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Abstract

COMPARISON OF NOTCH DEPTH FOR CONSTRAINED LEAST MEAN SQUARES
AND DOMINANT MODE REJECTION BEAMFORMERS

Mani Shanker Krishna Bojja, M.S.

George Mason University, 2015

Thesis Director: Dr. Kathleen E. Wage

Detection of low power signals in the presence of high power interferers is a common

problem in spatial signal processing. Notch depth (ND) is defined as the response of the

beamformer in the interferer direction when the beamformer is steered towards a specified

look direction. This thesis analyzes the ND of the constrained Least Mean Squares algorithm

proposed by Frost [1]. Several variants of the LMS algorithm are considered, and the

algorithm is analyzed for the case of single and multiple interferers. The thesis compares

the ND of the LMS beamformer to the ND of the Dominant Mode Rejection beamformer

proposed by Abraham and Owsley [2]. The performance comparison indicates that DMR

attains a deeper notch faster than LMS. The white noise gain of the two beamformers

is approximately the same. Analysis of the computational complexity of the LMS and

DMR algorithms indicates that DMR requires on the order of N times more floating point

operations than LMS, where N is the size of the receiving array. Thus, DMR is a better

choice for applications requiring fast convergence as long as the processor can handle the

increased computational load.



Chapter 1: Introduction

In sonar array processing the need to detect low power signals in the presence of high

power noise is a persistent problem. Initial development was made to understand and solve

this problem by using optimum Minimum Variance Distortionless (MVDR) beamformer

[3], which assumes known signal characteristics and is the most basic adaptive beamformer.

Later the study was extended developing other adaptive algorithms in detecting such low

power signals with changing power characteristics. One such algorithms have already been

analyzed in the simple case of single interferer and noise, namely the Dominant Mode

Rejection (DMR) [4] algorithm. This thesis is focused on understanding the performance

of Frost Least Mean Squares (LMS) [1] algorithm by presenting numerical results based on

the characteristic called Notch Depth (ND).

ND is a measure of how well a beamformer can eliminate an interferer. A deeper notch

implies that the beamformer filters out more of the interference, thus improving its output

signal-to-interference-plus-noise (SINR) ratio. The beamformer which achieves optimum

ND is the MVDR beamformer implemented using the ensemble covariance matrix (ECM).

The MVDR beamformer minimizes the total variance of the output of the beamformer while

maintaining a distortionless constraint in the desired direction. The Frost LMS and Dom-

inant Mode Rejection algorithm (DMR) are adaptive beamformers which use the Sample

Covariance Matrix (SCM), an estimate of the ECM, to do the beamforming. Essentially,

the goal of adaptive beamformers is to approximate the performance of the optimum beam-

former.
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The DMR Adaptive Beamformer (ABF) is a reduced rank subspace algorithm, which

constructs its weight vector using a structured covariance estimate, obtained from an eigen-

decomposition of the SCM. The rank here refers to the number planewave interferers ap-

proaching the array. Wage and Buck [5] present comprehensive results on the behavior of

ND for the DMR algorithm. Firstly, empirical data demonstrates that the DMR continues

to place a deeper notch for increased number of snapshots, where snapshots is defined as

the independent samples obtained at the input, until it reaches a threshold and then levels

out. In addition, Wage and Buck [6] derived a theoretical equation of the SINR loss for

the DMR ABF using the Random Matrix Theory (RMT). SINR loss governs the rate of

convergence of DMR to the optimal MVDR beamformer. Secondly, a theoretical equation

is derived depicting the dependence of White Noise Gain (WNG) on the interferer location,

with respect to look direction.

The goal of this thesis is to characterize the notch depth of the Frost LMS beamformer

and to analyze the conditions under which it attains the optimal notch depth of MVDR

beamformer. Frost LMS algorithm is a gradient based algorithm that forms its weight

vector by imposing a unity gain constraint in the look direction. Primarily, the idea is to

compare the results in the DMR paper [4] to the Frost LMS [1] algorithm by performing

a similar analysis for a standard single interferer standard case. Secondly, the focus is to

expand this study to more complex cases like the presence of multiple interferers at the

input.

This thesis is organized as follows. Chapter 2 reviews background material and defines

the Steepest Descent (SD), Frost LMS, and DMR beamformers. Chapters 3 and 4 compare

the performance of the Frost LMS and DMR beamformers for single and multiple interferer

cases, respectively. Finally, Chapter 5 summarizes the results and indicates directions for

further research.
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Chapter 2: Background

2.1 Terminology and structure of beamformer

Fig. 2.1 shows the array configuration used throughout the thesis. The array has N

sensors with an equal spacing of �/2, where � is the wavelength of the input narrowband

signal. The sensors are oriented along the z axis. The input is the sum of a planewave

interferers and independent spatially white sensor noise. The interferer arrives at an angle

✓i, defined as the angle measured with respect to the positive z axis. The signal p(l)

represents the resulting narrowband signal recorded at the sensors at the lth snapshot. A

planewave signal coming from a particular direction is represented by a replica vector v

that depends on the angle of arrival as follows:

vi = v(✓i) =

2

66664

ej
2⇡
�

cos(✓i)z1

...

ej
2⇡
�

cos(✓i)zN

3

77775
(2.1)

. The signal p(l) is represented as follows:

p(l) =
DX

i=1

bi(l)vi + n, (2.2)

where bi(l) is complex circular random variable at lth snapshot. A complex circular random

variable has mean zero and variance equal to the sum of the variances of the real and

imaginary section of a complex random variable, where the real and imaginary parts are

uncorrelated. n is the noise at the input and vi represents the plane wave replica vector.
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Figure 2.1: Diagram of the basic beamformer. The input signal data is collected from the
N sensors and is passed through a filter with weights stored in w.
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The beamformer described above is a spatial filter, which processes the signal p(l)

obtained from a set of sensors through the weights w(l) to obtain a desired output y(l) :

y(l) = w(l)Hp(l). (2.3)

From Eq. 2.3 it is clear that the structure of the weights w(l) governs the output of the

beamformer at each lth snapshot. In order to understand the e↵ect of the structure of

w on the output, consider two di↵erent weight vectors namely,the weight vectors of the

Conventional Beamformer (CBF) in Eq. 2.4 and the MVDR [3] beamformer Eq. 2.8. The

weight vector of the conventional beamformer is a scaled version of the replica vector of the

steering direction vm:

wconv = (vH
mvm)�1vm. (2.4)

The CBF is guaranteed to have unity gain in the steering direction. The MVDR weight

vector is obtained by minimizing the power at the output of the beamfomer while maintain-

ing a unity gain constraint in the steering direction in the direction, defined by vm. Here

the power is defined as the expected absolute value squared of the beamformer output, i.e.,

OutputPower = E(|y(l)|2) = E(w(l)HppHw(l)). (2.5)

The optimization problem is as follows:

minimize (w(l)H⌃w(l)) (2.6)

subject to w(l)Hvm = 1. (2.7)

Solving the above equations for wmvdr by the method Lagrange multipliers leads to the

following solution:

wmvdr = (vm⌃�1vm)�1⌃�1vm. (2.8)

5
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Figure 2.2: Comparison of the beampatterns for the conventional and MVDR beamformers

In order to better understand the behavior of the conventional and MVDR weight vector,

consider their beampatterns. The beampattern is defined as the absolute value squared at

the output of the beamformer:

ND = B(✓i) = |wHvi|2, (2.9)

where B(✓i) is the value of the beampattern evaluated in ✓i in direction. The beampattern

Eq. 2.9 quantifies the response of the beamformer to a planewave, arriving at the array of

sensors at a particular angle.

Consider a simulation to illustrate the di↵erence in the CBF and MVDR beamformers.

The number of sensors in the simulation is N = 50 and the array has half-wavelength

spacing. There is a single interferer with interference to noise ratio (INR) equal to 40

dB. The interferer is located at the peak sidelobe of the conventional beamformer, i.e.,
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at u = cos(thetai) = 0.06. Fig. 2.2 compares the beampatterns of the CBF and MVDR

beamformers. The plot shows that the MVDR weight vector successfully places a notch of

ND = -127 dB in the direction of the interferer, while the conventional weight vector does

not place a notch in the direction of the interferer. However, both beamformers preserve the

unity gain constraint in the steering direction (u = cos(90) = 0). The MVDR beamformer

implemented for Fig. 2.2 assumes that the ECM is available to compute the weights. In

practice, this is not true and the weight vector must be designed using sample statistics.

The Frost LMS and DMR algorithms considered in this thesis both use sample statistics.

White Noise Gain (WNG) is another important characteristic used to measure the per-

formance of the algorithm. WNG in Eq. 2.10 is the gain in signal power, measured in Signal

to Noise Ratio (SNR), provided by the beamformer with white noise at the beamformer

input:

WNG = 1/wHw. (2.10)

The WNG for CBF is 10log
10

(N) which is approximately 17dB for the CBF for the N=50

example. The MVDR beamformer shows a slight loss in WNG, down to 16.8 dB. This is

the price paid to steer a deep notch in the interferer direction.

The following sections reviews the theoretical formulation of Frost LMS and DMR weight

vectors. Moving forward empirical results are presented in the next two chapters.

2.2 Steepest Descent

The Frost LMS algorithm is a gradient based algorithm that uses input samples to compute

the weight vector. The gradient descent algorithm that assumes known signal and noise

characteristics is the Steepest Descent (SD) algorithm [7]. SD helps in formulating the

7



Frost LMS algorithm. The weight vector of the SD algorithm is defined as:

w (l + 1) = P?[w (l)� µ⌃w(l)] +wq, (2.11)

where the weight vector of the conventional beamformer is

wq = w(0) = vm(vH
mvm)�1 (2.12)

and the projection matrix orthogonal to the look direction replica vector is P?

P? = I� vm(vH
mvm)�1vH

m. (2.13)

⌃ is the ensemble covariance matrix. The SD algorithm is an optimum minimum mean

squared error estimate of the weight vector w and assumes that the statistics of the input

are known a priori, which is certainly not true in practical situations. Moreover, if the

statistics were known there wouldn’t be any need for an adaptive technique to find the

optimum weight vector w.

2.3 Frost LMS Algorithm

The Frost LMS algorithm is a stochastic gradient version of the SD algorithm as defined in

Eq. 2.11. The Frost LMS [1] algorithm calculates the instantaneous weights adaptively, such

that it minimizes the total power at the output while maintaining a unity gain constraint

in the look direction. Unlike the SD beamformer, the Frost algorithm does not assume that

the ensemble statistics are available.

Frost has formulated the equation for LMS in [1] by minimizing the total variance at

the output of the beamformer, i.e.,

minimize (wHp(l)p(l)Hw) (2.14)

8



while maintaining a unity gain constraint the steering direction,

wHvm = 1. (2.15)

Using the above conditions and forming the Lagrangian equation leads to:

J = wHp(l)p(l)Hw + �(wHvm � 1) + �⇤(wvH
m � 1) (2.16)

where vm is the replica vector associated with the angle of arrival of the source signal.

Initializing the weight vector with the weights of a conventional beamformer, an adaptive

iteration is performed in finding the next weight vector by moving in the direction of negative

gradient of J in the order to reach the optimum. Solving for the weight vector leads to

w(l + 1) = P?[w(l)� µp(l)p(l)Hw(l)] +wq, (2.17)

where w(l) is the weight vector at lth time instant, wq is the conventional weight vector and

P? is the orthogonal projection matrix. It can be observed from the Eq 2.17 that in the

Frost LMS algorithm, the instantaneous covariance matrix p(l)p(l)H replaces the Ensemble

⌃ in SD.

The step size parameter µ controls the rate of convergence of the Frost LMS algorithm.

In order to understand the behavior of weight vector of Frost LMS e↵ectively, a constant

µ value is assumed such that stability is maintained in the LMS algorithm. Monzingo [8]

has derived the stable range of step size µ. Monzingo [8] derived this range by minimizing

the variation of weight vector w(t) of SD from the optimum weight vector wmvdr by using

error vector "(t) [9]:

"(t+ 1) = w(t+ 1)�wmvdr. (2.18)

9



As time t increases the goal is to minimize this error such that the performance of SD

achieves that of the MVDR. This minimization of "(t) leads to the derivation of the range

of µ as discussed in [8]. Substituting SD weight vector Eq. 2.11 in Eq. 2.18 and simplifying

it, results in:

"(t+ 1) = P?"(t)� µP?⌃"(t). (2.19)

Multiplying the expression in 2.19 by projection matrix, P?, and expressing in terms of

initial error vector "(0) leads to:

"(t+ 1) = [I�P?⌃P?]
t+1"(0). (2.20)

The term in the braces of Eq. 2.20 determines the convergence of the error vector to zero.

Let the projection of eigenvectors of ECM be represented by the new eigenvector matrix:

U = P?⌅. (2.21)

Using this fact in Eq. 2.21 to express initial error vector "(0) in terms of the new eigenvector

matrix U leads to:

"(0) =
NX

i=1

ciui (2.22)

"(t+ 1) = U(I� µ�)t+1c. (2.23)

Substituting initial error vector "(0) in Eq. 2.20 gives rise to Eq. 2.24:

"(t+ 1) =
NX

i=1

(1� µ�i)
t+1ciui. (2.24)

10



Finally, the error vector from Eq. 2.24 converges to zero, only when |1� µ�i| is less than 1:

|1� µ�i| < 1 =) �1 < 1� µ�i < 1, (2.25)

=) µ < 2/(�i)max. (2.26)

The above condition constraints µ to be less than 2/(�i)max. If the µ is larger than 2/(�i)max

then the error vector in Eq. 2.24 approaches infinity and making the algorithm go unstable.

Thus, the maximum step size, 2/(�i)max acts as a boundary in order for the algorithm to

be stable.

As mentioned in [3], LMS algorithm can be made adaptive by making the µ dependent on

the instantaneous input to the sensor array. N-LMS algorithm computes the weight vector

using a variable µ(l) as presented:

µ(l) =


& + p(l)Hp(l)
. (2.27)

In addition to the input power p(l)Hp(l), which makes the system adaptive, two constants

namely  and & in the numerator and denominator respectively are introduced in Eq. 2.27. 

value controls the order of magnitude of adaptive step size µ(l). If the INR of the interferer

approaches zero µ(l) approaches infinity and becomes unstable. Therefore, & protects mu(l)

against instability.

Substituting µ(l) instead of µ in Eq. 2.17 gives us the new Eq. 2.28, which is the weight

vector for the N-LMS algorithm. The N- LMS the weight vector is defined as:

w(l + 1) = P?[w(l)� µ(l)p(l)p(l)Hw(l)] +wq. (2.28)
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2.4 DMR algorithm

This section describes the Dominant Mode Rejection algorithm developed by Abraham

and Owsley [2]. In later chapters the performance of the LMS techniques are compared

to DMR.The DMR [10] algorithm follows its results from the MVDR weight vector ob-

tained in the Eq. 2.8. The DMR replaces the ECM, used in MVDR, with a structured

covariance matrix based on the eigendecomposition of the SCM. A structured covariance

matrix assumes the eigenspace spanned by the eigenvectors is divided in the loud signal

or interference subspace and the noise subspace. This makes the algorithm work only the

eigenspace corresponding to the loud interferer and requiring lower degrees of freedom to

represent this subspace. The SCM is obtained by averaging the outer products of L data

snapshots, i.e.,

S = (1/L)
LX

l=1

p(l)p(l)H . (2.29)

The DMR weight vector is defined as:

w
DMR

=

vm �
DX

i=1

✓
gi � s2w

gi

◆
eie

H
i vm

vH
mvm

 
1�

DX

i=1

✓
gi � s2w

gi

◆
cos2(ei,vm)

! (2.30)

where the estimated noise power is defined as

s2w =

✓
L

L� 1

◆✓
1

N �D

◆ NX

n=D+1

gn. (2.31)

ei is the eigenvector associated with the largest eigenvalue and s2w is the estimated noise

power.
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In the above algorithm the eigenvector corresponding to the largest eigenvalue is used

to calculate the weight vector at each step. Since the rank of the SCM, in the presence of

single interferer, is not estimated it is referred to as Fixed Rank DMR (FR-DMR). With

multiple interferers at the input a need for the estimation of the eigenvectors corresponding

to the interferers with highest power becomes critical. To address this situation the DMR

adaptive beamformer[10], called as Estimated Rank DMR (ER-DMR) throughout the paper,

is introduced.

Unlike FR-DMR, ER-DMR algorithm estimates the rank of the covariance matrix of the

sensor input, in calculating the weight vector. The rank here means the number planewaves

in Eq. 2.2 present in the input i.e., the dimension, D.

The estimator proposed by Nadakuditi and Edelman (N/E) [11] is used to estimate the

rank of the input covariance matrix, D. Equations 2.33 and 2.32 present the N/E rank

estimator equations:

td = N [(N � d)
⌃N
i=d+1

�2i
(⌃N

i=d+1

�i)2
� (1 + c)], 0  d  min(N, l), c = N/L (2.32)

where �i sample eigenvalue of the ith eigenvector and L is the snapshot number. First the

value of td is computed for di↵erent range of d values using Eq. 2.32. The values of td are

substituted in Eq. 2.33:

D̂ = mind(
td

2

2c2
+ 2(d+ 1)). (2.33)

Finally, the D̂ value corresponding to the minimum value of the expression in the braces

of Eq. 2.33 is considered to be the dimension. The ER-DMR weight vector is same as the

13



DMR weight vector except the number of dimensions of the signal subspace, D̂ is estimated:

wER
¯

�DMR
¯

(✓m) =

vm �
DX

i=1

�
eHi vm

�
ei

vH
mvm �

PD
i=1

|
�
eHi vm

�
|2

(2.34)

�n are the sample eigenvalues and en are the sample eigenvectors obtained from SCM using

n snapshots.

Knowing the formulation of the di↵erent algorithms used in the paper namely Frost LMS

and DMR, the next step is to compare and analyze the performance of these algorithms. In

the following chapters empirical results are presented to compare the performance of above

two algorithms based on ND characteristic. In addition the empirical results include the

cost of attaining the ND for both the algorithms in di↵erent scenarios. The cost is measured

in terms of WNG. The empirical results for single interferer case are presented in chapter

3, followed by the empirical results for the multi interferer case in chapter 4.
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Chapter 3: Empirical Study of the Single Interferer Case

This chapter investigates the performance of Frost LMS beamformer for a standard single

interferer case. Sec. 3.1 outlines the simulation parameters used for simulations in Chapter

3. This thesis focuses only on interferers outside the mainlobe because when interferers

enter the mainlobe, it is very di�cult to get rid of them. Once they get close enough to

the look direction, there is little that the beamformer can do. In Chapter 2 it is clear that

SD weight vector is obtained by taking the expectation of the Frost LMS weight vector.

Also SD assumes a known covariance structure with no uncertainty. Thus, it is of interest

to evaluate the performance of SD beamformer which uses known covariance model which

helps in understanding the performance of Frost LMS clearly. Sections 3.2 and 3.3 present

the ND results for gradient descent algorithms such as SD and Frost LMS. Specifically, it

presents empirical results for how ND varies with snapshots, step size, and INR. In addition

we also investigate the e↵ect of ND on WNG. Sec. 3.4 presents the above analysis for the

Normalized-LMS (N-LMS) algorithm [12]. Finally Sec. 3.5 compares the performance of

N-LMS and ER-DMR beamformers.

3.1 Simulation Parameters

The simulation parameters used in this chapter are number of sensors, N=50, direction of

arrival of the interferer is at an angle ✓ corresponding to the u value of 0.06, INR= 40 dB,

white noise power �2

w = 1 and wavelength � is 25. The distance between and two sensors

is half of the wavelength i.e. 12.5. The stable range of step size 2.26 was reinstated in SD

section of chapter 2. The challenge here is to determine maximum eigen value �i)max in the

upper bound of µ.
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Calculating the maximum eigenvalue becomes easier by applying the Random Matrix

Theory (RMT) [13] principles to decompose ECM ⌃ into eigenvectors and eigenvalues. It

is straightforward to demonstrate that the interferer replica vector is an eigenvector of the

covariance matrix for the single interferer case. For a standard single interferer case the

number of dimensions D is 1. Therefore, ECM for a standard single interferer case becomes:

⌃ = E
�
ppH

 
= �2

1

v
1

vH
1

+ �2

wI (3.1)

where �2

1

is the power of the single interferer and v
1

is the replica vector of the single

interferer. Multiplying Eq. 3.1 by the v
1

, replica vector of interferer:

⌃v
1

= �2

1

v
1

vH
1

v
1

+ �2

wv1

= (N�2

1

+ �2

w)v1

, (3.2)

where vH
1

v
1

= ||v
1

||2 = N in Eq. 3.2. By definition eigenvector of a covariance matrix,

which is non-zero vector v
1

, when multiplied by the covariance matrix ⌃ yields the same

result as when some scalar multiplies v
1

. The scalar is called the eigenvalue which is

N�2

1

+ �2

w in this case. The other N � 1 eigenvectors correspond to the noise subspace.

Thus, N�2

1

+�2

w is the largest eigenvalue and the corresponding eigenvector is v
1

forms the

signal or interferer subspace. Eq. 3.3 provides the mathematical calculation of maximum

eigenvalue for the standard single interferer case.

max(�i) = N�2

i + �2

w = 10000 ⇤ 50 + 1 = 500, 001 (3.3)

where �2

i is 10000, for a standard case with INR = 40 dB. Thus, the maximum limit on µ

for the standard case is 2/500, 001 = 0.000004.
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Figure 3.1: ND vs. snapshots for SD algorithm. Each curve uses di↵erent µ values. All the
curves are considered with 40 dB INR at the input

3.2 Analysis of Steepest Descent Beamformer

This section analyzes the performance of SD beamformer. The simulation in Fig. 3.1 shows

the variation of ND against snapshots for di↵erent choice of step size in SD algorithm. The

first observation made from the results in Fig. 3.1 is that the SD algorithm is reaching a

ND of -127 dB, the optimum ND attained by the MVDR beamformer. The convergence

to the optimum ND for SD is possible because the SD descent beamformer uses a known

covariance model, which means there is no noise in the estimation of covariance matrix.

The second observation is the speed of convergence of the SD algorithm is decreasing with

decrease in µ. Lower step sizes lead to slower convergence. Larger step sizes greater than

or equal to the upper bound on µ cause the algorithm to become unstable. Thus, the upper

bound on the µ governs the performance of the SD algorithm.
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Figure 3.2: ND vs. snapshots for Frost LMS algorithm. Di↵erent curves represent di↵erent
INR levels namely 40 dB, 20 dB, 0 dB. All the curves are considered with a constant mu
value of 0.000001

3.3 Analysis of Frost LMS Beamformer

3.3.1 ND performance of Frost LMS beamforer

Understanding the e↵ect of µ on simple gradient descent algorithm i.e SD, the next step

is to replace the ECM in SD with an instantaneous estimate which leads to the Frost LMS

algorithm. The empirical results include the variation of ND vs snapshots for the 3 di↵erent

INR levels namely 0 dB, 20 dB and 40 dB for Frost LMS. Section 3.3.1 presents the ND

variation against snapshots and step size for Frost LMS beamformer. Section 3.3.2 analyzes

the WNG performance of Frost LMS beamformer.
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Frost LMS algorithm uses an instantaneous estimate unlike SD which uses a ECM. Thus,

the same bound on the µ used for SD can be applied Frost LMS as well. The maximum

bound on the µ can be obtained for all the INRs by just changing the �2

i value in Eq. 3.3.

The values of �2

i are 1,100 and 10000 for 0 dB, 20 dB and 40 dB respectively and the

maximum bounds on µ are 0.04, 0.0004 and 0.000004. To simplify the understanding of

Frost LMS a constant µ is used for di↵erent INR levels in the simulation performed in

Fig. 3.2.

Fig. 3.2 compares the performance of Frost LMS for three di↵erent INR levels namely 0

dB, 20 dB, 40 dB. The ND calculated at each snapshot is an average value of 300 Monte

Carlo trials. The maximum bound of µ for 0 dB and 40 dB INR are 0.04 and 0.000004

respectively. Thus, a constant µ value of 0.000001 is chosen for simulation purposes such

that the algorithm remains stable for all the INR levels.

Fig. 3.2 shows that the ND is reaching a limiting value for a specific µ value which can be

termed as Steady State Notch Depth (SSND). Although the Frost LMS attains the SSND

, its value is -61 dB di↵erent from the optimum ND of -127 dB for MVDR beamformer for

a constant step size of 1.0e-06. The blue line representing the 40 dB INR convergence the

fastest than other two INR levels namely 0 dB and 20 dB. On the other hand, the red line

representing the 0 dB INR convergence the slowest. In fact, an excess of 80000 snapshots

are required to observe this SSND level for the 0 dB INR case. The take away point is that

with a constant µ, lower the INR slower is the convergence.

As a next step a di↵erent stable µ is chosen for all the three INRs 0 dB, 20 dB and 40 dB.

Here, the µ values chosen are one order of magnitude less than the maximum eigenvalue

calculated for each INR level. Fig. 3.3 compares the ND vs snapshots for three di↵erent

INRs. The values of SSND are -33 dB, -53 dB and -70 dB for 0 dB, 20 dB and 40 dB INRs

respectively, while their corresponding optimum ND values are -47 dB, -87 dB, -127 dB.

The di↵erence in ND between SSND and optimum ND are 14 dB, 34 dB and 57 dB for
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Frost LMS INR = 0dB
Frost LMS INR = 20dB
Frost LMS INR = 40dB

Figure 3.3: ND vs. snapshots for Frost LMS algorithm for a standard case with three
di↵erent INR levels namely 0 dB, 20 dB and 40 dB. A one degree less than the maximum
possible step size is used as µ for simulation purposes.

0 dB, 20 dB and 40 dB INRs respectively. This di↵erence exists here because of the fact

there is an additional noise introduced at the output of the beamformer due to the use of

ppH instead of the ensemble covariance matrix ⌃ in the weight update.

Fig. 3.4 illustrates the dependence of SSND level on the value of µ, for a 40 dB INR case.

The figure clearly shows that SSND decreases as µ decreases. The level of SSND is attained

by a µ with order of 6 (1⇤10�6), is -60 dB while it is -90 dB for a µ of order 9 (1⇤10�9). At

the same time decrease in µ leads to slower rate of convergence. The number of snapshots

required to converge for the µ of order 9 is 10000 while it is 100 for µ of order 6. Thus,

the step size governs both the speed of convergence and the SSND attained. In addition,

SSND is dependent on both INR as well as µ from Figures 3.2 and 3.3. From Fig. 3.4 it

is clear that to attain the optimum ND the algorithm requires a very low µ. Number of
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snapshots increases as µ decreases. Therefore, prediction is the best way to decide the µ

value required to attain the optimum ND. This can be achieved by curve fitting the results

of SSND vs µ for 40 dB INR, which is the case of interest.

Evaluating the trend of SSND based on µ is the next task. In order observe this trend it is

beneficial to plot the variation of ND with µ for the 0 dB INR case. This is because for 0 dB

INR, the number of snapshots required for Frost LMS to achieve the MVDR performance

is smaller than for 40 dB INR case. In addition another goal is to determine that the SSND

vs µ trend are similar for all INRs.

First the SSND values are recorded for 300 Monte Carlo trials for the required set of step

sizes and INRs. Fig. 3.5 depicts the distribution of the mean of 300 values of SSND at each

µ with 0 dB INR input. It is clear that there are three di↵erent regions for the curve. First

region is where the range of values of µ for which ND is unstable. Second region is where

the ND follows an approximately linear trend with decrease in µ. Third region is where the

range of values of µ for which the ND remains at a constant SSND for a particular INR. It

can be observed clearly that as the µ decreases, SSND decreases, which implies the number

of snapshots required increases. The starting point of µ of the first region of the curve, for

0 dB and 40 dB INRs 0.04 and 0.000004 respectively. In addition, the SSND achieved is

di↵erent for di↵erent INRs, as presented in Fig. 3.3 which proves that the distribution of

the third region of the curve varies based on the INRs. It implies that the third region is

unique for di↵erent interferers. Thus, predicting the linear trend or the second region of

this curve for di↵erent INRs becomes important because it helps in predicting the µ and

number of snapshots required to attain a particular SSND.

The point of interest is to see if the linear trend followed by the SSND vs µ curve

follows the same trend irrespective of the INR at the input. Therefore, moving forward the

distribution of ND vs µ are presented for di↵erent INRs considering on the linear section

of the curve in Fig. 3.5 for di↵erent INRs. Fig. 3.6 depicts the SSND vs µ plot for di↵erent
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Figure 3.5: SSND vs. µ comparison between Frost LMS and MVDR algorithms.

INRs namely 40 dB, 37 dB and 20 dB. At each step size 1500 values of SSND are used

to calculate the distribution of SSND. In addition, error bars are also indicated to see if

there are any deviation from the linear trend. The line fit for each INR is obtained by

taking the mean of the 1500 values of SSND at each µ. The higher and lower ends of

the error bars correspond to 10 and 80 percent of the Cumulative Distribution Function

(CDF) of the SSND at each µ, for a particular INR. For SSND values corresponding to

µ’s namely 1.0e-007,2.0e-007 and 3.0e-007 are shifted towards left and right, for 37 dB and

20 dB respectively, with no change for 40 dB INR. This shift is introduced to di↵erentiate

the distribution of SSND as well as the error bars for di↵erent INRs. The mean of SSND

values for di↵erent INRs follow the same trend irrespective of the INR at the input. First

implication is that the trend of the mean of SSND is same for all the three INRs. This

brings down to a conclusion that the mean of SSND varies linearly with µ irrespective of

the INR at the input. Secondly,the 20 and 80 percentile values of the error bars are also
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Figure 3.6: SSND vs µ comparison between 40 dB, 37 dB and 20 dB INRs.

linearly decreasing as step size increasing.

In order to validate and confirm the above observations comparison of SSND vs step size

is provided for 20 dB and 10 dB, 10 dB and 2 dB in Fig. 3.7, 3.8 respectively. In each of the

comparison’s even though the step size’s are di↵erent, the observations made for Fig. 3.6

are still valid. Thus, the linear trend could be generalized for all INRs which facilitates to

estimate the µ and number of snapshots required to achieve a particular SSND irrespective

of the INR.

Following the above observation the prediction curve on the SSND vs µ using 40 dB INR

is presented in Fig. 3.9. The red line depicts variation of SSND against µ for and the blue

line is the prediction curve attained by linear curve fitting method. Following from the

previous discussion, the level of the SSND is decreasing in the direction of decreased µ,

which is clearly observed in Fig. 3.9. It is approximately following a linear trend. Eq. 3.4
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Figure 3.7: SSND vs µ comparison between 20 dB and 10 dB INRs.

is the polynomial fit for the red curve and is calculated such that it is the best fit in least-

squares sense. The value 10.1846 in Eq. 3.4 indicates the slope which implies that the level

of SSND drops down by 10.1846 dB for every one degree reduction in µ.

ND = 10.1846µ� 1.6521 (3.4)

3.3.2 White Noise Gain for Frost LMS beamforer

In Figures 3.2 and 3.4, it is clear that the Frost LMS algorithm attains the ND at some

cost. This cost is measured in terms of WNG. It is more intuitive if the comparison is made

between MVDR, CBF and Frost LMS. This is because it shows the measure of WNG that

is paid for using a instantaneous estimate in Frost LMS versus using a ECM in MVDR.

Fig. 3.10, 3.11 and 3.12 depict the variation of WNG against snapshots for three di↵erent

INRs namely 0 dB, 20 dB and 40 dB. In all the three cases the WNG for CBF is 17 dB
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Figure 3.8: SSND vs µ comparison between 10 dB and 2 dB INRs.

which is the maximum WNG possible. For MVDR and SD, WNG is 16.72 dB for all three

INRs. On the other hand, for Frost LMS algorithm the speed at which the WNG reaches

the sub optimum WNG level of MVDR beamformer depends on the µ. Except for the case

of 0 dB INR when the µ is 0.01, which is close to the maximum µ allowed i.e. 0.04, the

WNG falls rapidly by 3 dB. This is because of the instability in the beamformer due to a

value of µ larger than the allowable value. This instability e↵ect could be clearly observed

from the ND curve for 0 dB INR in Fig. 3.13.

The conclusion made here is that the speed of convergence and level of SSND attained

by the Frost LMS algorithm for the case of the constant µ depends on the µ and INR.

Lower the µ slower is the convergence and deeper the notch. The upper bound on µ, which

decides the stability of the algorithm, is based on the INR while the lower bound is based

on the requirement of the speed of convergence. The cost of placing the notch is measured

by using the characteristic called the WNG. For the WNG to reach the sub optimal WNG
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Figure 3.10: Comparison of WNG of CBF, MVDR, SD and Frost LMS (with three di↵erent
µ’s namely 0.01, 0.001 and 0.0001) for a 0 dB INR
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Figure 3.11: Comparison of WNG of CBF, MVDR, SD and Frost LMS (with three di↵erent
µ’s namely 0.0001, 0.00001 and 0.000001) for a 20 dB INR
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Figure 3.12: Comparison of WNG of CBF, MVDR, SD and Frost LMS (with three di↵erent
µ’s namely 0.000001, 0.0000001 and 0.00000001) for a 40 dB INR
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Figure 3.13: Comparison of ND of CBF and Frost LMS (with µ of 0.01) for 0 dB INR

of MVDR, a µ should be chosen in such a way that the algorithm does not become unstable.

Understanding the characteristics of Frost LMS under constant µ helps in migrating towards

the N-LMS case. In Sec. 3.4 we investigate the empirical results of N-LMS i.e. ND and

WNG vs snapshots for di↵erent INRs. This analysis forms the basis for the comparison of

these results with FR-DMR in 3.5.

3.4 Analysis of N-LMS beamformer

The characteristics of ND and WNG observed for Frost LMS for the case of fixed µ, in

the previous section, are extended to N-LMS. The µ(l) term in N-LMS algorithm as two

constants namely  and & in the numerator and denominator respectively are introduced in

Eq. 2.27, µ(l) = 
&+p(l)Hp(l)

. Understanding the e↵ect of these two constants on the behavior

of N-LMS algorithm is the first step towards analyzing N-LMS performance.
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Instability in the beamformer is observed when the term p(l)Hp(l) in the denominator

becomes zero. For example, consider & as 1 and input INRs of -20 dB. The expected value

of the denominator term of 2.27 i.e. p(l)Hp(l) becomes 0.5 which increases the e↵ective

value of µ(l) which leads to instability of the LMS algorithm. To protect the beamformer

against this problem the parameter & is used in the denominator. The importance of the

second parameter in the µ, , is presented in the later part of this section. As cited in [3]

the range of  is between 0 and 2, while & should be greater than zero.

Fig. 3.14 present shows a simulation of ND vs snapshots for N-LMS algorithm for three

di↵erent INRs 0 dB, 20 dB and 40 dB. In all the cases the parameter & = 1, to make

sure that the beamformer never goes unstable. The value of  is chosen to be one so that

it doesn’t change the order of magnitude of adaptive step size µ(l) which implies that it

doesn’t e↵ect the convergence of the N-LMS weight vector. The first observation is that

the SSND level is increasing with increase in INR. SSND levels are -20 dB, -32 dB and -50

dB approximately for 0 dB, 20 dB and 40 dB INRs. The second observation is that the

speed of convergence of N-LMS to the SSND level adaptively changes based on the INR of

the interferer, unlike the Frost LMS in which it could be controlled by the constant step

size of choice. By comparison of the Fig. 3.2 and Fig. 3.14 the first noticeable di↵erence

between Frost LMS and N-LMS is that SSND level attained is di↵erent even if the same

INR is used for both the algorithms. This is because of the above mentioned fact that

in N-LMS µ(l) is dependent of instantaneous input, while in Frost LMS case step size is

constant. For example approximate SSND level attained for 40 dB INR for Frost LMS

and N-LMS algorithms are -60 dB and -50 dB respectively from Figures 3.4 and 3.14. The

second di↵erence follows from the fact that there is a variance associated with the SSND

level of N-LMS, which is very negligible for Frost LMS. This is because of the µ(l) is varying

with change in input. The histogram comparison of the SSND level in Fig. 3.15 makes

this fact clear.

32



10
0

10
1

10
2

10
3

10
4

10
5

10
6

−55

−50

−45

−40

−35

−30

−25

−20

−15

Snapshots

N
D

Comparison of ND vs snapshots for different INR for a N−LMS algorithm

 

 
0dB
20dB
40dB

Figure 3.14: ND vs. snapshots for a N- LMS algorithm, with a variable µ, for di↵erent
INRs namely 40 dB, 20 dB, 0 dB. Here the values of  = 1 and & =1

33



0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
0

50

100

150

200

250

300
Comparison of 661' on linear scale for Frost LMS with 0dB INR

661' on a linear scale

nu
m

be
r o

f 6
6N

D 
va

lu
es

 in
 e

ac
h 

bi
n

 

 
Frost LMS(SS = 1.0e−02)
N−LMS(kappa = 1 and sigma =  1)

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
0

50

100

150

200

250

300

661' on a linear scale

nu
m

be
r o

f 6
61

' 
va

lu
es

 in
 e

ac
h 

bi
n

Comparison of 661' on linear scale for Frost LMS with 20dB INR

 

 
Frost LMS(SS = 1.0e−05)
N−LMS(kappa = 1 and sigma =  1)

0 0.002 0.004 0.006 0.008 0.01 0.012
0

50

100

150

200

250

300

661' on a linear scale

Nu
m

be
r o

f 6
61

' 
va

lu
es

 in
 e

ac
h 

bi
n

Comparison of 661' on linear scale for Frost LMS with 40dB INR

 

 
Frost LMS(SS = 1.0e−07)
N−LMS(kappa = 1 and sigma =  1)
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The three histograms in Fig. 3.15 present the variation of SSND for 300 Monte Carlo

trials at the 10000th snapshot for three di↵erent INR levels 0 dB, 20 dB and 40 dB. The

histograms are considered on a linear scale of ND in order to measure the variance of ND.

The µ values used for Frost LMS are one degree less than the maximum µ possible for each

INR. The variance of the SSND around its mean is decreasing with increase in INR for the

N-LMS algorithm, while there is negligible variance in the Frost LMS case. This is clearly

shown by the bin count number for the highest bin for both Frost LMS and N-LMS. As

shown in Fig. 3.15 the highest bin count is 300 for all three INRs for Frost LMS, while it

is 165, 290 and 298 for N-LMS for 0 dB, 20 dB and 40 dB INRs. Implies that for Frost

LMS bin count number, i.e. mean is 300 and is equal to the number of Monte Carlo trials.

On the other hand, mean bit count number is increasing from 165 to 298 by increasing

the INR from 0 dB to 40 dB. Thus, the variance of ND, at the SSND level, is decreasing

with increase in INR for N-LMS. Moving forward understanding the behavior N-LMS for

di↵erent  values will be interesting.

Fig. 3.16 presents the ND versus snapshot results for a 40 dB INR case, with di↵erent 

values 1,0.1 and 0.01. Firstly, it could be observed that as the order of  is increasing the

SSND level is dropping. Secondly, there is sudden jump in the SSND level with a change

in  from 0.1 to 0.01. This shows that initializing the  value to 0.01 makes the SSND level

drop so rapidly because the term in the denominator of µ becomes negligible. Implies that

the SSND level attained will be dependent solely on  value rather than by the input INR

term in the denominator. This can observed clearly that there is a linear trend observed

between the SSND level of N-LMS with  = 0.05 and Frost LMS SSND with µ = 5.0e-07

in Fig. 3.17

The first conclusion to be made is that the SSND level of the N-LMS algorithm depends

on the INR at the input. Secondly, this level can be further decreased by the decreasing

the value of . However, care should be taken in choosing  such that it does not reduce to

the extent wherein, the instantaneous µ(l) depends only on  and does not depend on INR.
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In the next section 3.5, the empirical results obtained for N-LMS algorithm are compared

with the Estimated Rank DMR (ER-DMR) [10] algorithm results.

3.5 Comparison of LMS and DMR beamformers

ER-DMR involves estimating the rank of the covariance matrix. The rank estimated

from the covariance matrix decides the number of eigenvectors to be used to compute the

weight vectors at lth snapshot according to the Eq. 2.34. This sets a platform to make a fair

comparison with N-LMS with adaptive µ, where both algorithms are adaptive with respect

to input.

It is necessary to verify the performance of the ER-DMR algorithm in estimating the

correct rank from the SCM. Figures 3.18 and 3.19 present the variation of ND vs snapshots

FR-DMR and ER-DMR for -10 dB INR and 40 dB INR cases respectively. In both the

figures the ER-DMR is following the same trend as FR-DMR in converging to a ND, for both

the INR cases. Although, the ER-DMR fails to estimate the rank correctly for snapshots

less than 4, leading to unfavorable ND for the -10 dB INR case, it eventually converges with

the FR-DMR curve after 20 snapshots. This phenomenon is due to the insu�cient number

of snapshots available at the input to estimate the rank. This insu�ciency in number of

snapshots is measured by the parameter c in Eq. 2.32 which is the ratio of number of sensors

to number of snapshots as defined in [4].

Moving forward the comparison of empirical results for N-LMS and ER-DMR are pre-

sented. Fig. 3.20 compares the N-LMS and ER-DMR algorithm’s performance based on

the ND against number of snapshots. Clearly, the ER-DMR beamformer places a deeper

notch when compared to the N-LMS. ER-DMR achieves an SSND of -70 dB with only 20

snapshots, whereas N-LMS takes 800 snapshots to achieve the same result.. As discussed

in the previous section 3.4 reducing the value of  less than 0.01, for the 40 dB INR case,

there is risk that SSND level attained becomes independent of INR like that of the constant
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Figure 3.19: ND vs. snapshots comparison of FR-DMR and ER- DMR. The input to the
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Figure 3.20: ND vs. snapshots comparison of N-LMS (variable µ) and ER-DMR (with rank
estimation). The input to the beamformer is a 40 dB interferer. The N-LMS is considered
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µ case. Therefore, there is a limitation on the SSND level attained by the N-LMS which

is not the case for ER-DMR. In ER-DMR ND decreases with increase in the number of

snapshots and there is no SSND as such for ER-DMR.

ER-DMR performance is better than N-LMS for 40 dB INR case for all  values possible.

Although both the algorithms don’t reach the optimum performance attained by the MVDR

algorithm with a ND of -127 dB, even with 100,000 snapshots. In addition to ND, other

factor to be considered while choosing from these two algorithms is the computational

complexity. Computational complexity becomes a very dominant factor in time sensitive

programs and is analyzed in chapter 4. The number of computations required for N-LMS

is lesser than the ER-DMR, since the eigendecomposition of eigenvalues and eigenvectors

from the covariance matrix itself takes lot of computations, which is just a part of the entire

algorithm.

Extending the WNG comparison presented in Fig. 3.12 for N-LMS and ER-DMR is the

next step in order the understand the cost of placing the notch for both the algorithms.

Fig. 3.21 compares the WNG as a function of snapshots for N-LMS and ER-DMR.The

maximum WNG that could be attained is 17 dB which is for a CBF beamformer with

N = 50. Therefore, both N-LMS and ER-DMR WNG are less than 17 dB, which is the

cost for placing the notch. However, this cost varies for both the algorithms. The two

observations that could be made from the Fig. 3.21 are as follows. Firstly, the ER-DMR

algorithm WNG is attaining a threshold level of 16.79 dB after certain number of snapshots.

Secondly, although the N-LMS WNG is reaching the threshold level of 16.79 dB faster than

ER-DMR, the WNG performance is degrading after 1000 snapshots and then settling down

after 100,000 snapshots. This behavior is true for all the three  values of 1,0.1 and 0.01.

Further probing lead to the comparison of N-LMS for di↵erent INR levels, which proved

that a similar trend is followed by all the three di↵erent INRs namely 0 dB, 20 dB and 40

dB. Fig. 3.22 presents this observation.
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3.6 Summary

ND performance of Frost LMS algorithm depends on both interferer INR and step size µ.

With a constant INR at the input the ND of Frost LMS algorithm decreases as step size µ

decreases which is observed in Fig. 3.4. Firstly, for a constant INR and step size µ Frost

LMS attains a constant ND value called as SSND. From the Fig. 3.4 40 dB INR interferer

attains -92 dB and -60 dB for µ order of magnitude 9 and 6 respectively. Secondly, the

speed at which Frost LMS attains SSND depends on the step size µ. Thus, lower step

size µ means deeper SSND implies more number of snapshots. Further probing proves

that Frost LMS takes an excess of 200,000 snapshots to attain the SSND of MVDR i.e.

-127 dB for 40 dB. After analyzing the SSND vs µ curves for di↵erent INRs proves that

SSND follows a linear trend presented in Eq. 3.4 as a function of µ. Comparing the cost

of placing the notch, WNG, Frost LMS performance is similar to WNG of SD which is

good. ND performance of N-LMS algorithm depends on INR of the interferer and step size

parameter . Similar to Frost LMS SSND level of N-LMS decreases as the INR increases.

However, for a constant INR SSND level decreases as the  value decreases. For example

Fig. 3.16 shows that 40 dB INR interferer SSND decreases from -50 dB and -70 dB for 

values of 1 and 0.01 respectively. Although N-LMS doesn’t attain the SSND level of MVDR

beamformer. Comparing ND performance of N-LMS and ER-DMR proves that ER-DMR

algorithm attains deeper ND with less number of snapshots when compared to the N-LMS.

For example Fig. 3.20 shows that ER-DMR attains a ND of -70 dB with just 100 snapshots

while N-LMS takes 1000 snapshots to reach the same ND level. WNG performance of ER-

DMR and N-LMS are the same however N-LMS attains a second WNG level for 40 dB INR

interferer.
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Chapter 4: Empirical Study of a Multi Interferer Case

Chapter 4 presents the comparison of empirical results of N-LMS and ER-DMR for the case

of four interferers located in four peak side lobes of the CBF. Firstly an individual study of

N-LMS and ER-DMR is performed and then the comparison of both the empirical results

is presented in section 4.3.

4.1 Multiple Interferers Simulation Environment

The multiple interferer simulation uses an N=50 element array with half wavelength

spacing. The interferers are located at four peak sidelobes: u=0.06, 0.1, 0.14, and 0.18.

Fig. 4.1 illustrates the location of the interferers.

4.2 Results of N-LMS beamformer

The comparison of N-LMS performance, with a 40 dB INR at the first peak side lobe of a

CBF is depicted in Fig. 4.2, with di↵erent INR levels in three other side lobe directions. In

all the cases the value of  is 1. The SSND level attained by the N-LMS algorithm is getting

deeper with increase in the sum of the powers of four interferers in each of the four cases.

Interestingly, the same behavior was observed in Fig. 3.20, in previous chapter, where the

SSND level was getting lower as the  value decreased from 1 to 0.01. Decreasing the 

value was decreasing the step size, which lead to the decrease in SSND level. Unlike the

power at the input calculated for N-LMS for single INR in Eq. 4.3, the power of input here

is comprised of four INR. As the sum of powers of interferers calculated in the adaptive step

size µ is increasing the resultant step size µ at each step is decreasing. Thus, resulting in

a decrease in SSND level and speed of convergence. Calculating the ensemble power at the
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input makes this point more clear. As an example the ensemble value of the input power

for the four interferer case with INR levels of 40 dB, 20 dB, 30 dB and 0 dB is calculated:

A = E[(bi1⇤v¯i1+bi2⇤v¯i2+bi3⇤v¯i3+bi3⇤v¯i3)
H ⇤(bi1⇤v¯i1+bi2⇤v¯i2+bi3⇤v¯i3+bi3⇤v¯i3)]. (4.1)

Since all the interferers are orthogonal to each other v
¯
H
im ⇤ v

¯in
= 0 for m 6= n input power

reduces to:

A = E[(bHi1 ⇤bi1⇤v¯
H
i1 ⇤v¯i1)+(bHi2 ⇤bi2⇤v¯

H
i2 ⇤v¯i2)+(bH⇤

i3 bi3⇤v¯
H
i3 ⇤v¯i3)+(bHi4 ⇤bi4⇤v¯

H
i4 ⇤v¯i4)] (4.2)

where bin, for n= 1,2,3,4 are the zero mean complex circular random variables corresponding

to four di↵erent interferers and v
¯
H
in ⇤ v

¯in
= N = 50 for n = 1,2,3,4. Applying expectation

operator:

A = 50 ⇤ 10000 + 50 ⇤ 100 + 50 ⇤ 1000 + 50 ⇤ 1 = 555050. (4.3)

Similarly, the value of A is 500000, 555050, 1055000, 2000000 for the four di↵erent cases

in Fig. 4.2. As the value of A increases the value of µ decreases. As the interferer powers

are increasing value of A is also increasing from 500000 to 2000000 thus decreasing the

SSND level from -50 dB to -63 dB from case 1 to case 4. When the value of A increases

by 1 order of magnitude in cases 3 and 4 compared to 1 and 2. This leads to a decrease

in the SSND level further to -57 dB and -63 dB in cases 3 and 4, from -52 dB for cases 1

and 2 approximately. However the SSND level has some variance because the adaptive µ is

changing at each snapshot. Thus, the increase in the number of interferers at the input is

an important factor which contributes in the SSND level attained by the N-LMS algorithm.

Understanding the behavior of NLMS for four interferers, the next step is to analyze the

behavior of ER-DMR for multi interferer case.
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4.3 Comparison of N-LMS and ER-DMR beamformers

Section 4.3 starts by analyzing the ND performance of ER-DMR for multiple interferer

case. Further ND performance of N-LMS and ER-DMR are compared in Sections 4.3.1

and 4.3.2. In addition, computational complexity of N-LMS and ER-DMR are compared

to observe the number of FLOPS (Floating point operations) required to compute the two

algorithms at each snapshot. The number of FLOPS in turn helps in measuring the speed

of convergence to ND for both the algorithms.

Fig. 4.3 depicts the performance of ER-DMR, with a 40 dB INR at the first peak side

lobe of a CBF, with di↵erent INR levels in three other side lobe directions. Fig. 4.3

shows that ER-DMR could accurately estimate the eigenvectors and eigenvalues of the

four interferers from SCM, in calculating the weight vector. Thus, ER-DMR performance

remains independent of the interferer powers provided all the interferers arrive from the

peak side lobes. The next section presents the comparison of DMR and LMS for multi

interferer case.

4.3.1 Comparison based on Notch Depth

Fig. 4.4 presents the ND performance comparison of N-LMS and ER-DMR for the multi

interferer cases. Two cases of INR levels are considered namely 40 dB, 20 dB, 30 dB, 0 dB

and 40 dB, 40 dB, 40 dB, 40 dB at four di↵erent peak side lobes respectively. The SSND

attained by N-LMS for both the cases is -55 dB and -60 dB. ER-DMR a ND of -65 dB with

snapshots and decreases with increasing snapshots. In both the cases the performance of

ER-DMR is far more better than that of N-LMS, similar to the single interferer case.

4.3.2 Comparison based on White Noise Gain

WNG comparison of N-LMS and ER-DMR algorithms is presented in Fig. 4.5. Clearly

the cost of placing a notch for N-LMS is equal to that of ER-DMR. The Steady-state WNG

attained for ER-DMR and N-LMS are 16.65 dB for the all the four di↵erent cases. Two
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Figure 4.4: ND vs. snapshots performance comparison of ER-DMR and N-LMS for the
case of multiple interferers. Four di↵erent INR power levels at four consecutive peak side
lobes of the CBF. 40 dB, 20 dB, 30 dB and 0 dB INR’s are used in the first comparison.
40 dB, 40 dB, 40 dB and 40 dB INRs are used in the second comparison.
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conclusions could be drawn from the above analysis. First, the speed at which WNG is

reaching a steady state value of 16.65 for both NLMS and ER-DMR is increasing with

the total power at the input to the beamformer. Secondly, ER-DMR can achieve a deeper

ND than N-LMS with the same constant WNG of 16.65 dB for all the three cases. Thus,

in terms of WNG ER-DMR is e�cient giving better performance than N-LMS. Sec. 4.4

compares the N-LMS and DMR beamformers in terms of computational complexity.

4.4 Computational Complexity of N-LMS and ER-DMR

Table 4.1 presents the FLOPS count, calculated theoretically, for N-LMS and ER-DMR

for each function. The number of FLOPS are a function of number of sensors N . By

plugging in four di↵erent values of N namely 20, 35, 50 and 75 we get the FLOPS count for

NLMS and ER-DMR as shown in Table 4.2. The total count of FLOPS for N-LMS is on the

order of N2, while DMR has FLOPS in the order of N3. In order to compare the N-LMS

and ER-DMR performance a new term called the Multiplication Factor (MF) is introduced

which is defined as the ratio of FLOPS count or execution time for ER-DMR and N-LMS.

From the factors calculated for di↵erent N values it is clear that ER-DMR requires N/3

times more FLOPS than N-LMS which proves that N-LMS is faster than ER-DMR.

Table 4.1: Comparison of FLOPS count between N-LMS AND ER-DMR

FLOPS COUNT OF ER-DMR FLOPS COUNT OF N-LMS
Function FLOPS Function FLOPS

Eigen decomposition 2*(Nˆ3)
Calculating
weight vector

(6*Nˆ2) + 10*N - 2

Estimating
dimension

((9*Nˆ2) + 23*N + 2)/2

Calculating
weight vector

(78*N) - 6

Total (4*(Nˆ3) + (9*Nˆ2) + 179*N - 10)/2 Total (6*Nˆ2) + 10*N - 2

In order to verify the results through simulation, the tic and toc functions in Matlab

are used to record the computation time t for 3000 snapshots. The time t is divided by 3000
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Figure 4.5: WNG vs. snapshots, cost comparison of ER-DMR and N-LMS for the case of
multiple interferers. Four di↵erent INR power levels at four consecutive peak side lobes of
the CBF. 54



Table 4.2: Theoretical Calculation of Multiplication factor for NLMS and ER-DMR

Multiplication factor for di↵erent array sizes

N
FLOPS count
for ER-DMR

FLOPS count
for NLMS

MF

20 19585 2598 8
35 94390 7698 13
50 265720 15498 17
75 875770 34498 25

to obtain the average computation time for each time step. Similar to the MF calculation

in Table 4.2, MF is calculated for each N . Simulation results in Table 4.3 show that the

MF is not fixed but is varying based on the array size N . MF increases as N increases.

Table 4.3: Execution time comparison of NLMS and ER-DMR

Execution time at each step for di↵erent array sizes
averaged over 3000 snapshots

N
Execution time
of ERDMR

Execution time
of NLMS

MF

20 3.9438e-04 2.5064e-05 14
35 9.9064e-04 2.7122e-05 33
50 0.0018 2.7411e-05 56
75 0.0040 3.6646e-05 100

4.5 Summary

ND performance of ER-DMR is better than N-LMS for all the four multi interferer cases.

Similar to the single interferer case ER-DMR attains a deeper notch with fewer snapshots

when compared to the N-LMS beamformer. In addition, WNG of N-LMS and ER-DMR

reach the same level of 16.65 dB for all the four multi interferer INR cases. ER-DMR takes

N/3 times more FLOPS than the N-LMS beamformer for each snapshot.
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Chapter 5: Conclusion

This thesis analyzed the performance of the constrained LMS beamformer proposed by

Frost and compared it to the performance of the DMR beamformer proposed by Abraham

and Owsley. Several performance metrics were considered, including notch depth, white

noise gain, convergence speed, and computational complexity.

Chapter 3 of the thesis analyzed the performance of the LMS beamformer for a standard

single interferer case, where the interferer is located at the peak sidelobe of the conven-

tional beamformer. First the chapter analyzed the notch depth of the steepest descent

beamformer, which relies on ensemble statistics to design the weight vector. For this beam-

former, the notch depth is initially equal to that of the conventional beamformer. Given

enough snapshots, the SD beamformer converges to the optimal notch depth. As expected,

the gradient step size µ controls the convergence time of the steepest descent approach.

Frost’s LMS beamformer is the adaptive version of the SD beamformer that relies on an

instantaneous estimate of the covariance, rather than ensemble statistics. Frost’s standard

algorithm uses a fixed step size. Chapter 3 showed that the notch depth of the Frost LMS

beamformer follows the SD notch depth for low numbers of snapshots, but it eventually

levels out at a steady state value that is significantly higher than the optimal value attained

by steepest descent. This research showed that the SSND for the Frost algorithm is a lin-

ear function of the step size parameter. Results for the N-LMS algorithm, which uses an

adaptive step size, are similar to the Frost algorithm. Comparing the N-LMS approach to

the estimated rank DMR algorithm shows that DMR guarantees a significantly lower notch

depth for all snapshots. The white noise gain of N-LMS and ER-DMR are comparable.
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Chapter 4 presents an empirical study of the N-LMS and the ER-DMR beamformers for

the case of multiple interferers. The results show that the DMR algorithm still guarantees

significantly lower notch depths than the LMS algorithm. The higher performance of the

DMR algorithm comes at the cost of higher computational complexity.

This thesis suggests several avenues for future work. First, it would be interesting to derive

an analytical prediction of ND as a function of step size for the Frost LMS beamformer that

could be compared to the empirical results presented in this thesis. Second, there are

open questions about the white noise gain of the N-LMS beamformer for high numbers of

snapshots. Finally, the analysis of computational complexity could be improved.
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