Initial Study on Handling Constrained Optimization
Problems in Learnable Evolution Model

Janusz Wojtusiak

School of Computational Sciences
George Mason University

4400 University Drive MSN 5B2
Fairfax, VA 22030, USA

jwojt@mli.gmu.edu

ABSTRACT

Learnable Evolution Model (LEM) is an evolutionary
computation methodology that applies hypothesisfdation and
instantiation to create new individuals. Initiglidy has shown
that LEM significantly outperforms standard evabmary
computation methods in terms of evolution length satected
benchmark optimization problems. This paper prissémitial
results from handling constrained optimization peats in LEM.
Constraints are classified as instantiable, whiah be handled
directly during instantiation process, and geneavaich cannot be
directly instantiated. The later can be handledapplying three
different methods presented in this paper.

Categories and Subject Descriptors
1.2.6 [Artificial Intelligence]: Learning — Concept learning,
induction. G.1.6 Pptimization]: Constrained optimization.

General Terms
Algorithms, Performance, Design, Experimentatiomedry.

Keywords
Constraints,
Model, Machine
Computation

1. INTRODUCTION

Evolutionary computation presents an important apagh to the
optimization of complex functions or systems. ptgpularity is
stems mostly from the fact that it requires littfgoblem
knowledge to set up an optimization problem, arad itdividuals
(candidate solutions) are created though semi-randlorandom
operators, such as mutation and/or recombinatiat,are easy to
implement. These methods, however, suffer fromwslo
convergence to the optimal solutions, which makesmt
impractical for problems in which evaluation of tHiness

Evolutionary Computation, Learnableol&tion
Learning, Non-Darwinian Evolutionary

Permission to make digital or hard copies of alpart of this work for
personal or classroom use is granted without fegiged that copies are
not made or distributed for profit or commercialadtage and that copies
bear this notice and the full citation on the fipsige. To copy otherwise,
or republish, to post on servers or to redistribtatdists, requires prior
specific permission and/or a fee.

GECCO'06, July 8-12, 2006, Seattle, Washington, USA

Copyright 2006 ACM 1-59593-186-4/06/0007...$5.00.

function takes a significant amount of time (andusands of
evaluations are needed).

Learnable Evolution Model (LEM) is a non-Darwinian
evolutionary computation method that applies hypsih
formulation and instantiation to generate new cdaidi solutions
[5]. It selects groups of high- and low-performimmglividuals
from the population and uses them as positive aedative
examples, respectively, for learning. A learningogram
generates a general hypothesis that characteriglesphrforming
individuals in contrast to the low-performing ones.This
hypothesis is instantiated in order to produce imelividuals.

The goal of this paper is to describe ongoing meean handling
constrained optimization problems in Learnable Htioh Model,

which constitutes part of the author's Ph.D. redear The

problem of handling constraints is very importaiei a practical
point of view, because most real world optimizatmoblems are
constrained. The presented methods are only fhadieveloped,
and are not yet sufficiently studied and tested.

Section 2 of this paper briefly describes Learnablelution
Model and its selected experimental results (on-camstrained
problems). Section 3 describes the initial studyneethods of
handling constraints in LEM. Future research andctusions
from the preliminary study are presented in Sestidnand 5,
respectively.

2. LEARNABLE EVOLUTION MODEL

This section briefly describes LEM3, the newestlangentation
of Learnable Evolution Model [13], [14]. Based dhis
description, in particular regarding learning modection 3
describes methods for handling constraints.

LEM3 contains several components that are also doim
traditional evolutionary algorithms, such as getiera of an
initial population, selection of individuals forreew population,
and evaluation of individuals. These methods at kmown and
are not discussed further in this paper.

Components that are unique to LEM3 concern guiding
evolutionary computation through machine learniadjustment

of the representation space, and multistrategycteteof actions

to be executed. Figure 1 presents the top-levgbrithm
underlying LEM3.



The major operator for creating new individuals Liearnable
Evolution Model is the “Learn and Instantiate” acti (a.k.a.
learning mode).  This action creates new individudly
performing three steps: (1) selecting the trainseg for the
learning program (2) learning a hypothesis chareitg
subspaces that likely contain the optimum, andir{8)antiating
the hypothesis in various ways to create new iddigis.

Step (1) selects high-performing (H-group) and joevforming
(L-group) individuals from the population, accorgito the given
fithess function. These individuals serve as pasiand negative
examples, respectively, for a learning program.r&hare two
methods of creating these groups. These two gatentethods,
fithess-based and population-based, are descritbedxample, in
[5] and [13]. The H- and L-groups are then pasaggositive
and negative examples to a learning program.

Generate inifial individuals

Evaluate individuals

v

Belect population

v

Select one or more actions

— Prok —
| | Llean & | roe
Instantiate
search
[ |—
lacally
L Adjust |
representation - .
Randomize [—
L

C StpLEMZ D

Figure 1: Flowchart of LEM 3 algorithm.

In step (2) of LEM learning mode, the program agphypothesis
formulation to obtain a general description of Hwgroup against
the L-group. Although any learning method can jygliad in this
step, our study concentrates on AQ rule learningairticular its
AQ21 implementation [12]. This program is the nsive
implementation of the AQ learning, an inductiverféag method
that produces hypotheses in the form of sets dbattonal rules
[6]. The simplest form of such a rule is:

CONSEQUENT <= PREMISE

attributional condition defines a relation betwesnattribute and
attribute values that satisfy that condition. Hesran example of
an attributional rule:

[design = high-performing] <= [weight = 2..5] &
[shape= rhombus v triangular] &
[height < 3]

The rule states that a design is classified as-pagforming if its
weight is between 2 and 5 (units are presumablinéefin the
attribute domain), its shape is rhombus or triaagubnd its
height is less than 3.

A hypotheses learned by AQ21 usually consist ofumber of
such rules. Please note that rules learned by Al@R®& much
higher expressive power than those learned by mmesathine
learning systems.

For completeness of this discussion, Figure 2 ptsgeseudocode
of simplified AQ21 learning algorithm. Further dié$ on AQ
learning and some of its more extended forms caioured in, for
example, [7].

HYPOTHES S= null
While not all H-group examples are covered
Select uncovered positive example €' and use it as a seed
Generate star G(e", L-group)
Sdlect the best rule, R, from the star according to a given
criterion of optimality, and add it to HYPOTHESS
Remove examples covered by R from H-group

Figure 2: Basic AQ21 learning algorithm.

The instantiation process (Step 3 of learning mg@®eerates new
individuals that satisfy the learned hypothesisheWinstantiating
a rule to create an individual for the new popolatithe program
faces the problem of instantiating values to amtes that are
specified in the rule and to attributes not preserthe rule. A

basic instantiation algorithm implemented in LEM3presented
in Figure 3. For a detailed description, discussamd more

advanced algorithms, please refer to [14].

For each rulein a ruleset (hypothesis) to be instantiated
Compute the number of individuals to be created
For each individual to be created
Create the individual
For each attribute
If the attribute is specified in the rule
Sdlect a random value satisfying the rule
Else Sdect a random individual from the previous
population and use its value

Figure 3: Basic instantiation algorithmin LEM 3.

In addition to learning mode described above, LEMBlements
several other actions. THerobe action applies mutation and
crossover operators known in evolutionary compoiati The

Search locally action applies user defined local search operators

such as gradient-based methods. TRaadomize action either
adds randomly generated individuals into a popaatr restarts
the evolution process by regenerating randomly #rdire
population. These operators are, however, beybadstope of

where CONSEQUENT and PREMISE are conjunctions of this paper.

attributional conditions (a.k.a. selectors). Thapest form of an



Adjust representation is applied to improve the representation
space in which hypotheses are learned. This iesldiciding the
most suitable discretization of numeric attributégnoring
irrelevant attributes, and constructing new attielsuthat can
better capture features of the fitness landscape.

Comparison of LEM3 with other evolutionary compigat
methods shows its strong advantage, which tendsotw with the
number of variables. For example, LEM3 requiredawerage
16.5 times fewer fitness evaluations than EA, andsaad
evolutionary computation method [2], when optimgiRastrigin,
Griewangk and Rosenbrock functions of 100 to 108Gables. It
was also about 70 times faster than results ofniasion of
Distribution Algorithms on Griewangk and RosenbrdgRctions
of 10 and 50 variables reported in [1]. When coragdo results
reported on Cultural Algorithms [9], LEM3 requiresh average
340 times fewer fitness evaluations. The study peaformed on
Rastrigin, Griewangk and Rosenbrock functions of35and 2
variables respectively. Details of the experimergiudy are
presented in [14].

3. HANDLING CONSTRAINTS

The problem of handling constrained optimizatiomlpems in
evolutionary computation has been studied and ptedein the
literature by many authors. Several methods haes Iproposed;
some are general and applicable to a wide ranggptirhization
techniques, and some are designed for use with ifigpec
optimization algorithms. Michalewicz [3] proposethe
classification of constraint-handling methods inflour main
categories: penalty functions, decoders, repaiordhgns, and
constraint preserving algorithms. In addition tbe tfour
categories, there are a number of methods congeouinstraint-
handling methods such as multi-objective optimmafe.g. [11]),
cultural algorithms (e.g. [10]), and the coevolatoy model (e.g.

[8])-

A constrained optimization problem in Learnable KEtion
Model seeks feasible solutions X1, ... Xk that areiroatof
function f(x1, .. xn): E> R given a set of constraints C in
Disjunctive Normal Form (DNF) defining feasible stbns. For
example suppose that E is the Cartesian produtiieoflomains
D1 = {red, green, blue}, D2 = [0 .. 10], and D3 =.[@0] of three
attributes, one nominal (x1) and two ratio (x2 aByl and f: E>

R is a fitness function. An example of constraimsDNF for
such a problem is:

[X,=red] & [x, > 4] v [x;=blue v green] & [x+x3 < 10]

meaning that the feasible solutions are those fuchvy is red
and % is greater than 4, ors blue or green and the sum of x
and x is less than 10.

Constraints are integral part of problem definiigim addition to
the representation space and fitness function)ns€aints may
represent physical limitations of an optimized egstor expert
background knowledge.

In order to handle constraints, the LEM methodology
distinguishes betweeninstantiable constraints and general
congtraints. The proposed methods are applicable only to
learning mode in LEM, and are described in the hegtsections.
Methods for handling constraints for other modesehaeen
widely investigated in the literature.

3.1 Handling Instantiable Constraints

Instantiable constraints can be directly instaatlads conditions
using the algorithm presented in Figure 3. Formpla
conditions [x=red] and [% > 4] from the above example can be
directly instantiated by assigning “red” as theueaof attribute x
and a random number greater that 4 as the vala#rdfute % in

an instantiated individual. Another example of thetantiable
constraint condition is [x> x> + 7], where the expression on the
right side can be evaluated (assuming that i already
instantiated). This research concerns constrairttse form:

[attr rel expr]

whereattr is an attributegxpr is an expression that includes only
previously instantiated attributes (and does noluite attr), and
rel is a relation applicable tattr andexpr. Constraints in this
form represent a large number of possible conssainFor
constraints in many different forms (for exampletssef
equations), efficient instantiation methods can &ls proposed.

Instantiation for this type of constraint workstimo steps. First,
intersect a learned hypothesis with the constraiBtscause both
are represented in attributional calculus, suchoperation is
meaningful, and results in the creation ofasget constrained
hypothesis. In the second step, the target constrained hggit
is instantiated using, for example, the algorithnespnted in
Figure 3. The following example shows a step-lepst
instantiation of an exemplary hypothesis and cairs.

Let a hypothesis describing high-performing indiats consist of
one rule: <= [color=red v green] & [length > 2.74nd the
constraints be given by a conjunction of two caods:

[color=red] & [width < length + height — 7].

In this case the target constrained hypothesis is:
<= [color=red] & [length > 2.7] & [width < length feight — 7]

which is instantiated in four steps: (1) assigmttoibute color the
only possible valuged, (2) assign to attribute length a random
value 5, (3) assign to attribute height a valuenfran existing
individual, say 6, (4) evaluate expression lengtheight — 7 and
assign to attribute width a random value consistgith the
expression, say 2. This results in creation ofividdal
(color=red, length=5, width=2, height=6) which séiéis both the
learned hypothesis and the constraints.

A problem arises when because of instantiationnaf condition,
other conditions cannot be instantiated. Suppbtse in the
example above, the attribute length was assignie & which is
consistent with the second condition. Becauséaff there is no
value of the attribute width that could possiblyisfg the third
condition. A backtracking algorithm is used to veolthis
problem.

Please note that whenever the group of high peifgm
individuals (H-group) are feasible, the target ¢mined

hypotheses are always instantiable, meaning thete thexist

individuals that satisfy all conditions at the satime. This can
be proven using the fact that the hypotheses ldamgeAQ21 are
complete and consistent.



3.2 Handling General Constraints

The previous section described methods of handiingass of
constraints for which there is an efficient instation algorithm.
Please note that in general problem of handlingsttaimts is
known to be NP-Hard, thus, there is no effectivg teahandle all
possible constraints, and all proposed methodg@oe only for
some problems.

In this section it is assumed that constraints giken as a
function:
c: E -> {true, false}

where c(i) = true if an individualsi is feasible (satisfies all
constraints) and c(i) = false otherwise. Becaude this
assumption, the program does not have any priowleuye
about the constraints; it can only check whethey tre satisfied.
It also ignores the degree to which constraintssatésfied, for
example, 3 out of 5 constraints are satisfied. s€tissues will be
addressed in future research.

Three methods of handling general types of comgtaare
defined. They are applicable to LEM’s learning maxhly. The
methods are illustrated using a simple example,iaitid! results
from testing performance of these methods are ptede

Suppose that an optimization problem is definedaintwo-

dimensional representation space as illustratedFigure 4.

Individuals on the plot are marked H (high-perfarg), L (low-

performing), and X (infeasible), and the shaded aepresents
the feasible region.

Given sets of positive examples (H-group) and riegatxamples
(L-group) the learning program may generate rulemacterizing
the H-group illustrated in Figure 5. The rules aoenplete and
consistent with regard to training data (they calepositive and
no negative examples), but also cover a numbemigfasible
individuals, and large portions of the infeasibégion. When
instantiating the rules, the program may generaeyninfeasible
solutions that would have to be rejected. In reairld

optimization problems evaluation of constraints nieey a very
time consuming process, sometimes as consumingadsadon
of the fitness function. Thus, the presented méthaf handling
constraints are designed to minimize the numbemfifasible
solutions generated during the optimization procasd at the
same time do not increase the total number ofithess function
evaluations (evolution length).

x X
H H
Lo L X
H L L x .
x
. HH H
H b
x X
H L
HyH
X
L L
X X

Figure4: Feasibleand infeasible individualsin the example
problem.

X X
X
H H
H L X
H
H L L "
H
X H
L
1 X
X X
{. H L
HHH
X
JL L
X

X

Figure 5: Examplerulesfound using high- and low-
performing examples.

3.2.1 Trimming of Rules

The AQ21 learning program learns rules with cotdide levels
of generality. Figure 5 shows that rules coverugtmlarger area
than is needed to cover the high-performing exasj@led covers
large portions of the infeasible region.

The first method of handling general constraintsEM trims the
learned rules, so they do not extend far beyond High-
performing examples. As shown in the Figure 6, titremed
rules cover significantly less infeasible spacd,laige portions of
the feasible region are also not covered, and isolsitmay be
missed.  This problem is solved by usirftexible rule
interpretation, that is generating 95% of the individuals tocslyi
match rules and 5% individuals with probabilitiemehrly
decreasing with distance from the rule.

X
X Kx
H H
H L X
fl H
X
X
X

X

Figure 6: Trimmed rulesfor the example problem.

It can be also noted that the rule in the right parthe diagram
covers a large portion of the infeasible area, bsedhe program
does not have any information that the area isasifde. The
problem arises when the feasible area consistsspiint parts, or
in general is not convex.

To overcome the latter problem two other methodspanposed.



3.2.2 Learning Approximation of Feasible Area

The general idea behind this method is to learapproximation
of the feasible area in parallel to the evolutignaeptimization
process. The presented method of learning appsigim
constraints applies the AQ21 learning program te eéfeasible
and infeasible solutions. The advantage of using $ame
learning program for hypothesis formulation andsiiele space
approximation is that learned descriptions areesgmted in the
same language (attributional calculus), and sewmyetations can
be performed on both, e.g., they can be easilysatted.

Let S be set of all feasible candidate solutions, aptheSset of
infeasible solutions created during the evolutignaptimization

process in LEM. Using;&s the set of positive angd &s the set
of negative examples, the method learns an appetiam of the
feasible subspace. Because both sets are growiriggdthe

evolution process, the approximation convergeshéodctual set
of feasible solutions.

At each step of evolution a hypothesis describiigy4performing
individuals is intersected with the feasible spapgroximation.
The intersection is then instantiated to gener&e nandidate
solutions which are likely to be feasible and hjggrforming. It
was aforementioned that the intersection is medmlitagpd can be
easily computed because both, hypothesis and apmten are
represented in attributional calculus and in themesa
representation space.

The approximation of the feasible area may miss abeial
solution when the learned description is overspigeid. In such
cases, some feasible candidate solutions may bsedhiand the
actual solution to the optimization problem mayoale missed,
especially when it is close to the border of the afefeasible
solutions. This problem can be solved by (1) legrmmaximally
general descriptions of feasible solutions, (2)c&rey randomly
selected candidate solutions that do not satisfy lgarned
description of the feasible area, or (3) using ifiex rule
interpretation, as described in the previous sectio After
instantiation, sets ;Sand § are updated with new candidate
solutions.

The method is illustrated in Figures 7 and 8.

X . ) X
H H X
H L X
|H H L L ®
= HII
X
L HH H
H X
X X
H
HHH -
x
L L

X %

Figure 7: Feasible space approximation.

X _x X
I X
| H H
L X
ey L X
| H |
X H
L
g Lah X
X X
H
HHH =
X
L L
X X

Figure 8: Intersection of learned hypothesis and feasible area
approximation.

3.2.3 Using Infeasible Individuals as a Contrast Set

for Learning

The last described method for handling general tcaimés keeps
a list § of infeasible solutions and uses them as conssrdar
hypothesis formation in LEM, by adding, ® the group of low-
performing candidate solutions. A hypothesis ledrnosing such
a method not only describes high-performing cartdidalutions,
but also minimizes areas with infeasible solutionsAfter
instantiation, the set,$s updated with new candidate solutions.

The set §of infeasible individuals may be very large wheany
individuals are rejected. This may negatively effeerformance
of the learning program. To overcome this probéesubset of S
is used as a contrast set for learning (wheneyers Sarge).
Selection of the subset can be random, or througbosing
individuals that are the closest to known feasiles.

Similarly to the other methods, to avoid missingusons, when
rules are overspecialized, flexible rule interpiietacan be used.

Figure 9 presents an example hypothesis learndd infiéasible
examples used as a contrast set.

x X %
" X
H H
@ L X
H )
H L b X 7
X H H
L H i
| H %
» 1 I
H L
HHH
X
L L
x | ! x

Figure 9: Hypothesis|earned with set of infeasible solutions
used as examples.



3.2.4 Initial Experimental Results

Initial application of the three methods to the @ihction [4]
show that the trimming method gave the best resulterms of
number of fithess function evaluations neededrtd the solution.
The G1 function is given by formula:

4 13
GI(X) =5%, +5x, +5%, +5%, =55 x* =5 X,
i=1 i=5

with 9 constraints presented, for example, in [4].

In the presented experiment, LEM3 was executed wéfault
parameters, most important of which are: populasore 100,
population-based selection method, and learning emodlen
initial populations of feasible individuals (gent@ randomly
with uniform distribution) were loaded by LEM3. &heported
results are averages and standard deviations drOthens.

Table 1: Results of application of LEM to G1 function.

Method Number of fitness | Number of infeasible
evaluations individuals
Average| Std. dev, Average Std. dev.
Trimming 1,383 137 1,902 600
Approximation 1,787 1084 4,045 6138
Contrast Set 2,562 83[L 1,731 10p6

It is not surprising that the method based on thetrast set
generated the smallest number of infeasible saiatidbut was
slow in terms of convergence to the solution. Tikibecause it
generated overspecialized rules that often miskedsblution.
The best in terms of number of fithess evaluatisrthe trimming
method. It also requires only a slightly largernier of
infeasible solutions.

A very large standard deviation for the approximatmethod is
caused by one execution in which program “got stircla point
near optimum and switched to the probing mode tplogg
neighborhood of the point (it generated over 20,0tf@asible
solutions). Such a point should be treated as wtfien but
clearly represents the worst case.

Results reported in [4] state that the authorsiepgpghe Genocop
method, which required fewer than 1,000 generattonfind the

solution. It is very encouraging that LEM requiredaverage
only 14 generations to get the same result (in Exgats

repeated 10 times with different starting populasio

4. FUTURE RESEARCH

The presented methods of handling constraints iarrable
Evolution Model are in an initial stage of researchAlthough
methods were proposed and mostly implemented, aretieal
and experimental study is needed to fully undetstdhneir
behavior and applicability. In particular the r@s#h will include:

- detailed study of methods for handling general tantgs

(e.g. how approximations should be learned, how yman

examples of feasible and infeasible examples shdudd
selected, how often the approximation should beatgat),

- testing of methods of handling general constraints
selected constrained problems (e.g. other
problems proposed and described in [4]),

benchmark

- development of methods for handling instantiable
constraints, in particular constraints in the fdett rel expr],
and special functions such agerage, equal, count [6],

extension of the methodology to flexible constraifwhich
may not have to be satisfied). This includes esitenof the
proposed methods to reflect degrees to which cainstrare
satisfied.

Moreover, the methodology will be applied to a idifft real
world problem.

5. CONCLUSION

Most real world optimization problems are constedin thus
efficient methods of handling constraints are intpot for the
practical applicability of Learnable Evolution Mdde

The presented methods are designed specificallwak with
Learnable Evolution Model, in particular its LEM3
implementation, which uses the AQ21 rule learninggpam for
hypothesis formulation. It produces hypotheseshi form of
rules in attributional calculus — a highly expressianguage
which allows to represent both, hypotheses andt@ints.

A special form of instantiable constraints has begroduced to
allow efficient instantiation method. For all otheonstraints,
three other (general) methods have been describHEte very
promising initial results of the presented methasourage
further investigation. Both theoretical study alatige sets of
experiments are needed to fully understand theadeth

The presented methods are in an initial stage pfdmentation
and analysis. Detailed testing and comparison \eiisting

methods is also part of ongoing research. Perdagven greater
challenge is to find classes of problems to whinkseé methods
are applicable.

6. ACKNOWLEDGEMENTS

The author would like to express his gratitude to Ryszard
Michalski, Dr. Kenneth Kaufman and Jarek Pietrzy&kiwfor
their comments on this paper and its earlier vassand for their
help during process of development of LEM3 system.

Research presented here was conducted at the Macearning
and Inference Laboratory of George Mason UniversResearch
activities of the Machine Learning and Inferencédmatory are
supported by the National Science Foundation Gréalds IS

9906858 and IS 0097476. The findings and opiniexpgressed
here are those of the author, and do not necessgiiiict those of
the above sponsoring organizations.

7. REFERENCES

[1] Bengoextea, E., Miquelez, T., Larranaga, P., armhho,
J.A., Experimental Results in Function Optimizatieith
EDAs in Continuous Domain. In Pedro Larranaga arséJ
A. LozanoEstimation of Distribution Algorithms, Kluwer
Academic Publishers, 2002.

Evolutionary Objects Library, downloadable from the
website: http://eodev.sourceforge.net

(2]

Michalewicz, Z. Introduction to Constraint Handling
Techniquesln T. Back, D.B. Fogel, Z. Michalewicz



Evolutionary Computation 2, Philadelphia Institute of
Physics Publishing, 2000.

[4] Michalewicz, Z., Schoenauer M. Evolutionary Algbriis
for Constrained Parameter Optimization Problems.
Evolutionary Computation 4. 1996.

[5] Michalski, R.S. LEARNABLE EVOLUTION MODEL
Evolutionary Processes Guided by Machine Learning.
Machine Learning, Vol. 38, 2000, pp. 9-40.

[6] Michalski, R.S. ATTRIBUTIONAL CALCULUS: A Logic
and Representation Language for Natural InductReports
of the Machine Learning and Inference Laboratory, MLI 04-
2, George Mason University, Fairfax, VA, April, 200

[7]1 Michalski, R. S. and Kaufman, K. The AQ19 System fo
Machine Learning and Pattern Discovery: A General
Description and User's Guidgeports of the Machine
Learning and Inference Laboratory, MLI 01-2, George
Mason University, Fairfax, VA, 2001.

[8] Paredis, J., Coevolutionary Constraint Satisfactitarallel.
Problem Solving from Nature I11, Lecture Notes in Computer
Science, vol. 866, Davidor, Y., Schwefel, H-P., Manner, R.
(eds.), Springer Verlag, 1994.

[9] Reynolds, R. G. and Zhu, S. Knowledge-Based Fumctio
Optimization Using Fuzzy Cultural Algorithms with
Evolutionary ProgrammindEEE Transactions on Systems,
Man, and Cybernetics, 31, 2001.

[10] Reynolds, R. G., Michalewicz, Z., and CavarettaUding
cultural algorithms for constraint handling in GENOP.
Proceedings of the Fourth Annual Conference on
Evolutionary Programming, 1995.

[11] Surry, P. D., Radcliffe, N., and Boyd I. D. A Mutibjective
Approach to Constrained Optimisation of Gas Supply
Networks: The COMOGA Methodil SB-95 Workshop on
Evolutionary Computing, 1995.

[12] Woijtusiak, J. AQ21 User's GuidBeports of the Machine
Learning and Inference Laboratory, George Mason
University, MLI 04-3, Fairfax, VA, 2004.

[13] Wojtusiak, J. The LEM3 Implementation of Learnable
Evolution Model: User's GuiddReports of the Machine
Learning and Inference Laboratory, George Mason
University, MLI 04-5, Fairfax, VA, 2004.

[14] Woijtusiak, J. and Michalski, R. S. The LEM3 Systiem
Non-Darwinian Evolutionary Computation and Its
Application to Complex Function OptimizatioReports of
the Machine Learning and Inference Laboratory, MLI 05-2,
George Mason University, Fairfax, VA, October, 2005



