η is the unimodular constant value of ψ.
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Chapter 5: Multiplication Operators on the Bloch Space of a

Bounded Homogeneous Domain

In Chapter 4, we discussed the properties of the multiplication operator on the Bloch space

of the unit disk. Zhu studied the multiplication operators on the Bloch space of the unit

ball under

||f || = |f(0)|+ sup
z∈Bn

(1− ||z||2) ||∇(f)(z)|| ,

which is equivalent to the Bloch norm [88].

Theorem 5.0.1. [100] For a holomorphic function ψ in Bn, the following are equivalent:

(a) Mψ is bounded on B(Bn).

(b) Mψ is bounded on B0(Bn).

(c) ψ ∈ H∞(Bn) and sup
z∈Bn

(1− ||z||2) ||∇(f)(z)|| log
1

1− ||z||2
<∞.

We extend these results, and those in Chapter 4, to the Bloch space and ∗-little Bloch

space of a bounded homogeneous domain in Cn. We characterize the bounded and the com-

pact multiplication operators, establish operator norm estimates, determine the spectrum

of the multiplication operators, and characterize the isometric operators on the Bloch space

and ∗-little Bloch space of a bounded symmetric domain.
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5.1 Boundedness

Let D be a bounded homogeneous domain in Cn. In [6], it was shown that for f ∈ B(D),

the Bloch semi-norm of f is precisely the Lipschitz number of f , that is,

βf = sup
z 6=w

|f(z)− f(w)|
ρ(z, w)

.

Thus, for any function f ∈ B(D) and z, w ∈ D, we have

|f(z)− f(w)| ≤ ρ(z, w)βf . (5.1)

In particular, if f fixes the origin and ||f ||B ≤ 1, then

|f(z)| ≤ ρ(z, 0) (5.2)

by taking w = 0 in (5.1). This also holds in the case that f ∈ B0∗(D) with f(0) = 0 and

||f ||B ≤ 1.

For z ∈ D, define

ω(z) = sup{|f(z)| : f ∈ B(D), f(0) = 0, and ||f ||B ≤ 1},

ω0(z) = sup{|f(z)| : f ∈ B0∗(D), f(0) = 0, and ||f ||B ≤ 1}.
(5.3)

Since B0∗(D) ⊆ B(D), we have ω0(z) ≤ ω(z) for all z ∈ D. From (5.2), we also have

ω(z) ≤ ρ(z, 0). Thus, ω0(z) and ω(z) are finite for each z ∈ D.

Lemma 5.1.1. Let D be a bounded homogeneous domain in Cn and z ∈ D.

(a) If f ∈ B(D), then

|f(z)| ≤ |f(0)|+ ω(z)βf .
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(b) If f ∈ B0∗(D), then

|f(z)| ≤ |f(0)|+ ω0(z)βf .

Proof. To prove (a), let f ∈ B(D). The result is immediate if f is constant. So assume f is

not constant, and for z ∈ D, define g(z) = 1
βf

(f(z)− f(0)). Then g is Bloch, g(0) = 0, and

||g||B = βg = 1. Thus |g(z)| ≤ ω(z) for all z ∈ D. Consequently

|f(z)| ≤ |f(0)|+ |f(z)− f(0)| = |f(0)|+ |g(z)|βf ≤ |f(0)|+ ω(z)βf .

The proof of (b) is analogous.

Theorem 5.1.2. [100] Let z, w ∈ Bn. Then

ρ(z, w) = sup{|f(z)− f(w)| : f ∈ B(Bn), ||f ||B ≤ 1}

= sup{|f(z)− f(w)| : f ∈ B0(Bn), ||f ||B ≤ 1}.

In the case when D = Bn, from Theorem 5.1.2, it follows that ω(z) and ω0(z) coincide

with the Bergman distance from z to 0, that is

ω0(z) = ω(z) = ρ(z, 0) =
1
2

log
1 + ||z||
1− ||z||

. (5.4)

In the case when D = Dn, we do not have an explicit formulation of ω(z) or ω0(z).

However, the following lemma provides useful estimates involving ω(z) and ρ(z, 0) for the

unit polydisk.

Theorem 5.1.3. [25] Let f ∈ B(Dn). Then

βf = sup
z∈Dn

∣∣∣∣∣∣∣∣((1− |z1|2)
∂f

∂z1
(z), . . . , (1− |zn|2)

∂f

∂zn
(z)
)∣∣∣∣∣∣∣∣ .
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Lemma 5.1.4. For z = (z1, . . . , zn) ∈ Dn and k = 1, . . . , n,

(a)
1
2

log
1 + |zk|
1− |zk|

≤ ω(z).

(b) ρ(z, 0) ≤ 1
2

n∑
k=1

log
1 + |zk|
1− |zk|

.

Proof. To prove (a), fix z ∈ Dn, k ∈ {1, . . . , n}, and define the function

h(w) =
1
2

Log
|zk|+ wkzk
|zk| − wkzk

,

for w ∈ Dn, where Log denotes the principal branch of the logarithm. Thus h ∈ H(Dn)

and h(0) = 0. Also, ∂h
∂wj

(w) = 0 for j 6= k and ∂h
∂wk

(w) = zk|zk|
|zk|2−w2

kzk
2 . By Theorem 5.1.3,

||h||B = βh ≤ sup
w∈Dn

(1− |wk|2)
|zk|2

|zk|2 − |wk|2 |zk|2
= 1.

By the definition of ω(z), it follows that

1
2

log
1 + |zk|
1− |zk|

= |h(z)| ≤ ω(z).

To prove (b), recall that the Bergman metric for the unit polydisk (2.3) is defined for

z ∈ Dn and u ∈ Cn by

Hz(u, u) =
n∑
k=1

|uk|2

(1− |zk|2)2
.

If γ : [0, 1]→ Dn is the geodesic from w to z in Dn, then

ρ(z, w) =
∫ 1

0
Hγ(t)(γ

′(t), γ′(t))1/2 dt.
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Since the geodesic from z to 0 in Dn is parameterized by γ(t) = tz, we obtain

ρ(z, 0) =
∫ 1

0

(
n∑
k=1

|zk|2

(1− |zk|2 t2)2

)1/2

dt

≤
∫ 1

0

n∑
k=1

|zk|
1− |zk|2 t2

dt

=
1
2

n∑
k=1

log
1 + |zk|
1− |zk|

.

Lemma 5.1.5. Let D be a bounded homogeneous domain in Cn and z ∈ D.

(a) If f ∈ B(D), then

|f(z)| ≤ |f(0)|+ ω(z)βf .

(b) If f ∈ B0∗(D), then

|f(z)| ≤ |f(0)|+ ω0(z)βf .

Proof. Let f ∈ B(D). If f is constant, then βf = 0, |f(z)| = |f(0)|, and we are done. If

f is not constant, βf 6= 0 and we may define function g(z) = 1
βf

(f(z) − f(0)), which is

holomorphic on D, g(0) = 0 and ||g||B = 1. So |g(z)| ≤ ω(z) for all z ∈ D and

|f(z)| ≤ |f(0)|+ |f(z)− f(0)| = |f(0)|+ g(z)βf ≤ |f(0)|+ ω(z)βf .

The proof of (b) is analogous.

Since ω0(z) and ω(z) are bounded above by ρ(z, 0) for all z ∈ D, we obtain the following

result.

Corollary 5.1.6. Let D be a bounded homogeneous domain in Cn and z ∈ D. If f is in

B(D) or B0∗(D), then

|f(z)| ≤ |f(0)|+ ρ(z, 0)βf .
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We wish to consider how to generalize the conditions for boundedness of the multiplica-

tion operator on the Bloch space of D to a general bounded homogeneous domain. On the

Bloch space of the unit disk, the characterizing properties of the bounded multiplication

operator Mψ are ψ ∈ H∞(D) and supz∈D
1
2(1 − |z|2) |ψ′(z)| log 1+|z|

1−|z| < ∞. In trying to

generalize this quantity to bounded homogeneous domains, we replace (1−|z|2) |ψ′(z)| with

Qψ(z) and 1
2 log 1+|z|

1−|z| with ρ(z, 0), which equals ω(z), on D. However, in domains other

than the unit ball, we will replace ρ(z, 0) with ω(z).

For a bounded homogeneous domain D and ψ ∈ H(D), define

σψ = sup
z∈D

ω(z)Qψ(z),

σ0,ψ = sup
z∈D

ω0(z)Qψ(z).

Theorem 5.1.7. Let D be a bounded homogeneous domain in Cn and ψ ∈ H(D). Then

(a) Mψ is bounded on B(D) if and only if ψ ∈ H∞(D) and σψ <∞.

(b) Mψ is bounded on B0∗(D) if and only if ψ ∈ H∞(D) ∩ B0∗(D) and σ0,ψ <∞.

Proof. To prove (a), assume ψ ∈ H∞(D) such that σψ <∞ and let f ∈ B(D). From (2.6),

we have

Qψf (z) ≤ |ψ(z)|Qf (z) + |f(z)|Qψ(z)

for all z ∈ D. We need to show that Mψ maps B(D) into B(D) and there exists c > 0 such

that ||Mψf ||B ≤ c ||f ||B for all f ∈ B(D). By using Lemma 5.1.5(a) and the fact that ψ is
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bounded, we deduce

βψf = sup
z∈D

Qψf (z)

≤ sup
z∈D

[|ψ(z)|Qf (z) + |f(z)|Qψ(z)]

≤ sup
z∈D
|ψ(z)|Qf (z) + sup

z∈D
|f(z)|Qψ(z)

≤ ||ψ||∞ βf + sup
z∈D

(|f(0)|+ ω(z)βf )Qψ(z)

≤ ||ψ||∞ βf + sup
z∈D
|f(0)|Qψ(z) + sup

z∈D
ω(z)Qψ(z)βf

= |f(0)|βψ + (||ψ||∞ + σψ)βf .

Thus Mψf ∈ B(D). Furthermore,

||Mψf ||B = |ψ(0)| |f(0)|+ βψf

≤ |f(0)| ||ψ||B + (||ψ||∞ + σψ)βf (5.5)

≤ (||ψ||B + ||ψ||∞ + σψ) ||f ||B .

Taking the supremum over all f ∈ B(D) such that ||f ||B ≤ 1, we have

||Mψ|| ≤ ||ψ||B + ||ψ||∞ + σψ <∞.

Therefore, Mψ is bounded on B(D).

Conversely, assume Mψ is bounded on B(D). By Theorem 3.6.2, ψ ∈ H∞(D). So, it

suffices to show that σψ is finite. Let f ∈ B(D), z ∈ D, and u ∈ Cn \ {0}. By the product

rule, we have

∇(ψf)(z)u = ψ(z)∇(f)(z)u+ f(z)∇(ψ)(z)u,
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and

|f(z)| |∇(ψ)(z)u| = |∇(ψf)(z)u− ψ(z)∇(f)(z)u|

≤ |∇(ψf)(z)u|+ |ψ(z)| |∇(f)(z)u| .

By dividing by Hz(u, u)1/2 and taking the supremum over all u ∈ Cn \ {0}, we obtain

|f(z)|Qψ(z) ≤ Qψf (z) + |ψ(z)|Qf (z)

≤ ||Mψf ||B + |ψ(z)| ||f ||B

≤ (||Mψ||+ |ψ(z)|) ||f ||B .

Taking the supremum over all f ∈ B(D) such that f(0) = 0 and ||f ||B ≤ 1, we deduce

ω(z)Qψ(z) ≤ ||Mψ|| + |ψ(z)| . Finally, taking the supremum over all z ∈ D, we have σψ ≤

||Mψ||+ ||ψ||∞ , which is finite by assumption.

To prove (b), we assume ψ ∈ H∞(D) ∩ B0∗(D) and σ0,ψ < ∞. Then ω0,ψ(z)Qψ(z) is

bounded on D and limz→∂∗DQψ(z) = 0, which implies

lim
z→∂∗D

ω0,ψ(z)Qψ(z) = 0.

If f ∈ B0∗(D), then by Lemma 5.1.5, we get

lim
z→∂∗D

Qψf (z) ≤ lim
z→∂∗D

(|ψ(z)|Qf (z) + |f(z)|Qψ(z))

≤ lim
z→∂∗D

|ψ(z)|Qf (z) + lim
z→∂∗D

(|f(0)|+ ω0(z)βf )Qψ(z)

≤ ||ψ||∞ lim
z→∂∗D

Qf (z) + |f(0)| lim
z→∂∗D

Qψ(z) + βf lim
z→∂∗D

ω0(z)Qψ(z)

= 0.
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Therefore, Mψf ∈ B0∗(D). The proof of the boundedness of Mψ on B0∗(D) is similar to

that of part (a).

Conversely, we assume Mψ is bounded on B0∗(D). Then ψ = Mψ1 ∈ B0∗(D) since

1 ∈ B0∗(D). By Theorem 3.6.2, ||ψ||∞ ≤ ||Mψ||, and so ψ ∈ H∞(D). Arguing as in part

(a), we obtain σ0,ψ ≤ ||Mψ||+ ||ψ||∞, completing the proof.

The characterizations of the bounded multiplication operators on the Bloch space of the

unit disk and unit ball due to Brown and Shields, and Zhu, respectively, show an equivalence

between the boundedness of the operator on the Bloch space and the little Bloch space. In

what follows, we give an alternative proof of the equivalence when the ambient space is the

unit ball and show that this equivalence also holds for the polydisk.

Theorem 5.1.8. Let ψ ∈ H(Bn). Then the following are equivalent:

(a) Mψ is bounded on B(Bn).

(b) Mψ is bounded on B0(Bn).

(c) ψ ∈ H∞(Bn) and sup
z∈Bn

Qψ(z) log
1 + ||z||
1− ||z||

is finite.

Proof. By (5.4), we have that ω0(z) = ω(z) for all z ∈ Bn. Thus, we have σ0,ψ = σψ as

well. By Theorem 5.1.7, Mψ is bounded on B(Bn) if and only if ψ ∈ H∞(Bn) and

sup
z∈Bn

1
2
Qψ(z) log

1 + ||z||
1− ||z||

= sup
z∈Bn

ω(z)Qψ(z) <∞,

and hence (a)⇐⇒ (c).

Likewise, if Mψ is bounded on B0(Bn), then ψ ∈ H∞(Bn) and

sup
z∈Bn

1
2
Qψ(z) log

1 + ||z||
1− ||z||

= sup
z∈Bn

ω0(z)Qψ(z) <∞.
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So (b) =⇒ (c). To show (c) =⇒ (b), it suffices to show ψ ∈ B0(Bn). Note that as ||z|| → 1,

the function log
1 + ||z||
1− ||z||

goes to ∞. So, the finiteness of sup
z∈Bn

Qψ(z) log
1 + ||z||
1− ||z||

implies

that Qψ(z)→ 0 as ||z|| → 1. Hence ψ ∈ B0(Bn) and (c) =⇒ (b), as desired.

Next, we prove the analogous result for the Bloch space of the unit polydisk.

Theorem 5.1.9. Let ψ ∈ H(Dn). Then the following are equivalent:

(a) Mψ is bounded on B(Dn).

(b) Mψ is bounded on B0∗(Dn).

(c) ψ ∈ H∞(Dn) and sup
z∈Dn

Qψ(z)
n∑
k=1

log
1 + |zk|
1− |zk|

is finite.

Proof. Assume Mψ is bounded on B(Dn). From Theorem 5.1.7, it follows that ψ ∈ H∞(Dn)

and sup
z∈Dn

ω(z)Qψ(z) <∞. By Lemma 5.1.4(a), we have

1
2

sup
z∈Dn

n∑
k=1

Qψ(z) log
1 + |zk|
1− |zk|

≤ 1
2

n∑
k=1

sup
z∈Dn

Qψ(z) log
1 + |zk|
1− |zk|

≤ n sup
z∈Dn

ω(z)Qψ(z) <∞.

So (a) =⇒ (c). Conversely, assume ψ ∈ H∞(Dn) and sup
z∈Dn

Qψ(z)
n∑
k=1

log
1 + |zk|
1− |zk|

< ∞.

Then by Lemma 5.1.4(b), we deduce

sup
z∈Dn

ω0(z)Qψ(z) ≤ sup
z∈Dn

ω(z)Qψ(z) ≤ sup
z∈Dn

ρ(z, 0)Qψ(z) ≤ sup
z∈Dn

Qψ(z)
n∑
k=1

log
1 + |zk|
1− |zk|

.

Thus σ0,ψ and σψ are finite. So by Theorem 5.1.7, we have (c) =⇒ (a). Furthermore, as

z → ∂∗Dn,
n∑
k=1

log
1 + |zk|
1− |zk|

→ ∞, and the boundedness of sup
z∈Dn

Qψ(z)
n∑
k=1

log
1 + |zk|
1− |zk|

implies

that Qψ(z)→ 0. Thus ψ ∈ B0∗(D), and (c) =⇒ (b).
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It remains to show that (b) =⇒ (c). Assume Mψ is bounded on B0∗(Dn). Then

by Theorem 5.1.7, ψ ∈ H∞(Dn) ∩ B0∗(Dn) and σ0,ψ < ∞. If for each k ∈ {1, . . . , n}

sup
z∈Dn

Qψ(z) log
1 + |zk|
1− |zk|

<∞, then

sup
z∈Dn

Qψ(z)
n∑
k=1

log
1 + |zk|
1− |zk|

≤
n∑
k=1

sup
z∈Dn

Qψ(z) log
1 + |zk|
1− |zk|

<∞.

So it suffices to show that supz∈Dn Qψ(z) log 1+|zk|
1−|zk| <∞ for each k ∈ {1, . . . , n}.

Fix k ∈ {1, . . . , n} and w ∈ Dn \ {0}, and for z ∈ Dn define

fw(z) =
1
2

Log
1 + wkzk
1− wkzk

.

It follows that fw(0) = 0, ∂fw
∂zj

(z) = 0 for all j 6= k, and ∂fw
∂zk

(z) = wk
1−wk2z2k

. From Theorem

5.1.3, we have

Qfw(z) =
∣∣∣∣∣∣∣∣((1− |z1|2)

∂fw
∂z1

(z), . . . , (1− |zn|2)
∂fw
∂zn

(z)
)∣∣∣∣∣∣∣∣

= (1− |zk|2)
∣∣∣∣∂fw∂zk

(z)
∣∣∣∣

≤ |wk|
1− |zk|2

1− |wk|2 |zk|2
.

Define the real-valued function g : [0, 1] → R by g(x) = 1−x2

1−α2x2 for 0 < α < 1. By

elementary calculus, g attains it’s absolute maximum on [0, 1] at x = 0. Thus

||fw||B = |fw(0)|+ sup
z∈Dn

Qfw(z) ≤ |wk| < 1,
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and fw ∈ B0∗(Dn) since

lim
z→∂∗D

Qfw(z) ≤ |wk| lim
|zk|→1

1− |zk|2

1− |wk|2 |zk|2
= 0.

Thus, for z ∈ Dn,

|fw(z)|Qψ(z) ≤ ω0,ψ(z)Qψ(z) ≤ σ0,ψ. (5.6)

Observe that

|fw(z)| = 1
2

∣∣∣∣Log
1 + wkzk
1− wkzk

∣∣∣∣ ≥ 1
2

(
log
∣∣∣∣1 + wkzk
1− wkzk

∣∣∣∣−Arg
(

1 + wkzk
1− wkzk

))

≥ 1
2

(
log
∣∣∣∣1 + wkzk
1− wkzk

∣∣∣∣− π

2

)
,

where Arg denotes the principal value of the argument. Thus

1
2

log
∣∣∣∣1 + wkzk
1− wkzk

∣∣∣∣ ≤ |fw(z)|+ π

4
.

Let wk = |wk| eiθk and choose zk so that arg(zk) = θk. From (5.6), we obtain

1
2
Qψ(z) log

1 + |wk| |zk|
1− |wk| |zk|

≤ σ0,ψ +
π

4
βψ.

By letting |wk| → 1, we obtain sup
z∈Dn

Qψ(z) log
1 + |zk|
1− |zk|

≤ σ0,ψ +
π

4
βψ <∞, as desired.

Corollary 5.1.10. Let n ≥ 2 and ψ ∈ H(Dn). Then Mψ is bounded on B(Dn) if and only

if ψ is a constant function.

Proof. If ψ is a constant function, then it is immediate that Mψ is bounded on B(Dn).
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Conversely, suppose Mψ is bounded on B(Dn). By Theorem 5.1.9,

sup
z∈Dn

Qψ(z)
n∑
k=1

log
1 + |zk|
1− |zk|

<∞.

As z → ∂Dn, log 1+|zk|
1−|zk| →∞ for some k ∈ {1, . . . , n}. Thus,

lim
z→∂Dn

Qψ(z) = 0.

Since n ≥ 2, the unit polydisk is not biholomorphically equivalent to the unit ball, and so

by Theorem 2.4.10, ψ is a constant function.

Remark 5.1.11. An analogous result is not true for the unit ball; there exist non-constant

symbols which induce bounded multiplication operators on the Bloch space of Bn. For

j ∈ {1, . . . , n}, the projection map pj(z1, . . . , zn) = zj is a bounded holomorphic function

on Bn with ||∇(pj)(z)|| = 1. Since 1−||z||2 → 0 as z → ∂Bn faster than log(1−||z||2)→ −∞

as z → ∂Bn, we have

sup
z∈Bn

(1− ||z||2) ||∇(pj)(z)|| log
1

1− ||z||2
<∞.

So ψ is bounded and non-constant, and by Theorem 5.0.1, Mψ is bounded on B(Bn).

We end this section with a sufficient condition for the equivalence of the boundedness

of Mψ as an operator on the Bloch space and on the ∗-little Bloch space of a bounded

homogeneous domain. If A and B are positive constants, then we denote A � B to mean

there exist c, C > 0 such that cA ≤ B ≤ CA.

Theorem 5.1.12. Let D be a bounded homogeneous domain in Cn and ψ ∈ H(D). If

σψ � σ0,ψ and lim
z→∂∗D

ω0(z) = ∞, then Mψ is bounded on B(D) if and only if it is bounded

on B0∗(D).
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Proof. Let ψ ∈ H(D) such that σψ � σ0,ψ and ω0(z) → ∞ as z → ∂∗D. We want to

show that the boundedness of Mψ on B(D) is equivalent to the boundedness on B0∗(D).

Assume Mψ is bounded on B(D). Then by Theorem 5.1.7, ψ ∈ H∞(D) and σψ < ∞,

and in particular σ0,ψ < ∞. Since σ0,ψ = supz∈Dn ω0(z)Qψ(z) is finite, and ω0(z) → ∞

as z → ∂∗D, it must be the case that Qψ(z) → 0. Thus ψ ∈ B0∗(D), proving the Mψ is

bounded on B0∗(D).

Next, assume Mψ is bounded on B0∗(D). Then ψ ∈ H∞(D) and σ0,ψ < ∞. Since

σψ � σ0,ψ, it follows immediately that σψ <∞. Thus Mψ is bounded on B(D).

5.2 Operator Norm Estimates

In this section, we provide estimates on the norm of the bounded multiplication operators

acting on the Bloch space and the ∗-little Bloch space of a bounded homogeneous domain.

These norm estimates, when applied to the case of the Bloch space and the little Bloch

space of the unit disk correspond to those of Theorem 4.1.2 in Chapter 4.

Theorem 5.2.1. Let D be a bounded homogeneous domain in Cn and ψ ∈ H(D).

(a) If Mψ is bounded on B(D), then

max{||ψ||B , ||ψ||∞} ≤ ||Mψ|| ≤ max{||ψ||B , ||ψ||∞ + σψ}.

(b) If Mψ is bounded on B0∗(D), then

max{||ψ||B , ||ψ||∞} ≤ ||Mψ|| ≤ max{||ψ||B , ||ψ||∞ + σ0,ψ}.

Proof. To prove (a), assume ψ ∈ H(D) induces a bounded multiplication operator Mψ on

B(D). By Theorem 3.6.2, we have ||ψ||∞ ≤ ||Mψ||. By considering the constant function 1,
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||ψ||B = ||Mψ1||B ≤ ||Mψ||, and thus

max{||ψ||B , ||ψ||∞} ≤ ||Mψ|| .

For f ∈ B(D), inequality (5.5) shows that

||Mψf ||B ≤ |f(0)| ||ψ||B + (||ψ||∞ + σψ)βf .

Since |f(0)| = ||f ||B − βf , we obtain

||Mψf ||B ≤ (||f ||B − βf ) ||ψ||B + (||ψ||∞ + σψ)βf

≤ ||ψ||B ||f ||B + (||ψ||∞ + σψ − ||ψ||B)βf .

If ||ψ||∞ + σψ ≤ ||ψ||B, then ||Mψf ||B ≤ ||ψ||B ||f ||B. This implies that ||Mψ|| ≤ ||ψ||B. On

the other hand, if ||ψ||∞ + σψ ≥ ||ψ||B, then

||Mψf ||B ≤ ||ψ||B ||f ||B + (||ψ||∞ + σψ − ||ψ||B)βf

≤ ||ψ||B ||f ||B + (||ψ||∞ + σψ − ||ψ||B) ||f ||B

= (||ψ||∞ + σψ) ||f ||B .

Thus ||Mψ|| ≤ ||ψ||∞ + σψ, hence

||Mψ|| ≤ max{||ψ||B , ||ψ||∞ + σψ}.

The proof of (b) is similar.
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5.3 Spectrum

In this section, we determine the spectrum of the bounded multiplication operators on the

Bloch space and the ∗-little Bloch space of a bounded homogeneous domain in Cn. Thus,

we extend Theorem 4.2.1 to the bounded homogeneous domain setting.

Remark 5.3.1. If Mψ is bounded on some Banach space of holomorphic functions, λ ∈

σ(Mψ) if and only if Mψ − λI is not invertible where I is the identity operator. Since

λI = Mλ, and Mψ − Mλ = Mψ−λ, we see that λ ∈ σ(Mψ) if and only if Mψ−λ is not

invertible. Since M−1
ψ−λ = M(ψ−λ)−1 , we finally arrive at λ ∈ σ(Mψ) if and only if M(ψ−λ)−1

is undefined.

Theorem 5.3.2. Let D be a bounded homogeneous domain in Cn and ψ ∈ H(D) such that

Mψ is bounded on either B(D) or B0∗(D). Then σ(Mψ) = ψ(D).

Proof. First, assume ψ ∈ H(D) induces a bounded multiplication operator on B(D). Let

λ ∈ ψ(D). Then there exists z0 ∈ D such that ψ(z0) = λ, and thus the function (ψ − λ)−1

is singular at z0. So M(ψ−λ)−1 is undefined as an operator on B(D). Thus ψ(D) ⊆ σ(Mψ),

and since the spectrum is closed, we have ψ(D) ⊆ σ(Mψ).

Now, suppose λ 6∈ ψ(D). Then the function ψ − λ is bounded away from zero, that is

there exists c > 0 such that |ψ(z)− λ| ≥ c for all z ∈ D. Thus the function g defined by

g(z) =
1

ψ(z)− λ
, for z ∈ D, (5.7)

is bounded and holomorphic with |g(z)| ≤ 1
c , for all z ∈ D. Observe that for z ∈ D,

∇(g)(z) =
−1

(ψ(z)− λ)2
∇(ψ)(z),
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so

σg = sup
z∈D

ω(z)Qg(z) ≤ sup
z∈D

1
c2
ω(z)Qψ(z) =

1
c2
σψ <∞.

By Theorem 5.1.7, Mg is bounded on B(D). Thus λ 6∈ σ(Mψ).

We will now show that if Mψ is bounded on B0∗(D), then σ(Mψ) = ψ(D). Arguing as

in the case of B(D), it suffices to show that the bounded holomorphic function g defined

in (5.7) is in the ∗-little Bloch space for λ 6∈ ψ(D). Since Mψ is bounded on B0∗(D),

ψ = Mψ1 ∈ B0∗(D). So

lim
z→∂∗D

Qg(z) ≤ lim
z→∂∗D

1
c2
Qψ(z) = 0,

as desired.

5.4 Compactness

In this section, we characterize the compact multiplication operators acting on the Bloch

space or the ∗-little Bloch space of a bounded homogeneous domain in Cn.

Theorem 5.4.1. Let D be a bounded homogeneous domain in Cn and ψ ∈ H(D). Then

Mψ is compact on B(D) or B0∗(D) if and only if ψ is identically zero.

Proof. If ψ is identically zero, then Mψ is compact. Suppose Mψ is compact on B(D) or

B0∗(D). By Corollary 3.5.6, the spectrum of Mψ is at most countable and by Theorem

5.3.2, the spectrum of Mψ is ψ(D), thus ψ(D) is at most countable. If ψ(D) contains two

distinct points, it must contain a continuum, a contradiction. So ψ(D) is a singleton, and

thus by Corollary 3.5.6, ψ(D) = {0} . Therefore ψ is identically zero.

5.5 Isometries

In this section, we characterize the isometric multiplication operations on the Bloch space

and on the ∗-little Bloch space of a class of bounded symmetric domains in Cn. Recall the
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computed values of the Bloch constant cD for an irreducible bounded symmetric domain

were given in (2.11) and (2.12).

Lemma 5.5.1. Let D = D1 × · · · ×Dk be a bounded symmetric domain in standard form.

Then cD ≤ 1 and cD = 1 if and only if Dj = D for some j ∈ {1, . . . , k}.

Proof. Fix j ∈ {1, . . . , k}. If Dj is an exceptional domain, then cDj < 1 from (2.12). If Dj

is a classical Cartan domain of type R2, R3 or R4, recalling the dimensional restrictions

n ≥ 2 for the domains in R2 and n ≥ 5 for the domains in R3 and R4, we see that cDj < 1.

If Dj ∈ R1, then cDj ≤ 1 and cDj = 1 if and only if m = n = 1, that is, if and only if

Dj = D. Therefore, by Theorem 2.3.27, cD ≤ 1 and cD = 1 if and only if there exists

j ∈ {1, . . . , k} such that Dj = D.

We denote by D the set of bounded symmetric domains D = D1 × · · · ×Dk in Cn for

which Dj 6= D for all j = 1, . . . , k. By Lemma 5.5.1, D ∈ D if and only if cD < 1.

Lemma 5.5.2. Let D be a bounded homogeneous domain in Cn and ψ ∈ H(D). If Mψ is

an isometry on B(D) (B0∗(D)), then Mψk is an isometry on B(D) (B0∗(D)) for all k ∈ N.

In particular,
∣∣∣∣ψk∣∣∣∣B = 1 for all k ∈ N.

Proof. We will prove the result for Mψ an isometry on B(D). The proof for Mψ an isometry

on B0∗(D) is exactly the same. If f ∈ B(D), then

∣∣∣∣Mψ2f
∣∣∣∣
B =

∣∣∣∣ψ2f
∣∣∣∣
B = ||Mψ(ψf)||B = ||ψf ||B = ||Mψf ||B = ||f ||B .

Thus Mψ2 is an isometry on B(D). Thus by induction, Mψk is an isometry on B(D) for all

k ∈ N. Also, 1 = ||1||B = ||Mψ1||B = ||ψ||B and 1 = ||ψ||B = ||Mψψ||B =
∣∣∣∣ψ2

∣∣∣∣
B. Thus, by

induction,
∣∣∣∣ψk∣∣∣∣B = 1 for all k ∈ N.

Lemma 5.5.3. Let D be a bounded symmetric domain in Cn and ψ ∈ H(D). If Mψ is an

isometry on B(D) (B0∗(D)), then βψk ≤ cD for all k ∈ N. In particular, if D ∈ D then
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βψk < 1 for all k ∈ N.

Proof. Since Mψ is an isometry, then Mψk is an isometry for all k ∈ N by Lemma 5.5.2.

From Theorem 3.6.2, we have
∣∣∣∣ψk∣∣∣∣∞ ≤ ∣∣∣∣Mψk

∣∣∣∣ = 1. Thus ψ is either a constant function

of modulus one or a bounded holomorphic function mapping into D. If ψk is a constant

function of modulus one, then βψk = 0. On the other hand, if ψk maps into D, then by the

definition of the Bloch constant of D, βψk ≤ cD for all k ∈ N. In either case, βψk ≤ cD for

all k ∈ N. If D ∈ D, then βψk ≤ cD < 1.

Theorem 5.5.4. Let D ∈ D and ψ ∈ H(D). Then Mψ is an isometry on B(D) or B0∗(D)

if and only if ψ is a constant function of modulus one.

Proof. If ψ is a constant function of modulus one, then Mψ is an isometry on B(D). Con-

versely, assume Mψ is an isometry on B(D) and ψ is not a constant function of modulus

one. Then ψ(0) = a for some |a| < 1. Since
∣∣∣∣ψk∣∣∣∣B = 1 by Lemma 5.5.2, we have

|a|k = 1− βψk ≥ 1− cD > 0.

So |a|k is bounded away from zero. However, as k → ∞, |a|k → 0, a contradiction. Thus,

if Mψ is an isometry, then ψ must be a constant function of modulus one. An analogous

argument holds for Mψ acting on B0∗(D).

We are also able to characterize the isometric multiplication operators on the Bloch

space of the unit polydisk for all n ∈ N. The n = 1 case is Theorem 4.3.6, and the n > 1

case is a result of Corollary 5.1.10.

Corollary 5.5.5. Let ψ ∈ H(Dn). Then Mψ is an isometry on B(Dn) if and only if ψ is

a constant function of modulus one.

Remark 5.5.6. Recall that Mψ is an isometry on B(D) or B0(D) if and only if ψ is a

constant function of modulus one (Theorem 4.3.6). The key to proofs of Theorem 4.3.6
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and Theorem 5.5.4 was to find a means by which to make βψk < 1 for the symbols which

induce an isometric multiplication operator. In the higher dimensional case, this required

the restriction to a class of bounded symmetric domains which excludes the unit disk. At

this time, we are unable to connect these two characterizations unless the domain is the

unit polydisk.
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Chapter 6: Spectrum of an Isometric Composition Operator

on the Bloch Space of the Unit Disk, Unit Ball, and Unit

Polydisk

In this chapter, we consider the determination of the spectrum of the composition operators

on the Bloch space of the unit disk, unit ball, and unit polydisk induced by various symbols.

In the case of the unit disk, we determine the spectrum of the isometric composition oper-

ators using Theorem 3.4.1. For the unit ball, the spectra of composition operators induced

by automorphisms fixing an interior point of the ball is considered. Finally, in the case of

the polydisk, we determine the spectrum for the isometric composition operators induced

by automorphisms that fix the origin, as well as isometric composition operators induced

by a surjective, non-automorphic symbol.

6.1 Isometric Composition Operators

In [91], Xiong showed that if ϕ is a rotation of the unit disk, then the induced composition

operator Cϕ is an isometry on B(D), but was unsuccessful in characterizing the symbol

of the isometries amongst the composition operators. In [29], Colonna characterized the

isometric composition operators as those induced by the maps ϕ for which ϕ(0) = 0 and

βϕ = 1. Furthermore, Colonna provided a means of constructing the symbols that induce

an isometry.

In [6], we collect several equivalent conditions for the symbols to induce an isometric

composition operator on B(D).
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Definition 6.1.1. A Blaschke product is an analytic self-map of D of the form

B(z) = zm
∏ zn
|zn|

(
zn − z
1− znz

)
, z ∈ D

where the product is taken over the zn 6= 0 and m is the multiplicity at 0. If the zero set

is finite, B is said to be a finite Blaschke product and the number of zeros of B counted

according to multiplicity is called the degree of B. If the zero set is infinite, B is said to be

an infinite Blaschke product.

Theorem 6.1.2. [4] Let ϕ be an analytic self-map of D. Then Cϕ is an isometry on B(D)

if and only if ϕ(0) = 0 and any of the following equivalent conditions holds:

(a) βϕ = 1.

(b) Bϕ := sup
z∈D

(1− |z|2) |ϕ′(z)|
1− |ϕ(z)|2

= 1.

(c) Either ϕ ∈ Aut(D) or for every a ∈ D there exists a sequence {zk} in D such that

|zk| → 1, ϕ(zk) = a, and

lim
k→∞

(1− |zk|2) |ϕ′(zk)|
1− |ϕ(zk)|2

= 1.

(d) Either ϕ ∈ Aut(D) or for every a ∈ D there exists a sequence {zk} in D such that

|zk| → 1, ϕ(zk)→ a, and

lim
k→∞

(1− |zk|2) |ϕ′(zk)|
1− |ϕ(zk)|2

= 1.
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(e) Either ϕ ∈ Aut(D) or the zeros of ϕ form an infinite sequence {zk} in D such that

lim sup
k→∞

(1− |zk|2)
∣∣ϕ′(zk)∣∣ = 1.

(f) Either ϕ ∈ Aut(D) or ϕ = gB where g : D → D is non-vanishing, analytic and B is

an infinite Blaschke product whose zeros form a sequence {zk} containing 0 and an

infinite subsequence {zkj} such that
∣∣g(zkj )

∣∣→ 1 and

lim
j→∞

∏
`6=kj

∣∣∣∣ zkj − z`1− zkjz`

∣∣∣∣ = 1.

(g) Either ϕ ∈ Aut(D) or there exists a sequence {Sk} in Aut(D) such that |Sk(0)| → 1

and {ϕ ◦ Sk} approaches the identity locally uniformly in D.

In addition, we consider the problem of characterizing the isometries in higher dimen-

sions. The following sufficient condition was established for the Bloch space of a bounded

homogeneous domain.

Theorem 6.1.3. [6] Let D be a bounded homogeneous domain, ϕ ∈ H(D) such that ϕ(0) =

0 and suppose there exists a sequence {Sk} in Aut(D) such that {ϕ ◦ Sk} converges to the

identity locally uniformly in D. If the Bergman constant of ϕ does not exceed 1, then Cϕ is

an isometry on B(D).

The following necessary conditions were established for the Bloch space of a bounded sym-

metric domain.

Theorem 6.1.4. [6] Let D = D1 × · · · ×Dk be a bounded symmetric domain in standard

form. Let ϕ = (ϕ1, . . . , ϕn) be a holomorphic self-map of D such that Cϕ is an isometry on

B(D). Then:

(a) The components ϕ1, . . . , ϕn are linearly independent.
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(b) If D does not contain any exceptional factors, then ϕ(0) = 0.

(c) If none of the factors of D is in R4, then the components of ϕ have semi-norms equal

to cD1 , . . . , cDk , repeated according to the dimension of each factor.

(d) If D has factors in R4, then for each D` ∈ R4 and each pair r, s of distinct indices,

with
∑`−1

i=1 dim(Di) < r, s ≤
∑`

i=1 dim(Di), the modified components ϕr+iϕs, ϕr−iϕs

are holomorphic from D to D and have semi-norm equal to cD`.

6.2 The Unit Disk

In this section, we determine the spectrum for the isometric composition operators on

B(D). In [29], Colonna characterized the isometries amongst the composition operators on

the Bloch space of D as those being induced by symbol ϕ such that ϕ(0) = 0 and βϕ = 1.

With Theorems 3.4.1 and 6.1.2, we can determine the spectrum of the isometric composition

operators on B(D).

Definition 6.2.1. For an element λ ∈ ∂D, the order of λ, denoted ord(λ), is defined as

the smallest natural number m such that λm = 1. If no such natural number exists, we say

λ has infinite order, and write ord(λ) =∞.

Theorem 6.2.2. Let ϕ be an analytic self-map of D which induces an isometric composition

operator Cϕ on B(D). If ϕ is not a rotation, then σ(Cϕ) = D. If there exists ζ ∈ ∂D such

that ϕ(z) = ζz, then

σ(Cϕ) =


∂D if ord(ζ) =∞

〈ζ〉 if ord(ζ) <∞,

where 〈ζ〉 = {ζk : k ∈ {1, . . . , ord(ζ)}}, the cyclic group generated by ζ.

Proof. Assume ϕ is not a rotation. Then by Theorem 3.4.1, is suffices to show that 0 ∈

σ(Cϕ), that is, Cϕ is not invertible. Since Cϕ is an isometry, and thus injective, we show
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that Cϕ is not surjective. Arguing by contradiction, assume Cϕ is surjective. Since ϕ is not

a rotation, by Theorem 6.1.2(e) ϕ has infinitely many zeros. Let a and a′ be two distinct

zeros of ϕ.

The function defined by h(z) = z − a is Bloch, and since Cϕ is surjective, there exists a

Bloch function f such that f ◦ϕ = h. On the one hand, f(0) = f(ϕ(a)) = h(a) = 0. On the

other hand, f(0) = f(ϕ(a′)) = h(a′) 6= 0, a contradiction. Therefore Cϕ is not surjective,

and thus σ(Cϕ) = D.

Now suppose ϕ is a rotation, that is, there exists ζ ∈ ∂D such that ϕ(z) = ζz. Thus

ϕ is invertible with inverse ϕ−1(z) = ζz, and since ϕ−1 is analytic on D, C−1
ϕ = Cϕ−1 is

bounded on B(D). Therefore by Theorem 3.4.1, σ(Cϕ) ⊆ ∂D.

Let G = 〈ζ〉 = {ζk : k ∈ N∪{0}}, which is a subset of ∂D. Consider the Bloch function

fk(z) = zk for k ∈ N ∪ {0}. Then

(Cϕfk)(z) = fk(ζz) = ζkzk = ζkfk(z).

Thus ζk is an eigenvalue of Cϕ corresponding to the eigenfunction fk. So G ⊆ σ(Cϕ).

If the order of ζ is infinite, then G is dense in ∂D. Since the spectrum is closed, we have

∂D = G ⊆ σ(Cϕ). Thus σ(Cϕ) = ∂D.

Now suppose ord(ζ) = m < ∞. Then G = {ζk : k = 1, . . . ,m}. We now wish to show

that σ(Cϕ) ⊆ G. Let µ ∈ ∂D \ G. We will show that Cϕ − µI is invertible by proving

that for every g ∈ B(D), there exists a unique f ∈ B(D) such that f ◦ ϕ − µf = g. Since

ord(ζ) = m, then ϕ(m)(z) := (ϕ ◦ · · · ◦ ϕ︸ ︷︷ ︸
m-times

)(z) = ζmz = z. By repeated application of ϕ, we
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can form the system of linear equations:

f(ϕ(z)) − µf(z) = g(z)

f(ϕ(2)(z)) − µf(ϕ(z)) = g(ϕ(z))
...

...

f(z) − µf(ϕ(m−1)(z)) = g(ϕ(m−1)(z)).

(6.1)

Equivalently, (6.1) can be posed as the matrix equation Ax = b where

A =



−µ 1 0 0 · · · 0

0 −µ 1 0 · · · 0
... 0

. . . . . .
...

...
. . . . . . . . .

...

0
. . . . . . 1

1 0 · · · · · · 0 −µ


, x =



f(z)

f(ϕ(z))
...
...

f(ϕ(m−2)(z))

f(ϕ(m−1)(z))


, and b =



g(z)

g(ϕ(z))
...
...

g(ϕ(m−2)(z))

g(ϕ(m−1)(z))


.

The determinant of A is (−1)m(µm − 1), which is not zero since µ 6∈ G. Thus Cϕ − µI is

invertible. For µ 6∈ G, the unique solution f of (6.1) is a finite linear combination of Bloch

functions g ◦ ϕ(j−1) for j = 1, . . . , n, and thus is Bloch. Therefore σ(Cϕ) = G.

6.3 The Unit Ball

The automorphisms of the unit ball are characterized by their fixed points. In fact, ϕ ∈

Aut(Bn) falls into three classes (see Remark 2.4.5 of [82]):

• Type I: ϕ fixes at least one point in Bn.

• Type II: ϕ fixes two points on ∂Bn, and no points in Bn.

• Type III: ϕ fixes one point on ∂Bn, and no points in Bn.
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By Theorem 6.1.4(b), if ϕ ∈ Aut(Bn) induces an isometric composition operator Cϕ,

then ϕ fixes the origin. Thus, isometric composition operators induced by automorphisms

are only of Type I.

Lemma 6.3.1. [100] An automorphism U of Bn is unitary if and only if U(0) = 0.

Lemma 6.3.2. If U is a unitary map of Bn, then CU is an isometry on B(Bn) and σ(CU )

is contained in the unit circle.

Proof. By the Möbius invariance of the Bloch space, we have βf◦U = βf for all Bloch

functions f . Thus, for any Bloch function f , we have

||CUf ||B = |f(U(0))|+ βf◦U = |f(0)|+ βf = ||f ||B .

Therefore CU is an isometry on B(Bn). Since U ∈ Aut(Bn), U−1 ∈ Aut(Bn) and C−1
U =

CU−1 is bounded on B(Bn). Therefore, by Theorem 3.4.1, σ(CU ) ⊆ ∂D.

Now, we compute the spectrum of the composition operator Cϕ on the Bloch space of

the unit ball when ϕ is an automorphism of Bn that fixes a point in Bn.

Definition 6.3.3. Operators S and T on a Banach space X are similar if there exists a

bounded operator V with bounded inverse such that S = V −1TV .

Lemma 6.3.4. [33] If Cϕ is similar to Cφ, then σ(Cϕ) = σ(Cφ).

Lemma 6.3.5. [6] Let D be a bounded symmetric domain in standard form. For each

a ∈ D, there exists an involution φa ∈ Aut(D) such that φa(a) = 0.

Theorem 6.3.6. Let ϕ ∈ Aut(Bn) fix at least one point in Bn and induce a composition

operator Cϕ on B(Bn). Then the spectrum of Cϕ is the closure of all possible products of the

eigenvalues of Jϕ(a), where a is any interior fixed point. This closure is either the entire

unit circle, or a finite subgroup of the circle.
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Proof. Let φa be as in Lemma 6.3.5. Then φa ◦ ϕ ◦ φa is an automorphism of Bn that fixes

the origin, and hence is unitary by Lemma 6.3.1. Furthermore, φa◦ϕ◦φa is unitarily similar

to a diagonal matrix. So there exists a unitary transformation V of Bn and θ1, . . . , θn ∈ R

such that

U(z) = T (ϕ(T−1(z))) = (eiθ1z1, . . . , e
iθnzn),

where z = (z1, . . . , zn) and T = V ◦ φa.

Taking the Jacobian at 0, we arrive at the following matrix equality

JU(0) = JT (a)Jϕ(a)JT−1(0) = JT (a)Jϕ(a) [JT (a)]−1 .

For all z ∈ Bn,

JU(z) =



eiθ1 0 · · · 0

0 eiθ2 · · · 0
...

. . .
...

0 0 · · · eiθn


.

Thus the eigenvalues of JU(0), and by similarity Jϕ(a), are eiθ1 , . . . , eiθn .

Consider the function

f(z1, . . . , zn) =
n∏
j=1

z
mj
j ,

where mj ≥ 0 are integers. Since f is a polynomial, it is a Bloch function. Also, we see that

(f ◦ U)(z1, . . . , zn) =
n∏
j=1

(eiθjzj)mj =

 n∏
j=1

eimjθj

 f(z1, . . . , zn).

Thus, λ =
n∏
j=1

eimjθj is an eigenvalue of CU , and the spectrum of CU contains the closure of

78



all possible products of eigenvalues of Jϕ(a). Since Cϕ and CU are similar, by Lemma 6.3.4,

the spectra of Cϕ and CU are the same. We denote the closure of all possible products of

eigenvalues of Jϕ(a) by E .

By Lemma 6.3.2, the spectrum of CU , and thus Cϕ, is contained in the unit circle.

Suppose there exists k ∈ {1, . . . , n} such that ord(eiθk) =∞. Then the powers of eiθk form

a dense subset of ∂D, and thus E = ∂D. On the other hand, if ord(eiθk) = νk < ∞ for all

k ∈ {1, . . . , n}, then E is a finite subgroup of ∂D. Thus E consists of all the mth roots of

unity where m = lcm(ν1, . . . , νn). By letting U (m) = U ◦ · · · ◦ U︸ ︷︷ ︸
m-times

, we deduce that U (m) is

the identity since

U (m)(z1, . . . , zn) = (eimθ1z1, . . . , e
imθnzn) = (z1, . . . , zn).

Suppose µ ∈ ∂D \ E . We will show Cϕ − µI is invertible by proving that for every

g ∈ B(Bn), there exists a unique f ∈ B(Bn) such that Cϕf − µf = g. Arguing as in the

proof of Theorem 6.2.2, we may form a system of linear equations

f(U(z)) − µf(z) = g(z)

f(U (2)(z)) − µf(U(z)) = g(U(z))
...

...

f(z) − µf(U (m−1)(z)) = g(U (m−1)(z)).

The determinant of the coefficient matrix is (−1)m(µm−1) 6= 0. Thus CU −µI is invertible,

so µ 6∈ σ(Cϕ), and thus σ(Cϕ) ⊆ E . Therefore σ(Cϕ) = E .

Corollary 6.3.7. Let ϕ ∈ Aut(Bn) which induces an isometric composition operator on

B(Bn). Then the spectrum of Cϕ is the closure of all possible products of the eigenvalues of

Jϕ(0), which is either the entire unit circle, or a finite subgroup of the circle.
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6.4 The Unit Polydisk

In the case of the Bloch space of the polydisk, we consider the spectrum of a large class of

isometric composition operators. The spectrum we determine on the polydisk reduces to

Theorem 6.2.2 in the case of the isometric composition operators on B(D).

Theorem 6.4.1. If Cϕ is an isometry on B(Dn) with ϕ a surjective function, but not an

automorphism, then σ(Cϕ) = D.

Proof. By Theorem 3.4.1, it suffices to show that 0 ∈ σ(Cϕ), that is, Cϕ is not invertible.

Since Cϕ is an isometry, it is necessarily injective. Thus, it suffices to show Cϕ is not

surjective. Arguing by contradiction, assume Cϕ is surjective. Since ϕ is onto but not an

automorphism, ϕ is not injective. Thus, there exist ζ = (ζ1, . . . , ζn) and η = (η1, . . . , ηn) in

Dn such that ζ 6= η but ϕ(ζ) = ϕ(η). In particular, there exists k ∈ {1, . . . , n} such that

ζk 6= ηk.

Define pk : Dn → D to be the projection map onto the kth coordinate of Dn, that is

pk(z1, . . . , zn) = zk. Since pk(0) = 0, ∂pk
∂zj

(z) = 0 for j 6= k, ∂pk
∂zk

(z) = 1, by Theorem 5.1.3,

pk is Bloch with

||pk||B = βpk = sup
z∈Dn

(1− |zk|2)
∣∣∣∣∂pk∂zk

(z)
∣∣∣∣ = 1.

The function defined by g(z) = pk(z)−ηk is, therefore, Bloch. Note that g(ζ) = pk(ζ)−

ηk = ζk−ηk 6= 0. Since Cϕ is surjective, there exists a Bloch function f such that f ◦ϕ = g.

In particular, f(ϕ(ζ)) = g(ζ) 6= 0. On the other hand, f(ϕ(ζ)) = f(ϕ(η)) = g(η) = 0, a

contradiction. Thus Cϕ is not surjective. Therefore, σ(Cϕ) = D.

Next, we consider the isometric composition operators induced by automorphisms which

act as rotations in each coordinate.
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Theorem 6.4.2. Let ϕ(z) = (λ1z1, . . . , λnzn) for λj ∈ ∂D, j = 1, . . . , n. Then

σ(Cϕ) =


∂D if ord(λj) =∞ for some j ∈ {1, . . . , n}

G if ord(λj) <∞ for all j ∈ {1, . . . , n},

where G is the finite cyclic group generated by {λ1, . . . , λn}.

Proof. Since ϕ is invertible with ϕ−1(z) = (λ−1
1 z1, . . . , λ

−1
n zn) a holomorphic self-map of Dn,

Cϕ is invertible with C−1
ϕ = Cϕ−1 bounded on B(Dn). So by Theorem 3.4.1, σ(Cϕ) ⊆ ∂D.

Observe that the group G generated by {λ1, . . . , λn} is

{
λk11 · · ·λ

kn
n : k1, . . . , kn ∈ N ∪ {0}

}
⊆ ∂D.

For k1, . . . , kn ∈ N ∪ {0}, the function f(z) = zk11 · · · zknn is Bloch and

(Cϕf)(z) = f(λ1z1, . . . , λnzn) = λk11 . . . λknn (zk11 . . . zknn ) = λk11 . . . λknn f(z).

Thus, λk11 · · ·λknn is an eigenvalue of Cϕ corresponding to the eigenfunction f , and so G ⊆

σ(Cϕ).

If there exists j ∈ {1, . . . , n} such that ord(λj) = ∞, then G is a dense subset of ∂D.

Thus ∂D = G ⊆ σ(Cϕ), and hence σ(Cϕ) = ∂D. If ord(λj) <∞ for all j ∈ {1, . . . , n}, then

G is a finite cyclic group of order equal to the least common multiple of ord(λ1), . . . , ord(λn).

We wish to show that σ(Cϕ) ⊆ G. If we let µ ∈ ∂D\G, then the argument used in Theorems

6.2.2 and 6.3.6 follows through to show σ(Cϕ) = G.

We now determine the spectrum of the composition operator induced by an automor-

phism that permutes the coordinates.
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Theorem 6.4.3. Let ϕ(z) = (zτ(1), . . . , zτ(n)) where τ ∈ Sn is decomposed into a product

of disjoint cycles c1, . . . , c` of order α1, . . . , α`, respectively.

(a) If λ is an αth
j root of unity for some j ∈ {1, . . . , `}, then λ is an eigenvalue of Cϕ.

(b) The spectrum of Cϕ is the group of the αth roots of unity, where α is the order of τ .

Proof. To prove (a), assume λ is an αth
j root of unit for some j ∈ {1, . . . , `}. To prove that

λ is an eigenvalue, we need to show there exists a non-zero function f ∈ B(Dn) such that

f(ϕ(z)) = λ(f(z)), (6.2)

for all z ∈ Dn. We are going to show that there exists a linear function f satisfying (6.2).

Let

f(z) =
n∑
k=1

xkzk,

where the coefficients xk are to be determined.

Equation (6.2) can be thought of as a matrix equation Bx = 0, where x is the column

vector x = (x1, . . . , xn)T , and B is a matrix with all diagonal entries −λ and whose rows

and columns contain an entry 1 and all other off-diagonal entries 0. The rows and columns

of B can be permuted to yield the block diagonal matrix

A =



A1 O · · · O

O A2 · · · O

...
. . .

...

O O · · · A`



where each matrix Ak has order αk × αk and contains all diagonal entries 1, and each row

contains one entry of −λ and all other off-diagonal entries 0. The matrix Ak corresponds
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to the cycle ck. Since λ is an αth
j root of unity, det (Aj) = 1 − λαj = 0. Thus det (B) =

det (A) =
∏`
k=1 det (Ak) = 0, and so Bx = 0 has non-trivial solutions. Therefore, λ is an

eigenvalue.

To prove (b), assume µ is not an αth root of unity. We will show that Cϕ − µI is

invertible, thus µ 6∈ σ(Cϕ). Arguing as in the proofs of Theorems 6.2.2 and 6.3.6, given a

function g ∈ B(Dn), there exists a unique solution f to the system of linear equations

f(ϕ(z)) − µf(z) = g(z)

f(ϕ(2)(z)) − µf(ϕ(z)) = g(ϕ(z))
...

...

f(z) − µf(ϕ(α−1)(z)) = g(ϕ(α−1)(z))

(6.3)

whose coefficient matrix has non-zero determinant. Thus Cϕ − µI is invertible.

On the other hand, suppose µ is an αth root of unity. By forming the augmented matrix

from system (6.3) and reducing the last row, we obtain



−µ 1 0 0 · · · 0 g(z)

0 −µ 1 0 · · · 0 g(ϕ(z))
... 0

. . . . . .
...

...
...

. . . . . . . . .
...

...

0
. . . . . . 1 g(ϕα−2(z))

0 0 · · · · · · 0 −µα + 1 hg(z)



where

hg(z) = g(ϕα−2(z)) + µg(ϕα−3(z)) + µ2g(ϕα−4(z)) + . . .

. . .+ µα−3g(ϕ(z)) + µα−2g(z) + µα−1g(ϕα−1(z)).
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Since µ is an αth root of unity, for system (6.3) to have a solution, it must be the case that

hg(z) = 0 for all z ∈ Dn. If j1, . . . , jk are any indices in the cycles c1, . . . , cj , respectively,

and define g(z) = zj1 · · · zjk . Then hg is a linear combination of distinct monomials in k

variables with non-zero coefficients. Therefore, hg is not identically zero. Thus Cϕ − µI is

not invertible, and so µ ∈ σ(Cϕ).

By Example 2.3.9, the automorphisms of the unit polydisk that fix the origin are of the

form ϕ(z) = (λ1zτ(1), . . . , λnzτ(n)), where λj ∈ ∂D for all j ∈ {1, . . . , n} and τ ∈ Sn. The

arguments used in the proofs of Theorems 6.4.2 and 6.4.3 carry over to the general case,

where α = lcm(ord(τ), ord(λ1), . . . , ord(λn)).

Theorem 6.4.4. Let ϕ be the symbol of an isometric composition operator on B(Dn).

(a) If ϕ 6∈ Aut(Dn) and ϕ is onto, then σ(Cϕ) = D.

(b) If ϕ ∈ Aut(Dn), let λ1, . . . , λn ∈ ∂D and τ ∈ Sn be such that ϕ(z) = (λ1zτ(1), . . . , λnzτ(n)).

(i) If ord(λj) =∞ for some j ∈ {1, . . . , n}, then σ(Cϕ) = ∂D.

(ii) If ord(λj) <∞ for all j ∈ {1, . . . , n}, then σ(Cϕ) is the cyclic group G generated

by λ1, . . . , λn and the mth roots of unity, where m = ord(τ). Furthermore, each

element of the group G generated by λ1, . . . , λn is an eigenvalue.

Remark 6.4.5. By Theorem 6.1.2(c), the symbols which induce isometric composition

operators on B(D) are onto. If we apply Theorem 6.4.4 to the case of B(D), then we arrive

at Theorem 6.2.2.

Remark 6.4.6. It is unknown whether the symbols of an isometric composition operator

on B(Dn) are necessarily onto for n ≥ 2. If they are onto, then Theorem 6.4.4 provides a

complete description of the spectriom of the isometric composition operators.
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Chapter 7: Weighted Composition Operators on the Bloch

Space of the Unit Disk

Ohno and Zhao characterized the bounded and the compact weighted composition operators

on the Bloch space and little Bloch space of the unit disk [72] in terms of the following

quantities: sψ,ϕ = supz∈D sψ,ϕ(z) and τψ,ϕ = supz∈D τψ,ϕ(z) where

sψ,ϕ(z) =
1
2

(1− |z|2)
∣∣ψ′(z)∣∣ log

2
1− |ϕ(z)|2

,

τψ,ϕ(z) =
1− |z|2

1− |ϕ(z)|2
∣∣ϕ′(z)∣∣ |ψ(z)| .

Theorem 7.0.1. [72] Let ψ ∈ H(D) and ϕ be an analytic self-map of D. Then

(a) Wψ,ϕ is bounded on B(D) if and only if sψ,ϕ and τψ,ϕ are finite. Furthermore, the

bounded operator Wψ,ϕ is compact if and only if

lim
|ϕ(z)|→1

sψ,ϕ(z) = lim
|ϕ(z)|→1

τψ,ϕ(z) = 0.

(b) Wψ,ϕ is bounded on B0(D) if and only if ψ ∈ B0(D), sψ,ϕ and τψ,ϕ are finite, and

lim
|z|→0

(1− |z|2) |ψ(z)|
∣∣ϕ′(z)∣∣ = 0.

Furthermore, the bounded operator Wψ,ϕ is compact if and only if

lim
|z|→1

sψ,ϕ(z) = lim
|z|→1

τψ,ϕ(z) = 0.
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In this chapter, we extend the results of Ohno and Zhao to include operator norm

estimates, an alternative characterization of boundedness and compactness, and the deter-

mination of the spectrum for a particular class of isometric weighted composition operators

on the Bloch space of the polydisk. The underlying goal of this chapter is to define quantities

which can be generalized to bounded homogeneous domains in Cn.

7.1 Operator Norm Estimates

Let ψ ∈ H(D) and ϕ be an analytic self-map of D. Define σψ,ϕ = supz∈D σψ,ϕ(z) where

σψ,ϕ(z) =
1
2

(1− |z|2)
∣∣ψ′(z)∣∣ log

1 + |ϕ(z)|
1− |ϕ(z)|

.

Since
1
2

log
1 + |ϕ(z)|
1− |ϕ(z)|

≤ log
2

1− |ϕ(z)|2
for all z ∈ D, we have σψ,ϕ ≤ sψ,ϕ.

Theorem 7.1.1. Let ψ ∈ H(D) and ϕ be an analytic self-map of D which induce a bounded

weighted composition operator on B(D). Then

(a) ||Wψ,ϕ|| ≥ max
{
||ψ||B ,

1
2 |ψ(0)| log 1+|ϕ(0)|

1−|ϕ(0)|

}
.

(b) ||Wψ,ϕ|| ≤ max
{
||ψ||B ,

1
2 |ψ(0)| log 1+|ϕ(0)|

1−|ϕ(0)| + τψ,ϕ + σψ,ϕ

}
.

Proof. To prove (a), taking the constant function 1, we have

||Wψ,ϕ|| ≥ ||Wψ,ϕ1||B = ||ψ||B .

If ϕ(0) = 0, then the inequality (a) holds trivially. If ϕ(0) 6= 0, then write ϕ(0) = |ϕ(0)| eiθ,

for θ ∈ R. Define

f(z) =
1
2

Log
1 + e−iθz

1− e−iθz
,
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where Log denotes the principal branch of the logarithm. Since f(0) = 0 and

βf = sup
z∈D

(1− |z|2)
∣∣f ′(z)∣∣ = sup

z∈D

1− |z|2

|1− e−2iθz2|
= 1,

the function f is Bloch with ||f ||B = 1. Thus

||Wψ,ϕ|| ≥ ||Wψ,ϕf ||B ≥ |ψ(0)| |f(ϕ(0))| = 1
2
|ψ(0)| log

1 + |ϕ(0)|
1− |ϕ(0)|

.

Therefore

||Wψ,ϕ|| ≥ max
{
||ψ||B ,

1
2
|ψ(0)| log

1 + |ϕ(0)|
1− |ϕ(0)|

}
.

We now prove (b). Let f ∈ B(D) such that ||f ||B = 1. Then

||Wψ,ϕf ||B = |ψ(0)| |f(ϕ(0))|+ sup
z∈D

(1− |z|2)
∣∣ψ(z)f ′(ϕ(z))ϕ′(z) + ψ′(z)f(ϕ(z))

∣∣
≤ |ψ(0)| |f(ϕ(0))|+ sup

z∈D
(1− |z|2) |ψ(z)|

∣∣f ′(ϕ(z))
∣∣ ∣∣ϕ′(z)∣∣

+ sup
z∈D

(1− |z|2)
∣∣ψ′(z)∣∣ |f(ϕ(z))|

= |ψ(0)| |f(ϕ(0))|+ sup
z∈D

1− |z|2

1− |ϕ(z)|2
|ψ(z)|

∣∣ϕ′(z)∣∣ (1− |ϕ(z)|2)
∣∣f ′(ϕ(z))

∣∣
+ sup
z∈D

(1− |z|2)
∣∣ψ′(z)∣∣ |f(ϕ(z))|

≤ |ψ(0)| |f(ϕ(0))|+ τψ,ϕβf + sup
z∈D

(1− |z|2)
∣∣ψ′(z)∣∣ |f(ϕ(z))| .
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By applying Corollary 5.1.6 and (4.3), we obtain

||Wψ,ϕf ||B ≤ |ψ(0)|
(
|f(0)|+ 1

2
βf log

1 + |ϕ(0)|
1− |ϕ(0)|

)
+ τψ,ϕβf

+ sup
z∈D

(1− |z|2)
∣∣ψ′(z)∣∣ (|f(0)|+ 1

2
βf log

1 + |ϕ(z)|
1− |ϕ(z)|

)

≤ |ψ(0)|
(
|f(0)|+ 1

2
βf log

1 + |ϕ(0)|
1− |ϕ(0)|

)
+ τψ,ϕβf + |f(0)|βψ + σψ,ϕβf

≤ |ψ(0)|
(
|f(0)|+ 1

2
βf log

1 + |ϕ(0)|
1− |ϕ(0)|

)
+ |f(0)|βψ

+ (τψ,ϕ + σψ,ϕ)βf

= ||ψ||B |f(0)|+
(

1
2
|ψ(0)| log

1 + |ϕ(0)|
1− |ϕ(0)|

+ τψ,ϕ + σψ,ϕ

)
βf .

Since |f(0)| = 1− βf , we deduce

||Wψ,ϕf ||B ≤ ||ψ||B (1− βf ) +
(

1
2
|ψ(0)| log

1 + |ϕ(0)|
1− |ϕ(0)|

+ τψ,ϕ + σψ,ϕ

)
βf

= ||ψ||B +
(

1
2
|ψ(0)| log

1 + |ϕ(0)|
1− |ϕ(0)|

+ τψ,ϕ + σψ,ϕ − ||ψ||B
)
βf .

If 1
2 |ψ(0)| log 1+|ϕ(0)|

1−|ϕ(0)| + τψ,ϕ + σψ,ϕ ≤ ||ψ||B, then

||Wψ,ϕf ||B ≤ ||ψ||B .
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On the other hand, if 1
2 |ψ(0)| log 1+|ϕ(0)|

1−|ϕ(0)| + τψ,ϕ + σψ,ϕ ≥ ||ψ||B, then

||Wψ,ϕf ||B ≤ ||ψ||B +
1
2
|ψ(0)| log

1 + |ϕ(0)|
1− |ϕ(0)|

+ τψ,ϕ + σψ,ϕ − ||ψ||B

=
1
2
|ψ(0)| log

1 + |ϕ(0)|
1− |ϕ(0)|

+ τψ,ϕ + σψ,ϕ.

Recalling that ||Wψ,ϕ|| = sup
||f ||B=1

||Wψ,ϕf ||B, we obtain

||Wψ,ϕ|| ≤ max
{
||ψ||B ,

1
2
|ψ(0)| log

1 + |ϕ(0)|
1− |ϕ(0)|

+ τψ,ϕ + σψ,ϕ

}
.

Remark 7.1.2. We now consider the application of the operator norm estimates to the

degenerate weighted composition operators, namely the multiplication and composition

operators on B(D). If ψ is the constant function 1, then Wψ,ϕ = Cϕ, ||ψ||B = 1, σψ,ϕ = 0,

and

τψ,ϕ = τϕ = sup
z∈D

1− |z|2

1− |ϕ(z)|2
∣∣ϕ′(z)∣∣ .

Thus, the norm estimates become

max
{

1,
1
2

log
1 + |ϕ(0)|
1− |ϕ(0)|

}
≤ ||Cϕ|| ≤ max

{
1,

1
2

log
1 + |ϕ(0)|
1− |ϕ(0)|

+ τϕ

}
.

These norm estimates match those obtained by Xiong in [91].

If ϕ is the identity map of D, then Wψ,ϕ = Mψ, σψ,ϕ = σψ (see Section 4.1, equation

(4.1)), and τψ,ϕ = ||ψ||∞. So

||ψ||B ≤ ||Mψ|| ≤ max{||ψ||B , ||ψ||∞ + σψ}.
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These estimates were observed in Theorem 4.1.2; however, the operator norm in Theorem

4.1.2 has a sharper lower bound.

7.2 Boundedness and Compactness

At a cursory glance, the need for σψ,ϕ may not be apparent. The ultimate goal is to extend

the characterizations of the bounded and the compact weighted composition operators to

the Bloch space of a bounded homogeneous domain. Thus, we need to define terms which

are amenable to the geometry induced by the Bergman metric of the domain. Recall from

(4.3) the Bergman distance between the points ϕ(z) and 0 is given by

ρ(ϕ(z), 0) =
1
2

log
1 + |ϕ(z)|
1− |ϕ(z)|

.

The goal of this section is to show that, indeed, the quantities σψ,ϕ and τψ,ϕ can be used

to characterize the bounded and the compact weighted composition operators on the Bloch

space and little Bloch space of D.

Theorem 7.2.1. Let ψ ∈ H(D) and ϕ be an analytic self-map of D. Then

(a) Wψ,ϕ is bounded on B(D) if and only if ψ ∈ B(D), and σψ,ϕ and τψ,ϕ are finite.

Furthermore, the bounded operator Wψ,ϕ is compact if and only if

lim
|ϕ(z)|→1

σψ,ϕ(z) = lim
|ϕ(z)|→1

τψ,ϕ(z) = 0.

(b) Wψ,ϕ is bounded on B0(D) if and only if ψ ∈ B0(D), σψ,ϕ and τψ,ϕ are finite, and

lim
|z|→1

(1− |z|2) |ψ(z)|
∣∣ϕ′(z)∣∣ = 0.

90



Furthermore, the bounded operator Wψ,ϕ is compact if and only if

lim
|z|→1

σψ,ϕ(z) = lim
|z|→1

τψ,ϕ(z) = 0.

Proof. We will prove part (a). The proof of part (b) is analogous. Assume Wψ,ϕ is bounded

on B(D). Considering the constant function 1, we see that ψ = Wψ,ϕ1 ∈ B(D). Since

σψ,ϕ ≤ sψ,ϕ, by Theorem 7.0.1(a), σψ,ϕ and τψ,ϕ are finite. Conversely, assume ψ ∈ B(D),

and σψ,ϕ and τψ,ϕ are finite. By Theorem 7.1.1, Wψ,ϕ is bounded.

Assume Wψ,ϕ is compact on B(D). Since σψ,ϕ(z) ≤ sψ,ϕ(z) for all z ∈ D, by Theorem

7.0.1(b) we obtain

lim
|ϕ(z)|→1

σψ,ϕ(z) ≤ lim
|ϕ(z)|→1

sφ,ϕ(z) = 0.

Conversely, suppose Wψ,ϕ is bounded on B(D) and

lim
|ϕ(z)|→1

σψ,ϕ(z) = lim
|ϕ(z)|→1

τψ,ϕ(z) = 0.

Since sψ,ϕ(z) ≤ 2σψ,ϕ(z) for |ϕ(z)| ≥ 1
2 , we have

lim
|ϕ(z)|→1

sψ,ϕ(z) ≤ 2 lim
|ϕ(z)|→1

σψ,ϕ(z) = 0.

By Theorem 7.0.1(b), Wψ,ϕ is compact on B(D).

7.3 Spectrum

In this section, we determine the spectrum of the isometric weighted composition operator

Wψ,ϕ for which the associated operators Mψ and Cϕ are isometries.

Theorem 7.3.1. Let ψ ∈ H(D) induce an isometric multiplication operator and ϕ be an

analytic self-map of D which induces an isometric composition operator on B(D). If ϕ is
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not a rotation, then σ(Wψ,ϕ) = D. If ϕ(z) = ζz for z ∈ D and ζ ∈ ∂D, then

σ(Wψ,ϕ) =


∂D if ord(ζ) =∞

ψ(0) 〈ζ〉 if ord(ζ) <∞,

where ψ(0) 〈ζ〉 = {ψ(0)ζk : k = 1, . . . , n}.

Proof. Since ψ induces an isometric multiplication operator on B(D), then by Theorem

4.3.6, ψ is a constant function of modulus one. Observe that Wψ,ϕ = ψ(0)Cϕ and for λ ∈ C,

Wψ,ϕ − λI = ψ(0)Cϕ − λI = ψ(0)(Cϕ − λψ(0)I),

where I denotes the identity operator on B(D). Thus, Wψ,ϕ − λI is not invertible if and

only if Cϕ−λψ(0)I is not invertible. Thus, λ ∈ σ(Wψ,ϕ) if and only if λψ(0) ∈ σ(Cϕ). The

result follows immediately from Theorem 6.2.2.
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Chapter 8: Weighted Composition Operators from the Bloch

Space to H∞ of a Bounded Homogeneous Domain

Before we investigate the weighted composition operators mapping the Bloch space of a

bounded homogeneous domain D into itself, we will study a related problem. In this

chapter, we will study the weighted composition operators which map the Bloch space into

the Hardy space H∞ of a bounded homogeneous domain. In [53], Hosokawa, Izuchi, and

Ohno characterized the bounded and the compact weighted composition operators from

B(D) and B0(D) into H∞(D).

Theorem 8.0.1. [53] Let ψ ∈ H(D) and ϕ an analytic self-map of D. Then the following

are equivalent.

(a) Wψ,ϕ : B(D)→ H∞(D) is bounded.

(b) Wψ,ϕ : B0(D)→ H∞(D) is bounded.

(c) ψ ∈ H∞(D) and sup
z∈D
|ψ(z)| log

1
1− |ϕ(z)|

<∞.

Theorem 8.0.2. [53] Let ψ ∈ H(D) and ϕ be an analytic self-map of D. Then the following

are equivalent.

(a) Wψ,ϕ : B(D)→ H∞(D) is compact.

(b) Wψ,ϕ : B0(D)→ H∞(D) is compact.

(c) ψ ∈ H∞(D) and lim
ϕ(z)→∂D

|ψ(z)| log
1

1− |ϕ(z)|
= 0.
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8.1 Boundedness

In this section, we characterize the bounded weighted composition operators from B(D)

and B0∗(D) into H∞(D) for a bounded homogeneous domain D. In the instances where D

is the unit ball or the unit polydisk, we extend Theorem 8.0.1.

Let D be a bounded homogeneous domain in Cn, ψ ∈ H(D), and ϕ a holomorphic

self-map of D. Define

ηψ,ϕ = sup
z∈D
|ψ(z)|ω(ϕ(z)),

η0,ψ,ϕ = sup
z∈D
|ψ(z)|ω0(ϕ(z)).

Lemma 8.1.1. Let D be a bounded homogeneous domain, ψ ∈ H(D), and ϕ a holomorphic

self-map of D. If Wψ,ϕ : B(D)→ H∞(D) is bounded, then

η0,ψ,ϕ ≤ ηψ,ϕ ≤ ||Wψ,ϕ|| .

Proof. Since η0,ψ,ϕ ≤ ηψ,ϕ, it suffices to show that ηψ,ϕ ≤ ||Wψ,ϕ||. Let f ∈ B(D) with

||f ||B ≤ 1. For every z ∈ D,

||Wψ,ϕ|| = sup{||ψ(g ◦ ϕ)||∞ : g ∈ B(D), ||g||B ≤ 1}

≥ ||ψ(f ◦ ϕ)||∞

≥ |ψ(z)| |f(ϕ(z))| .

Taking the supremum over all such f ∈ B(D) such that f(0) = 0, we obtain

|ψ(z)|ω(ϕ(z)) ≤ ||Wψ,ϕ|| .
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Finally, taking the supremum over all z ∈ D, we have

ηψ,ϕ ≤ ||Wψ,ϕ|| .

Theorem 8.1.2. Let D be a bounded homogeneous domain in Cn, ψ ∈ H(D), and ϕ

a holomorphic self-map of D. Then Wψ,ϕ : B(D) → H∞(D) is bounded if and only if

ψ ∈ H∞(D) and ηψ,ϕ <∞.

Proof. First assume Wψ,ϕ is bounded. Then ψ = Wψ,ϕ1 ∈ H∞(D), and by Lemma 8.1.1

ηψ,ϕ is finite.

Next, assume ψ ∈ H∞(D) and ηψ,ϕ <∞. By Lemma 5.1.1(a), for f ∈ B(D) and z ∈ D,

|f(ϕ(z))| ≤ |f(0)|+ ω(ϕ(z))βf .

From this, we deduce

||Wψ,ϕf ||∞ = sup
z∈D
|ψ(z)| |f(ϕ(z))|

≤ sup
z∈D

(|ψ(z)| |f(0)|+ |ψ(z)|ω(ϕ(z))βf )

≤ sup
z∈D

(|ψ(z)|+ |ψ(z)|ω(ϕ(z))) ||f ||B

≤ (||ψ||∞ + ηψ,ϕ) ||f ||B .

Thus Wψ,ϕ is a bounded operator mapping B(D) into H∞(D). Furthermore,

||Wψ,ϕ|| ≤ ||ψ||∞ + ηψ,ϕ.
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The proof of the following result is analogous.

Theorem 8.1.3. Let D be a bounded homogeneous domain, ψ ∈ H(D), and ϕ a holo-

morphic self-map of D. Then Wψ,ϕ : B0∗(D) → H∞(D) if and only if ψ ∈ H∞(D) and

η0,ψ,ϕ <∞.

8.1.1 The Unit Ball

In [60] Li and Stević studied the weighted composition operators from the α-Bloch space

into H∞ of the unit ball. The α-Bloch space on the unit ball, for α ∈ (0,∞), is defined as

the space of functions f ∈ H(Bn) such that

bα(f) = sup
z∈Bn

(1− ||z||2)α |〈∇(f)(z), z〉| <∞

under the norm

||f ||Bα = |f(0)|+ bα(f).

The Bloch space coincides with the α-Bloch space with α = 1 by Theorem 2.3.18.

Theorem 8.1.4. [60] Let ψ ∈ H(Bn) and ϕ be a holomorphic self-map of Bn. Then the

following are equivalent:

(a) Wψ,ϕ : B(Bn)→ H∞(Bn) is bounded.

(b) Wψ,ϕ : B0(Bn)→ H∞(Bn) is bounded.

(c) ψ ∈ H∞(Bn) and sup
z∈Bn

|ψ(z)| log
2

1− ||ϕ(z)||2
<∞.

Recall from (5.4) that if ϕ is a holomorphic self-map of Bn and z ∈ Bn, then

ω0(ϕ(z)) = ω(ϕ(z)) =
1
2

log
1 + ||ϕ(z)||
1− ||ϕ(z)||

.
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Thus, for the unit ball η0,ψ,ϕ = ηψ,ϕ for all ψ ∈ H(D). Thus we deduce the following

characterization of the bounded weighted composition operators from B(Bn) into H∞(Bn).

This equivalence extends Theorem 8.0.1 to the unit ball.

Corollary 8.1.5. Let ψ ∈ H(Bn) and ϕ be a holomorphic self-map of Bn. Then the

following are equivalent.

(a) Wψ,ϕ : B(Bn)→ H∞(Bn) is bounded.

(b) Wψ,ϕ : B0(Bn)→ H∞(Bn) is bounded.

(c) ψ ∈ H∞(Bn) and sup
z∈Bn

|ψ(z)| log
1 + ||ϕ(z)||
1− ||ϕ(z)||

<∞.

The benefit of this characterization over that of Theorem 8.1.4, is that this is formulated

in terms of the Bergman metric and lends itself to a generalization to bounded homogeneous

domains.

8.1.2 The Unit Polydisk

We now extend Theorem 8.0.1 to the unit polydisk.

Lemma 8.1.6. Let ϕ be a holomorphic self-map of Dn, λ ∈ Dn, and fix j ∈ {1, . . . , n}.

Then the function defined by

f(z) = Log
4

1− zjϕj(λ)

is in the ∗-little Bloch space and ||f ||B ≤ 2 log 2 + 2.
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Proof. Since ∂f
∂zk

(z) = 0 for k 6= j and ∂f
∂zj

(z) = ϕj(λ)

1−zjϕj(λ)
, Theorem 5.1.3 yields

βf = sup
z∈Dn

Qf (z)

= sup
z∈Dn

∣∣∣∣∣∣∣∣((1− |z1|2)
∂f

∂z1
, . . . , (1− |zn|2)

∂f

∂zn

)∣∣∣∣∣∣∣∣
= sup

zj∈D

(1− |zj |2) |ϕj(λ)|∣∣∣1− zjϕj(λ)
∣∣∣

≤ sup
zj∈D

(1− |zj |2) |ϕj(λ)|
1− |zj |

= sup
zj∈D

(1 + |zj |) |ϕj(λ)|

≤ 2.

Thus f ∈ B(Dn) and ||f ||B ≤ 2 log 2 + 2. Furthermore,

lim
z→∂∗Dn

Qf (z) = lim
zj→∂D

(1− |zj |2) |ϕj(λ)|∣∣∣1− zjϕj(λ)
∣∣∣ ≤ lim

zj→∂D

(1− |zj |2) |ϕj(λ)|
1− |ϕj(λ)|

= 0.

Thus, f ∈ B0∗(D).

Theorem 8.1.7. Let ψ ∈ H(Dn) and ϕ a holomorphic self-map of Dn. Then the following

are equivalent.

(a) Wψ,ϕ : B(Dn)→ H∞(Dn) is bounded.

(b) Wψ,ϕ : B0∗(Dn)→ H∞(Dn) is bounded.

(c) ψ ∈ H∞(Dn) and sup
z∈Dn

|ψ(z)|
n∑
j=1

log
1 + |ϕj(z)|
1− |ϕj(z)|

<∞.
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Proof. If Wψ,ϕ is bounded from B(Dn) to H∞(Dn), then there exists M > 0 such that, for

each f ∈ B(Dn), ||ψ(f ◦ ϕ)||∞ ≤ M ||f ||B. So this is true for each f ∈ B0∗(Dn), and thus

Wψ,ϕ is bounded from B0∗(Dn) into H∞(Dn). Thus (a) =⇒ (b).

Suppose Wψ,ϕ is bounded from B0∗(Dn) into H∞(Dn). Then ψ = Wψ,ϕ1 ∈ H∞(Dn).

Fix j ∈ {1, . . . , n} and λ ∈ Dn. Then by Lemma 8.1.6, the function defined by

hj(z) = Log
4

1− zjϕj(λ)

is an element of B0∗(Dn). Define the function

f(z) =
n∑
j=1

hj(z) =
n∑
j=1

Log
4

1− zjϕj(λ)
.

Then f ∈ B0∗(Dn) and ||f ||B ≤
n∑
j=1

||hj ||B = 2n(log 2 + 1). Since Wψ,ϕ is bounded, we have

||Wψ,ϕg||∞ ≤ ||Wψ,ϕ|| ||g||B for all g ∈ B0∗(Dn). Thus

2n(log 2 + 1) ||Wψ,ϕ|| ≥ ||Wψ,ϕf ||∞

≥ |ψ(λ)| |f(ϕ(λ))|

= |ψ(λ)|
n∑
j=1

log
4

1− |ϕ(λ)|2

≥ |ψ(λ)|
n∑
j=1

log
1 + |ϕj(λ)|
1− |ϕj(λ)|

.
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By taking the supremum over all λ ∈ Dn,

sup
λ∈Dn

|ψ(λ)|
n∑
j=1

log
1 + |ϕj(λ)|
1− |ϕj(λ)|

≤ 2n(log 2 + 1) ||Wψ,ϕ|| <∞,

completing the proof of (b) =⇒ (c).

Finally, suppose ψ ∈ H∞(Dn) and supz∈Dn |ψ(z)|
∑n

j=1 log 1+|ϕj(z)|
1−|ϕj(z)| < ∞. By Lemma

5.1.4(b), we have

ω(ϕ(z)) ≤ ρ(ϕ(z), 0) ≤ 1
2

n∑
j=1

log
1 + |ϕj(z)|
1− |ϕj(z)|

,

and thus

sup
z∈Dn

|ψ(z)|ω(ϕ(z)) ≤ sup
z∈Dn

|ψ(z)|
n∑
j=1

log
1 + |ϕj(z)|
1− |ϕj(z)|

,

which is finite by assumption. Thus, by Theorem 8.1.2, Wψ,ϕ is bounded from B(Dn) to

H∞(Dn), and so (c) =⇒ (a).

8.2 Operator Norm

In this section, we determine the norm of Wψ,ϕ acting from B(D) or B0∗(D) to H∞(D) for

D a bounded homogeneous domain.

Theorem 8.2.1. Let D be a bounded homogeneous domain in Cn, ψ ∈ H(D), and ϕ a

holomorphic self-map of D. If Wψ,ϕ : B(D)→ H∞(D) is bounded, then

||Wψ,ϕ|| = max{||ψ||∞ , ηψ,ϕ}.

Proof. From the boundedness of Wψ,ϕ, we have ||ψ||∞ = ||Wψ,ϕ1||∞ ≤ ||Wψ,ϕ||, and by
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Lemma 8.1.1, ηψ,ϕ ≤ ||Wψ,ϕ||. Thus

max{||ψ||∞ , ηψ,ϕ} ≤ ||Wψ,ϕ|| .

From Lemma 5.1.1(a), for f ∈ B(D) we have

||Wψ,ϕf ||∞ = sup
z∈D
|ψ(z)| |f(ϕ(z))|

≤ sup
z∈D
|ψ(z)| (|f(0)|+ ω(ϕ(z))βf )

≤ ||ψ||∞ |f(0)|+ ηψ,ϕβf

≤ ||ψ||∞ (||f ||B − βf ) + ηψ,ϕβf

= ||ψ||∞ ||f ||B + (ηψ,ϕ − ||ψ||∞)βf ≤ max{||ψ||∞ , ηψ,ϕ} ||f ||B .

Taking the supremum over all f ∈ B(D) such that ||f ||B = 1, we obtain ||Wψ,ϕ|| ≤

max{||ψ||∞ , ηψ,ϕ}. Therefore

||Wψ,ϕ|| = max{||ψ||∞ , ηψ,ϕ}.

By using Lemma 5.1.1(b), we obtain the analogous norm for Wψ,ϕ between B0∗(D) into

H∞(D).

Theorem 8.2.2. Let D be a bounded homogeneous domain in Cn, ψ ∈ H(D), and ϕ a

holomorphic self-map of D. If Wψ,ϕ : B0∗(D)→ H∞(D) is bounded, then

||Wψ,ϕ|| = max{||ψ||∞ , η0,ψ,ϕ}.

As a corollary, we obtain the following result when the ambient space is taken to be the

unit ball.
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Corollary 8.2.3. Let ψ ∈ H(Bn), and ϕ a holomorphic self-map of Bn. If Wψ,ϕ : B(Bn)→

H∞(Bn) is bounded, then

||Wψ,ϕ|| = max
{
||ψ||∞ , sup

z∈Bn

1
2
|ψ(z)| log

1 + ||ϕ(z)||
1− ||ϕ(z)||

}
.

8.3 Compactness

In this section, we provide sufficient conditions for the weighted composition operator from

B(D) to H∞(D) to be compact when D is a bounded homogeneous domain.

Theorem 8.3.1. (Montel’s Theorem) Let D be a domain in Cn and {fn} a sequence of

holomorphic functions on D. Then {fn} is locally bounded if and only if {fn} has a subse-

quence which converges locally uniformly in D to some function f ∈ H(D).

Theorem 8.3.2. [4] Let {fn} be a sequence of Bloch functions on a bounded homogenous

domain D which converges locally uniformly in D to some holomorphic function f . If the

sequence {βfn} is bounded, then f is Bloch and

βf ≤ lim inf
n→∞

βfn .

That is, the function f 7→ βf is lower semi-continuous on B(D) under the topology of

uniform convergence on compact subsets.

Lemma 8.3.3. Let D be a bounded homogeneous domain, ψ ∈ H(D), and ϕ a holomorphic

self-map of D. Then Wψ,ϕ : B(D) → H∞(D) is compact if and only if for every bounded

sequence {fk} in B(D) converging to 0 locally uniformly in D, ||ψ(fk ◦ ϕ)||∞ → 0 as k →∞.

Proof. Assume Wψ,ϕ is compact. Let {fk} be a bounded sequence in B(D) which converges

to 0 locally uniformly in D. We need to show that ||ψ(fk ◦ ϕ)||∞ → 0 as k → ∞. Since

Wψ,ϕ is compact, {ψ(fk ◦ ϕ)} contains a subsequence which converges to some function
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f ∈ H∞(D). For z ∈ D, ψ(z)(fk(ϕ(z)))→ 0 as k →∞, and hence f must be identically 0.

Thus ||ψ(fk ◦ ϕ)||∞ → 0 as k →∞.

Conversely, assume ||ψ(gk ◦ ϕ)||∞ → 0 as k → ∞ for each bounded sequence {gk} in

B(D) converging to 0 locally uniformly in D. To prove the compactness of Wψ,ϕ, it suffices

to show that if {fk} is a sequence in B(D) with ||fk||B ≤ 1 for all k ∈ N, then there

exists a subsequence {fkj} such that ψ(fkj ◦ ϕ) converges in H∞(D). Fix z0 ∈ D, and

without loss of generality assume fk(z0) = 0 (otherwise, replace fk by fk − fk(z0)). By

(5.2), |fk(z)| ≤ ρ(z, z0), and thus {fk} is uniformly bounded on every closed disk centered

at z0 in the Bergman metric. Thus {fk} is uniformly bounded on every compact subset of

D. By Theorem 8.3.1, there exists a subsequence {fkj} which converges locally uniformly to

some f ∈ H(D). By Theorem 8.3.2, f ∈ B(D) with ||f ||B ≤ 1. By defining gkj = fkj−f , we

have a bounded sequence {gkj} in B(D) with
∣∣∣∣gkj ∣∣∣∣B ≤ 2 converging to 0 locally uniformly

in D. Thus
∣∣∣∣ψ(gkj ◦ ϕ)

∣∣∣∣
∞ → 0 as k → ∞. Therefore, ψ(fkj ◦ ϕ) converges to ψ(f ◦ ϕ) in

H∞(D).

Theorem 8.3.4. Let D be a bounded homogeneous domain, ψ ∈ H(D), and ϕ a holo-

morphic self-map of D. Then Wψ,ϕ : B(D) → H∞(D) is compact if ψ ∈ H∞(D) and

lim
ϕ(z)→∂D

|ψ(z)|ω(ϕ(z)) = 0.

Proof. Assume ψ ∈ H∞(D) and limϕ(z)→∂D |ψ(z)|ω(ϕ(z)) = 0. By Lemma 8.3.3, to prove

that Wψ,ϕ is compact, it suffices to show that for any bounded sequence {fk} in B(D)

converging to 0 locally uniformly in D, ||ψ(fk ◦ ϕ)||∞ → 0 as k → ∞. Let {fk} be such a

sequence. Without loss of generality, we may assume fk(0) = 0 for all k ∈ N. Fix ε > 0.

Then there exists r > 0 such that |ψ(z)|ω(ϕ(z)) < ε whenever ρ(ϕ(z), ∂D) ≥ r. Thus, if

ρ(ϕ(z), ∂D) ≥ r, then

|ψ(z)| |fk(ϕ(z))| ≤ |ψ(z)|ω(ϕ(z)) < ε.

On the other hand, since fk → 0 locally uniformly on D, |fk(ϕ(z))| → 0 uniformly on
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the set {z ∈ D : ρ(ϕ(z), ∂D) ≤ r}. So |fk(ϕ(z))| < ε
||ψ||∞

whenever ρ(ϕ(z), ∂D) ≤ r, and

thus

|ψ(z)| |fk(ϕ(z))| ≤ ||ψ||∞ |fk(ϕ(z))| < ε.

So, for k large enough, |ψ(z)| |fk(ϕ(z))| < ε for all z ∈ D. Therefore, ||ψ(fk ◦ ϕ)||∞ → 0,

completing the proof.

When the ambient space is the unit ball, Li and Stević [60] characterized the compact

weighted composition operators from B(Bn) or B0(Bn) into H∞(Bn). This is an extension

of Theorem 8.0.1 to the unit ball.

Theorem 8.3.5. [60] Let ψ ∈ H(Bn) and ϕ be a holomorphic self-map of Bn. Then the

following are equivalent:

(a) Wψ,ϕ : B(Bn)→ H∞(Bn) is compact.

(b) Wψ,ϕ : B0(Bn)→ H∞(Bn) is compact.

(c) ψ ∈ H∞(Bn) and lim
||ϕ(z)||→1

|ψ(z)| log
2

1− ||ϕ(z)||2
= 0.

In the following theorem, we extend Theorem 8.0.1 to the unit polydisk. First, we collect

the following lemma.

Lemma 8.3.6. Fix j ∈ {1, . . . , n} and let λ ∈ Dn. Then the function

f(z) =

(
Log 4

1−zjϕj(λ)

)2

log 4
1−|ϕj(λ)|2

is Bloch with ||f ||B ≤ log 4 + 4
(

1 + π
2 log 4

)
.
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Proof. For z ∈ Dn, ∂f
∂zk

(z) = 0 for k 6= j and

∂f

∂zj
(z) =

2
(

Log 4

1−zjϕj(λ)

)
ϕj(λ)

1−zjϕj(λ)

log 4
1−|ϕj(λ)|

. (8.1)

Since Re
(

4

1−zjϕj(λ)

)
> 0, we have

∣∣∣Arg
(

4

1−zjϕj(λ)

)∣∣∣ < π
2 , where Arg denotes the principal

value of the argument. Also
∣∣∣Log 4

1−zjϕj(λ)

∣∣∣2 =
(

log
∣∣∣ 4

1−zjϕj(λ)

∣∣∣)2
+
(

Arg
(

4

1−zjϕj(λ)

))2
.

Thus,

∣∣∣∣∣Log
4

1− zjϕj(λ)

∣∣∣∣∣ =

(log

∣∣∣∣∣ 4
1− zjϕj(λ)

∣∣∣∣∣
)2

+

(
Arg

(
4

1− zjϕj(λ)

))2
1/2

≤ log

∣∣∣∣∣ 4
1− zjϕj(λ)

∣∣∣∣∣+

∣∣∣∣∣Arg

(
4

1− zjϕj(λ)

∣∣∣∣∣
)

≤ log
4∣∣∣1− zjϕj(λ)

∣∣∣ +
π

2
. (8.2)

By Theorem 5.1.3, (8.1), and (8.2), we have

Qf (z) =
∣∣∣∣∣∣∣∣((1− |z1|2)

∂f

∂z1
, . . . , (1− |zn|2)

∂f

∂zn

)∣∣∣∣∣∣∣∣

≤
2
(

log 4

|1−zjϕj(λ)| + π
2

)
|ϕj(λ)|
|1−zjϕj(λ)|(1− |zj |

2)

log 4
1−|ϕj(λ)|2

. (8.3)
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Since |ϕj(λ)| < 1, we have
∣∣∣1− zjϕj(λ)

∣∣∣ ≥ 1− |zj | |ϕj(λ)| ≥ 1− |zj |. Thus

|ϕj(λ)| (1− |zj |2)∣∣∣1− zjϕj(λ)
∣∣∣ ≤ |ϕj(λ)| (1 + |zj |) ≤ 2. (8.4)

By combining (8.3) and (8.4), we obtain

Qf (z) ≤
4
(

log 4
1−|ϕj(λ)|2 + π

2

)
log 4

1−|ϕj(λ)|2

≤ 4
(

1 +
π

2 log 4

)
.

Therefore βf = supz∈Dn Qf (z) <∞, and so f is Bloch with

||f ||B = |f(0)|+ βf ≤ log 4 + 4
(

1 +
π

2 log 4

)
.

Theorem 8.3.7. Let ψ ∈ H(Dn) and ϕ be a holomorphic self-map of Dn. Then the

following are equivalent:

(a) Wψ,ϕ : B(Dn)→ H∞(Dn) is compact.

(b) Wψ,ϕ : B0∗(Dn)→ H∞(Dn) is compact.

(c) ψ ∈ H∞(Dn) and lim
ϕ(z)→∂Dn

|ψ(z)|
n∑
j=1

log
1 + |ϕj(z)|
1− |ϕj(z)|

= 0.

Proof. The implication (a) =⇒ (b) is obvious. Suppose Wψ,ϕ : B0∗(Dn) → H∞(Dn) is

compact. Then Wψ,ϕ is bounded, and by Theorem 8.1.7, ψ ∈ H∞(Dn) and

sup
z∈Dn

|ψ(z)|
n∑
j=1

log
1 + |ϕj(z)|
1− |ϕj(z)|

<∞. (8.5)
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Let {z(k)} be a sequence in Dn such that ϕ(z(k))→ ∂Dn as k →∞. Then there is an index

m ∈ {1, . . . , n} such that
∣∣ϕm(z(k))

∣∣→ 1 as k →∞. It follows that
n∑
j=1

log
1 +

∣∣ϕj(z(k))
∣∣

1−
∣∣ϕj(z(k))

∣∣ →
∞, whence by (8.5)

lim
k→∞

ψ(z(k)) = 0.

Fix j = 1, . . . , n. Then by Lemma 8.3.6, the sequence {fk} defined by

fk(z) =

(
Log 4

1−zjϕj(z(k))

)2

log 4

1−|ϕj(z(k))|2

is bounded in B(Dn). In fact, fk ∈ B0∗(Dn) since it is holomorphic on the closure of Dn.

Also {fk} converges to 0 locally uniformly in Dn. By the compactness of Wψ,ϕ, we obtain

∣∣∣ψ(z(k))
∣∣∣ log

1 +
∣∣ϕj(z(k))

∣∣
1−

∣∣ϕj(z(k))
∣∣ ≤ ∣∣∣ψ(z(k))

∣∣∣ log
4

1−
∣∣ϕj(z(k))

∣∣2
=

∣∣∣ψ(z(k))fk(ϕ(z(k)))
∣∣∣

≤ ||ψ(fk ◦ ϕ)||∞ → 0 (8.6)

as k →∞.

Next, suppose there exists ` ∈ {1, . . . , n} such that
∣∣ϕ`(z(k))

∣∣ 6→ 1 as k → ∞. So there

exists r ∈ (0, 1) such that
∣∣ϕ`(z(k))

∣∣ ≤ r for all k ∈ N. Since ψ(z(k)) → 0 as k → ∞, we

obtain ∣∣∣ψ(z(k))
∣∣∣ log

1 +
∣∣ϕ`(z(k))

∣∣
1−

∣∣ϕ`(z(k))
∣∣ ≤ ∣∣∣ψ(z(k))

∣∣∣ log
1 + r

1− r
→ 0 (8.7)
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as k →∞. By combining the two cases (8.6) and (8.7), we have

lim
k→∞

∣∣∣ψ(z(k))
∣∣∣ n∑
j=1

log
1 +

∣∣ϕj(z(k))
∣∣

1−
∣∣ϕj(z(k))

∣∣ = 0,

showing (b) =⇒ (c).

If we suppose ψ ∈ H∞(Dn) and lim
ϕ(z)→∂Dn

|ψ(z)|
n∑
j=1

log
1 + |ϕj(z)|
1− |ϕj(z)|

= 0, then from

Lemma 5.1.4(b) we have,

lim
ϕ(z)→∂Dn

|ψ(z)|ω(ϕ(z)) ≤ lim
ϕ(z)→∂Dn

|ψ(z)|
n∑
j=1

log
1 + |ϕ(z)|
1− |ϕ(z)|

= 0.

Therefore, by Theorem 8.3.4, (c) =⇒ (a), completing the proof.

8.4 Isometries

In this section, we study the isometries of weighted composition operators from the Bloch

space into H∞. We show that when the ambient space is the unit polydisk, there are no

isometric weighted composition operators.

Fix j ∈ {1, . . . , n} and let pj : Dn → D be the projection map onto the jth coordinate,

that is, pj(z1, . . . , zn) = zj .

Lemma 8.4.1. Let j ∈ {1, . . . , n}. Then pj is Bloch and ||pj ||B = 1.

Proof. For z ∈ Dn, we have ∂pj
∂zk

(z) = 0 for k 6= j and ∂pj
∂zj

= 1. Since pj(0) = 0, from

Theorem 5.1.3 we obtain

||pj ||B = sup
z∈Dn

∣∣∣∣∣∣∣∣((1− |z1|2)
∂pj
∂z1

(z), · · · , (1− |zn|2)
∂pj
∂zn

)∣∣∣∣∣∣∣∣ = sup
zj∈D

(1− |zj |2) = 1.
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Theorem 8.4.2. Let ψ ∈ H(Dn) and ϕ a holomorphic self-map of Dn. Then Wψ,ϕ :

B(Dn)→ H∞(Dn) is not an isometry.

Proof. Assume Wψ,ϕ is an isometry from B(Dn) to H∞(Dn). Then ||ψ||∞ = ||Wψ,ϕ1||∞ = 1

and, fixing j ∈ {1, . . . , n},

||ψϕj ||∞ = ||Wψ,ϕpj ||∞ = ||pj ||B = 1.

Thus, there exists a sequence {z(m)} in Dn such that
∣∣ψ(z(m))ϕj(z(m))

∣∣ → 1 as m → ∞.

Since ψ and ϕj map Dn into D, it follows that
∣∣ψ(z(m))

∣∣→ 1 and
∣∣ϕj(z(m))

∣∣→ 1 as m→∞.

On the other hand, by Theorem 8.1.7,

sup
z∈Dn

|ψ(z)|
n∑
k=1

log
1 + |ϕk(z)|
1− |ϕk(z)|

<∞. (8.8)

If
∣∣ϕj(z(m))

∣∣→ 1 as m→∞, then log
1+|ϕj(z(m))|
1−|ϕj(z(m))| → ∞ as m→∞. Thus, in order for (8.8)

to hold, we must have
∣∣ψ(z(m))

∣∣→ 0, a contradiction.

8.5 Component Operators

In this section, we collect the results on boundedness and compactness of multiplication

and composition operators acting from the Bloch space or the ∗-little Bloch space into H∞

of a bounded homogeneous domain. These results are found by looking at special cases of

the results from the previous sections in this chapter.
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8.5.1 Multiplication Operators

Let D be a bounded homogeneous domain and ψ ∈ H(D). If ϕ is the identity map id of D,

then Wψ,ϕ is the multiplication operator Mψ. For z ∈ D, we define

ηψ = ηψ,id = sup
z∈D
|ψ(z)|ω(z),

η0,ψ = η0,ψ,id = sup
z∈D
|ψ(z)|ω0(z).

As a corollary of Theorems 8.1.2 and 8.1.3, we obtain the following characterization of

the bounded multiplication operators from B(D) or B0∗(D) into H∞(D).

Corollary 8.5.1. Let D be a bounded homogeneous domain in Cn and ψ ∈ H(D). Then

(a) Mψ : B(D)→ H∞(D) is bounded if and only if ψ ∈ H∞(D) and ηψ <∞.

(b) Mψ : B0∗(D)→ H∞(D) is bounded if and only if ψ ∈ H∞(D) and η0,ψ <∞.

As a corollary to Theorems 8.2.1 and 8.2.2, we obtain the norm of a bounded multipli-

cation operator from B(D) or B0∗(D) into H∞(D).

Corollary 8.5.2. Let D be a bounded homogeneous domain in Cn and ψ ∈ H(D).

(a) If Mψ : B(D)→ H∞(D) is bounded, then

||Mψ|| = max{||ψ||∞ , ηψ}.

(b) If Mψ : B0∗(D)→ H∞(D) is bounded, then

||Mψ|| = max{||ψ||∞ , η0,ψ}.

As a special case of Theorem 8.3.4, the following is a sufficient condition for the multi-

plication operator to be compact from B(D) or B0∗(D) into H∞(D).
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Corollary 8.5.3. Let D be a bounded homogeneous domain in Cn and ψ ∈ H∞(D).

(a) If lim
z→∂D

|ψ(z)|ω(z) = 0, then Mψ : B(D)→ H∞(D) is compact.

(b) If lim
z→∂D

|ψ(z)|ω0(z) = 0, then Mψ : B0∗(D)→ H∞(D) is compact.

In Chapter 5, we proved that the only compact multiplication operators on B(D) or

B0∗(D) are precisely those induced by the constant function 0. The next result provides a

condition on the domain for which this result is true in the present setting.

Proposition 8.5.4. Let D be a bounded homogeneous domain in Cn. If limz→∂D ω0(z) =

∞, then the following are equivalent:

(a) Mψ : B(D)→ H∞(D) is compact.

(b) Mψ : B0∗(D)→ H∞(D) is compact.

(c) ψ is identically 0.

Proof. Assume limz→∂D ω0(z) = ∞. It is clear that (a) =⇒ (b). Now suppose Mψ :

B0∗(D) → H∞(D) is compact. In particular, Mψ is bounded, and so η0,ψ is finite by

Lemma 8.1.1. The finiteness of η0,ψ implies ψ(z)→ 0 as z → ∂D. Thus, ψ is identically 0,

proving (b) =⇒ (c). If ψ is identically 0, then Mψ is compact from B(D) to H∞(D), and

thus (c) =⇒ (a).

Since for z ∈ Bn, ω0(z) = ω(z) =
1
2

log
1 + ||z||
1− ||z||

, we have the following characterization

of the compact multiplication operators on the Bloch space of Bn.

Corollary 8.5.5. Let ψ ∈ H(Bn). Then the following are equivalent.

(a) Mψ : B(Bn)→ H∞(Bn) is compact.

(b) Mψ : B0∗(Bn)→ H∞(Bn) is compact.

(c) ψ is identically 0.
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8.5.2 Composition Operators

Let D be a bounded homogeneous domain in Cn and ϕ a holomorphic self-map of D. Then

the weighted composition operator W1,ϕ is the composition operator Cϕ. For z ∈ D, define

ηϕ = η1,ϕ = sup
z∈D

ω(ϕ(z)),

η0,ϕ = η0,1,ϕ = sup
z∈D

ω0(ϕ(z)).

As a corollary of Theorems 8.1.2 and 8.1.3, we obtain the following characterization of

the bounded composition operators from B(D) or B0∗(D) into H∞(D).

Corollary 8.5.6. Let D be a bounded homogeneous domain and ϕ a holomorphic self-map

of D. Then

(a) Cϕ : B(D)→ H∞(D) is bounded if and only if ηϕ <∞.

(b) Cϕ : B0∗(D)→ H∞(D) is bounded if and only if η0,ϕ <∞.

As an immediate consequence, we obtain the following characterization on B(Bn).

Corollary 8.5.7. Let ϕ a holomorphic self-map of Bn. Then the following are equivalent.

(a) Cϕ : B(Bn)→ H∞(Bn) is bounded.

(b) Cϕ : B0(Bn)→ H∞(Bn) is bounded.

(c) sup
z∈Bn

log
1 + ||ϕ(z)||
1− ||ϕ(z)||

<∞.

(d) The range of ϕ has compact closure in Bn.

From this characterization, we can determine examples of holomorphic self-maps on

Bn which do not induce bounded composition operators from B(Bn) to H∞(Bn). This is

interesting, since any holomorphic self-map of Bn induces a bounded composition operator

from B(Bn) to B(Bn).

112



As a corollary to Theorems 8.2.1 and 8.2.2, we obtain the norm of a bounded composition

operator from B(D) or B0∗(D) into H∞(D).

Corollary 8.5.8. Let D be a bounded homogeneous domain in Cn and ϕ a holomorphic

self-map of D.

(a) If Cϕ : B(D)→ H∞(D) is bounded, then

||Cϕ|| = max{1, ηϕ}.

(b) If Cϕ : B0∗(D)→ H∞(D) is bounded, then

||Cϕ|| = max{1, η0,ϕ}.

Lastly, the following is a sufficient condition for the composition operator to be compact

from B(D) or B0∗(D) into H∞(D).

Corollary 8.5.9. Let D be a bounded homogeneous domain in Cn and ϕ be a holomorphic

self-map of D.

(a) If lim
ϕ(z)→∂D

ω(ϕ(z)) = 0, then Cϕ : B(D)→ H∞(D) is compact.

(b) If lim
ϕ(z)→∂D

ω0(ϕ(z)) = 0, then Cϕ : B0∗(D)→ H∞(D) is compact.
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Chapter 9: Weighted Composition Operators on the Bloch

Space of a Bounded Homogeneous Domain

In this chapter, we extend the results pertaining to boundedness and compactness of the pre-

vious chapter to the Bloch space of a bounded homogeneous domain. We provide necessary

and sufficient conditions for the boundedness and compactness of the weighted composition

operators on the Bloch space and ∗-little Bloch space. In addition, norm estimates are

established.

9.1 Boundedness

Recall the definition of ω and ω0 (5.3) on a bounded homogeneous domain D. For ϕ a

holomorphic self-map of D, and z ∈ D, define

Tϕ(z) = sup{Qf◦ϕ(z) : f ∈ B(D), βf ≤ 1}

T0,ϕ(z) = sup{Qf◦ϕ(z) : f ∈ B0∗(D), βf ≤ 1}.

Lemma 9.1.1. Let D be a bounded homogeneous domain in Cn, ϕ a holomorphic self-map

of D, and z ∈ D.

(a) If f ∈ B(D), then

Qf◦ϕ(z) ≤ Tϕ(z)βf .

(b) If f ∈ B0∗(D), then

Qf◦ϕ(z) ≤ T0,ϕ(z)βf .
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Proof. The result is trivially satisfied if f is constant. So let f ∈ B(D) be non-constant and

define the function g = 1
βf

(f ◦ ϕ). Then g is Bloch and βg ≤ 1. So

1
βf
Qf◦ϕ(z) = Qg(z) ≤ Tϕ(z),

and (a) follows immediately. The proof of (b) is analogous.

Lemma 9.1.2. Let D be a bounded homogeneous domain and ϕ a holomorphic self-map of

D. Then

T0,ϕ(z) ≤ Tϕ(z) ≤ Bϕ(z) (9.1)

for all z ∈ D.

Proof. Since B0∗(D) ⊂ B(D), we have T0,ϕ(z) ≤ Tϕ(z) for all z ∈ D. By (2.5), we have for

f ∈ B(D) and z ∈ D,

Qf◦ϕ(z) ≤ Bϕ(z)βf .

Taking the supremum over all functions f with βf ≤ 1, we deduce Tϕ(z) ≤ Bϕ(z), as

desired.

For D a bounded homogeneous domain in Cn, ψ ∈ H(D), and ϕ a holomorphic self-map

of D, define

σψ,ϕ = sup
z∈D

ω(ϕ(z))Qψ(z),

τψ,ϕ = sup
z∈D
|ψ(z)|Tϕ(z),

σ0,ψ,ϕ = sup
z∈D

ω0(ϕ(z))Qψ(z),

τ0,ψ,ϕ = sup
z∈D
|ψ(z)|T0,ϕ(z).
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These quantities are direct generalizations of the quantities defined in Chapter 7. We

determine separate necessary and sufficient conditions for the weighted composition operator

to be bounded on the Bloch space and the ∗-Bloch space of a bounded homogeneous domain.

We conjecture that these conditions are both necessary and sufficient.

Theorem 9.1.3. Let D be a bounded homogeneous domain and ϕ a holomorphic self-map

of D. If ψ ∈ B(D), and σψ,ϕ and τψ,ϕ are finite, then Wψ,ϕ is bounded on B(D).

Proof. We need to show that Wψ,ϕ maps B(D) into B(D) and there exists M > 0 such that

||Wψ,ϕf ||B ≤ M ||f ||B for all f ∈ B(D). Let f ∈ B(D). From (2.6), Lemma 5.1.1(a), and

Lemma 9.1.1(a), for z ∈ D, we deduce

Qψ(f◦ϕ)(z) ≤ |ψ(z)|Qf◦ϕ(z) + |f(ϕ(z))|Qψ(z)

≤ |ψ(z)|Tϕ(z)βf + (|f(0)|+ ω(ϕ(z))βf )Qψ(z)

≤ |f(0)|Qψ(z) + (|ψ(z)|Tϕ(z) + ω(ϕ(z))Qψ(z))βf .

Taking the supremum over all z ∈ D, we have

βψ(f◦ϕ) ≤ |f(0)|βψ + (τψ,ϕ + σψ,ϕ)βf , (9.2)

which is finite by assumption. Thus Wψ,ϕ maps B(D) into itself.

From (9.2) and Corollary 5.1.6, for f ∈ B(D), we have

||Wψ,ϕf ||B = |ψ(0)| |f(ϕ(0))|+ βψ(f◦ϕ)

≤ |ψ(0)| (|f(0)|+ ρ(ϕ(0), 0)βf ) + |f(0)|βψ + (τψ,ϕ + σψ,ϕ)βf

= |f(0)| ||ψ||B + (|ψ(0)| ρ(ϕ(0), 0) + τψ,ϕ + σψ,ϕ)βf

≤ (||ψ||B + |ψ(0)| ρ(ϕ(0), 0) + τψ,ϕ + σψ,ϕ) ||f ||B .
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Since ||ψ||B + |ψ(0)| ρ(ϕ(0), 0) + τψ,ϕ + σψ,ϕ is finite by assumption, and is independent of

f , we conclude that Wψ,ϕ is bounded on B(D).

Theorem 9.1.4. Let D be a bounded homogeneous domain and ϕ a holomorphic self-map

of D. If ψ ∈ B0∗(D), σ0,ψ,ϕ and τ0,ψ,ϕ are finite and

lim
z→∂∗D

|ψ(z)|T0,ϕ(z) = lim
z→∂∗D

ω0(ϕ(z))Qψ(z) = 0,

then Wψ,ϕ is bounded on B0∗(D).

Proof. We will first show that Wψ,ϕ maps B0∗(D) into B0∗(D). Let f ∈ B0∗(D). From

(2.6), Lemma 5.1.1(b), and Lemma 9.1.1(b), and arguing as in the proof of Theorem 9.1.3,

for z ∈ D, we have

Qψ(f◦ϕ)(z) ≤ |f(0)|Qψ(z) + (|ψ(z)|T0,ϕ(z) + ω0(ϕ(z))Qψ(z))βf , (9.3)

and

βψ(f◦ϕ) ≤ |f(0)|βψ + (τ0,ψ,ϕ + σ0,ψ,ϕ)βf .

So Wψ,ϕf is Bloch. In particular, Wψ,ϕf ∈ B0∗(D) since the right-hand side of (9.3) goes

to 0 as z → ∂∗D by assumption. So Wψ,ϕ maps B0∗(D) into itself. Likewise, we have

||Wψ,ϕf ||B ≤ (||ψ||B + |ψ(0)| ρ(ϕ(0), 0) + τ0,ψ,ϕ + σ0,ψ,ϕ) ||f ||B ,

and thus Wψ,ϕ is bounded on B0∗(D).

Theorem 9.1.5. Let D be a bounded homogeneous domain, ψ ∈ H(D) and ϕ a holomorphic

self-map of D. If Wψ,ϕ is bounded on B(D), then ψ ∈ B(D), and σψ,ϕ is finite if and only

if τψ,ϕ is finite.

Proof. Since Wψ,ϕ is bounded, we have ψ ∈ B(D) since ψ = Wψ,ϕ1. Let f ∈ B(D), z ∈ D
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and u ∈ Cn. Then

∇(ψ(f ◦ ϕ))(z)u = ψ(z)∇(f ◦ ϕ)(z)u+ f(ϕ(z))∇(ψ)(z)u.

Thus for u 6= 0 we have

|f(ϕ(z))| |∇(ψ)(z)u|
Hz(u, u)1/2

=
|∇(ψ(f ◦ ϕ))(z)u− ψ(z)∇(f ◦ ϕ)(z)u|

Hz(u, u)1/2

≤ |∇(ψ(f ◦ ϕ))(z)u|
Hz(u, u)1/2

+
|ψ(z)| |∇(f ◦ ϕ)(z)u|

Hz(u, u)1/2
.

Taking the supremum over all u ∈ Cn \ {0}, and applying Lemma 9.1.1(a), we obtain

|f(ϕ(z))|Qψ(z) ≤ Qψ(f◦ϕ)(z) + |ψ(z)|Qf◦ϕ(z)

≤ βψ(f◦ϕ) + |ψ(z)|Tϕ(z)βf

≤ ||Wψ,ϕf ||B + |ψ(z)|Tϕ(z) ||f ||B

≤ (||Wψ,ϕ||+ |ψ(z)|Tϕ(z)) ||f ||B .

Finally, taking the supremum over all f ∈ B(D) with f(0) = 0 and ||f ||B ≤ 1 yields

ω(ϕ(z))Qψ(z) ≤ ||Wψ,ϕ||+ |ψ(z)|Tϕ(z).

Thus

σψ,ϕ ≤ ||Wψ,ϕ||+ τψ,ϕ. (9.4)
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On the other hand, let g ∈ B(D) such that g(0) = 0 and ||g||B ≤ 1. Then

|ψ(z)|Qg◦ϕ(z) ≤ Qψ(g◦ϕ)(z) + |g(ϕ(z))|Qψ(z)

≤ ||Wψ,ϕg||B + ω(ϕ(z))Qψ(z)

≤ ||Wψ,ϕ||+ σψ,ϕ.

For any non-constant Bloch function f with βf ≤ 1, we define the function g(z) = 1
βf

(f(z)−

f(0)). The function g is Bloch, g(0) = 0, and βg = 1. Applying the previous case to this

function g yields

|ψ(z)|Qf◦ϕ(z) = |ψ(z)|Qg◦ϕ(z)βf ≤ ||Wψ,ϕ||+ σψ,ϕ.

Taking the supremum over all such Bloch functions f , we deduce

τψ,ϕ ≤ ||Wψ,ϕ||+ σψ,ϕ. (9.5)

From (9.4) and (9.5), we obtain σψ,ϕ is finite if and only if τψ,ϕ is finite.

The proof of the following result is analogous.

Theorem 9.1.6. Let D be a bounded homogeneous domain, ψ ∈ H(D) and ϕ a holomorphic

self-map of D. If Wψ,ϕ is bounded on B0∗(D), then ψ ∈ B0∗(D), and σ0,ψ,ϕ is finite if and

only if τ0,ψ,ϕ is finite.

Although we are unable to connect the necessary and sufficient conditions, we conjecture

they do indeed characterize the bounded weighted composition operators. In an attempt to

lend credence to this conjecture, we prove the conjecture, in Chapter 10, in the case when

the ambient space is taken to be either the unit ball or the unit polydisk.
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Conjecture 9.1.7. Let D be a bounded homogeneous domain, ψ ∈ H(D) and ϕ a holo-

morphic self-map of D. Then Wψ,ϕ is bounded on B(D) if and only if ψ ∈ B(D), and σψ,ϕ

and τψ,ϕ are finite.

9.2 Operator Norm Estimates

In this section, we establish estimates on the operator norm for the bounded weighted com-

position operators on the Bloch space of a bounded homogeneous domain. These estimates,

when restricted to the multiplication and composition operators, agree with established

estimates discussed in Chapter 7.

Theorem 9.2.1. Let D be a bounded homogeneous domain. If ψ ∈ H(D) and ϕ a holo-

morphic self-map of D induce a bounded weighted composition operator Wψ,ϕ on B(D),

then

max{||ψ||B , |ψ(0)|ω(ϕ(0))} ≤ ||Wψ,ϕ|| ≤ max{||ψ||B , |ψ(0)|ω(ϕ(z)) + τψ,ϕ + σψ,ϕ}.

Proof. We first prove the lower estimate. By considering as test function the constant

function 1, we have ||Wψ,ϕ1||B = ||ψ||B, and so ||Wψ,ϕ|| ≥ ||ψ||B. Furthermore,

||Wψ,ϕ|| = sup{||Wψ,ϕf ||B : f ∈ B(D) and ||f ||B ≤ 1}

≥ sup{||Wψ,ϕf ||B : f ∈ B(D), f(0) = 0, and ||f ||B ≤ 1}

≥ sup{|ψ(0)| |f(ϕ(0))| : f ∈ B(D), f(0) = 0, and ||f ||B ≤ 1}

= |ψ(0)|ω(ϕ(0)).

Thus, ||Wψ,ϕ|| ≥ max{||ψ||B , |ψ(0)|ω(ϕ(0))}.
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Let f ∈ B(D). From Lemma 5.1.1(a) and (9.2), we obtain

||Wψ,ϕf ||B = |ψ(0)| |f(ϕ(0))|+ βψ(f◦ϕ)

≤ |ψ(0)| (|f(0)|+ ω(ϕ(0))βf ) + |f(0)|βψ + (τψ,ϕ + σψ,ϕ)βf

= ||ψ||B (||f ||B − βf ) + (|ψ(0)|ω(ϕ(0)) + τψ,ϕ + σψ,ϕ)βf

= ||ψ||B ||f ||B + (|ψ(0)|ω(ϕ(0)) + τψ,ϕ + σψ,ϕ − ||ψ||B)βf .

If |ψ(0)|ω(ϕ(0))+τψ,ϕ+σψ,ϕ ≤ ||ψ||B, then ||Wψ,ϕf ||B ≤ ||ψ||B ||f ||B. Taking the supremum

over all f ∈ B(D) such that ||f ||B ≤ 1, we have ||Wψ,ϕ|| ≤ ||ψ||B. On the other hand, if

|ψ(0)|ω(ϕ(0))+τψ,ϕ+σψ,ϕ ≥ ||ψ||B, then ||Wψ,ϕf ||B ≤ (|ψ(0)|ω(ϕ(0)) + τψ,ϕ + σψ,ϕ) ||f ||B .

So ||Wψ,ϕ|| ≤ |ψ(0)|ω(ϕ(0)) + τψ,ϕ + σψ,ϕ, and

||Wψ,ϕ|| ≤ max{||ψ||B , |ψ(0)|ω(ϕ(0)) + τψ,ϕ + σψ,ϕ}.

The proof of the next result on B0∗(D) is analogous.

Theorem 9.2.2. Let D be a bounded homogeneous domain. If ψ ∈ H(D) and ϕ a holo-

morphic self-map of D induce a bounded weighted composition operator Wψ,ϕ on B0∗(D),

then

max{||ψ||B , |ψ(0)|ω0(ϕ(0))} ≤ ||Wψ,ϕ|| ≤ max{||ψ||B , |ψ(0)|ω0(ϕ(z)) + τ0,ψ,ϕ + σ0,ψ,ϕ}.

9.3 Compactness

In this section, we determine sufficient conditions for the bounded weighted composition

operator Wψ,ϕ to be compact on B(D).

Lemma 9.3.1. Let D be a bounded homogeneous domain in Cn, ψ ∈ H(D), and ϕ a
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holomorphic self-map of D. Then Wψ,ϕ is compact on B(D) if and only if for each bounded

sequence {fk} in B(D) converging to 0 locally uniformly in D, ||ψ(fk ◦ ϕ)||B → 0, as k →∞.

Proof. Assume Wψ,ϕ is compact on B(D). Let {fk} be a bounded sequence in B(D) which

converges to 0 locally uniformly in D. By rescaling the sequence, we can assume ||fk||B ≤ 1

for all k ∈ N. We need to show that ||ψ(fk ◦ ϕ)||B → 0 as k →∞. Since Wψ,ϕ is compact,

the sequence {ψ(fk ◦ ϕ)} has a subsequence which converges in the Bloch norm to some

function f ∈ B(D). For convenience, we re-index this convergent subsequence as {fk}.

We are going to show that f is identically 0. Fix z0 ∈ D and, without loss of generality,

assume f(z0) = 0. For z ∈ D, by (5.1), we obtain

|ψ(z)fk(ϕ(z))− f(z)| ≤ |ψ(z)fk(ϕ(z))− f(z)− (ψ(z0)fk(ϕ(z0))− f(z0))|

+ |ψ(z0)fk(ϕ(z0))− f(z0)|

≤ ||ψ(fk ◦ ϕ)− f ||B ρ(z, z0) + |ψ(z0)fk(ϕ(z0))| .

So |ψ(fk ◦ ϕ)− f | → 0 locally uniformly as k → ∞, since ||ψ(fk ◦ ϕ)− f ||B → 0 and

ψ(z0)fk(ϕ(z0)) → 0 as k → ∞. On the other hand, ψ(fk ◦ ϕ) → 0 locally uniformly, so f

must be identically 0.

Conversely, assume ||ψ(gn ◦ ϕ)||B → 0 as k → ∞ for each bounded sequence {gk} in

B(D) converging to 0 locally uniformly in D. To prove the compactness of Wψ,ϕ it suffices

to show that given any sequence {fk} in the unit ball of B(D), there exists a subsequence

{fkj} such that ψ(fkj ◦ ϕ) converges in B(D). Fix z0 ∈ D. Replacing fk with fk − fk(z0),

we can assume fk(z0) = 0 for all k ∈ N. By (5.1), |f(z)| = |f(z)− f(z0)| ≤ ρ(z, z0), for

every z ∈ D. Thus, on each disk centered at z0 with respect to the Bergman distance, the

sequence {fk} is uniformly bounded, and hence on each compact subset of D.

By Theorem 8.3.1, some subsequence {fkj} converges locally uniformly to some function

f holomorphic in D. By Theorem 8.3.2, f is Bloch and ||f ||B ≤ 1. Letting gkj = fkj − f ,
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we obtain a bounded sequence in B(D) converging to 0 locally uniformly in D. Thus, by

the hypothesis,
∣∣∣∣ψ(gkj ◦ ϕ)

∣∣∣∣
B → 0 as k → ∞. Therefore, ψ(fkj ◦ ϕ) converges in norm to

ψ(f ◦ ϕ).

Theorem 9.3.2. Let D be a bounded homogeneous domain in Cn, ψ ∈ H(D), and ϕ a

holomorphic self-map of D. If

lim
ϕ(z)→∂D

ω(ϕ(z))Qψ(z) = lim
ϕ(z)→∂D

|ψ(z)|Tϕ(z) = 0,

then Wψ,ϕ is compact on B(D).

Proof. By Lemma 9.3.1, to prove that Wψ,ϕ is compact on B(D) it suffices to show that

for any sequence {fk} in the unit ball of B(D) converging to 0 locally uniformly in D,

||ψ(fk ◦ ϕ)||B → 0 as k → ∞. Let {fk} be such a sequence, and fix ε > 0. Then

|fk(0)| < ε
3||ψ||B

for all k sufficiently large, and there exists r > 0 such that for all k ∈ N,

|ψ(z)|Qfk◦ϕ(z) < ε
3 and ω(ϕ(z))Qψ(z) < ε

3 whenever ρ(ϕ(z), ∂D) ≥ r. Thus, by Lemma

5.1.1(a), if ρ(ϕ(z), ∂D) ≥ r, then

Qψ(fk◦ϕ)(z) ≤ |ψ(z)|Qfk◦ϕ(z) + |fk(ϕ(z))|Qψ(z)

≤ ε

3
+ (|fk(0)|+ ω(ϕ(z)))Qψ(z)

< ε.

On the other hand, since fk → 0 locally uniformly in D, |fk(ϕ(z))| → 0 and Qfk◦ϕ(z)→ 0

uniformly on the set {z ∈ D : ρ(ϕ(z), ∂D) ≤ r}. Consequently, for all k sufficiently

large, Qψ(fk◦ϕ)(z) < ε for all z ∈ D. Furthermore, |ψ(0)fk(ϕ(0))| → 0 as k → ∞, so

||ψ(fk ◦ ϕ)||B → 0.

Although we have not been able to prove the sufficient condition for compactness to be
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necessary, we conjecture the necessity of it. In the next chapter, we will prove the conjecture

true when the ambient space is taken to be the unit ball and the unit polydisk.

Conjecture 9.3.3. Let D be a bounded homogeneous domain in Cn, ψ ∈ H(D), and ϕ a

holomorphic self-map of D. Then the bounded operator Wψ,ϕ is compact on B(D) if and

only if

lim
ϕ(z)→∂D

ω(ϕ(z))Qψ(z) = lim
ϕ(z)→∂D

|ψ(z)|Tϕ(z) = 0.
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Chapter 10: Weighted Composition Operators on the Bloch

Space of the Unit Ball and Unit Polydisk

In the previous chapter, conjectures on the characterizations of boundedness and compact-

ness were made for the weighted composition operators acting on the Bloch space of a

general bounded homogeneous domain. In this chapter, we prove these conjectures when

the domain is the unit ball or the unit polydisk. Thus, the quantities used in the conjec-

tures do unify the typical operator theory on the Bloch space in several complex variables.

However, more study of such general domains and their corresponding function theory is

needed in order to prove the conjectures in complete generality. We end this chapter with

examples of weighted composition operators on B(Bn) and B(Dn) that illustrate that the

weighted composition operators are more than the sum of their parts.

10.1 The Unit Ball

In this section, we prove Conjectures 9.1.7 and 9.3.3 on the Bloch space of Bn. Let p, q, s ∈ R

such that 0 < p, s <∞, −n− 1 < q <∞ and q + s > −1. A function f ∈ H(Bn) is in the

F (p, q, s) space if

||f ||F (p,q,s) = |f(0)|+
(

sup
a∈Bn

∫
Bn

||∇(f)(z)||p (1− ||z||2)q(G(z, a))s dν(z)
)1/p

<∞,

where dν denotes normalized Lebesgue measure on Bn, G(z, a) = log |φa(z)|−1 is the Green’s

function on Bn with logarithmic singularity at a, and φa is the involutive automorphism

which maps 0 to a. In [95], Zhou and Chen characterized the bounded and the compact

weighted composition operators on the F (p, q, s) spaces. If p ≥ 1, s > n, and q+n+1
p = 1,
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then F (p, q, s) = B(Bn), and so the results in [95] can be formulated, as a special case, on

the Bloch space of Bn since the F (p, q, s) norm, under these conditions, is equivalent to the

Bloch norm.

Theorem 10.1.1. [95] Let ψ ∈ H(Bn) and ϕ be a holomorphic self-map of Bn. Then Wψ,ϕ

is bounded on B(Bn) if and only if the following two conditions are satisfied:

(a) sup
z∈Bn

|ψ(z)|Bϕ(z) <∞;

(b) sup
z∈Bn

(1− ||z||2) ||∇(ψ)(z)|| log
2

1− ||ϕ(z)||2
<∞.

Furthermore, the bounded operator Wψ,ϕ is compact if and only if the following two condi-

tions are satisfied:

(c) lim
||ϕ(z)||→1

|ψ(z)|Bϕ(z) = 0;

(d) lim
||ϕ(z)||→1

(1− ||z||2) ||∇(ψ)(z)|| log
2

1− ||ϕ(z)||2
= 0.

10.1.1 Boundedness

To prove Conjecture 9.1.7, we will show the conditions ψ ∈ B(Bn), σψ,ϕ <∞ and τψ,ϕ <∞

are equivalent to the conditions (a) and (b) in Theorem 10.1.1. However, as we will see

later, we cannot use this same technique to prove Conjecture 9.3.3.

Theorem 10.1.2. Let ψ ∈ H(Bn) and ϕ be a holomorphic self-map of Bn. Then Wψ,ϕ is

bounded on B(Bn) if and only if ψ ∈ B(Bn) and σψ,ϕ and τψ,ϕ are finite.

Proof. If ψ ∈ B(Bn) and σψ,ϕ and τψ,ϕ are finite, then by Theorem 9.1.3, Wψ,ϕ is bounded

on B(Bn). Conversely, suppose Wψ,ϕ is bounded on B(Bn). We need to show ψ ∈ B(Bn),

and σψ,ϕ and τψ,ϕ are finite. Since Wψ,ϕ maps B(Bn) into itself, ψ = Wψ,ϕ1 ∈ B(Bn).
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Furthermore, by (9.1), Tϕ(z) ≤ Bϕ(z) for all z ∈ Bn. Thus

τψ,ϕ = sup
z∈Bn

|ψ(z)|Tϕ(z) ≤ sup
z∈Bn

|ψ(z)|Bϕ(z),

which is finite by Theorem 10.1.1(a). By Theorem 9.1.5, we deduce that σψ,ϕ is finite.

10.1.2 Compactness

To prove Conjecture 9.3.3, we need the following lemmas.

Lemma 10.1.3. Let ϕ be a holomorphic self-map of Bn and λ ∈ Bn. Then the function

defined by

f(z) =

(
Log

2
1− 〈z, ϕ(λ)〉

)2

log
2

1− ||ϕ(λ)||2
,

is in B(D) with ||f ||B ≤ log 2 + 4
(

2 + π
log 4

)
.

Proof. From Lemma 2.3.19, the function defined by

g(z) = Log
2

1− 〈z, ϕ(λ)〉
= log 2 + Log

1
1− 〈z, ϕ(λ)〉

is Bloch. By the Cauchy-Schwarz Inequality, |〈z, ϕ(λ)〉| ≤ ||z|| ||ϕ(λ)|| for all z and λ in Bn.

So we have the following inequalities:

|1− 〈z, ϕ(λ)〉| ≥ 1− |〈z, ϕ(λ)〉| ≥ 1− ||z|| (10.1)

|1− 〈z, ϕ(λ)〉| ≥ 1− ||ϕ(λ)|| . (10.2)

For all z ∈ Bn, Re
(

2
1−〈z,ϕ(λ)〉

)
> 0 and so Arg

(
2

1−〈z,ϕ(λ)〉

)
∈
(
−π

2 ,
π
2

)
. From this, and
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(10.2), we have

|g(z)| =
∣∣∣∣Log

2
1− 〈z, ϕ(λ)〉

∣∣∣∣
≤ log

2
|1− 〈z, ϕ(λ)〉|

+
∣∣∣∣Arg

(
2

1− 〈z, ϕ(λ)〉

)∣∣∣∣
≤ log

2
1− ||ϕ(λ)||

+
π

2

= log
2(1 + ||ϕ(λ)||)
1− ||ϕ(λ)||2

+
π

2

≤ log
4

1− ||ϕ(λ)||2
+
π

2
.

Since f(z) =
(g(z))2

log 2
1−||ϕ(λ)||2

and by Lemma 2.3.19 Qg(z) ≤ 2 for all z ∈ Bn, we have

Qf (z) =
2 |g(z)|

log 2
1−||ϕ(λ)||2

Qg(z)

≤ 4
log 2

1−||ϕ(λ)||2

(
log

4
1− ||ϕ(λ)||2

+
π

2

)

≤ 4
(

2 +
π

log 4

)
.

Thus ||f ||B = |f(0)|+ supz∈Bn Qf (z) ≤ log 2 + 4
(

2 + π
log 4

)
.

Lemma 10.1.4. Let ϕ be a holomorphic self-map of Bn and λ ∈ Bn. For z ∈ Bn, the

function defined by

h(z) =
1− ||ϕ(λ)||2

1− 〈z, ϕ(λ)〉

is Bloch with ||h||B ≤ 5.
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Proof. For j ∈ {1, . . . , n}, we have

∂h

∂zj
(z) =

(1− ||ϕ(λ)||2)ϕj(λ)
(1− 〈z, ϕ(λ)〉)2

.

So

∇(h)(z) =
(1− ||ϕ(λ)||2)ϕ(λ)

(1− 〈z, ϕ(λ)〉)2
, (10.3)

and

〈∇(h)(z), z〉 =
(1− ||ϕ(λ)||2) 〈z, ϕ(λ)〉

(1− 〈z, ϕ(λ)〉)2
.

Thus by Theorem 2.3.17, we obtain

Qh(z) = (1− ||z||2)1/2
[
||∇(h)(z)||2 − |〈∇(h)(z), z〉|2

]1/2

=
(1− ||z||2)1/2(1− ||ϕ(λ)||2)(||ϕ(λ)||2 − |〈z, ϕ(λ)〉|2)1/2

|1− 〈z, ϕ(λ)〉|2
. (10.4)

By combining (10.4), (10.1), and (10.2), we deduce

Qh(z) ≤ (1− ||z||2)1/2(1− ||ϕ(λ)||2)(1 + |〈z, ϕ(λ)〉|)1/2(1− |〈z, ϕ(λ)〉|)1/2

(1− ||z||)1/2(1− ||ϕ(λ)||)(1− |〈z, ϕ(λ)〉|)1/2

= (1 + ||z||)1/2(1 + ||ϕ(λ)||)(1 + 〈z, ϕ(λ)〉)1/2

≤ 4.

Therefore, h is Bloch and ||h||B = |h(0)|+ supz∈Bn Qh(z) ≤ 5.

Lemma 10.1.5. Let ψ and ϕ be the symbols of a bounded weighted composition operator
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Wψ,ϕ on B(Bn). Then

lim
||ϕ(z)||→1

Qψ(z) = 0.

Proof. By Theorem 10.1.2, σψ,ϕ is finite, that is

sup
z∈Bn

Qψ(z) log
1 + ||ϕ(z)||
1− ||ϕ(z)||

<∞.

Since log 1+||ϕ(z)||
1−||ϕ(z)|| →∞ as ||ϕ(z)|| → 1, the boundedness of σψ,ϕ implies that Qψ(z)→ 0 as

||ϕ(z)|| → 1.

Lemma 10.1.6. Suppose ψ and ϕ are the symbols of a compact weighted composition

operator Wψ,ϕ on B(Bn), and {z(k)} is a sequence in Bn such that
∣∣∣∣ϕ(z(k))

∣∣∣∣ → 1 as

k →∞. Then

lim
k→∞

∣∣ψ(z(k))
∣∣

1−
∣∣∣∣ϕ(z(k))

∣∣∣∣2 sup
u∈Cn\{0}

∣∣〈Jϕ(z(k))u, ϕ(z(k))
〉∣∣

Hz(k)(u, u)1/2
= 0.

Proof. By Lemma 10.1.4, the sequence of functions defined by

hk(z) =
1−

∣∣∣∣ϕ(z(k))
∣∣∣∣2

1−
〈
z, ϕ(z(k))

〉 , z ∈ Bn,

is bounded in B(Bn) with ||hk||B ≤ 5 for all k ∈ N. Also, hk(ϕ(z(k))) = 1 and {hk} converges

to 0 locally uniformly in Bn. By the compactness of Wψ,ϕ, we have ||ψ(hk ◦ ϕ)||B → 0 as
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k →∞. Moreover, by (10.3), we find

||ψ(hk ◦ ϕ)||B ≥ Qψ(hk◦ϕ)(z
(k))

= sup
u∈Cn\{0}

∣∣hk(ϕ(z(k)))∇ψ(z(k))u+ ψ(z(k))∇(hk ◦ ϕ)(z(k))u
∣∣

Hz(k)(u, u)1/2

≥

∣∣∣∣∣Qψ(z(k))−
∣∣∣ψ(z(k))

∣∣∣ sup
u∈Cn\{0}

∣∣∇(hk)(ϕ(z(k)))Jϕ(z(k))u
∣∣

Hz(k)(u, u)1/2

∣∣∣∣∣
=

∣∣∣∣∣∣Qψ(z(k))−
∣∣∣ψ(z(k))

∣∣∣ sup
u∈Cn\{0}

∣∣∣ϕ(z(k))Jϕ(z(k))u
∣∣∣

(1−
∣∣∣∣ϕ(z(k))

∣∣∣∣2)Hz(k)(u, u)1/2

∣∣∣∣∣∣
=

∣∣∣∣∣Qψ(z(k))−
∣∣ψ(z(k))

∣∣
1−

∣∣∣∣ϕ(z(k))
∣∣∣∣2 sup

u∈Cn\{0}

∣∣〈Jϕ(z(k))u, ϕ(z(k))
〉∣∣

Hz(k)(u, u)1/2

∣∣∣∣∣ .

Since ||ψ(hk ◦ ϕ)||B → 0 and Qψ(z(k))→ 0 as k →∞, it must be the case that

lim
k→∞

∣∣ψ(z(k))
∣∣

1−
∣∣∣∣ϕ(z(k))

∣∣∣∣2 sup
u∈Cn\{0}

∣∣〈Jϕ(z(k))u, ϕ(z(k))
〉∣∣

Hz(k)(u, u)1/2
= 0.

We now prove Conjecture 9.3.3 for the unit ball.

Theorem 10.1.7. Let ψ ∈ H(Bn) and ϕ be a holomorphic self-map of Bn. Then Wψ,ϕ is

compact on B(Bn) if and only if

lim
||ϕ(z)||→1

|ψ(z)|Tϕ(z) = 0 and lim
||ϕ(z)||→1

Qψ(z) log
1 + ||ϕ(z)||
1− ||ϕ(z)||

= 0.

Proof. Recall ω(z) = 1
2 log 1+||z||

1−||z|| for all z ∈ Bn. By Theorem 9.3.2, if

lim
||ϕ(z)||→1

|ψ(z)|Tϕ(z) = 0 and lim
||ϕ(z)||→1

Qψ(z) log
1 + ||ϕ(z)||
1− ||ϕ(z)||

= 0,
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then Wψ,ϕ is compact on B(Bn). Conversely, assume Wψ,ϕ is compact on B(Bn). Then

Wψ,ϕ is bounded on B(Bn), and from Theorem 10.1.1(c), we deduce

lim
ϕ(z)→1

|ψ(z)|Tϕ(z) ≤ lim
ϕ(z)→1

|ψ(z)|Bϕ(z) = 0.

Let {z(k)} be a sequence in Bn such that
∣∣∣∣ϕ(z(k))

∣∣∣∣ → 1 as k → ∞. For each k ∈ N

and z ∈ Bn, define the function

fk(z) =

(
Log 2

1−〈z,ϕ(z(k))〉

)2

log 2

1−||ϕ(z(k))||2
.

By Lemma 10.1.3, {fk} is a bounded sequence in B(Bn). Also, {fk} converges to 0 locally

uniformly on Bn. By the compactness of Wψ,ϕ, ||ψ(fk ◦ ϕ)||B → 0 as k →∞. Observe that

∇(fk)(z) =
2Log 2

1−〈z,ϕ(z(k))〉
log 2

1−||ϕ(z(k))||2
ϕ(z(k))

1−
〈
z, ϕ(z(k))

〉 ,

and for u ∈ Cn \ {0}

∣∣∣∇(fk)(ϕ(z(k)))Jϕ(z(k))u
∣∣∣ =

2
∣∣〈Jϕ(z(k))u, ϕ(z(k))

〉∣∣
1−

∣∣∣∣ϕ(z(k))
∣∣∣∣2 ,
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and hence,

||ψ(fk ◦ ϕ)||B ≥ sup
z∈Bn

Qψ(fk◦ϕ)(z)

≥ Qψ(fk◦ϕ)(z
(k))

= sup
u∈Cn\{0}

∣∣fk(ϕ(z(k)))∇(ψ)(z(k))u+ ψ(z(k))∇(fk ◦ ϕ)(z(k))u
∣∣

Hz(k)(u, u)1/2

≥
∣∣∣Qψ(z(k))fk(ϕ(z(k)))−

∣∣∣ψ(z(k))
∣∣∣Qfk◦ϕ(z(k))

∣∣∣
=

∣∣∣∣∣Qψ(z(k)) log
2

1−
∣∣∣∣ϕ(z(k))

∣∣∣∣2 − 2
∣∣ψ(z(k))

∣∣
1−

∣∣∣∣ϕ(z(k))
∣∣∣∣2 sup

u∈Cn\{0}

∣∣〈Jϕ(z(k))u, ϕ(z(k))
〉∣∣

Hz(k)(u, u)1/2

∣∣∣∣∣ .

By Lemma 10.1.6, we have

lim
k→∞

∣∣ψ(z(k))
∣∣

1−
∣∣∣∣ϕ(z(k))

∣∣∣∣2 sup
u∈Cn\{0}

∣∣〈Jϕ(z(k))u, ϕ(z(k))
〉∣∣

Hz(k)(u, u)1/2
= 0.

Since ||ψ(fk ◦ ϕ)||B → 0, it must be the case that

lim
||ϕ(z)||→1

Qψ(z(k)) log
2

1−
∣∣∣∣ϕ(z(k))

∣∣∣∣2 = 0.

Using Lemma 10.1.5, and the fact that

Qψ(z(k)) log
1 +

∣∣∣∣ϕ(z(k))
∣∣∣∣

1−
∣∣∣∣ϕ(z(k))

∣∣∣∣ ≤ Qψ(z(k)) log
4

1−
∣∣∣∣ϕ(z(k))

∣∣∣∣2
= Qψ(z(k)) log

2

1−
∣∣∣∣ϕ(z(k))

∣∣∣∣2 +Qψ(z(k)) log 2,
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we deduce

lim
||ϕ(z)||→1

Qψ(z) log
1 + ||z||
1− ||z||

= 0,

thus completing the proof.

If we take ψ to be the constant function 1, then σψ,ϕ = 0 and we have the following

characterization of boundedness and compactness of Cϕ on the Bloch space of the unit ball.

Corollary 10.1.8. Let ϕ be a holomorphic self-map of Bn. Then Cϕ is compact on B(Bn)

if and only if

lim
ϕ(z)→∂Bn

Tϕ(z) = 0.

10.2 The Unit Polydisk

In this section, we prove Conjectures 9.1.7 and 9.3.3 on the Bloch space of Dn. In [94], Zhou

and Chen characterized the bounded and the compact weighted composition operators on

B(Dn) under the norm

||f ||∗ = |f(0)|+ sup
z∈Dn

n∑
k=1

(1− |zk|2)
∣∣∣∣ ∂f∂zk (z)

∣∣∣∣ .

By Theorem 5.1.3, we have

Qf (z) =
∣∣∣∣∣∣∣∣((1− |z1|2)

∂f

∂z1
(z), . . . , (1− |zn|2)

∂f

∂zn
(z)
)∣∣∣∣∣∣∣∣ ,

and thus

1
n

n∑
k=1

(1− |zk|2)
∣∣∣∣ ∂f∂zk (z)

∣∣∣∣ ≤ Qf (z) ≤
n∑
k=1

(1− |zk|2)
∣∣∣∣ ∂f∂zk (z)

∣∣∣∣ . (10.5)

So ||·||∗ is equivalent to the Bloch norm.
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Theorem 10.2.1. [94] Let ψ ∈ H(Dn) and ϕ a holomorphic self-map of Dn. Then Wψ,ϕ

is bounded on B(Dn) if and only if

sup
z∈Dn

n∑
j,k=1

(1− |zj |2)
∣∣∣∣ ∂ψ∂zj (z)

∣∣∣∣ log
4

1− |ϕk(z)|2
<∞,

and

sup
z∈Dn

|ψ(z)|
n∑

j,k=1

∣∣∣∣∂ϕk∂zj
(z)
∣∣∣∣ 1− |zj |2

1− |ϕk(z)|2
<∞.

Furthermore, the bounded operator Wψ,ϕ is compact on B(Dn) if and only if

lim
ϕ(z)→∂Dn

n∑
j,k=1

(1− |zj |2)
∣∣∣∣ ∂ψ∂zj (z)

∣∣∣∣ log
4

1− |ϕk(z)|2
= 0,

and

lim
ϕ(z)→∂Dn

|ψ(z)|
n∑

j,k=1

∣∣∣∣∂ϕk∂zj
(z)
∣∣∣∣ 1− |zj |2

1− |ϕk(z)|2
= 0.

Corollary 10.2.2. Let ϕ be a holomorphic self-map of Dn. Then Cϕ is compact on B(Dn)

if and only if

lim
ϕ(z)→∂Dn

n∑
j,k=1

∣∣∣∣∂ϕk∂zj
(z)
∣∣∣∣ 1− |zj |2

1− |ϕk(z)|2
= 0.

To prove the conjectures, we will show the conditions in the conjectures to be equivalent

to the conditions in the above theorem. To this end, we will need the following lemmas.

Lemma 10.2.3. [24] Let ϕ be a holomorphic self-map of Dn. Then for z ∈ Dn,

Bϕ(z) = max
||w||=1

 n∑
k=1

∣∣∣∣∣∣
n∑
j=1

∂ϕk
∂zj

(z)
(1− |zj |2)wj
1− |ϕk(z)|2

∣∣∣∣∣∣
21/2

.
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Lemma 10.2.4. Let ψ ∈ H(Dn) and ϕ a holomorphic self-map of Dn. Then for z ∈ Dn,

the following inequalities hold:

(a) ω(ϕ(z))Qψ(z) ≤

 n∑
j=1

(1− |zj |2)
∣∣∣∣ ∂ψ∂zj (z)

∣∣∣∣
 n∑

k=1

log
4

1− |ϕk(z)|2
;

(b) |ψ(z)|Tϕ(z) ≤ |ψ(z)|
n∑

j,k=1

∣∣∣∣∂ϕk∂zj
(z)
∣∣∣∣ 1− |zj |2

1− |ϕk(z)|2
.

Proof. Let z ∈ Dn. To prove (a), we use Theorem 5.1.4(b) to obtain

ω(ϕ(z)) ≤ ρ(ϕ(z), 0) ≤ 1
2

n∑
k=1

log
1 + |ϕk(z)|
1− |ϕk(z)|

≤
n∑
k=1

log
(1 + |ϕk(z)|)2

1− |ϕk(z)|2
≤

n∑
k=1

log
4

1− |ϕk(z)|2
.

By the upper estimate of (10.5) we deduce for all z ∈ Dn,

ω(ϕ(z))Qψ(z) ≤

 n∑
j=1

(1− |zj |2)
∣∣∣∣ ∂ψ∂zj (z)

∣∣∣∣
 n∑

k=1

log
4

1− |ϕk(z)|2
.

To prove (b), observe that by Lemmas 9.1.2 and 10.2.3,

Tϕ(z) ≤ Bϕ(z) = max
||w||=1

 n∑
k=1

∣∣∣∣∣∣
n∑
j=1

∂ϕk
∂zj

(z)
(1− |zj |2)wj
1− |ϕk(z)|2

∣∣∣∣∣∣
21/2

≤ max
||w||=1

 n∑
k=1

 n∑
j=1

∣∣∣∣∂ϕk∂zj
(z)
∣∣∣∣ (1− |zj |2) |wj |

1− |ϕk(z)|2

21/2

≤
n∑

j,k=1

∣∣∣∣∂ϕk∂zj
(z)
∣∣∣∣ 1− |zj |2

1− |ϕk(z)|2
.
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Thus for all z ∈ Dn,

|ψ(z)|Tϕ(z) ≤ |ψ(z)|
n∑

j,k=1

∣∣∣∣∂ϕk∂zj
(z)
∣∣∣∣ 1− |zj |2

1− |ϕk(z)|2
.

Theorem 10.2.5. Let ψ ∈ H(Dn) and ϕ a holomorphic self-map of Dn. Then Wψ,ϕ is

bounded on B(Dn) if and only if ψ ∈ B(Dn), and σψ,ϕ and τψ,ϕ are finite.

Proof. First suppose Wψ,ϕ is bounded on B(Dn). Then ψ = Wψ,ϕ1 ∈ B(Dn). By Lemma

10.2.4(b), we have

τψ,ϕ = sup
z∈Dn

|ψ(z)|Tϕ(z) ≤ sup
z∈Dn

|ψ(z)|
n∑

j,k=1

∣∣∣∣∂ϕk∂zj
(z)
∣∣∣∣ 1− |zj |2

1− |ϕk(z)|2
,

which is finite by Theorem 10.2.1. By Theorem 9.1.5, σψ,ϕ is finite as well.

Conversely, if ψ ∈ B(Dn), and σψ,ϕ and τψ,ϕ are finite, then by Theorem 9.1.3, Wψ,ϕ is

bounded on B(Dn).

Theorem 10.2.6. Let ψ ∈ H(Dn), and ϕ a holomorphic self-map of Dn. Then the bounded

operator Wψ,ϕ is compact on B(Dn) if and only if

lim
ϕ(z)→∂Dn

ω(ϕ(z))Qψ(z) = 0 and lim
ϕ(z)→∂Dn

|ψ(z)|Tϕ(z) = 0.

Proof. First suppose Wψ,ϕ is compact on B(Dn). Then, from Lemma 10.2.4(a) and Theorem

10.2.1, we obtain

lim
ϕ(z)→∂Dn

ω(ϕ(z))Qψ(z) ≤ lim
ϕ(z)→∂Dn

n∑
j,k=1

(1− |zj |2)
∣∣∣∣ ∂ψ∂zj (z)

∣∣∣∣ log
4

1− |ϕk(z)|2
= 0.
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By Lemma 10.2.4(b) and Theorem 10.2.1, we have

lim
ϕ(z)→∂Dn

|ψ(z)|Tϕ(z) ≤ lim
ϕ(z)→∂Dn

|ψ(z)|
n∑

j,k=1

∣∣∣∣∂ϕk∂zj
(z)
∣∣∣∣ 1− |zj |2

1− |ϕk(z)|2
= 0.

Conversely, suppose that

lim
ϕ(z)→∂D

ω(ϕ(z))Qψ(z) = 0 and lim
ϕ(z)→∂D

|ψ(z)|Tϕ(z) = 0.

Then by Theorem 9.3.2, Wψ,ϕ is compact on B(Dn).

10.3 Examples

We end this chapter with examples which illustrate that weighted composition operators

are more than the sum of their parts. These examples are inspired by the examples of Ohno

and Zhao in the one-dimensional setting.

Example 10.3.1. [72] For z ∈ D, let ψ(z) = log 2
1−z and ϕ(z) = 1−z

2 . Then Mψ is not

bounded on B(D), but Wψ,ϕ is bounded on B(D).

Example 10.3.2. [72] For z ∈ D, let ψ(z) = 1− z and ϕ(z) = 1+z
2 . Then neither Mψ nor

Cϕ is compact on B(D), but Wψ,ϕ is compact on B(D).

10.3.1 The Unit Ball

The following examples pertain to the Bloch space of the unit ball, analogous to Examples

10.3.1 and 10.3.2.

Example 10.3.3. For λ ∈ ∂Bn and z ∈ Bn, let ψ(z) = 1
2Log(1−〈z, λ〉) and ϕ(z) = 1

2(λ−z).

Since ψ 6∈ H∞(Bn), by Theorem 5.1.7, the associated multiplication operator Mψ is not

bounded.
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Observe that for z ∈ Bn, ∇(ψ)(z) = −1
2

λ
1−〈z,λ〉 , so that ||∇(ψ)(z)|| = 1

2
1

|1−〈z,λ〉| , and so

(1− ||z||2) ||∇(ψ)(z)|| log
2

1− ||ϕ(z)||2
=

1− ||z||2

2 |1− 〈z, λ〉|
log

2

1−
∣∣∣∣λ−z

2

∣∣∣∣2 . (10.6)

The boundedness of (10.6) is immediate for all z bounded away from ±λ. If z → λ, then

1 − ||z||2 approaches 0 faster than |1− 〈z, λ〉| approaches 0, while the logarithmic term

approaches log 2, and so (10.6) is bounded. If z → −λ, then 1 − ||z||2 approaches 0 faster

than log(1−
∣∣∣∣λ−z

2

∣∣∣∣2) goes to −∞, while |1− 〈z, λ〉| is bounded away from zero. Thus,

sup
z∈Bn

(1− ||z||2) ||∇(ψ)(z)|| log
2

1− ||ϕ(z)||2
<∞. (10.7)

Also, since Jϕ(z) = −1
2In, where In is the n × n identity matrix, for u ∈ Cn \ {0}, we

have

Bϕ(z)2 =
Hϕ(z)(Jϕ(z)u, Jϕ(z)u)

Hz(u, u)

=
(1− ||ϕ(z)||2) ||Jϕ(z)u||2 + |〈Jϕ(z), ϕ(z)〉|2

(1− ||z||2) ||u||2 + |〈u, z〉|2
(1− ||z||2)2

(1− ||ϕ(z)||2)2

=
1
4

(1−
∣∣∣∣λ−z

2

∣∣∣∣2) ||u||2 +
∣∣〈u, λ−z2

〉∣∣2
(1− ||z||2) ||u||2 + |〈u, z〉|2

(
1− ||z||2

)2

(
1−

∣∣∣∣λ−z
2

∣∣∣∣2)2 . (10.8)

As z approaches λ, (10.8) yields

|ψ(z)|Bϕ(z)2 = |ψ(z)|
Hϕ(z)(Jϕ(z)u, Jϕ(z)u)

Hz(u, u)
= O

(
|Log(1− 〈z, λ〉)| (1− ||z||2)

)
.

Since 1−||z||2 goes to 0 as z → λ faster than Log(1−〈z, λ〉) goes to∞, |ψ(z)| (Bϕ(z))2 <∞
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for all z ∈ Bn. Thus

sup
z∈Bn

|ψ(z)|Bϕ(z) <∞.

Therefore, by (10.7) and Theorem 10.1.1, Wψ,ϕ is bounded on B(Bn).

Example 10.3.4. For z ∈ Bn, let ψ(z) = 1 − z1 and ϕ(z) =
(

1+z1
2 , z22 , . . . ,

zn
2

)
. Since ψ

is not identically zero, by Theorem 5.4.1 the associated multiplication operator Mψ is not

compact on B(Bn). Observe that ||ϕ(z)|| → 1 only when z → (1, 0, . . . , 0), i.e., z1 → 1

and zj → 0 for j 6= 1. We now show that Cϕ is not compact by proving that there exists

u ∈ Cn \ {0} such that
Hϕ(z)(Jϕ(z)u, Jϕ(z)u)

Hz(u, u)
is bounded away from zero as ||ϕ(z)|| → 1

(see Theorem 10.2.2). Observe that Jϕ(z) = 1
2In for each z ∈ Bn. Set u = (1, 0, . . . , 0).

Then

Hϕ(z)(Jϕ(z)u, Jϕ(z)u)
Hz(u, u)

=
1
4(1− ||ϕ(z)||2) + 1

4

∣∣1+z1
2

∣∣2
1− ||z||2 + |z1|2

(1− ||z||2)2

(1− ||ϕ(z)||2)2
.

Thus, as z1 → 1 and zj → 0 for j 6= 1, we have

lim
z→(1,0,...,0)

Hϕ(z)(Jϕ(z)u, Jϕ(z)u)
Hz(u, u)

=
1
4

lim
z→(1,0,...,0)

(1− ||z||2)2

(1− ||ϕ(z)||2)2

=
1
4

lim
z1→1

(
1− |z1|2

1−
∣∣1+z1

2

∣∣2
)2

= lim
x→1
y→0

4(1− x2 − y2)2

(3− 2x− x2 − y2)2
= 1.

Therefore, the associated composition operator Cϕ is not compact on B(Bn).

Furthermore, since ψ(z) → 0, when ||ϕ(z)|| → 1 and Bϕ(z) is bounded above by a
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constant independent of ϕ, we deduce

lim
||ϕ(z)||→1

|ψ(z)|Bϕ(z) = 0.

Also, since ∇(ψ)(z) = −1, we have

(1− ||z||2) ||∇(ψ)(z)|| log
2

1− ||ϕ(z)||2
= (1− ||z||2) log

2
1− ||ϕ(z)||2

.

Since 1− ||z||2 approaches 0 faster than log(1− ||ϕ(z)||2) approaches −∞, we have

lim
||ϕ(z)||→1

(1− ||z||2) ||∇(ψ)(z)|| log
2

1− ||ϕ(z)||2
= 0.

Therefore, by Theorem 10.1.1, Wψ,ϕ is compact on B(Bn).

10.3.2 The Unit Polydisk

The following examples pertain to the Bloch space of the unit polydisk, analogous to Ex-

amples 10.3.1 and 10.3.2.

Example 10.3.5. Fix an index j ∈ {1, . . . , n} and, for z ∈ Dn, define ψ(z) = Log 2
1−zj

and ϕ(z) be the vector with kth component 0 for k 6= j and jth component 1−zj
2 . Since

ψ 6∈ H∞(Dn), by Theorem 5.1.7, the associated multiplication operator Mψ is not bounded

on B(Dn).

Since ∂ψ
∂zk

(z) = 0 for k 6= j and ∂ψ
∂zj

(z) = 1
1−zj , then

n∑
k,`=1

(1− |z`|2)
∣∣∣∣ ∂ψ∂z` (z)

∣∣∣∣ log
4

1− |ϕk(z)|2
=

1− |zj |2

|1− zj |
log

4

1−
∣∣∣1−zj2

∣∣∣2 .

141



The boundedness of the above quantity is immediate for zj bounded away from ±1. As

zj → −1, 1− |zj |2 goes to 0 faster than log 4

1−
∣∣∣ 1−zj2

∣∣∣2 goes to ∞, while |1− zj | → 2. On the

other hand, as zj → 1,

1− |zj |2

|1− zj |
≤ 1 + |zj | ≤ 2,

while log 4

1−
∣∣∣ 1−zj2

∣∣∣2 → log 4. Therefore

sup
z∈Dn

1− |zj |2

|1− zj |
log

4

1−
∣∣∣1−zj2

∣∣∣2 <∞.

Since ∂ϕk
∂z`

(z) = 0 for k or ` unequal to j and ∂ϕj
∂zj

(z) = −1
2 , we obtain

|ψ(z)|
n∑

k,`=1

∣∣∣∣∂ϕk∂z`
(z)
∣∣∣∣ 1− |z`|2

1− |ϕk(z)|2
=

1
2

∣∣∣∣Log
2

1− zj

∣∣∣∣ 1− |zj |2

1−
∣∣∣1−zj2

∣∣∣2
≤ 1

2
1− |zj |2

1−
∣∣∣1−zj2

∣∣∣2
(

log
2

|1− zj |
+
π

2

)
.

The boundedness of the above quantity is immediate for zj bounded away from ±1. By the

same argument as before, the above quantity is bounded also as z approaches ±1. Therefore

sup
z∈Dn

|ψ(z)|
n∑

k,`=1

∣∣∣∣∂ϕk∂z`
(z)
∣∣∣∣ 1− |z`|2

1− |ϕk(z)|2
<∞.

Therefore, by Theorem 10.2.1, Wψ,ϕ is bounded on B(Dn).

Example 10.3.6. Fix an index j ∈ {1, . . . , n}, and define ψ(z) = 1 − zj and let ϕ(z) be

the vector with kth component 0 for k 6= j and jth component 1+zj
2 . Since ∂ϕk

∂z`
(z) = 0 for
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k, ` 6= j, ∂ϕj
∂zj

(z) = 1
2 , and |ϕj(z)| =

∣∣∣1+zj
2

∣∣∣, we have

n∑
k,`=1

∣∣∣∣∂ϕk∂z`
(z)
∣∣∣∣ 1− |z`|2

1− |ϕk(z)|2
=

1
2

 1− |zj |2

1−
∣∣∣1+zj

2

∣∣∣2
 . (10.9)

Arguing as in Example 10.3.4 we see that the right hand side of (10.9) is bounded away

from 0 as zj → 1. Thus, by Corollary 10.2.2, Cϕ is not compact on B(Dn).

Since ∂ψ
∂zk

(z) = 0 for k 6= j and ∂ψ
∂zj

(z) = −1,

n∑
k,`=1

(1− |z`|2)
∣∣∣∣ ∂ψ∂z` (z)

∣∣∣∣ log
4

1− |ϕk(z)|2
= (1− |zj |2) log

4

1−
∣∣∣1+zj

2

∣∣∣2 .

As zj → 1, 1− |zj |2 approaches 0 faster than log(1−
∣∣∣1+zj

2

∣∣∣2) approaches −∞. So

lim
zj→1

n∑
k,`=1

(1− |z`|2)
∣∣∣∣ ∂ψ∂z` (z)

∣∣∣∣ log
4

1− |ϕk(z)|2
= 0.

Since ∂ϕk
∂ϕ`

(z) = 0 for k or ` unequal to j and ϕ(z)→ ∂Dn precisely when zj → 1, we see

that ∂ϕj
∂zj

(z) = 1
2 , then

|ψ(z)|
n∑

k,`=1

∣∣∣∣∂ϕk∂z`
(z)
∣∣∣∣ 1− |z`|2

1− |ϕk(z)|2
=
|1− zj |

2

 1− |zj |2

1−
∣∣∣1+zj

2

∣∣∣2
→ 0

as ϕ(z)→ ∂Dn. Therefore, by Theorem 10.2.1, Wψ,ϕ is compact on B(Dn).
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Chapter 11: Further Questions

Although the work in this dissertation answers many questions on operators acting on the

Bloch space of a bounded homogeneous domain, along the way many questions have been

raised. In this chapter, we will discuss some questions which deserve further investigation,

as well as new questions which have not been considered yet.

11.1 Further Developments on the Bloch Space

In this section, we will discuss the results concerning the isometric multiplication operators

and the bounded weighted composition operators on bounded homogeneous domains.

11.1.1 Isometries

The results from Theorem 4.3.6 and Theorem 5.5.4 characterize the isometric multiplication

operators on the Bloch space of the unit disk and the Bloch space of a bounded symmetric

domain which does not contain the unit disk as a factor. At first glance, these two results

seem to be at opposite ends of the spectrum. However, the proofs of both theorems rely on

a similar concept.

To prove there are no non-trivial isometric multiplication operator Mψ on the Bloch

space of the unit disk, we showed that βψk < 1 for all k. For the Bloch space of a bounded

symmetric domain, we showed that βψk ≤ cD where cD is the Bloch constant of the domain.

In order to ensure βψk < 1, we must remove the unit disk as a factor, which would make

cD = 1.

Thus, it seems to be the idea to determine a quantity strictly less than one which bounds

βψ in the case of the Bloch space on a bounded homogeneous domain. This, however, does
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not seem to be an easy task. Although the Bloch constant is defined for a bounded homo-

geneous domain, the exact value, or even a usable upper bound, has not been determined.

So, it is not clear whether the arguments in the proofs of Theorems 4.3.6 and 5.5.4 can be

directly extended to the bounded homogeneous domain case.

11.1.2 Characterization of Bounded Weighted Composition Operators on

Bounded Homogeneous Domains

The task of characterizing the bounded weighted composition operators on the Bloch space

of a bounded homogeneous domain resulted in good news and bad news. The good news,

necessary conditions (Theorem 9.1.5) and sufficient conditions (Theorem 9.1.3) were estab-

lished. The bad news, the conditions have not been proven to be necessary and sufficient.

Since we can show the conditions are necessary and sufficient in the case of the unit ball and

the unit polydisk, we conjecture these conditions to be necessary and sufficient in general.

The underlying obstacle in showing these conditions are in fact a characterization is the

inability to choose test functions. In the case of the unit ball and unit polydisk, we can

select appropriate test functions involving logarithms. On a general bounded homogeneous

domain, the only Bloch functions which we have available for use are polynomials and com-

positions of logarithmic functions and projection maps. Although the bounded symmetric

domains have more structure, we are not aware of other test functions which may be helpful

in our quest. Also, since the bounded symmetric domains are defined in terms of matrices,

functions on such domains are described in terms of matrices as well, and thus are very

difficult to work with.

In an attempt to alleviate some of the above problems, it may be beneficial to consider a

different type of bounded homogeneous domain, called a Siegel domain. The Siegel domains

have a more developed function theory [92], and the hope is that having a larger set of

functions to choose from may assist in the proof that the necessary and the sufficient

conditions of boundedness are, in fact, necessary and sufficient.
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11.2 New Developments on Other Spaces

The work in this dissertation focused on operators acting on the Bloch space. However,

this is not the only space of interest to operator theorists. As with the research on the

Bloch space, when working in higher dimensions, either the unit ball or the unit polydisk

is considered. It will be advantageous to define other spaces on bounded homogeneous or

bounded symmetric domains, and consider the same issues raised in this dissertation for

the Bloch space.

Several spaces have been defined on bounded symmetric domains, including the Hardy

space [46], and the Besov space [98] and [99]. With the definitions of such spaces on bounded

symmetric domains, a unification of the operator theory of such spaces is an interesting area

of research.
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Bloch space, 6

Calkin algebra, 39
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Jacobian matrix, 16
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multiplication operator, 41
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operator
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bounded below, 34

compact, 39

continuous, 33
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Riemann sphere, 10
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