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AGASSISTANT: A New Generation
Tool for Developing
Agricultural Advisory Systems

Thomas W. Fermanian and Ryszard S. Michalski

Introduction

AGASSISTANT is a new generation expert system builder for personal
computers in the domain of agriculture. While it may be used to construct
expert systems in any domain, its inference system was designed specifically to
handle the uncertainty found in many agricultural domains. It is an extension
of a conceptual predecessor, PLANT/ds, an earlier expert system for the IBM
PC which was concerned with the diagnosis of soybean diseases common in
Illinois. PLANT/ds was the first agricultural expert system that had the capa-
bility inductively to learn rules from examples, in addition to acquiring them
directly from an expert (Michalski and Chilavsky, 1980b; Michalski et al. 1982).
Unlike PLANT/ds, in which one interacts with the VAX minicomputer to
build and refine the knowledge base, one need not leave the PC environment,
either in creating an expert system, or in getting advice from a system that al- -
ready exists. The work here is also based to a large extent on the ADVISE
meta-Expert System (Michalski and Baskin 1983).

Among the many important features of AGASSISTANT are:

Multiple means of creating and refining knowledge. AGASSISTANT can
receive rules directly or acquire them through inductive inference.

The authors wish 10 acknowledge J.C. Fech and J.E. Haley for their assistance in conducting
the WEEDER cvaluation study and to thank B. Katz and J. Kelly for their programming
support.

43



“ FERMANIAN AND MICHALSKI

Probabilistic inference is employed for handling uncertainty of data and rules.
It is of great use in agriculture, where the vagaries of nature make identi-
fication or diagnosis a probabilistic matter.

Implemented on a personal computer. This allows wide dissemination of the
program to farmers and others in need who are unlikely to have access to
larger systems due 10 a specially designed human-computer interface.
Menu-driven screens. The novice user can quickly come up to speed in

building expert systems due to a specially designed human-computer
interface.

An Overview of the Program

The AGASSISTANT advisory system consists of a set of modules accessi-
ble through menu-driven screens (see Figure 5.1). The Advisor module takes
as its input a compiled expert system, which it uses to create questions for the
user, as well as to give advice on the basis of the answers to these questions.
The Compiler module, in addition to parsing rules for correct syntax, createsa
more compact version of the system for faster execution. Rules may be created
by hand, or created through induction from examples. The Inference Engine
module calls the program NEWGEM (Reinke 1984) to operate on examples,
and variable definitions to produce rules. Additionally, this module may start
with existing rules and improve them with examples (incremental learing), or
optimize them according to differing criteria.

Knowledge Representation in AGASSISTANT

Knowledge is represented in AGASSISTANT primarily in the form of
attribute-based logical calculus, calied VL1 (Michalski 1975). Variables in

FIGURE 5.1. An Overview of AGASSISTANT
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these rules may be nominal, linear, integer, or structured. The exact syntax
and constraints on the rules are described in the section on knowledge acquisi-
tion. Here we will simply give the reader a feel for the way knowledge is repre-
sented so that he or she may better understand the following sections. A
hypothetical rule that incorporates all of the allowed variable types appears in
Figure 5.2.

The above rule contains two complexes (a conjunction of elementary
conditions), the first of which consists of four conditions (also called selectors),
while the second complex contains two selectors. Each selector isfollowed by a
weight or confidence level (CL), which indicates the relative importance of the
selector as a sole condition for making the decision. For example, if the only
fact known is: “the crop shape is oblong,” then the expert is 40% confident that
the crop should be harvested. The method of combining these weights if more
than one fact is known is explained in the Advisory module section. The action
for this rule, namely that the crop should be harvested, depends on whether
enough of the conditions are satisfied. The degree to which the set of condi-
tions must be satisfied can be set as a system threshold. Unlike other inferenc-
ing mechanisms, this system can support a decision with only an approximate
match of the evidence to the stated conditions.

The first condition will be satisfied if the shape of the crop is oblong.
Since this is a structured variable, values of the variable are arranged in a hier-
archy; thus this condition will be true if crop-shape takes the value of oblong,
or any child of oblong. The second selector will be true if the temperature is
between 65 and 75. The third selector will be fulfilled if soil-moisture is in the
range of medium to high; there may be values in between medium and high
(such as medium-high) which are implicitly included in this selector. The last
condition will be satisfied only if the nominal variable sky receives the value
sunny, out of a possible set of values including raining, cloudy, etc. The second
complex of the rule, following the ‘OR’ consists of two selectors and says more
or less that if you haven’t brought in the crop by October, you should do so now
if the weather is fair.

FIGURE 5.2 A Hypothetical Rule in the Knowledge Base of an Expert System

Crop should be harvested if: CL
1. Crop-shape is oblong, 40
2. Temperature is 65 to 75, 45
3. Soil-moisture is medium to high 10
4. Sky is sunny. 5

ky YoR
1. Month is October, 7

2. Weather is fair. 25
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A knowledge base for an expert system consists of a set of such rules.
Rules may also be structured in a hierarchical fashion, i.e., condition of one
rule may be the action of another rule. The section on the exemplary expert
system WEEDER outlines a small complete expert system.

Relevance to Agriculture

Many underlying principles of agricultural sciences can be experimen-
tally measured in field experiments. The results of these experiments,
however, show a normal abundance of variation in measured responses which
is expected in nature. This natural variation has made the development of
realistic models of agricultural systems difficult. Many assumptions are
required for even the most simple crop or environmental model. Expert
systems technology, for the first time, will offer a technique for working with
fuzzy or uncertain knowledge.

Agricultural scientists often provide advice to agricultural managers on
the basis of an evaluation of their incomplete knowledge and experience. This
closely paraliels the process of an expert system. Due to natural variability,
agricultural knowledge bases are unstable and require continual modification
to reflect current conditions or knowledge. Advisory systems which require
the intervention of mainframe computers or centralized systems development
cannot keep up with the rapid changes necessary. AGASSISTANT represents
an expert system development environment that can be easily modified in the
field. Therefore it can truly reflect any changes seen in the natural responses
of the model in question.

While many agricultural production processcs are inherently complex, a
subgroup of production processcs can be described adequately and converted
to an appropriate knowledge base for use with AGASSISTANT. An example
of thesc are pest of Crop identification or pest damage diagnosis systems. In
addition, simple designing of agricultural production systems would be an
appropriate domain for AGASSISTANT. Often agricultural data are of a
subjective, qualitative nature which might be more rapidly and thoroughly
analyzed through symbolic processing techniques. AGASSISTANT repre-
sents a new technology in the form of a tool to assist agricultural scientists and
managers (0 better intespret the observed phenomenon.

The Advisory System

While the Advisor modele is most appareat 0 the user, at the heart of
the AGASSISTANT is a fiexible inference engine that runs on a compiled set
druummdfmndmifdckdesuimdmdemﬂ in the first part of this
mmmmmmmmmlamwaumdmm
unceriaintics are propagated through a hierarchical knowledge base. The
third par expiains the coatrol structure of the system, i.c., the method by
mummmmtuwmmmmmmm
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System Representation

The rule parser takes a set of rules and a set of variable definitions and
produces a file containing the compiled version of the expert system. This file
consists of a cross-referenced version of the original system. Figure 5.3 showsa
section of a rule base for an expert system, while Figure 5.4 illustrates the
definitions of the variables involved.

The rules in the above system represent a section of a hypothetical expert
system for crop management. Undoubtedly, an actual system, would contain
many additional rules, (e.g. rules for fertilization, plowing, etc.) and each rule
would be of greater complexity; this rule base is meant solely for illustrative
purposes. The rules indicates that the crop should be harvested if the weather
is good and the crop is ripe. Each of these conditions are in turn based on
further conditions as indicated in the first two rules. The variables and their
respective types and domains are shown in Figure 5.4. The compiled system
appears in Figure 5.5.

Before explaining the desirability of converting the original system into
its compiled form, the format of the file in Figure 5.5 will be explicated. The
file consists first of a list of variables and information relevant to them. For
example, the variable Crop-color is the fifth variable in the list (after Soilmois-
ture). Below the variable name is the relation used with this variable, and then
the values associated with the variable obtained from the variable table.
Following each value is a list of tuples, each containing four elements, viz, rule
number, rule complex, selector within the complex, and a weight. For
example, if Crop-color takes the value yellow, then selector 1 of complex 1 of
rule 2 (rules are given numbers in order of appearance within the rule base)
will be updated by 50% (the weights are represented as percentages with an
additional digit of significance to reduce the possibility of roundoff error).
Values may have more then one tuple following them if the variable value pair
appears in more than one complex.

FIGURE 5.3 An Illustrative Rule Base

Crop should be harvested if:

1. Crop is ripe,
2. Weather is good.
Crop is ripe if:
1. Crop-color is yellow or green,
2. Crop-shape is oblong.
Weather is good if:
1. Sky is sunny,
2. Soilmoisture is low,
3. Windstrength is very-mild to medium.

g8 ag|R
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FIGURE 5.4 Variable Definitions for Nustrative System

Variable Crop  Weather Soilmoisture Crop-color Windstrength Crop-shape Sky
Type nominal _linear linear nominal linear structure nominal}
Value 1 ripe bad fow yellow  very-mild round sunny
Value 2 unripe  fair medium  green mild ‘;:l, doudy
Value 3 good high browm  medium oblong rainy
Value 4 black mediumstrong m

Value § strong

Valuc 6

Value 7

Value 8

Following the variables, appear two lines of #'s, after which appear the
rule actions. Each action has three lines of information. The first line is simply
the action verbatim, as it appears in the rule base. The second line, possibly
blank, contains the name of a text file (e.g., harvest.txt for the rule “Crop
should be harvested”) invoked if the rule associated with the action receives
the highest confirmation at the completion of the advisory session. The third
line consists of a number that indicates which variable, if any, is identical with
‘the action, followed by a list of four-tuples, with the same ordering as
described above, which list the locations of the action as conditions in other
rules. For example, this line for the action “Crop-shape is oblong” begins with
an 8 to indicate that this action variable, viz., “crop-shape”, is also the eighth
variable in the variable list at the beginning of the file. Additional information
indicates that the action also appears in rule 1, in the first selector of the first
complex, .

In the fourth and last line the order in which variables should be asked is
presented. Following this is a list of arithmetic expressions found throughout
the rule base, with the appropriate tuple list trailing each one. Finally, vari-
ables and questions are listed that will be asked during the advisory session
when the system wishes to know the value of a variable.

One may contend that the information contained in the compiled system,
with a few minor additions, is just a rehashing of the system in its original form.
While this is correct, there is an important reason for representing the system
in such a way. Consider what nceds to be done to update a rule after a new
value is associated with the variable. Suppose the system consists of n rules
each with an average of s selectors. One must then search the entire rule space
for the appearance of the variablc-value pair, or perform ns searches. Addi-
tionally, in the worst possible case, one must search for the actions appearing
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as selectors in other rules resulting insn

2 matches, or ns matches for each of n

rules. While both of these figures are polynomial quantities, they will never-

theless prove prohibitively large fora

PC system if n is large. Thus the appear-

ance of all values, as well as the location of all actions as conditions in other
rules, are cross-referenced beforehand in the compiled file, resulting in

almost no search. The exact meth
this information is provided, is examin

od of updating rule confidence levels, once
ed in the following section.

FIGURE 5.5 An Example of a Compiled Expert System

Variables Rule Actions

SRRASRERNNERS snnenn

crop srrrnanirint

is (kopshouktbchﬂnnswd

ripe 111600 harvest.txt

FRORRERENIIRN

Weather 38

is

bad Crop is ripe

fair

good 112399 8111

Y771 L 125

Soilimoisture

is Weather is good

low 312250

medium 3112

high 467

YT L JRRRERRRRRIEN

Crop-color 12345678

is FRIRIREIRINS

yellow 211500

green 211500 $$ Arithmetic expressions

‘;flgx‘ $$ (Cropwidth * Crop-length) >12 212500

FIRNEEENENERN 7T

Windstrength

s . Variables and associated questions

very-mild 313250 - -

mild 313250 Weather What is the weather like?

medium 313250 Soilmoisture  To what extent is the soil

strong saturated?

SRRRRRIRNIIEN Crop-color What color is the crop?

Sky Windstrength How strong is the wind?

is Sky What is the appearance of

cloudy the sky?

rainy Crop-shape  Is the shape of the crop

sunny 311500 oblong?

FERRREEIRRINN Crop-length ~ What is the length of the

Crop crop?

is Crop-width ~ What is the width of the
212600 crop?

ripe
PERRRNREIRANN
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FIGURE 5.6 General Rule Format

Action is xooox if: confidence level
1. variable1 is valuel, 60
2. variable2 is value2 or value3, 40 Complexi
3. variable3 is valuc4 to value6. 20
OR

1. variabled is value7,

2. variable$ is values. Complex2

88

Inference Mechanism

Rules have the general format shown in Figure 5.6. Since the conditions
in rules are annotated by weights of confidence levels to represent strength of
evidence in favor of the decision, it is not sufficient simply to invoke the stan-
dard laws of deductive inference in evaluating confidence levels of the rules.
The next section describes the method for evaluating individual rules, while
the one following it shows how rules are evaluated in a hierarchical system.

Individual Rule Evaluation. The complex of a given rule is easy to evaluate
given the form of the compiled system. A sum is maintained for each complex
of each rule, and this sum is augmented by the amount indicated by the tuple
associated with the satisfied variable-value pair. The general formula for
evaluating a complex is:

7)) 3. (weights of satisfied selectors)

X (all weights in the complex)

For example in complex1 of the general rule in Figure 5.6., if variable1 had the
value of valuel, and variable 2 took the value value3, while variable3 the value
value9 (not in the linear range valued) then complex one of this rule would
have the value of:

60+ 40
(2

60+ 40+ 20

or 83%. Selectors with internal disjunction (selector with a set of disjunctive
values) are assumed satisfied if any of their values is the current value of the
variable. Selectors with linear variables are satisfied if the variable takes on
any value within that range inclusive of the end points. Finally, selectors with
structured variables are true if the variable receives the indicated value or
some child of that value. For example, the condition “Crop-shape is oblong”
will be true if either oblong, short, or long is selected.
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Evaluation of rules with multiple complexes is performed by recursively taking
the probalistic sum (referred to as “psum” evaluation in ADVISE [Michalski
and Baskin 1983]) of the nth complex with the psum of the first n-1 complexes.
The formula for this is:

(3) peum(V(m)V(n-1),... V(1)) =
V(n) + paum(V(n-1),...V(1)) - V(@)° pum(V(n-1),... V(1))

where V(x) is the evaluated value of complex x.

Other evaluation schemes such as taking the complex with the highest
value are possible but are not included in this version of the system. The virtue
of the psum scheme is that it fits well to the intuitive notion that if any complex
is completely satisfied, the rule also will be, a notion that the probability of two
independent events occurring is the probalistic sum of the event probabilities.

" A rule is considered to be satisfied if its confidence level goes above 2
threshold, experimentally set at 85%. Notice that if all selectors are assumed
to have equal weights and the threshold is set at 100%, then the evaluation
schemes described here collapse into formal logic expression.

Evaluation of Rules in a Hierarchical Rule Base. Selectors in rules which
are in turn actions of another rule receive the value of the rule times the
weight for that selector. Thus in Figure 5.3 if one assumes that the sky is sunny
in the third rule, and that the confidence that the weather is good is 50%, the
confidence that the weather is good in the first rule is 50%*40%, or 20%.

A hierarchical rule base contains a partial ordering among the rules. The
rule evaluation module topologically sorts the rules according to this partial
ordering before the advisory session begins, and uses the resulting order to
evaluate all rulesafter each new valueis entered. This ensures that all weights
are propagated in the correct sequence. Notice, that if one assumes that all
selectors of all rules receive equal weights, and if the threshold of rule firing is
100%, the inference scheme emulates a standard forward-chaining inference
engine.

Control Mechanism

The Advisor module of AGASSISTANT has two control mechanisms,
that is, schemes which determine the order in which questions are asked. The
first method applies to rule bases which are flat, or non-hierarchical in nature,
and is known as the utility scheme. The second mechanism, for hiearchical
rule base, is a backtracking scheme.

Utility Control Scheme. The utility control scheme is represented in Figure
5.7. At the start of the advisory session questions are asked for variables in
order of the utility of the variables. The utility measure, precalculated and
found in the compiled system file, reflects the degree to which the variable will
affect the confirmation level of all rules. Those variables appearing in the most

placesin the rulesare given the highest utility. The advisory session continues
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until the confirmation level of any rule goes above a lower threshold, exper-
imentally set at 15% 1-upper threshold. When this occurs, the system will fo-
cus on that rule by asking for the values of all variables'relevant to the rule.
This continues until the rule is rejected, or all variables for that rule are ex-
hausted. At this point the system will focus on another rule which is above the
upper threshold, or if none exists it will retum to the utility measure. The en-
tire process continues until all rules are rejected or confirmed. This may re-
quire that all variables be queried for, but usually occurs much sooner. In
general, a rule is confirmed if it has a confidence level above the confirmation
threshold, while it is rejected if it cannot possibly be confirmed, no matter what
the values for the remaining variables are. The system makes use of a method
of keeping a “negative” confidence for all rules; thus there is no need to deter-
mine dynamically whether a rule is rejected after each new answer.
Backtracking Control Scheme. The backtracking control scheme is auto-
matically invoked if the rule base is hiearchical. It is represented in Figure 5.8.
The system begins by asking questions for variables with highest utility and
continues in this fashion, until the user answers “don’t know” for a variable

FIGURE 5.7 Utility Control Scheme

Focus on Highest Rule Focus on Salicnt Variable

| J
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FIGURE 5.8 Backtracking Control Scheme

no
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which also appears in the action of some rule in the system. For example, if the
user answers “don’t know” for the variable Weather in the rule base of Figure
5.3, then the system will attempt (o infer the value of Weather by asking for the
values of Sky, Soilmoisture, and Windstrength. The process continues recur-
sively until the system is able to find the value for the original variable it was
focusing on, in this case Weather, at which point it returns to the utility
scheme. The system will continue to query the user until all rules are either
rejected or confirmed.

Knowledge Acquisition Facilities

Figure 5.9 illustrates the knowledge acquisition facilities of AGASSISTANT.
As stated at the outset, knowledge is represented in the system in the form of
rules in the VL1 syntax. These rules can be acquired in four possible ways. They
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FIGURE 5.9 Knowledge Acquisition in AGASSISTANT

Examples Variables pocaming
Learn by Improve with
Examples mples
Rule Rule Base Direct
Optimization » " Edit
Rule
Compiler
Advisol
Modul::y

can be leamed from examples, improved with examples, optimized, or edited
directly. It is also possible to use these methods in combination. For example,
one common procedure is to edit rules directly, and then optimize them to
remove superfluous information. Once acquired, rules are compiled and serve
as input to the advisor module: in effect the system’s interface with the user.
The various facets of knowledge acquisition are described below.

Direct Editing of Rules

One way to enter knowledge into the system is to handcraft it to the sys-
tem. To use this method an expert must be able to express knowledge in the
form of rules. This notoriously difficult problem is often referred to as the
knowledge acquisition bottleneck (Michalski and Chilausky 1980b). For cxam-
ple, one may be a perfectly adequate driver and yet have difficulty expressing
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this knowledge in rule format. Nethertheless, there arc many domains in
which direct entry of rules is appropriate. In AGASSISTANT, this is accom-
plished in two steps. First, the relevant variables are entered into the variable
editor. The variable type, and its domain, are specified within the editor. Then,
upon selection of the direct edit function within AGASSISTANT's menu sys-
tem, a child process will be created. This process consists of the default editor
(whose name isstored in the file AGEDITOR.TXT") with the file to edit being
concatenation of the current system name and the extension .RLE. The com-
mand processor of MSDOS will return the user to the AGASSISTANT system
upon termination of the edit. The user then typically will attempt to compile
the newly created rule base, and will repeat the edit-compile cycle if errorsare
indicated by the compiler.

It is important to note that the only way that AGASSISTANT currently
can acquire a hierarchically structured rule base is by directly creating it. This
is because the current learning program used in the system is not capable of
constructing a knowledge base with intermediate layers of knowledge. One
can work around this, by learning a set of subconcepts, and then learning high-
er-order concepts or directly entering such concepts. For example, one could
first learn a set of rules describing diseases that afflict a given species. One
could then do another experiment to learn the best treatment for the plant
with one of the variables in this experiment being the disease, if any, of the
plant. One could then concatenate the two resulting rule sets within the editor
to produce a structured knowledge base. This method canbe used to producea
rule group of arbitrary depth, although it is likely that any complex domain will
consist of a mixture of expert and induced rules.

Rule Learning

The underlying algorithm for all the learning facilities within AGASSIS-
TANT's Inference Engine module is the NEWGEM program (Reinke 1984).
At the heart of NEWGEM is the Aq quasioptimimal covering procedure. As
Ag is described in detail in many previous papers, (see e.g. Michalski 1973) we
will not go into great detail about it here. Suffice it to say that Ag works by
attempting to find a rule which coversall of the positive events and none of the
negative events, positive events being those belonging to the decision class
under consideration, and negative events being all others. It does this by
selecting a seed event within the set of positive events and extending it against
successive negative events until it covers none of the negative events. Extend-
ing a partial cover against a negative event simply means specializing it 50 that
it no longer covers the negative event if indeed it did to begin with. This
process is continued until a cover or disjunction of covers s produced for allof
the original positive events.
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Learning Rules from Examples. Learning from examples is one of the most
well-explored areas in machine learning (Dietterich and Michalski 1983;
Michalski 1986). In this form of learning, a teacher provides characteristic
examples and their respective decision classes to the learner. The task is then
to create a set of rules which classify the given events. While simple in princi-
ple, this method of building descriptions of concepts is often powerful in prac-
tice. For example, in a now famous case it was shown that inductively derived
rules for soybean disease diagnosis outperformed expert given rules
(Michalski and Chilausky 1980a).

AGASSISTANT combines variable definitions as found in the variable
table, events as found in the data table, and parameters as set in the parame-
ters table to form the file SPECIAL.GEM which is then passed to the
NEWGEM leamning program. The parameters for the program determine
various aspects of the rule creation process, including the breadth of the beam
search used by the Aq algorithm, the lexicographic functional which is used in
sorting candidate hypotheses, and the extent to which produced rules will be
trimmed. (See Reinke (1984) for more information on the meaning of the
NEWGEM parameters.) The NEWGEM module takes the input from
SPECIAL.GEM and sends its output to the file LAST.GEM, which is then
copied to the file {SYSTEM NAME}.RLE if the user decides to save the
produced rules. .

Each selector in a produced rule is associated with a weight. These
weights are calculated by the following formula, and then normalized so that
that the weights of a given complex sum to 100.

(4) weight = Lad
pe +ne

where pe is the number of positive events covered, and ne is the number of
negative events covered by the selector. Thus, the weight produced represents
the probability that the given decision class is indicated given that the selector
is satisfied.

Improving Rules with Examples. AGASSISTANT is capable of improving its
knowledge as new examples are presented to it. This method is known as incre-
mental leamning with perfect memory, and the algorithm for performing this task
is presented in detail in Reinke (1984). Summarizing his description, we find the
method to be a straightforward extension of the Aq algorithm. First, the existing
cover for a class of events is specialized to take into account new negative exam-
ples. This new cover is then used as the original sced event for Aq.

As can be seen in Figure 5.9, the input for rule improvement is
constructed from the existing rule base, the table of examples (which includes
the newly entered examples), and the variable table. This file is then sent to
the NEWGEM learning program which detects the presence of input
hypotheses and therefore runs Aq incrementally. As Reinke mentions, one
must be careful when using this learning mode, since it is likely that the com-
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plexity of the output rules will increase, although the amount of this increase
depends on the nature of the new examples. Clearly, if the new examples are
for the most part in existing decision classes, the rules will not change that
drastically assuming that the original induction was performed on a statisti-
cally large enough sample of events. If the new events fall into new classes, or
if the original events came from a small subsection of the true problem space,
then the rules will exhibit a proportional increase in complexity. The chief
advantage of the incremental leaming method presented here is the speed
increase of the induction process. Incremental learning was only partially im-
plemented in AGASSISTANT.

Rule Optimization. The system allows a user (o optimize sclected rules
according to certain criteria. One form of this is a conversion of characteristic
rules to discriminant rules. Michalski defines characteristic rules as those that
specify common properties of the members of a class, and discriminate rules as
those which have only enough information to distinguish one class from
another or another set of classes (Michalski 1983). Here characteristic rules
will refer to any that are not discriminant. For example, expert-created rules
typically fall somewhere between the discriminant and characteristic categori-
zations. Indeed, one common use for this facility is to compress rules provided
by an expert to their discriminant versions.

The method for rule optimization takes advantage of facilities already
provided by the NEWGEM and submitted as input hypotheses with no
corresponding input examples. If the rule type parameter is set to produce
discriminant rules, these rules will be generalized to discriminant form.

Figure 5.10 shows the results of converting three characteristic rules to
discriminant form. Notice that the optimized rules contain only the informa-
tion necessary to distinguish between the three actions, in this case, the values
of the variables shape and texture. This method of rule optimization only
makes sense in the context of an expert system if one is confident that the
values of the discriminatory variables will be known by the user of the expert
system. I thisis not the case, the system will perform better if the rules are left
in their characteristic form.

FIGURE 5.10 Rules Before and After Optimization

Action is one if: Action is two if: Action is three ift
Before Optimization

1. Color is red, 1. Color is red, 1. Color is red,

2. Size is small, 2. Size is small, 2. Size is small,

3. Shape is round, 3. Shape is square, 3. Shape is square,

4. Texture is smooth. 4. Texture is rough. 4. Texture is smooth.
After Optimization

3. Shape is round, 1. Shape is square, 1. Shape is square,

2. Texture is smooth, 2. Texture is rough. 2 Texture is smooth.
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Rule Compilation

Once acquired, rules must be compiled if they are to be used in an advi-
sory capacity. The compiler has two chores. One is to check the syntax of the
rules and provide the user with the appropriate error messages if the rulesdo
not parse. If the rules parse successfully, the compilcr will then create a file
suitable for the Advisor module to ask questions and give advice. The exact
nature of this file was detailed earlier and will not be repeated here.

Figure 5.11below contains the complete grammar for rules in the system.
Summarizing this figure, a rule consists of a condition part and an action part.
A condition consists of the disjunction of a set of complexes, which in turn con-
sist of the conjunction of selectors. A selector consists of a variable, a relation,
and either a value, a disjunction of values, orarange of values, plus an optional
weight.

The rules are parsed in a straightforward way, that is, the parscr is struc-
tured as a finite-state machine, with each of the elements of the machine
optionally being another sub-machine.

FIGURE 5.11 Grammar for Rules

<rule> .= <action > < condition >
<action > ‘=  <variable > < relation > < value >*“if."
< condition > ‘= <complex>“OR" < condition >
: < complex >
< complex > .= <selector > <complex>
: < selector >
<selector > ‘m <variable > <relation > <value-list> < terminator >
: < a-expression > <a-relation > < a-cxpression > < terminator >
< variable > ;= string of letters

< relation >
< value-list >

string of letters
< value > “or” < value-list >
<value >“10” <value >

1 string of lctters
<terminator> = <tcrmchar>
< termchar > < weight >

< termchar > - r
u'n
<weight > ;= natural number
<r-number > ;= real number
<a-relation> (- “<,"“<-,"“-,"">,"">-"

An Exemplary System: WEEDER

To illustrate the use of AGASSISTANT, we describe its use to develop an
advisory system WEEDER. In the design of an effective weed-control pro-
gram for managing turf it is first necessary correctly to identify the species of
weed(s) present and to determine the extent of their population. Morse (1971)
outlines five basic identification methods for determining unknown plant spe-
cies: (i) Expert determination, which is generally regarded as the most reliable
of all identification techniques. This method merely transfers the
responsibility of identification to an appropriate expert. This service can be

i
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slow and costly, and is often limitod by the avadability of an expert. (i) Immedi-
ate recognition, approaches expert detormrination and acceracy. This is the
ability of an individual 1o recognize an unknowa weed by pest examples of
identification. For some taxonomic groups and immatare plants, however, this
method of identification is very difficult and in all cases requires extensive past
experience. (iii) A comparison of an unknown specimen with keatified specics
or illustrations. It offers a rapid, simple diagnosis and is often uscful for many
weeds commonly found in native populations. (iv) An identification key which
is based on the development of appropriate descriptive phrascs of morpho-
logical or biochemical characteristics. Identification keys gencrally take the
form of groupings of similar characters from which the user must select the
character which best matches that present on the unknown sample. The
selection of this character then leads to the next set of identifying characteris-
tics. This process is followed until enough characteristics have been identified
to suggest the identification of the specimen. (v) The last identification tech-
nique is a diagnostic table or polyclave. Diagnostic tables are a matrix of rows
of species and columns of identifying characteristics. Users of a diagnostic
table can identify the listed characteristics in any order they wish.

Morse (1971) lists two major faults of identification keys: (i) They require
a user to utilize certain characteristics whether or not they are convenicnt or
can be identified; (i) They implicitly rely on rigid descriptions of specimens.
Occasional variation in a population can cause gross misidentification.

The use of expert systems techniques offers a new, unique method for
assisting with species identification. The relative merits of an expert or advi-
sory systems is the ability to select answers or queries about characters thatare
available on the unknown specimen. They can operate on various levels of
uncertainty providing a more efficient mechanism for identification, particu-
larly for immature plants which are even difficult for experts to identify.

Development of WEEDER

In order to prepare the knowledge for use with AGASSISTANT, a matrix
was developed including each potential grass weed. Eleven identifying charac-
teristics, both vegetative and floral were determined for each weed. The infor-
mation was obtained from many sources: textbooks, weed identification
manuals, botanical manuals, and the authors’ experience. Variable names,
types, and sets of values is shown in Figure 5.12. The characteristics selected
were those thought to be most easily recogn ized in the field without supportive
equipment. (Shurtleffetal. 1987) Figure 5.13. presentsa typical rule. This rule
consists of 10 selectors. Each selector is associated with a weight or confidence
level (CL) that indicates the relevant importance of the condition in making
the decision. Notice that these weights need not add up to 100; they are
normalized by the system. The weights give a rough estimate of the
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jmportance of each of the conditions in discriminating between the rules.
These weights were then refined by the domain expert (T. Fermanian).
Rules for WEEDER were developed utilizing the NEWGEM module of
AGASSISTANT. Scparate rule sets were formed, first by inducing a set of
characteristic rules, m and then by inducing a set of discriminant rules. The
most appropriate rules from both sets were then modified, utilizing expert €x-
perience and written to a single rule set used in the initial evaluation.
Grass weed identification in turf is generally only available through the
use of vegetative characteristics. This isdue to the frequent mowing of the turf
which often removes any floral portions of the plant. WEEDER allows the
user to select either vegetative ora combination of floral and vegative charac-
teristics at the beginning of each session. This is done through a
«does-not-apply” question which is always asked first in the consultation.
«Does not apply” questions were established in order to provide a mean-
ingful subset of variables for WEEDER to act on. The question “Are
seedheads or flowers present?” to which the user responds “yes,” “no,” of
«don’t know” begins each session. If a “don’t know” answer is given, then all
identifying characteristics are asked. If “yes” is answered, then eleven of the
possible characteristics are presented to the user. If “no” is answered, which is

FIGURE 5.12 Variable Names, Types, and Values for WEEDER

VARIABLE || Vernation Auricle Ligule Sheath Collar Blade-width .
TYPE nominal nominal nominal  nominal nominal  linear ‘__‘:
1 folded abscnt ciliate compressed  narrow fine .
2 rolled short round round divided  mecdium '
3 claw-like  truncate closed broad coarse .
4 acute ¢
S toothed .
6 acuminate '
7 none '
s | :
f l Habit Glumes Disant Awns Florets  Flower Nerves

. nominal nominal nominal nominal  infeger nominal integer
=

. bunch shorter  above abscnt 1 panicle 1

. rhizome longer  below present 3 raceme 3

' rhiz-stolon bifid s spike 5

R stolon

1]

.
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FIGURE 5.13 A Rule for Identifying Stinkgrass

a

Weed is Stinkgrass ift
1. Florets arc 10 to 12,
2. Flower is panicle,
3. Collar is narrow,
4. Blade-width is medium,
5. Habit is bunch,
6. Sheath is compressed,
7. Vernation is rolled,
8. Glumes are shorter,
9. Florets is 1,

10 Disart is below.

REERLIRBIT

FIGURE 5.14 Does Not Apply Conditions in WEEDER

1f scedheads are present then
Auricle, and Blade-width do not apply.
If scedheads are not present then
Florets, Flower, Awns, Disart, and Glumes do not apply.

the usual situation for turf, then seven characteristics are presented—only
those pertaining to vegetative portions of the plant. Paraphrased versions of
these do not apply conditions are shown in Figure 5.14.

WEEDER Evaluation

In order to evaluate the absolute cfficiency of WEEDER in drawing the
correct conclusion, it was necessary to develop a program 1o determine the
minimum number of variables required to identify each species. This program
determined which groups of variables would provide a CL of threshold or
greater value for a chosen rule. This program was run external to AGASSIS-
TANT and was used to determine the maximum set of variable combinations
for each rule in WEEDER.

Gower and Barrett (1971) state that the most efficient determination of
an unknown species using an identification key is to use identifying variables
which divide potential species into equal binary groups. They therefore
suggested an equation to represent the minimum theoretical number of deci-
sions necessary when using a dichotomous identification key.

Minimum number of decisions = log n
Where n represents the total number of species considered. If a dichotomous
key was constructed to identify the 37 grasses of WEEDER, a minimum of five

variable decisions would have to be made for a positive identification. This
minimal number of decisions would therefore provide the most efficient use of
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the key. This would require each decision to equally divide the specics whichis
not possible for a key using the chosen variable .or the 37 species in
WEEDER. In practice most identification keys do not provide this optimum
efficiency (Pankhurst 1978).

Only the subset of variables describing vegetative characters was used in
the evaluation of WEEDER. For the 37 grasses, there was a maximum of 16
sets of variables providing for the correct identification of any one grass. For
four species only a single set of variables provided its identification. There
were a total of 145 different sets of variables which represented correct identi-
fication. There werc a total of 145 different sets of variables which represented
correct identifications of any specics with a mean of four sets for each species.
The average number of variables necessary to correctly identily each grass
species and its accompanying mcan CL is listed in Figure 5.15. An identifica-
tion was made when the CL was 85 or greater. The mean CL for all identifica-
tions was 92.

With a mean number of five variables required for each identification,
WEEDER’s efficicncy was similar to the theoretical maximum efficiency fora
dichotomous key to identify the same species. A dichotomous key with this
level of efficiency has not been constructed using the same set of variablesand
values for the species in WEEDER. The maximum number of variables
required for a correct identification of any species was seven. Over one-half
(59%) of the identifications requircd five or fewer variables. For most species
(96%), the recognition of a maximum of six variables was required for itsiden-
tification. Since dichotomous keys generally do not perform at the theoretical
maximum efficiency for identifying spccies, WEEDER shows excellent poten-
tial as a grass identification tool.

FIGURE 5.15 Mean Number ol Variables and Average CL Required to
Identify Any of 37 Grass Species Using WEEDER.'

No. of variables$ CL
Mcan S § 92
Minimum 4 88
Maximum 6 99
sel 01 05
cv (%Y n 3

* For each unknown specimen an identification was considered correct when the CLwas 2> 85.
$ Mcan number of variables necessary for the identification of cach species.

§ Mcan of 37 specics means.

Y S1andard error of mean.

# Cocfficient of variation.
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The WEEDER advisory system provided an excellent exemplary system
and helped to test some of the proposed capebilities of AGASSISTANT.
Specifically, WEEDER was ablc to provide a means foc the satigfactory identi-
fication of 37 grass species commonly found in turf through a minimal number
of decisions. In most cases, multiple sets of variables could be used to identify a

single species.

Validation of WEEDER

In order to measure the relative efficiency of WEEDER in identifying
unknown grasses, a study was conducted in which individuals were asked to
identify four unknown grasses. Four grasses were sclected randomly from a set
of fifteen grass species commonly found in central Illinois. The four species
selected were: creeping bentgrass (Agrostis palustris L.), perennial ryegrass
(Lolium perrenae L.), zoysiagrass (Zoysia japonica L.) and large crabgrass
(Digitaria sanguinalis (L.) Scop.).

Forty-one volunteers were assigned to one of two groups. If they had
previous experience in plant diagnosis or formal training in plant science, they
were separated from those volunteers who had no biological or plant science
training or experience. Each individual randomly selected two of the four
unknown weeds for identification using WEEDER, the other two weeds were
identified using a diagnostic key, a commonly used tool (Shurtleff et al. 1987).

Along with the four unknown grass samples, each participant was
supplied with a low-power dissecting microscope, appropriate probes and
dissecting equipment, and a book with representative diagrams of all the
potential configurations of morphological characters. Each individual was
allowed up to 30 minutes per weed for identification. Fifteen minutes was
reserved for a demonstration of each character and an explanation of how it
could be identified. For the plants identified through the diagnostic key, each
participant only supplied their first and possibly a second choice, as suggested
by the key. Grasses identified with WEEDER, however, offered participants
the ability to indicate the configuration chosen for each plant character. A
frequency analysis of the correctly identified grasses was then conducted to
determine their fit to the x2 distribution.

WEEDER has the ability to rank all the grasses in its knowledge base
from the species most likely to represent the unknown grass to the one least
likely. Figure 5.16 presents the mean percentage of identified grasses across
all species using either identification tool (WEEDER or the identification
key). The identification key, a tool commonly used by the participants in the
study with plant science training, showed the highest average rate of success

. (20%) for identifying a species in the initial evaluation. The mcan success rate
of participants with plant science training in identifying any species using
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FIGURE 5.16 Mean Perccntaﬁe of All Correctl{) Identificd Grass Species
Using Either WEEDER or an dentification Key by Participants with Either
Plant Science Training or Without Plant Science Training.

Mean correctly identified specics

Selected
Frequency Group Initial rules Modified rules
Identification tool
WEEDEHR 11 50
Identification key 20 20%
2 23 168
X NS .e
Participant group
Plant science training § 19 39
No plant science training 13 2
X 2.1 19 .
NS : NS
«¢ Significant at the 0.05 and 0.01 levels, respectively. NS = not significant at the 0.05 level.
1 For both participant groups.

$ Since the modification of an identification key is not practical the same values were used for
the “Modified rules” evaluation.

§ For both identification tools.

WEEDER was 15% and 7% for participants without plant science training
using WEEDER (not shown in Figure 5.16.) After this initial experiment it
would appear that the test group was not successful using WEEDER to
identify the selected species. A closer evaluation of the answers selected by
those using WEEDER showed a consistent problem in correctly determining
the value of a few morphological characters. The natural variation in the
growth of the selected species and their juvenile state made the identification
of fine characters, such as the ligule, very difficult.

Rules for identifying the four grass species examined were modified
(Figure 5.17) through the incremental learning facility in AGASSISTANT.
The test groups answers were used as examples to improve the original rules.
The results of these changes showed a very large gain in the percentage of
correctly identified grasses. On the average for both groups, the percentage of
correctly identified grasses rose from 11 to 50% when using WEEDER, as
compared to the 20% mean for grasses correctly identified with the identifica-
tion key (Figure 5.16.)

While no significant indication of dependence on either the identifica-
tion tool or participant group was shown (Figure 5.16) using the initial rules, a
very significant dependence (P < .01) on the identification tool used after rule
modification indicates the potential advantage of WEEDER over the identifi-
cation key for all participants. Nosignificant indication of dependence on
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Figune S.l?Rulcsncpmﬁ%!::rG:uWMhmmd

EDER Before and After Modification
Initial stiodttied’

ool Is Bentgrass i: @t  Tesd is Devrgeusn i .
1. Ligule is round, L+ 1.  Ligulc is round or toothed,® 65
2. Sheath is round, 63 2.  Sheath is round, 6s
3. Glumes are longer, 63 3.  Glumes avc jouger, (1]
4.  Habit is stolon, 60 4. Habit is siolos, “»
$.  Disarticu is above, ss §.  Disartice is sbove, ss
6. Collar is narrow, 50 6. Collar is natvew, b, )
7. Floretsis 1, 45 7. Florokis 1, 45
8.  Flower is panicle, 45 8. Flower is panicle, 45
9.  Blade-width is fine, 35 9.  Blade-width is fine, ™

10.  Vernation is rolled. 30 10. Vernation is rolied. 7

Weed s ¢ o Weod ks Perryegram If: o
1.  Ligule is round, 85 1. Liguke is round or trumcase, 28
2. Aurcle is short, 80 2. Auriclc is short, 80
3. Floretsis 6 10 10, 80 3. PFloretsis 6 t0 10, © 80
4. Flower is spike, 75 4. Flower is spike, 75
S.  Vernation i folded, 50 S.  Vernation w folded, S0
6.  Habit is bunch, 40 6.  Habit is bunch, 40
7. Collar is broad or divided, 35 7. Collar is broad or divided, 18
8.. Sheath is compressed, 30 8.  Sheath is compeemed, ”
9.  Blade-width is fine 10 medium, 30 9.  Blade-width is fine 10 medium, 70

10.  Disarticu is above, 35 10. Disarticu is above, 35
11.  Glumes are shorter. 25 11.  Glumes are shorter. i 25

Weod s Zoyslagsass if: ] Weed s Loysisgras . d
1. Habit is rhiz-stolon, 80 1. Habit is rhiz-stolon er riinewe, 80
2. Glumes are longer, : 80 2. Glumes are longer,

3.  Awns are present, 75 3.  Awm are present, 5
4. Flower i spike, 10 4.  Flower is spike, 70
S.  Sheath ia round, 70 S.  Sheath is round, 70
6. Ligule is ciliate, 60 6. Ligule is ciliate, 60
7. Floretsis 1, ss 7. Floretsis 1, 55
8.  Blade-width is medium, S0 8.  Blade-width is fine to medium, SO
9.  Collar is broad, S0 9.  Collar is broad, T
10. Disarticu is below, 45 10.  Disarticu is below, 45
11.  Vernation is rolled. 35 11.  Vemnation is rolled. ]

Weed Is Lg-Crabgrass if: A Weed ls Lg-Crabgrass if: o
1. Ligulc is toothed or acute, 63 1. Ligule is toothed or acute, 65
2. Blade-width is course, 60 2.  Blade-width is medium, 0
3. Flower is spike, 60 3. Flower is spike, 60
4.  Sheath is compresscd, 50 4. Sheath is compressed, 50
S.  Habit is bunch, 40 §.  Habit is bunch, “
6. Disarticu is below, 40 6. Disarticu is below, 40
7. Collar is broad, k3 7. Collar is brosd or divided, 35
8. Floreis 1, 3s 8. Floretsis 1, 35
9.  Vernation is rolled, 35 9. \Vernation is rolled, 7%

10.  Glumes are shorter. 20 10.  Glumes are shorter. 20

* Rules were modified after initial frequency analyses of choscn values
$ Confidence level assigned by system developers.
§ Portions of the rules which were modificd appear in bold.
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participant group was found for correctly identifying a grass species after the
rules were modified.

An analysis of the frequency of the selected values for each variable by
either group of participants using either identif ication tool showed no signifi-
cant dependency on individual values for any variable. In several cases, such as
the toothed value of the ligule variable for bentgrass (sclected for 53% of the
bentgrass specimens) and the fine value of the blade width variable for zoysia-
grass (selected 94%), the identified variable value was quite different than the
one provided in the original rule. In addition, many of the variables which had
low CL’s in the original rules were most readily identified by the participants.
For example, the original CL for the vernation-rolled zoysiagrass were 35 but
was selected 82% of the identifications.

One of the most prominant f indings of this investigation was the relative-
ly poor performance in the identification of unknown grasses by individuals
regardless of their training. Because the mean correct identification of any
species by any participant group using WEEDER was less than 60%, it was not
known if an expert level performance was achieved. In a subsequent study
(Fermanian et al. 1989), considered over all characters, trained participants
selected the correct value 59% of the time, whereas the untrained participants
did so 53% of the time. No significant association was observed between par-
ticipant groups and their selection ability for ligule size, sheath, blade width,
collar, and pubescence when all species were considered jointly. Various pro-
grams have been developed for the identification of plant species by matching
user selected values with similarity coefficients (Pankhurst 1975; Ross 1975).
While these systems have generally reported similarity values of 60 to 90%
(4.5%) the success rate of identifying unknown species with the systems was
not reported.

When using the identification key, performance was generally better
from the group with plant science training, however, the frequency analysis
did not indicate a significant dependance on either participant group. This dif-
ference in performance, however, was not found when the same group used
WEEDER, which generally benefited either group equally. It is important to
note that a significant gain in the ability of all participants to correctly identify
a grass specimen was found with WEEDER over the diagnostic key, after rules
were modified to maximize the support of constently chosen correct values of
variables to identify the specimens examined. While the modification of arule
generally provided for the identification of specimens which were previously
not identified, it also removed some specimen identifications from the group
initially considered correct. Further testing of WEEDER is required to deter-
mine if the modified rulesare consistent with additional grass sample and user
populations.
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This study brings out one important aspect to the use of expert or advisory
sytems. While the use of knowledge is central to afl advisory systems, the skills
associated with recognizing the value of promptod vaciables is prramount in
plant species identification. These recognition skills were probebly lacking in
the test population. It is necessary, therefore, 0 develop techmiques to
enhance recognition skills to further increase the effectiveness of WEEDER
(Michalski 1986).

While WEEDER provided an initial test of AGASSISTANT s inferenc-
ing capabilities, other portions of the program remain untested (learning
module, rule optimization, etc.). Additional efforts currently are being devel-
oped to test these functions.

Conclusions

An expert system builder that is capable of learning and improving its
knowledge has been presented. Thus it has been demonstrated that sophisti-
cated knowledge acquisition facilities are suitable for creating expert systems
in the microcomputer environment. This should be of great use in dissemi-
nating this technology to the typical agricultural user who does not have access
to large computers. However, A number of i unprovemems and extensions to
AGASSISTANT are possible.

* The system could incorporate new and more powerful learning sub-
systems. One such method is learning by analogy, in which the pro-
gram acquires knowledge by comparing to similar cases it has scen in
the past.

* The ideal system should be able to adjust its knowledge during the
advisory session. That is, if it is told that it made an incorrect decision,
it should be able to update its knowledge in light of this information.

* The current system uses a very simplistic method for combining
evidence. The creator of the system should be able to state the impor-
tance of groups of conditions in addmon to weighting individual con-
ditions.

* The system could benefit from automated methods for generated ex-
planation and other text during the advisory session.

* The learning module should be able to incorporate background
knowledge. In addition, it should be able to suggest a hiearchical
structure whereby input events are connected to decision classes
through intermediate nodes.

¢ The system could be expanded to include the programs CLUSTER
(Stepp, 1983), for clustering examples into categories, and ATEST
(Michalski 1985), for testing the consistency and completeness of
rules.
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« Finally, the system could be integrated with a vidco system. This
would enable the system to display plants and other items during the
question answering phase of the advisory session

This list can help to guide further research to make AGASSISTANT a
still more powerful and useful tool for agricultural decision making.
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