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ABSTRACT1 
Learnable Evolution Model (LEM) is an evolutionary 
computation methodology that applies hypothesis formulation and 
instantiation to create new individuals.  Initial study has shown 
that LEM significantly outperforms standard evolutionary 
computation methods in terms of evolution length on selected 
benchmark optimization problems.  This paper presents initial 
results from handling constrained optimization problems in LEM.  
Constraints are classified as instantiable, which can be handled 
directly during instantiation process, and general, which cannot be 
directly instantiated.  The later can be handled by applying three 
different methods presented in this paper. 

Categories and Subject Descriptors 
I.2.6 [Artificial Intelligence]: Learning – Concept learning, 
induction. G.1.6 [Optimization]: Constrained optimization. 

General Terms 
Algorithms, Performance, Design, Experimentation, Theory. 

Keywords 
Constraints, Evolutionary Computation, Learnable Evolution 
Model, Machine Learning, Non-Darwinian Evolutionary 
Computation 

1. INTRODUCTION 
Evolutionary computation presents an important approach to the 
optimization of complex functions or systems.  Its popularity is 
stems mostly from the fact that it requires little problem 
knowledge to set up an optimization problem, and that individuals 
(candidate solutions) are created though semi-random or random 
operators, such as mutation and/or recombination, that are easy to 
implement.  These methods, however, suffer from slow 
convergence to the optimal solutions, which makes them 
impractical for problems in which evaluation of the fitness 

                                                                 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that copies 
bear this notice and the full citation on the first page. To copy otherwise, 
or republish, to post on servers or to redistribute to lists, requires prior 
specific permission and/or a fee. 
GECCO'06, July 8–12, 2006, Seattle, Washington, USA. 
Copyright 2006 ACM 1-59593-186-4/06/0007...$5.00. 

function takes a significant amount of time (and thousands of 
evaluations are needed). 

Learnable Evolution Model (LEM) is a non-Darwinian 
evolutionary computation method that applies hypothesis 
formulation and instantiation to generate new candidate solutions 
[5].  It selects groups of high- and low-performing individuals 
from the population and uses them as positive and negative 
examples, respectively, for learning.  A learning program 
generates a general hypothesis that characterizes high-performing 
individuals in contrast to the low-performing ones.  This 
hypothesis is instantiated in order to produce new individuals. 

The goal of this paper is to describe ongoing research on handling 
constrained optimization problems in Learnable Evolution Model, 
which constitutes part of the author’s Ph.D. research.  The 
problem of handling constraints is very important from a practical 
point of view, because most real world optimization problems are 
constrained.  The presented methods are only partially developed, 
and are not yet sufficiently studied and tested. 

Section 2 of this paper briefly describes Learnable Evolution 
Model and its selected experimental results (on non-constrained 
problems).  Section 3 describes the initial study on methods of 
handling constraints in LEM.  Future research and conclusions 
from the preliminary study are presented in Sections 4 and 5, 
respectively. 

2. LEARNABLE EVOLUTION MODEL 
This section briefly describes LEM3, the newest implementation 
of Learnable Evolution Model [13], [14].  Based on this 
description, in particular regarding learning mode, Section 3 
describes methods for handling constraints. 

LEM3 contains several components that are also found in 
traditional evolutionary algorithms, such as generation of an 
initial population, selection of individuals for a new population, 
and evaluation of individuals.  These methods are well known and 
are not discussed further in this paper. 

Components that are unique to LEM3 concern guiding 
evolutionary computation through machine learning, adjustment 
of the representation space, and multistrategy selection of actions 
to be executed.  Figure 1 presents the top-level algorithm 
underlying LEM3. 
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The major operator for creating new individuals in Learnable 
Evolution Model is the “Learn and Instantiate” action (a.k.a. 
learning mode).  This action creates new individuals by 
performing three steps: (1) selecting the training set for the 
learning program (2) learning a hypothesis characterizing 
subspaces that likely contain the optimum, and (3) instantiating 
the hypothesis in various ways to create new individuals. 

Step (1) selects high-performing (H-group) and low-performing 
(L-group) individuals from the population, according to the given 
fitness function.  These individuals serve as positive and negative 
examples, respectively, for a learning program. There are two 
methods of creating these groups.  These two selection methods, 
fitness-based and population-based, are described, for example, in 
[5] and [13].  The H- and L-groups are then passed as positive 
and negative examples to a learning program. 

 

Figure 1: Flowchart of LEM3 algorithm. 

In step (2) of LEM learning mode, the program applies hypothesis 
formulation to obtain a general description of the H-group against 
the L-group.  Although any learning method can be applied in this 
step, our study concentrates on AQ rule learning, in particular its 
AQ21 implementation [12].  This program is the newest 
implementation of the AQ learning, an inductive learning method 
that produces hypotheses in the form of sets of attributional rules 
[6]. The simplest form of such a rule is: 

CONSEQUENT <= PREMISE 

where CONSEQUENT and PREMISE are conjunctions of 
attributional conditions (a.k.a. selectors). The simplest form of an 

attributional condition defines a relation between an attribute and 
attribute values that satisfy that condition.  Here is an example of 
an attributional rule: 

[design = high-performing]  <= [weight = 2..5] &  
[shape= rhombus v triangular] &  
[height <  3 ] 

The rule states that a design is classified as high-performing if its 
weight is between 2 and 5 (units are presumably defined in the 
attribute domain), its shape is rhombus or triangular, and its 
height is less than 3. 

A hypotheses learned by AQ21 usually consist of a number of 
such rules.  Please note that rules learned by AQ21 have much 
higher expressive power than those learned by most machine 
learning systems. 

For completeness of this discussion, Figure 2 presents pseudocode 
of simplified AQ21 learning algorithm.  Further details on AQ 
learning and some of its more extended forms can be found in, for 
example, [7]. 

HYPOTHESIS = null 
While not all H-group examples are covered 
  Select uncovered positive example e+ and use it as a seed 
  Generate star G(e+, L-group) 
  Select the best rule, R, from the star according to a given 

criterion of optimality, and add it to HYPOTHESIS 
  Remove examples covered by R from H-group 

Figure 2: Basic AQ21 learning algorithm. 

The instantiation process (Step 3 of learning mode) generates new 
individuals that satisfy the learned hypothesis.  When instantiating 
a rule to create an individual for the new population, the program 
faces the problem of instantiating values to attributes that are 
specified in the rule and to attributes not present in the rule.  A 
basic instantiation algorithm implemented in LEM3 is presented 
in Figure 3.  For a detailed description, discussion and more 
advanced algorithms, please refer to [14]. 

For each rule in a ruleset (hypothesis) to be instantiated  
Compute the number of individuals to be created 
For each individual to be created 

Create the individual 
For each attribute 

If the attribute is specified in the rule 
Select a random value satisfying the rule 

           Else Select a random individual from the previous 
population and use its value 

Figure 3: Basic instantiation algorithm in LEM3. 

In addition to learning mode described above, LEM3 implements 
several other actions.  The Probe action applies mutation and 
crossover operators known in evolutionary computation.  The 
Search locally action applies user defined local search operators 
such as gradient-based methods.  The Randomize action either 
adds randomly generated individuals into a population or restarts 
the evolution process by regenerating randomly the entire 
population.  These operators are, however, beyond the scope of 
this paper. 
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Adjust representation is applied to improve the representation 
space in which hypotheses are learned.  This includes finding the 
most suitable discretization of numeric attributes, ignoring 
irrelevant attributes, and constructing new attributes that can 
better capture features of the fitness landscape. 

Comparison of LEM3 with other evolutionary computation 
methods shows its strong advantage, which tends to grow with the 
number of variables.  For example, LEM3 required on average 
16.5 times fewer fitness evaluations than EA, a standard 
evolutionary computation method [2], when optimizing Rastrigin, 
Griewangk and Rosenbrock functions of 100 to 1000 variables.  It 
was also about 70 times faster than results of Estimation of 
Distribution Algorithms on Griewangk and Rosenbrock functions 
of 10 and 50 variables reported in [1].  When compared to results 
reported on Cultural Algorithms [9], LEM3 required on average 
340 times fewer fitness evaluations.  The study was performed on 
Rastrigin, Griewangk and Rosenbrock functions of 5, 3, and 2 
variables respectively.  Details of the experimental study are 
presented in [14]. 

3. HANDLING CONSTRAINTS 
The problem of handling constrained optimization problems in 
evolutionary computation has been studied and presented in the 
literature by many authors.  Several methods have been proposed; 
some are general and applicable to a wide range of optimization 
techniques, and some are designed for use with specific 
optimization algorithms.  Michalewicz [3] proposed the 
classification of constraint-handling methods into four main 
categories: penalty functions, decoders, repair algorithms, and 
constraint preserving algorithms.  In addition to the four 
categories, there are a number of methods concerning constraint-
handling methods such as multi-objective optimization (e.g. [11]), 
cultural algorithms (e.g. [10]), and the coevolutionary model (e.g. 
[8]). 

A constrained optimization problem in Learnable Evolution 
Model seeks feasible solutions X1, … Xk that are optima of 
function f(x1, .. xn): E � R given a set of constraints C in 
Disjunctive Normal Form (DNF) defining feasible solutions.  For 
example suppose that E is the Cartesian product of the domains 
D1 = {red, green, blue}, D2 = [0 .. 10], and D3 = [0 .. 10] of three 
attributes, one nominal (x1) and two ratio (x2 and x3) and f: E � 
R is a fitness function.  An example of constraints in DNF for 
such a problem is: 

[x1=red] & [x2 > 4] v [x1=blue v green] & [x2+x3 < 10] 

meaning that the feasible solutions are those for which x1 is red 
and x2 is greater than 4, or x1 is blue or green and the sum of x2 
and x3 is less than 10. 

Constraints are integral part of problem definitions (in addition to 
the representation space and fitness function).  Constraints may 
represent physical limitations of an optimized system or expert 
background knowledge. 

In order to handle constraints, the LEM methodology 
distinguishes between instantiable constraints and general 
constraints.  The proposed methods are applicable only to 
learning mode in LEM, and are described in the next two sections.  
Methods for handling constraints for other modes have been 
widely investigated in the literature. 

3.1 Handling Instantiable Constraints 
Instantiable constraints can be directly instantiated as conditions 
using the algorithm presented in Figure 3.  For example 
conditions [x1=red] and [x2 > 4] from the above example can be 
directly instantiated by assigning “red” as the value of attribute x1 
and  a random number greater that 4 as the value of attribute x2 in 
an instantiated individual.  Another example of the instantiable 
constraint condition is [x4 > x2

2 + 7], where the expression on the 
right side can be evaluated (assuming that x2 is already 
instantiated).  This research concerns constraints in the form: 

[attr rel expr] 

where attr is an attribute, expr is an expression that includes only 
previously instantiated attributes (and does not include attr), and 
rel is a relation applicable to attr and expr.  Constraints in this 
form represent a large number of possible constraints.  For 
constraints in many different forms (for example sets of 
equations), efficient instantiation methods can also be proposed. 

Instantiation for this type of constraint works in two steps.  First, 
intersect a learned hypothesis with the constraints.  Because both 
are represented in attributional calculus, such an operation is 
meaningful, and results in the creation of a target constrained 
hypothesis.  In the second step, the target constrained hypothesis 
is instantiated using, for example, the algorithm presented in 
Figure 3.  The following example shows a step-by-step 
instantiation of an exemplary hypothesis and constraints. 

Let a hypothesis describing high-performing individuals consist of 
one rule: <= [color=red v green] & [length > 2.7], and the 
constraints be given by a conjunction of two conditions: 
[color=red] & [width < length + height – 7]. 

In this case the target constrained hypothesis is: 

<= [color=red] & [length > 2.7] & [width < length + height – 7] 

which is instantiated in four steps: (1) assign to attribute color the 
only possible value red, (2) assign to attribute length a random 
value 5, (3) assign to attribute height a value from an existing 
individual, say 6, (4) evaluate expression length + height – 7 and 
assign to attribute width a random value consistent with the 
expression, say 2.  This results in creation of individual 
(color=red, length=5, width=2, height=6) which satisfies both the 
learned hypothesis and the constraints. 

A problem arises when because of instantiation of one condition, 
other conditions cannot be instantiated.  Suppose that in the 
example above, the attribute length was assigned value 8, which is 
consistent with the second condition.  Because of that, there is no 
value of the attribute width that could possibly satisfy the third 
condition.  A backtracking algorithm is used to solve this 
problem. 

Please note that whenever the group of high performing 
individuals (H-group) are feasible, the target constrained 
hypotheses are always instantiable, meaning that there exist 
individuals that satisfy all conditions at the same time.  This can 
be proven using the fact that the hypotheses learned by AQ21 are 
complete and consistent. 
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3.2 Handling General Constraints 
The previous section described methods of handling a class of 
constraints for which there is an efficient instantiation algorithm.  
Please note that in general problem of handling constraints is 
known to be NP-Hard, thus, there is no effective way to handle all 
possible constraints, and all proposed methods are good only for 
some problems. 

In this section it is assumed that constraints are given as a 
function: 

c: E -> {true, false} 

where c(i) = true if an individuals i is feasible (satisfies all 
constraints) and c(i) = false otherwise.  Because of this 
assumption, the program does not have any prior knowledge 
about the constraints; it can only check whether they are satisfied.  
It also ignores the degree to which constraints are satisfied, for 
example, 3 out of 5 constraints are satisfied.  These issues will be 
addressed in future research. 

Three methods of handling general types of constraints are 
defined.  They are applicable to LEM’s learning mode only.  The 
methods are illustrated using a simple example, and initial results 
from testing performance of these methods are presented. 

Suppose that an optimization problem is defined in a two-
dimensional representation space as illustrated in Figure 4.  
Individuals on the plot are marked H (high-performing), L (low-
performing), and X (infeasible), and the shaded area represents 
the feasible region. 

Given sets of positive examples (H-group) and negative examples 
(L-group) the learning program may generate rules characterizing 
the H-group illustrated in Figure 5.  The rules are complete and 
consistent with regard to training data (they cover all positive and 
no negative examples), but also cover a number of infeasible 
individuals, and large portions of the infeasible region.  When 
instantiating the rules, the program may generate many infeasible 
solutions that would have to be rejected.  In real world 
optimization problems evaluation of constraints may be a very 
time consuming process, sometimes as consuming as evaluation 
of the fitness function.  Thus, the presented methods of handling 
constraints are designed to minimize the number of infeasible 
solutions generated during the optimization process and at the 
same time do not increase the total number of the fitness function 
evaluations (evolution length).    

 

Figure 4: Feasible and infeasible individuals in the example 
problem. 

 

Figure 5: Example rules found using high- and low-
performing examples. 

3.2.1 Trimming of Rules 
The AQ21 learning program learns rules with controllable levels 
of generality.  Figure 5 shows that rules cover a much larger area 
than is needed to cover the high-performing examples, and covers 
large portions of the infeasible region. 

The first method of handling general constraints in LEM trims the 
learned rules, so they do not extend far beyond the high-
performing examples.  As shown in the Figure 6, the trimmed 
rules cover significantly less infeasible space, but large portions of 
the feasible region are also not covered, and solutions may be 
missed.  This problem is solved by using flexible rule 
interpretation, that is generating 95% of the individuals to strictly 
match rules and 5% individuals with probabilities linearly 
decreasing with distance from the rule. 

 

Figure 6: Trimmed rules for the example problem. 

 

It can be also noted that the rule in the right part of the diagram 
covers a large portion of the infeasible area, because the program 
does not have any information that the area is infeasible.  The 
problem arises when the feasible area consists of disjoint parts, or 
in general is not convex. 

To overcome the latter problem two other methods are proposed. 
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3.2.2 Learning Approximation of Feasible Area 
The general idea behind this method is to learn an approximation 
of the feasible area in parallel to the evolutionary optimization 
process.  The presented method of learning approximate 
constraints applies the AQ21 learning program to sets of feasible 
and infeasible solutions.  The advantage of using the same 
learning program for hypothesis formulation and feasible space 
approximation is that learned descriptions are represented in the 
same language (attributional calculus), and several operations can 
be performed on both, e.g., they can be easily intersected. 

Let Sf be set of all feasible candidate solutions, and Sn be set of 
infeasible solutions created during the evolutionary optimization 
process in LEM.  Using Sf as the set of positive and Sn as the set 
of negative examples, the method learns an approximation of the 
feasible subspace.  Because both sets are growing during the 
evolution process, the approximation converges to the actual set 
of feasible solutions. 

At each step of evolution a hypothesis describing high-performing 
individuals is intersected with the feasible space approximation.  
The intersection is then instantiated to generate new candidate 
solutions which are likely to be feasible and high-performing.  It 
was aforementioned that the intersection is meaningful and can be 
easily computed because both, hypothesis and approximation are 
represented in attributional calculus and in the same 
representation space. 

The approximation of the feasible area may miss the actual 
solution when the learned description is overspecialized.  In such 
cases, some feasible candidate solutions may be missed and the 
actual solution to the optimization problem may also be missed, 
especially when it is close to the border of the set of feasible 
solutions.  This problem can be solved by (1) learning maximally 
general descriptions of feasible solutions, (2) checking randomly 
selected candidate solutions that do not satisfy the learned 
description of the feasible area, or (3) using flexible rule 
interpretation, as described in the previous section.  After 
instantiation, sets Sf and Sn are updated with new candidate 
solutions. 

The method is illustrated in Figures 7 and 8. 

 

Figure 7: Feasible space approximation. 

 

 

Figure 8: Intersection of learned hypothesis and feasible area 
approximation. 

 

3.2.3 Using Infeasible Individuals as a Contrast Set 
for Learning 
The last described method for handling general constraints keeps 
a list Sn of infeasible solutions and uses them as constraints for 
hypothesis formation in LEM, by adding Sn to the group of low-
performing candidate solutions.  A hypothesis learned using such 
a method not only describes high-performing candidate solutions, 
but also minimizes areas with infeasible solutions.  After 
instantiation, the set Sn is updated with new candidate solutions. 

The set Sn of infeasible individuals may be very large when many 
individuals are rejected.  This may negatively affect performance 
of the learning program.  To overcome this problem a subset of Sn 
is used as a contrast set for learning (whenever Sn is large).  
Selection of the subset can be random, or through choosing 
individuals that are the closest to known feasible ones. 

Similarly to the other methods, to avoid missing solutions, when 
rules are overspecialized, flexible rule interpretation can be used. 

Figure 9 presents an example hypothesis learned with infeasible 
examples used as a contrast set. 

 

Figure 9: Hypothesis learned with set of infeasible solutions 
used as examples. 
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3.2.4 Initial Experimental Results 
Initial application of the three methods to the G1 function [4] 
show that the trimming method gave the best results in terms of 
number of fitness function evaluations needed to find the solution.  
The G1 function is given by formula: 
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with 9 constraints presented, for example, in [4]. 

In the presented experiment, LEM3 was executed with default 
parameters, most important of which are: population size 100, 
population-based selection method, and learning mode.  Ten 
initial populations of feasible individuals (generated randomly 
with uniform distribution) were loaded by LEM3.  The reported 
results are averages and standard deviations on the 10 runs. 

Table 1: Results of application of LEM to G1 function. 

Method Number of fitness 
evaluations 

Number of infeasible 
individuals 

 Average Std. dev. Average Std. dev. 
Trimming 1,383 137 1,902 600 

Approximation 1,787 1086 4,045 6138 
Contrast Set 2,562 831 1,731 1026 

 

It is not surprising that the method based on the contrast set 
generated the smallest number of infeasible solutions, but was 
slow in terms of convergence to the solution.  This is because it 
generated overspecialized rules that often missed the solution.  
The best in terms of number of fitness evaluations is the trimming 
method.  It also requires only a slightly larger number of 
infeasible solutions. 

A very large standard deviation for the approximation method is 
caused by one execution in which program “got stuck” in a point 
near optimum and switched to the probing mode to explore 
neighborhood of the point (it generated over 20,000 infeasible 
solutions).  Such a point should be treated as an outlier, but 
clearly represents the worst case. 

Results reported in [4] state that the authors applied the Genocop 
method, which required fewer than 1,000 generations to find the 
solution.  It is very encouraging that LEM required in average 
only 14 generations to get the same result (in experiments 
repeated 10 times with different starting populations). 

4. FUTURE RESEARCH 
The presented methods of handling constraints in Learnable 
Evolution Model are in an initial stage of research.  Although 
methods were proposed and mostly implemented, a theoretical 
and experimental study is needed to fully understand their 
behavior and applicability.  In particular the research will include: 

- detailed study of methods for handling general constraints 
(e.g. how approximations should be learned, how many 
examples of feasible and infeasible examples should be 
selected, how often the approximation should be updated), 

- testing of methods of handling general constraints on 
selected constrained problems (e.g. other benchmark 
problems proposed and described  in [4]), 

- development of methods for handling instantiable 
constraints, in particular constraints in the form [att rel expr], 
and special functions such as average, equal, count [6], 

- extension of the methodology to flexible constraints (which 
may not have to be satisfied).  This includes extension of the 
proposed methods to reflect degrees to which constraints are 
satisfied. 

Moreover, the methodology will be applied to a difficult real 
world problem.   

5. CONCLUSION 
Most real world optimization problems are constrained, thus 
efficient methods of handling constraints are important for the 
practical applicability of Learnable Evolution Model. 

The presented methods are designed specifically to work with 
Learnable Evolution Model, in particular its LEM3 
implementation, which uses the AQ21 rule learning program for 
hypothesis formulation.  It produces hypotheses in the form of 
rules in attributional calculus – a highly expressive language 
which allows to represent both, hypotheses and constraints. 

A special form of instantiable constraints has been introduced to 
allow efficient instantiation method.  For all other constraints, 
three other (general) methods have been described.  The very 
promising initial results of the presented methods encourage 
further investigation.  Both theoretical study and large sets of 
experiments are needed to fully understand the methods. 

The presented methods are in an initial stage of implementation 
and analysis.  Detailed testing and comparison with existing 
methods is also part of ongoing research.  Perhaps an even greater 
challenge is to find classes of problems to which these methods 
are applicable. 
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