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Major U.S. airports are critical nodes in the air transportation network, 

providing the interface between ground and air transportation.  Airports are 

geographic monopolies with multiple stakeholders.  Government regulations 

require them to operate as public utilities under profit-neutral financial conditions.  

By their nature, the airport stakeholders have different and sometimes conflicting 

performance objectives.   

Since U.S. airports operate under profit-neutral regulations, enterprise 

performance cannot be measured using traditional financial objectives and must 

instead be evaluated based on the airports’ ability to meet the objectives of all of 
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their stakeholders.  Comparative benchmarking is used for evaluating the relative 

performance of airports. 

An analysis of past benchmarks of airport performance described in this 

dissertation shows that these benchmarks are ambiguous about which stakeholders’ 

needs they address and provide limited motivation for why particular performance 

metrics were used.  Furthermore, benchmarks of airport performance use data of 

multiple dimensions, and such benchmarking without knowledge of utility functions 

requires the use of multi-objective comparison models such as Data Envelopment 

Analysis (DEA).  Published benchmarks have used different DEA model variations 

with limited explanation of why the models were selected.  The choices of 

performance metrics and the choice of DEA model have an impact on the benchmark 

results.  The limited motivation for metrics and model render the published 

benchmark results inconclusive. 

This dissertation describes a systematic method for airport benchmarking to 

address the issues described above.  The method can be decomposed into three 

phases.  The first phase is the benchmark design, in which the stakeholder goals and 

DEA model are selected.  The selection of stakeholder goals is enabled by a model of 

airport stakeholders, their relationships, and their performance objectives for the 
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airport.  The DEA model is selected using a framework and heuristics for 

systematically making DEA model choices in an airport benchmark. 

The second phase is the implementation of the benchmark, in which the 

benchmark data is collected and benchmark scores are computed.  Benchmark 

scores are computed using the implementation of DEA models provided in the 

dissertation.   

In the third phase, the results are analyzed to identify factors which 

contribute toward strong performance and poor performance, respectively, and to 

provide recommendations to decision- and policy-makers. 

The benchmark method was applied in three case studies of U.S. airports: 

The first case study provided a benchmark of the level of domestic passenger 

air service to U.S. metropolitan areas.  The frequency of service to hub airports and 

the number of non-hub destinations served were measured in relation to the size of 

the regional economy and population.  The results of this benchmark showed that 

seven of 29 metropolitan areas have the highest levels of air service.  Nine areas, 

including Portland, OR, San Diego, and Pittsburgh, have poor levels of air service.  

Contributing factors to poor levels of air service are the lack of airline hub service, 

limited airport capacity, and low airline yields. 
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In the second case study, a benchmark of the degree of airport capacity 

utilization was conducted. The degree of capacity utilization at 35 major U.S. 

airports was evaluated as defined by the level of air service and volume of 

passengers carried in relation to the airport runway capacity.  Seven out of 35 

airports have the highest levels of capacity utilization while six airports, including 

HNL, PDX, and PIT, have poor levels of capacity utilization.  Some airports with high 

levels of airport capacity utilization incur large delay costs while the airports with 

poor levels of utilization have excess capacity, indicating that funding for capacity 

improvements should be directed away from the poorly performing airports to 

those that are capacity constrained. 

The third case study recreated of an existing widely published benchmark.  

This analysis took the premise of a previously conducted benchmark that measured 

airport efficiency and recreated it by applying the new benchmarking methodology 

in two new component benchmarks:  

• A benchmark focused on the airports’ operating efficiency, using 

parameters which included the number of passengers and aircraft 

movements in relation to runway capacity and delay levels  

• A benchmark comparing the level of investment quality of the 

airports, using factors such as the debt service coverage ratio, the 
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portion of origin and destination passengers, and the levels of non-

aeronautical revenues   

The results of the new benchmark showed no statistically significant 

correlation with the results of the original benchmark, leading to a different set of 

conclusions from the new benchmarks.  This illustrates the importance of a 

comprehensive and systematic approach to the design of a benchmark. 

Practical implications of the analysis for policymakers relate to the allocation 

of funding for capacity improvement projects.  Airports in some areas operate at 

high levels of capacity utilization and provide high levels of air service for their 

regions.  These areas are at risk of not being able to satisfy continued growth in air 

travel demand, limiting the potential for the areas’ future economic development.  

The most strongly affected area in this category is New York City.  Similarly, the 

analysis found areas where the current level of air service is limited due to airport 

capacity constraints, including Philadelphia and San Diego.  While airport capacity 

growth is subject to geographical and other restrictions in some of these areas, 

increased capacity improvement funds would provide a high return on investment 

in these regions. 
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In contrast, the analysis found that several airports with comparatively low 

levels of capacity utilization received funding for increased capacity in the form of 

new runway construction.  These airports include Cleveland, Cincinnati, St. Louis, 

and Washington-Dulles.   

In light of this indication that improvement funding is currently not optimally 

allocated, this benchmarking method could be used as a systematic, transparent 

means of enhancing the process of funding allocation.
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Chapter 1: Introduction 

 

The U.S. air transportation system is a critical component of the nation’s 

economy, accounting for some 12 million direct and indirect jobs and $1.3 trillion in 

economic activity (Federal Aviation Administration 2009).  However, demand is in 

excess of capacity in some parts of the system (Donohue et al. 2008).  Estimates for 

the system-wide annual cost of delays range from $8 billion (Hansen et al. 2009, p. 

25) to $40.7 billion (Schumer 2008). 

Airports provide regional residents and businesses with access to air 

transportation services.   Because airports require large capital investments, there is 

a tendency toward geographical monopolies for airports and they have been 

organized in a utility-like manner to prevent them from extracting excessive rates.  

Similar to publicly owned utilities, airports provide infrastructure to service 

providers and their supply chain under “revenue neutral” financial regulations 

(Carney & Mew 2003, p. 230).   In turn, the service providers deliver seamless, safe, 

and secure service to the consumers of air travel services. 

Research has shown that the airport exists in a form of symbiosis with its 

regional economy in which activity growth at the airport fuels growth in the 
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regional economy (Button & Stough 2000), leading to regional economic growth 

that drives increases in the levels of activity at the airport (Intergovernmental Panel 

on Climate Change 2000).  It has been shown that growth in Gross Domestic Product 

contributes about two thirds of growth in air travel, as a result of increased business 

activities, increased personal incomes, and increased propensity to travel 

(Intergovernmental Panel on Climate Change 2000). 

 

Figure 0.1 – Positively reinforcing relationship between airport growth and regional economic 

growth 

 

Airport operators are charged with building the infrastructure, leasing it to 

the service providers, and tracking the service providers to ensure that a quality 

service is delivered to customers, ultimately supporting the growth of the regional 

economy.   

A common measure of performance of for-profit enterprise performance is 

the earnings per share (EPS) (Tracy 2009, p. 134).  Since airports function as not-

for-profit utilities, such a measure is not applicable for airports.  Instead, to gauge 
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how well the nodes in the national air transportation system are achieving their 

performance goals, and to manage change and growth, airport operators use 

alternate methods.  A common technique is the use of benchmarking. 

A review of the published benchmarks of U.S. airports presented in section 

2.2 found that: 

1. The benchmarks are ambiguous to stakeholders.  Many stakeholders 

(e.g. the local residents and business community) are ignored in these 

airport benchmarks, and conflicting stakeholder objectives for the 

airport are not acknowledged. 

2. While the benchmarks all study some form of the same problem – 

how efficient U.S. airports are – they employ different analytical 

models in computing the relative performance of each airport.  

Research described in section 2.3.2 shows that benchmark results can 

be strongly impacted by the choice of analytical model. 

This dissertation addresses these two gaps – 1) the lack of a stakeholder 

foundation of the benchmarks and 2) the lack of benchmarking model 

standardization – by creating an alternate methodology for stakeholder-based 

comparative benchmarking.  Three case studies of U.S. airport performance, 

applying the alternate methodology, are included. 
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This chapter outlines the scope of the dissertation in section 1.1, describes 

the problems addressed by the dissertation and its unique contributions in section 

1.2, provides an overview of the dissertation method in section 1.3, and gives a 

summary of the results in section 1.4. 

1.1 Scope of the Dissertation 

The scope of this dissertation is the airports that make up the Operational 

Evaluation Partnership (OEP) – 35 (FAA 2009).  These 35 are among the U.S. 

airports with the highest levels of traffic, as listed in Table 0.1.  This section provides 

the rationale for selecting this scope. 

Table 0.1 - OEP-35 airports (FAA 2009) 

Airport Name 

Airport 

Code 

Hartsfield - Jackson Atlanta International ATL 

General Edward Lawrence Logan 
International BOS 

Baltimore/Washington International 
Thurgood Marshall BWI 

Cleveland-Hopkins International CLE 

Charlotte/Douglas International CLT 

Cincinnati/Northern Kentucky International CVG 

Ronald Reagan Washington National DCA 
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Airport Name 

Airport 

Code 

Denver International DEN 

Dallas/Fort Worth International DFW 

Detroit Metropolitan Wayne County DTW 

Newark Liberty International EWR 

Fort Lauderdale/Hollywood International FLL 

Honolulu International HNL 

Washington Dulles International IAD 

George Bush Intercontinental/Houston IAH 

John F Kennedy International JFK 

McCarran International LAS 

Los Angeles International LAX 

La Guardia LGA 

Orlando International MCO 

Chicago Midway International MDW 

Memphis International MEM 

Miami International MIA 

Minneapolis-St Paul International/Wold-
Chamberlain MSP 

Chicago O'Hare International ORD 

Portland International PDX 
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Airport Name 

Airport 

Code 

Philadelphia International PHL 

Phoenix Sky Harbor International PHX 

Pittsburgh International PIT 

San Diego International SAN 

Seattle-Tacoma International SEA 

San Francisco International SFO 

Salt Lake City International SLC 

Lambert-St Louis International STL 

Tampa International TPA 

 

In a benchmark, the comparability of the entities – airports or otherwise – is 

of high importance.  If the entities do not have enough in common in the form of 

objectives, operating environment, etc., the results of the benchmark are of limited 

value since it cannot be determined if the better performance of entity “A” 

compared to entity “B” is the result of better management of entity “A” or simply 

due to its more favorable external environment.  Accordingly, a benchmark scope 

must be determined that ensures good comparability. 

The factors which must be considered in setting the scope for a benchmark 

are those that can cause poor comparability between airports if not accounted for.  
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By addressing these comparability issues, the quality of the benchmark results is 

increased.  The factors which can cause poor comparability in airport benchmarking 

include (Mackenzie-Williams 2005): 

• Activity makeup: Do some airports handle activities such as air 

traffic control while others do not, causing a different cost structure 

among airports? 

• Ownership: Are some airports privately owned while others are 

publicly owned, causing different incentives for management? 

• Accounting practices: Are there differences in how airports in the 

benchmark account for costs and revenues? 

• Funding sources: Are some airports privately funded while others 

have access to government funds and grants? 

• Passenger service standards: Are the service standards higher for 

some airports than for others? 

• Traffic mix: Do some airports have mostly short-haul, domestic 

flights while others have more long-haul and international traffic? 

Many of these comparability challenges are addressed in this dissertation by 

limiting the scope to the U.S. OEP-35 airports: 
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• Limiting to U.S. airports only: Limiting the scope of airports to U.S. 

airports ensures that the general operating environment for all 

airports is similar since these airports all share the same public 

ownership form and is subject to the same regulatory framework.  

Excluding airports from Europe and other parts of the world ensures 

that no private, for-profit airports are included in the benchmark. 

• Limiting to the OEP-35 airports: Limiting the scope to 35 of the 

largest U.S. airports provides improved comparability since these 

larger airports share similarities in the form of operating in an 

environment where demand at times surpasses available capacity; 

smaller, secondary airports may not be subject to similar operating 

challenges. 

The comparability challenges that are not immediately addressed by setting 

the scope to the OEP-35 airports are addressed individually in the case studies in 

section 4. 

1.2 Problem Statement and Summary of Unique Contributions 

1.2.1 Problem Statement 

The dissertation’s problem statement consists of three components: 
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1. Stakeholder and goal ambiguity: Past airport benchmarks have not 

examined airport stakeholders and their goals in selecting the 

performance metrics in use in those benchmarks.  As a result, the 

conclusions of those benchmarks lack relevance in relation to the true 

goals of the airport. 

2. Lack of systematic model selection: Past airport benchmarks lack a 

systematic approach to the selection of benchmarking model and 

many lack a motivation for why the model used was selected.  As will 

be shown in the literature review, model selection impacts the study 

outcomes.  The lack of systematic model selection presents the 

question of whether past benchmark results were valid. 

3. No benchmarks apply a systematic process: As a consequence of 

problems 1 and 2 in this list, no benchmarks exist which have applied 

a holistic, systematic approach to benchmark design and execution. 

1.2.2 Unique Contributions of Dissertation 

This dissertation addresses the three problems described in section 1.2.1 

through the unique contributions listed in Table 0.2. 
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Table 0.2 - Unique contributions of dissertation 

Problem Unique Contribution of Dissertation 

1. Stakeholder and 

goal ambiguity 

A stakeholder model and goals database: The dissertation 

presents a model of U.S. airport stakeholders and their goals 

for the airport in section 2.1.3. 

2. Lack of 

systematic model 

selection 

Framework and heuristics for airport DEA model 

selection: The dissertation presents a framework and 

associated heuristics for selecting a DEA model for airport 

benchmarking.  The heuristics are based on the modeler’s 

inputs regarding the characteristics of the airport benchmark 

being conducted.  The framework and heuristics are 

presented in section 3.  The framework and heuristics are 

applied to test the validity of past airport benchmarks in 

section 4.1. 
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Problem Unique Contribution of Dissertation 

3. Benchmarks of 

U.S. airports do not 

apply a systematic 

process 

Three case studies applying the new benchmark 

methodology: The dissertation includes three case studies 

which were conducted using the new benchmark 

methodology.  The case studies are presented in section 4 

and encompass: 

a) A benchmark of the level of domestic air service to 

U.S. metropolitan areas (section 4.2) 

b) A benchmark of the level of capacity utilization 

and U.S. airports (section 4.3) 

c) Redesign of a past airport benchmark using the 

new methodology (section 4.4) 

 

 

1.3 Summary of Dissertation Method 

The dissertation method provides an alternative methodology for conducting 

airport benchmarking by identifying airport stakeholder objectives and 
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systematically selecting a benchmarking model.  A summary of the benchmarking 

methodology is shown in Figure 0.2.  

 

Figure 0.2 - Overview of the benchmarking methodology 

 

The six steps of the methodology can be grouped into three phases: 

1. Benchmark design phase: The benchmark design phase is composed 

of steps 1, 2, and 3 which serve to select the stakeholders and their 

goals to be reflected in the benchmark, to determine the appropriate 

performance metrics which represent those goals, and to select a DEA 

model which reflects the underlying characteristics of the domain 

being modeled.  Step 1 is supported by a model of U.S. airport 

stakeholders and their goals for the airport which was developed as 

part of this dissertation.  Step 3 is enabled by a framework for DEA 

model selection, and by heuristics for making choices in that 
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framework when modeling airport performance, both of which were 

developed as part of the dissertation. 

2. Benchmark implementation phase: The benchmark 

implementation phase is made up of steps 4 and 5, in which 

performance data is collected and benchmark scores are computed.  

The computation of benchmark scores is enabled by implementations 

in C++ and Matlab of several DEA model variations, developed as part 

of the dissertation. 

3. Interpretation of benchmark results: The final phase of the 

benchmark process is analyzing and interpreting the benchmark 

results.  The purpose of this step is to uncover the factors – both 

controllable and uncontrollable – which impact the performance of 

airports in the benchmark.  This provides insights to airport 

management, policymakers, and other stakeholders which can 

support decision-making related to funding, management practices, or 

other aspects related to the operation of airports. 
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1.4 Summary of Results 

The analysis generated conclusions about methods for airport benchmarking 

as well as conclusions for policymakers about the practical implications of the 

results. 

The analysis provided three conclusions about methods for airport 

benchmarking: 

1. Stakeholders have different, and sometimes conflicting, objectives for 

the airport.  A benchmark of airport performance should include a 

determination of which stakeholder goals are reflected, and these 

goals provide the basis for selecting performance metrics for the 

benchmark.  Past benchmarks have not done so, resulting in a lack of 

validity of those benchmarks’ results. 

2. The selection of DEA model in the benchmark impacts benchmark 

results, sometimes to the degree of reversing the findings of the 

benchmark study.  The selection of DEA model should take a 

systematic approach to ensuring that the model selected is reflective 

of the environment being modeled.  Past airport benchmarks have not 

used such a systematic evaluation of models for the selection of DEA 
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model, which also contributes to a lack of validity of those benchmark 

results. 

3. This dissertation provides a methodology for systematically 

identifying stakeholder goals and determining a DEA model whose 

implicit assumptions are aligned with the domain being modeled.  By 

applying this methodology, future benchmarks can avoid the validity 

limitations of past benchmarks. 

The benchmarking methodology was applied in three benchmarks: 

1. A benchmark of the level of domestic passenger air service to U.S. 

metropolitan areas in relation to the size of the regional economy and 

population.  The results showed that seven of 29 metropolitan areas 

have the highest levels of air service, as defined by frequency of 

service to hubs and the number of destinations served nonstop.  Nine 

areas, including Portland, OR, San Diego, and Pittsburgh, have poor 

levels of air service.  Contributing factors to poor levels of air service 

are the lack of airline hub service, limited airport capacity, and low 

airline yields. 

2. A benchmark of the degree of airport capacity utilization, as defined 

by the level of air service and volume of passengers carried in relation 

to the airport runway capacity.  Seven out of 35 airports have the 
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highest levels of capacity utilization while six airports, including HNL, 

PDX, and PIT, have poor levels of capacity utilization.  Some airports 

with high levels of airport capacity utilization incur high delay costs 

while the airports with poor levels of utilization have excess capacity, 

indicating that funding for capacity improvements should be directed 

away from the poorly performing airports to those that are capacity 

constrained. 

3. A benchmark that took the premise of a previously conducted 

benchmark from the literature and recreates it by applying the new 

benchmarking methodology.  The results of the new benchmark 

diverge to a high degree from those of the original benchmark, 

illustrating the importance of a comprehensive and systematic 

approach to the design of a benchmark. 

For policymakers, the practical conclusions from the analysis include: 

• The finding that some areas and airports have a high need for 

improvement funding to improve from their current performance 

position, and that other areas and airports do not have that need.  

Areas such as Philadelphia and San Diego are reporting levels of air 

service that is not in line with the best-in-class and areas such as New 

York City are at the risk of proportionally reduced levels of air service 
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in the future, and this is due to airport capacity limitations.  In 

contrast, airports such as Cleveland, Cincinnati, St. Louis, and 

Washington-Dulles are receiving improvement funding for runway 

construction in spite of low relative levels of capacity utilization.  This 

suggests that the method for airport benchmarking presented in this 

dissertation could be used for optimizing the allocation of 

improvement funding. 

• A caution about the use of benchmarking to support decision-making 

if there is no transparency about the stakeholder goals that are 

reflected in the benchmark results and if no explanation is provided 

about how the DEA model used is reflective of the domain being 

modeled.  If there is no clear understanding about these factors, it 

cannot be determined whether the benchmark results are actually 

indicative of strong and poor airport performance, as defined by the 

airport goals. 

• The insight that airports serve multiple stakeholders with different 

and sometimes conflicting interests.  The airport functions in a utility-

like role in its region and its goals are to meet the objectives of these 

stakeholders.  The model of stakeholders and their goals for the 

airport provided in the dissertation identifies the incentives and 



23 . 

 

motivations for the behavior of airport management and other 

stakeholders in the airport system. 
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2 Chapter 2: A Review of Airport Benchmarking 

 

The literature review consists of a discussion of the airport’s role as a public 

utility with multiple stakeholders in the first subsection, a review of airport 

benchmarking and analytical techniques for benchmarking in the second subsection, 

and a review of the dissertation’s problem statement in the third subsection. 

2.1 The Airport as a Public Utility 

This section discusses the concept of public utilities, reviews airport 

financing, and reviews airport stakeholders and their goals for the airport. 

2.1.1 Public Utilities 

Major U.S. airports function as public utilities.  Utilities (e.g. electric 

distribution utilities) require high capital investments for system construction.  

Duplication of system infrastructure is considered inefficient, and as a result utilities 

operate in some monopolistic form (White 1976, p. 14).  For instance, the definition 

of an electric utility makes the distinction that it is a monopoly: An electric utility is 

“[a]ny organization, municipality or state agency with a monopoly franchise that 
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sells electric energy to end-use customers” (Public Utility Research Center, University 

of Florida 2008). 

Utility ownership is either public (federal, state, or municipal) or private 

(Schap 1986, p. 3).  In the cases of private ownership, strict regulation is in place to 

ensure that the monopolistic situation is not used to charge excessive prices (Hunt 

1944, pp. 16-17).  Utility regulation exists “to assure to ultimate consumers the best 

possible service at reasonable cost” (Hunt 1944, p. 17).  For example, quality 

electricity distribution service is defined as “the uninterrupted flow of current and 

[…] the ability to maintain constant frequency voltage within the limits that will 

ensure satisfactory performance of the consumer’s equipment and appliances” 

(White 1976, p. 9). 

Public utilities have a number of different stakeholders, including 

shareholders/creditors (if applicable), government regulators, and customers.  

Given this operating situation, a utility’s performance of its mission cannot be 

gauged only by its ability to generate profits.  Instead, the interests and 

considerations of all of the utility’s stakeholders must be considered in evaluating 

the utility’s performance, in particular in the cases where utilities are under some 

form of government ownership.  This can be a complex problem since stakeholders 

may have conflicting objectives. 
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Similarly, airports exist to provide a quality service to regional businesses 

and residents at a reasonable price, while generally operating in a monopolistic (or 

semi-monopolistic) environment.  All major airports in the United States are 

publicly owned enterprises financed by a combination of public and private funds, 

and are barred from generating a financial surplus (Carney & Mew 2003, p. 230).  

Rather than comparing profitability, airports’ performance must, similar to other 

public utilities, be gauged by their ability to meet the interests of all of its 

stakeholders. 

2.1.2 Airport Finance 

Airports are dependent on capital funding for infrastructure development 

and on revenues for covering the costs of operations, depreciation, and interest.  

Understanding airport financing is a necessary basis for an examination of airport 

stakeholders since groups of stakeholders with sometimes conflicting objectives 

contribute toward the funding of airports.  This section discusses sources and types 

of capital funds, and sources of airport revenues. 

2.1.2.1 Airport Capital Funding 

Airports require access to sources of capital funding for infrastructure 

development projects.  Projects such as runway additions, terminal expansion 

projects, and purchase of capital-intensive equipment (e.g. fire trucks) are 



27 . 

 

considered capital improvement expenses (Wells & Young 2003, p. 311).  In their role 

as public utility-like entities, airports interact with several different stakeholders 

that provide capital funding.  Five key sources of capital funding exist for the 

airport: 

• FAA Airports Improvement Program (AIP) (G. Hamzaee & Vasigh 2000) 

• Bonds (G. Hamzaee & Vasigh 2000) 

• Airport operating surplus (G. Hamzaee & Vasigh 2000) 

• Passenger Facility Charges (PFCs) (G. Hamzaee & Vasigh 2000) 

• State and local funding (Airports Council International - North America 

2009a, p. 22) 

Figure 2.1 shows the average capital funding source breakouts for large 

hubs1. 

                                                        

1 Large hubs are defined as having at least 1% of total annual passenger 

boardings (Airports Council International - North America 2009a, p. 22) 
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Figure 2.1 - Airport capital funding sources for large hubs (Airports Council International - 

North America 2009a, p. 10) 

 

2.1.2.2 Airport Revenues 

Airport revenues come from different sources and are categorized as follows 

(Federal Aviation Administration 2001): 

• Aeronautical operating revenue: Including landing fees, terminal 

rental fees, apron charges, FBO revenue, cargo and hangar rentals, and 

aviation fuel taxes. 
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• Non-aeronautical operating revenue: Including terminal revenue 

(including food and beverage and retail revenue), rental car revenue, 

and parking revenue. 

• Nonoperating revenue: Interest income, grants, and Passenger 

Facility Charges 

The largest source of revenues for large hubs is aeronautical revenue, as 

shown in Figure 2.2. 

 

Figure 2.2 - 2009 airport revenues for large hubs (Federal Aviation Administration 2010a) 
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2.1.3 A Model of U.S. Airport Stakeholders and their Goals for the 

Airport 

The purpose of this section is to present a model of the stakeholders in U.S. 

airports and to analyze the stakeholders’ goals for the airport.  This section includes 

an identification of who the stakeholders are, an analysis of their definitions and 

goals, and then presents a model of the stakeholder relationships. 

A model of stakeholders in U.S. airports and their goals did not previously 

exist.  This new model was created through the process described in Figure 2.3. 

 

Figure 2.3 - Process for creating model of airport stakeholders and database of their goals 

 

The model construction relied on two categories of sources: 

1. A review of literature on airport management, finance, legislation, and 

other topics. 

2. Knowledge elicitation sessions with representatives of airport 
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both in-person and via phone.  32 sessions were conducted in all and 

they consisted of questions regarding stakeholder definitions, goals of 

those stakeholders, and key performance indicators relevant to these 

goals.  The list of subject-matter experts, their titles, and affiliations 

and the knowledge elicitation form are presented in Appendix D. 

 

2.1.3.1 Identification of Airport Stakeholders 

With the airport operating as a public utility, an inventory of airport 

stakeholders and their objectives is required to form the basis for evaluating the 

airport’s performance. 

For the purpose of this analysis a stakeholder is defined as “any group or 

individual who can affect or is affected by the achievement of the organization’s 

objectives” (Mitchell et al. 1997, p. 856).  Table 2.1 describes a comprehensive list of 

stakeholders generated through a review of the literature. 

Table 2.1 - Airport stakeholders 

Stakeholder Group References Citing Group 

Passengers  (Upham 2003) (Rhoades et al. 2000) 

(Neufville & Odoni 2003) 

Air carriers  (Upham 2003) (Rhoades et al. 2000) 

(Offerman) (Neufville & Odoni 2003) 

(Sarkis & Talluri 2004) 
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Stakeholder Group References Citing Group 

General aviation users (Rhoades et al. 2000) 

Airport organization  (Upham 2003) (Rhoades et al. 2000) 

(Offerman) (Sarkis & Talluri 2004) 

Investors and bond-holders  (Neufville & Odoni 2003) 

Concessionaires  (Rhoades et al. 2000) (Neufville & 

Odoni 2003) 

Service providers  (Upham 2003) (Rhoades et al. 2000) 

(Neufville & Odoni 2003) 

Employees  (Upham 2003) 

Federal government  (Upham 2003) (Offerman) (Neufville & 

Odoni 2003) (Sarkis & Talluri 2004) 

Local government  (Upham 2003) (Offerman) (Neufville & 

Odoni 2003) (Sarkis & Talluri 2004) 

Communities affected by airport 

operations  

(Upham 2003) (Offerman) 

NGOs, such as environmental 

bodies  

(Upham 2003) 

Business, commerce, tourism, arts, 

sports, and education 

organizations  

(Upham 2003) 

Parking operators and ground 

transportation providers 

(Upham 2003) (Neufville & Odoni 

2003) 

Airport suppliers (Upham 2003) (Neufville & Odoni 

2003) 
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2.1.3.2 Analysis of Stakeholder Definitions and Goals 

To examine the role of the airport stakeholders a precise definition of 

stakeholders and their goals for the airport is necessary.  The purpose of this section 

is to identify the airport’s goals from the point of view of each stakeholder group. 

2.1.3.2.1 Passengers 

For passengers, the airport provides a transition point between the ground 

and air transportation modes, or a connection point between two flights.  Different 

sub-types of passengers have been identified (Neufville & Odoni 2003, pp. 610 - 

611): 

• Arriving passengers 

• Originating passengers 

• Transfer passengers 

• International and domestic passengers 

• Charter and low-fare airline passengers 

• Shuttle/commuter passengers 

These passenger types are not mutually exclusive; rather, an individual 

passenger may be a member of more than one sub-type of passenger categories.  

Arriving and originating passengers are commonly referred to as origin and 

destination (O&D) passengers. 
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Independent of the passenger classifications according to the above 

attributes, the passengers may be viewed in two different capacities in the context 

of this analysis.  First, passengers can be viewed as participants in the economic 

system, either as business travelers or as tourist/leisure travelers, purchasing 

services from airport service providers and interacting in different ways with local 

businesses and the local community.  Second, passengers can be viewed as 

individual travelers that have expectations about receiving quality services, and 

passing through the airport system in a convenient manner.  These two perspectives 

have different implications on the goals for the airports and will be treated 

separately in the following subsections. 

2.1.3.2.1.1 Passengers as Economic Participants 

Passengers may participate in the economic system in one of several ways: 

• As origin leisure/personal travelers: These are passengers from the 

local community that use the airport as their departure point for 

leisure or other personal travel. 

• As origin business travelers: These are travelers representing local 

businesses, using the airport as their departure point. 

• As destination leisure/personal travelers: These are visitors to the 

region, for tourism or other personal purposes. 
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• As destination business travelers: These are business travelers 

coming to visit local businesses. 

Each type of passenger has a different impact on the local region, as will be 

discussed in section 2.1.3.2.2. 

If the airport’s traffic is heavily geared toward O&D traffic, then demand at 

the airport is more heavily dictated by the local economy.  In contrast, high 

connecting (transfer) passenger levels are less sensitive to the performance of the 

local economy, but those traffic volumes may represent a vulnerability for the 

airport since they are to a greater degree dictated by a carrier’s viability and route 

decisions (Forsgren 2007, p. 2). 

Passengers contribute toward the financing of airport capital improvement 

projects through Passenger Facility Charges (PFCs) of up to $4.50 per passenger.  

PFCs are paid directly by passengers through airline tickets and proceeds must be 

used for capital improvements at the airport that collected them (Wells & Young 

2003, p. 79). 

The goals for passengers as economic participants relates to the cost of 

travel: Providing access to low airfares is a key objective for the airport in the view 

of air passengers (Michael Cintron, International Air Passengers' Association 2009).  
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The role of passengers in the economic system is further discussed in sections 

2.1.3.2.2 and 2.1.3.2.11. 

2.1.3.2.1.2 Passenger as Travelers 

When considering the passengers as travelers as a stakeholder group, the 

focus is on the passenger as an individual.  The goal of the airport from the 

individual passenger viewpoint is “moving passengers quickly and conveniently to 

where they need to go” (Michael Cintron, International Air Passengers' Association 

2009).  This view considers the airport as a transit point from one mode of 

transportation to another, or as a connection point between two different flights.  

Ensuring on-time performance was raised as the most important aspect to achieving 

this objective.     

  

2.1.3.2.2 Business, Commerce, Tourism, Arts, Sports, and Education 

Organizations 

The organizations that in various ways are customers of the airport have 

been summarized as “business, commerce, tourism, arts, sports, and education 

organizations” (Upham 2003).  Figure 2.4 proposes a means for categorizing these 

organizations based on the type of use they derive from the airport: Some 

organizations are direct users of the airport by importing or exporting services (i.e. 
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business travelers) and goods (raw materials or finished goods).  Other 

organizations are indirect customers of the airport as a result of their customers 

(e.g. tourists) traveling through the airport.  

 

Figure 2.4 – Organizations as customers of the airport 

The airport serves as an engine of business activity for the organizations in 

the region.  The airport drives and supports economic activity in several different 

ways, including both through business activities directly at the airport and through 

business activities throughout the regional economy (Button & Stough 2000).  These 

types of economic activity are described in greater detail in section 2.1.3.2.11.  

Underlying goals for maximizing this economic activity include maximizing 

passenger volumes and traffic at the airport as well as maximizing the number of 

destinations served and the frequency of those services (Matt Erskine, Greater 
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Washington Board of Trade 2009).  As a result of the different types of use of the 

airport described in the previous paragraph, the priority of one goal over another 

varies between organizations. 

2.1.3.2.3 Air Carriers 

Air carriers provide the air transportation service from the airports.  Air 

carriers include both passenger and cargo carriers and are classified into three 

subcategories, according to (Environmental Protection Agency 2000, p. 14-26): 

• Large certified carriers: These carriers have a certificate to carry 61 

passengers or more, payload equal to or greater than 18,000 pounds, 

or conduct international operations 

• Small certified carriers: These carriers fly aircraft that carry less than 

61 passengers, carry less than 18,000 pounds, and do not conduct 

international operations. 

• Commuter carriers: These are air taxis with a published schedule of at 

least five weekly round trips between at least two airports. 

 

Air carriers select airports based on the passenger demand for service 

to/from the airports (i.e. revenue generation potential) and based on the cost of 

operating at the airport.  The airlines have the objective of achieving high yields, 
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(Doganis 2002, p. 16).  Airports serve the role of providing access to high yield 

markets.  Attractive airports ensure low cost of air carrier operations at the airport.  

This includes both minimizing direct fees charged to air carriers through the 

maximization of non-aeronautical revenues (Dallas Dawson, Tampa International 

Airport 2009) and minimizing costs incurred by air carriers through delay on the 

ground (Peter Stettler, Ricondo and Associates 2009).  

An airport may serve either as a hub for a carrier, with a high portion of that 

carrier’s flights operating to/from the airport, or as a non-hub airport with a lower 

portion of flights for a given carrier (Belobaba et al. 2009, pp. 162-163).  In either 

situation, the airport should act as an efficient hub/connection point, contributing to 

ensuring air carriers’ on-time performance (Pat Oldfield, United Airlines 2009). 

In addition, it is the expectation of air carriers that airports ensure safety of 

operations on the airport surface (Kurt Krummenacker, Moody's 2009). 

2.1.3.2.4 General Aviation Users 

General aviation encompasses many types of aviation outside the air carrier 

definition, including (Wells & Young 2003, p. 386):  

• Air taxi operators (except those air taxi operators listed in section 

2.1.3.2.3) 



40 . 

 

• Corporate-executive transportation 

• Flight instruction 

• Aircraft rental 

• Aerial application 

• Aerial observation 

• Business 

• Pleasure 

Several of the goals listed for air carriers in section 2.1.3.2.3 also apply to 

general aviation in terms of on-time performance, low costs, and safety.  However, a 

representative of a business aviation organization defined the primary goal of 

airports as serving as access point to the national air transportation system by 

providing good availability and high capabilities in terms of instrumentation and 

services (Jeff Gilley, National Business Aviation Association 2009). 

2.1.3.2.5 Airport Organization 

The airport organizational structure varies (Neufville & Odoni 2003, p. 225) 

and can be comprised of an individual airport such as Dallas Forth Worth Airport 

(DFW) (DFW Airport 2009) or as a group of airports managed by the same 

organization, such as the Metropolitan Washington Airports Authority (MWAA) 

(Metropolitan Washington Airports Authority 2009).  The airport organization is 
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overseen by a board appointed by local governments, as described in section 

2.1.3.2.11. 

In larger airports or systems of airports, a common feature is that the 

organization includes a separation of operating units which carry out on-going 

management of airport operations, and they are separate from staff units which 

have responsibility for (among several other areas) infrastructure development  

(Neufville & Odoni 2003, pp. 226-227). 

The airport itself pays for some capital infrastructure projects, as shown in 

section 2.1.2.  Airport operating revenues come from sources such as landing fees, 

terminal leases and proceeds from concessions sales.  This revenue is used to pay 

for the airport’s operating expense, but any surplus can be used to contribute 

toward capital improvements (Dillingham 1996, p. 9). 

A set of goals for the airport organization can be derived from studying 

airports’ strategic plans and objectives and from knowledge elicitation sessions with 

airport management experts.   

The primary objective (sometimes referred to as the “mission”) of the airport 

is to provide access to high quality air services to its region.  Other goals, such as 

ensuring strong financial performance and high operational efficiency, are 

considered as “means to an end” in that they enable the airport to achieve this 
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overarching goal (DFW Airport 2008, p. 2) (Hillsborough County Aviation Authority 

2006, p. 5) (Jim Wilding, formerly with MWAA 2009). 

A summary view of the airport’s goals is presented using the structure of 

Denver International Airport’s strategic plan (Denver International Airport 2009): 

2.1.3.2.5.1 Goal 1: Excel in Airport Management 

The goal of excelling in airport management includes:  

1. Achieve high security and safety (City of Cleveland, Department of Port 

Control 2007, p. 6) (Denver International Airport 2009, p.8) (Hillsborough 

County Aviation Authority 2006, p. 5) 

2. Grow revenue and manage costs (City of Cleveland, Department of Port 

Control 2007, p. 14) (Denver International Airport 2009, p.8) (DFW Airport 

2008, p. 3) (Hillsborough County Aviation Authority 2006, p. 5) 

3. Drive economic growth (Denver International Airport 2009, p.8) 

4. Grow passenger numbers (City of Cleveland, Department of Port Control 

2007, p. 14) (Denver International Airport 2009, p.8) 

5. Provide access to a high number of destinations and a high frequency of 

service (Denver International Airport 2009, p.8).  This goal relates 

immediately to the primary objective of the airport described above. 
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Airport management must also achieve a balance where sufficient 

infrastructure capacity exists for handling traffic while capacity is at the same time 

not over-built (Paul McKnight, Jacobs Consultancy 2009) (Frank Berardino, GRA Inc 

2009).  Additionally, a key objective for airports is to maximize non-aeronautical 

revenues since that provides diversified revenues and allows for keeping usage 

charges to air carriers low, thereby potentially attracting more traffic (Chellie 

Cameron, MWAA 2009) (Peter Stettler, Ricondo and Associates 2009) (Seth Lehman and 

Emma Walker, Fitch Ratings 2009).  

2.1.3.2.5.2 Goal 2: Provide High Levels of Customer Service:  

The goal of high levels of customer service includes ensuring a good 

experience for both passengers and other customers (City of Cleveland, Department 

of Port Control 2007, p. 7) (Denver International Airport 2009, p. 9) (DFW Airport 2008, 

p. 3) (Hillsborough County Aviation Authority 2006, p. 5).   

2.1.3.2.5.3 Goal 3: Develop Environmentally Sustainable Practices and 

Minimize Noise  

This goal includes minimizing emissions, energy consumption, etc., within 

the airport (Denver International Airport 2009, p. 10) (City of Cleveland, 

Department of Port Control 2007, p. 14).  Some airports, such as Sea-Tac, are also 

beginning to expand their focus by considering greenhouse gas emissions not only 
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from the airport-controlled operations but also from airlines and other tenants as 

well as the public (Port of Seattle, Sea-Tac Airport 2007, p. ES1).  Related to this is 

also the goal of minimizing airport-related noise (Neufville & Odoni 2003, pp. 167-

170). 

2.1.3.2.5.4 Goal 4: Develop High-Performing Employee Teams 

This goal relates to developing effective and skilled employees (City of 

Cleveland, Department of Port Control 2007, pp. 5, 15) (Denver International Airport 

2009, p. 12) and maximizing employee engagement (DFW Airport 2008, p. 3). 

2.1.3.2.5.5 Goal 5: Enhance Competitive Advantage 

This goal includes providing competitive user rates and protecting the 

airport’s physical infrastructure (Denver International Airport 2009, p. 14) (City of 

Cleveland, Department of Port Control 2007, p. 13). 

2.1.3.2.5.6 Conflicts Between Airport Organization’s Goals 

Some of these goals may be in competition with each other.  For instance, the 

goal of maximizing non-aeronautical revenue can conflict with the goal of 

developing environmentally sustainability and providing a good experience for 

passengers: The latter two goals would be aided by promoting and developing 

access to public transportation access modes to the airport such as bus or rail.  
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However, the goal of maximizing non-aeronautical revenue is better served by 

maximizing revenue-generation in the form of parking revenue from private 

vehicles.  In such instances, airport management must balance the competing 

priorities in order to accomplish the goals of the airport. 

2.1.3.2.6 Investors and Bond-Holders 

The majority of airport debt is of the general airport revenue bond (GARB) 

type.  GARB means that the bond is backed by revenues generated from airport 

operations and not backed by any government funding source.  The credit ratings 

agencies Moody’s, Standard and Poor’s, and Fitch Ratings participate in this system 

by assigning grades of investment quality to the airports’ bonds.  The ratings 

agencies’ ratings affect the interest rates and terms of the bonds (Wells & Young 

2003, pp. 336-339).  A large number of factors impact the bond ratings, including 

(Forsgren 2007, p. 2):  

• Historical and projected population growth 

• Historical and projected employment expansion and mix 

• Passenger growth 

• Airport utilization trends 

• Portion of origin and destination (O&D) traffic 

• The importance of the facility to the overall U.S. system of airports 
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• Whether the airport is in a favorable geographic location (e.g. is it a 

natural hub location?) 

• Airfield capacity and attractiveness of facilities 

• Debt burden and carrying costs 

• Financial strength of carriers with a lot of connecting traffic, and their 

level of commitment to the airport 

• The role of the airport in the dominant carrier’s network 

• The level of legal flexibility for the airport to change the rates it 

charges air carriers 

2.1.3.2.7 Concessionaires 

Airport concessionaires operate passenger services in terminal buildings and 

may include food and beverage services, retail services, and hotels.  Concessions 

operators pay the airport organization a fixed annual fee and/or a percentage of 

gross revenues (Wells & Young 2003, p. 324).  Considering the concessions operators’ 

objective of maximizing profits, the goals of the airport for these operators are 

deduced to be maximizing passenger volumes and minimizing the fees paid to the 

airport organization. 
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2.1.3.2.8 Service Providers 

The service providers are private operators that offer services to air carriers 

and general aviation users.  Independent operators may supply these services (e.g. 

fixed-base operators, FBOs), but some of the services may also be provided by the 

airport operator, the airline itself, or by another airline.  Services provided include 

(Neufville & Odoni 2003, pp. 268, 278): 

• Supply of aviation fuel and oil 

• Baggage handling and sorting 

• Loading and unloading of aircraft 

• Interior cleaning of aircraft 

• Toilet and water service 

• Passenger transport to/from remote stands 

• Catering transport 

• Routine inspection and maintenance of aircraft at the stands 

• Aircraft starting, marshalling, and parking 

• Aircraft de-icing 

• Passenger handling (e.g. ticketing and check-in) 

• Cargo and mail handling 

• Information services 

• Preparation of handling and load-control documents 
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• Supervisory or administrative duties 

Similar to concessionaires, independent service providers pay a fee to the 

airport organization which is typically a percentage of gross revenues (Neufville & 

Odoni 2003, pp. 268, 279).  In a parallel to concessionaires, service provider goals 

for the airport would include maximizing traffic volumes and minimizing the fees 

paid to the airport organization. 

2.1.3.2.9 Employees 

The employee category includes both direct employees of the airports 

organization as well as employees of companies operating at the airport, such as 

concessions operators.  Some employees are organized into unions, such as the 

Service Employees International Union (SEIU USW West 2009) and Unite Here (Unite 

Here 2009).  The objective of the airport from the perspective of those unions is to 

provide secure jobs, wages, and benefits (Unite Here 2009). 

2.1.3.2.10 Federal Government 

The federal government participates in the airport system in three different 

roles: As a bill-payer, as an operator, and as a regulator.  Each of these roles will be 

addressed in this section. 
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In terms of the government’s role as a bill payer for the system, the Airports 

Improvement Program (AIP) is administered by the FAA and its funding comes from 

the Airport and Airway Trust Fund, which in turn is funded by user fees and fuel 

taxes.  AIP funds can be applied toward projects that “support aircraft operations 

including runways, taxiways, aprons, noise abatement, land purchase, and safety, 

emergency or snow removal equipment” (Kirk 2003, p. 3).  In order to be eligible for 

AIP funding, airports must be part of the National Plan of Integrated Airport 

Systems (NPIAS), which imposes requirements on the airport for legal and financial 

compliance (Wells & Young 2003, p. 329). 

The NPIAS has two goals: To ensure that airports are able to accommodate 

the growth in travel, and to keep airports up to standards for the aircraft that use 

them (FAA 2008, p. v).  

The government’s role as airport operators includes three different agencies: 

• FAA: The FAA is the operator of ramp, ground, local, and 

departure/arrival air traffic control services (United States Code of 

Federal Regulations 2010). 

• Transportation Security Administration (TSA): The TSA provides 

passenger and baggage security screening services.  The TSA states 

that it is the goal for its baggage screening operations to screen for 
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explosives and other dangerous items while maximizing efficiency 

(Transportation Security Administration 2009).  This can be translated to 

state that it is the goal for the airport to ensure secure transportation 

of people and goods while minimizing the impact of security measures 

on legitimate travelers and goods. 

• Customs and Border Protection (CBP): The CBP is responsible for 

operating passport control and customs inspections at international 

airports.  The CBP states that it is its mission to protect “our nation’s 

borders from terrorism, human and drug smuggling, illegal migration, 

and agricultural pests while simultaneously facilitating the flow of 

legitimate travel and trade” (Customs and Border Protection 2009).  Just 

as for the TSA, this can be translated to state that it is the goal for the 

airport to ensure secure transportation of people and goods while 

minimizing the impact of security measures on legitimate travelers 

and goods. 

Lastly, the federal government is a regulator of the airports system.  Airports 

that are included in the NPIAS are subject to a number of federal regulations that 

are enforced by the FAA and the TSA.  The regulations apply to both the airport 

infrastructure as well as to service providers within the airport systems.  The 
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purpose of these rules is to ensure the safe and efficient operations of public-use 

airports (Wells & Young 2003, pp. 19-22). 

2.1.3.2.11 Local Government 

U.S. airports are with few exceptions not private, profit-making enterprises.  

Instead, airports are typically owned and operated by public entities such as cities, 

counties, or local airport authorities (Neufville & Odoni 2003).   

For instance, Washington’s Dulles and National airports are owned and 

operated by the Metropolitan Washington Airport’s Authority (MWAA).  The MWAA 

is officially a body independent of the local government but its board is appointed 

by the Governor of Virginia, the Mayor of the District of Columbia, the Governor of 

Maryland and the President of the United States).   

Similarly, Newark, LaGuardia, JFK, Stewart International, and Teterboro 

airports in metropolitan New York City are owned by the Port Authority of New 

York and New Jersey (The Port Authority of New York and New Jersey 2009).  Dallas-

Fort Worth Airport is jointly owned by the City of Dallas and the City of Forth Worth 

(DFW Airport 2009). 

The government owners in the form of city and local governments are 

represented by an airport board which is responsible for the strategic direction of 

the airport and for appointing airport management (Wells & Young 2003, p. 35).   
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The local government is supported in an advisory role by federally funded 

Metropolitan Planning Organizations (MPOs) who are charged with assisting in 

planning for aviation and other transportation infrastructure for the local region 

(Association of Metropolitan Planning Organizations 2010). 

State and local government also contribute as bill-payers for capital 

improvement projects (Airports Council International - North America 2009a). 

The objectives of the airport from the point of view of the local government is 

representative of those of the local community it represents and involves both 

maximizing its positive effects while minimizing its negative effects as described in 

the subsequent paragraphs. 

One form of positive impact of the airport is in the shape of economic effects.  

However, many studies of the economic impact of airports are sponsored by the 

airports authorities themselves, making them “more political than analytical” (R 

Cooper 1990).  Although there may be no definitive measure of the economic impact 

of airports, a structure for the types of impacts of airports to their regional 

communities has proposed (Button & Stough 2000): 

1. Short-term impact from construction, expansion, and renovation of 

airports 
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2. Sustained impact in the form of jobs at the airport (direct impact) and off-

airport jobs that result from the “multiplier effect” of the income 

generated by employees at the airport 

3. Stimulus of the local economy as a result of firms and individuals having 

air transportation services at their disposal 

4. Spurring other economic development by crossing thresholds for 

economies of scale, scope, and density.  The authors note that this last 

form of impact is very difficult to quantify. 

Related to the objective of maximizing economic effects is providing 

maximum access to air services that connect the region to the country and the 

world.  This involves maximizing the number of destinations served and the 

frequency of those services (Jim Wilding, formerly with MWAA 2009) (Kurt 

Krummenacker, Moody's 2009) (Chellie Cameron, MWAA 2009) (Matt Erskine, Greater 

Washington Board of Trade 2009). 

As described for airport management in section 2.1.3.2.5, the objective of the 

local government is also to minimize the negative impact of the airport in the form 

of noise and emissions. 
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2.1.3.2.12 Communities Affected by Airport Operations 

The interest of communities affected by airport operations is represented by 

the local government which was elected by the constituents of those communities.  

Hence, the goals of the airport for these communities are broadly aligned with the 

goals described for the local government in the preceding section, including 

maximizing economic impact, maximizing destinations served and frequency, and 

minimizing emissions and noise.  

However, it should be noted that for individual groups of community 

members, the objectives of the airport may be different for others.  According to 

Smith (Smith 1979, p. 47), “how much people suffer from this growing nuisance 

depends largely on where they live, which may have no bearing on how much they 

benefit from the airport.”  From this reasoning, residents near the airport can be 

considered a particularly important subset of the overall group of communities 

affected by airport operations. 

The adverse effects of airports result from several sources, including air 

traffic, ground vehicles on the airport, and vehicles providing ground transportation 

to travelers (Wells & Young 2003, pp. 354-361).  The adverse effects include: 

• Noise 

• Air quality 
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• Water quality 

• Hazardous waste emissions 

• Other externalities, including increased automobile traffic congestion 

2.1.3.2.13 NGOs, such as Environmental Bodies 

Non-governmental organizations (NGOs), such as environmental bodies, fall 

in the category of “airport interest groups”.  Although they state that “there are 

many national organizational and regional organizations that are deeply interested 

in the operation of airports”, Wells and Young (Wells & Young 2003, pp. 22-24) only 

list NGOs that can be considered “pro-aviation”, such as the Aerospace Industries 

Association, the Airports Council International – North America, and the 

International Air Transportation Association.   

However, interest groups with other interests also exist, such as 

environmental bodies (Upham 2003).  The US-Citizens Aviation Watch is such an 

organization, which is “dedicated to protecting the health, safety and welfare of 

individuals and communities that are affected by the air transport industry” (US-

Citizens Aviation Watch 2009). 

What is clear from this, however, is that there can be no general description 

of the goal of airports representing all NGOs. 
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2.1.3.2.14 Parking Operators and Ground Transportation Providers 

Ground transportation providers include rail service, taxicabs, buses, 

shuttles, rental cars, and limousines, while parking services may be provided both 

on and off the airport, and either by the airports organization or by private 

enterprises.  From airport management’s point of view, the desirable distribution 

between different modes of transportation will vary dependent upon the individual 

airport’s context (Wells & Young 2003, pp. 229-241).   

Similar to concessionaires and airport service providers, the revenues for 

parking operators and ground transportation providers will be maximized through 

high passenger volumes and (where applicable) low fees paid to the airport. 

2.1.3.2.15 Airport Suppliers 

Airport suppliers have the airport itself as the end customer.  These include 

for instance various contractor and consulting firms and equipment suppliers 

(Upham 2003).  Similar to concessions, airport service providers, and ground 

transportation providers, these suppliers benefit from growth in traffic volumes. 

2.1.3.3 Summary of Stakeholder Definitions and Goals 

The discussion in section 2.1.3.2 of stakeholders, definitions, and their goals 

for the airport is summarized in Table 2.2. 
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Table 2.2 – Description of airport stakeholders and goals 

Stakeholder 

Group 

Definition The Stakeholder ‘s Goals for the 

Airport 

Passengers  O&D and transferring 
passengers 

• Move passengers quickly and 
conveniently 

• Ensure on-time performance 

• Provide access to low fares 

Organizations Organizations in region • Maximize passenger and traffic 
volumes 

• Maximize number of 
destinations served and 
frequency of those services 

Air carriers  Passenger and cargo 
carriers 

• Ensure on-time performance 

• Ensure low cost of operations 

• Ensure safety of operations 

• Provide access to high yields 

General aviation  Air taxi, corporate 
transportation, business 
aviation, etc. 

• Serve as access point to the NAS 
through good availability and 
high equipment capability 
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Stakeholder 

Group 

Definition The Stakeholder ‘s Goals for the 

Airport 

Airport 
organization  

Individual airports or 
multi-airport systems, 
including management 
and staff, with 
responsibility for building 
and operating the airport 

• Achieve high security and 
safety 

• Grow revenue and manage 
costs 

• Drive economic growth 

• Grow passenger numbers 

• Find opportunities for new 
destinations and increase 
service frequency 

• Ensure sufficient (but not 
excessive) infrastructure 
capacity 

• Maximize non-aeronautical 
revenues 

• Maximize customer satisfaction 

• Achieve environmental 
sustainability  

• Minimize noise 

• Develop employees 

• Enhance competitive advantage 

Investors and 
bond-holders  

Individuals/organizations 
holding bonds, and the 
credit ratings agencies 

• Optimize performance in 
factors under consideration 
(see section 2.1.3.2.6) 

Concessionaires  Operators of passenger 
services such as food and 
beverage and retail 

• Maximize passenger volumes 

• Minimize fees paid 

Service providers  Providers of services to 
air carriers, such as fuel 

• Maximize traffic volumes 

• Minimize fees paid 

Employees  Employees of the airport 
organization and airport 
tenants 

• Provide secure jobs, wages, and 
benefits 
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Stakeholder 

Group 

Definition The Stakeholder ‘s Goals for the 

Airport 

Federal 
government  

Bill-payer for 
infrastructure (AIP), 
operator of air traffic 
control and security, and 
system regulator. 

• Ensure that airports can 
accommodate growth 

• Keep airports up to standards 

• Ensure safety, security, and 
efficiency of operations 

Local 
government  

Local entities such as 
counties or cities which 
own airports. 

• Maximize economic impact 

• Maximize number of 
destinations served and 
frequency of those services 

• Minimize noise and emissions 

Communities 
affected by 
airport 
operations  

Residents in region, and in 
particular residents near 
the airport 

• Maximize economic impact 

• Maximize number of 
destinations served and 
frequency of those services 

• Minimize noise and emissions 

NGOs, such as 
environmental 
bodies  

Airport interest groups • Varies depending on the 
interest group 

Parking 
operators and 
ground 
transportation 
providers  

Rail service, taxicabs, 
buses, shuttles, rental 
cars, limousines, and on 
and off airport parking 
services 

• Maximize passenger volumes 

• Minimize fees paid 

Airport suppliers  Suppliers of contractor 
and consulting services 
and equipment 

• Maximize traffic volumes 
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2.1.3.4 A Model of Airport Stakeholder Relationships 

Using the knowledge from section 2.1.3.1, a diagram of the airport 

stakeholders and their interrelationships can be constructed based on the 

descriptions of the responsibilities/needs of each stakeholder and their primary 

points of interactions.  This section describes such a model. 

2.1.3.4.1 Airport Stakeholder Model Overview 

The stakeholder model is shown in Figure 2.5.  At the center of the diagram 

are the airport organization and the physical airport infrastructure.  The diagram 

shows that the service providers are the primary entities that interact with the 

airport infrastructure and that the end users in the form of passengers and cargo 

forwarders interact with the service providers. 

Within the regional economy and local community, some stakeholders are 

partly overlapping: 

• Passengers and cargo forwarders: Some passengers and cargo forwarders are 

part of the regional economy and local community, but some passengers and 

cargo forwarders are in the area in transit and have a very limited direct link to 

the regional economy. 

• Noise-affected homeowners: The noise-affected homeowners are only a subset 

of all residents in the catchment area. 
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• Airport suppliers: The airport suppliers are a subset of the region’s businesses. 

Lastly, the diagram illustrates the multiple sources of airport capital funding. 

 

Figure 2.5 – Financial, Customer, and Other Relationships Between Airport Stakeholders 
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2.1.3.4.2 Airport Boundaries 

Two different boundaries around the airport are identified in the diagram: 

The airport organizational boundary and the airport service boundary. 

The airport’s organizational boundary shows the limits of what is controlled 

by airport management.  The boundary shows that airport management, and by 

extension, the airport board, can only control matters that relate to the design and 

configuration of airport infrastructure and the operational procedures and 

efficiency of its own organization.  By contrast, the airport has limited control over 

the services provided at the airport such as the volume and types of air service and 

the types and quality of airport concessions. 

This limited control is of relevance when contrasted with the airport service 

boundary.  The airport service boundary represents the service of the airport as a 

function irrespective of the organizational responsibility for provisioning that 

service.  For stakeholders outside the airport organization, the airport’s 

performance may be judged not only on parameters within management’s control, 

but also by factors such as what aircraft delays are or the frequency of services at 

the airport.  

The arcs crossing the airport service boundary can be considered inputs to 

and outputs from the airport system.  One can consider the concept of attaching 
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“sensors” at these intersection points to measure the broader performance of the 

airport service in terms of generation of jobs, output of pollution and noise, service 

to passengers, etc. 

2.1.3.4.3 System Loops 

Within the diagram, several loops can be identified.  These are either 

positively reinforcing loops where increased activity in one node propagates to 

increased activity in other nodes, or negatively reinforcing loops where increased 

activity in one node propagates to limitations in activity in other nodes.  Depending 

on the nature of the loop, the timing of the impact of the loop effect will vary. Table 

2.3 presents the loops in the stakeholder model, along with a discussion of the 

characteristics of the loop and the timing of the loop effect.  Following the table are a 

graphic depictions of each of the loops. 
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Table 2.3 - System loops in stakeholder model 

Loop Description Timing of effect 

1. Economic 

activity 

positively 

reinforcing 

loop 

Illustrated in 

Figure 2.6. 

Increased passenger and cargo 

volumes results in economic 

growth.  In return, greater 

economic growth results in 

increased passenger and cargo 

volumes. 

The timing of this effect can be 

characterized as on-going as it 

is a continuous and 

reinforcing effect 

(Kindleberger 1997). 
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Loop Description Timing of effect 

2. Airport 

infrastructure 

capacity and 

funding 

positively 

reinforcing 

loop  

Illustrated in 

Figure 2.7. 

Increases in capacity at the 

airport results in increased 

activity, which creates increased 

revenues for the airport in 

various forms.  That in turn 

provides funding for capacity 

increases, and those capacity 

increases permit further growth.  

This assumes the presence of 

demand that will use the 

increased capacity. 

The planning horizon for 

airport infrastructure is 

lengthy and is dependent on 

projections about future 

growth in airport traffic.  A 

typical time horizon would be 

10 to 20 years (Neufville & 

Odoni 2003, p. 70). 
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Loop Description Timing of effect 

3. Airport noise 

and emissions 

negatively 

reinforcing 

loop  

Illustrated in 

Figure 2.8. 

From increases in airport traffic 

come increased noise and 

emissions from airport 

operations and service providers.  

That has a negative impact on the 

local community, which 

expresses its desires through 

voting in local elections.  The 

elected local government 

appoints the board and sets the 

mission for the airport.  

Accordingly, noise and emissions 

may result in limitations on 

future growth in capacity and 

restrictions on operations at the 

airport and limited funding for 

airport expansion, thereby 

constraining the opportunity for 

further growth of the airport. 

Operational restrictions on 

the airport arise as a result of 

decisions within the local 

jurisdiction precipitated by 

community reactions to 

airport activity and this has a 

time horizon of several years, 

in order to go through the 

process of a Notice of 

Proposed Rulemaking (Wolfe 

& NewMyer 1985, pp. 83-85).  

In contrast, the constraining 

impact on capacity increases 

at the airport shares the same 

time horizon as the positively 

reinforcing loop described in 

the previous bullet of 10 to 20 

years (Neufville & Odoni 

2003, p. 70). 
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Figure 2.6 - Diagram of the economic activity positively reinforcing loop (highlighted in yellow) 
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Figure 2.7 - Diagram of the capacity and funding positively reinforcing loop (highlighted in red) 
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Figure 2.8 - Diagram of the noise and emissions negatively reinforcing loop (highlighted in 

green) 
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and industry benchmarks.  It finishes with a discussion of the choice of analytical 

models in airport benchmarks and a review of the implications of the new 

stakeholder model on past benchmarks. 

2.2.1 Overview of Benchmarking 

Benchmarking serves two purposes.  The first is to measure the performance 

of one entity – organizational or otherwise – and compare it to the performance of 

other, similar entities.  The second purpose is to identify those practices which 

enable the success of top performing entities; referred to as “best practices”. 

Robert C. Camp is widely credited as one of the originators of the practice of 

benchmarking in for example (Spendolini 1992) and (Yasin M. M. 2002).  Camp 

pioneered the use of benchmarking at Xerox Corporation in the late 1970s and early 

1980s as its photocopier business was being threatened by foreign competition 

(Camp 1989) (Camp 1993).  Xerox ultimately implemented what is perhaps the first 

documented example of the full cycle of performance measurement, benchmarking, 

and best practice identification: Xerox measured the cost and quality of its products 

and compared these metrics to those of its competition.  This allowed Xerox to 

identify the areas in which a performance gap existed, either in terms of cost or 

quality.  To close this gap, Xerox studied the management practices of its 
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competitors as well as organizations outside its industry, such as L.L. Bean, and was 

able to identify several key practices which drove those organizations’ success. 

Benchmarking has since been applied both in industry and academia in 

numerous studies.  Dattakumar and Jagadeesh (Dattakumar & Jagadeesh 2003) 

conducted an extensive literature review and found more than 350 publications on 

the topic as of June 2002.  By way of examples, Beretta et al. (Beretta et al. 1998) 

conducted benchmarking of accounting processes; Mann et al. (Mann et al. 1999) 

benchmarked the food and drinks industry; Matzko and Wingfield (Matzko & 

Wingfield 1995) described benchmarking of banks; Min and Min (Hokey Min & 

Hyesung Min 1996) benchmarked hotels; Ulusoy and Ikiz (Ulusoy et al. 2001) 

benchmarked manufacturing, and Zairi (Zairi 1998) benchmarked logistics.   

Yasin (Yasin M. M. 2002) makes a distinction between competitive analysis 

and benchmarking by asserting that “although competitive analysis is useful in 

assessing one’s position relative to the competition, it usually does not provide 

insights as to how competitors achieved this position, i.e. through what methods or 

processes.  In contrast, the benchmarking process goes beyond comparison of 

results to include analysis of organizational processes and methods.” 

McNair and Leibfried (McNair & Leibfried 1992) provide a generic 

benchmarking process framework which breaks the process into the following 

steps: 
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1. Identify core issues: Determine the overall goals against which 

performance should be measured and determine the associated 

metrics.  Determine potential drivers of these performance metrics. 

2. Internal baseline data collection: Collection of performance metrics as 

well as data on current processes and practices 

3. External data collection: Collection of the comparative dataset 

4. Analysis: Identifying performance gaps and best practices which may 

be used to address those performance gaps 

5. Change/Implement: Implementation of the benchmark 

recommendations 

This framework highlights the process for an organization of identifying its 

goals, measuring its gaps against those goals, and finally identifying and 

implementing practices to address those gaps.   

One of the primary criticisms of benchmarking is that by comparing an 

organization’s practice to what others are already doing it becomes an exercise in 

catch-up; benchmarking can only ever help close the gap between laggards and top 

performers but will not enable an organization to leapfrog into first place 

(Thompson & Cox 1997).  In response to that criticism, the argument has been made 

that innovation can in fact take place by looking at processes outside an 
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organization’s industry peers in areas where similar work is being performed; so-

called functional benchmarking (Ahmed & Rafiq 1998). 

2.2.2 Analytical Techniques for Benchmarking 

This section provides an overview of the different analytical techniques 

available for benchmarking.  It also presents an in-depth view of Data Envelopment 

Analysis (DEA) and its variations. 

2.2.2.1 Overview of Methods for Calculation of Benchmark Scores 

The benchmark score calculation is the process of analyzing the set of 

benchmark parameters to compute an overall assessment of performance for each 

participating enterprise, and ranking those enterprises from best to worst.   

The factors that impact the choice of methodology for a benchmarking 

exercise are the number of benchmark parameters, the number of dimensions of the 

parameters, and whether or not a utility function for inputs and outputs is known. 

Figure 2.9 shows a benchmarking model decision tree which summarizes the 

types of benchmarking models which will be reviewed in the subsequent sections. 
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Figure 2.9 - Benchmarking Methodology Decision Tree 
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from best to worst or the analyst may compute percentile-based assessments for 

each enterprise. 

Benchmark studies may use measurements that are based on a ratio of some 

form of inputs or resources to the production of outputs.  For instance in an auto 

manufacturing situation this ratio might be the assembly labor cost per car.  

Although this situation uses two parameters (the labor cost and the number of cars), 

the computation of a ratio of the two measures means that the benchmarking 

technique used is the same as for a single metric. 

Computation of individual components of productivity performance has been 

referred to as single factor productivity (Tretheway et al. 1997, p. 99). 

2.2.2.3 Benchmarking with Multiple Parameters of a Single Dimension 

When the study involves more than one input or output parameter, a 

technique for combining several parameters into a single, overall assessment of 

performance is necessary. 

With input parameters x1, x2, …, xn and output parameters y1, y2, …, ym, the 

analyst is looking for a ratio between these sets of inputs and outputs, and wants to 

rank the participating enterprises from best to worst. 
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When the inputs used are the form of resource quantities that can be 

translated into an equivalent cost, the Total Factor Productivity (TFP) can be 

computed.  The TFP compares the total outputs with the total inputs (Tretheway et 

al. 1997, p. 94).  

In the example given in the previous section, the assembly labor cost per car 

represents a partial productivity measure since it only captures one part of the 

assembly cost.  The total cost of assembly also involves for instance assembly 

equipment costs and costs for the assembly facility.  An example of a TFP measure 

would instead be the calculation of the total production cost per car. 

The Variable Factor Productivity (VFP) method is an alternative to TFP 

which focuses only on the subset of factors that are variable in nature (Tretheway et 

al. 1997, p. 99).  For example, although some component of depreciation costs for 

capital assets such as the car assembly facility would be included in a TFP, a VFP 

analysis would exclude those costs. 

2.2.2.4 Benchmarking with Multiple Parameters of Multiple Dimensions 

with Known Utility Functions 

The aim of utility functions for comparing alternatives (e.g. airports) has 

been described as follows: “Assign numbers to the various alternatives so that 

alternative x is preferred to alternative y precisely when x gets a higher number 
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than y.”  Furthermore, “[t]he number assigned to an alternative is usually called its 

utility, and sometimes its worth, and the assignment is a utility function” (Roberts 

1972, p. 126). 

The approach to benchmarking entities using utility functions is similar in 

nature to the VFP and TFP approaches just described, with the difference that rather 

than translating values of inputs and outputs into monetary equivalents, utility is 

computed for inputs and outputs.  However, in order for utility theory to be applied, 

complete knowledge of the utility functions for all parameters being considered is 

necessary, as well as the utility functions for combinations of multiple different 

parameters. 

2.2.2.5 Elicitation of Stakeholder Utility Functions for Benchmarking 

When the benchmark includes multiple parameters in which utility functions 

are not known a priori but access to stakeholder representatives is available, it is 

possible to elicit the stakeholders’ preferences for the mix of inputs and outputs. 

Developed as part of work on recommender systems, the approach in 

(Alodhaibi et al. 2010) to elicitation of stakeholder preferences is applicable to 

benchmarking when stakeholder preferences are unknown.  In the approach, a 

utility vector �� � ���, ��, . . , �	
 is described, in which ui is the utility of the value for 

each attribute under consideration (the attributes could be for example on-time 
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performance and cost of operations at an airport).  The utility for each attribute 

value would be extracted through the stakeholders’ domain knowledge. 

Second, each stakeholder’s preferences for the mix of attributes is described 

in a vector of weights � � ��, �, . . , 	
, where ��� � �∑ ��	
��� � 1.  The utility is 

then computed as �
��
���
 � ��� � ����. . �	�	 � � · �� .  The utility can be 

computed individually for a stakeholder or for a group of stakeholders, using 

composite values of �. 

To use this approach, it is necessary to have access to stakeholder 

representatives to elicit 1) their joint description of the utility of the range of 

possible values for each attribute and 2) their individual weights assigned to each 

attribute.  With this knowledge, the analyst can compute benchmark results for the 

population of stakeholders as a whole, as well as benchmark results based on the 

preferences of individual stakeholders or sub-groups of stakeholders. 

2.2.2.6 Benchmarking with Data Envelopment Analysis 

Two challenges exist for benchmarking of enterprises across multiple 

parameters: 

• Parameter weighting: How should the different parameters be weighted 

against one another?  Continuing with the previously used example, it is possible 
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that labor costs are more/less desirable than outsourcing costs, so is it an 

accurate representation to simply sum them and treat them equally?  TFP and 

VFP do include parameter weightings, but the analyst must come up with a 

rationale for determining those weightings, and this will introduce subjective 

aspects to the benchmark results. 

• Multidimensionality and lack of utility function: Instances exist where the set 

of inputs and/or outputs cannot simply be summed into an overall score due to 

different dimensions and the lack of knowledge about the utility function.  For 

instance, some inputs may be in the form of values that can be expressed as 

costs, such as labor resources, while others cannot, such as the number of 

runways or landing capacity. 

To address these issues, the non-parametric technique Data Envelopment 

Analysis (DEA) was been introduced.  The premise of DEA is that each entity in the 

comparison set is a Decision-Making Unit (DMU) which has made conscious 

decisions about how to weigh the importance of each of the inputs and outputs.  

DEA is a linear programming-based technique which computes the optimal 

parameter weightings for each DMU under the constraint that those parameter 

weights cannot lead to efficiency scores greater than 1.0 for any of the participating 

DMUs in the study.  This efficiency score LP is solved once for each of the 

participating DMUs, generating a set of optimal weightings for each DMU. 
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DEA was introduced by Cooper, Charnes, and Rhodes in 1978 (A. Charnes et 

al. 1978), giving the basic DEA algorithm its designation, CCR. 

The objective is to identify the DMU(s) with the best inherent efficiency in 

converting inputs x1, x2, …, xn into outputs y1, y2, …, ym.  All other DMUs are then 

ranked relative to the most efficient DMU(s).  

Model for DMU a: 

 

This fractional program is solved once for each of the DMUs, resulting in a set 

of optimal weights u1, u2,…,um and v1, v2,…,vn for each DMU.  However, the fractional 

program is difficult to solve, so the CCR creators proposed the following approach 

for turning it into a linear program: 

∑

∑
=

i

iai

r

rar

a
xv

yu

hmax Where ur and vi are weights applied 

to outputs yrj and inputs xij 

0,

1

≥

≤
∑

∑

ir

i

iji

r

rjr

vu

xv

yu

Subject to for each unit j 



81 . 

 

Set the denominator in the objective function equal to some positive constant 

c.  Move the equality of the denominator and c to the constraint section.  Also cross-

multiply the original constraint and rearrange it. 

 

This is valid for all positive values of c.  In the literature, the value for c is 

commonly set equal to 1, since that results in an easier-to-read problem.  This 

results in the following modified problem. 

 

∑=
r

rara yuhmax

0,

0

1

≥

≤−

=

∑∑

∑

ir

i

iji

r

rjr

i

ii

vu

xvyu

xv
aSubject to 

for each unit j 

c

yu

h r

rar

a

∑
=max

0,

0

≥

≤−

=

∑∑

∑

ir

i

iji

r

rjr

i

iai

vu

xvyu

cxvSubject to 

for each unit j 



82 . 

 

Next, the program is converted to its dual.  This is advantageous from a 

solution efficiency perspective since the primary problem generally has a small 

number of variables but a large number of constraints.  Turning the program into its 

dual generates a larger number of variables but fewer constraints. 

 

The expanded form of the dual CCR problem is: 

Conversion of primal CCR problem to its dual: 

Primal problem: 

Max C [v, u]                where C = [01,…,0n, ya] 

Subject to A [v, u] ≤ B         where A =  

    and B =  

u, v ≥ 0 

Dual problem: 

Min [θa, λ] B                        where λ = λ1... λn 

Subject to [θa, λ] A ≥ C 

θa unbounded, λ ≥ 0 
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Finally, slacks are added: 

 

The nonzero elements of the vector λ identify the active peers for each DMU; 

peers being those fully efficient DMUs that make up the reference set for any 

inefficient DMUs.  Hence, in many examples with DMUs A, B, C, etc., the elements of λ 

are not identified as λ1, λ2, λ3,… but instead as λA, λB, λC,… to indicate 

correspondence with each DMU. 

For fully efficient DMUs, its corresponding element of λ will be equal to 1 and 

all other elements are equal to 0.  For inefficient DMUs, one or more elements of λ 

that don’t correspond to that DMU will be greater than 0. 

A number of different variations of the basic CCR methodology have been 

proposed to address a number of perceived shortcomings.  What follows is an 
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overview of some DEA variations.  These DEA variations are covered in (William 

Wager Cooper et al. 2006), (Abraham Charnes 1994), and (Ray 2004). 

2.2.2.6.1 Adding a Positivity Constraint 

The first variation to the basic CCR methodology was introduced by the 

original CCR authors (A. Charnes et al. 1979).  This was a modification after it became 

clear that in the original CCR model, there were cases where some DMUs achieved 

full efficiency by ignoring some inputs/outputs by setting the corresponding 

weights to 0.  The authors altered the original non-negativity constraint on the 

parameter weights to ur, vi > 0.  This positivity constraint is generally implemented 

by the constraint ur, vi > ε where ε is an infinitesimal constant. 

2.2.2.6.2 BCC 

The Banker Charnes Cooper (BCC) model is an extension to the original CCR 

model which introduces the concept of variable returns to scale (VRS) (R. D. Banker 

et al. 1984). 

The concept of VRS is described in (William Wager Cooper et al. 2006) by way 

of a one-input and one-output example.  The BCC model’s frontier is in the form of a 

convex hull of the fully efficient DMUs.  As a result of the convex hull, the number of 

fully efficient DMUs in a BCC model will always be greater than or equal to the 
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number of fully efficient DMUs in a CCR model for the same data.  An example from 

(William Wager Cooper et al. 2006) is recreated in Figure 2.10. 

 

Figure 2.10 – BCC example 

In this example, the dashed line represents the efficient frontier for the CCR 

model while the solid lines make up the BCC frontier.  In the BCC model, A, B, and C 

are all fully efficient while only B is efficient in the CCR model.  D is inefficient in 

both models.  The slope of the BCC frontier lines shows that the model identifies 

increasing returns to scale between A and B since the BCC frontier on that segment 

has a steeper slope than the CCR frontier.  Conversely, decreasing returns to scale 

exist on the segment between B and C for the BCC model.  In contrast to the BCC 

model’s VRS, the CCR model has an assumption of Constant Returns to Scale (CRS). 
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The BCC model is created by adding the below constraint to the dual 

problem. 

  

Because of the added constraint, the feasible region for the BCC model is 

always also part of the feasible region for the CCR model. 

This constraint is also expressed as eλ = 1 where e is a unity vector e1…en 

with all elements equal to 1.  The dual problem is expressed as follows: 

 

In this model, input-oriented and output-oriented versions of the model must 

be distinguished.  Input-oriented refers to the fact that the objective function is 

specified to minimize inputs while keeping outputs constant, while output-oriented 

refers to maximizing outputs while keeping inputs constant.  In the CCR model, the 

solutions to input and output-oriented models are the same thanks to the constant 

returns to scale.   
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What is presented above is the input-oriented version of the BCC model.  The 

output-oriented version of the model is similar in nature but its formulation focuses 

on maximizing outputs through the following formulation: 

 

While the efficiency scores for an input-oriented and an output-oriented CCR 

model will be the same, this is not the case for the BCC model due to the convexity of 

the feasible region. 

2.2.2.6.3 Additive 

The additive model uses the slack variables directly in its objective function 

and combines both the input and the output-oriented components of the BCC 

models in its constraints.  This model is referred to as a non-radial measure of 

efficiency since the objective function does not formulate a radial ratio based on the 

model frontier and the origin.  The additive model was developed by Charnes, 

Cooper, Golany, Seiford, and Stutz (Ray 2004, p. 133). 

The formulation of the model is: 
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The efficiency score in the additive model is not unit independent, and slack 

for variables that have high magnitudes will have a greater impact on the efficiency 

score than those variables that do not.  

2.2.2.6.4 Slacks-Based Measure of Efficiency and the Russell Measure 

The Slacks-Based Measure (SBM) of efficiency was introduced by Tone (Tone 

2001) and can be considered an extension to the additive model in that it is unit-

independent when inputs and outputs of different dimensions are mixed. 

The formulation of the SBM model follows: 
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where e is a vector whose every element is 1 

Max z = e s- + e s+  
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The unit independence is introduced by the fact that each slack in the 

objective function is divided by the corresponding input or output value for the 

DMU whose score is being computed.  The constraints of this model are the same as 

those of the additive model. 

The SBM formulation is a fractional problem.  This conversion into a linear 

problem has been proposed (William W. Cooper et al. 2006, pp. 97-98): 

 

New variables are defined: 
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Using the new variables, this linear program is formulated: 

 

The optimal solution using the original variables are then obtained through: 

 

SBM shares near complete commonality with the Russell Measure of 

Efficiency (Färe & Knox Lovell 1978), and for that reason, the Russell Measure is not 

described further. 

2.2.2.6.5 Free Disposal Hull 

The Free Disposal Hull (FDH) model was introduced in 1984 (Marchand et al. 

1984) and rests on the assumption that only observed combinations of inputs and 

outputs or combinations that are “worse” than those are feasible, removing the 
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convexity assumption from the DEA model.  Continuing with the previously used 

example, the shaded area in Figure 2.11 provides a visualization of the feasible 

region in the FDH model.  While in the BCC model, any point along the segment 

stretching between points A and B would be feasible and on the fully efficient 

frontier, the FDH model eliminates any such points, creating a step function.   

 

Figure 2.11 - Free Disposal Hull feasible region (shaded) 

 

The feasible region for the FDH model is formulated as  

PFDH = {(x, y) | x ≥ xj, y ≤ yj, x, y ≥ 0, j = 1, 2, … , n } 
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The FDH model formulation in the input-oriented case is a mixed-integer 

program since the values in the λ vector are restricted to 0 and 1, and thanks to the 

unity constraint e λ = 1, only one of the values in λ is in fact nonzero. 

 

2.2.2.6.6 Super-efficiency 

Several airport benchmarking studies, as will be shown in a subsequent 

section, use the concept of super-efficiency.  However, two different meanings to the 

concept of super-efficiency were identified, even though both serve to break some of 

the ties that occur when too many DMUs are ranked as fully efficient. 

In the super-efficiency version introduced by Andersen and Petersen 

(Andersen & Petersen 1993) and presented in (William Wager Cooper et al. 2006), 

super-efficiency refers to the removal of the values of the DMU for whom the 

efficiency score is being computed from the X and Y matrices in the constraints 

section.  Those DMUs can in fact achieve efficiency scores greater than 1.0, and ties 

are (generally, but not always) broken. 
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This approach to super-efficiency can be applied to any number of DEA 

models, but is exemplified in the form of an input-oriented CCR model: 

  

In contrast to this model, one airport benchmarking paper (Bazargan & Vasigh 

2003) which will be reviewed in a later section refers to the use of a “super-efficient” 

DMU in a different manner.  The paper uses a “super-efficient” DMU in a CCR study 

in order to break ties between too many fully efficient DMUs.  In their approach, an 

“artificial” DMU is introduced to the study by assigning it the most favorable inputs 

and output values present in the study, drastically reducing the number of fully 

efficient DMUs.  In most instances, the only fully efficient DMU in the study is the 

artificial, super-efficient DMU. 

The method for selecting the inputs and outputs for the artificial DMU is 

described as: 

  xiART = min(xij)    i = 1,….m,  j = 1,....,n 
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  yrART = min(yrj)    r = 1,….s,  j = 1,....,n 

2.2.2.6.7 Cross-Efficiency 

DEA methods such as CCR and BCC have been called self appraisal as they 

allow each DMU to “choose” their own ideal set of input and output weights.  In 

contrast to this self appraisal, Doyle and Green have proposed a form of peer 

appraisal they call cross efficiency (Doyle & Green 1994).  Cross efficiency works by 

applying the ideal weights computed for all other DMUs to each DMU and computing 

an average efficiency score on that basis.  The underlying assumption is that each 

DMU is evaluated based on the “opinions” of all of its peers about the relative 

importance of each parameter. 

The base version of cross-efficiency (referred to as Simple Cross-Efficiency, 

of SXEF) can be determined by first computing the standard individual DEA scores 

using CCR, BCC, or some other DEA model.  Doyle and Green introduce the idea of a 

rating DMU (when the DMU’s own weights are used to assess the efficiency of other 

DMUs) and a rated DMU (when the weights of other DMUs are used to assess the 

efficiency of a DMU), and an example of their method is reproduced in Table 2.4. 
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Table 2.4 - Determination of SXEF (Doyle & Green 1994) 

 

Rated DMU Averaged 

appraisal 

of peers 1 2 3 4 5 6 

1 E11 E12 E13 E14 E15 E16 A1 

2 E21 E22 E23 E24 E25 E26 A2 

Rating 

DMU 

3 E31 E32 E33 E34 E35 E36 A3 

4 E41 E42 E43 E44 E45 E46 A4 

5 E51 E52 E53 E54 E55 E56 A5 

6 E61 E62 E63 E64 E65 E66 A6 

e1 e2 e3 e4 e5 e6 

Averaged appraisal by peers 

 

The scores e1 through e6 in Table 2.4 represent the SXEF scores. 

Doyle and Green also introduce the concepts of Aggressive Cross-Efficiency 

(AXEF) and Benevolent Cross-Efficiency.  These two models not only compute the 
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most advantageous weights for each individual DMU but also seek to compute 

weights that respectively minimize and maximize the efficiency of all other DMUs. 

The authors propose implementing this model in a two-phase method: 

The first phase consists of computing the standard CCR or BCC efficiency 

score for each individual DMU.  In the second phase, the objective function seeks to 

minimize (or maximize, respectively) the average efficiencies of all other DMUs, 

while imposing the constraint that the weights chosen for the DMU under 

consideration not worsen its own efficiency.  This second phase is introduced based 

on the fact that the weights chosen in phase one may not be unique in achieving the 

same efficiency score for the DMU. 

2.2.2.6.8 Malmquist Index 

The Malmquist productivity index is used to measure productivity change 

over time.  It includes two components: one measuring the individual DMU’s 

productivity change between two time periods (“catch-up effect”); and one 

measuring the shift in the productivity frontier (“frontier-shift effect”) (Chen & Iqbal 

Ali 2004).   

The Malmquist index is not a DEA model in and of itself; rather, it 

incorporates the analyst’s chosen DEA model in its computation of a DMU’s 

performance change over time. 
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The Malmquist index is computed by multiplying the catch-up by the 

frontier-shift effect.  To start, the catch-up effect is computed as follows, assuming 

we are comparing period 1 to period 2:  

 

Each efficiency score is computed in separate DEA runs according to the 

selected DEA model.  A catch-up greater than 1 indicates relative improvement 

between the two periods, while a value below 1 indicates a relative worsening of 

performance.  A worsening of relative performance is possible in spite of absolute 

improvements of (xa, ya) since the peers in the benchmark may in fact have 

proportionately improved even more. 

For the frontier-shift calculation, each of the observations of (xa, ya) are 

compared to the respective frontiers, as follows: 

 

 

φ2 = 
 [efficiency of (xa, ya)2 based on the period 1 frontier] 

 [efficiency of (xa, ya)2 based on the period 2 frontier] 

φ1 = 
 [efficiency of (xa, ya)1 based on the period 1 frontier] 

 [efficiency of (xa, ya)1 based on the period 2 frontier] 

Catch-up = 
 [efficiency of (xa, ya)2 based on the period 2 frontier] 

 [efficiency of (xa, ya)1 based on the period 1 frontier] 
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The frontier-shift is then computed as the geometric mean of the two ratios: 

 

The resulting Malmquist index is computed as (catch-up) * (frontier-shift) 

Studies, e.g. (Sarkis 2000), have instead of a Malmquist index used repeated 

observations of the same DMUs over time as separate observations in a DEA 

analysis using the standard models such as CCR or BCC, thereby getting for instance 

40 observations from 10 DMUs at four different points in time.   

If a Malmquist index calculation is not done, but all observations are 

combined, the implicit assumption is that the conditions for achieving efficiency 

remain the same over time for individual DMUs and that no underlying factors (e.g. 

inflation, improved technology, etc.) have changed over time.  

2.2.2.6.9 Radius of Classification Preservation 

The measure of Radius of Classification Preservation (RCP) is a measure of 

the degree to which a DMU’s inputs and outputs must be moved before the DMU’s 

classification as efficient or inefficient changes (Rousseau & Semple 1995).  A 

standard DEA model such as BCC or the additive model is used to compute initial 

efficiency scores.  A maximum change (“radius”) is then computed for each DMU to 

Frontier-shift = 21φφ
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determine the sensitivity of its classification to changes in its inputs and outputs.  

This radius is proposed for use as a method for distinguishing between multiple 

efficient DMUs as determined by the initial DEA calculation. 

For an efficient DMU, the RCP value is determined as follows: 

 

where the subscript E indicates the efficient DMU whose RCP value is being 

calculated; Y(E) and X(E) are identical to the standard Y and X matrices with the 

exception that the columns corresponding to E are removed; and e, em, and es are 

vectors whose every element is 1. 

2.2.2.6.10 Inefficiency Frontier 

The concept of an inefficiency frontier is introduced in (Jiang et al. 2010).  

The authors observe that the general DEA models are based on some measure of the 

distance to the efficient frontier.  They argue that of importance is not only a DMU’s 

distance from the efficient frontier but also a DMU’s distance from the inefficient 
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frontier, with the inefficient frontier being defined as the convex hull of inefficient 

points.  This concept of an inefficient frontier is illustrated in the one-input and one-

output example in Figure 2.12.  Points C, B, and D are on the inefficient frontier. 

 

Figure 2.12 – Example of efficient and inefficient frontier 

 

The formal definition of the strongly inefficient frontier includes the concept 

of an anti-production possibility set (APPS) which is the area outside of the 
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production possibility set described in the constraints section of the general DEA 

models.  The APPS is defined as follows: 

���� � ���, �
|� �  !, � " #!, $%! � 1, ! " 0' 

The inefficient frontier (IF) is then defined as: 

() � ���, �
 * ����|+�� ,, � ,
 * ,-.-/, 01�2� ,, � ,
 3 �2�, �
 4 �� ,, � ,
 5 ����' 

The authors then define a number of different means of computing the 

distance to the inefficient frontier that are similar to those described in previous 

sections for computing the distance to the efficient frontier.  The distance to the 

inefficient frontier can then be used for breaking ties between DMUs. 

 

2.2.2.6.11 Additive Model Adjusted for Negative Data 

The models reviewed to this point are not able to incorporate input and 

output values that may take on negative values.  For that reason, Pastor and Ruiz 

have proposed an adjustment to a model similar to the SBM/Russell measure of 

efficiency which results in a units-independent additive model which can treat 

negative inputs and outputs (Zhu & Cook 2007, p. 76). 

The model specification follows: 
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where the slacks corresponding to any Ri0
- or Rr0

+ with a value of zero are 

ignored. 

2.2.2.6.12 Integer Constraints in DEA 

The DEA models presented thus far assume that all inputs and output 

parameters take on continuous values.  However, in some contexts, some or all 

inputs and outputs are indivisible.  For instance, the number of runways, aircraft, or 

terminal buildings can only take on integer values. 

Lozano and Villa (Zhu & Cook 2007, pp. 271-288) provide implementation 

guidance for applying integer constraints to several typical DEA models but also 

caution that this guidance does not apply to certain DEA variants (Zhu & Cook 2007, 

p 288).   
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The adjustments to the DEA models for incorporating integer constraints 

vary, but a typical example is the variation of the CCR input-oriented model with 

integer constraints: 

 

where I’ and O’ are the input and output variables with integer constraints. 

2.2.3 Review of Airport Benchmarks 

This section presents a review of past benchmarks of airport performance.  

Two types of benchmarks can be identified: Those that were conducted for 

academic purposes and those conducted by industry organizations or consultancies.  

The former category of benchmarks is available through academic publications, 

giving insight into the metrics and model used.  In contrast, the latter category is 

often available only to member organizations or those able to pay the cost for 
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accessing the benchmark results, making evaluation of the metrics and model used 

impossible in many cases. 

The following subsections review the two types of benchmarks. 

2.2.3.1 Review of Academic Airport Benchmarks 

Airport benchmarking studies have proliferated over the past decade and a 

half.  Airport benchmarking studies began appearing in the mid-1990s, for example 

by Hooper and Henscher (Hooper & Hensher 1997) and Gillen and Lall (Gillen & Lall 

1997).  Since then a number of studies have appeared, using different 

methodologies and covering different geographic areas. 

This section starts with Table 2.5 which contains a summary listing of airport 

benchmarking studies in the literature, along with their characteristics on the input 

and output metrics used and the geographic region covered. 

Subsequent to the summary table, each paper is discussed in terms of its 

method of analysis, whether any best practices, controllable factors, or investment 

strategies were identified in the study through post-ranking analysis (post-ranking 

analysis being analysis whereby the benchmark “scores” are used dependent 

variables to understand what might be driving them), and any criticism of the 

approach in other papers. 
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Table 2.5 - Overview of past airport benchmarks 

Study Inputs  Outputs Geography 

Size Versus 
Efficiency: A 
Case Study of US 
Commercial 
Airports  

(Bazargan & 
Vasigh 2003) 

Operational costs; 
non-operational 
expenses; number of 
runways; number of 
gates 

Passenger throughput; 
aircraft movements; 
aeronautical revenue; 
non-aeronautical 
revenue; percentage of 
on-time operations U.S. 

Relative 
Efficiency of 
European 
Airports  

(Pels et al. 
2001) 

Air transport 
movement study 
(part 1): 
Airport surface area; 
total length of 
runways; number of 
aircraft parking 
positions at 
terminals; number of 
remote aircraft 
parking positions Aircraft movements Europe  

Relative 
Efficiency of 
European 
Airports  

(Pels et al. 
2001) 

Passenger movement 
study (part 2): 
Terminal size; 
number of aircraft 
parking positions at 
terminals; number of 
check-in desks; 
number of baggage 
claim belts Passenger throughput Europe  
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Study Inputs  Outputs Geography 

Developing 
Measures of 
Airport 
Productivity 
and 
Performance  

(Gillen & Lall 
1997) 

Terminal efficiency 
study (part 1): 
Number of runways; 
number of gates; 
terminal area; 
number of 
employees; number 
of baggage collection 
belts; number of 
public parking spots 

Passenger throughput; 
cargo throughput U.S. 

Developing 
Measures of 
Airport 
Productivity 
and 
Performance  

(Gillen & Lall 
1997) 

Aircraft movement 
study (part 2): 
Airport surface area; 
number of runways; 
runway area; 
number of 
employees Aircraft movements U.S. 

Performance 
Based 
Clustering for 
Benchmarking 
of US Airports  

(Sarkis & Talluri 
2004) 

Operational costs; 
number of 
employees; number 
of gates; number of 
runways 

Operational revenue; 
passenger throughput; 
aircraft movements; 
cargo throughput U.S. 
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Study Inputs  Outputs Geography 

Measuring 
Airports' 
Operating 
Efficiency: A 
Summary of the 
2003 ATRS 
Global Airport 
Benchmarking 
Report  

(Oum & Yu 
2004) 

Number of 
employees; number 
of runways; number 
of gates; terminal 
area; purchased 
goods, materials, and 
services 
(outsourcing) 

Passenger throughput; 
cargo throughput; 
aircraft movements; 
non-aeronautical 
revenue Global 

An application 
of DEA to 
measure the 
efficiency of 
Spanish airports 
prior to 
privatization  

(Martín & 
Román 2001) 

Labor expenditure; 
capital expenditure; 
materials 
expenditure 

Aircraft movements; 
passenger throughput; 
cargo throughput Spain  

Measuring Total 
Factor 
Productivity of 
Airports - An 
Index Number 
Approach  

(Hooper & 
Hensher 1997) Capital expenditure 

Aeronautical revenue; 
non-aeronatical 
revenue Australia  
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Study Inputs  Outputs Geography 

Measuring 
Airport Quality 
from the 
Airlines' 
Viewpoint  

(Adler & 
Berechman 
2001) 

Airport charges; 
minimum connecting 
times; number of 
passenger terminals; 
number of runways; 
distance to nearest 
city center 

Level of satisfaction 
from the airline users 
of each airport 

Primarily 
Western 
Europe 

An analysis of 
the operational 
efficiency of 
major airports 
in the United 
States  

(Sarkis 2000) 

Operating costs; 
number of 
employees; number 
of gates; runways  

Operating revenue; 
airline aircraft 
movements; general 
aviation aircraft 
movements; passenger 
throughput; freight 
throughput U.S. 

Managerial 
Efficiency of 
Brazilian 
Airports  

(Pacheco & 
Fernandes 
2003) 

Number of 
employees; payroll 
costs; operating 
expense  

Passenger volume; 
cargo volume; 
operating revenue; 
commercial revenue; 
other revenue Brazil  

Assessing 
efficiency of 
European 
airports: a total 
factor 
productivity 
approach  

(Nyshadham & 
Rao 2000) 

Capital cost; labor 
cost; other cost 

Workload units 
(normalized sum of 
passenger and cargo 
volumes); aeronautical 
revenue; non-
aeronautical revenue; 
employees; assets Europe  
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Study Inputs  Outputs Geography 

The 
performance of 
BAA before and 
after 
privatization  

(Parker 1999) 

Number of 
employees; capital 
costs; operating 
costs 

Revenue; passenger 
volume; cargo and mail 
volume UK  

Airports in 
Argentina: 
Technical 
efficiency in the 
context of an 
economic crisis  

(Barros 2008) 

Number of 
employees; runway 
area; airport apron 
area; passenger 
terminal area 

Aircraft movements; 
passenger volume; 
cargo volume Argentina 

Performance 
evaluation of 
Italian airports: 
A data 
envelopment 
analysis  

(Barros & Dieke 
2007) 

Labor costs; capital 
costs; operational 
(non-labor) costs 

Aircraft movements; 
passenger volume; 
cargo volume; 
aeronautical revenue; 
handling revenue; 
commercial revenue Italy 

 

2.2.3.1.1 Analysis of Individual Studies 

This section analyses each of the studies listed in the table in the previous 

section.  Each paper is reviewed for its method of analysis and whether post-ranking 

analysis uncovered any best practices, controllable factors, or investment strategies.   
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The literature was also studied to understand what criticism has been levied 

against this set of papers by other studies.  With only one exception, none of the 

papers in the study could be found to have received any criticism from other 

authors.   

Note that this section discusses the benchmark model used and makes 

frequent reference to DEA technique.  DEA is discussed in detail in section 2.2.2.6. 

Size Versus Efficiency: A Case Study of US Commercial Airports (Bazargan & 

Vasigh 2003) 

This study uses a large number of inputs and outputs which describe the 

level of activity at the airport as well as its costs and revenues.  No discussion is 

provided as to why these metrics were selected. 

The study uses the basic DEA model, CCR, without any mention or 

consideration of alternate DEA models from the literature.  Instead the analysis uses 

a new method of introducing a super-efficient artificial DMU with the lowest input 

levels and the highest output levels in order to “force-rank” all airports. 

In terms of post-ranking analysis, the study uses the calculated DEA scores to 

compute the differences in performance between small, medium, and large hubs, 

and finds that small hubs are consistently more efficient than large hubs. 
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The only source of criticism of this paper is a study (Schaar & Sherry 2008) 

which found that if some of the underlying modelling choices had been different, the 

conclusion of the paper could have been completely reversed (large hubs being 

more efficient than small hubs).   

Relative Efficiency of European Airports (Pels et al. 2001) 

This study is composed of two sub-studies, one focused on airside 

performance, and one focused on terminal operations.  Its primary method of 

analysis is the DEA BCC variety which takes into account economies of scale, and 

this methodology is selected after a relatively exhaustive analysis.  Subsequently, 

the analysis also uses stochastic production frontier analysis to confirm the primary 

findings, which are that airports do operate under increasing returns to scale.  The 

paper notes that much further work is needed to explain which factors drive more 

efficient performance, but does not venture into actually doing so. 

Developing Measures of Airport Productivity and Performance (Gillen & Lall 

1997) 

As with the previous paper, this study includes one review of airside and one 

of terminal operations efficiency.  The primary methodology is DEA, and this paper 

is one of the first studies to apply DEA to airport benchmarking.  The study uses 



112 . 

 

both CCR and BCC to compare and contrast the effects of assuming that economies 

of scale exist, and that they don’t. 

The authors undertake a thorough Tobit regression study for their post-

ranking analysis, using the efficiency scores as the dependent variables, and a series 

of controllable and uncontrollable factors as independent variables to understand 

their impact.  This is one of very few studies to go to these lengths in this type of 

analysis and the authors uncover several findings: 

The authors identify that on the airside, having hub airlines and expanding 

gate capacity has significant impact on improving efficiency, and reducing general 

aviation’s portion of operations also improves efficiency. 

On the terminal side, the authors find that efficiency is improved by 

expanding the number of gates and managing them in such a way as to maximize 

their utilization.   

Performance Based Clustering for Benchmarking of US Airports (Sarkis & 

Talluri 2004) 

The authors of this study use both the basic DEA CCR model but also expand 

into the alternative aggressive cross-efficiency model (AXEF), which applies each set 

of parameter weightings across all of the airports in the study and then computes a 

mean value for each airport. 
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The authors don’t venture very far into explanatory analysis of why some 

airports are more efficient than others, but observe that many high-performing 

airports fall into warm or stable weather areas.  This finding is in line with (Sarkis 

2000) which more systematically finds that so-called “snow-belt” airports will have 

the worst performance. 

Measuring Airports' Operating Efficiency: A Summary of the 2003 ATRS 

Global Airport Benchmarking Report (Oum & Yu 2004) 

This study is a summary of an industry benchmark from ATRS which is 

primarily concerned with airports’ financial performance.  The study uses Variable 

Factor Productivity (VFP) to compare airport performance.  The authors provide 

limited details on how this methodology is used, but discuss the fact that the 

measures considered are focused directly or indirectly on financial performance. 

The authors do make a point of normalizing efficiency scores (using the VFP 

method) for several factors that are considered outside the control of airport 

management, namely: airport size, average aircraft size, percentage of international 

traffic, percentage of air cargo in total traffic, and capacity constrained airports.  The 

study also considers several factors that are within the control of management, such 

as portion of non-aviation revenue, level of outsourcing, and overall passenger 

satisfaction. 
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Among the uncontrollable factors, the authors find that airport size, percent 

cargo, and capacity constraints all have statistically significant positive coefficients, 

indicating that they all improve performance.  They also find that the percent of 

international traffic has a statistically significant negative coefficient.  Among the 

controllable factors, the authors find that the percentage of non-aviation related 

revenue and degrees of outsourcing both have statistically significant positive 

coefficients, indicating that they both help improve efficiency. 

An application of DEA to measure the efficiency of Spanish airports prior to 

privatization (Martín & Román 2001) 

The authors in this study compute both the CCR and BCC versions of DEA 

after a thorough discussion of the two.  The authors find general evidence of the 

existence of economies of scale, but do not take their analysis any further as far as 

finding other factors that explain strong or poor performance. 

Measuring Total Factor Productivity of Airports - An Index Number 

Approach (Hooper & Hensher 1997) 

The authors of this study use index number Total Factor Productivity (TFP) 

which is a method for comparing an index of outputs to an index of inputs by 

computing the ratio between the two.  The index number TFP method uses 

predetermined parameter weights.  However, the index number TFP study present 
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here only considers financial measures of performance; this means effectively 

studying the airport as an enterprise whose mission it is to maximize revenue and 

minimize costs. 

The authors do not conduct any post-ranking analysis. 

Measuring Airport Quality from the Airlines' Viewpoint (Adler & Berechman 

2001) 

This study – as the study title suggests – takes a different approach to 

measuring airport performance by examining airport quality from the point of view 

of airlines.  The authors use Principal Component Analysis in order to reduce the 

number of output variables and thereby get better discrimination among the 

airports, and combine this technique with the introduction of a super-efficient 

airport.   

However, the authors fail to discuss why the inputs to the model were 

selected and do not address the fact that the satisfaction scores do not scale with 

increased input volumes, which is a concern in a DEA analysis. 

The authors find 1) that the amount of landing charges had little impact on 

quality performance; 2) that connection times have little impact on quality 

performance; and that 3) an increased focus on freight traffic does have some 

impact on quality scores. 
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An analysis of the operational efficiency of major airports in the United States 

(Sarkis 2000) 

This study uses the largest variety of DEA methodologies to-date.  It 

compares the results of each methodology but unfortunately does not discuss the 

appropriateness of each.  The study includes the basic CCR and BCC models, but also 

four additional models:  

• Simple cross-efficiency  

• Aggressive cross-efficiency  

• Ranked efficiency  

• Radii of classification rankings 

Using the findings from the full suite of different analytical methods, the 

study finds 1) that airports that are hubs for major carriers are more efficient than 

non-hubs; 2) that airports in multiple airport systems are not more efficient than 

single airport systems; and 3) that airports in snowbelts are less efficient than those 

not in snowbelts. 

Managerial Efficiency of Brazilian Airports (Pacheco & Fernandes 2003) 

This paper provides a short discussion on methodology, and lands on the 

BCC model with the motivation that it is dealing with airports of varying sizes.  The 

study is limited in its analysis and does not enter into any discussion about drivers 
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of performance.  Instead, it compares its DEA scores with another, separate study, 

and creates a two-dimensional matrix of efficiency scores, but this does not result in 

further insights into the drivers of airport performance.   

Assessing efficiency of European airports: a total factor productivity 

approach (Nyshadham & Rao 2000) 

This study uses TFP and is focused on economic and productivity metrics, 

and takes a financial view of airport performance.  It does not provide any insight 

into underlying factors that drive productivity. 

The performance of BAA before and after privatization (Parker 1999) 

This study uses time-series data to create a large number of observations in 

its DEA analysis.  The author discusses both CCR and BCC and uses both in the 

analysis.  The main purpose is to compare what happened to the British Airports 

Authority (BAA) performance after it was privatized.   

The author is able to conclude that the impact of privatization was not 

measurable.  As a side conclusion, he finds clear evidence of economies of scale. 

Airports in Argentina: Technical efficiency in the context of an economic 

crisis (Barros 2008) 
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This study compares and contrasts the CCR and BCC methodologies, and 

ultimately lands on the fact that economies of scale are in fact present. 

The study proceeds to conduct a regression analysis and similar to for 

example (Sarkis 2000), the author finds that hub airports are more efficient than 

non-hubs.  The study also finds that in a time of economic crisis, smaller airports 

fared worse than larger airports. 

Performance evaluation of Italian airports: A data envelopment analysis 

(Barros & Dieke 2007) 

The authors start off using the CCR and BCC methodology but because of the 

low ratio of observations to variables, they find too many airports ranked as 

efficient.  They proceed to using the cross-efficiency DEA as well as the super-

efficient DEA models.  However, the authors do not provide any deeper explanation 

for why one method is to be preferred over another. 

The authors confirm that two different forms of economies of scale (airports 

with large capital assets, and airports with large workload volumes) exist.  The 

authors also find evidence that privately managed airports perform better than 

those under partially private management. 
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2.2.3.1.2 Summary  

The studies reviewed in the previous section generally share the common 

feature that they are largely focused on financially oriented metrics and productivity 

calculations.  There appears to be general agreement on the presence of economies 

of scale in airport operations. 

Nine of 14 studies include various forms of post-ranking analysis, generally 

through different types of regression analysis.  These analyses have uncovered 

various controllable (e.g. weather) and controllable (e.g. outsourcing) factors that 

have an impact on performance. 

In terms of models, DEA is applied in 11 of 14 studies, followed by some 

examples of Total Factor Productivity analysis.  While all studies applying DEA use 

some form of CCR or BCC analysis, there is variation in the details of how these 

models are applied.  Several studies use multiple versions of CCR and BCC analysis 

in the same study, and four studies also complement CCR and BCC with the use of 

other DEA models.  There appears to be little consensus on which methods are most 

appropriate under which circumstances. 

An area which in large part is absent in these studies relates to the selection 

of the inputs and outputs in the various studies: As evidenced in   
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Table 2.5, each of these studies, which have roughly the same objective - to 

measure the comparative efficiency of a group of airports - offers a different 

perspective on how to measure the efficiency of these airports.  Part of the reason 

why these parameters were selected may be the availability of these values.  In 

many countries, the United States included, public reporting requirements for 

airports makes for instance financial data and passenger and aircraft movement 

data relatively readily available.  Although any analyst will be limited by the types of 

performance data available, many of the studies in the previous section do not 

discuss how this available data relates to the enterprise’s performance goals. 

2.2.3.2 Review of Industry and Association Airport Benchmarks 

Several benchmarks are conducted by industry associations as well as for-

profit corporations.  These benchmarks are summarized in Table 2.6. 
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Table 2.6 - Industry Airport Benchmarks 

Benchmark Organization 

Results publicly 

available 

ACI-NA Airport Performance 
Benchmarking Program 
(Airports Council International 
- North America 2009b) 

Airports Council 
International – North 
America (ACI-NA) No 

Rates and Charges Survey 
(American Association of 
Airport Executives 2006) 

American Association 
of Airport Executives 

Yes, but requires 
purchase 

Global Airport Benchmarking 
Report (Air Transport 
Research Society 2009) 

Air Transport 
Research Society 
(ATRS) 

Yes, but requires 
purchase.  Some 
analytical results 
published in 
academic journal as 
described in section 
2.2.3.1. 

Airport Performance 
Indicators (Jacobs Consultancy 
2009b) 

Review of Airport Charges 
(Jacobs Consultancy 2009b) Jacobs Consultancy 

Yes, but requires 
purchase 

North America Airport 
Satisfaction (J.D. Power 2008) J.D. Power 

Summary results 
available 

Airport Service Benchmarking 
(Airports Council International 
2009) 

Airports Council 
International (ACI) No 
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These benchmarks can be broadly classified into four categories: 

• Industry association benchmarks: These benchmarks (Airports 

Council International - North America 2009b) (American Association of 

Airport Executives 2006) (Airports Council International 2009) are 

produced for airport management to “measure the performance of 

discrete airport functions” and to “increase efficiency, quality, and 

customer satisfaction.” (Airports Council International - North America 

2009b) 

• Consultancy benchmarks: These benchmarks (Jacobs Consultancy 

2009b) are produced by a firm that provides “planning and 

management consultancy services in transport and infrastructure, 

project procurement and investment appraisal” (Jacobs Consultancy 

2009a). 

• Analyst benchmarks: This benchmark (Air Transport Research Society 

2009) is produced by an association of airport analysts.  The purpose 

of this benchmark is to “is to measure and compare the performance 

of several important aspects of airport operation”.  No specific 

mention of the intended audience is made. 

• Consumer sentiment benchmarks: This benchmark (J.D. Power 

2008) surveys airport customer satisfaction.  The purpose of this 
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benchmark is to provide data that “companies worldwide use to 

improve their business” (J.D. Power 2009). 

Although details about the metrics used and the benchmarking model 

employed are unavailable for these benchmarks, the general descriptions of the 

benchmarks provide some insight into their scope.  Table 2.7 summarizes the 

categories of metrics used. 
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Table 2.7 - Summary of metrics used in industry benchmarks 

Airport Benchmark 

Category of Metrics 
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The summary in Table 2.7 suggests that the industry benchmark produced 

by ACI-NA is the most comprehensive of the benchmarks in terms of its coverage.  A 

common thread throughout most of the benchmarks is a focus on financial factors, 

although exceptions to this are the three benchmarks that focus on quality ratings as 

well as the benchmark that evaluates the quality of community airline service. 

 

2.2.4 Implications of the Stakeholder Analysis on Airport 

Performance Benchmarking 

Published airport benchmarks, as evidenced in section 2.2.2, do not account 

for the fact that U.S. airports function as public utilities and must address multiple 

stakeholder concerns.  Benchmarking of U.S. airports should be grounded in the 

goals of their stakeholders.  As the analysis in section 2.1.3.1 shows, the goals for the 

airport vary depending on the stakeholder, and the analysis shows that stakeholder 

goals sometimes conflict.  For instance: 

• Passengers want access to low fares while air carriers want access to 

high-yield markets. 
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• Residents in the local community want a minimum of noise and 

emissions but a number of other stakeholder groups want traffic to be 

maximized. 

This analysis identifies two conceptual boundaries around the airport: 1) A 

boundary around the airport organization; and 2) a boundary around the airport 

service, which also includes service providers such as air carriers.  The analysis 

shows that stakeholders who are located outside the airport service boundary have 

objectives whose fulfillment is not fully under the control of airport management.   

Since U.S. airports function as public utilities, benchmarking of airport 

performance must be based on the goals of one or more airport stakeholders, and 

depending on the stakeholders included in the analysis conflicting goals may exist.  

Airport management must balance these sometimes opposing objectives for their 

stakeholders in determining performance goals. 

The analysis also shows that not all aspects of stakeholders’ performance 

goals for the airport are under the control of airport management.  This is an 

important consideration in determining the right performance metrics for an 

airport performance benchmark and in interpreting the results of the airport 

benchmark. 
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A stakeholder-driven benchmark of airport performance can be a useful tool 

for determining in which airport improvement investments should be made since it 

can determine where the greatest benefits can be generated.  The analysis shows 

that such a benchmark should be based on the goals of a number of airport 

stakeholders, and that it should not only be limited to factors within the direct 

control of airport management. 

Similarly, benchmarks can be used to guide financial decisions about where 

to add or drop services for airport service providers.  Such benchmarks must also be 

founded in the goals of those service providers when performance metrics are 

selected. 

2.2.5 Analytical Techniques Used in Past Airport Benchmarks  

Table 2.8 shows an overview of the benchmark models used in past 

benchmarks and illustrates that the primary model choice in those past studies has 

been DEA, but also shows that that a variety of different DEA models have been 

applied in past airport benchmark studies.  This mix of model choices exist in spite 

of the fact that nearly all of these studies are some variation of a measure of how 

effectively these airports convert inputs such as labor and capital to desirable 

outputs such as passengers and aircraft movements.  That a variety of different 
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models have been applied to the same problem points to the need for a structured 

framework for benchmarking model selection. 

Table 2.8 - Models used in past airport benchmark studies 
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Size Versus Efficiency: A Case Study of US 
Commercial Airports (Bazargan & Vasigh 2003)    

X 
      

Relative Efficiency of European Airports (Pels et 
al. 2001) 

    
X 

     

Developing Measures of Airport Productivity and 
Performance (Gillen & Lall 1997) 

  
X 

 
X 

     

Performance Based Clustering for Benchmarking 
of US Airports (Sarkis & Talluri 2004) 

  
X 

   
X 

   

Measuring Airports' Operating Efficiency: A 
Summary of the 2003 ATRS Global Airport 
Benchmarking Report (Oum & Yu 2004) 

X 
         

An application of DEA to measure the efficiency 
of Spanish airports prior to privatization (Martín 
& Román 2001)   

X 
 

X 
     

Measuring Total Factor Productivity of Airports - 
An Index Number Approach (Hooper & Hensher 
1997)  

X 
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Measuring Airport Quality from the Airlines' 
Viewpoint (Adler & Berechman 2001) 

     
X 

    

An analysis of the operational efficiency of major 
airports in the United States (Sarkis 2000) 

  
X X X 

 
X X X 

 

Managerial Efficiency of Brazilian Airports 
(Pacheco & Fernandes 2003) 

    
X 

     

Assessing efficiency of European airports: a total 
factor productivity approach (Nyshadham & Rao 
2000)  

X 
        

The performance of BAA before and after 
privatization (Parker 1999) 

  
X 

 
X 

     

Total factor productivity and efficiency of 
Australian airports (Abbott & Wu 2002) 

         
X 

Airports in Argentina: Technical efficiency in the 
context of an economic crisis (Barros 2008) 

    
X 

     

Performance evaluation of Italian airports: A data 
envelopment analysis (Barros & Dieke 2007) 

     
X X 
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2.3 Dissertation Problem Statement 

The dissertation’s problem statement is comprised of three components 

identified as gaps in this literature review.  The following subsections summarize 

these three gaps. 

2.3.1 Problem 1: Stakeholder and Goal Ambiguity  

The review of past airport benchmarks in section 2.2.3 shows that past 

studies have not examined airport stakeholders and their goals in selecting the 

performance metrics in use in those benchmarks.  Rather, it appears that many 

benchmarks are designed around data that was available to the researchers without 

any analysis of why and to whom this performance data was pertinent.  As a result, 

the conclusions of those benchmarks lack relevance in relation to the true goals of 

the airport. 

The analysis in section 2.1.3 shows that a range of different stakeholders 

with different and sometimes conflicting objectives exist.  The complexity of the 

stakeholder model indicates that benchmarks must take a structured approach to 

selecting the stakeholders whose goals are to be reflected in the benchmark before 

making a determination about which metrics to include in the study. 
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2.3.2 Problem 2: Lack of Systematic Model Selection  

The review in section 2.2.2 shows the existence of a variety of different DEA 

model variants and section 2.2.3.1 shows that past airport benchmarks have applied 

many of these DEA model variants.  This variability in model choices exists in spite 

of the fact that all of the studies in section 2.2.3.1.1 review some version of the same 

problem: Which airports are most efficient?  Meanwhile, an analysis has shown 

(Schaar & Sherry 2008) that the choice of benchmark model can have a radical 

impact on the results of the benchmark.   

This suggests that to create valid benchmarks, a method is needed for 

systematically selecting a benchmark model, and that the choice about benchmark 

model must reflect the underlying characteristics of the domain being modeled. 

 

2.3.3 Problem 3: No Benchmarks Apply a Systematic Process  

As a result of the problems described in the previous two sections, no 

benchmark exists with a systematic approach to the selection of stakeholder goals 

and benchmark model.  Analysis which will be described in section 4.1 shows that 

past benchmarks have consistently made poor selections in determining the DEA 

model in at least four categories, including the choice about which basic model for 
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aggregating data into results to use, returns to scale, integer constraints, and the 

calculation of results across several time periods. 

A set of new benchmark studies is necessary to address this gap in terms of 

systematically selecting performance metrics and analytical model in the 

benchmarks. 
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3 Chapter 3: Methodology 

 

This methodology is designed to benchmark airports.  The methodology 

addresses the problems identified in section 2.3: the lack of a systematic approach 

to selection of benchmark metrics based on stakeholder goals; the lack of a method 

for selecting the model for computing benchmark results; and the lack of 

benchmarks conducted using a systematic process. 

This section describes a comprehensive step-by-step process for conducting 

a benchmark which not only computes benchmark results but also interprets those 

results and derives actionable findings. 

Figure 3.1 provides an overview of the airport benchmarking methodology.  

Each step of the methodology is described in detail in the following subsections. 

 

Figure 3.1 - Overview of airport benchmarking methodology 

1. Select 

stakeholders 

and goals

2. Identify 

metrics for 

goals

3. Select 

benchmark 

model

4. Collect data

5. Compute 

benchmark 

results

6. Interpret 

results and 

derive findings



134 . 

 

 

The steps in Figure 3.1 can be categorized into three phases, as described in 

Table 3.1. 

Table 3.1 - Phases of benchmarking methodology 

Phase Description 

Phase 1: Benchmark 

design 

The design of the benchmark involves identifying the 

stakeholders and their goals, determining the metrics to 

be used, and selecting the DEA model for the 

benchmark.  This is represented by steps 1, 2, and 3 in 

Figure 3.1.  

Phase 2: Benchmark 

implementation 

The benchmark implementation involves collecting the 

performance parameters and computing the 

benchmark scores using the DEA implementation, as 

shown in steps 4 and 5 in Figure 3.1  

Phase 3: Analysis and 

interpretation of results 

The analysis and interpretation of results has the 

objective of uncovering controllable and uncontrollable 

factors which impact the benchmark results. 
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The methodology was developed by creating a combination of leveraging and 

extending existing research with describing new methods of analysis.  Table 3.2 

presents an overview of the approach to developing each step in the methodology. 

Table 3.2 - Development of benchmarking methodology 

Step Description of development approach 

Step 1: Select 

stakeholders and goals 

The model of stakeholders and their goals which 

provides the foundation for this step was based on an 

extensive literature survey and on knowledge 

elicitation sessions with 32 representatives of 

stakeholder groups. 

Step 2: Identify metrics 

for goals 

Identifying performance metrics which link to the 

stakeholder goals was found to be a process which had 

not previously been investigated by researchers, 

resulting in a completely new process being described 

in the dissertation. 
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Step Description of development approach 

Step 3: Select benchmark 

model 

The framework for DEA model selection was based on 

the review of existing DEA models presented in section 

2.2.2.6, and it extends the DEA framework described by 

(Kleine 2004).  The development of heuristics for model 

selection using the DEA framework also leveraged the 

model review in section 2.2.2.6 as well as a number of 

sources relating to the operation of airports.  

Step 4: Collect data The data collection step was developed by conducting 

an inventory of data sources that pertain to the key 

aspects of airport operations and finance. 

Step 5: Compute 

benchmark results 

The software for computing DEA benchmark scores was 

developed using Matlab and C++, leveraging the CPLEX 

linear and mixed-integer program solver.  The 

implementations were founded on the DEA model 

descriptions in section 2.2.2.6. 
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Step Description of development approach 

Step 6: Interpret results 

and derive findings 

The structure of methods for interpreting results and 

deriving findings had not previously been addressed by 

researchers.  The components of the structure were in 

part based on methods used in past benchmarks for 

analyzing results and on a review of statistical methods 

which do not require the normality assumption to hold. 

 

3.1 Step 1: Select Stakeholders and Goals 

As described in section 2.3.1, the benchmark design must have a foundation 

in stakeholder objectives for the airport.  This step in the benchmark design phase 

takes one of two different starting points: 

1. Starting with an analytical “angle” which describes the focus of the 

benchmark.  For instance, such an angle could be “comparing the 

operational efficiency of airports” or “comparing the environmental 

or noise impact of airports”.  This approach may cover one or more 

stakeholder groups. 
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2. Starting with the definition of one or more stakeholder groups on 

behalf of which the benchmark will be conducted.  For instance, this 

could be “a benchmark of airports’ success in meeting the objectives 

of regional residents”. 

From this starting point, the stakeholder model and goals database described 

in section 2.1.3.3 is used to determine the goals on which the benchmark will be 

based. 

If using the analytical “angle” described in item 1 above, the stakeholder 

model and goals database are used to identify the stakeholders that are relevant for 

this area and the subset of their goals that pertain to this domain are extracted.  For 

instance, if the goal is to compare the environmental and noise impact of airports, 

the stakeholder model and database is used to identify all stakeholders that have 

goals which are relevant to environmental and noise performance, and these goals 

and their associated stakeholders are compiled to serve as the basis for the 

benchmark. 

If using the stakeholder-focused definition of the benchmark, the full set of 

the stakeholders’ goals for the airport are extracted from the database, and serve as 

the basis for the benchmark. 
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The resulting list of goals provides the starting point for the next phase of the 

benchmark methodology in which performance metrics are selected. 

3.2 Step 2: Identify Metrics for Goals 

Having selected the goals which should be reflected in the benchmark, select 

the metrics which reflect performance against these goals.  There are two factors to 

be taken into consideration in assembling the performance metrics: i) Select the 

performance metrics and ii) analyze the metrics for any methodological 

discrepancies, and making any necessary adjustments to the metrics.  This section 

describes these two sub-steps. 

3.2.1 Selecting the Metrics 

To select the metrics for a benchmark goal, complete the following two steps.  

The first step is to analyze the goal for whether it is at the “atomic” or composite 

level, by determining if it is composed of several elements which must be measured 

individually, or if it is specified in such a way that it can be described by a single 

metric.  If the goal is composite, it is decomposed into its atomic elements. 

Determining whether a goal is atomic or composite is based on a review of 

the literature in the area as well as knowledge elicitation sessions with stakeholder 

representatives.  This body of research and expert knowledge gives the analyst 
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insight about whether several components must be measured or if a metric which is 

all-encompassing is available.  For instance, research about the environmental 

impact of airports may yield the insight that there are several component chemical 

compounds whose volume or concentration must be measured separately (FAA 

Office of Environment and Energy 2005).  Conversely, research into the noise impact 

of traffic at an airport may yield the insight that the primary measure of concern is 

the number of residents within the area affected by more than a certain number of 

decibels of noise stemming from the airport traffic (Neufville & Odoni 2003, p. 178). 

The second step is to select the individual metrics to use.  In the ideal state 

any desirable performance data would be available, but in practice the benchmark is 

limited by the types of data available.   

If the goal definition includes a specific metric (e.g. “maximize the total 

volume of passengers carried”), identify sources of data which most closely match 

that metric.   

If the metric is more generally stated (e.g. “minimize delay”), the analyst 

starts by conducting an inventory of available relevant metrics (e.g. “aircraft arrival 

delay”, “aircraft departure delay”, “passenger arrival delay”, etc.).  From this 

inventory, study the literature and interview stakeholder representatives to 

determine which one among the metrics most comprehensively addresses the goal.   
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The analysis of performance metrics may indicate that no available metric 

comprehensively addresses the goal.  For instance, rather than data on total 

passenger volumes, data may only be available on the volume of domestic 

passengers.  If this is the case, identify these limitations in the discussion of the 

benchmark results. 

This metrics selection process is summarized in Figure 3.2. 
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Figure 3.2 - Process for selecting metrics  
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3.2.2 Identifying Methodological Discrepancies 

The step of identifying methodological discrepancies in the metrics that are 

selected serves to find cases where the metrics selected will not be suitable for use 

in a DEA analysis.  The methodological discrepancies to avoid include: 

• Using too many metrics: If too many metrics are used in the DEA 

run, the discriminatory power of DEA to separate the fully efficient 

DMUs from inefficient ones is reduced.  (R. G. Dyson et al. 2001) 

suggests a rule of thumb that the number of DMUs should be greater 

than or equal to twice the product of the number of inputs and 

outputs, and proposes approaches to reducing the number of inputs 

and outputs if necessary.  These approaches include converting inputs 

that can be priced into single cost values. 

• Combining indices and volume measures: A DEA benchmark 

cannot mix indices such as percentages or other computed factors 

with metrics which scale with DMU size, such as passenger volumes.  

The DEA analysis must include only one type of measure.  
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3.3 Step 3: Select Benchmark Model 

As discussed in section 2.2.2.6, several different DEA models exist and as 

shown in section 2.2.5, airport benchmark studies have applied many of these 

variations.  This points to the need for a systematic approach to the selection of a 

DEA model.  For airport benchmarking, this is accomplished by choosing the DEA 

model using the model selection framework along with the associated heuristics 

which are both presented in this section.  The full details of the framework and 

heuristics as well as the background on their development are presented in 

Appendix A. 

The DEA framework presents a structure for the choices that must be made 

in determining a DEA model for the benchmark.  An overview of this framework is 

presented in the first subsection.  The heuristics associated with the framework 

provide decision guidance for making selections in the framework when conducting 

an airport benchmark.  A summary of the heuristics is presented in the second 

subsection.  Combined, these two elements provide the modeler with a method for 

making a well-founded choice about which DEA model to use. 

Figure 3.3 provides an overview of how the framework and heuristics should 

be applied. 
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Figure 3.3 – Overview of application of DEA model framework and heuristics 
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Figure 3.4 - Structure of a DEA model framework for airport benchmarking.  Full details 

available in Appendix A. 
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3.3.2 Heuristics for Making Choices in the DEA Model Selection 

Framework 

Choices in the DEA model selection framework should be based on the 

characteristics of the domain being modeled.  The heuristics for making choices in 

the DEA model selection framework when benchmarking airport performance were 

developed by analyzing the characteristics of airport operations and their 

environment.  A summary of the heuristics are presented in Table 3.3, with full 

details in Appendix A.  Rules for translating the DEA model choices made using the 

heuristics are mapped to DEA model implementation parameters in Table 3.4. 

Table 3.3 – Heuristics for airport benchmarking using the DEA model choice framework.  Full 

details available in Appendix A.   

Scalarizing function 

Aggregation 

Use either ε-maximin or additive.  If the ignorance of slacks in the 

efficiency score is acceptable, then ε -maximin is the choice that reflects 

management’s choices about the mix of inputs and/or outputs.  Otherwise, 

use the additive function.  In addition, if any parameters take on negative 

values then the additive function implemented in the additive model 

adjusted for negative data must be used. 
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Weights 

Use specific weights unless evidence exists that range-adjusted 

weights are more appropriate. 

Orientation 

If the model requires orientation, then choose orientation to reflect 

which parameters are controllable by management. 

Technology 

Returns to scale 

If modeling some version of labor and capital resources as inputs and 

passengers and aircraft movements as outputs, then use VRS.  Otherwise, 

study the parameters to determine if VRS or CRS exist. 

Free Disposal Hull 

Unless compelling evidence that study results will be better accepted 

if only observed values are used for peer comparisons, do not use FDH. 

Integer constraints 

Use integer constraints for inputs and outputs with low magnitudes, 

such as runways. 

Timespan 
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If modeling some version of labor and capital resources as inputs and 

passengers and aircraft movements as outputs over multiple time periods, 

then use a Malmquist index.  For other domains, review if technology 

changes over time have occurred. 

Tie breaking 

If the study requires that all airports be fully ranked, use the tie-

breaking function that provides the best intuitive interpretation; otherwise 

do not use a tie-breaking function. 
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Table 3.4 - Translation of heuristics to specific model choices 

Element Choice Translation in modeling 

Aggregation 

ε-maximin 

Use CCR or BCC with minimum bounds on 

weights, as described in sections 2.2.2.6.1 and 

2.2.2.6.2. 

Additive 

Use SBM/Russell measure, since these provide 

units invariant modeling options, as described 

in section 2.2.2.6.4. 

Additive with 

tolerance for 

negative data 

Use the adaptation of the SBM/Russell measure 

model with tolerance for negative data, as 

described in section 2.2.2.6.11. 

Weights 
Specific 

weights 
Use original model as specified. 

Orientation Input/output 

If using an oriented model such as BCC, choose 

the input or output oriented version as 

appropriate. 
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Element Choice Translation in modeling 

Technology 

CRS 

If the aggregation function is ε -maximin, then 

choose CCR, as described in section 2.2.2.6.1.  If 

using some other model, ensure that no 

convexity constraint such as eλ=1 is present in 

the model. 

VRS 

If the aggregation function is ε -maximin, then 

choose BCC, as described in section 2.2.2.6.2.  If 

using some other model, ensure that a 

convexity constraint such as eλ=1 is present in 

the model. 

Free 

Disposal 

Hull 

Use FDH 
Use the FDH implementation as described in 

section 2.2.2.6.5. 

No use of FDH Use original model as specified. 

Integer 

constraints 

Some/all 

variables 

integer 

constraints 

Use the implementation as described in section 

2.2.2.6.12. 

No integer 

constraints 
Use original model as specified. 
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Element Choice Translation in modeling 

Timespan 

Use 

Malmquist 

index 

Use Malmquist index implementation as 

described in section 2.2.2.6.8. 

No Malmquist 

index 
Use original model as specified. 

Tie-

breaking 

Use tie-

breaking 

Use one of the implementations as described in 

sections 2.2.2.6.6, 2.2.2.6.9, or 2.2.2.6.10. 

No tie-

breaking 
Use original model as specified. 
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3.4 Step 4: Collect Data 

Every benchmark of airport performance has a unique set of requirements 

for performance data, resulting in a review of available data being necessary for 

each benchmark.  However, several key data sources that are applicable in many 

types of benchmarks can be identified.   

This section provides an overview of those data sources.  The sources 

provide raw data, with preprocessing being necessary in many cases to determine 

the aggregate or derived values necessary in the benchmark. 

The data sources include: 

• Data on airline service: Data on the traffic between airport pairs is 

available from the T100 database which is compiled from data 

collected by Office of Airline Information (OAI) at the Bureau of 

Transportation Statistics (BTS) (Bureau of Transportation Statistics 

2010b).  It includes variables such as the frequency of service, the 

available seat capacity, and the number of passengers carried.  The 

T100 database is a complete census of flights by U.S. and foreign 

carriers. 
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• Airfare data: Data on airfares is available from the Airline Origin and 

Destination Survey (DB1B) database (Bureau of Transportation 

Statistics 2010c) 

• Airport financial data: The FAA’s Compliance Activity Tracking 

System provides data on airport revenues and costs (Federal Aviation 

Administration 2010a) 

• Aircraft movement volume data: The FAA’s Air Traffic Activity 

System provides data on aircraft movements by type of aircraft 

(Federal Aviation Administration 2010) 

• Data on on-time performance: On-time data is compiled from data 

collected by the OAI at the BTS (Bureau of Transportation Statistics 

2010b).  This data only encompasses U.S. carriers. 

• GDP data: Data on GDP by metropolitan area is available from the U.S. 

government’s Bureau of Economic Analysis (BEA) (Bureau of 

Economic Analysis, U.S. Department of Commerce 2010). 

• Population data: Data on the population by metropolitan area is 

available from the U.S. Census Bureau (U.S. Census Bureau 2010b).   
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3.5 Step 5: Compute Benchmark Results 

To compute the benchmark results, a software implementation of DEA 

models is used.  This section describes commercially available DEA software as well 

as a DEA implementation for this dissertation. 

Software for computing DEA scores is commercially available and academic 

DEA freeware can also be obtained.  Table 3.5 provides an overview of a variety of 

available DEA software.   

Table 3.5 - Overview of DEA software 

Product Pricing (as of June, 2010) 

Banxia Software Frontier Analyst (Banxia 
2010) 

$285 to $5,850 

DEA Frontier (DEA Frontier 2010) $349 to $1,500 

Performance Improvement Management 
DEA Software (Performance Improvement 
Management 2010) 

$485 to $7,175 

DEAP (Coelli 2010) Freeware 

DEA Solver Online (Kleine 2010) Freeware 

 

For the purposes of the DEA analysis described in this dissertation, these 

software products lack the ability for the user to customize modeling parameters to 

the degree necessary.  To compute the DEA scores using the different models 
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described in the DEA framework, the dissertation analysis included the 

implementation of several DEA models to allow for custom settings of the different 

model parameters. 

Two different implementations were developed: One comprehensive 

implementation using Matlab, requiring the user to have access to a Matlab license; 

and a second, basic implementation in C++ which does not require the user to have 

access to any specialized software other than the CPLEX (IBM 2010) linear program 

solver and associated interfaces.  Both implementations rely on CPLEX for solving 

the linear and mixed-integer programs.  The architecture of the two 

implementations is provided in Figure 3.5 and the following two subsections 

describe the two implementations in more detail.  The full code of the two 

implementations is provided in the Appendix B and Appendix C. 

 

Figure 3.5 - Architecture of the two DEA implementations 
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3.5.1 Matlab Implementation 

The Matlab implementation is provided in Appendix B and includes the 

implementation of the following DEA models: 

• CCR (A. Charnes et al. 1978), discussed in section 2.2.2.6 

• BCC (R. D. Banker et al. 1984), discussed in section 2.2.2.6.2 

• SBM (Tone 2001), discussed in section 2.2.2.6.4 

• Additive model adjusted for negative data (Zhu & Cook 2007, p. 76), 

discussed in section 2.2.2.6.11. 

The implementation also allows for setting the orientation of the model, 

setting minimum weights, and setting integer constraints.  The implementation 

interfaces with Matlab through the CPLEXMEX interface (Giorgetti 2010).  See 

Appendix B for the full code. 

 

3.5.2 C++ Implementation 

The C++ implementation is provided in Appendix C and implements the 

input-oriented versions of the following models: 

• CCR (A. Charnes et al. 1978), discussed in section 2.2.2.6 

• BCC (R. D. Banker et al. 1984), discussed in section 2.2.2.6.2 
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• SBM (Tone 2001), discussed in section 2.2.2.6.4 

The implementation interfaces with CPLEX through the CPLEX Concert 

technology.  See Appendix C for the full code. 

 

3.6 Step 6: Interpret Results and Derive Findings 

With the benchmark results computed, the analysis shifts to interpreting the 

benchmark results to determine the controllable and uncontrollable factors which 

impact results.  This encompasses the fourth step of the benchmarking process 

described in (McNair & Leibfried 1992). 

This section describes three methods for investigating the characteristics of 

the benchmark results.  All three of the methods, or a subset of them, may be applied 

for analyzing the benchmark results.  The three methods are: 

1. Identifying the factors which impact the benchmark results: This 

process serves to formulate hypotheses about the impact on the 

benchmark results of controllable factors (e.g. management 

practices) and uncontrollable factors (e.g. weather), and testing those 

hypotheses. 
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2. Categorizing airports according to environmental factors: This 

analysis serves to categorize the airports along two variables, one of 

which is the benchmark results and the second is some 

environmental variable (e.g. average yields).  The purpose of this 

categorization is to identify groups of airports that meet a certain 

characteristic and to formulate an analysis of the implications of 

membership in those groups (e.g. what does it mean for airports that 

have poor benchmark performance and high average yields?). 

3. Investigation of individual airports’ results: This analysis serves to 

pinpoint an individual airport, usually one with outlier 

characteristics, and investigate which (potentially unique) factors 

impact that airport. 

The following three subsections discuss each of these analytical approaches 

in turn. 

3.6.1 Identifying Factors which Impact Benchmark Results 

This step serves to identify factors which have an impact on benchmark 

results.  The step involves formulating hypotheses about factors which impact 

results, and then testing those hypotheses. 
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The analysis begins with consulting existing research and writings about the 

aspect of airport performance that is being studied, as well as eliciting subject 

matter experts’ views, with the purpose of compiling a set of hypotheses about 

factors which impact airport performance.  The factors can include both factors 

which are considered controllable by airport management (e.g. the degree of 

outsourcing) as well as factors which are uncontrollable by management (e.g. 

weather conditions). 

The statistical methods to be used for testing these hypotheses must be 

carefully chosen since the normality assumption may not hold true for DEA results.  

If the normality assumption does not hold, t-tests and regressions are not suitable 

methods for this step of the analysis.  Rather, the methods must be those that do not 

require the normality assumption to hold true.  Methods that have been used in past 

studies include: 

• The Kruskal-Wallis test (Kruskal & Wallis 1952) (used in e.g. 

(Bazargan & Vasigh 2003)), which is based on the ranks of DMUs, and 

does not require the normality assumption to hold true. 

• Tobit regressions (Tobin 1958) (used in e.g. (Gillen & Lall 1997)).  

Tobit regressions are suitable when the data represents a partial 

normal distribution, which may be the case with DEA benchmark 

results. 



161 . 

 

3.6.2 Categorizing Airports According to Environmental Factors 

The categorization of airports according to environmental factors serves to 

classify sets of airports into groups which share similar characteristics.  The 

purpose of this classification is to make it possible to analyze the nature and 

situation of the airports that fall within a particular group.  

For instance, if the example begun earlier is continued, grouping the results 

of a benchmark of the level of air service according to the average yield provides 

groups such as “poor benchmark results and high yield”, “poor benchmark results 

and low yield”, etc.  Each of these groups can then be analyzed to determine what 

the implications are of membership in a particular group. 

To determine which factors to group airports by, the analyst should – as in 

the previous section about hypothesis formulation – use resources such as past 

research, writings, and interviews of subject matter experts. 

The difference between the categorization of airports as described in this 

section, and identification of causal factors in the previous section, is that the 

categorization of airports is not focused on the causal effect on the benchmark 

results of the variables considered; rather the focus is to further refine the context 

of the results. 
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3.6.3 Investigating Individual Airports 

The third type of investigation is focused on individual airports rather than 

the full set of airports included in the benchmark.  Commonly, the purpose of this 

step is to understand the factors which cause an individual airport’s position in the 

results.  If the airport being investigated is one with particularly strong benchmark 

results, the purpose is to understand what enabled its strong performance; if the 

airport is one with poor results, the objective is to understand what caused its poor 

performance. 

Two analytical strategies are available for this step: 

1. Analyze the factors which contribute directly to the inputs and 

outputs used in the benchmark.  For instance, if total operating cost is 

one input to the benchmark, analyze the subcategories of costs that 

make up the operating cost to identify if one such category stands out 

as higher or lower than the norm. 

2. Review research and news sources that explain the particular 

environment in which the airport operates.  For instance, if the 

volume of traffic has dropped sharply, news articles that describe the 

loss of airline hub service at that airport during the time period being 

studied would be a relevant piece of evidence. 
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4 Chapter 4: Results 

 

The results comprise four components.  First is an application of the DEA 

model selection framework and heuristics to the past airport benchmarks to assess 

their validity.  Subsequently, the stakeholder model and model selection framework 

and heuristics are applied in three benchmark case studies, each presented in its 

own subsection:  

1. A benchmark of the level of domestic air service to U.S. metropolitan 

areas 

2. A benchmark of the level of capacity utilization for providing high 

levels of air service and moving large volumes of passengers at the 

U.S. OEP-35 airports 

3. A re-design of a benchmark from the literature in which the original 

benchmark’s premise is used as a starting point, and the stakeholder 

model and model selection framework and heuristics are applied to 

create a new benchmark 
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4.1 Assessment of Validity of Past Benchmarks: Application of 

the DEA Model Selection Framework and Heuristics to 

Past Airport Benchmarks 

The purpose of this section is to apply the DEA modeling framework and 

heuristics on 13 past airport benchmarks to identify if discrepancies exist between 

what the framework and heuristics prescribe and what the study authors chose in 

their models.  Such discrepancies have an impact on the validity of the findings from 

these studies.  Discrepancies also reinforce the need for a more systematic approach 

to DEA model selection in future studies. 

The first subsection applies the framework and heuristics to the past studies 

of airport performance.  The following subsection analyzes the findings from 

applying the framework and heuristics and the last subsection analyzes the 

implications of the findings. 

 

4.1.1 Results of Framework and Heuristics Application 

The past studies of airport performance using DEA were reviewed using the 

DEA framework and heuristics.  Each study was assessed in three steps: 
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• Study choice: Each study was analyzed to determine which choice the 

authors made for each element in the DEA framework. 

• Analysis: An analysis of the study was made for each element in the 

framework based on the objective of the study, its domain, the inputs 

and outputs used, and the timespan of the analysis. 

• Recommendation according to framework: Using the heuristics 

from 0, the recommended choice was determined for each element in 

the framework. 

Using this information, it was possible to compare the choices made by the 

study authors with the choices recommended by the heuristics.  The results of this 

analysis are presented in Table 4.1 and the underlying analysis of each individual 

study is presented subsequent to the table.  
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Table 4.1 - Results of application of DEA framework and heuristics to past academic airport 

benchmarks 

Study  

Do the Study’s Choices Agree with the Framework and 

Heuristics?  
Level of 

agreement 

with 

framework 

and 

heuristics 

Scalarizing function Technology 

Time-

span  
Tie-

breaking 

  
Aggre-

gation Weights 
Orien-

tation 
Returns 

to scale FDH 
Integer 

constr.   
Size Versus Efficiency: 
A Case Study of US 
Commercial Airports 
Airports  

(Bazargan & Vasigh 

2003) 

� � � � � � � �  50% 

Relative Efficiency of 

European Airports 

(Pels et al. 2001) 

� � � � � � � �  
  

63% 

Developing Measures 

of Airport 

Productivity and 

Performance - Airside 

study  

(Gillen & Lall 1997) 

� � � � � � � �  

  

50% 

Developing Measures 

of Airport 

Productivity and 

Performance - 

Terminal study  

(Gillen & Lall 1997) 

� � � � � � � �  

  

63% 

Performance Based 

Clustering for 

Benchmarking of US 

� � � � � � � �  
  

50% 
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Study  

Do the Study’s Choices Agree with the Framework and 

Heuristics?  
Level of 

agreement 

with 

framework 

and 

heuristics 

Scalarizing function Technology 

Time-

span  
Tie-

breaking 

  
Aggre-

gation Weights 
Orien-

tation 
Returns 

to scale FDH 
Integer 

constr.   
Airports  

(Sarkis & Talluri 

2004) 

An application of DEA 
to measure the 
efficiency of Spanish 
airports prior to 
privatization  
(Martín & Román 
2001) 

� � � � � � � �  

  

100% 

Measuring Airport 

Quality from the 

Airlines' Viewpoint  

(Adler & Berechman 

2001) 

� � � � � � � �  

  

63% 

An analysis of the 

operational efficiency 

of major airports in 

the United States 

(Sarkis 2000) 

� � � � � � � �  

  

50% 

Managerial Efficiency 

of Brazilian Airports  

(Pacheco & Fernandes 

2003) 

� � � � � � � �  

  

100% 

The performance of 

BAA before and after 

privatization  

(Parker 1999) 

� � � � � � � �  

  

75% 

Total factor 

productivity and 
� � � � � � � �  

  
88% 



168 . 

 

Study  

Do the Study’s Choices Agree with the Framework and 

Heuristics?  
Level of 

agreement 

with 

framework 

and 

heuristics 

Scalarizing function Technology 

Time-

span  
Tie-

breaking 

  
Aggre-

gation Weights 
Orien-

tation 
Returns 

to scale FDH 
Integer 

constr.   
efficiency of 

Australian airports  

(Abbott & Wu 2002) 

Airports in Argentina: 

Technical efficiency in 

the context of an 

economic crisis 

(Barros 2008) 

� � � � � � � �  

  

63% 

Performance 

evaluation of Italian 

airports: A data 

envelopment analysis 

(Barros & Dieke 

2007) 

� � � � � � � �  

  

100% 

                    
Level of agreement 

with framework and 

heuristics 

38% 100% 100% 46% 100% 54% 38% 85% 
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The following tables present the analysis that underlies the conclusions 

presented in Table 4.1. 

 
Table 4.2 - Application of DEA framework and heuristics to past airport benchmark studies 

    

Size Versus Efficiency: A Case Study of US Commercial Airports (Bazargan & 
Vasigh 2003) 

    

Study 

choice 

DEA Framework and heuristics Agreement 

between the 

author's 

choices and 

the 

framework 

and heuristics     Analysis Recommendation 

Scalarizing 

function 

Aggregation ε-maximin 

All parameters should be 

considered in the aggregation 

study. 

ε-maximin or 

additive 
� 

Weights Specific 

Assume that airports are 

making tradeoffs of their own. Specific 
� 

Orientation N/A N/A N/A � 

Technology 

Returns to 

scale Constant 

These inputs and outputs 

should be modeled with 

variable returns to scale. VRS 

� 

FDH No 

No reason to only compare to 

observed input/output 

combinations. No 

� 

Integer 

constraints None 

Some inputs require integer 

constraints. 

Inputs that require 

integer constraints 

include: Number of 

runways; Number 

of jetways. 

� 

Timespan 

Multiple 

time 

periods 

without 

Malmquist 

These inputs and outputs 

should be modeled with a 

Malmquist index since 

technology change is observed 

over time. 

Multiple time 

periods with 

Malmquist 

� 

Tie-breaking         
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Relative Efficiency of European Airports (Pels et al. 2001) 

    

Study choice 

DEA Framework and heuristics Agreement 

between the 

author's 

choices and 

the 

framework 

and 

heuristics     Analysis Recommendation 

Scalarizing 

function 

Aggregation Maximin 

All parameters should 

be considered in the 

aggregation study. ε-maximin or additive 
� 

Weights Specific 

Assume that airports 

are making tradeoffs of 

their own. Specific 
� 

Orientation Unknown 

Recommend output 

orientation for this 

study since the inputs 

are largely fixed assets 

which cannot easily be 

removed.  Promoting 

increased traffic, etc., is 

more controllable by 

management. Output oriented 

� 

Technology 

Returns to 

scale Variable 

These inputs and 

outputs should be 

modeled with variable 

returns to scale. VRS 

� 

FDH No 

No reason to only 

compare to observed 

input/output 

combinations. No 

� 

Integer 

constraints None 

Some inputs require 

integer constraints. 

Inputs that require 

integer constraints 

include: Number of 

remote stands; 

number of terminal 

parking positions; 

number of check-in 

desks; number of 

baggage claims. 

� 

Timespan 

Multiple time 

periods without 

Malmquist 

These inputs and 

outputs should be 

modeled with a 

Malmquist index since 

technology change is 

observed over time. 

Multiple time periods 

with Malmquist 

� 
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Tie-breaking         

            

            

    

Developing Measures of Airport Productivity and Performance - Airside study 

(Gillen & Lall 1997) 

    

Study choice 

DEA Framework and heuristics Agreement 

between the 

author's 

choices and 

the 

framework 

and 

heuristics     Analysis Recommendation 

Scalarizing 

function 

Aggregation Maximin 

All parameters should 

be considered in the 

aggregation study. ε-maximin or additive 
� 

Weights Specific 

Assume that airports 

are making tradeoffs of 

their own. Specific 
� 

Orientation N/A N/A N/A � 

Technology 

Returns to 

scale Constant 

These inputs and 

outputs should be 

modeled with variable 

returns to scale. VRS 

� 

FDH No 

No reason to only 

compare to observed 

input/output 

combinations. No 

� 

Integer 

constraints None 

Some inputs require 

integer constraints. 

Inputs that require 

integer constraints 

include: Number of 

runways 

� 

Timespan 

Multiple time 

periods grouped 

into one without 

Malmquist 

These inputs and 

outputs should be 

modeled with a 

Malmquist index since 

technology change is 

observed over time. 

Multiple time periods 

with Malmquist 

� 

Tie-breaking         

            

            

    

Developing Measures of Airport Productivity and Performance - Terminal 

study (Gillen & Lall 1997) 

    Study choice 

DEA Framework and heuristics Agreement 

between the 
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    Analysis Recommendation 

author's 

choices and 

the 

framework 

and 

heuristics 

Scalarizing 

function 

Aggregation Maximin 

All parameters should 

be considered in the 

aggregation study. ε-maximin or additive 
� 

Weights Specific 

Assume that airports 

are making tradeoffs of 

their own. Specific 
� 

Orientation Output oriented 

Either output or input 

oriented could be used 

since both inputs 

(number of employees) 

and outputs (traffice 

volumes) include 

parameters that 

management can 

control/influence. Indifferent 

� 

Technology 

Returns to 

scale Variable 

These inputs and 

outputs should be 

modeled with variable 

returns to scale. VRS 

� 

FDH No 

No reason to only 

compare to observed 

input/output 

combinations. No 

� 

Integer 

constraints None 

Some inputs require 

integer constraints. 

Inputs that require 

integer constraints 

include: Number of 

runways; Number of 

gates; Number of 

baggage collection 

belts 

� 

Timespan 

Multiple time 

periods grouped 

into one without 

Malmquist 

These inputs and 

outputs should be 

modeled with a 

Malmquist index since 

technology change is 

observed over time. 

Multiple time periods 

with Malmquist 

� 

Tie-breaking         

            

            

    

Performance Based Clustering for Benchmarking of US Airports (Sarkis & Talluri 

2004) 
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Study choice 

DEA Framework and heuristics Agreement 

between the 

author's 

choices and 

the 

framework 

and 

heuristics     Analysis Recommendation 

Scalarizing 

function 

Aggregation Maximin 

All parameters should 

be considered in the 

aggregation study. ε-maximin or additive 
� 

Weights Specific 

Assume that airports 

are making tradeoffs of 

their own. Specific 
� 

Orientation N/A N/A N/A � 

Technology 

Returns to 

scale Constant 

These inputs and 

outputs should be 

modeled with variable 

returns to scale. VRS 

� 

FDH No 

No reason to only 

compare to observed 

input/output 

combinations. No 

� 

Integer 

constraints None 

Some inputs require 

integer constraints. 

Inputs that require 

integer constraints 

include: Number of 

runways; Number of 

gates 

� 

Timespan 

Multiple time 

periods without 

Malmquist 

These inputs and 

outputs should be 

modeled with a 

Malmquist index since 

technology change is 

observed over time. 

Multiple time periods 

with Malmquist 

� 

Tie-breaking         

            

            

    

An application of DEA to measure the efficiency of Spanish airports prior to 

privatization (Martín & Román 2001) 

    

Study choice 

DEA Framework and heuristics Agreement 

between the 

author's 

choices and 

the 

framework 

and 

heuristics     Analysis Recommendation 
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Scalarizing 

function 

Aggregation ε-maximin 

 All parameters should 

be considered in the 

aggregation study. ε-maximin or additive 
� 

Weights Specific 

Assume that airports 

are making tradeoffs of 

their own. Specific 
� 

Orientation Output oriented 

 The inputs are fixed and 

cannot be controlled by 

management. Output oriented 

� 

Technology 

Returns to 

scale Variable 

These inputs and 

outputs should be 

modeled with variable 

returns to scale. VRS 

� 

FDH No 

No reason to only 

compare to observed 

input/output 

combinations. No 

� 

Integer 

constraints None 

No inputs  or outputs 

require integer 

constraints. None 
� 

Timespan Single N/A N/A � 

Tie-breaking         

            

            

    

Measuring Airport Quality from the Airlines' Viewpoint (Adler & Berechman 

2001) 

    

Study choice 

DEA Framework and heuristics Agreement 

between the 

author's 

choices and 

the 

framework 

and 

heuristics     Analysis Recommendation 

Scalarizing 

function 

Aggregation Maximin 

All parameters should 

be considered in the 

aggregation study. ε-maximin or additive 
� 

Weights Specific 

Assume that airports 

are making tradeoffs of 

their own. Specific 
� 

Orientation Input oriented 

The inputs such as 

airport charges are 

controllable by airport 

management. Input oriented 

� 
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Technology 

Returns to 

scale Variable 

This cannot be 

evaluated since the 

authors mix metrics that 

increase with scale (e.g. 

number of runways) 

with metrics that are 

independent of scale 

(e.g. landing 

fee/movement).  This is 

a violation of DEA 

modeling rules. N/A 

� 

FDH No 

No reason to only 

compare to observed 

input/output 

combinations. No 

� 

Integer 

constraints None 

No inputs or outputs 

require integer 

constraints. None 
� 

Timespan Single N/A N/A � 

Tie-breaking         

            

            

    

An analysis of the operational efficiency of major airports in the United States 

(Sarkis 2000) 

    

Study choice 

DEA Framework and heuristics Agreement 

between the 

author's 

choices and 

the 

framework 

and 

heuristics     Analysis Recommendation 

Scalarizing 

function 

Aggregation Maximin 

All parameters should 

be considered in the 

aggregation study. ε-maximin or additive 
� 

Weights Specific 

Assume that airports 

are making tradeoffs of 

their own. Specific 
� 
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Orientation Unknown 

Either output or input 

oriented could be used 

since both inputs 

(number of employees) 

and outputs (traffice 

volumes) include 

parameters that 

management can 

control/influence. Indifferent 

� 

Technology 

Returns to 

scale 

Mixed - uses 

different models. 

VRS exist for these 

inputs and outputs. VRS 
� 

FDH No 

No reason to only 

compare to observed 

input/output 

combinations. No 

� 

Integer 

constraints None 

Some inputs require 

integer constraints. 

Inputs that require 

integer constraints 

include: Number of 

runways; Number of 

gates 

� 

Timespan 

Multiple time 

periods without 

Malmquist 

These inputs and 

outputs should be 

modeled with a 

Malmquist index since 

technology change is 

observed over time. 

Multiple time periods 

with Malmquist 

� 

Tie-breaking         

            

            

    
Managerial Efficiency of Brazilian Airports (Pacheco & Fernandes 2003) 

    

Study choice 

DEA Framework and heuristics Agreement 

between the 

author's 

choices and 

the 

framework 

and 

heuristics     Analysis Recommendation 

Scalarizing 

function 

Aggregation ε-maximin 

 All parameters should 

be considered in the 

aggregation study. ε-maximin or additive 
� 

Weights Specific 

Assume that airports 

are making tradeoffs of 

their own. Specific 
� 
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Orientation Input oriented 

The inputs such as costs 

and number of 

employees are 

controllable by airport 

management. Input oriented 

� 

Technology 

Returns to 

scale Variable 

These inputs and 

outputs should be 

modeled with variable 

returns to scale. VRS 

� 

FDH No 

No reason to only 

compare to observed 

input/output 

combinations. No 

� 

Integer 

constraints None 

No inputs or outputs 

require integer 

constraints. None 
� 

Timespan Single N/A N/A � 

Tie-breaking         

            

            

    
The performance of BAA before and after privatization (Parker 1999) 

    

Study choice 

DEA Framework and heuristics Agreement 

between the 

author's 

choices and 

the 

framework 

and 

heuristics     Analysis Recommendation 

Scalarizing 

function 

Aggregation 

e-maximin or 

maximin 

(unknown which 

one was used) 

 All parameters should 

be considered in the 

aggregation study. e-maximin or additive 

� 

Weights Specific 

Assume that airports 

are making tradeoffs of 

their own. Specific 
� 

Orientation Unknown 

The inputs such as costs 

and number of 

employees are 

controllable by airport 

management. Input oriented 

� 

Technology 

Returns to 

scale 

Mixed - uses 

different models. 

VRS exist for these 

inputs and outputs. VRS 
� 
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FDH No 

No reason to only 

compare to observed 

input/output 

combinations. No 

� 

Integer 

constraints None 

No inputs or outputs 

require integer 

constraints. None 
� 

Timespan 

One airport is 

benchmarked 

against its own 

performance 

over time. 

This modeling is 

problematic since 

technology changes 

occurred during the 

time period.  However, 

since the same entity is 

benchmarked against its 

own performance, it is 

not possible to compute 

a Malmquist index. N/A 

� 

Tie-breaking         

            

            

    

Total factor productivity and efficiency of Australian airports (Abbott & Wu 
2002) 

    

Study choice 

DEA Framework and heuristics Agreement 

between the 

author's 

choices and 

the 

framework 

and 

heuristics     Analysis Recommendation 

Scalarizing 

function 

Aggregation Maximin 

All parameters should 

be considered in the 

aggregation study. ε-maximin or additive 
� 

Weights Specific 

Assume that airports 

are making tradeoffs of 

their own. Specific 
� 

Orientation Input oriented 

Some inputs such as the 

number of employees 

are controllable by 

airport management. Input oriented 

� 

Technology 

Returns to 

scale Variable 

These inputs and 

outputs should be 

modeled with variable 

returns to scale. VRS 

� 
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FDH No 

No reason to only 

compare to observed 

input/output 

combinations. No 

� 

Integer 

constraints None 

No inputs  or outputs 

require integer 

constraints. None 
� 

Timespan 

Multiple time 

periods with 

Malmquist 

 These inputs and 

outputs should be 

modeled with a 

Malmquist index since 

technology change is 

observed over time. 

Multiple time periods 

with Malmquist 

� 

Tie-breaking         

            

            

    

Airports in Argentina: Technical efficiency in the context of an economic crisis 

(Barros 2008) 

    

Study choice 

DEA Framework and heuristics Agreement 

between the 

author's 

choices and 

the 

framework 

and 

heuristics     Analysis Recommendation 

Scalarizing 

function 

Aggregation Maximin 

All parameters should 

be considered in the 

aggregation study. ε-maximin or additive 
� 

Weights Specific 

Assume that airports 

are making tradeoffs of 

their own. Specific 
� 

Orientation Output oriented 

Either output or input 

oriented could be used 

since both inputs 

(number of employees) 

and outputs (traffic 

volumes) include 

parameters that 

management can 

control/influence. Indifferent 

� 

Technology 

Returns to 

scale 

Mixed - uses 

different models. 

These inputs and 

outputs should be 

modeled with variable 

returns to scale. VRS 

� 
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FDH No 

No reason to only 

compare to observed 

input/output 

combinations. No 

� 

Integer 

constraints None 

No inputs or outputs 

require integer 

constraints. None 
� 

Timespan 

Multiple time 

periods without 

Malmquist 

These inputs and 

outputs should be 

modeled with a 

Malmquist index since 

technology change is 

observed over time. 

Multiple time periods 

with Malmquist 

� 

Tie-breaking         

            

            

    

Performance evaluation of Italian airports: A data envelopment analysis 

(Barros & Dieke 2007) 

    

Study choice 

DEA Framework and heuristics Agreement 

between the 

author's 

choices and 

the 

framework 

and 

heuristics     Analysis Recommendation 

Scalarizing 

function 

Aggregation Not specified 

All parameters should 

be considered in the 

aggregation study. ε-maximin or additive 
� 

Weights Specific 

Assume that airports 

are making tradeoffs of 

their own. Specific 
� 

Orientation Unknown 

Either output or input 

oriented could be used 

since both inputs (e.g. 

labor costs) and outputs 

(aeronautical revenue) 

include parameters that 

management can 

control/influence. Indifferent 

� 

Technology 

Returns to 

scale Variable 

These inputs and 

outputs should be 

modeled with variable 

returns to scale. VRS 

� 
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FDH No 

No reason to only 

compare to observed 

input/output 

combinations. No 

� 

Integer 

constraints None 

No inputs  or outputs 

require integer 

constraints. None 
� 

Timespan Single N/A N/A � 

Tie-breaking         

 

 

These findings show that past studies have had no issues with selection of 

model weights, determination of model orientation, or the use of FDH.  However, 

discrepancies do exist in the selection of aggregation function, choice of returns to 

scale, the use of integrality constraints, and the application of Malmquist indices.  In 

the table, a study was not considered to have any discrepancy of the author’s choice 

was unknown.  In total, three of the 13 studies exhibited no discrepancies relative to 

the framework and heuristics. 

 

4.1.2 Areas of Discrepancy between Study Choices and Heuristics 

This section discusses those areas where discrepancies exist between a 

number of studies and the recommendations by the heuristics. 
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4.1.2.1 Aggregation function 

Eight studies use the maximin aggregation function.  This has the implication 

that some inputs and outputs may be ignored in the calculation of the objective 

function value.  The heuristics described in 0 indicate that only ε-maximin or 

additive aggregation functions should be used in airport benchmarking.  The 

rationale for this is that the inclusion of the inputs and outputs in the analysis must 

be based on a determination about which parameters are important to the analysis 

and as a result all parameters should be considered to some degree in the 

determination of each airport’s DEA score (R. G. Dyson et al. 2001, p. 253). 

The impact of the use of the maximin aggregation function is that the studies 

which have used this aggregation function are likely to include many DMUs which 

have achieved their efficiency score by assigning all weights to only one input 

and/or one output.  This could mean for instance that an airport has been 

considered fully efficient by achieving a strong ratio of passengers to runways, while 

all other resources such as labor costs are over-consumed in relation to the levels of 

passengers and aircraft movement. 

4.1.2.2 Returns to Scale 

The analysis in Table 4.2 shows that seven studies have used the assumption 

of constant returns to scale in their modeling of airport performance when research 

in fact indicates that the domain being modeled reflects VRS.  The fact that the 
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modeling assumptions do not reflect real-life conditions means that the results of 

the analysis may not be valid. 

VRS models have a convexity constraint that is not present in CRS models 

(William W. Cooper et al. 2006, p. 87).  This added constraint implies that the 

feasible region for VRS models such as BCC is smaller than that of CRS models like 

CCR (William W. Cooper et al. 2006, p. 88).  The implication is that studies that have 

applied CRS models may have deemed airports inefficient that are, in fact, fully 

efficient. 

4.1.2.3 Integer constraints 

Although none of the 13 studies examined applied integrality constraints on 

inputs or outputs, only six of these studies used parameters which require 

integrality constraints.  The parameters which require integrality constraints 

according to the heuristics are: 

• Number of runways (5 studies use this measure) 

• Number of jetways/gates/terminal parking positions (5 studies) 

(these inputs are not identical, but are very close) 

• Number of baggage collection belts (2 studies)  

• Number of remote parking stands (1 study)  

• Number of check-in desks (1 study)  
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The heuristics indicate that measures with low magnitude should be 

subjected to integrality constraints.  The number of runways has a particularly low 

magnitude, indicating that the integrality constraints are particularly important for 

this parameter. 

Applying integrality constraints will shrink the feasible region which means 

that efficiency scores in models with integrality constraints will be greater than or 

equal to those computed for the same models without integrality constraints.  The 

implication for existing studies which did not apply integrality constraints is that it 

is possible that some DMUs which should have been deemed fully efficient were, in 

fact, rated as inefficient. 

4.1.2.4 Timespan 

Eight among the 13 studies examined included analyses across multiple time 

periods without computation of a Malmquist index in spite of research evidence that 

technology changes had in fact occurred during the time period being analyzed.  The 

implication of not using the assumption of technology changes during the course of 

time is the same as when modeling CRS when reality reflects VRS; the model does 

not effectively mirror reality and the results derived from these studies may be 

questioned.  In these seven studies, efficiency scores may have been over or under-

estimated. 
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4.1.3 Implications of the Gaps between Study Choices and 

Heuristics 

The analysis showed four areas of discrepancy: 

1. Use of aggregation function which permits some inputs and outputs to 

be ignored 

2. Inappropriate use of constant returns to scale in model 

3. Lack of use of integrality constraints for some model inputs 

4. Lack of computation of a Malmquist index when analyzing 

performance across multiple time periods 

The implications of these findings are twofold: 

First, the conclusions drawn from these studies may not hold.  This extends 

not only to questioning of the efficiency scores determined for the airports included 

in the studies but also to questioning of the analyses done of exogenous factors 

impacting these efficiency scores.  For instance, the finding that small hubs are more 

efficient than large hubs (Bazargan & Vasigh 2003) or the finding that terminal 
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efficiency is greater if the airport is operated under compensatory funding rules2 

(Pels et al. 2001) may not have held if the modeling assumptions were different. 

Second, the implication for future airport benchmarking studies is that a 

need exists for systematic application of a framework and heuristics for DEA model 

selection.  Applying the model selection framework and heuristics from Appendix A 

will result in future analyses which will withstand methodological scrutiny. 

 

 

                                                        

2 Compensatory funding means that air carriers pay predetermined usage 

fees to the airport organization.  If traffic volumes drop, the total revenue for the 

airport drops.  Compensatory funding is contrasted with residual funding, which 

means that the shortfall after non-aeronautical revenues have been applied toward 

the cost of running the airport is divided among the air carriers using the airport 

(Doganis 1992) (p. 192). 
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4.2 Case Study 1: Benchmarking the Level of Domestic Air 

Service to U.S. Metropolitan Areas 

With major airports in the U.S. operating under profit-neutral financial 

regulations (Carney & Mew 2003, p. 230), as “public utilities,” they play an 

important role in shaping the national airline transportation system. In service to 

multiple regional stakeholders (Schaar & Sherry 2010), airport authorities 

incentivize the type and quantity of airline transportation service provided 

(Belobaba et al. 2009, pp. 168-175), (A. Graham 2003, p. 189). 

This case study presents the results of an analysis of the degree to which the 

level of domestic airline service has been maximized in relation to the size of 

regional economies and populations.  A DEA benchmark was used to determine 

“best-in-class” in terms of frequency and number of destinations served based on 

the size of the regional economy and population.   

The results indicated that 20 of the top 29 metropolitan areas have high 

levels of air service but that nine regions exhibit gaps in their level of service 

relative to the size of their population and regional economy 

These results have implications for strategic planning on a national scale, 

airport improvement funding, and regional planning. Whereas flight delays are 
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indicative of insufficient capacity, the more important question is whether the 

existing airport resources are being used most efficiently. 

This case study is organized as follows: Section 4.2.1  reviews the airport 

stakeholders and their goals related to the level of air service.  Section 4.2.2 

discusses the study methodology, including the means for selecting performance 

parameters and the benchmarking model used.  Section 4.2.3 reviews the study 

results.  Section 4.2.4 presents the conclusions.   

4.2.1 The Airport’s Stakeholders and Their Goals 

The analysis of airport stakeholders in section 2.1.3 found that the 

stakeholders’ goals for the airport were based in part on factors wholly within the 

control of airport management (the “airport organizational boundary”), but also on 

factors that were only partly within the control of management, or entirely outside 

management’s control.   

The goal of “maximizing the number of destinations served and frequency of 

those services” emerged from the analysis as common to stakeholder groups such as 

local businesses, residents, the local government, and the airport organization itself.  

It is an example of a goal that is not fully within the control of airport management 

since airlines determine where to add or reduce service. 
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The goal reflects a “symbiotic” relationship between a region’s economy and 

the local air service, where air service stimulates economic growth (Button & Stough 

2000) and growth in a region’s economy drives increased demand for air travel 

(Intergovernmental Panel on Climate Change 2000). 

The stakeholders who are concerned with this goal have a need for 

evaluating the degree to which it is being achieved in U.S. metropolitan areas.  Local 

governments and airport authorities must understand if their region is currently 

well served by airlines or if added effort is necessary to attract additional air service.  

If a shortfall exists in the degree to which the goal is being met, they must gain 

insight about what is causing the performance gap.  Conversely, a region’s residents 

and business community must understand if their needs are being met by the 

airport(s) in their region, or if they should demand more from their local 

government and airport authority in terms of attracting new air service to their 

community. 

A comparative benchmark is a means to evaluate this goal.  The benchmark 

allows for a normalized comparison across major U.S. metropolitan areas and gives 

stakeholders an understanding of which areas are not currently well served and can 

also provide insight into the causes of any performance gaps. 
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4.2.2 Methodology 

This section discusses the study methodology.  It provides the basis for the 

selection of performance parameters and discusses the choice of model for 

benchmarking.   It also describes the data sources and pre-processing as well as the 

method used for computing benchmark scores.  Finally, it presents the method for 

sensitivity analysis of the results. 

4.2.2.1 Scope of Analysis 

The study reviews the levels of air service in metropolitan areas.  Some 

metropolitan areas include multiple airports (e.g. the Boston metropolitan area, 

with Boston-Logan, Providence, and Manchester airports) and other areas are 

served by a single airport (e.g. Atlanta).  Table 4.3 shows the airports included in the 

study, organized by metropolitan area.  A full description of the methodology for 

determining metropolitan areas and mapping airports to those areas is provided in 

section 4.2.2.4. 
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Table 4.3 - Airports included in study 

Metropolitan 

Area Airport Name 

Airport 

Code 

Atlanta Hartsfield - Jackson Atlanta International ATL 

Boston General Edward Lawrence Logan 
International BOS 

Manchester MHT 

Theodore Francis Green State PVD 

Charlotte Charlotte/Douglas International CLT 

Chicago Chicago Midway International MDW 

Chicago O'Hare International ORD 

Cincinnati Cincinnati/Northern Kentucky International CVG 

James M Cox Dayton International DAY 

Cleveland Cleveland-Hopkins International CLE 

Dallas Dallas Love Field DAL 

Dallas/Fort Worth International DFW 

Denver Denver International DEN 

Detroit Detroit Metropolitan Wayne County DTW 

Honolulu Honolulu International HNL 

Houston William P Hobby HOU 

George Bush Intercontinental/Houston IAH 
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Metropolitan 

Area Airport Name 

Airport 

Code 

Las Vegas McCarran International LAS 

Los Angeles Los Angeles International LAX 

Ontario International ONT 

Bob Hope BUR 

John Wayne Airport-Orange County SNA 

Long Beach /Daugherty Field/ LGB 

Memphis Memphis International MEM 

Miami Fort Lauderdale/Hollywood International FLL 

Miami International MIA 

Palm Beach International PBI 

Minneapolis Minneapolis-St Paul International/Wold-
Chamberlain MSP 

New York John F Kennedy International JFK 

La Guardia LGA 

Newark Liberty International EWR 

Long Island MacArthur ISP 

Orlando Orlando International MCO 

Philadelphia Philadelphia International PHL 

Phoenix Phoenix Sky Harbor International PHX 

Pittsburgh Pittsburgh International PIT 
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Metropolitan 

Area Airport Name 

Airport 

Code 

Portland Portland International PDX 

Salt Lake City Salt Lake City International SLC 

San Diego San Diego International SAN 

San Francisco San Francisco International SFO 

Norman Y. Mineta San Jose International SJC 

Metropolitan Oakland International OAK 

Seattle Seattle-Tacoma International SEA 

St. Louis Lambert-St Louis International STL 

Tampa Tampa International TPA 

Washington-
Baltimore 

Ronald Reagan Washington National DCA 

Washington Dulles International IAD 

Baltimore/Washington International 
Thurgood Marshall BWI 

 

4.2.2.2 Selection of Model Parameters 

Section 4.2.1 described one of the airport’s goals as being to “maximize the 

number of destinations served and frequency of those services”.  To conduct a 

benchmark of the level to which this goal is achieved in each metropolitan area, the 

goal is translated into performance parameters that can be measured. 
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4.2.2.2.1 Measuring the Level of Air Service 

The goal includes maximizing both the number of destinations served, as 

well as the frequency of those services.  Two performance metrics are proposed in 

order to gauge the level to which this goal is achieved: 

The first measure is the number of non-hub destinations served nonstop 

from any airport in the metropolitan area.  The number of non-hub destinations 

served is defined in greater detail in a subsequent section, and refers to the number 

of destinations served other than those destinations that are determined to be hubs.  

This measure maps directly to the goal.  Destinations which were served only on an 

occasional basis should not be considered and a lower bound of service at least once 

per week is imposed.  

The second measure is the average daily frequency of service to the top 

domestic hubs (the definition of top domestic hubs is treated in section 4.2.2.4).  

This measure addresses the goal in two ways: 

• It gives an indication of the level of frequency of service across a set of 

key routes 

• It is a measure of the level of ease with which a large number of 

destinations can be reached through a single connection 
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These two measures reflect the two factors that impact total trip time, as 

discussed by (Belobaba et al. 2009, pp. 58-59).  Total trip time involves both the 

time on board the aircraft as well as “schedule displacement,” with the latter being 

the amount of time that passes between a passenger’s desired departure time and 

the time when a flight is available.  The number of destinations served nonstop will 

contribute toward minimizing the time on board the aircraft, and a high frequency 

of flights will minimize the schedule displacement. 

4.2.2.2.2 Normalizing the Level of Air Service 

Demand for air services come from a region’s individual residents and 

businesses, as well as from business and tourist visitors to the region.  Although 

some airports’ passenger traffic is made up more heavily of connecting traffic and 

other airports’ traffic to a greater degree consists of origin and destination (O&D) 

passengers, the number of individuals that reside in the region and the level of 

business activity are key drivers of the level of demand for air service, as shown in 

Figure 4.1 and Figure 4.2.   
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Figure 4.1 - Relationship between metropolitan 

area population and the number of domestic 

flights for the metro areas in Table 4.3, 2005-2008 

 

Figure 4.2 – Relationship between metropolitan 

area GDP and the number of domestic flights for 

the metro areas in Table 4.3, 2005-2008 

 

The relationship between the population and the regional Gross Domestic 

Product (GDP) was tested and showed a high degree of correlation, with a Pearson 

coefficient of 0.78 (p < 2.2 * 10-16).  This correlation indicates that as the population 

goes up, so does the regional GDP, and vice versa.  The relationship between the two 

parameters can be expressed as the GDP per capita, where the regional GDP is 

divided by the population.  In spite of the high degree of correlation between the 

two parameters, a range of values for the GDP per capita exist between different 

metropolitan areas, as shown in Figure 4.3. 

To account for the impact of both population and GDP on the level of flights 

in metropolitan areas, and to address the goals of both the region’s population as 
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well as its businesses, the benchmark data for the levels of air service should be 

normalized to account for the region’s population and its regional GDP. 

 

Figure 4.3 – Annual GDP per capita (thousands of US$), 2005-2008 
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4.2.2.2.3 Summary of Model Parameters 

The measures of the level of air service and the parameters used to 

normalize them are combined in this conceptual ratio: 

(destinations served nonstop, frequency of service to hubs)  :  (population, GDP) 

The metropolitan areas with the highest number of destinations served and 

the highest frequency in relation to their population and GDP will be considered to 

have the highest relative level of air service. 

4.2.2.3 Choice of Benchmark Model 

The parameters for the model are the number of nonstop non-hub 

destinations served and the average daily frequency of service to the top domestic 

hubs, normalized by regional population and GDP.  This model can conceptually be 

expressed as the ratio (destinations served, frequency) : (population, GDP).  The 

units of measure for these metrics are airports, daily flights, people, and US$, 

respectively.  Combining these metrics into a comparative benchmark is a case 

where the analysis combines multiple parameters of different units, and where the 

production or utility function is unknown.  In this scenario, DEA is an appropriate 

method for calculating the composite benchmark scores, as shown in the 

benchmarking methodology decision tree in section 2.2.2.1. 
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The results of the application of the DEA framework and heuristics from 

Appendix A to determine a model for this analysis are now presented. 

• Aggregation: The heuristics specify that either an ε-maximin function 

or an additive function should be used.  The additive function should 

be used only if a motivation exists for why the current proportional 

mix of inputs or outputs (depending on the orientation chosen) is 

irrelevant and can be changed.  Otherwise, the ε-maximin function 

should be chosen.  In this study, no evidence exists to suggest that the 

proportional mix of input or outputs can be changed between 

different metropolitan areas.  As a result, the ε-maximin function is 

chosen.  

• Weights: Since tradeoffs between the two outputs will be different 

between metropolitan areas, specific weights should be used 

according to the heuristics. 

• Orientation: The heuristics state that the model orientation should 

be determined based on which factors are considered the most 

controllable by management.  In this analysis, the population and GDP 

inputs cannot be controlled by airport management, but although they 

are not directly controllable, the output measures of destinations 
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served and frequency can be influenced by airport management and 

local governments.  This influence can come through providing air 

carriers with market research data as well as with financial incentives 

and marketing support for providing service to the airport (A. Graham 

2003, p. 189).  This determines this analysis as output-oriented. 

• Returns to scale: The framework specifies a choice between constant 

returns to scale (CRS) and variable returns to scale (VRS).  The 

outputs in this model can both be assumed to reflect VRS:  First, the 

number of new destinations which are feasible to serve decreases as 

the number of already served destinations increases, since only a 

finite number of metropolitan areas exist where the local market 

provides sufficient demand to warrant nonstop service.  Second, the 

potential for increased frequency of nonstop service to hubs declines 

as the level of existing frequency and airport congestion increases; in 

a hypothetical case, rather than providing service on a market every 5 

minutes with a 50-seat aircraft, providing service every 10 minutes 

with a 100-seat aircraft would become necessary as airport capacity 

runs out (as utilization of airport capacity approaches its physical 

limit, policy/regulation changes may be necessary to incent airlines to 

fly larger aircraft (Donohue et al. 2008, pp. 115-116)). 
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• FDH: The Free Disposal Hull should be applied only if some reason 

exists why comparison only to observed combinations of inputs and 

outputs should be made, but no such reason exists in this analysis. 

• Integer constraints: Integer constraints should be applied in cases 

where input or outputs are indivisible into fractions and of low 

magnitude, and if large errors in the results would be introduced if 

these inputs or outputs were assumed to have decimal values.  The 

parameter with integer constraints and the lowest magnitude in this 

study is the number of non-hub destinations served nonstop, but with 

a median value of 88 for the years studied, this parameter’s 

magnitude remains sufficiently high that no integrality constraints are 

necessary in the model. 

• Timespan: If any key technology changes have occurred during the 

timespan being studied that would impact the ability of DMUs to 

achieve strong performance, then a Malmquist index method should 

be used.  If not, the performance for each year can simply be analyzed 

independently.  In the present analysis, technology changes would 

involve the introduction of something which made it feasible for air 

carriers to serve more destinations than before, or something which 
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allowed for increased frequency of service.  From a technology point 

of view, this would involve the introduction of new aircraft types with 

highly different performance characteristics in terms of for instance 

fuel consumption, crew requirements, or number of seats.  No new 

aircraft models for domestic use entered into service during the 2005-

2008 period from Boeing (The Boeing Company 2010), Airbus3 

(Airbus S.A.S. 2010), Bombardier (Bombardier 2010), or Embraer 

(Embraer 2010).  As a result of no major changes occurring in this 

time period, no Malmquist index calculation is necessary. 

• Tie-breaking: The heuristics prescribe that a tie-breaking function be 

used only if a reason exists why all areas must be fully ranked.  No 

such reason is present and accordingly, no tie-breaking function is 

used. 

Table 4.4 summarizes the modeling assumptions for this analysis. 

  

                                                        

3 The Airbus A380 was in fact first delivered in 2007, but this aircraft was not 

used for US domestic service 
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Table 4.4 - DEA model parameter choices 

Scalarizing function Technology Timespan Tie-
breaking 

Aggre-
gation 

Weights Orient-
ation 

Returns 
to scale 

FDH Integrality 

ε-
maximin 

Specific 
weights 

Output 
oriented 

VRS No use of 
FDH 

No 
integrality 
constraints 

No use of 
Malmquist 
index; 
simply one 
analysis 
per year 

None 

 

These modeling assumptions are represented in the output-oriented BCC (R. 

D. Banker et al. 1984) algorithm with minimum weight constraints, which was used 

in this analysis.  This model has the following dual problem formulation and is 

discussed in greater detail in section 2.2.2.6.2: 

 

The DEA scores were computed by the BCC algorithm implementation in 

Matlab, as described in section 3.5.1.  In the analysis, the infinitesimal constant ε 
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was set to 1.0 * E-6.  A further discussion of the choice of this value is provided in 

section 4.2.3.5.1. 

4.2.2.4 Data Collection and Pre-Processing 

This section describes the means of obtaining and preparing the benchmark 

data for the analysis. 

4.2.2.4.1 Determination of Metro Areas 

The scope of the analysis was to include the metropolitan areas which have 

at least one of the OEP-35 airports listed in Table 0.1, and expand the study to 

include any other commercial airports that also service those metropolitan areas 

from within a given distance.  In a second step, if any of the non-OEP-35 airports 

were located in a different nearby, second metropolitan area, then that second 

metropolitan area was merged with the first in order to capture the region’s full 

population and GDP. 

The definitions of “metropolitan areas” follow those of the U.S. government’s 

Office of Management and Budget (OMB).  The OMB defines “Metropolitan Statistical 

Areas” (MSAs) based on data from the Census Bureau (Office of Management and 

Budget 2010). 



205 . 

 

In their discussion of Multi-Airport Systems, (Neufville & Odoni 2003, p. 133) 

propose that studies only include airports that serve at least 1 million passengers 

per year.  That limit is used in this analysis and only the 55 non-OEP-35 airports 

which met that criterion for at least one year between 2005 and 2008 were included 

for consideration. 

A distance limit of 70 road miles from the city center of the main 

metropolitan area was used to determine which among the non-OEP-35 airports to 

include in the study, resulting in a final list of 13 additional airports, as shown in 

Table 4.5. 
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Table 4.5 - Non-OEP-35 airports added to the study 

Airport Name Airport Code 

Bob Hope BUR 

Dallas Love Field DAL 

James M Cox Dayton International DAY 

William P Hobby HOU 

Long Island MacArthur ISP 

Long Beach /Daugherty Field/ LGB 

Manchester MHT 

Metropolitan Oakland International OAK 

Ontario International ONT 

Palm Beach International PBI 

Theodore Francis Green State PVD 

Norman Y. Mineta San Jose International SJC 

John Wayne Airport-Orange County SNA 

 

With the addition of the 13 airports to the metropolitan areas, the locations 

of those airports which were situated in another, nearby metropolitan area were 
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merged with the original metropolitan areas to accurately reflect the area’s total 

population and GDP.  Those areas were: 

• The Manchester-Nashua, NH, MSA and the Providence-New Bedford-

Fall River, RI-MA, MSA which were added to the Boston metropolitan 

area. 

• The Dayton, OH, MSA which was added to the Cincinnati metropolitan 

area. 

• The Riverside-San Bernardino-Ontario, CA, MSA which was added to 

the Los Angeles metropolitan area. 

• The San Jose-Sunnyvale-Santa Clara, CA, MSA which was added to the 

San Francisco metropolitan area. 

Finally, the Washington, DC, and Baltimore, MD, metropolitan areas were 

merged into one single area since the three airports serving the two cities are 

located within 61 miles of the two city centers. 

4.2.2.4.2 Data Sources 

Three data sources were used for the analysis: 



208 . 

 

• GDP data: Data on GDP by MSA was obtained from the U.S. 

government’s Bureau of Economic Analysis (BEA) (Bureau of 

Economic Analysis, U.S. Department of Commerce 2010).  The BEA 

produces annual estimates of the GDP of each of the 366 U.S. MSAs by 

computing the sum of the GDP originating in all industries in each 

MSA. 

• Population data: Data on the population of each MSA was gathered 

from the U.S. Census Bureau (U.S. Census Bureau 2010b).  The annual 

MSA population is estimated by the Census Bureau based on the 

Census 2000 combined with a number of more recent data sources.  

The Census Bureau points out that because there is a lag in some of 

the data sources that complement the Census 2000 data, estimates for 

older vintages tend to be more accurate than those for more recent 

vintages (U.S. Census Bureau 2008). 

• Data on destinations and frequencies: This data was prepared 

using the T100 database which is compiled from data collected by 

Office of Airline Information (OAI) at the Bureau of Transportation 

Statistics (BTS) (Bureau of Transportation Statistics 2010b).  The 

T100 database is a complete census of flights by U.S. and foreign 
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carriers and provides data on the number of operations and 

passengers carried between each airport pair. 

4.2.2.4.3 Defining Hubs 

The definition of domestic hubs in the analysis was based on an initial 

analysis of the T100 database.  The objective was to identify those airports that 

provide connections to the largest number of other airports.  For the 2005-2008 

time period, the analysis found the number of domestic airports served nonstop4 

presented in Table 4.6, and identified the average number of other OEP-35 airports 

served nonstop listed in Table 4.7. 

  

                                                        

4 Only destinations that were served at least 52 times per year were 

considered, to ensure that at least weekly service existed. 
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Table 4.6 - Average number of domestic 

airports served nonstop at least 52 times 

annually (source: T100 database)  

Table 4.7 - Average number of OEP-35 

airports served nonstop at least 52 

times annually (source: T100 database) 

Airport Average number of 

domestic airports 

served nonstop 

Rank  Airport Average number of 

OEP-35 airports 

served nonstop 

Rank 

ATL 171 1  ATL 34 1 

ORD 141 2  DEN 34 1 

DFW 138 3  DFW 34 1 

MSP 137 4  MSP 34 1 

DEN 134 5  CVG 33 5 

DTW 128 6  DTW 33 5 

IAH 121 7  IAH 33 5 

LAS 119 8  LAS 33 5 

CVG 119 9  LAX 33 5 

CLT 102 10  ORD 33 5 

SLC 101 11  PHX 33 5 

   

The first four airports in Table 4.7 were connected to all other OEP-35 

airports in each of the years from 2005 to 2008.  In addition, these airports all rank 

among the top five airports in terms of the overall number of domestic destinations 
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served, as shown in Table 4.6.  The remaining top-five airport from Table 4.6 is ORD 

which, although it lacks service to one of the OEP-35 airports, ranks as the second 

most connected airport to other domestic airports.  Based on this data, the list of 

hubs for this analysis is: ATL, ORD, DFW, MSP, and DEN.  The impact of this 

definition is tested as part of the sensitivity analysis discussed in section 4.2.2.6. 

4.2.2.4.4 Preparing Benchmark Data 

Each of the data sources required some pre-processing for use in the 

benchmark analysis.  This section describes that pre-processing. 

Both the GDP and the population data was reported separately for each MSA.  

Because of the merging of some areas as described in section 4.2.2.4.1, their GDP 

and population data were summed to provide totals for the entire metropolitan 

areas. 

The data on the number of non-hub destinations served nonstop was 

computed from data using these conditions and assumptions: 

• Departures were considered from the metro area as a whole rather 

than from individual airports.  For instance, if both EWR and LGA 

airports in the New York region had nonstop service to MSP, this 
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would only be counted as one nonstop destination for the New York 

metropolitan area. 

• At least 52 flights during the year were required in order for a city 

pair to be considered to have nonstop service. 

The data on the daily frequency of service to hubs was prepared using these 

conditions and assumptions: 

• Just as for the number of non-hub destinations served, departures 

were considered from the metro area as a whole rather than from 

individual airports.  However, in the example with EWR and LGA 

above, if each airport had service four times daily, the New York 

region would be counted as having a frequency of eight. 

• For those airports that were hubs, only service to the four other hubs 

could be counted while for non-hub airports, service to the five hubs 

was counted.  To adjust for this, the hub airports’ totals were 

increased by the average of their service to each of the other four hub 

airports; in practice this amounted to a multiplication of each hub 

airport’s total by a factor of 1.25. 
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4.2.2.5 Summary of Input and Output Parameters 

This section provides four-year average values for each of the four input and 

output parameters used in the DEA analysis.  The full details of the input and output 

parameters are provided in Appendix E.  Although the analysis was done separately 

for each of the four years, this overview provides averages for the whole period 

2005-2008. 

 

Figure 4.4 - Total population of metropolitan areas in millions, average 2005-2008 

5.2
6.5

1.6

9.5

3.0
2.1

6.1

2.4
4.5

0.9

5.5

1.8

16.8

1.3

5.4

3.2

18.9

2.0

5.8
4.1

2.4 2.1
1.1

3.0

6.0

3.3 2.8 2.7

7.9

0.0

5.0

10.0

15.0

20.0

A
tl

a
n

ta

B
o

st
o

n

C
h

a
rl

o
tt

e

C
h

ic
ag

o

C
in

c
in

n
at

i

C
le

ve
la

n
d

D
al

la
s

D
e

n
ve

r

D
e

tr
o

it

H
o

n
o

lu
lu

H
o

u
st

o
n

L
as

 V
e

g
as

Lo
s 

A
n

g
e

le
s

M
e

m
p

h
is

M
ia

m
i

M
in

n
e

ap
o

li
s

N
e

w
 Y

o
rk

O
rl

a
n

d
o

P
h

il
a

d
e

lp
h

ia

P
h

o
e

n
ix

P
it

ts
b

u
rg

h

P
o

rt
la

n
d

S
al

t 
L

ak
e

 C
it

y

S
a

n
 D

ie
g

o

S
a

n
 F

ra
n

ci
sc

o

S
e

a
tt

le

St
. 

Lo
u

is

Ta
m

p
a

W
as

h
in

g
to

n
-B

a
lt

im
o

re

Total Population
Average 2005-2008, Millions



214 . 

 

 
Figure 4.5 - GDP by metropolitan area in billions of US$, average 2005-2008 

 
Figure 4.6 –Number of non-hub domestic destinations served nonstop, average 2005-2008 
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Figure 4.7 - Daily service frequency to top 5 hubs, average 2005-2008 

 

The input data covered those metropolitan areas that have at least one OEP-

35 airport.  These are the 30 largest metropolitan areas in terms of GDP in the U.S., 

with the exception of Kansas City, MO, which had on average the country’s 28th 

largest GDP from 2005 to 2008 (Bureau of Economic Analysis, U.S. Department of 

Commerce 2010) but is not served by an OEP-35 airport and accordingly was left 

out of the study.  Similarly, this represents each of the 30 largest metropolitan areas 

in terms of population, with the exception of Sacramento, CA, Kansas City, MO, and 
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San Antonio, TX, which had the 26th, 28th, and 29th largest populations on the 

average from 2005-2008 (U.S. Census Bureau 2010b). 

4.2.2.6 Sensitivity Analysis 

The purpose of the sensitivity analysis is to understand the degree to which 

the findings stand up to any potential changes in the input and output data or the 

underlying model assumptions of the study. 

The choice of DEA model has been shown to have a potentially radical impact 

on the results of airport performance studies (Schaar & Sherry 2008).  Some studies 

have attempted to address that by using a variety of different models (Sarkis 2000), 

but this can lead to contradictory and inconclusive results.  This paper instead used 

the framework and heuristics from section 0 to guide model selection.  Any 

variations of the results based on using another DEA model would not be relevant 

since such a model would be selected without a rationale for its applicability.  As a 

result, no sensitivity analysis using a different DEA model was conducted. 

However, in the study of DEA models which use minimum weights, a large 

body of work exists (e.g. (Mehrabian et al. 2000) and (Allen et al. 1997)) but no 

conclusive determination of a standard approach to the choice of minimum weights 
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exists.  To address this lack of standardization, the sensitivity analysis in this study 

includes tests of varying these minimum weights. 

Regarding the input data on GDP and regional population, no assumptions 

were made since both of these categories of data were based on government 

standard definitions.  No sensitivity analysis of variations in GDP and population 

data was conducted.  It should however be noted that the analysis results are 

sensitive to the accuracy of the MSA definitions in terms of their ability to capture a 

region’s entire population and GDP.  If an MSA is drawn too wide around a region, it 

will encompass a larger population and GDP than is actually served by the airport, 

thereby adversely impacting the region’s results in this study.  Conversely, if an MSA 

is drawn too narrowly around a region, the region’s results will be over-inflated.  

Gauging the impact of any MSA boundary errors is not possible in this study. 

The data on output parameters regarding the number of non-hub 

destinations served nonstop and the frequency of service to the top 5 hubs was 

based not on sampling data but rather on full census data.  This means that no 

sensitivity analysis is necessary to test the impact of sampling errors.  However, the 

data on both of these performance parameters is dependent on the definition of 

hubs.  To test the robustness of the findings with respect to the definition of hubs, 

the sensitivity analysis included tests of using the top 3, 4, 6, and 7 hubs based on 
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the total number of domestic destinations served nonstop (the list of these airports 

can be found in Table 4.6).  

The results of the sensitivity analysis tests are presented in section 4.2.3.5. 

4.2.3 Results 

This section presents the resulting scores for the level of air service and 

discusses the implication of these results.  It presents the findings from the 

sensitivity analysis and discusses some limitations of the results.  The section also 

includes a study of the impact of the level of air service on airline yields. 

4.2.3.1 Level of Air Service 

The average of the results of the analysis for 2005-2008 is presented in 

Figure 4.8, where lower scores indicate better levels of service.  A k-means cluster 

analysis was performed on the benchmark results to create the four groups of 

airports depicted in the figure.  The full details of the results are provided in 

Appendix E.  The results are also plotted on a map of the United States in Figure 4.9. 
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Figure 4.8 – Average levels of Air Service 2005-2008.  1.00 indicates the best level, and high 

values indicate poor service.  Bar coloring is based on a k-means cluster analysis of benchmark scores. 

The results show the highest levels of service for Atlanta, Chicago, Denver, 

Honolulu, Las Vegas, Salt Lake City, and Washington-Baltimore5.  In contrast, the 

                                                        

5 Note that although New York is listed as 1.00, it is in fact not fully efficient 

in 2005 but due to rounding error its average appears efficient. 
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lowest levels of service exist for Portland, San Diego, Pittsburgh, Seattle, and Tampa, 

with the first two standing out as having lower levels of service. 

 

 

Figure 4.9 - Visualization of levels of air service (Honolulu omitted), 2005-2008 average.  1.00 

(dark blue) indicates the best level of air service and high values indicate poor levels of service 
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4.2.3.2 Gaps for Underserved Metropolitan Areas 

The underserved metropolitan areas are defined as those with service levels 

greater than 1.00, and are considered inefficient in the DEA analysis.  The DEA 

algorithm provides targets which DMUs should hit in order to move from 

inefficiency to efficiency.  The targets are computed by multiplying each output by 

the DMU’s efficiency score from the DEA analysis.  These points are the closest 

projections on the convex hull represented by the efficient frontier. 

These projections can provide improvement goals for managers at inefficient 

airports.  When the original parameter values are subtracted from these targets, the 

gap that must be closed is obtained.  Those gaps are presented in Table 4.8.  The 

metropolitan areas in Table 4.8 that have blank values for the gaps for both the 

number of non-hub nonstops and the number of departures to top hubs are fully 

efficient in that year. 

The inefficient DMUs which have a nonzero slack on one of the output 

parameters have the shortest distance to the efficient frontier by maximizing output 

only on the other parameters with a zero slack, irrespective of what is done for the 

parameter with slack.  As a result, the gap for those DMUs to the goal on the frontier 
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is described Table 4.8 only in terms of the parameter with a zero slack, with the 

other parameter being left blank. 

Table 4.8 – Distance to the air service frontier.  These are gaps in the level of service to be 

closed for achieving air service level of 1.00.  The gaps are the shortest distance to the frontier. 

  

Distance to Frontier 

2005 2006 2007 2008 

Non-

hub 

non-

stops 

Depts. 

to top 

hubs 

Non-

hub 

non-

stops 

Depts. 

to top 

hubs 

Non-

hub 

non-

stops 

Depts. 

to top 

hubs 

Non-

hub 

non-

stops 

Depts. 

to top 

hubs 

Atlanta         

Boston 56 62 56 60 56 55 61 55 

Charlotte 6 4 17 10 22 13 11 6 

Chicago         

Cincinnati   11 7 17 12 13 9 

Cleveland 37 26 46 30 53 33 37 19 

Dallas 12 10 14 12 16 13 12 9 

Denver         

Detroit 23 12 32 19 33 19 26 15 

Honolulu         

Houston 28 23 30 24 28 23 29 23 

Las Vegas         

Los Angeles 22 40 23 38 17 27 19 29 
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Distance to Frontier 

2005 2006 2007 2008 

Non-

hub 

non-

stops 

Depts. 

to top 

hubs 

Non-

hub 

non-

stops 

Depts. 

to top 

hubs 

Non-

hub 

non-

stops 

Depts. 

to top 

hubs 

Non-

hub 

non-

stops 

Depts. 

to top 

hubs 

Memphis 8 5 14 9 12 8 15 9 

Miami 14 21 13 20 8 12 6 8 

Minneapolis   4 3 11 7 8 5 

New York 2 3       

Orlando 21 16 28 21 18 14 12 10 

Philadelphia 58 50 63 51 63 50 57 44 

Phoenix 31 26 20 19 22 19 23 20 

Pittsburgh 38 22 51 29 64 38 51 42 

Portland 63 48 68 52 78 52 72 46 

Salt Lake City         

San Diego 45 56 43 55 55 53 51 47 

San Francisco 33 52 29 43 24 35 32 41 

Seattle 66 51 59 47 59 46 53 41 

St. Louis 19 17 23 21 17 17 12 13 

Tampa 47 29 58 37 57 40 53 34 

Washington-
Baltimore 
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4.2.3.3 Discussion of Results 

The results initially show a relatively tight distribution of the levels of service 

for many airports ranging from 1.00 up to Phoenix at 1.27, where a more severe 

deterioration occurs, beginning with San Francisco.  San Diego and Portland stand 

out in particular as having worse service than any other metropolitan area.  Some 

factors impacting these results, such as geography, are not controllable, while other 

factors may be within the scope of influence of airport management and local 

government.   

This section discusses these factors which impact the outcomes of the 

benchmark.  The average levels of air service, GDP per capita, and average gaps are 

summarized in Table 4.9 along with a brief discussion about the performance of 

individual metropolitan areas.  The remainder of the section discusses the possible 

causes for high and low levels of air service. 
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Table 4.9 - Summary of study results, 2005-2008, in order of GDP per capita.  Areas with level 

of air service scores above 1.3 are highlighted in yellow as those areas have poor levels of air service. 

Metro Area 

GDP/ 

Capita 

(Avg.) 

Level of 

Air 

Service 

(Avg.) 

Distance to 

Frontier 

Comments 

Gap for 

Destin-

ations 

(Avg.) 

Gap for 

Frequ-

ency 

(Avg.) 

San 
Francisco 

$72,013 1.45 30 43 Somewhat poor air 
service. 

Charlotte 
$69,806 1.15 14 8 

  

Houston 
$64,873 1.25 29 23 

  

Washington-
Baltimore 

$62,526 1.00 0 0 
Full air service 

New York 
$61,692 1.00 0 1 Nearly full air service 

(rounding error) 

Seattle 
$61,652 1.86 59 46 

Poor air service.  Located 
in the far Northwest 
where no metropolitan 
area has high levels of air 
service. 

Denver 
$58,004 1.00 0 0 

Full air service 

Dallas 
$57,555 1.10 13 11 

  

Minneapolis 
$57,473 1.04 6 4 
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Metro Area 

GDP/ 

Capita 

(Avg.) 

Level of 

Air 

Service 

(Avg.) 

Distance to 

Frontier 

Comments 

Gap for 

Destin-

ations 

(Avg.) 

Gap for 

Frequ-

ency 

(Avg.) 

Boston 
$55,893 1.78 57 58 

Poor air service in spite of 
including BOS, PVD, and 
MHT in this metropolitan 
area.  One factor is that 
PVD is heavily dominated 
by Southwest Airlines 
(American University 
School of Communication 
2010) which results in 
limited service to the top 
hubs. 

Philadelphia 
$54,163 1.69 60 49 

Poor air service.   

San Diego 
$53,630 2.24 49 53 Poor air service, and only 

a single runway.   

Salt Lake 
City 

$53,216 1.00 0 0 
Full air service 

Chicago 
$52,196 1.00 0 0 

Full air service 

Las Vegas 
$50,998 1.00 0 0 

Full air service 

Atlanta 
$50,016 1.00 0 0 

Full air service 

Honolulu 
$49,869 1.00 0 0 

Full air service 

Orlando 
$49,146 1.24 20 15 

In spite of extensive 
holiday traffic, Orlando is 
not at full air service. 

Portland 
$48,888 2.58 70 49 

Poor air service.  Low 
yields may contribute (see 
Figure 4.13). 
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Metro Area 

GDP/ 

Capita 

(Avg.) 

Level of 

Air 

Service 

(Avg.) 

Distance to 

Frontier 

Comments 

Gap for 

Destin-

ations 

(Avg.) 

Gap for 

Frequ-

ency 

(Avg.) 

Cleveland 
$48,269 1.58 43 27 

Somewhat poor air 
service.  Reduction of 
hubbing by Continental 
may contribute 
(Rollenhagen 2003).  

Memphis 
$48,056 1.15 12 7 

  

Los Angeles 
$47,074 1.24 20 33 

  

Miami 
$46,632 1.16 10 15 

  

Pittsburgh 
$45,638 1.86 51 33 

Poor air service, in large 
part due to US Airways 
hub elimination 
(Grossman 2007).  Service 
deteriorated each year 
from 2005 to 2008. 

Detroit 
$44,756 1.23 29 16 

  

Phoenix 
$43,828 1.27 24 21 

  

St. Louis 
$43,217 1.25 18 17 

  

Cincinnati 
$43,040 1.09 10 7 

  

Tampa 
$39,932 1.85 54 35 

Poor air service.  The city's 
relative proximity to 
Orlando could contribute, 
but that impact should be 
limited since Tampa city 
center is 86 miles from 
MCO.  
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4.2.3.3.1 Impact of Geography 

Although many of the less well served metropolitan areas are located in one 

of the four “corners” of the continental United States as shown in Figure 4.9, many of 

these less well served metropolitan areas exist in the vicinity of other metropolitan 

areas with high levels of service.  This suggests that some areas’ lower levels of 

service may stem less from their geographic distance from the center of the country 

and more from their proximity to another well-served metropolitan area.   

For example, Tampa exhibits low levels of air service and is located in the 

southeast corner of the United States, but neighboring Orlando exhibits high levels 

of air service.  This suggests that Tampa’s low level of air service may be traced 

more to its proximity to Orlando than to its southeasterly location.   

Seattle and Portland are exceptions to this, since they both exhibit low levels 

of service and are not in the proximity of a well-served area. 

4.2.3.3.2 Impact of Capacity Limitations 

A lack of infrastructure capacity in the form of runways, terminals, or other 

facilities at an airport may limit the ability of airlines to add service even though 

demand exists.   
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A proxy for capacity limits is the level of delays at an airport; heavy delays 

suggest that the airport infrastructure has difficulty accommodating the level of 

demand at the airport.  Data on on-time arrivals at the airports in the study was 

obtained from the BTS airline on-time database (Bureau of Transportation Statistics 

2010a).  A weighted average was computed for each area, and the average included 

all airports located in the area, weighted by the number of operations at each 

airport.  Figure 4.10 shows the percentage of on-time arrivals in relation to the 

benchmark results for the level of air service.   



230 . 

 

 

Figure 4.10 - Percentage of airline on-time arrivals in U.S. metropolitan areas; average for 

2005-2008.  On-time arrivals for regions with multiple airports are weighted by the volume of 

operations at each airport in the region. 

 

This data suggests that a contributing cause of the low levels of air service in 

areas such as Philadelphia, which has the second-worst arrival delays, may be 

capacity limitations.  Other areas such as New York and Chicago are currently well-

served in terms of the level of air service, but because of capacity limitations, they 
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may find that the future level of air service cannot grow at the same level as their 

population and regional economies, resulting in a proportionately reduced level of 

air service. 

To address capacity limitations, airports and the FAA can undertake projects 

to improve the capacity.  These capacity improvements are summarized in (Federal 

Aviation Administration 2007, p. 27 of app. C in source document) and Table 4.10 

shows the improvements which will be applied prior to 2015 and 2025, 

respectively.  Note that the table omits three improvements6 which will be made to 

all OEP-35 airports, as those improvements do not provide any distinguishing 

approaches to each airport. 

  

                                                        

6 These three improvements are: 1) Reduced Separation Standards (use 

visual separation in MMC and use 2/3/4/5 NM in IMC); 2) Improved threshold 

delivery accuracy; 3) 1.5 NM Departure/Arrival separation (IMC) (spacing < 2500 ft 

or same runway) 
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Table 4.10 - Planned airport capacity improvements (Federal Aviation Administration 2007).  

For greyed-out airports no data was available.  Capacity improvements that apply to all OEP-35 airports 

have been omitted. 
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Atlanta ATL         < 2025             

Boston 

BOS < 2015       < 2015 < 2025       < 2025   

MHT                       

PVD                       

Charlotte CLT < 2025     < 2025               

Chicago 
MDW                       

ORD < 2015   < 2015                 

Cincinnati 
CVG                       

DAY                       

Cleveland CLE                       

Dallas 
DAL                       

DFW < 2025                     

Denver DEN < 2025                     

Detroit DTW     < 2025                 

Honolulu HNL               < 2025       

Houston 
HOU < 2025                     

IAH < 2025                     

Las Vegas LAS         < 2025     < 2025 < 2025 < 2025 < 2025 

Los Angeles 

LAX         < 2025   < 2025         

ONT                       

BUR                       

SNA                       

LGB                       

Memphis MEM                       

Miami FLL < 2015 < 2025               < 2025   
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Metro Area Airport 
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MIA         < 2025   < 2025 < 2025     < 2025 

PBI < 2015                     

Minneapolis MSP                 < 2025     

New York 

JFK                   < 2015   

LGA                       

EWR         < 2015   < 2025       < 2025 

ISP                       

Orlando MCO     < 2015       < 2025       < 2025 

Philadelphia PHL < 2015                     

Phoenix PHX   < 2025                   

Pittsburgh PIT                       

Portland PDX   < 2025     < 2015         < 2025   

Salt Lake 

City 
SLC 

    < 2025             < 2025   

San Diego SAN                   < 2025   

San 

Francisco 

SFO             < 2025     < 2025 < 2025 

SJC                       

OAK         < 2025   < 2025   < 2025   < 2025 

Seattle SEA < 2015 < 2025     < 2015             

St. Louis STL             < 2015       < 2015 

Tampa TPA < 2025           < 2025       < 2025 

Washington-

Baltimore 

DCA                       

IAD 
< 2015 
< 2025   < 2015                 

BWI < 2025                     

 

The table shows improved capacity planned at PHL in the form of 

new/extended runways but no new/extended runways at any of the airports in Los 
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Angeles, New York or San Francisco.  It also shows no planned improvements at 

LGA.  

 

4.2.3.3.3 Impact of a Lack of Hub Service 

An airport’s status as a hub for a carrier brings connecting passenger traffic, 

allowing the air carrier to provide higher frequency service and to serve more 

destinations than would have been possible if the airport served primarily O&D 

traffic (Belobaba et al. 2009, p. 163).   

Pittsburgh’s low level of air service is in part the result of its lack of hub 

status for any airline since US Airways consolidated its hubs to Philadelphia and 

Charlotte (Grossman 2007).  Similar conditions may exist in Cleveland (Rollenhagen 

2003) which also reports a relatively low level of air service. 

4.2.3.3.4 Impact of Local Industry Base 

The needs for air transportation may vary by industry.  For instance, in a 

comparison of two areas with the same GDP and population, it may be that one has 

better conditions for higher levels of air service than the other as a result of 

differences in industry makeup.   
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In a 2000 study, it was found that regions with a stronger focus on high-tech 

industries were more likely to have airline hub service (Button & Stough 2000, pp. 

231-264).  The industries that were defined as part of the high-tech industry 

included mining; construction; chemicals; fabricated metal products; electronic 

equipment; communications; financial services; real estate; business, engineering 

and management services; and many others.  The definition of high-tech industries 

used in that study was derived from a 1986 characterization of high-tech industries 

(Rees 1986, pp. 76-92), which determined that the high-tech industry was made up 

of 88 categories of economic activity from the Standard Industrial Classification 

(SIC) system.  The SIC system was replaced in 1997 by the North American Industry 

Classification System (NAICS) (U.S. Census Bureau 2010a), and data is not publicly 

available at the detailed level of the 88 original categories for the 2005-2008 time 

period. 

To provide a high level assessment of the high-tech industries’ role in the 

level of air service of metropolitan areas, the original 88 categories were 

consolidated into five high-level categories from the NAICS: Mining; utilities; 

manufacturing; information; and professional, scientific, and technical services.  The 

categories are described in Table 4.11. 
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Table 4.11 - Definition of NAICS categories included in high-tech industry (U.S. Census Bureau 

2002) 

Industry Definition 

Mining Mining is defined as establishments that extract mineral solids, 

liquid minerals, and gases.  The industry includes both mine 

operations and mining support activities. 

Utilities Utilities include establishments that provision electric power 

and natural gas, supply water and steam, and remove sewage. 

Manufacturing Manufacturing encompasses establishments that perform 

mechanical, physical, or chemical transformation of materials, 

substances, or components into new products.  The 

manufacturing category encompasses many types of 

manufacturing, such as food, paper, petroleum, and plastics 

manufacturing. 
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Industry Definition 

Information Information establishments are engaged in “(a) producing and 

distributing information and cultural products, (b) providing 

the means to transmit or distribute these products as well as 

data or communications, and (c) processing data” (U.S. Census 

Bureau 2002). 

Professional, 

scientific and 

technical services 

This category “comprises establishments that specialize in 

performing professional, scientific, and technical activities for 

others.  These activities require a high degree of expertise and 

training” (U.S. Census Bureau 2002). 

 

  Figure 4.11 presents the data retrieved using this definition, and Figure 4.12 

shows a scatter plot of the level of air service in relation to the high-tech industry 

contribution as a portion of the total regional economy.  Since a normality 

assumption could not be made about the benchmark results data, a Kruskal-Wallis 

test was conducted to compare the benchmark results of the half of metropolitan 

areas with a low portion of high-tech industry to the areas which have a high 

portion of high-tech industry.  The results of the test are presented in Table 4.12. 
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Figure 4.11 – High-tech industry as a percentage of total regional GDP.  Cincinnati, Denver, and 

Washington-Baltimore omitted due to lack of data.  High-tech industry defined as NAICS categories of 

mining, utilities, manufacturing, information, and professional, scientific and technical services.  

Average based only on those years where data in the largest number of categories was available for 

each city; some categories are marked in the data source as “not shown in order to avoid the disclosure 

of confidential information”.  (Bureau of Economic Analysis, U.S. Department of Commerce 2010) 
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Figure 4.12 - Level of air service as a function of high-tech industry as a percentage of total 

regional GDP (methodology description in caption for Figure 4.11).  Marker coloring is based on a k-

means cluster analysis of benchmark scores. 
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Table 4.12 - Results of Kruskal-Wallis test of the benchmark results based on grouping  

Years 

Mean rank 

Chi-

square 

Asymptotic 

significance 

High 

portion 

high-tech 

Low portion 

high-tech 

2005-

2008 17.46 8.77 7.579 0.00591 

 

Instead, the results indicate that the areas with poor levels of air service 

exhibit high portions of high-tech industry; Seattle and Portland are such examples.  

This is different from the findings of (Button & Stough 2000).  Two key differences 

exist between the study of (Button & Stough 2000) and the present analysis:  First, 

the definition of high-tech industry differs between the two studies as a result of the 

change from the SIC to the NAICS system.  Second, approximately ten years separate 

the two studies, suggesting that the characteristics of the different industries may 

have changed during that time.  Further analysis of more detailed GDP breakout 

data is necessary to find if other industries have an impact on the level of air service. 
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4.2.3.3.5 Impact of Airline Yield 

Airlines are private enterprises which seek to make a profit by supplying 

services to meet demand.  Where profits are high, the incentive exists for air carriers 

to add more service, while locations where profits are low provide less incentive for 

increased levels of service.  The level of air service in a metropolitan area may be 

dependent on the level of airline yields for services to and from that area. 

The average yields were computed for the 2005-2008 period for each airport 

in the analysis.  Data on revenues and passenger volumes were derived from the 

Airline Origin and Destination Survey (DB1B) database (Bureau of Transportation 

Statistics 2010c).  Annual yields, expressed in US$ per Revenue Passenger Mile 

(RPM) for each O&D pair is computed as follows (Belobaba et al. 2009, p. 48): 

DODO

O,D

DO
PassengersDistance

Revenue
Yield

,,

,
*

=  

The yields for each metropolitan area was determined by computed a 

passenger-weighted yield from the data from each airport in the area.  The resulting 

data is displayed in Figure 4.13.   
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Figure 4.13 – Yield by metropolitan area in relation to air service level.  The best air service 

level is at 1.00 and the worst service level is at 3.00.  Marker coloring is based on a k-means cluster 

analysis of the benchmark results. 
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these areas contribute toward the low yield, making them less attractive to airlines 

for adding further services. 

The data also suggests that some areas exist where the level of air service is 

high in conjunction with high yields.  This is the top-left quadrant of the figure and 

includes areas such as Cincinnati and Memphis.  The focus for the airport authority 

and local government in these areas should not be to improve air service but rather 

to create a more competitive environment where yields are reduced as a result of 

lower fares for travelers. 

Lastly, the areas located in the upper right-hand quadrant of the figure are 

under-served in terms of air service but report above-median yields.  These appear 

to represent opportunities for air carriers in that there is room for adding new, 

profitable service.  The airport authority and local government in these areas should 

focus on both adding increased service and creating more competition in order to 

reduce travel costs for its residents.  These cities include St. Louis, Houston, Detroit, 

Cleveland, and Pittsburgh. 

 



244 . 

 

4.2.3.4 Limitations of Results 

• Although the extent of their impact is unknown, several factors which 

may have affected the outcome of the analysis exist: 

• The calculation of the level of air service does not factor in the 

geographic location of the metropolitan area.  It is possible that areas 

located near the center of the continental United States have an 

inherently greater possibility of achieving high levels of air service. 

• The calculation does not take into account the effects of economic 

geography.  It is for instance possible that the industrial base of one 

metropolitan area is more prone to using air service than that of other 

areas. 

• The calculation does not account for the impact of capacity limitations 

on gates, runway capacity, etc.  It appears that this limits the score for 

cities like San Diego. 

• The calculation does not consider the relatively close proximity of 

some metropolitan areas to other areas.  It is possible that the 

proximity to another area impacts a region’s level of air service. 

• International traffic was excluded from the study since 14 airports 

among the OEP-35 airports represented 70% of all international 



245 . 

 

passenger enplanements in 2006 (FAA 2008, pp. 23-24).  A study that 

included international traffic would show different results. 

• The sensitivity analysis could not address whether the MSA 

boundaries were drawn too wide or too narrowly around any regions. 

 

4.2.3.5 Results of Sensitivity Analysis 

This section presents the results of the sensitivity analyses described in 

section 4.2.2.6. 

4.2.3.5.1 Sensitivity to Weight Boundaries 

In the original analysis, the standard weight boundaries ε from the BCC 

model were used.  These are the boundaries on the minimum values on the weights 

applied to each output in the DEA calculation.  In the BCC model these are simply 

specified as infinitesimal and in the model implementation, they were set at 1.0 * E-

6.   

In the sensitivity analysis, the weights were varied between the minimum 

value of 1.0 * E-6 up to the maximum feasible output weight values.  The maximum 

feasible values are the maximum observed values multiplied by 0.5 (as a result of 
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there being two output parameters).  The maximum feasible values are those which 

result in the constraints being binding for one or more DMUs.  

The input parameter weights are not varied since any minimum values 

unfairly penalize the performance of the larger metropolitan areas due to the 

differences in magnitude of the different areas’ values. 

In the case where the analysis uses the maximum feasible weights, the 

DMU(s) with the highest magnitude of outputs are forced to apply exactly those 

weights, effectively removing the DMU’s ability to select its own optimal weights.  

The higher the boundary on weights, the lower the flexibility for DMU’s to 

determine their own optimal weights. 

For the output weights, seven variations on the weight boundaries were 

tested for each year; the first test i=1 used the standard 1.0 E-6 weights, and in each 

subsequent test i=2..7 the boundary was proportionally increased such that the test 

i=7 had the maximum feasible boundaries (for tests i=2..7 the weight boundaries 

were determined as boundaryi = max(weight) / 2 * (i – 1) / 6).  

The average scores computed in the sensitivity analysis are presented in 

Figure 4.14.  A comparison of the rankings of each metro area’s scores between Test 

1, Test 2, and Test 7 is presented in Table 4.13.  
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Figure 4.14 - Results from weight boundary sensitivity tests.  Test 1 has the least restrictive 

weight boundaries, and Test 7 has the most restrictive boundaries 

 

Table 4.13 - Rankings from selected sensitivity tests.  Test 1 has the least restrictive weight 

boundaries and Test 7 has the most restrictive boundaries. 

  

Ranking in Sensitivity Test 

Test 1 Test 2 … Test 7 

Atlanta 1 1   20 

Boston 24 24   25 

Charlotte 12 12   4 

Chicago 1 1   27 

Cincinnati 10 11   12 

Cleveland 22 22   7 
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Ranking in Sensitivity Test 

Test 1 Test 2 … Test 7 

Dallas 11 10   24 

Denver 1 1   13 

Detroit 15 15   18 

Honolulu 1 1   1 

Houston 19 14   21 

Las Vegas 1 1   5 

Los Angeles 17 17   27 

Memphis 13 13   3 

Miami 14 20   19 

Minneapolis 9 8   15 

New York 8 7   27 

Orlando 16 16   6 

Philadelphia 23 23   22 

Phoenix 20 18   17 

Pittsburgh 27 27   10 

Portland 29 29   8 

Salt Lake City 1 1   2 

San Diego 28 28   14 
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Ranking in Sensitivity Test 

Test 1 Test 2 … Test 7 

San Francisco 21 21   23 

Seattle 26 26   16 

St. Louis 18 19   11 

Tampa 25 25   9 

Washington-Baltimore 1 9   26 

 

The results show that the rankings in Test 1 and Test 2, which have the 

lowest boundaries, remain largely the same.  Between the two tests, 20 

metropolitan areas retain the same ranking, 6 areas shift one or two rankings, and 3 

areas shift more than 2 rankings.  However, with Test 3, rankings begin to shift more 

drastically, and by Test 7 only one airport, Honolulu, maintains its original ranking. 

This shows that the selection of weight boundaries do matter to the results if 

they go well above the infinitesimal.  However, the BCC model specifies that 

infinitesimal weight boundaries be used, and the similarity between the results of 

Test 1 and Test 2 shows that the exact choice of infinitesimal weight boundaries in 

the model implementation has little impact; the boundaries in Test 2 already far 

exceed what could be considered reasonable infinitesimal weight boundaries in the 
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model.  This indicates that the boundaries of 1.0 * E-6 used in the analysis are 

acceptable. 

4.2.3.5.2 Sensitivity to Hub Definition 

In the sensitivity test where the definition of hubs was changed as described 

in section 4.2.2.6, tests were run for 3, 4, 5, 6, and 7 hubs.  The results were then 

averaged across all cases, and standard deviations for the level of air service were 

computed.  The results of this analysis are shown in Figure 4.15. 

 

Figure 4.15 - Results from hub definition sensitivity test.  The bars show the average score, and 

the error bars show +- the standard deviation. 
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The results show a very small standard deviation for the fully efficient 

metropolitan areas and limited standard deviations elsewhere, indicating a very 

limited impact on the results from changes in the definition of how hubs are 

determined. 

 

4.2.4 Conclusions 

The analysis defined the level of service in U.S. metropolitan areas as the 

number of non-hub destinations served and the frequency of service to hubs, and 

found that the least well-served areas are Portland, OR, San Diego, CA, Pittsburg, PA, 

and Seattle, WA.  The analysis presented the gaps that, if closed, would have resulted 

in matching the level of air service at the best-served areas.   

The results suggest that some areas have a lower opportunity for high levels 

of air service as a result of their geographic proximity to other areas with high 

degrees of air service or as a result of their regional industry base generating a low 

level of demand for air travel.  These are factors that are generally uncontrollable by 

local airport authorities or local and federal government bodies. 
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In contrast, the results suggest that some areas have a low level of air service 

as a result of factors which may be controlled or influenced. 

Areas such as Philadelphia appear to be underserved as a result of limited 

infrastructure capacity.  This suggests that allocating funding for adding new 

capacity through for instance a new runway should result in improved service for 

the local population and economy. 

Other areas, such as Pittsburgh and Cleveland report low levels of air service 

but also record above-median yield levels.  This suggests that these areas represent 

opportunities for added service by air carriers, and that the local airport authorities 

and government should focus efforts on recruiting new air service in order for the 

region’s population and businesses to be better served. 

 

4.3 Case Study 2: Benchmark of the Level of Capacity 

Utilization at U.S. Airports 

Airport capacity utilization has in the past been defined in terms of the 

number of aircraft handled by each unit of runway capacity (Federal Aviation 

Administration 2004).  While this measure is an important indicator of how well a 
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scarce resource is being utilized, this case study studies whether that metric is 

sufficient for addressing the concerns about capacity utilization of several key 

airport stakeholders.  The case study leverages the analysis of airport stakeholders 

and their goals to establish new measures of how well the airport’s capacity is being 

used to meet the goals of a broader set of stakeholders. 

As section 4.2.1 shows, U.S. airports exist to serve the needs of a broad range 

of stakeholders.  The airports provide access to air transportation services to a 

region’s residents, visitors, and businesses.  It is the objective of these stakeholders 

and of several other stakeholders, that the airport capacity be used to maximize the 

level of air service and that as many passengers as possible be carried through the 

airport’s infrastructure. 

This analysis provides a benchmark of the degree to which U.S. airport 

capacity is being used to meet these stakeholder goals.  The key findings include: 

• Seven of the 35 airports exhibit full efficiency in their level of capacity 

utilization.  Some of these airports currently operate at high levels of 

delay, suggesting that obstacles exist for continued growth in capacity 

utilization 
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• Although increasing the average size of aircraft used at airports with 

currently high capacity utilization could help further increase the level 

of capacity utilization, limited demand to markets currently served 

curbs the potential impact of increased aircraft size unless air carriers 

also switch to serving higher-demand markets. 

• Six of the 35 airports exhibit poor levels of air service.  These airports 

are PDX, PIT, TPA, HNL, MCO, and MDW.  Some of these airports exist 

in currently under-served markets, suggesting that capacity 

utilization could be improved, while others are in already well-served 

markets. 

Note that in this case study the analysis is based on individual airports, in 

contrast to case study 1 that was presented in section 4.2 which was based on 

metropolitan areas that often included more than one airport. 

This case study is organized as follows: Section 4.2.1 introduces the model of 

airport stakeholders and their goals.  Section 4.2.2 describes the study methodology.  

Section 4.2.3 presents the study results.  Section 4.2.4 discusses the conclusions. 
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4.3.1 The Airport’s Stakeholders and Their Goals 

The analysis of airport stakeholders in section 2.1.3 found that the 

stakeholders’ goals for the airport were based in part on factors wholly within the 

control of airport management (the “airport organizational boundary”), but also on 

factors that were only partly within the control of management, or entirely outside 

management’s control.   

The goal of “maximizing the number of destinations served and frequency of 

those services” emerged from the analysis as common to stakeholder groups such as 

local businesses, residents, the local government, and the airport organization itself.  

It is an example of a goal that is not fully within the control of airport management 

since airlines determine where to add or reduce service. 

Several stakeholders also have an interest in maximizing the number of 

passengers carried through the airport.  For instance, local businesses dependent on 

tourism benefit from maximizing passenger throughput.  Concessionaires at the 

airport can see increased revenues through larger volumes of passengers.  Airport 

management have an incentive in ensuring maximum passenger throughput since 

they bring increased revenues to the airport both in the form of Passenger Facility 
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Charges (PFCs) and concessions spending which results in increased non-

aeronautical revenues for the airport. 

The goals reflects a “symbiotic” relationship between a region’s economy and 

the local air service, where air service stimulates economic growth (Button & Stough 

2000) and growth in a region’s economy drives increased demand for air travel. 

The goals may be in conflict with each other.  Airlines can ensure that the 

number of destinations served is maximized by using aircraft that are sized 

appropriately for the levels of demand for each market.  Although the number of 

passengers carried might be maximized by flying larger aircraft to certain markets 

where demand is high, airlines may have an incentive to fly smaller aircraft to a 

larger number of destinations thanks to higher levels of yield to these small 

markets.  At capacity-constrained airports, a conflict exists then exists between 

achieving the objective of maximizing the number of destinations served and 

maximizing the number of passengers carried. 

The stakeholders who are concerned with these potentially conflicting goals 

have a need for evaluating the degree to which it is being achieved in U.S. 

metropolitan areas.  For instance, local governments and airport authorities must 

understand if their region is currently well served by airlines or if added effort is 
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necessary to attract additional air service.  If a shortfall exists in the degree to which 

the goal is being met, they must gain insight about what is causing the performance 

gap.  Conversely, a region’s residents and business community must understand if 

their needs are being met by the airport(s) in their region, or if they should demand 

more from their local government and airport authority in terms of attracting new 

air service to their community. 

A comparative benchmark is a means to evaluate these goals.  The 

benchmark allows for a normalized comparison across major U.S. metropolitan 

areas and gives stakeholders an understanding of airports which are not effectively 

meeting goals and can also provide insight into the causes of any performance gaps.  

The evaluation of stakeholder goals indicate that what should be benchmarked is 

the level to which airport capacity is used to provide service to a large number of 

destinations; to provide high frequency of service; and to transport a large number 

of passengers. 

4.3.2 Methodology 

This section discusses the study methodology.  It provides the motivation for 

the selection of performance parameters and discusses the choice of model for 

benchmarking.   It also describes the data sources and pre-processing as well as the 
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method used for computing benchmark scores.  Finally, it presents the method for 

sensitivity analysis of the results. 

4.3.2.1 Scope of Analysis 

As described in section 1.1, the scope of this analysis is limited to the U.S. 

OEP-35 airports only. 

To ensure accurate comparisons, the scope of the study is limited to domestic 

U.S. air service only.  International traffic was excluded from the study since 14 

airports among the OEP-35 airports represented 70% of all international passenger 

enplanements in 2006 (FAA 2008, pp. 23-24).  The details of how this limited scope 

was implemented are discussed in subsequent sections relating to data pre-

processing. 

4.3.2.2 Selection of Model Parameters 

The analysis of stakeholder goals in section 4.2.1 described their goals for 

utilizing airport capacity.  This section reviews the details of these goals and 

translates them into specific performance parameters. 

The stakeholder goals were combined into the conceptual ratio of (number of 

destinations served; high frequency of service; number of passengers) : (airport 
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capacity).  The first three parameters can be thought of as outputs from the process 

while the last parameter, airport capacity, is the resource input that makes the 

outputs possible.  As airport capacity increases, assuming the presence of sufficient 

demand, the expectation is that the “production” of outputs would increase in the 

form of destinations served, frequency of service, and/or volume of passengers 

served. 

4.3.2.2.1 Measuring the Level of Air Service 

The goal includes maximizing both the number of destinations served, as 

well as the frequency of those services.  Two performance metrics are proposed in 

order to gauge the level to which this goal is achieved: 

The first measure is the number of non-hub destinations served nonstop 

from any airport in the metropolitan area.  This measure maps directly to the goal.  

Destinations which were served only on an occasional basis should not be 

considered and a lower bound of service at least once per week is imposed.  

The second measure is the average daily frequency of service to the top 

domestic hubs (the definition of top domestic hubs is treated in section 4.3.2.4.2).  

This measure addresses the goal in two ways: 
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• It gives an indication of the level of frequency of service across a set of 

key routes 

• It is a measure of the level of ease with which a large number of 

destinations can be reached through a single connection 

These two measures reflect the two factors that impact total trip time, as 

discussed by (Belobaba et al. 2009, pp. 58-59).  Total trip time involves both the 

time on board the aircraft as well as “schedule displacement,” with the latter being 

the amount of time that passes between a passenger’s desired departure time and 

the time when a flight is available.  The number of destinations served nonstop will 

contribute toward minimizing the time on board the aircraft, and a high frequency 

of flights will minimize the schedule displacement. 

4.3.2.2.2 Measuring Passenger Volume 

The goal includes ensuring that the number of passengers using the airport is 

maximized.  The goal can be measured in terms of passenger enplanements or 

deplanements, or the sum of the two.  A distinction is made between connecting 

passengers and origin and destination (O&D) passengers.  Whether or not it is 

desirable to maximize both passenger types is a multi-faceted question: For some 
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stakeholders the passenger volumes should be maximized, irrespective of the 

passenger type.   

For example, concessionaires and airport managers have an interest in 

ensuring that both passenger types are maximized since both types result in 

increased revenues.  In contrast, for local communities, connecting passengers have 

both pros and cons: One drawback is that a large volume of connecting passengers 

means that congestion at the airport may go up due to increased traffic, causing 

inconvenience to local residents.  In contrast, one benefit for local communities of 

connecting traffic is that the amount of air service at the airport can be maximized in 

the form of increased nonstop services and higher frequency; if passengers at the 

airport were purely O&D passengers, demand would be lower and as a result, less 

air service would be provided.  A second benefit is that local businesses that operate 

at the airport and in surrounding areas will see their revenues go up as a result of 

connecting passengers, which provides increased employment and economic 

benefits to the regional community. 

Based on this discussion, connecting passengers represent a desirable factor 

to a greater degree than they do a drawback and were included in the total 

passenger calculation. 
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4.3.2.2.3 Measuring Airport Capacity 

Past studies of airport performance have measured airport capacity in terms 

of a number of different metrics of infrastructure size, as shown in Table 4.14. 

Table 4.14 – Sample measures of airport capacity used in past benchmarks 

Capacity Measure Studies which use this metric 

Number of runways 

(Bazargan & Vasigh 2003) (Gillen & Lall 

1997) (Sarkis & Talluri 2004) (Sarkis 2000) 

(Oum & Yu 2004) 

Number of gates 

(Bazargan & Vasigh 2003) (Gillen & Lall 

1997) (Sarkis & Talluri 2004) (Sarkis 2000) 

(Oum & Yu 2004) 

Terminal area 
(Gillen & Lall 1997) (Pels et al. 2001) 
(Oum & Yu 2004) (Barros 2008) 

Airport area 
(Gillen & Lall 1997) (Pels et al. 2001) 
(Barros 2008) 

Runway area/runway length 
(Gillen & Lall 1997) (Pels et al. 2001) 
(Barros 2008) (Abbott & Wu 2002) 

Number of aircraft remote and 
terminal parking positions (Pels et al. 2001) 

 

The primary factor which limits the amount of traffic that an airport can 

handle is the runway capacity.  This, to a greater degree than any other factor, is the 

bottleneck in the airport system (Neufville & Odoni 2003, p. 367). 



263 . 

 

Airport runway capacity is not determined only by the number of runways 

but also by their geometric layout and by exogenous factors such as weather 

conditions (Neufville & Odoni 2003, p. 376).  For example, two closely spaced 

runways (with centerlines less than 2,500 ft apart) will have a lower total capacity 

than two runways spaced further apart (Neufville & Odoni 2003, pp. 384-387), all 

other factors being the same.  Similarly, a runway at an airport whose weather 

conditions permit visual meteorological conditions (VMC) operations more often 

will have a higher total capacity than one at an airport with better weather 

conditions (Neufville & Odoni 2003, p. 389). 

Because of these differences in runway capacity, it is not sufficient to study 

airport capacity simply by counting the number of runways, as has been done in 

past studies.  Instead, a measure of the actual capacity of the set of runways at an 

airport is necessary.  An approach to determining actual airport capacity has been 

proposed (Kumar & Sherry 2009) in which airport Capacity Coverage Charts (CCCs) 

were used along with data on the costs of delay to determine average airport 

capacity.  CCCs describe how much runway capacity was available and for how long 

(Neufville & Odoni 2003, p. 402).  This average airport capacity is the measure used 

in this analysis. 
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4.3.2.3 Choice of Benchmark Model 

The parameters for the model are the number of nonstop non-hub 

destinations served, the average daily frequency of service to the top domestic hubs, 

the total number of enplaned passengers, and the average airport capacity.  This 

model can conceptually be expressed as the ratio (destinations served, frequency, 

passengers) : (capacity).  The units of measure for these metrics are airports, flights, 

passengers, and aircraft, respectively.  Combining these metrics into a comparative 

benchmark is a case where the analysis combines multiple parameters of different 

units, and where the production or utility function is unknown.  As discussed in 

section 0, this makes DEA the appropriate benchmarking methodology. 

The results of the application of the framework and heuristics to determine a 

model for this analysis are now presented. 

• Aggregation: The heuristics specify that either an ε-maximin function 

or an additive function should be used.  The additive function should 

be used only if a motivation exists for why the current proportional 

mix of inputs or outputs (depending on the orientation chosen) is 

irrelevant and can be changed.  Otherwise, the ε-maximin function 

should be chosen.  In this study, no evidence exists to suggest that the 
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proportional mix of input or outputs can be changed between 

different airports.  As a result, the ε-maximin function is chosen. 

• Weights: The heuristics prescribe the use of specific weights unless 

any reasons are present for choosing range-adjusted weights.  The 

specific weights allow each DMU to select its own optimal weights and 

in this study that is an appropriate selection to reflect the decisions of 

those involved in managing services at the airport. 

• Orientation: The model orientation choice (input or output oriented) 

should be based on which among the model parameters are to a 

greater degree controllable by management.  In this analysis, the 

output parameters are to a greater level possible to control or 

influence by the entities involved in managing the airport and its 

services.  In contrast, the input in the form of runway capacity is 

largely a static value which is difficult to influence; once a runway has 

been constructed it is difficult to remove it (Martín & Román 2001, pp. 

152-153), and conversely at some airports space constraints and 

community opposition limit the ability to add further runway capacity 

(Neufville & Odoni 2003, p. 168). 
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• Returns to scale: The framework specifies a choice between constant 

returns to scale (CRS) and variable returns to scale (VRS).  The 

outputs in this model can both be assumed to reflect VRS:  The 

number of new destinations which are feasible to serve decreases as 

the number of already served destinations increases, since only a 

finite number of metropolitan areas exist where the local market 

provides sufficient demand to warrant nonstop service.  

• FDH: The Free Disposal Hull should be applied only if some reason 

exists why comparison only to observed combinations of inputs and 

outputs should be made, but no such reason exists in this analysis. 

• Integrality: Integrality constraints should be applied in cases where 

input or outputs are indivisible into fractions and of low magnitude, 

and if large errors in the results would be introduced if these inputs or 

outputs were assumed to have decimal values.  The parameter with 

integrality constraints and the lowest magnitude in this study is the 

number of non-hub destinations served nonstop, but with a median 

value of 88 for the years studied, this parameter’s magnitude remains 

sufficiently high that no integrality constraints are necessary in the 

model.  Although the runway capacity could also be subject to integer 
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constraints in its original form since the number of aircraft 

movements is an indivisible value, the adjustments necessary in this 

analysis to reduce the hourly capacity to only the portion used by 

domestic passenger traffic causes the capacity to take on non-integer 

values.  As a result, no integer constraints can be placed on the 

runway capacity, causing some level of error in the results. 

• Timespan: If any key technology changes have occurred during the 

timespan being studied that would impact the ability of DMUs to 

achieve strong performance, then a Malmquist index method should 

be used.  If not, the performance for each year can simply be analyzed 

independently.  In the present analysis, technology changes would 

involve the introduction of something which made it feasible for air 

carriers to serve more destinations than before, or something which 

allowed for increased frequency of service.  From a technology point 

of view, this would involve the introduction of new aircraft types with 

highly different performance characteristics in terms of for instance 

fuel consumption, crew requirements, or number of seats.  No new 

aircraft models for domestic use entered into service during the 2005-
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2008 period from Boeing (The Boeing Company 2010), Airbus7 

(Airbus S.A.S. 2010), Bombardier (Bombardier 2010), or Embraer 

(Embraer 2010).  As a result of no major changes occurring in this 

time period, no Malmquist index calculation is necessary. 

• Tie-breaking: The heuristics prescribe that a tie-breaking function be 

used only if a reason exists why all airports must be fully ranked.  No 

such reason is present and accordingly, no tie-breaking function is 

used. 

Table 4.15 summarizes the modeling assumptions for this analysis. 

Table 4.15 - DEA model parameter choices 

Scalarizing function Technology Timespan Tie-
breaking 

Aggre-
gation 

Weights Orient-
ation 

Returns 
to scale 

FDH Integrality 

ε-
maximin 

Specific 
weights 

Output 
oriented 

VRS No use of 
FDH 

No 
integrality 
constraints 

No use of 
Malmquist 
index; 
simply one 
analysis 
per year 

None 

                                                        

7 The Airbus A380 was in fact first delivered in 2007, but this aircraft is not 

used for US domestic service 
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These modeling assumptions are represented in the output-oriented BCC (R. 

D. Banker et al. 1984) algorithm with minimum weight constraints, which was used 

in this analysis.  This model has the following dual problem formulation, as 

discussed further in section 2.2.2.6.2: 

 

The DEA scores were computed using the BCC implementation in Matlab, as 

discussed in section 3.5.1.  For the implementation, the infinitesimal constant ε was 

set to 1.0 * E-6.  A further discussion of the choice of this value is in section 4.3.3.6.1. 

4.3.2.4 Data Collection and Pre-Processing 

This section describes the means of obtaining and preparing the benchmark 

data for the analysis. 
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4.3.2.4.1 Data Sources 

Two data sources were used for the analysis: 

• Data on destinations, frequencies, and passenger volumes: This 

data was prepared using the T100 database which is compiled from 

data collected by Office of Airline Information (OAI) at the Bureau of 

Transportation Statistics (BTS) (Bureau of Transportation Statistics 

2010b).  The T100 database is a complete census of flights by U.S. and 

foreign carriers and provides data on the number of operations and 

passengers carried between each city pair. 

• Data on airport capacity: This data was derived from the analysis 

described in (Kumar & Sherry 2009).  This analysis in turn was 

conducted using the Aviation System Performance Metrics (ASPM) 

database (Federal Aviation Administration 2010d) along with the 

T100 database described above and the Airline Origin and Destination 

Survey (DB1B) database (Bureau of Transportation Statistics 2010c). 

4.3.2.4.2 Defining Hubs 

The definition of all-points domestic hubs in the analysis was based on an 

initial analysis of the T100 database.  The objective was to identify those airports 
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that provide connections to the largest number of other airports.  For the 2005-

2008 time period, the analysis found the number of domestic airports served 

nonstop8 presented in Table 4.16, and identified the average number of other OEP-

35 airports served nonstop listed in Table 4.17. 

  

                                                        

8 Only destinations that were served at least 52 times per year were 

considered, to ensure that at least weekly service existed. 
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Table 4.16 - Average number of domestic 

airports served nonstop at least 52 times annually 

(source: T100 database) 

Table 4.17 - Average number of OEP-35 

airports served nonstop at least 52 times 

annually (source: T100 database) 

Airport Average number of 

domestic airports 

served nonstop 

Rank  Airport Average number of 

OEP-35 airports 

served nonstop 

Rank 

ATL 171 1  ATL 34 1 

ORD 141 2  DEN 34 1 

DFW 138 3  DFW 34 1 

MSP 137 4  MSP 34 1 

DEN 134 5  CVG 33 5 

DTW 128 6  DTW 33 5 

IAH 121 7  IAH 33 5 

LAS 119 8  LAS 33 5 

CVG 119 9  LAX 33 5 

CLT 102 10  ORD 33 5 

SLC 101 11  PHX 33 5 

  

The first four airports in Table 4.17 were connected to all other OEP-35 

airports in each of the years from 2005 to 2008.  In addition, these airports all rank 

among the top five airports in terms of the overall number of domestic destinations 
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served, as shown in Table 4.16.  The remaining top-five airport from Table 4.16 is 

ORD which, although it lacks service to one of the OEP-35 airports, ranks as the 

second most connected airport to other domestic airports.  Based on this data, the 

list of hubs for this analysis is: ATL, ORD, DFW, MSP, and DEN.  The impact of this 

definition is tested as part of the sensitivity analysis discussed in section 4.2.2.6. 

4.3.2.4.3 Preparing Benchmark Data 

Each of the data sources required some pre-processing for use in the 

benchmark analysis.  This section describes that pre-processing. 

The data on the number of non-hub destinations served nonstop was 

computed from data using these conditions and assumptions: 

• Departures were considered from the metro area as a whole rather 

than from individual airports.  For instance, if both EWR and LGA 

airports in the New York region had nonstop service to MSP, this 

would only be counted as one nonstop destination for the New York 

metropolitan area. 

• At least 52 flights during the year were required in order for an O&D 

pair to be considered to have nonstop service. 
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The data on the daily frequency of service to hubs was prepared using these 

conditions and assumptions: 

• As for the number of non-hub destinations served, departures were 

considered from the metro area as a whole rather than from 

individual airports.  However, in the example with EWR and LGA 

above, if each airport had service four times daily, the New York 

region would be counted as having a frequency of eight. 

• For those airports that were hubs, only service to the four other hubs 

could be counted while for non-hub airports, service to the five hubs 

was counted.  To adjust for this, the hub airports’ totals were 

increased by the average of their service to each of the other four hub 

airports; in practice this amounted to a multiplication of each hub 

airport’s total by a factor of 1.25. 

The data on the number of passengers carried was limited to only domestic 

passengers, in order to match the domestic-only scope for other performance 

parameters.  The number of passengers could be counted as the number of enplaned 

passengers, the number of deplaned passengers, or as the sum of the two.  The 
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number of departing passengers is very close to the number of arriving passengers9; 

for convenience, the annual number of enplaned domestic passengers was chosen.  

In the database query, the measure was computed as the sum of all enplaned 

passengers for whom the origin was one of the OEP-35 airports. 

Capacity data for airports was derived from (Kumar & Sherry 2009).  This 

was the capacity for all operations but the scope of the study is only domestic 

passenger flights, the capacity value had to be reduced to only account for the 

portion of capacity used by domestic passenger flights.  Any capacity used by 

international or cargo aviation, etc., had to be removed.  The percentage of flights 

that were domestic passenger flights was computed by comparing the sum of all 

flights in the T100 segment database for all international and domestic flights with 

the sum of flights in the T100 domestic segment database that had a number of 

passengers greater than 0.  The average percentage of flights that were domestic 

passenger flights across 2005-2008 is presented in Table 4.18.   

                                                        

9 In a test of the number of domestic passengers for 2008 at the OEP-35 

airports, the number of enplaned passengers was within 0.77% or less of the 

number of deplaned passengers. 
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The capacity used for domestic flights was computed by multiplying the 

original capacity by the portion of all flights that were domestic passenger flights. 

 

Table 4.18 - Portion of all flights that were domestic passenger flights 

 

4.3.2.5 Summary of Input and Output Parameters 

This section provides four-year average values for the input and three output 

parameters used in the DEA analysis.  The full details of the input and output 

parameters are provided in Appendix E.  Although the analysis was done separately 

for each of the four years, this overview provides averages for the whole period 

2005-2008.  
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Figure 4.16 - Number of non-hub domestic destinations served nonstop, average 2005-2008 

 

 

Figure 4.17 - Daily service frequency to top 5 hubs, average 2005-2008 
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Figure 4.18 - Annual number of enplaned domestic passengers, average 2005-2008 

 

Figure 4.19 – Capacity for flights every 15 minutes, adjusted for domestic flights only, average 

2005-2008 
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4.3.2.6 Sensitivity Analysis 

The purpose of the sensitivity analysis is to understand the degree to which 

the findings stand up to any potential changes in the input and output data or the 

underlying model assumptions of the study. 

The choice of DEA model has been shown to have a potentially radical impact 

on the results of airport performance studies (Schaar & Sherry 2008).  Some studies 

have attempted to address that by using a variety of different models (Sarkis 2000), 

but this can lead to contradictory and inconclusive results.  This paper instead used 

the framework and heuristics from section 0 to guide model selection.  Any 

variations of the results based on using another DEA model would not be relevant 

since such a model would be selected without a rationale for its applicability.  As a 

result, no sensitivity analysis using a different DEA model was conducted. 

However, in the study of DEA models which use minimum weights, a large 

body of work exists (e.g. (Mehrabian et al. 2000) and (Allen et al. 1997)) but no 

conclusive determination of a standard approach to the choice of minimum weights 

exists.  To address this lack of standardization, the sensitivity analysis in this study 

includes tests of varying these minimum weights. 
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The data on output parameters regarding the number of non-hub 

destinations served nonstop and the frequency of service to the top 5 hubs was 

based not on sampling data but rather on full census data.  This means that no 

sensitivity analysis is necessary to test the impact of sampling errors.  However, the 

data on both of these performance parameters is dependent on the definition of 

hubs.  To test the robustness of the findings with respect to the definition of hubs, 

the sensitivity analysis included tests of using the top 3, 4, 6, and 7 hubs based on 

the total number of domestic destinations served nonstop (the list of these airports 

can be found in Table 4.16).  

Regarding the total number of domestic passengers enplaned, no 

assumptions had to be made.  Similarly, the data on the portion of airport capacity 

used for domestic traffic did not require any assumption other than that the portion 

of airport capacity used for domestic passenger traffic is proportional to the portion 

of airport traffic that is made up of domestic passenger flights.  No sensitivity 

analysis of variations in enplanement data or airport capacity was conducted.   

The results of the sensitivity analysis tests are presented in section 4.3.3.6. 
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4.3.3 Results 

This section presents the overall results of the analysis and discusses several 

factors which impact the results.  Figure 4.20 shows an average of the results of the 

benchmark of airport capacity utilization, with low values indicating strong 

utilization and high values indicating poor utilization.  The full details of the results 

are provided in Appendix E. 

 

 

Figure 4.20 - Average level of airport capacity utilization performance.  1.00 indicates strong 

utilization and high values indicate poor utilization.  Bar coloring is based on a k-means cluster analysis 

of benchmark results. 
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1. Airports with very high utilization, shown as a score of at or near 1.00.  

These airports are a mix of the very large, such as ATL, ORD, and 

DFW; and the highly capacity constrained, such as SAN with only a 

single runway 

2. Airports with mid-range levels of capacity utilization and scores 

ranging between 1.10 and 1.50. 

3. Airports with poor utilization and scores above 1.50.  Three airports 

in this category stand out with scores well above 2.00: PIT, PDX, and 

HNL.  Such high values indicate that these airports’ infrastructure 

capacities have potentially been over-built in relation to the actual 

demand for air services; in the case of PIT, the infrastructure capacity 

may have been designed with the intent of accommodating hub 

service, but with the loss of the US Airways hub operation at that 

airport, excess capacity exists. 

The next several sections address factors which impact and are impacted by 

the level of capacity utilization. 



283 . 

 

4.3.3.1 Relationship between Delays and Capacity Utilization 

Two different delay metrics relate to the level of airport capacity utilization.  

The first type of delay is the level of taxi-out tarmac delay.  This is the time elapsed 

between the aircraft pushing back from the gate until wheels off, subtracting out the 

unimpeded taxi time (i.e. the amount of time the taxi would have taken, had there 

been no queue for reaching the runway).  This delay relates in part to constraints on 

the runway capacity at the departure airport.  The second type of delay is gate 

arrival delay.  This is the difference between the scheduled arrival time and the 

actual arrival time.  This measure is indicative of the constraints on runway capacity 

at the arrival airport. 

Other types of delay also exist in the form of taxi-in delay and gate departure 

delay.  Taxi-in delay is less frequently occurring10 than taxi-out delay and does not 

relate to runway capacity but rather to tarmac configuration and gate availability.  

Gate departure delay similarly has less of a relationship to actual runway capacity 

                                                        

10 Across all of the OEP-35 airports for the period 2005-2008, the average 

taxi-in delay was 2.34 minutes, while the taxi-out delay was 6.19 minutes (Federal 

Aviation Administration 2010c) 
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and is more driven by other factors causing airline delay.  These types of delays are 

not reviewed in this analysis. 

4.3.3.1.1 Taxi-Out Delay 

The taxi-out delay is computed by measuring the difference between the 

actual gate out time and the actual wheels off time, and subtracting the unimpeded 

taxi time.  The unimpeded taxi time is measured for each carrier in optimal 

conditions with no congestion, weather, or other delay factors present (Federal 

Aviation Administration 2010b). 

A comparison of the level of capacity utilization and the average taxi-out 

delay is shown in Figure 4.21.  The data reveals that although some airports achieve 

very high capacity utilization, it can come at a high taxi-out delay costs.  The three 

New York area airports exhibit this combination.  In contrast, airports such as MSP, 

LAS, DFW, and SAN exhibit high degrees of capacity utilization but do not show the 

same negative effects in the form of high taxi-out delay costs.  Lastly, the data shows 

that the airports with the lowest degrees of capacity utilization also show some of 

the lowest levels of taxi-out delays, further suggesting that these airports have 

excess airport infrastructure capacity. 



285 . 

 

 

Figure 4.21 - Capacity utilization performance in relation to average taxi-out delays.  A high 

capacity utilization value indicates poor performance 
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The gate arrival delay is computed by calculating the difference between the 

scheduled gate in time and the actual gate in time.  Unlike the taxi-out delay 

measure, the gate arrival delay can be compensated for by air carriers through 

schedule padding, a practice in which airlines add time to a flight’s schedule in 
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anticipation of delays (Long et al. 1999, pp. 2-8).  The data on gate arrival delay in 

relation to the capacity utilization performance is presented in Figure 4.22 and 

shows a pattern similar to that of taxi-out delays.  The New York area airports 

achieve high degrees of capacity utilization but operators in that market pay a price 

of high gate arrival delays.  In contrast, several airports achieve high capacity 

utilization while maintaining lower levels of gate arrival delays, and the same three 

airports as in the previous section exhibit low gate arrival delays in part thanks to 

the availability of excess capacity. 
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Figure 4.22 - Capacity utilization in relation to gate arrival delay.  A high capacity utilization 

value indicates poor utilization. 
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flights at an airport in relationship to the available capacity as well as by the number 

of seats on those aircraft.  The degree to which that available capacity is actually 

used is expressed in the form of load factors, which is the portion of available seats 

that is occupied by passengers.  Each of these factors is presented in this section. 

The average of the annual number of domestic passenger flights per unit of 

airport capacity is presented in Figure 4.23.  This data shows that three of the four 

proportionately busiest airports are located in the New York area; these airports 

also represent the highest levels of delay, as shown in the previous section.  In 

contrast, the three airports with the lowest levels of capacity utilization rank among 

the five bottom airports on this measure. 
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Figure 4.23 - Number of annual domestic flights per airport capacity unit; average 2005-2008 
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The average number of seats per flight is shown in Figure 4.24.  This measure 

is also referred to as aircraft gauge.  The data indicates that the highest-gauge 

markets are those that may be considered leisure destinations to a greater degree 

than others: LAS, FLL, MCO, MIA, and HNL.  Among the five airports that exhibit the 

largest number of flights per available capacity unit in Figure 4.23, four fall in the 

lower half in terms of the number of seats per flight. 

 

 

Figure 4.24 - Average number of seats per flight (also known as gauge), 2005-2008 
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Figure 4.25 shows the average load factor for each airport.  This load factor is 

computed by summing the number of enplaned domestic passengers and dividing 

by the total number of seats on flights departing from the airport.  Although other 

calculations are also used for the load factor which incorporate factors such as the 

distance traveled (American Airlines 2010), this analysis was based on the simpler 

measure since the primary measure of interest is the number of seats out of the 

airport that were occupied.  Airports that rank at the bottom for this measure 

include LGA and DCA which are important shuttle markets, in which the airlines 

schedule departures with very regular intervals (often hourly) with the objective of 

capturing large portions of the business travel market (Plunkett 2007).   
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Figure 4.25 - Average load factor for departing domestic flights, 2005-2008.  Although load 

factors can be computed in different ways, this simplified measure was computed by summing the 

number of enplaned passengers and dividing by the total number of seats on departing flights 
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not be possible if current flight schedules remain un-altered, as indicated by that 

airport’s comparatively low load factor. 

 

4.3.3.3 Drivers of Level of Air Service 

Just as the number of passengers, the number of nonstop destinations served 

and the frequency of service to hubs can be maximized when the number of flights 

in relation to the airport capacity is maximized.  This measure is displayed in Figure 

4.23. 

To maximize the number of flights there must be an underlying demand for 

air travel in the region where the airport is located.  This was addressed in case 

study 1 in section 4.2.   The study used the same definition of air service as this 

paper and studied the same time period.  Figure 4.26 shows the relationship 

between the level of regional air service and the level of capacity utilization. 
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Figure 4.26 - Regional level of air service in relation to airport capacity utilization.  For both 

values, 1.00 indicates best performance and the highest values represent the worst performance. 
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This data shows that some metropolitan areas such as New York report high 

levels of air service along with a high level of capacity utilization.  This may be 

considered a cautionary data point for those regions because it indicates that if 

further population and economic growth occurs, an already high capacity utilization 

level may impose limits on the ability for the region’s airports to accommodate 

further growth. 

In contrast, those airports that have low levels of capacity utilization and 

exist in areas where the relative level of air service is already quite high can expect 

to continue experience low utilization levels since there do not appear to be the 

necessary population economic conditions for increased levels of air service.  

Honolulu is a particularly strong example in this category. 

Finally, in areas with poor levels of air service but high airport capacity 

utilization, it appears that the reason for that poor level of air service is the lack of 

airport capacity.  For instance, SAN is the busiest single-runway airport in the 

United States (San Diego International Airport 2010), and this data suggests that 

SAN could expect to see improved air service if it were possible to expand the 

airport’s runway capacity. 
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4.3.3.4 Impact of Being a Hub 

Hub- and-spoke carriers designate hubs so that connecting services can be 

provided to as many points as possible through connections at one or more hubs 

(Belobaba et al. 2009, p. 163).  Airports that serve as hubs and carry high volumes of 

connecting passengers are able to achieve higher levels of air service than they 

would if they recorded primarily O&D traffic. 

Data on the level of domestic O&D service at each of the airports was 

computed from the DB1B database (Bureau of Transportation Statistics 2010c) by 

summing all passenger itineraries that started or ended at an airport and dividing it 

by the sum of all enplanements and deplanements at that airport (including both 

connecting and O&D passengers). 

Figure 4.27 shows that airports with high degrees of capacity utilization 

represent a mix of primarily O&D service airports (such as SAN and LGA) and 

airports with primarily connecting traffic (such as ATL and DFW).  The data also 

shows that the airports with the lowest levels of capacity utilization – HNL, PDX, PIT, 

TPA, and MCO – are all primarily O&D service airports.   

Increasing the level of connecting traffic by attracting a hub carrier would 

improve the level of capacity utilization at the under-utilized airports.  However, the 
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cause of the level of over-capacity at PIT can be traced in part to its loss of hub 

status in the US Airways network (Grossman 2007), suggesting that challenges exist 

in attracting new hub service. 

 

Figure 4.27 - Level of capacity utilization in relation to the portion of domestic passengers 

which are O&D passengers.  Average 2005-2008.  A high capacity utilization value indicates poor 

capacity utilization. 
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4.3.3.5 Gaps to Close 

The underutilized airports are defined as those with scores greater than 1.00, 

and are considered inefficient in the DEA analysis.  The DEA algorithm provides 

targets which DMUs should hit in order to move from inefficiency to efficiency.  The 

targets are computed by multiplying each output by the DMU’s efficiency score from 

the DEA analysis.  These points are the projections for the DMUs on the convex hull 

represented by the efficient frontier. 

These projections can provide improvement goals for managers at inefficient 

airports.  When the original parameter values are subtracted from these targets, the 

gap that must be closed is obtained.  Those gaps are presented in Table 4.19.   The 

airports in Table 4.19 that have blank values for the gaps for all inputs are fully 

efficient in that year. 

  



299 . 

 

 

Table 4.19 - Distance to the capacity utilization frontier.  These are gaps in the outputs to be 

closed for achieving a score of 1.00.  The gaps are the distance to the frontier. 

  

Distance to Frontier 

2005 2006 2007 2008 

Depts. 
to top 
5 hubs 

Non-
hub 
non-
stops 

Num. 
pax 

Depts. 
to top 
5 hubs 

Non-
hub 
non-
stops 

Num. 
pax 

Depts. 
to top 
5 hubs 

Non-
hub 
non-
stops 

Num. 
pax 

Depts. 
to top 
5 hubs 

Non-
hub 
non-
stops 

Num. 
pax 

ATL                         

BOS 22.4 28.9 4.6 23.8 30.9 5.1 22.4 31.5 4.9 21.6 30.7 4.5 

BWI 19.5 24.5 4.1 19.3 23.2 4.4 19.2 26.5 4.8 19.0 26.3 4.7 

CLE 21.2 30.7 2.3 18.9 28.3 2.1 22.3 35.7 2.7 11.3 22.4 1.4 

CLT 18.0 28.7 4.1 17.5 28.5 4.2 21.1 35.2 5.7 12.0 21.1 3.3 

CVG 12.4 27.8 2.4 21.1 51.1 3.4 27.5 62.7 4.3 23.9 54.0 3.2 

DCA 8.8 9.0 1.1 10.6 10.6 1.4 11.9 12.9 1.7 12.1 12.3 1.6 

DEN 19.0 24.5 4.1 17.3 23.2 4.1 14.5 21.3 3.7 12.4 20.0 3.4 

DFW 0.7 0.9 0.2 1.2 1.4 0.3 2.4 2.9 0.6 2.4 3.1 0.6 

DTW 9.7 18.1 2.3 10.0 16.7 2.2 12.5 22.0 2.8 7.3 13.2 1.6 

EWR                         

FLL 11.3 16.9 2.9 15.6 20.6 3.8 16.1 21.3 3.9 12.4 20.5 2.9 

HNL 12.4 37.8 10.9 11.4 40.9 11.5 10.6 38.9 11.8 13.2 42.7 12.9 

IAD 30.6 39.6 5.1 26.1 40.9 4.4 27.2 47.8 5.3 19.0 36.9 3.7 

IAH 15.6 23.9 3.2 13.8 21.5 3.1 16.6 26.2 3.9 13.6 22.5 3.2 

JFK                         
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Distance to Frontier 

2005 2006 2007 2008 

Depts. 
to top 
5 hubs 

Non-
hub 
non-
stops 

Num. 
pax 

Depts. 
to top 
5 hubs 

Non-
hub 
non-
stops 

Num. 
pax 

Depts. 
to top 
5 hubs 

Non-
hub 
non-
stops 

Num. 
pax 

Depts. 
to top 
5 hubs 

Non-
hub 
non-
stops 

Num. 
pax 

LAS                         

LAX 5.2 4.8 1.4 7.3 7.2 2.0 4.6 4.6 1.2 6.1 6.2 1.6 

LGA                         

MCO 41.4 54.0 10.3 40.7 53.6 10.4 39.7 50.2 10.1 40.0 51.8 10.2 

MDW 19.4 26.1 3.9 23.1 25.2 4.4 19.4 28.5 4.5 23.3 33.1 5.6 

MEM 10.4 17.5 1.2 9.9 16.2 1.1 16.1 26.1 1.8 13.4 23.2 1.5 

MIA 20.2 19.8 3.6 20.2 20.9 4.0 21.0 21.7 4.2 19.1 20.6 3.8 

MSP             2.3 3.3 0.4       

ORD                         

PDX 47.6 63.2 10.0 48.7 63.8 10.1 46.5 70.2 10.8 41.5 65.5 9.5 

PHL 6.2 7.2 1.1 8.6 10.7 1.7 12.4 15.6 2.6 8.5 10.9 1.7 

PHX 18.0 21.5 4.9 17.5 19.1 4.4 16.0 18.3 4.2 18.7 21.9 4.9 

PIT 38.7 67.4 4.5 41.0 73.5 5.3 50.3 84.2 6.4 68.2 83.1 8.5 

SAN                         

SEA 7.4 9.6 2.0 9.2 11.4 2.3 8.6 11.0 2.3 6.1 7.8 1.6 

SFO 9.1 9.3 2.0 12.2 12.4 2.7 10.0 10.4 2.3 6.3 7.2 1.6 

SLC 28.2 50.1 6.0 17.9 32.2 3.3 20.1 37.6 3.9 22.6 38.2 4.0 

STL 26.6 29.8 2.7 31.6 35.1 3.4 29.9 30.0 3.2 28.3 27.8 2.9 

TPA 30.3 48.9 6.7 34.3 53.6 7.8 40.4 58.1 8.9 35.0 54.7 7.6 
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4.3.3.6 Results of Sensitivity Analysis 

This section presents the findings from the sensitivity analysis that was 

described in section 4.2.2.6. 

4.3.3.6.1 Sensitivity to Weight Boundaries 

The sensitivity analysis applied different lower boundaries to the output 

weights to determine their impact on the capacity utilization scores and the 

rankings among airports. 

In the original analysis, the standard weight boundaries ε from the BCC 

model were used.  These are the boundaries on the minimum values on the weights 

applied to each output in the DEA calculation.  In the BCC model these are simply 

specified as infinitesimal and in the model implementation, they were set at 1.0 * E-

6.   

In the sensitivity analysis, the weights were varied between the minimum 

value of 1.0 * E-6 up to the maximum feasible output weight values.  The maximum 

feasible values are the maximum observed values multiplied by 1/3 (as a result of 
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there being three output parameters).  The maximum feasible values are those 

which result in all the constraints being binding for one or more DMUs.  

The input parameter weights are not varied since any minimum values 

unfairly penalize the performance of the larger airports due to the differences in 

magnitude of the airports’ values. 

In the case where the analysis uses the maximum feasible weights, the 

DMU(s) with the highest magnitude of outputs are forced to apply exactly those 

weights, effectively removing the DMU’s ability to select its own optimal weights.  

The higher the boundary on weights, the lower the flexibility for DMU’s to 

determine their own optimal weights. 

For the output weights, seven variations on the weight boundaries were 

tested for each year; the first test i=1 used the standard 1.0 E-6 weights, and in each 

subsequent test i=2..7 the boundary was proportionally increased such that the test 

i=7 had the maximum feasible boundaries (for tests i=2..7 the weight boundaries 

were determined as boundaryi = max(weight) / 2 * (i – 1) / 6).  

The average scores computed in the sensitivity analysis are presented in 

Figure 4.28.  A comparison of the rankings of each metro area’s scores between Test 

1, Test 2, and Test 7 is presented in Table 4.20.  
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Figure 4.28 - Results from weight boundary sensitivity tests.  Test 1 has the least restrictive 

weight boundaries, and Test 7 has the most restrictive boundaries 

 

Table 4.20 - Rankings from selected sensitivity tests.  Test 1 has the least restrictive weight 

boundaries and Test 7 has the most restrictive boundaries 

  

Ranking in Sensitivity Test 

Test 1 Test 2 … Test 7 

ATL 1 1   34 

BOS 24 22   13 

BWI 26 23   10 

CLE 22 24   15 

CLT 20 19   19 

CVG 27 31   31 

DCA 14 13   4 
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Ranking in Sensitivity Test 

Test 1 Test 2 … Test 7 

DEN 16 18   34 

DFW 9 9   32 

DTW 12 15   26 

EWR 1 1   3 

FLL 21 21   6 

HNL 35 35   30 

IAD 29 29   17 

IAH 17 17   25 

JFK 1 1   2 

LAS 1 1   16 

LAX 10 10   20 

LGA 1 1   5 

MCO 31 30   28 

MDW 30 28   9 

MEM 19 20   14 

MIA 28 25   8 

MSP 8 8   24 

ORD 1 1   29 
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Ranking in Sensitivity Test 

Test 1 Test 2 … Test 7 

PDX 34 34   27 

PHL 11 11   12 

PHX 18 16   22 

PIT 33 33   33 

SAN 1 1   1 

SEA 13 12   11 

SFO 15 14   7 

SLC 23 26   23 

STL 25 27   21 

TPA 32 32   18 

 

The sensitivity analysis shows that the rankings between Tests 1 (which is 

the case used in the full study) and Test 2 remain relatively unchanged.  These are 

the tests which use the lowest boundaries.  Among the 35 airports, 18 do not change 

their rank between the two tests.  12 airports move one or two rank levels, and 5 

airports move three ranks or more.  As the tests continue and the weights become 

more restrictive, the rankings change more strongly, and by Test 7, the results are 

radically different from the original results. 
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This shows that the selection of weight boundaries do matter to the results if 

they go well above the infinitesimal.  However, the BCC model specifies that 

infinitesimal weight boundaries be used, and the similarity between the results of 

Test 1 and Test 2 shows that the exact choice of infinitesimal weight boundaries in 

the model implementation has little impact; the boundaries in Test 2 already far 

exceed what could be considered reasonable infinitesimal weight boundaries in the 

model.  This indicates that the boundaries of 1.0 * E-6 used in the analysis are 

acceptable. 

4.3.3.6.2 Sensitivity to Hub Definition 

In the sensitivity test where the definition of hubs was changed as described 

in section 4.2.2.6, tests were run for 3, 4, 5, 6, and 7 hubs.  The results were then 

averaged across all cases, and standard deviations for the level of air service were 

computed.  The results of this analysis are shown in Figure 4.29. 
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Figure 4.29 - Results from hub definition sensitivity test.  The bars show the average score, and 

the error bars show +- the standard deviation 

The results show a very small standard deviation for the fully efficient 

airports and limited standard deviations elsewhere, indicating a limited impact on 

the results from changes in the definition of how hubs are determined.  The main 

exception to this is PIT, which does exhibit a higher standard deviation.  However, 

the reason for PIT’s high standard deviation stems not so much from changes in the 

hub definitions but rather from the fact that PIT’s score worsened for each year of 

the analysis; for the period 2005-2008 the annual averages across the different hub 

definitions were 1.87, 2.06, 2.27, and 2.90. 
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4.3.3.7 Study Limitations 

Although the extent of their impact on the study’s results is unknown, some 

limitations to the results exist:   

• The calculation of the level of air service does not factor in the 

geographic location of the metropolitan area.  It is possible that areas 

located near the center of the continental United States have an 

inherently greater possibility of achieving high levels of air service. 

• The calculation does not consider the relatively close proximity of 

some metropolitan areas to other areas.  It is possible that the 

proximity to another area impacts a region’s level of air service. 

• International traffic was excluded from the study since 14 airports 

among the OEP-35 airports represented 70% of all international 

passenger enplanements in 2006 (FAA 2008, pp. 23-24).  A study that 

included international traffic would show different results. 

• Although the runway capacity is a value which would originally take 

on only integer values, the preprocessing necessary to incorporate 

only the portion of capacity used by domestic passenger flights causes 

this value to take on non-integer values.  This introduces an error in 

the results, the impact of is not quantified. 
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4.3.3.8 Relationship with Capacity Utilization Benchmark Results and 

the Traditional Capacity Utilization Measure 

The new measure of capacity utilization presented in this case study, 

reflecting the interests of several stakeholders, is presented as a contrast to the 

traditional measure of capacity utilization, as defined by the number of aircraft 

movements per unit of runway capacity.  A high degree of correlation between the 

new metric and the traditional metric of capacity utilization would suggest that the 

traditional metric is a strong proxy of the degree to which stakeholders’ interests 

are met; a lack of correlation would suggest that the traditional metric is a poor 

performance indicator. 

To test this relationship, the relationship between the new metric and 

traditional metric of capacity utilization was visualized in a scatter plot, as shown in 

Figure 4.30, and a correlation test was conducted.   
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Figure 4.30 - Relationship between new metric (x-axis) and traditional metric (y-axis) of 

capacity utilization.  Colors of diamonds indicate the levels of gate arrival delay. 

 

The scatter plot suggests that a relationship exists, and the correlation 

coefficient between the two metrics is -0.75 (p=1.86 * 10-7).  The negative sign of the 

correlation coefficient reflects the fact that the benchmark was conducted in output-

PHL
ORD

JFK

LGA

EWR

FLL

IAD
MIA

SFO

ATL

BOS

PIT

MEM

LAS

BWI

SEA

MDW

CLT

LAX

MCO

IAH

TPA

CLE

DCA

PDX

MSP

DEN

DFW

SAN

HNL

SLC

CVG

PHX

STL

DTW

0

2,000

4,000

6,000

8,000

10,000

12,000

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6

N
u

m
b

e
r o

f 
D

o
m

e
st

ic
 P

a
ss

e
n

ge
r 

Fl
ig

h
ts

 p
e

r 
R

u
n

w
ay

 C
ap

a
ci

ty
 U

n
it

 (A
n

n
u

a
l)

New Metric of Level of Airport Capacity Utilization 

Case Study Capacity Utilization Performance Compared to Number of 

Domestic Passenger Flights per Runway Capacity Unit
Average 2005-2008

Highest delay

Delay level 5

Delay level 4

Delay level 3

Delay level 2

Lowest delay

Levels of gate 

arrival delay:

Better performance 



311 . 

 

oriented mode, resulting in high capacity utilization being described with a low 

value, and vice versa.  In contrast, for the traditional measure, high utilization is 

indicated by a high value.  The high magnitude of the correlation coefficient 

indicates that a strong relationship exists, which indicates that the traditional 

measure of capacity utilization is a useful indicator and a strong proxy for the 

degree to which stakeholders’ interests are being met. 

In the chart is also displayed the level of gate arrival delay at each airport, 

with six equally sized groups of airports created based on the level of gate arrival 

delay.  The chart indicates that all airports with the highest level of traditional 

capacity utilization belong to the group of airports with the highest levels of gate 

arrival delay.  In contrast, airports such as SAN, LAS, and MSP are deemed fully 

efficient in the new capacity utilization benchmark and achieve that rating without 

incurring the highest levels of delay. 

 

4.3.3.9 Summary of Capacity Utilization Performance 

The analysis identified several categories of airports in terms of capacity 

utilization performance.  The first group is that of the fully efficient airports, which 

in turn can be sub-grouped into two different categories: 
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The first sub-category is fully efficient airports at which operators pay a high 

price in the form of both taxi-out and gate arrival delay.  These airports include the 

three New York City area airports, EWR, LGA, and JFK.  At these airports, adding 

more flights to continue improving the level of capacity utilization as evidenced by 

the fact that they represent three of the four airports with the highest number of 

flights per capacity unit; adding more flights is likely to result in further 

exacerbating the delay problem.   

Instead, growth in capacity utilization at these airports must come from 

increasing the number of passengers carried, which would be possible if air carriers 

were to increase the size of the aircraft used; for instance LGA currently ranks as 

number 25 out of 35 for the average number of seats per aircraft.  However, the 

solution is not simply to begin flying larger aircraft; there must also be demand to 

fill the available seats, and LGA currently ranks third from the end on that measure.  

This suggests that air carriers would also have to begin flying different routes where 

demand is higher.  However, this may not be attractive to air carriers since it is 

likely that the routes that are currently being served are high-yield, if low-demand, 

routes.  Routes with higher demand may not represent the same level of yield. 

The second sub-category of fully efficient airports is those which have low 

levels of delay.  They include DFW, MSP, and LAS.  At these airports, continued 
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growth in capacity utilization appears feasible without corresponding increases in 

delay.  SAN is also a member of this group of airports with low delay levels but high 

capacity utilization.  However, considering the high level of aircraft per unit of 

runway capacity, SAN appears to be at risk of experiencing increased delay levels if 

its level of air service expands. 

At the opposite end of the spectrum are those airports with poor levels of 

capacity utilization.  These are airports that have more capacity than is necessary 

for delivering the current levels of air service and passenger volumes.  Within this 

group there are also two sub-categories. 

The first sub-category is those airports that have poor levels of capacity 

utilization but have the potential for improvements in utilization.  This group 

includes airports such as PDX, PIT, and TPA, where the current level of air service is 

poor.  These airports exist in relatively under-served markets where conditions may 

permit increased levels of air service, which would in turn increase the level of 

capacity utilization. 

The second sub-category is those airports that have poor levels of capacity 

utilization but high levels of air service.  HNL is the strongest example in this 

category, and can also be categorized as a member.  For these airports, the 
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conditions necessary for improved levels of air service do not appear to exist, 

suggesting that the current poor levels of capacity utilization will persist. 

Finally, for many of the airports, regardless of capacity utilization, any 

changes in hub service will have an impact on the level of capacity utilization.  For 

the under-utilized airports such at PIT, PDX, and MCO, addition of hub service is 

likely to improve the level of capacity utilization.  Conversely, for high-utilization 

airports with high levels of connecting passengers such as DFW, MSP, and ATL, any 

reduction or loss of hub service represents the risk of considerable worsening of the 

level of air service. 

4.3.4 Conclusions 

The analysis ranked the level of capacity utilization at the OEP-35 airports 

based on stakeholder goals and found a large number operating at strong levels of 

capacity utilization.  However, impediments to continued growth in capacity 

utilization were identified for some airports in the form of delay costs.  While 

increasing the size of aircraft used would appear to provide the opportunity for 

improved performance, data also suggest that air carriers may also need to switch 

service to higher-demand markets.  
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Among under-utilized airports, the data suggests that some have the 

conditions necessary for attracting increased air service and can potentially see 

improved levels of capacity utilization in the future.  Others are already well-served 

and are less likely to see improved capacity utilization. 

 

4.4 Case Study 3: Re-design of an Existing Benchmark 

The analysis in sections 2 and 4.1 has in several steps shown the importance 

of determining the stakeholders and model in an airport benchmark:  

• Section 2.2.2 shows that a variety of different performance metrics 

have been used in past studies with no motivation for why these 

metrics were selected and how they relate to the goals of the airport. 

• Section 2.2.5 shows that past airport benchmarks have applied a 

variety of different DEA models, even though these studies have 

addressed the same general problem of comparing the efficiency of 

airports.   
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• Section 4.1 indicates that past airport benchmarks have been in 

alignment with the DEA framework and heuristics in some respects, 

but also that misalignment exists in several areas. 

• (Schaar & Sherry 2008) showed that the choice of benchmark model 

can have a drastic impact on the study results, even to the degree of 

completely reversing the benchmark results. 

In light of these facts, this case study contrasts the results from a past airport 

benchmark with the results of taking the premise of that original study, but applying 

the new airport benchmarking methodology in computing benchmark results. 

The study reviewed in the analysis of the impact of benchmark model choices 

in (Schaar & Sherry 2008) was an analysis of the impact of airport size on efficiency 

(Bazargan & Vasigh 2003).  In the present case study, that same analysis is used as 

the target for applying the new airport benchmarking methodology. 

The objectives of this case study are to: 

• Analyze how the parameters of the original analysis (performance 

metrics and benchmark model choice) differ from the parameters of 

the new study using the new benchmarking methodology. 
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• Study commonalities and differences between the results of the two 

studies. 

• Identify which airports perform well and which ones do not using the 

new benchmark methodology. 

The case study was conducted through the following steps: 

1. Re-run the original case study on the OEP-35 airports.  The reasons 

for re-running the analysis are that i) the original analysis was 

conducted on data spanning from 1996 to 2000 and newer data is 

now available; and ii) the original study did not address all of the OEP-

35 airports and also included some non OEP-35 airports.  For 

consistency with the other case studies in the dissertation, the new 

case study focused on performance in 2005-2008 for the OEP-35 

airports. 

2. Analyze the objectives that are related to the performance metrics in 

the original case study.  Since the original case study did not discuss 

the objectives that its metrics address, this has to be “reverse-

engineered”.  Once the objectives have been identified, a new 

benchmark can be designed that comprehensively addresses the 

relevant stakeholders’ goals by using the new benchmark 
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methodology.  The new benchmark methodology is also used to 

identify the benchmark model appropriate for the analysis. 

3. Compute new benchmark results and i) investigate the underlying 

causes of the benchmark results and ii) compare them to the original 

benchmark. 

In the remainder of the case study, the re-run of the original case study will 

be referred to as the “original study” and the benchmark using the new 

methodology will be referred to as the “new study”. 

This section is organized as follows: The first subsection presents the original 

study.  The second subsection applies the new benchmark methodology to design 

the new study.  The third subsection presents the data and results of the new study 

and investigates the causes underlying the results.  The fourth subsection compares 

the original and new case study.  Finally, the last subsection presents conclusions. 

4.4.1 Original Study 

The original study did not provide a discussion of why the performance 

metrics used were chosen, nor did the study explain why the DEA model used was 

chosen.  As a result, this section does not discuss the underlying reasons for the 
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study design, but rather covers which performance parameters were used, how the 

benchmark results were computed, and shows the results. 

4.4.1.1 Performance Metrics Used 

This section presents the metrics used, the sources of data, and shows an 

overview of the performance data. 

4.4.1.1.1 Metric Definitions 

The original study used four inputs: 

• Runways: The number of runways in use at the airport. 

• Gates: The number of gates at the airport.   

• Operating costs: Operating costs are on-going costs for operating the 

airport.  They include eight sub-categories (Federal Aviation 

Administration 2001): 

o Personnel compensation and benefits 

o Communications and utilities 

o Supplies and materials 

o Repairs and maintenance 

o Contractual services 

o Insurance, claims and settlements 
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o Miscellaneous 

o Other 

• Non-operating costs: These are costs relating to the financing of the 

airport.  They include (Federal Aviation Administration 2001): 

o Interest expense 

o Other 

The study used six outputs: 

• Passenger volume: This is the total number of enplaned passengers, 

encompassing both domestic and international passengers. 

• Air carrier aircraft movements: This is the total number of takeoffs 

and landings by air carriers. 

• Other aircraft movements: This is the total number of takeoffs and 

landings by general aviation, military, and other non-air carrier 

operators. 

• Portion of flights on-time: This is the average portion of flights that 

depart from and arrive at the airport on-time.  A flight is considered 

on-time if it is within 15 minutes of its scheduled time. 
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• Aeronautical revenue: The aeronautical revenues are receipts 

relating to aircraft operations at the airport.  The revenues include 

(Federal Aviation Administration 2001): 

o Landing fees 

o Terminal/international arrival area rental or other charges 

o Apron charges/tiedowns 

o FBO revenue: contract or sponsor-operated 

o Cargo and hangar rentals 

o Aviation fuel tax retained for airport use 

o Fuel sales net profit/loss or fuel flowage fees 

o Miscellaneous 

o Other 

• Non-aeronautical revenue: The non-aeronautical revenues come 

from a variety of sources that are not immediately related to aircraft 

operations.  They include (Federal Aviation Administration 2001): 

o Land and non-terminal facilities 

o Terminal - food and beverage 

o Terminal - retail stores 

o Terminal - other 
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o Rental cars 

o Parking 

o Miscellaneous 

o Other 

 

4.4.1.1.2 Data Sources 

The data for the ten parameters was compiled from several different sources: 

Table 4.21 - Data sources for original case study 

Metric Source 

Runways 
The FAA’s National Plan of Integrated Airport 
Systems  (FAA 2008) 

Gates 

This was compiled through a large number of 
sources, including (A-Z World Airports 2010) 
and airport websites. 

Operating costs 

The FAA’s Compliance Activity Tracking 
System, to which all airports must report their 
financial performance (Federal Aviation 
Administration 2010a) 

Non-operating costs 

The FAA’s Compliance Activity Tracking 
System (Federal Aviation Administration 
2010a) 

Passenger volume The T100 database, which is compiled from 
data collected by Office of Airline Information 
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Metric Source 

(OAI) at the Bureau of Transportation 
Statistics (BTS) (Bureau of Transportation 
Statistics 2010b) 

Air carrier aircraft 
movements 

The FAA’s Air Traffic Activity System (Federal 
Aviation Administration 2010) 

Other aircraft movements 
The FAA’s Air Traffic Activity System (Federal 
Aviation Administration 2010) 

Portion of flights on-time 

The on-time database, compiled from data 
collected by the OAI at the BTS (Bureau of 
Transportation Statistics 2010b).  This data 
only encompasses U.S. carriers. 

Aeronautical revenue 

The FAA’s Compliance Activity Tracking 
System (Federal Aviation Administration 
2010a) 

Non-aeronautical revenue 

The FAA’s Compliance Activity Tracking 
System (Federal Aviation Administration 
2010a) 

 

The purpose of this re-run of the original study is to provide a point of 

comparison to the new case study.  Accordingly, the inputs and outputs are treated 

in the same way as they were in the original study.  A discussion of some of the 

issues of this performance data is provided in section 4.4.4. 
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4.4.1.1.3 Summary of Performance Data 

Although the analysis was conducted on an annual basis, this section 

presents average values for each of the inputs and outputs across the whole period 

2005-2008.  The full details of the inputs and outputs are provided in Appendix E. 

 

Figure 4.31 - Number of runways 
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Figure 4.32 - Number of gates 

 

 

Figure 4.33 - Annual operating cost, average 2005-2008, million US$ 
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Figure 4.34 - Annual non-operating cost, average 2005-2008, million US$ 

 

 

Figure 4.35 - Portion of flights arriving and departing on-time, average 2005-2008 
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Figure 4.36 - Annual aeronautical revenue, average 2005-2008, million US$ 

 

 

Figure 4.37 - Annual non-aeronautical revenue, average 2005-2008, million US$ 
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Figure 4.38 - Annual number of enplaned passengers (international and domestic), average 

2005-2008, millions 

 

 

Figure 4.39 - Annual number of air carrier operations (takeoffs and landings), average 2005-

2008, thousands 
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Figure 4.40 - Annual number of other operations (including general aviation and military 

flights; takeoffs and landings), average 2005-2008, thousands 
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Table 4.22 - DEA model choices in original study 

Scalarizing function Technology Timespan Tie-
breaking 

Aggre-
gation 

Weights Orient-
ation 

Returns 
to scale 

FDH Integrality 

Μaximin Specific 
weights 

Input 
oriented 

CRS No use of 
FDH 

No 
integrality 
constraints 

No use of 
Malmquist 
index; 
simply one 
analysis 
per year 

Super-
efficiency 
using 
artificial 
DMU 

 

4.4.1.3 Benchmark Results 

 

 

Figure 4.41 - Results of original benchmark, average 2005-2008 
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The benchmark results are shown in Figure 4.41, with the best level of 

performance for SLC, SAN, and MEM, while the worst performance is recorded for 

DFW, ORD, and DEN.  The full details of the results are provided in Appendix E. 

The original study found that for the period 1996-2000 and for the airports 

reviewed, small airports had greater levels of efficiency than large airports.  To test 

whether that conclusion holds in the re-run using new data and a somewhat 

different set of airports, a test was conducted using the number of enplaned 

passengers as an indicator of airport size.  The data was plotted as shown in Figure 

4.42 and then two groups of airports (large and small) was created and a Kruskal-

Wallis test was conducted on the efficiency ranks. 
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Figure 4.42 - Benchmark results as a function of the number of enplaned passengers 
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rules out the t-test for comparing the performance of the two groups.  Instead the 

Kruskal-Wallis test is performed on the ranks of the efficiency score.  The Kruskal-

Wallis test does not require that the population have a normal distribution.  The 

mean ranks, χ2, and significance values from the test are presented in Table 4.23.   

Table 4.23- Kruskal-Wallis test on benchmark result rankings 

Year 

Mean rank Chi-

square 

Asymptotic 

significance Small Large 

2005 11.18 24.44 14.658 0.00013 

2006 11.71 23.94 12.472 0.00041 

2007 11.29 24.33 14.157 0.00017 

2008 11.35 24.28 13.910 0.00019 

 

The results show that the difference is significant at the 95% level for each 

year in the study, with small airports showing better performance than large 

airports.  These results support the original study’s finding for 1996-2000 that 

larger airports exhibit lower levels of efficiency. 

Beyond these findings, it is not the purpose of this case study to analyze the 

findings and underlying reasons for the performance outcomes of the original 

benchmark.  However, a contrast between these original benchmark results and the 

results of the new study is presented in section 4.4.4. 
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4.4.2 Design of New Study 

The process for designing the new case study is described in Figure 4.43 and 

is detailed in the following subsections. 

 

Figure 4.43- Process for designing new study 

 

4.4.2.1  Stakeholders and Goals Related to Original Study Metrics 

The original study did not explain why the performance metrics used were 

selected.  Understanding to which stakeholders these metrics are relevant, and to 

which goals they relate, requires an amount of “reverse engineering”.  In this 

section, the metrics are categorized and analyzed to determine a mapping to 

stakeholders and goals.  Table 4.24 shows the categorization of the original study’s 

performance metrics.  

Step 1: Identify 

stakeholders and 
goals to which 

the original 
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performance 
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Table 4.24 - Categorization of performance metrics in original study 

Metric Category 

Runways Infrastructure capacity 

Gates Infrastructure capacity 

Operating costs Financial performance 

Non-operating costs Financial performance 

Passenger volume Throughput 

Air carrier aircraft movements Throughput 

Other aircraft movements Throughput 

Portion of flights on-time Congestion costs 

Aeronautical revenue Financial performance 

Non-aeronautical revenue Financial performance 

 

This categorization shows two separate themes among the metrics: 

1. Operational efficiency: Infrastructure capacity, throughput, and 

congestion costs are metrics that relate to the operational efficiency of 

the airport.  The operational efficiency of the airport can be described 

as the volume of throughput that can be achieved using the available 



336 . 

 

infrastructure capacity while minimizing the undesirable “side-effect” 

of congestion costs. 

2. Investment quality: The investment quality of the airport – i.e. the 

level of attractiveness of the airport to investors – is determined by 

considering factors such as the airport’s financial performance and 

the characteristics of its volumes of throughput. 

Referring to the model of airport stakeholders and their goals for the airport 

as described in section 2.1.3, these two themes can be tied to the stakeholders and 

goals shown in Table 4.25. 
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Table 4.25 - Mapping of goals to stakeholder for new case study 

Overall goal Stakeholder 

Relevant goals of 

stakeholder (ref 

section 2.1.3) 

Commentary on why this 

stakeholder goal is relevant 

Maximize 
operational 
efficiency 
while 
minimizing 
delay effects 

Airport 
organization 

- Ensure sufficient (but 
not excessive) 
infrastructure capacity 

While the airport organization 
wants to ensure the capacity is used 
to as high a degree as possible, it 
should not be over-utilized to the 
degree that severe congestion 
occurs. 

Air carriers 

- Ensure on-time 
performance 

- Ensure low cost of 
operations 

Air carriers want operational 
efficiency in the form of low delays 
but also low costs of operations, 
which result from the efficient use 
of airport infrastructure since high 
capacity utilization results in a low 
cost per use. 

Federal 
government 

- Ensure safety, 
security, and efficiency 
of operations 

Operational efficiency is one of the 
federal government’s directly stated 
goals. 

Maximize 
investment 
quality 

Investors and 
bond-holders 

- Optimize performance 
on factors affecting 
credit ratings 

Maximizing investment quality 
directly maps to the interests of 
investors and bond-holders  

Airport 
organization 

- Ensure sufficient (but 
not excessive) 
infrastructure capacity 

- Manage costs 

Achieving good performance in 
terms of investment quality allows 
the airport organization to build 
more capacity when needed thanks 
to the availability of capital, and 
having a good credit rating results 
in lower costs through better 
interest rates. 
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4.4.2.2 Organizing Goals into New Benchmarks 

The two, distinct goals described in Table 4.25 have different stakeholders.  

To clearly gauge each airport’s ability to accomplish each of the two goals, they will 

be treated as two separate benchmarks in the remainder of the case study.  They 

will be referred to as the “operational efficiency benchmark,” and the “investment 

quality benchmark,” respectively. 

4.4.2.3 Determine Performance Metrics for New Study 

This section describes the process for and results of determining the 

performance metrics in the two component benchmarks. 

4.4.2.3.1 Operational Efficiency Benchmark 

The goal of the operational efficiency benchmark is to “maximize operational 

efficiency while minimizing delay effects”.  The operational efficiency in the context 

of the original benchmark pertains to maximizing throughput given the available 

capacity.   

The throughput measures for the airport are defined in terms of passengers 

and in terms of aircraft movements, as illustrated in the original benchmark.  
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Although a correlation between the two output metrics exists since more aircraft 

can carry more passengers, using only one of the two metrics may ignore some 

stakeholders’ interests.  A focus exclusively on passengers would ignore the 

importance of the number of aircraft movements per unit of capacity to the level of 

capacity utilization, while a focus only on the number of aircraft movements fails to 

address the ultimate goal for some stakeholders of moving as many passengers as 

possible.  As a result, the study includes both the throughput measures in the 

benchmark.  Specifically, the study uses: 

• The number of enplaned domestic and international passengers, 

including both O&D and connecting passengers. 

• The number of domestic and international operations, including air 

carrier operations as well as general aviation and other types of 

operations. 

As discussed further in section 4.3.2.2.3, the primary factor determining the 

amount of traffic that an airport can handle is the runway capacity.  This is the main 

throughput bottleneck in the airport system (Neufville & Odoni 2003, p. 367). 

Because of the presence of several factors impacting each runway’s capacity 

as described in section 4.3.2.2.3, the number of runways alone does not determine 
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the airport’s capacity, as was done in the original study.  Instead, a measure of the 

actual capacity of the set of runways as proposed in (Kumar & Sherry 2009) is used 

in this case study.  In this measure, airport Capacity Coverage Charts (CCCs) are 

used along with data on the costs of delay to determine average airport capacity.  

CCCs describe how much runway capacity was available and for how long (Neufville 

& Odoni 2003, p. 402).  This average airport capacity is the measure used in this 

analysis. 

The cost of delay can be measured either in terms of aircraft-based delays or 

in terms of passenger-based delays.  Aircraft-based delays include five different 

metrics (Federal Aviation Administration 2010a): 

• Airport Departure Delay: “The actual wheels off minus the 

scheduled gate out plus the unimpeded taxi out time, in minutes. 

Negative values contribute to the total.” 

• Gate Departure Delay: “The sum of minutes of gate departure delay 

of 1 minute or more departures. Gate departure delay is the difference 

between the actual gate out time and scheduled or flight plan gate out 

time, in minutes.”  
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• Taxi Out Delay: “The sum of minutes of taxi out delay of 1 minute or 

more. Taxi out delay equals actual taxi out time minus unimpeded taxi 

out time.”  

• Taxi In Delay: “The sum of minutes of taxi in delay of 1 minute or 

more. Taxi in delay equals actual taxi in time minus unimpeded taxi in 

time.” 

• Gate Arrival Delay: “The sum of minutes of gate arrival delay of 1 

minute or more. Gate arrival delay is the difference between the 

actual gate in time and the scheduled or flight plan gate in time.” 

Generalized passenger-based delay metrics were introduced in (Wang & 

Sherry 2007).  Although passenger delay metrics could include both arrival and 

departure delay metrics, the primary concern of most passengers is arriving on time 

(and some departure delays can be compensated for by “making up” time during the 

enroute portion of the flight).  Accordingly, the primary focus of passenger delay 

metrics is arrival delay. 

In the choice between the different categories of metrics, the final selection 

was the passenger-based arrival delay metric.  The motivation for this choice was 

the view of the passenger as the end consumer of the air service, rather than the air 

carrier. 
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To test the impact of the delay metric choice, a correlation test was done for 

all five parameters under consideration.  The Pearson correlation coefficients for 

these tests are presented in Table 4.26. 

Table 4.26 - Pearson correlation coefficients for test of correlation between delay metrics.  The 

delay data was computed annually for 2005-2008 for the OEP-35 airports, and the total delay for all 

flights was summed for each year.  

  

Passenger 

arrival 

delay 

Passenger 

departure 

delay 

Gate 

departure 

delay 

Taxi out 

delay 

Airport 

departure 

delay 

Taxi in 

delay 

Gate 

arrival 

delay 

Passenger 

arrival 

delay 

       Passenger 

departure 

delay 

r = 0.99 

p = 2.2e-

16 

      Gate 

departure 

delay 

r = 0.87 

p = 2.2e-

16 

r = 0.88 

p = 2.2e-

16 

     

Taxi out 

delay 

r = 0.78 

p = 2.2e-

16 

r = 0.78 

p = 2.2e-

16 

r = 0.89 

p = 2.2e-

16 

    Airport 

departure 

delay 

r = 0.85 

p = 2.2e-

16 

r = 0.86 

p = 2.2e-

16 

r = 0.97 

p = 2.2e-

16 

r = 0.96 

p = 

2.2e-16 

   

Taxi in 

delay 

r = 0.83 

p = 2.2e-

16 

r = 0.84 

p = 2.2e-

16 

r = 0.91 

p = 2.2e-

16 

r = 0.80 

p = 

2.2e-16 

r = 0.89 

p = 2.2e-

16 

  Gate 

arrival 

delay 

r = 0.91 

p = 2.2e-

16 

r = 0.90 

p = 2.2e-

16 

r = 0.95 

p = 2.2e-

16 

r = 0.91 

p = 

2.2e-16 

r = 0.96 

p = 2.2e-

16 

r = 0.84 

p = 

2.2e-16 
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The correlation coefficients show that all delay metrics are strongly 

correlated (0.78 or higher) and that many are very highly correlated (0.90 or 

higher).  All are significant at the 95% confidence level.  This suggests that in the 

event that another delay metric had been chosen, the benchmark results would have 

been similar. 

In summary, this benchmark uses the conceptual ratio of (enplaned 

passengers, aircraft movements) : (capacity, passenger arrival delay).   

 

4.4.2.3.2 Investment Quality Benchmark 

The level of investment quality of airports is gauged by the credit rating 

agencies, as described in section 2.1.3.2.6.  (Forsgren 2007) provides details on the 

factors that are considered in the credit rating process.  These factors are listed in 

Table 4.27 with categorization added by this author. 
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Table 4.27 - Factors considered in airport credit ratings (Forsgren 2007).  Categorizations added 

by this author. 

Category Factor 

Regional growth 

Historical/ projected population growth 

Historical/ projected employment growth 

Air service 

Historical/ projected passenger growth 

Portion of traffic that is O&D 

The role of the airport in the dominant carrier's network 

The importance of the airport to the overall NAS 

Financial strength of carriers with large amounts of 

connecting traffic 

Is the airport in a favorable geographic location (i.e. 

natural hub)? 

Airfield/facilities 

Capacity utilization 

Attractiveness of facilities 

Financial factors 

Debt burden and carrying costs 

Non-aeronautical revenues 

Ability to change rates 
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Table 4.27 lists 13 factors that are considered by credit rating agencies in 

determining the investment quality of an airport.  Since only 35 airports are 

included in the benchmark, a single benchmark considering all of these factors 

simultaneously is not feasible due to the low resulting ratio of DMUs to parameters 

in the benchmark (a commonly applied rule of thumb is that the number of DMUs 

should be at least twice the product of the number of inputs and outputs (R. G. Dyson 

et al. 2001)).  Instead, each category of parameters will be treated in a separate 

component benchmark to determine the relative performance of each airport. 

To conduct the benchmark, the factors listed in Table 4.27 had to be 

translated into performance metrics which could be included in each benchmark.  

Table 4.28, Table 4.29, Table 4.30, and Table 4.31 present the results of this 

translation.  Some of the factors considered by the credit rating agencies were 

qualitative in nature and some were not possible to translate into comparative 

performance metrics using available data.  Where that was the case it has been 

noted in the tables.  As Table 4.30 shows, this resulted in a benchmark of the 

Airfield/facilities category not being possible to complete. 
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Table 4.28 - Regional growth factors 

Factor Metric Discussion 

Historical/ 

projected 

population growth 

Population growth for 

the airport's 

Metropolitan Statistical 

Area (MSA). 

This is a direct indicator of the 

region’s population growth. 

Historical/ 

projected 

employment 

growth 

Growth of the MSA's 

regional GDP. 

The underlying assumption is 

that growth in the region's 

economy is correlated with 

employment growth. 

 

 

Table 4.29 - Air service factors 

Factor Metric Discussion 

Historical/ 

projected 

passenger growth 

Growth of enplaned 

passengers. 

 This is a direct indicator of 

passenger growth. 

Portion of traffic 

that is O&D 

O&D passengers as 

percentage of all 

enplaned passengers. 

 This is a direct indicator of 

the portion of O&D traffic. 



347 . 

 

Factor Metric Discussion 

The role of the 

airport in the 

dominant carrier's 

network 

Total number of 

enplanements at this 

airport for the carrier as 

percentage of carrier's 

total enplanements, for 

the carrier with the 

largest number of 

enplanements at this 

airport. 

The underlying assumption 

with this metric is that a hub 

which represents a large 

portion of a carrier's traffic is 

more important to the carrier 

and thereby more stable and 

is less likely to be subject to 

cuts than a hub with 

secondary status for the 

carrier.  

The importance of 

the airport to the 

overall NAS 

This airport's 

percentage of all 

enplaned passengers at 

OEP-35 airports. 

The underlying assumption is 

that airports with a high 

portion of passengers have a 

high importance to the 

overall NAS. 

Financial strength 

of carriers with 

large amounts of 

connecting traffic N/A 

This is a factor that requires 

deep financial analysis of 

individual air carriers and it is 

outside the scope of this 

analysis. 

Is the airport in a 

favorable 

geographic 

location (i.e. 

natural hub)? N/A 

This is a factor that requires 

expert judgment to 

determine a comparative 

numerical value.  It is outside 

the scope of this analysis. 
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Table 4.30 - Airfield/facilities factors 

Factor Metric Discussion 

Capacity utilization N/A 

This factor is addressed in the 

capacity utilization and 

operating efficiency 

benchmarks described in 

sections 4.3 and 4.4.2.3.1. 

Attractiveness of 

facilities N/A 

This is a qualitative factor 

that is outside the scope of 

this analysis. 
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Table 4.31 - Financial factors 

Factor Metric Discussion 

Debt burden and 

carrying costs 

Debt service coverage 

ratio 

This is a metric that indicates 

the ratio between the 

airport's operating surplus 

and the cost of servicing its 

debt.   

The formula for computing 

this metric is described in 

Figure 4.44. 

Non-aeronautical 

revenues 

Non-aeronautical 

revenues as a 

percentage of total 

revenues. 

 This is a direct indicator of 

the portion of non-

aeronautical revenues. 

Ability to change 

rates N/A 

This is a qualitative factor 

that requires expertise in 

each airport's legal 

environment to determine.  It 

is outside the scope of this 

analysis. 

 



350 . 

 

 

Figure 4.44 - Debt service coverage ratio calculation (Pezzimenti & Macdonald 2005) 

 

In summary, the investment quality benchmark is made up of three 

component benchmarks, and each of these benchmarks is comprised only of output 

metrics which should be maximized.  Furthermore, all of the metrics used in the 

benchmarks are percentages or other ratios that are already scale-independent 

(meaning that they do not scale up/down with larger/smaller-sized airports).  

Accordingly, in the DEA implementation, this is treated as all airports having the 

same, single, constant input which can be assigned any positive value.  In this 

implementation, that constant is assigned the value 1.  The three benchmarks are: 

1. Regional growth benchmark: The regional growth benchmark can 

be described by the conceptual ratio (population growth; regional 

GDP growth) : (1). 

Debt service coverage ratio =  

= ((Total Operating Revenues + Interest Income) + (Annual PFC Revenue) – 

(Operating and Maintenance Expenses – Depreciation and amortization)) 

Gross Annual Debt Service Requirement 
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2. Air service benchmark: The air service benchmark can be described 

by the conceptual ratio (passenger growth; O&D passenger 

percentage; portion of main carrier’s passengers enplaned; portion of 

OEP-35 passengers) : (1). 

3. Financial factors: The financial factors benchmark can be described 

by the conceptual ratio (debt service coverage ratio; non-aeronautical 

revenue percentage) : (1). 

As the preceding tables show, these three benchmarks are not complete in 

covering all the factors considered by credit rating agencies due to limitations on 

data availability and expert judgment.  However, they do cover a majority (eight of 

13) of the factors considered by the credit rating agencies.  It should also be noted 

that although these are the 13 factors explicitly listed, there is no limitation that 

keeps credit rating agencies from considering further factors beyond these 13. 

 

4.4.2.4 Select DEA Model for New Study 

This section describes the model selection for each of the new studies. 
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4.4.2.4.1 Operational Efficiency Benchmark 

This benchmark gauges the conceptual ratio of (enplaned passengers, 

aircraft movements) : (capacity, passenger arrival delay).  The units of these metrics 

are passengers, aircraft, aircraft movements, and hours of delay, respectively.  As 

with the previous case studies, this results in DEA being the appropriate modeling 

choice for the benchmark. 

The results of the application of the framework and heuristics to determine a 

specific DEA model for this analysis are now presented. 

• Aggregation: The heuristics prescribe an ε-maximin aggregation 

function as the default choice unless negative data is present or if any 

reasons exist why slacks cannot be ignored.  Neither of those 

conditions are met in this analysis, and accordingly an ε-maximin 

aggregation is used. 

• Weights: The heuristics prescribe the use of specific weights unless 

any reasons are present for choosing range-adjusted weights.  The 

specific weights allow each DMU to select its own optimal weights and 

in this study that is an appropriate selection to reflect the decisions of 

those involved in managing services at the airport.  Specific weights 
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are used since no reasons for using range-adjusted weights are 

present. 

• Orientation: The heuristics prescribe using an orientation based on 

the factors which are most controllable by airport management.  In 

this analysis, the outputs are passenger and aircraft movements, 

which cannot be directly controlled by airport management but can 

be indirectly influenced through marketing and incentive campaigns.  

The inputs are deemed to be less within the control of airport 

management: Runway capacity is largely a static value which is 

difficult to influence; once a runway has been constructed it is difficult 

to remove it (Martín & Román 2001, pp. 152-153), and conversely at 

some airports space constraints and community opposition limit the 

ability to add further runway capacity (Neufville & Odoni 2003, p. 

168).  Delay levels can generally only be controlled by airlines through 

additions/reductions in traffic or by the U.S. Congress through the 

“High Density Rule”, which caps the number of operations at certain 

airports (Neufville & Odoni 2003, pp. 474-475). 

• Returns to scale: The heuristics prescribe that if modeling some 

version of labor and capital resources as inputs and passengers and 
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aircraft movements as outputs, then VRS should be used.  The runway 

capacity can be considered a capital resource, and passengers and 

aircraft movements are used as an output, and accordingly VRS is the 

choice for this model. 

• FDH: The Free Disposal Hull should be applied only if some reason 

exists why comparison only to observed combinations of inputs and 

outputs should be made, but no such reason exists in this analysis. 

• Integrality: Integrality constraints should be applied in cases where 

input or outputs are indivisible into fractions and of low magnitude, 

and if large errors in the results would be introduced if these inputs or 

outputs were assumed to have decimal values.  Both of the output 

parameters can only take on integer values since the number of 

passengers and aircraft movements are indivisible, but both of these 

have a very high magnitude and as a result, no integer constraints are 

necessary.  On the input side, the number of delay hours can take on 

any continuous value, but the number of hourly aircraft movements 

can only take on integer values and has a low magnitude with a 

median value of 30, which causes this input to have be integer 

constrained. 
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• Timespan: If any key technology changes have occurred during the 

timespan being studied that would impact the ability of DMUs to 

achieve strong performance, then a Malmquist index method should 

be used.  If not, the performance for each year can be analyzed 

independently.  In this analysis, technology changes would imply 

some new technology being introduced which would allow a higher 

number of aircraft movements or passengers being moved using 

existing runway capacity while not increasing delays.  Since the 

minimum aircraft separation standards remained constant during the 

2005-2008 period, no increase in the number of aircraft per unit of 

runway capacity was possible.  The number of passengers carried 

could be increased if a new aircraft able to carry more passengers 

than any other were introduced during the period of the analysis.  The 

Airbus A380 is such an aircraft but it was in very limited service to 

U.S. airports during this period, beginning service only to JFK on 

August 1, 2008 (J. Lee 2008), causing its impact on performance 

during this period to be very limited.  As a result of no major changes 

occurring in this time period, no Malmquist index calculation is 

necessary. 
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• Tie-breaking: The heuristics prescribe that tie-breaking be used only 

if a reason exists that all airports must be fully ranked.  No such 

reason exists in this analysis. 

Table 4.32 summarizes the modeling choices for this benchmark. 

Table 4.32 - Modeling choices for benchmark 

Scalarizing function Technology Timespan Tie-
breaking 

Aggre-
gation 

Weights Orient-
ation 

Returns 
to scale 

FDH Integrality 

ε-
maximin 

Specific 
weights 

Output 
oriented 

VRS No use of 
FDH 

Runway 
capacity 
integer 
constrained 

No use of 
Malmquist 
index; 
simply one 
analysis 
per year 

None 

 

4.4.2.4.2 Investment Quality Benchmark 

Each component of the investment quality benchmark is treated separately 

in the model selection stage.  All three benchmarks use a combination of metrics of 

different units without a known utility function, and accordingly DEA models are 

used in each of the cases.  The modeling parameters and data characteristics share 

sufficient similarity throughout the three component benchmarks that the model 

choices are the same in each benchmark, as described below: 
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• Aggregation: The benchmark data contains some parameters which 

take on negative values.  The heuristics prescribe the use of the 

additive aggregation function with tolerance for negative values in 

this circumstance. 

• Weights: The heuristics prescribe the use of specific weights unless 

any reasons are present for choosing range-adjusted weights.  The 

specific weights allow each DMU to select its own optimal weights and 

in this study that is an appropriate selection to reflect the decisions of 

those involved in managing services at the airport.  Specific weights 

are used since no reasons for using range-adjusted weights are 

present. 

• Orientation: In each of the benchmarks, all the factors are outputs 

and each benchmark uses a single, constant input.  As a result of this, 

all of the benchmarks are designed as output-oriented. 

• Returns to scale: Because the benchmarks use ratios and 

percentages which have already been normalized for scale, no other 

economies of scale are present.  Accordingly, the models are set to 

CRS. 
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• FDH: The Free Disposal Hull should be applied only if some reason 

exists why comparison only to observed combinations of inputs and 

outputs should be made, but no such reason exists in this analysis. 

• Integrality: All of the benchmark parameters are percentages and 

ratios, all of which take on continuous values.  No benchmark 

parameters have integer constraints. 

• Timespan: As is discussed in section 4.4.3.2, the investment quality 

benchmark is conducted only for one single year.  As a result, no 

Malmquist index calculation considerations apply. 

• Tie-breaking: The heuristics prescribe that tie-breaking be used only 

if a reason exists that all airports must be fully ranked.  No such 

reason exists in this analysis since the same credit ratings can be 

shared by multiple airports. 

The modeling choices for each of the three component benchmarks in this 

case study are presented Table 4.33. 
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Table 4.33 - Modeling choices for benchmark 

Scalarizing function Technology Timespan Tie-
breaking 

Aggre-
gation 

Weights Orient-
ation 

Returns 
to scale 

FDH Integrality 

Additive 
aggregation 
function 
with 
tolerance 
for negative 
values 

Specific 
weights 

Output 
oriented 

CRS No 
use of 
FDH 

No 
parameters 
integer 
constrained 

N/A – 
single time 
period 

None 

 

4.4.3 Data, Results, and Discussion of New Study 

This section presents the data sources and a summary of the benchmark data 

used, benchmark results, and a discussion of the benchmark results.  The 

operational efficiency benchmark is treated first and the investment quality 

benchmark second. 

4.4.3.1 Operational Efficiency Benchmark 

The operational efficiency benchmark is computed for each year 2005-2008 

to match the scope of each of the previous benchmarks. 

4.4.3.1.1 Data Sources 

Several data sources were used for this benchmark: 
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• Enplaned passengers: This data was derived from the T100 

database, which is compiled from data collected by the Office of 

Airline Information (OAI) at the Bureau of Transportation Statistics 

(BTS) (Bureau of Transportation Statistics 2010b) 

• Aircraft movements: This data was compiled from the FAA’s Air 

Traffic Activity System (Federal Aviation Administration 2010). 

• Runway capacity: As in section 4.3.2.4.1, this data was derived from 

the analysis described in (Kumar & Sherry 2009).  This analysis in 

turn was conducted using the Aviation System Performance Metrics 

(ASPM) database (Federal Aviation Administration 2010d) along with 

the T100 database and the Airline Origin and Destination Survey 

(DB1B) database (Bureau of Transportation Statistics 2010c). 

• Passenger arrival delay: The passenger delay data was retrieved 

from the on-time database, compiled from data collected by the OAI at 

the BTS (Bureau of Transportation Statistics 2010b), and from the 

T100 database.  This data only encompasses U.S. carriers.  The delay 

was computed as the difference between each flight’s scheduled 

arrival time with its actual arrival time for those flights delayed more 
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than 15 minutes, and then multiply that difference by the number of 

passengers on each flight (Wang & Sherry 2007, p. 3). 

4.4.3.1.2 Summary of Benchmark Parameters 

This section presents an average for each of the four parameters used in the 

benchmark for the period 2005-2008.  The full details of the inputs and outputs are 

provided in Appendix E. 

 

Figure 4.45 - Total number of enplaned passengers (millions).  Including both domestic and 

international passengers, average 2005-2008. 
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Figure 4.46 - Total number of aircraft operations, including both takeoffs and landings, and 

including both air carrier and other operations.  Average for 2005-2008. 

 

Figure 4.47 - Runway capacity.  Number of flights per 15 minutes, average 2005-2008. 
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Figure 4.48 - Total annual passenger arrival delay (millions of hours).  Average 2005-2008. 
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4.4.3.1.3 Benchmark Results and Discussion 

The results of the operational efficiency benchmarks are presented in Figure 

4.49.  The results indicate that six airports are fully efficient: ATL, HNL, JFK, LAS, 

LAX, and SAN.  The results indicate that the airports with the lowest performance 

are TPA, STL, BOS, MCO, and DTW.  The full details of the results are provided in 

Appendix E.  This section discusses the implications of these results and investigates 

the impact of several different factors on the results. 

 

 

Figure 4.49 - Results from operating efficiency benchmark.  Average 2005-2008.  1.00 indicates 

best performance.  Bar coloring is based on a k-means cluster analysis of benchmark results. 
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4.4.3.1.3.1 Impact of Airport Size on Results 

To test the impact of airport size on the results as was done for the original 

study, the efficiency ranks were computed for small and large airports and a 

Kruskal-Wallis test was conducted to test the difference between the ranks.   A 

scatter plot of the relationship is presented in Figure 4.50. 
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Figure 4.50 – The operating efficiency benchmark results in relation to the number of enplaned 

passengers.  A low efficiency score indicates strong performance 
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possible to assume that the efficiency scores are normally distributed, the t-test 

cannot be used for comparing the performance of the two groups.  Instead the 

Kruskal-Wallis test was performed on the ranks of the efficiency score since the 

Kruskal-Wallis test does not require that the population have a normal distribution.  

The mean ranks, χ2, and significance statistics from the test are presented in Table 

4.34.   

Table 4.34 – Results from Kruskal-Wallis test of operating efficiency benchmark results ranking based 

on airport size 

Year 

Mean rank Chi-

square 

Asymptotic 

significance Small Large 

2005 18.88 14.11 1.798 0.17990 

2006 17.53 14.78 0.709 0.39970 

2007 18.76 15.28 0.693 0.40530 

2008 15.71 16.50 0.041 0.83980 

 

The results indicate no statistically significant difference in the rankings 

between the two groups of airports for any year in the study.  This is in contrast to 

the test in the original study, where a statistically significant difference in ranks 

between the two groups was detected for every year. 
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4.4.3.1.3.2 Impact of Weather Conditions on Results 

Past benchmarks have reviewed the impact of weather conditions on airport 

performance; for instance, (Sarkis 2000) found worse performance for airports 

operating in the “snow belt”.  In this study of operating efficiency, the impact of 

weather conditions is also of interest, and the hypothesis is formulated that airports 

in poor weather conditions exhibit worse operating efficiency due to reduced 

airport arrival rates and higher delays.   

To test this, data on weather conditions at airports was retrieved from the 

ASPM database (Federal Aviation Administration 2010d).  The database contains 

observations on the weather conditions at the airports, classifying the weather 

impact as “none”, “minor”, “moderate”, or “severe” (FAA Office of Aviation Policy 

and Plans 2005) based on reporting from the Integrated Terminal Weather System 

(Lincoln Laboratory, Massachusetts Institute of Technology 2010). 

Data on the percentage of time between the hours of 07:00 and 22:59 (local 

time) when each type of weather condition prevailed was collected for the period 

2005-2008.  The portion of time when the weather conditions were either 

“moderate” or “severe” is presented for each airport in Figure 4.51. 
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Figure 4.51 - Relationship between moderate and severe weather conditions and the operating 

efficiency benchmark results; average 2005-2008 
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hypothesis that airports in bad weather conditions have worse benchmark 

performance.  This suggests that other factors have a greater impact in determining 

the operating efficiency of airports. 

Table 4.35 - Results from Kruskal-Wallis test of operating efficiency benchmark results ranking 

based on weather conditions 

Years 

Mean rank 

Chi-

square 

Asymptotic 

significance 

Good 

weather 

Bad 

weather 

2005-2008 15.88 19.17 1.232 0.26710 

 

 

4.4.3.2 Investment Quality Benchmark 

The investment quality benchmark is computed for only one year.  Actual 

airport credit ratings were available for September 2009, and the objective was to 

compare the investment quality benchmark to the corresponding time period’s 

credit ratings.  Since the analysis was based on one full year’s worth of data, 2008 

was selected as that would be the most recent year for which a full year’s data was 

available in September 2009.  When rates of change were sought, they were based 

on the change in full-year performance from 2007 to 2008. 
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4.4.3.2.1 Data Sources 

Several data sources were used to assemble each of the parameters for the 

investment quality component benchmarks: 

• Population growth: Data on the population of each MSA was 

gathered from the U.S. Census Bureau (U.S. Census Bureau 2010b).  

The annual MSA population is estimated by the Census Bureau based 

on the Census 2000 combined with a number of more recent data 

sources.  The Census Bureau points out that because there is a lag in 

some of the data sources that complement the Census 2000 data, 

estimates for older vintages tend to be more accurate than those for 

more recent vintages (U.S. Census Bureau 2008). 

• Regional GDP growth: Data on GDP by MSA was obtained from the 

U.S. government’s Bureau of Economic Analysis (BEA) (Bureau of 

Economic Analysis, U.S. Department of Commerce 2010).  The BEA 

produces annual estimates of the GDP of each of the 366 U.S. MSAs by 

computing the sum of the GDP originating in all industries in each 

MSA. 

• O&D passenger percentage: Data on the level of O&D passenger 

traffic at each of the airports was computed from the DB1B database 
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(Bureau of Transportation Statistics 2010c) by summing all passenger 

itineraries that started or ended at an airport and dividing it by the 

sum of all enplanements and deplanements at that airport (including 

both connecting and O&D passengers).  This data was only available 

for domestic traffic. 

• Portion of main carrier’s passengers enplaned at this airport: 

Data for this factor was computed from the T100 database and 

included both domestic and international traffic. 

• Portion of OEP-35 passengers: Data for this factor was computed 

from the T100 database and included both domestic and international 

traffic. 

• Debt service coverage ratio: This data was computed from 

information retrieved from the FAA’s Compliance Activity Tracking 

System (Federal Aviation Administration 2010a). 

• Non-aeronautical revenue percentage: This data was computed 

from information retrieved from the FAA’s Compliance Activity 

Tracking System (Federal Aviation Administration 2010a). 
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4.4.3.2.2 Summary of Benchmark Parameters 

This section presents each of the eight parameters used in the benchmark for 

2008.  The full details of the parameters are provided in Appendix E. 

 

Figure 4.52 - Regional population growth, 2008.  Computed as the change from 2007 to 2008. 
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Figure 4.53 - Regional Gross Domestic Product growth.  Computed as the change from 2007 to 

2008. 

 

 

Figure 4.54 - Growth in enplaned passengers, 2008.  Computed as the change from 2007 to 

2008. 
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Figure 4.55 - O&D passengers as portion of all passengers. 

 

 

Figure 4.56 - Portion of the passengers that were enplaned at this airport for the carrier with 

the the largest share of this airport’s passengers. 
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Figure 4.57 - Portion of total OEP-35 passengers (including both international and domestic) 

that were enplaned at this airport. 

 

 

Figure 4.58 - Debt service coverage ratio.  The formula used for computing the ratio is provided 

in Figure 4.44.  A high debt service coverage ratio is desirable. 
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Figure 4.59 - Non-aeronautical revenue as percentage of total revenue. 
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outpace all other airports.  For the air service benchmark, a large number of airports 

are on the efficient frontier: ATL, BOS, CLT, FLL, HNL, JFK, LAX, MCO, SEA, and SFO.  

Finally, in the financial factors benchmark, SAN and TPA make up the efficient 

frontier, and along with the nearly-efficient PHX, they have far better performance 

than all other airports.  The following subsections discuss the impact of several 

factors on these results. 

 

Figure 4.60 - Regional growth component benchmark results for 2008.  A lower value indicates 

better performance. 
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Figure 4.61 – Air service component benchmark results for 2008.  A lower value indicates 

better performance. 

 

 

Figure 4.62 – Financial factors component benchmark results for 2008.  A lower value indicates 

better performance. 
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4.4.3.2.3.1 Impact of Airport Size on Results 

As with the original benchmark, of interest is the impact of the airport size on 

benchmark results.  The regional growth benchmark is not reviewed for any impact 

of airport size since no cause-and-effect relationship hypothesis can be described.  

However, the level of air service and financial factors benchmarks are both 

examined for any impact of airport size in this section.  The two benchmark results 

are plotted against the volume of enplaned passengers in Figure 4.63 and Figure 

4.64. 
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Figure 4.63 - The relationship between the volume of passengers and the results of the air service 

benchmark. 2008. 
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Figure 4.64 - The relationship between the volume of passengers and the results of the financial factors 

benchmark. 2008. 

 

The relationships were tested using the same Kruskal-Wallis test as in 

section 4.4.1.3 and 4.4.3.1.3.1 since the benchmark results could not be assumed to 

be normally distributed.  The results of the Kruskal-Wallis test are shown in Table 

4.36 and Table 4.37. 
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Table 4.36 - Results from Kruskal-Wallis test of air service benchmark results ranking for small and large 

airports 

Year 

Mean rank Chi-

square 

Asymptotic 

significance Small Large 

2008 23.29 10.50 11.945 0.00055 

 

Table 4.37 - Results from Kruskal-Wallis test of financial factors benchmark results ranking for small and 

large airports 

Year 

Mean rank Chi-

square 

Asymptotic 

significance Small Large 

2008 16.88 19.00 0.353 0.55240 

 

The results of the Kruskal-Wallis test show a statistically significant 

difference at the 95% level for the air service benchmark, with large airports 

achieving better performance than small airports.  It should be noted that two of the 

factors used in this benchmark (the portion of the dominant carrier’s passengers 

enplaned at this airport, and the portion of the OEP-35 passengers enplaned at this 

airport) are not independent of the volume of passengers.  This is an issue that 

cannot be eliminated since any measure of the size of an airport’s throughput will be 

positively correlated with the volume of passengers carried. 
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For the financial factors benchmark, no statistically significant difference 

between the two groups of airports was detected, indicating that no statement can 

be made about the financial factors performance of airports in relation to their size. 

4.4.3.2.3.2 Impact of the Level of Connecting Traffic 

The level of connecting traffic is of interest as it relates to the level of 

financial factors performance.  It is not tested in for its impact on regional growth 

rates or on the level of air service.  Testing the impact of the degree of connecting 

traffic on financial factors performance gives an indication of whether or not it is 

attractive for an airport to serve a high degree of connecting passengers.   

As in section 4.4.3.2.1,  data on the level of domestic connecting traffic at each 

of the airports was computed from the DB1B database (Bureau of Transportation 

Statistics 2010c) by summing all passenger itineraries that started or ended at an 

airport and dividing it by the sum of all enplanements and deplanements at that 

airport (including both connecting and O&D passengers).  Figure 4.65 shows the 

relationship between the level of connecting traffic and the financial factors 

benchmark results. 
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Figure 4.65 - The relationship between the level of domestic connecting traffic and financial 

factors benchmark results, 2008.  A low benchmark result score indicates strong performance 

 

The Kruskal-Wallis test on this relationship was conducted by dividing the 
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connecting traffic (> 22% connecting traffic).  The results of the Kruskal-Wallis test 

are shown in Table 4.38. 

Table 4.38 - Results from Kruskal-Wallis test of financial factors benchmark results ranking for low and 

high degrees of connecting traffic. 

Year 

Mean rank Chi-

square 

Asymptotic 

significance Low High 

2008 18.59 17.39 0.132 0.71650 

 

It should be noted that a limitation of these results is the fact that the level of 

connecting traffic only includes domestic traffic due to limitations in the availability 

of data.  The results would potentially be different if connecting international traffic 

were included. 

 

4.4.3.2.4 Relationship of Benchmark Results to Airport Credit Ratings 

Airport credit ratings are issued by the credit rating agencies Moody’s, Fitch, 

and Standard & Poor’s, and data was obtained for the Fitch Ratings evaluation of 

airport debt for September 2009 (Lehman et al. 2009).  Ratings are on a scale from 

AAA (highest) to D (lowest), with AAA through BBB being considered “investment 

grade” and BB through D are considered “speculative grade” (Fitch Ratings 2010). 
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The objective of this section is to study the relationship between the 

investment quality benchmark and these actual credit ratings.  The credit ratings for 

the airports being studied are shown in Table 4.39.  Data was not available for all 

airports in the benchmark since some airports are not rated by Fitch Ratings.  

Airport debt is sometimes structured in different slices (“tranches”) of debt, with 

more senior slices having precedence in being repaid before other slices.  The most 

senior slice will be assigned the highest credit rating.  This structure varies by 

airport, which causes some comparability issues when comparing credit ratings; the 

credit rating of each airport is determined not only by the airport’s performance but 

also by the way that the airport’s debt is structured.  What is presented in Table 4.39 

is the rating of the most senior slice of debt for each airport. 

Table 4.39 - Credit rating of most senior airport liens (Lehman et al. 2009) 

Airport Rating of most senior lien 

ATL A+ 

BOS AA 

BWI A 

CLE A 

CLT A+ 

CVG A- 

DCA AA 

DEN A+ 

DFW AA- 

DTW A 

EWR AA- 
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Airport Rating of most senior lien 

FLL A+ 

HNL A 

IAD AA 

IAH A+ 

JFK AA- 

LAS A+ 

LAX AA 

LGA AA- 

MCO AA- 

MDW A+ 

MEM A+ 

MIA A 

MSP AA- 

ORD AA+ 

PDX N/A 

PHL A 

PHX N/A 

PIT BBB+ 

SAN A+ 

SEA AA 

SFO A 

SLC N/A 

STL BBB 

TPA AA- 

 

To compare the benchmark results with the actual airport credit ratings, a 

Spearman correlation test was used, with Spearman correlation being the 

appropriate method since two different ranks are being compared.  To make the test 

possible, several design choices were made: 
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1. The credit ratings were translated from their letter grades to a 

ranking.  The assumption was made that the letter grades progress on 

a linear scale, such that the gaps between AAA, AAA-, AA+, AA, AA-, 

etc., are proportionally sized.  In the analysis, AAA was assigned the 

value 1, AAA- was assigned 2, etc. 

2. Since the results from the benchmark were computed as three 

separate components, they had to be combined into one overall 

assessment of performance.  However, the three scores were 

computed on different scales (i.e. a score of 0.5 in the air service 

benchmark does not have the same meaning as 0.5 for the regional 

growth benchmark) so they could not be directly combined.  Instead, 

the benchmark results were converted to a ranking, with the best 

airports being assigned a rank of 1 in the benchmark and all others 

higher rank values than that. 

3. The mean value of the three component benchmark rankings was 

used for the Spearman correlation test.  The data for this test is 

plotted in Figure 4.66. 
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Figure 4.66 – Airport credit rating as a function of the airport's average ranking in the 

investment quality benchmark, 2008. 
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1. The credit rating of the most senior slice of debt varies depending on 

not only the airport’s performance but also on the structure of its 

debt, as described earlier in this section. 

2. The factors included in the investment quality benchmark are only a 

subset of the factors considered by credit ratings agencies. 

 

4.4.4 Comparison of Original and New Benchmark Results 

To gauge the relationship of the original benchmark results with the two new 

component benchmarks, each airport’s ranking in the three benchmarks (the 

investment quality component benchmark rankings were averages in the same way 

as in section 4.4.3.2.4) were used.  Since the investment quality benchmark was only 

computed for 2008, only 2008 values were used in the comparison.  This 

comparison is presented in Figure 4.67. 
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Figure 4.67 - Comparison of ranking of results from original benchmark, operating efficiency 

benchmark, and investment quality benchmark, 2008. 

 

As Figure 4.67 suggests, the two new benchmark results have a low degree of 

correlation with the original benchmark.  The Spearman rank correlation 
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Table 4.40 - Spearman rank correlation coefficients for test of correlation between benchmark 

result rankings 

  

Original 

benchmark 

Operating 

efficiency 

benchmark 

Investment 

quality 

benchmark 

Original 

benchmark 
 

    

Operating 

efficiency 

benchmark 

ρ = 0.34 

p = 0.045 
 

  

Investment 

quality 

benchmark 

ρ = -0.19 

p = 0.268 

ρ = -0.06 

p = 0.751 
 

 

The correlation coefficient magnitudes are all low, and only the correlation 

between the original benchmark and the operating efficiency benchmark is 

significant at the 95% level. This low level of correlation between the results of the 

original benchmark and the two new component benchmarks points most 

importantly to the need for the type of systematic benchmarking methodology 

presented in this dissertation; if no motivation is provided for the selection of 

benchmark metrics and for the choice of benchmark model, readers should be 

skeptical of the results of a benchmark. 
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Beyond the general criticism of the original study’s lack of structure and 

motivations in its design, three specific weaknesses were identified with the original 

study: 

1. Some of the performance data used in the original benchmark was not 

appropriate for use in the benchmark without further adjustments or 

processing due to poor comparability between the airports.  For 

example, the aeronautical revenues and the operating costs exhibited 

wide variations between the different airports to a degree that cannot 

entirely be explained by airports’ different sizes.  This is exemplified 

by a comparison of ATL and JFK: JFK reports operating costs and 

aeronautical revenues that were both about five times higher than 

those of ATL, even though ATL has a higher passenger volume and 

number of aircraft movements.  This difference likely stems from 

factors such as differences in services provided by the airport 

(Neufville & Odoni 2003, p. 274). 

2. The use of the percentage of on-time performance in the study was 

not appropriate since this parameter does not scale with the size of 

other inputs and outputs.  If the factor had instead been computed as 

the number of flights arriving on time, or the total number of delay 
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minutes, it could have been included since both of those factors do 

scale with the size of the operation11. 

3. The analysis used too many parameters in relation to the number of 

DMUs.  A total of 4 inputs and 6 outputs were used for the 35 DMUs, 

which violates the rule of thumb guidance of (R. G. Dyson et al. 2001) 

that the number of DMUs should be at least twice as large as the 

product of the number of inputs and outputs parameters combined, 

since 35 ≱ 2 * 4  * 6. This would have caused too a high portion of 

DMUs being deemed fully efficient, but rather than scoping down the 

number of variables (for instance, aeronautical and non-aeronautical 

revenues could have been combined and the number of air carrier 

operations could have been summed with the number of other 

operations), the authors used an artificial approach of a super-

                                                        

11 It should be noted that percentage parameters were used in the investment 

quality benchmark.  This was possible since the investment quality benchmark only 

used percentages and ratios that do not scale with the size of the operation.  Where 

the use of percentages becomes a problem is when they are mixed with other 

parameters that do scale with size. 
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efficient DMU to force full ranking of all DMUs even though no 

motivation existed why no ties could exist. 

4.4.5 Conclusions 

This section presented the results of applying the new benchmark 

methodology on a benchmark from the literature to compare the consistency of the 

results from a redesigned benchmark with those of the original benchmark. 

The new benchmarks presented a number of findings about specific airports’ 

performance in terms of operational efficiency and their level of investment quality.  

It also presented evidence about the existence of a link between efficiency and the 

size of the airport for some components of the new benchmark, and the lack thereof 

for others. 

However, at a methodological level, the redesigned benchmark presents two 

key conclusions: 

1. The benchmark results are heavily dependent on the design of the 

benchmark, in terms of the stakeholder goals addressed, the selection 

of performance metrics, and determination of the benchmark model 
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to use for computing the results.  Changes in assumptions can lead to 

differences in the benchmark results. 

2. As a consequence of the importance of the process of designing the 

benchmark, the need is underlined for a systematic approach to 

selecting stakeholder goals and performance metrics, and to selecting 

the benchmark model to be used.  Readers of benchmark results 

should review the benchmark design process before accepting the 

findings of a benchmark. 
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5 Chapter 5: Conclusions and Future Work 

The conclusions of the dissertation are of two types.  The first are 

conclusions that relate to the alternative method for airport benchmarking.  These 

are conclusions that relate to how future benchmarks of airport performance should 

be conducted.  These conclusions are presented in the first three subsections.  The 

second type is a set of practical conclusions about airport performance 

benchmarking that apply to policymakers.  These conclusions are presented in the 

fourth subsection.  The final subsection describes directions for future research. 

 

5.1 Airports as Utilities 

Major U.S. airports serve a utility-like function for the regions in which they 

are located, as described in section 2.1.  The airports exist in a form of economic 

symbiosis with their surrounding regions, whereby growth in the local economy 

fuels increased demand for air travel, and the activities at the airport in turn fuels 

further regional economic growth.  Operating in a monopolistic or oligopolistic 

environment, airports are barred from generating a profit for the cities, counties, 
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and other entities that own them.  Instead of generating a financial surplus, airport 

performance goals are defined by the stakeholders’ objectives for the airports. 

This dissertation presented a model of these stakeholders, their 

interrelationships, and their objectives for the airport, highlighting some objectives 

which are in alignment with each other and others which are in conflict.  The 

stakeholder model also indicated that many of the factors on which airports are 

evaluated by stakeholders are not within the direct control of airport management, 

but are rather managed by the service providers with which the airport 

organization collaborates to deliver a complete airport service. 

The airport stakeholders include the airport organization; the local 

government, residents, and businesses; air carriers; service providers and 

concessionaires; investors; and the federal government.  These stakeholders’ goals 

for the airport vary widely, and include ensuring high levels of air service; 

generating growth in passenger volumes; minimizing costs and maximizing 

revenues, with a focus on non-aeronautical revenues; and minimizing noise and 

emissions. 

Since traditional profit metrics do no gauge how well airports are meeting 

these stakeholder goals, alternate evaluation methods are needed.  Comparative 
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benchmarking is a method which allows for evaluation of performance in multiple 

dimensions, and it is an important tool for both the airport organization and the 

airport’s stakeholders.  Benchmarking is presently in use for evaluating airports, but 

current benchmarking methods have several shortcomings, which are summarized 

in the following subsection. 

5.2 Limitations of Benchmarking Methods 

In analyzing the methodologies used in past benchmarks, the dissertation has 

demonstrated that several areas of methodological misalignment exist.  These 

misalignments include: 

• Ambivalence about the stakeholder goals being reflected: Past 

benchmarks have lacked anchoring of benchmark parameter selection 

in a model of stakeholders and their goals.  This has caused a lack of 

clarity about what the benchmark results mean since there is little or 

no motivation for the selection of the particular metrics being used. 

• Lack of motivation of DEA model selection: Past benchmarks have 

not systematically addressed why a particular DEA model was 

selected over another to compute the benchmark results.  Research 

described in section 2.3.2 shows that model selection impacts 
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benchmark results, sometimes to a drastic level.  The analysis in 

section 4.1.2 shows that the highest degrees of methodological 

misalignment exist in: 

o Aggregation function selection 

o Modeling of returns to scale 

o Use of integer constraints in DEA modeling 

o Treatment of multiple-timespan analysis 

These findings call into question the results of past benchmarks on two 

accounts:  The first is the limited motivation for selection of performance metrics.  

This limitation results in a lack of determination about what the benchmark results 

mean; are the airports that are identified as the best performing airports in fact 

excelling in ways that are important to its stakeholders?  The second area of concern 

is the limited motivation for the selection of a particular DEA model.  This limitation 

results in limited validity of the benchmark scores that were computed; if a different 

model had been selected, the benchmark results would likely not have been the 

same. 

These limitations indicate the need for a comprehensive, systematic 

approach to airport benchmarking.  The following section provides a summary of 

the methodology developed in the dissertation to address these shortcomings. 
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5.3 A Comprehensive Benchmarking Methodology 

The dissertation has presented a complete benchmarking methodology, and 

this section summarizes this methodology.  The methodology ensures that 

benchmark results are reflective of stakeholder goals; it ensures that the underlying 

assumptions of the benchmarking model used is reflective of the characteristics of 

the environment being modeled; and it ensures that the conclusions are not only a 

list of airport rankings but that the results are interpreted and turned into findings 

that explain why some airports exhibit strong performance and others show poor 

performance.  

The benchmarking methodology is summarized in Figure 5.1. 

 

Figure 5.1 - Summary of airport benchmarking methodology 

1. Select 

stakeholders 

and goals

2. Identify 

metrics for 

goals

3. Select 

benchmark 

model

4. Collect data

5. Compute 

benchmark 

results

6. Interpret 

results and 

derive findings



403 . 

 

Steps 1, 2, and 3 in the methodology make up the design phase of the 

benchmark and serve to ensure that the implementation of the benchmark will 

generate valid results. 

Completing steps 1 and 2 in the methodology, in which stakeholder goals are 

selected and metrics for those goals are defined, creates a benchmark which is 

reflective of stakeholder interests.  These steps are enabled by the model of airport 

stakeholders and their goals, as described in section 2.1. 

Completing step 3 in the methodology, in which the framework and 

heuristics for selection of a DEA model are applied, creates a benchmark that uses a 

model whose assumptions are aligned with the domain being modeled.  The 

framework and heuristics are summarized in section 3.3 with full details available in 

Appendix A. 

The benchmark implementation phase consists of steps 4 and 5 in which data 

is collected and benchmark results are computed, resulting in relative scores of 

efficiency for each airport. 

Finally, step 6 in the methodology represents the third phase of the 

benchmark, in which the results are analyzed to identify the factors which impact 

benchmark results.  This step ensures that the benchmark results can be used by 
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management, policymakers, and other stakeholders to identify which airports 

require action to improve performance, and what those actions should be. 

In summary, by applying the alternative methodology presented in this 

dissertation, these limitations described in sections 5.2 can be avoided, and the 

validity of the benchmark design and results can be assured. 

 

5.4 Implications for Airport Policymakers 

Airport policymakers are considered as those responsible in a capacity as 

lawmaker, as one controlling system resource allocation, or as a regulator.  This 

section describes the implications of the dissertation findings for policymakers. 

5.4.1 Summary of Benchmark Results 

The graphic in Figure 5.2 presents a visual summary of the benchmark 

results for policymakers.  The coloring in the figure is based on each airport’s 

categorization in the k-means clustering analysis for each benchmark.  The airports 

are listed in descending order based on the aggregated value of their benchmark 

results, with benchmark results in the first group (dark green) being allocated a 

value of 1, the second group (light green) a value of 2, the third group (yellow) a 
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value of 3, and the final group (red) a value of 4.  In this summary form of the 

results, ATL ranks at the top of the list, and PIT occupies the bottom.  The stack-

ranking provided in this list should not be treated as standalone results by 

themselves, but should rather serve as a starting point of the discussion of the 

meaning of the results provided in the subsequent sections. 
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Figure 5.2- Summary of benchmark results.  The coloring is based on the k-means clustering of 

each benchmark’s results, ranging from dark green (best performance) to red (worst performance). 
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5.4.2 Use of Benchmarks by Policymakers 

The implications of the analysis of past airport benchmarks in the context of 

the alternative benchmarking methodology proposed in this dissertation are 

relevant not only for policymaker stakeholders but for any decision-maker or other 

consumer of benchmark results: Benchmark results should not be used unless there 

is clarity about the motivation for selecting a particular set of performance metrics 

for use in the benchmark.  Similarly, the benchmark results should not be used 

unless there exists a clear motivation for why the benchmark model was selected for 

computing the benchmark results.  If these conditions are not met, benchmark 

results should not be used for decision-making or any other purpose. 

 

5.4.3 Implications for Decisions about Funding 

The benchmark results are conducive for analysis about allocation of federal 

funding for improvements.  As shown in section 2.1.2.1, the federal government’s 

Airport Improvement Program (AIP) provides about 18% of the capital funds for 

improvements that include enhancements of capacity, safety, and other aspects of 

airport infrastructure.   
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As described in section 2.1.3.2.10, the AIP is funded through user fees and 

fuel taxes.  The funds can be used for projects that “support aircraft operations 

including runways, taxiways, aprons, noise abatement, land purchase, and safety, 

emergency or snow removal equipment” (Kirk 2003, p. 3).  Since Fiscal Year 2001, 

AIP grants have exceeded $3 billion annually (FAA 2008, p. 69). 

The AIP funds are distributed to passenger, cargo, and general aviation 

airports, and its funds fall in two categories (Kirk 2003, pp. 6-7):  

1. Formula funds: Formula funds (also known as “apportionments”) are 

apportioned according to formulas based on the volume of 

throughput (e.g. enplaned passengers) and location.  The formulas 

vary depending on the type of airport. 

2. Discretionary funds: Discretionary funds are approved by the FAA 

and are distributed based on factors such as project priority and 

congressional mandates.  Although it is not the sole determinant 

factor, project selections are based on a project’s score in the National 

Priority Rating (NPR) equation, which assigns projects a rating from 0 
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to 100 (high)12, indicating their level of alignment with agency goals 

(Federal Aviation Administration 2000, p. 5).  Projects with safety and 

security purposes receive higher ratings than those focused on 

capacity (Dillingham 2000, p. 32). 

By studying the allocation of the AIP funds among the airports in the 

benchmarks presented in the dissertation, the question of whether funds are 

appropriated to fulfill the greatest needs can be studied. 

Figure 5.3, Figure 5.5, and Figure 5.6 show the total AIP spending for fiscal 

years 2005-2009 on improvements at the airports included in the benchmark, in 

relation to results from some of the benchmarks.  The AIP funding data was 

gathered from (Federal Aviation Administration 2010b).  For the case study of the 

                                                        

12 NPR = .25P*(A+1.4P+C+1.2T), where A is a value representing the type and 

size of the airport; P represents the project purpose code, e.g. capacity improvement 

(note that this value is used twice in the formula); C represents the physical 

component (e.g. runway); and T represents the type of work being done (e.g. 

extension) (Federal Aviation Administration 2000) (pp. 5-6). 
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level of air service by region, the AIP spending is summed for all of the airports in a 

region. 

 

 

Figure 5.3 - Capacity utilization benchmark results (2005-2008) compared to total AIP spending 

by region (fiscal years 2005-2009) 

 

The capacity utilization benchmark results indicate the degree to which 

airports are using available capacity to maximize the level of air service and the 
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volume of passengers.  The results present several insights for policymakers, as 

indicated by the four areas marked in Figure 5.3: 

1. High utilization and high funding: This group of airports is 

operating at high levels of utilization and receives high levels of 

improvement funding.  This indicates that this funding is aligned with 

areas of high need. 

2. High utilization but low funding: This group of airports, including 

EWR and LGA, exhibit high levels of capacity utilization but receive 

low levels of improvement funding.  This should suggest to 

policymakers a high degree of risk in these airports’ ability to 

accommodate future growth in demand unless further improvements 

are made.  This need for further improvements is subject to the 

physical possibility of adding further capacity; some airports have 

physical or other limitations that cause capacity increases to be 

infeasible.  Assuming capacity increases are possible, the airports in 

this group should be targeted for increased levels of funding. 

3. Low utilization but high funding: These are airports that receive 

large amounts of funding in spite of limited capacity utilization.  No 

airports fall in this group, indicating that airport funding is not going 
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to any airport which does not have a need for improvement funding.  

However, some airports – including STL, CLE, IAD, and CVG – fall close 

to this category and receive high levels of funding but according to the 

benchmark results they do not exhibit a high level of capacity 

utilization.  At all four of the airports listed, improvement funding was 

allocated for constructing new runways ranging from 44% to 80% of 

total improvement funding at the airports, as shown in Figure 5.4.  

This is in spite of comparatively low capacity utilization at these 

airports.  These appear to be cases where funding has not been 

allocated in a way most consistent with needs since these funds could 

potentially have been better spent at other airports.   

4. Low utilization and low funding:  This group of airports – including 

TPA, PIT, HNL, and PDX – has no need for capacity improvements 

since current capacity utilization is low.  These appear to be cases 

where funding is consistent with needs. 
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Figure 5.4 - AIP funding directed to runway construction projects 
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Figure 5.5 - Level of air service benchmark results (2005-2008) compared to total AIP spending 

by region (fiscal years 2005-2009) 

 

The level of air service benchmark identifies those regions which have high 

levels of air service in comparison to the size of their regional economy and 
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economy.  Among those areas, two groups which have particular implications to 

policymakers can be identified, as indicated in the figure: 

1. Capacity constrained airports with low funding: As discussed in 

section 4.2.3.3, Philadelphia and San Diego are among the areas with 

poor levels of air service and capacity limitations.  In the figure, they 

are also indicated as areas with relatively low levels of improvement 

funding.  Two different causes may exist for this: Either there are 

limited improvements that are physically possible (e.g. no second 

runway can be added at SAN), or improvement are possible, but have 

not been financed by the AIP.  If capacity improvements are in fact 

possible, Philadelphia and San Diego are areas to which increased 

funding should be allocated. 

2. Airports without capacity constraints and low funding: The figure 

indicates that Pittsburgh, Tampa, and Portland are among the areas 

with poor air service that receive limited improvement funding.  As 

supported by the analysis in section 4.2.3.3, this appears to be a case 

where funding is consistent with needs.  There is no evidence that air 

services would improve to these areas with further funding since the 

airports already have excess capacity. 
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Figure 5.6 – Ranking of investment quality benchmark results (2005-2008) compared to total 

AIP spending by region (fiscal years 2005-2009) 
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These results provide one important implication for policymakers: There is a 
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targets for investment by private sources of improvement capital.  They are not 
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attractive candidates because of poor performance in some or all of the categories of 

factors considered in the benchmark; for instance, they might be in a region where 

growth projections are poor, or they might have low levels of non-aeronautical 

revenues and a poor debt service coverage ratio. 

This group of airports is likely to have more difficulty in obtaining approval 

for funding from private sources, and if such approval is granted, they are likely to 

be paying higher interest rates than other airports.  If improvements are needed at 

any of these airports – and PHL appears to be an airport with improvement needs, 

as discussed in the earlier portion of this section – then they may be in greater need 

of federal funding since the availability of other sources of capital is more limited. 

5.4.4 Motivations of Airport Management  

The stakeholder model shows policymakers that airports must be viewed in 

the context of the stakeholders they serve.  The stakeholder shows that airport 

management is not primarily motivated by the airport’s role in the overall NAS but 

rather by its interactions with all of the airport’s local stakeholders.  Only by 

understanding those local relationships can the policymaker get insight into the 

incentives and motivations for airport management. 
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The stakeholder model shows that the airport plays an integral role to the 

region it serves, functioning in a utility-like role rather than as a revenue source.  

The airport serves as an economic engine through on-airport economic activities as 

well as by enabling business transactions for local companies, which generates jobs 

for local residents.  This is an important motivation for the local government that 

owns the airport. 

Airport management is not in control of many of the factors necessary for 

providing a full air service, and instead collaborates with service providers.  These 

include airlines, ground transportation providers, and concessionaires.  This results 

in airport management having limited control over some factors which contribute 

toward the negative perception of airports; notably this includes delay levels, which 

are a result of airline over-scheduling practices.  This may also results in airport 

management not maintaining as strong a focus on those factors which it determines 

it cannot control. 

Although U.S. airports cannot generate profits for their owners, the 

stakeholder model shows that strong financial performance is an important concern 

for airport management for three reasons: 
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1. Generating a surplus for infrastructure improvements: By 

generating a financial surplus, airports can self-finance a portion of 

improvement projects at the airport. 

2. Maintaining strong credit ratings: By generating high revenues and 

minimizing costs, airport management can contribute toward keeping 

a strong credit rating, which will make access to private improvement 

capital easier and less costly. 

3. Attracting air service: By minimizing costs and maximizing non-

aeronautical revenues, airports can keep costs to air carriers low.  

This is a consideration for air carriers when they determine which 

region to serve. 

From this, policymakers should take away the understanding that rather 

than viewing themselves primarily as nodes in an overall air transportation system, 

airport management is more likely to make decisions motivated by more immediate 

concerns that pertain to the region it serves and the service providers with which it 

collaborates. 
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5.4.5 Airports' Roles in their Regions 

With the view described in section 5.4.5 of airports as integral parts of the 

regions in which they exist, stakeholders should study the performance of airports 

in meeting the needs of their regions to understand the motivations of individual 

airports.  From the benchmark of the level of regional air service described in 

section 4.2, policymakers can find several groups of metropolitan areas, each with 

unique motivations: 

• Metropolitan areas with high levels of air service and medium-

size or large regional economies and populations: These areas 

include Atlanta, Chicago, Washington-Baltimore, and New York City.  

These regions combine medium-size or large regional economies and 

population with major airline hub service.  For these regions, an 

important concern is to ensure that sufficient capacity exists for 

serving future growth in demand; if that capacity is not brought about 

in spite of continued growth in the regional economy and population, 

it may in the long term cause an impediment to growth.  No 

motivations appear to exist in the stakeholder model for airport 

management to in any way restrict the usage of airport capacity for 

connecting traffic in favor of using that capacity for O&D travel. 
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• Metropolitan areas with high levels of air service in spite of 

comparatively small regional economy and population: The areas 

in this group include Honolulu, Las Vegas, Denver, Salt Lake City, and 

Cincinnati.  These areas attract high levels of air service either 

through their roles as important leisure markets or through high 

levels of connecting hub service.  In the case of the latter, a strong 

motivation exists for airport management to defend the airport’s hub 

status, both to ensure that the region continues to receive strong 

levels of air service and also to ensure that the airport continues to 

generate revenues from those connecting passengers.  If these airport 

had to rely on O&D traffic alone, passenger and aircraft movements 

would be far lower. 

• Under-served metropolitan areas: For some of the under-served 

metropolitan areas, which include Tampa, Seattle, Pittsburgh, and 

Portland, a key focus for airport management will be to attract 

increased levels of air service to ensure that the region is better 

served to make better use of the existing infrastructure.  Of particular 

interest for all of these areas would be to attract new or increased 

levels of hub service.  For some under-served metropolitan areas such 
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as San Diego and Philadelphia, the focus will be to add infrastructure 

capacity to permit more air service, as described in section 5.4.3. 

 

5.4.6 Conflicting Objectives among Airport Stakeholders 

The stakeholder model provides several cases where conflicting objectives 

exist, sometimes between groups of stakeholders and other times within the same 

stakeholder group.  Understanding these relationships is important for 

policymakers in determining the likely actions and reactions to change initiatives by 

stakeholder groups and airport management.  These include: 

• The growth of airports: Opposing interests exist in terms of the 

growth of airports, as indicated by the positively and negatively 

reinforcing loops shown in section 2.1.3.4.3.  Many groups, including 

local businesses, airport concessionaires, and residents who work at 

the airport or at organizations that generate business in some way 

connected to the airport all benefit from increased activity at the 

airport.  In contrast, regional residents affected by noise and 

emissions are likely to oppose further growth in activity at the airport. 
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• Fares/yields: Airport management must consider the needs of both 

passengers and airlines, yet the former group wants to see low fares 

while the latter has an interest in maximizing yields.  Airport 

management plays a role in this situation and can choose whether or 

not to actively pursue increased competition at the airport through 

increased air service from other carriers. 

• Ground transportation: For the airport, ground transportation 

provides a source of revenue through parking fees, taxi fees, etc.  

Meanwhile, maintaining environmental sustainability is also a goal for 

airport management, and maximizing the volume of travelers 

accessing the airport through public transit helps achieve that goal.  

This is an example of where the financial incentives are in conflict 

with the environmental sustainability objectives. 

 

5.5 Future Work 

This dissertation presents to several opportunities for continued work.  The 

opportunities are both of a methodological and application nature. 
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The methodological future work would further improve the quality of the 

benchmarking methodology presented in the dissertation.  Two such 

methodological improvements are: 

1. DEA validity: Development of a measure of validity of DEA results.  As 

noted in (Morrison 2009), DEA lacks gauges of the explanatory power 

and significance of a model that the R2 and confidence levels provide 

for a regression analysis.  This places the impetus on making the 

correct selections about which metrics to include in the study and 

which DEA model to use.  Although the methodology presented in this 

dissertation improves the reliability of those selections, a measure of 

the validity of the results would further strengthen audiences’ 

confidence in them. 

2. Elicitation of stakeholder preferences: Expansion of a method for 

eliciting stakeholder preferences and incorporating them into the 

weights applied in the benchmarking analysis.  This would build on 

the work of (Alodhaibi et al. 2010) which was described in section 

2.2.2.5.  Such a method should include two components: 

i. A description of practical approaches (e.g. survey methods, 

interview techniques) for eliciting subject-matter expert and 
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stakeholder preferences among the different performance 

metrics considered. 

ii. A description of how to integrate the preference weights into 

the application of DEA. 

3. Stakeholder analysis for other geographies: Expansion of the 

stakeholder analysis to other, non-U.S. geographies.  Since airport 

ownership forms, regulations, and stakeholder relationships differ 

between countries, the stakeholder model presented in this 

dissertation is not wholly applicable to analysis of airports in other 

geographies.  However, an analysis similar to what was conducted in 

this analysis would generate other airport stakeholder models, which 

would enable stakeholder-based benchmarking of airports in other 

geographies. 

The opportunities for further applications of the benchmarking methodology 

are numerous.  Two opportunities include: 

1. Benchmarking of airlines’ total cost per operation or passenger 

at U.S. airports: Although the direct costs paid to the airport in the 

form of aeronautical charges are an important cost for air carriers, 

other sources of air carrier costs at an airport also exists, such as the 
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costs incurred due to delays at the airport.  What this total cost is and 

how it compares between airports is data which has been sought after 

for some time by airlines and airport management (Hazel 2010).   A 

comprehensive benchmark of total costs to air carriers could support 

airline decision-making about which airports to serve and could 

provide objective data for use in negotiations.  From the airports side, 

it could be a competitive tool for those airports that exhibit low total 

costs. 

2. Benchmarking of airports’ environmental and noise 

performance: No benchmark exists of the environmental and noise 

performance of airports exists.  Environmental and noise impacts 

result from many sources, such as aircraft, ground transportation, and 

on-airport ground vehicles.  A comparative measure of airport 

performance in this regard is of interest to local residents and airport 

management since it would help adversely affected residents in areas 

where noise and emissions are high in negotiations with airport 

decision-makers, and it would help airports whose noise and 

emissions profiles are good to objectively support their claims. 
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Appendix A: A Framework and Heuristics for DEA Model 

Selection in Airport Benchmarking 

Section 2.2.2.6 shows that a variety of different DEA models exist and the 

review of airport benchmarks in section 2.2.5 shows that studies of airport 

performance have applied several different DEA models.  The existence of different 

model variations, the lack of consistency in their application on the same problem 

domain, and the impact of model selection on benchmark results (Schaar & Sherry 

2008), point to the need for an analysis of the DEA methodologies for airport 

benchmarking. 

(Kleine 2004) provides a general model framework for categorizing DEA 

approaches and (Gattoufi et al. 2004) provides a broad DEA taxonomy.  In this 

section, these two approaches are combined with the overview of DEA models from 

section 2.2.2.6 to create a framework and heuristics for DEA model selection. 

This section is organized as follows: First, existing frameworks for 

categorization of DEA models are analyzed.  Next, a new, extended framework for 
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the selection of DEA models is presented.  In the next section, heuristics for making 

choices in the DEA framework when modeling airport performance is presented.  

Finally, computer implementations of DEA models are presented in the last section. 

A.1 Existing Frameworks for Analysis of DEA Models 

A generic framework for analyzing the attributes of different DEA models is 

proposed in (Kleine 2004) and is shown in Table A.1. Kleine separates his framework 

into an analysis of 1) the scalarizing function, which is the function by which each 

DMU’s DEA “score” is a computed (the score being a scalar value, end hence the 

term “scalarizing”), and 2) the technology, which is the set of underlying 

characteristics of the production technology (i.e. the method of converting inputs to 

outputs) being studied.  Kleine categorizes a number of different DEA 

methodologies (some of which fall outside the scope of the models described in 

section 2.2.2.6) according to these characteristics.  Although Kleine’s model 

classifications list the Additive model as having simple weights, they should in fact 

be classified as “specific” based on the model description in section 2.2.2.6.3. 
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Table A.1 - A DEA classification framework (Kleine 2004) 

 

The scalarizing function has three attributes: 

Scalarizing Function 

DEA model  Aggregation Weights Orientation Technology 

CCR Model (ε)-maximin specific yes CRS 

BCC Model ε-maximin specific yes VRS 

ST Model ε-maximin specific yes VRS 

FDH Model ε-maximin specific yes FDH 

Non-Convex Model ε-maximin specific yes NIRSFDH 

Graph-Farrell Meas. ε-maximin specific no … 

Additive Model additive simple no VRS 

MIP Model additive specific no VRS 

RA Model additive range-adj. no VRS 

Russell Measure additive specific yes … 

RA-Graph Model ε-maximin range-adj. no … 

Euclidean Measure Euclidean … … … 

Indivisible … … … CRSN 

Activity-Limited Model … … … IBRS 
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• Aggregation: This is the means by which the individual components 

are combined into a scalar value in the objective function.  “Additive” 

indicates that all components are added up while “maximin” is 

reflective of the ability to remove the impact of some inputs/outputs 

by assigning weights of zero.  “ε-maximin“ reflects the requirement of 

some models that all weights be non-zero.  “Euclidean” refers to the 

use of a Euclidean norm in the aggregating function (Saneifard et al. 

2007). 

• Weights: This determines how the weights for each parameter are 

determined.  “Simple” refers to the same, standard weight being used 

for every parameter.  “Range-adjusted” indicates that a different 

weight is used for each parameter, but that the same set of weights 

are used for each DMU.  “Specific” indicates that a different weight is 

used for each parameter, and that unique weights are determined in 

the calculation of each DMU’s score. 

• Orientation: This indicates whether or not models distinguish 

between input and output orientation, as described further later in 

this section. 
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The technology element in the framework has a several possible values.  

“Technology” refers to the underlying assumptions in the model about how firms 

(DMUs) are able to convert inputs to outputs.  Kleine’s paper includes a hierarchical 

model of different technologies, with CRS at the top of the hierarchy and all other 

technologies as children.  The elements of the framework included in Table A.1 are a 

subset of all the technologies described in Kleine’s paper.  The elements in the table 

translate as follows: 

• CRS: Constant Returns to Scale, as described in section 2.2.2.6.2. 

• VRS: Variable Returns to Scale, as described in section 2.2.2.6.2. 

• FDH: Free Disposal Hull, as described in section 2.2.2.6.5. 

• NIRSFDH: Non-Increasing Returns to Scale in combination with FDH.  

NIRS is a sub-type of VRS. 

• CRSN: Constant Returns to Scale in a model which includes inputs 

and/or outputs that are indivisible and impose integrality constraints. 

• IBRS: Individual-Bounded Returns to Scale.  The feasible region for the 

production possibility set do not follow a set of general rules and are 

instead described by problem-specific rules. 
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A taxonomy for DEA modeling is provided in (Gattoufi et al. 2004).  The 

taxonomy includes not only elements related to the choice of DEA model but also 

elements that relate to an applied DEA study more broadly (e.g. the characteristics 

of the data being used).  The taxonomy is detailed in its structure but it does not 

include any definitions of its elements.  The lack of definitions limits the use of the 

taxonomy.  Some of the elements of the taxonomy that are not covered in the 

framework proposed by Kleine include: 

• Characteristics of the data: The source of the data (e.g. simulated vs. 

real data), the domain of the data (e.g. the industry from which it 

stems), and the level of imprecision in the data. 

• Deterministic or stochastic frontier: The vast majority of DEA 

analyses are deterministic in nature, although some efforts have been 

made to introduce stochasticity to DEA (Ray 2004, p. 307).  

• Time horizon: Does the analysis encompass a single or a multiple 

time periods, as discussed in section 2.2.2.6.8? 

• Sensitivity analysis: Are any tests conducted to test the sensitivity of 

the study results to factors such as the DEA model choice and sample 

spread. 
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A.2 Extending a Framework for Selection of DEA Models  

The purpose of this analysis is to assemble a framework for making DEA 

modeling choices.  Since section 2.2.5 shows that airport performance studies in the 

majority of cases use DEA modeling, the scope of the framework is limited to DEA 

analyses only and does not address any of the other modeling scenarios described in 

sections 2.2.2.2 through 2.2.2.4.   

This section presents a framework for making DEA model choices and is 

extended from the existing taxonomies and frameworks described in section 0. 

This framework focuses on the choices specific to the DEA model.  While 

several other steps mentioned in the taxonomy of (Gattoufi et al. 2004) such as 

determining the characteristics of the data, are important to structuring the DEA 

analysis, those elements are not treated in this framework since they do not pertain 

to specifying the DEA model itself but rather relate more broadly to how to conduct 

a DEA study.  Practical implementation guidelines for analysis using DEA are 

available in (R. G. Dyson et al. 2001), for example. 

The process for creating the new framework is described in Figure A.1. 
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Figure A.1 – The process for creating the new DEA model selection framework 
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The key differences between this new framework and the framework of 

(Kleine 2004) are that:  

1. The technology element has been expanded into several sub-

components.  

2. A “timespan” element has been added to the framework 

3. A “tie-breaking” element has been added to the framework 

4. The treatment of negative values has been incorporated into the 

framework. 

Table A.2 - Structure of a DEA model framework for airport benchmarking.  Each section in the 

framework describes an element for which the DEA modeler must make a selection from the choices 

presented.  

Scalarizing function 

Aggregation 

• ε-maximin 

• Maximin 

• Additive 

• Additive with tolerance for negative values 

Weights 

• Simple 
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• Range-adjusted 

• Specific 

Orientation 

• Input  

• Output 

• None 

Technology 

Returns to scale 

• Constant 

• Variable 

• Non-increasing 

• Non-decreasing 

• Individual-bounded 

Free Disposal Hull 

• Yes 

• No 

Integer constraints 

• All variables integer constrained 
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• Some variables integer constrained 

• No variables integer constrained 

Timespan 

• Single time period 

• Multiple time periods with Malmquist 

• Multiple time periods without Malmquist 

Tie breaking 

• None 

• Super-efficiency 

• Radii of classification preservation 

• Inefficiency frontier 

 

A.2.1 Aggregation 

The aggregation method is the means by which the individual components 

are combined into a scalar value in the objective function.  In this framework, unlike 

the framework proposed in (Kleine 2004), the Euclidean aggregation function is not 

included as no applied study in any domain applying this aggregation function could 

be found. 
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The implications of each type of aggregation function are now reviewed. 

A.2.1.1 Maximin 

In a maximin-based aggregation function, the model allows for minimization 

of the impact on the resulting score of any undesirable inputs or outputs, and 

maximization of the benefit of desirable inputs or outputs.  The underlying 

implications in this modeling choice are that:  

• Each DMU is making a choice in allocating attention in order to 

achieve strong performance on one or more inputs and outputs over 

other inputs and outputs.  The maximin-based aggregation function 

assumes that this mix of inputs and outputs that the management has 

chosen is the correct one for the DMU, and that the improvement 

target for the DMU is one where all the outputs are proportionally 

increased or all the inputs are proportionally decreased, preserving 

the relative mix of inputs or outputs. 

• Poor performance on some inputs and outputs can be ignored in 

considering a DMU fully efficient. 

• It is acceptable that two DMUs exist on the efficient frontier even 

though one has worse performance on one parameter than the other 
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(this is possible through the ignorance of slack in the objective 

function). 

The analyst must make an analysis of the implications of deeming one or 

several DMUs fully efficient when some inputs and outputs are ignored when 

selecting the maximin aggregation function. 

A.2.1.2 εεεε-maximin 

The ε-maximin function includes the same assumptions as the maximin 

function, with the addition of the constraint that all parameters being summed have 

a lower bound of ε.  The added constraint implies that poor performance on some 

parameters cannot be ignored but its impact can be minimized.  Using an ε-maximin 

aggregation function can be one means for the analyst to address the limitations of a 

maximin function when performance across all parameters must be considered in 

computing the performance score. 

The analyst’s choice of value for ε in the DEA implementation may have 

implications on the results, as discussed in (Ali & Seiford 1993).  The authors studied 

the choice of ε in the CCR and BCC models and provide guidance on how to treat this 

problem in DEA implementations. 
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A.2.1.3 Additive 

The additive aggregation function implies that all weighted slacks are added 

up in the objective function.  This aggregation function shares the attribute with the 

ε-maximin function that no parameters can be fully ignored, but the difference 

between the two functions is that the additive function is a non-radial means of 

computed a weighted sum of all slacks while the ε-maximin’s radial approach 

represents the proportional distance from the DMU to the frontier. 

Different implementations of the additive aggregation function exists, 

including the original additive function which lacks unit independence (as described 

in section 2.2.2.6.3) and the SBM/Russell Measure of efficiency which was derived to 

provide a units-independent version (as described in section 2.2.2.6.4). 

A.2.1.4 Additive with Tolerance for Negative Values 

The additive aggregation function with tolerance for negative values reflects 

the same underlying assumptions as the additive aggregation functions in the 

previous section.  The difference in this aggregation function can be characterized as 

a technical refinement to the model in order to provide the ability for the modeler to 

handle negative values, rather than a change in the underlying assumptions of the 

model.  The only known implementation of the additive function with tolerance for 
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negative values is the additive model adjusted for negative data described in section 

2.2.2.6.11. 

A.2.2 Weights 

The weights in the DEA model determine the relative importance of the 

different parameters in the analysis and may also serve to adjust for variations in 

magnitude between different parameters, depending on the method chosen for 

determining weights.  

A.2.2.1 Simple 

Simple weights are the equivalent of two sets of arithmetic means, one for 

the inputs and one for the outputs, since one common weight is applied to all inputs 

and one is applied to all outputs. 

A.2.2.2 Range-adjusted 

Range-adjusted weights are used to adjust for differences in parameter 

magnitude and are commonly implemented (Kleine 2004, p. 21) as the inverse of 

the maximum value of each parameter across all DMUs.  This method results in a 

means of combining inputs and outputs of different magnitude that assigns a 

proportionally even level of importance to each input and output. 
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This method is appropriate in cases where the analysis requires that each 

input and output be considered in a proportionally even manner.  The underlying 

assumption is that no choices would be made by the DMUs to emphasize 

performance in one area over another, and also that, jointly across all DMUs, no 

preference exists which would warrant a proportionally heavier weighting assigned 

to one input or output over another. 

A.2.2.3 Specific 

The specific method of determining weights means that each DMU is 

assigned its own set of weights for each parameter.  The assumption implicit in this 

method is that, similar to the maximin aggregation function, the DMU has made 

choices about which inputs and/or outputs to focus on in achieving the best possible 

performance.  To reflect this assumption, the ideal weights for each DMU, subject to 

the constraints of the DEA model, should be assigned individually for each DMU. 

A.2.3 Orientation 

The orientation parameter refers to whether the model is input/output-

oriented or not, as originally introduced in section 2.2.2.6.2.  Models that lack 

orientation are those that produce the same efficiency score whether inputs are 

minimized or outputs are maximized.  In contrast, the objective function for input-
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oriented models looks to minimize inputs while keeping outputs constant and 

output-oriented objective functions look to maximize outputs while keeping inputs 

constant. 

Whether or not the model is orientation-specific or not is dictated by the type 

of returns to scale specified in the model choice.  For instance, CRS models by 

definition lack orientation.   

The studies in Table 2.8 represent a mix of both oriented and non-oriented 

models: Half of the studies use an oriented model, 17% use models without 

orientation, and the remaining third of studies use a mix of both input and output-

oriented models.  For those studies that use oriented models, there is a roughly even 

mix of input and output-oriented model.  Several studies explain why input or 

output-oriented models were used, and a common motivation is to choosing the 

orientation depending on what is considered most controllable by airport 

management.  For example, minimizing inputs is considered within the control of 

management, and as a result the model chosen is input-oriented (Abbott & Wu 

2002, p. 252).  Meanwhile other studies consider output maximization more 

controllable by management since once the inputs are created, they cannot be 

changed, and as a result an output-oriented model is used; “once an airport has 
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invested in the building of new runways or new terminals, it is difficult for managers 

to disinvest to save costs” (Martín & Román 2001, pp. 152-153). 

A.2.4 Returns to Scale 

The returns to scale element of the taxonomy indicates the functioning of the 

underlying technology in growing output volumes as inputs increase.   

The CRS assumption reflects the reality that efficiency does not improve or 

worsen as the scale of operations increase but rather that the returns are 

proportional to any growth or shrinking in the inputs.  In contrast, VRS implies that 

increasing or decreasing returns to scale may exist. 

Non-Increasing Returns to Scale (NIRS) means that increasing the scale of 

operations yields at best constant returns, but may also yield decreasing returns to 

scale, and the Non-Decreasing Returns to Scale (NDRS) assumption implies that 

increasing the scale of operation results in constant or increasing returns.  These are 

both sub-sets of VRS. 

Lastly, the Individual-Bounded Returns to Scale (IBRS) assumption means 

that no standard rules can be described for scale returns, and that instead individual 

bounds for the production possibility set must be described.  This is the result of 



445 . 

 

only certain levels of activity being feasible in the area that is being modeled.  A 

literature search across all modeling domains reveals no cases of this assumption 

having been used in past models. 

A.2.5 Free Disposal Hull 

As discussed in section 2.2.2.6.5, Free Disposal Hull assumes that efficiency of 

airports can only be measured relative to observed sets of inputs and outputs rather 

than relative to linear combinations of points on the efficiency frontier, as assumed 

by many standard DEA models such as CCR and BCC.   

The motivation for FDH has been described by (Tulkens 1993): “…the 

identification of a set of dominating observations, by showing actually implemented 

production plans that are clearly more efficient, gives to the inefficiency scores a 

credibility that they usually lack when reference is only made to an abstract 

frontier.”  This motivation points not to any fundamental difference in the 

production technology as compared to other DEA methodologies, but rather to the 

advantage of achieving stronger acceptance of the benchmark results when 

comparisons are made by providing a comparison to only one peer DMU. 
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A.2.6 Integer Constraints 

The question of integer constraints on some inputs and/or outputs is 

embedded in the framework of Kleine but is not broken out as a separate parameter 

in the framework.  However, in (Zhu & Cook 2007, pp. 271-273) Lozano and Villa 

point out the importance of integer constraint considerations for some inputs 

and/or outputs for parameters of relatively small magnitudes where fractional 

values are infeasible (e.g. the number of workers, number of machines, etc.).  The 

authors conclude that in DEA analyses where all inputs and outputs have high 

magnitudes, integer constraints are not an important consideration even when 

those parameters are indivisible since rounding ex post introduces a very small 

error.  However, for airports inputs such as the number of runways meet the criteria 

of indivisibility and small magnitudes.  As a result, the presently proposed 

framework breaks out integrality as a separate consideration. 

In the work of Lozano and Villa (Zhu & Cook 2007, p. 272) which was 

published in 2007, the authors point out that in spite of the possibility of 

indivisibility of inputs and outputs may occur frequently, no other authors have 

addressed this issue. 
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A.2.7 Time Horizon 

In the event that the analysis contains repeated observations over time about 

the same set of DMUs, the analyst must determine how to treat these observations.  

As discussed in section 2.2.2.6.8, three modeling options exist: 

1. Combining all measures into a single analysis, allowing a DMU to be 

benchmarked against its own performance (as well as that of all other 

DMUs) at different time periods. 

2. Computing scores in separate analyses, comparing each DMU only against 

its other peers for the same time period. 

3. Computing a Malmquist index version of the DMU model being 

considered, accounting for any changes in the underlying production 

technology. 

 

A.2.8 Tie-Breaking 

In some modeling circumstances, there is a need for all DMUs to be fully 

ranked.  The general DEA models create an efficiency frontier which permits several 

DMUs to be present on the frontier at the same time and the models also make it 
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possible for several DMUs to take on the same efficiency score.  To break this tie, 

three different approaches have been proposed, as described below.  It should be 

noted that none of the approaches guarantee that all ties be broken; rather they 

strongly reduce the probability that ties exist. 

1. Super efficiency: The super efficiency approach, as described in 

section 2.2.2.6.6, has two different variations: 

a. Removing the DMU for which the efficiency score is being 

computed from the constraints section, making it possible for 

that DMU to achieve a score higher than 1.0 in the input 

oriented model and lower than 1.0 in the output oriented 

model. 

b. Creating an artificial DMU which takes on the highest recorded 

value for each output and the lowest recorded value for each 

input. 

2. Radius of Classification Preservation: The RCP approach is 

described in section 2.2.2.6.9 and is only applied to the DMUs that are 

on the efficiency frontier.  It tests the sensitivity of the DMUs’ 

classification as efficient by testing the degree to which the inputs and 
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outputs can be changed before the classification changes from 

efficient to inefficient. 

3. Inefficiency frontier: The inefficiency approach is described in 

section 2.2.2.6.10 and involves creating a frontier of the fully 

inefficient airports which are not “negatively dominated” by any other 

airport, and measuring the distance from this frontier for all other 

airports.  This distance from the inefficiency frontier is used as a tie 

breaking mechanism. 

A.3 Developing Heuristics for DEA Modeling of Airport 

Performance  

This section presents heuristics, or “decision rules”, for making selections in 

the DEA model framework from section A.2 when modeling airport performance.  

These heuristics were developed by analyzing existing research about the 

characteristics of airport performance as it pertains to the elements of the DEA 

framework with the objective of providing decision guidance for what the 

appropriate selections in the framework are, based on the aspect of airport 

performance being modeled. 
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Each of the following subsections addresses one aspect of the DEA 

framework, and follows the same order as the framework.  The last subsection 

provides a summary of the framework and mapping to DEA models. 

A.3.1 Aggregation 

Among the studies in Table 2.8, all but one apply models which use maximin 

or ε-maximin aggregation. The exception is the GTR model whose aggregation 

function is additive.  In the two models which make up the original DEA 

formulations, CCR and BCC, the aggregation function is maximin or ε-maximin, and 

it is conceivable that the reason for the prevalence of maximin or ε-maximin 

aggregation functions is due to some authors of studies in Table 2.8 choosing CCR 

and BCC by “default”. 

The selection of aggregation function in airport DEA models should be based 

on the underlying characteristics of the aspects of airport performance that are 

being studied. 

First, (R. G. Dyson et al. 2001, p. 253) advocate that all parameters should be 

included in the objective function calculation since there “has to be an agreement on 

which factors to include in the DEA assessment, and that agreement implies that the 

factors are important and should be taken account of”.  This reasoning results in 
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only ε-maximin or additive aggregation function being appropriate choices since the 

maximin function allows for some inputs and outputs to be fully ignored. 

When choosing between the ε-maximin and the additive function, three 

factors should be of concern: The first is: How should the results be expressed and 

interpreted?  The ε-maximin function is interpreted as the proportional increase in 

outputs (or decrease in inputs) in order to reach the efficient frontier, assuming no 

change in relative mix between outputs (or inputs).  The additive function lacks any 

interpretation along these lines, making the ε-maximin function the “default choice” 

for modeling as it maintains the underlying assumption that management at the 

DMU has made mix decisions that are optimal of the DMU’s particular context. 

The second question is: Is the ignorance of slack acceptable in the objective 

function?  If the answer is yes, then the ε-maximin function remains a viable choice; 

if not, then the choice should be the additive function.  If an additive function is to be 

used, the units-independent version implemented in the SBM/Russell Measure of 

efficiency should be used (as described in section 2.2.2.6.4). 

Finally, the third concern is: Does any parameter take on negative values.  If 

that is the case, then the only model that can be used is the additive function that is 
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implemented in the additive model adjusted for negative data (as described in 

section 2.2.2.6.11). 

A.3.2 Weights 

All of the studies of airport performance listed in Table 2.8 use specific 

weights for each parameter and each DMU.  This reflects the assumption that 

parameters must be scaled based on their relative magnitude, but also the fact that 

not all parameters carry the same proportional importance, and that those relative 

levels of importance may vary for each DMU. 

Simple weights are in most cases not an appropriate method to use in 

comparative airport studies since parameters generally do have differing levels of 

magnitude and may have different relative levels of importance.  Range-adjusted 

weights can be used but should only be applied in those cases where using the 

proportional weights that assign equal importance to each parameter can be 

motivated in the analysis; a reason must exist why all parameters are of equal 

importance. 

If parameters do have differing levels of magnitude and if no motivation can 

be provided as to why each parameter has proportionally the same level of 
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importance, then specific weights should be used in analyses of airport 

performance.   

A.3.3 Orientation 

The choice of returns to scale in the DEA model will determine whether the 

model is oriented or not.  If the returns to scale choice results in an oriented model, 

then the analyst has to select input or output orientation.  The analysis in section 

A.2.3 indicates that the analyst should determine whether inputs or outputs can be 

considered controllable by management, and based on that determination, the 

model orientation should be determined. 

A.3.4 Returns to Scale 

Half of the studies in Table 2.8 assume VRS, 17% assume CRS, and one third 

of the studies assume some combination of the two as a result of running multiple 

different models.  Few of the studies discuss why the VRS and/or CRS model was 

chosen.   

The issue of CRS and VRS is one of the most studied characteristics of 

production frontiers in economics (Rajiv D. Banker 1996, p. 148).  (Ray 2004, p. 46) 

point out that “…it is unlikely that CRS will hold globally in many realistic cases.  As a 
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result, the CCR-DEA model [which assumes CRS] should not be applied in a wide 

variety of situations”.  As a counterpoint, “…if the VRS model is used, where there 

are no inherent scale effects, small and large units will tend to be over-rated in the 

efficiency assessment” (R. G. Dyson et al. 2001, p. 248). 

One airport study points out that in selecting CRS or VRS “it is especially 

important to have some idea about the hypothetical returns to scale that exist in the 

industry” (Martín & Román 2001, p. 152).  These authors point to the importance of 

ensuring that the fundamental modeling assumptions reflect the reality that is being 

modeled.   

In selecting the types of returns to scale, the analyst must take care to reflect 

the real-world conditions that are being modeled, as suggested by (Martín & Román 

2001, p. 152).  This may mean gaining a qualitative understanding of the domain 

being modeled to determine what types of scale returns exist.  (R. G. Dyson et al. 

2001, p. 248) advocates testing the data for scale effects and using the VRS model 

only when scale effects can be demonstrated.  (Rajiv D. Banker 1996, pp. 148-151) 

proposes a general method for testing for the existence of VRS. 

In an extensive study of returns to scale across international airports (Martin 

& Voltes-Dorta 2008), significant evidence of increasing returns to scale was found.  
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The study considered labor costs, capital costs, and material costs as inputs; and air 

traffic movements, passengers, and cargo volumes (passengers and cargo were 

combined into the measure of Workload Units [WLUs], which are defined as either 

one passenger or 100 kg of cargo) as outputs.  The study included data from 41 

airports across Europe, North America, Asia, and Australia, and studied 

performance from 1991 to 2005.  The study authors performed comprehensive data 

preprocessing to account for differences in operating models and data reporting 

methods.  An analogous study cited in (Morrison 2009) of 36 airports across 

different geographies from 1993-2000 using similar inputs and outputs also 

confirmed the findings of increasing returns to scale. 

These results indicate that in studies that involve resource inputs like labor 

and capital resources and outputs like ATMs and WLUs, the choice of returns of 

scale should be VRS or NDRS. 

A.3.5 Free Disposal Hull 

Among the airport studies in Table 2.8, none have applied an FDH model.  

The decision about whether or not to use of FDH in airport benchmarking should be 

based on how the benchmark results are expected to be used.  As suggested by 

(Tulkens 1993), in cases where acceptance of the benchmark results will be 
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strengthened by showing comparisons to only one other airport, the analyst should 

consider using the FDH methodology. 

A.3.6 Integer Constraints 

In spite of the frequent use of inputs such as the number of runways, no 

studies in Table 2.8 take into account these integer constraints.   

The analyst of airport performance should consider which inputs and 

outputs are indivisible and are low in magnitude, and should apply integer 

constraints to those parameters.  No guidance exists in the literature for 

determining what is to be considered “low magnitude”; however, if in doubt, the 

analyst should err on the side of caution and apply integer constraints.  Examples 

from past airport studies where integer constraints should be considered include: 

• Runways 

• Gates 

• Baggage conveyor belts 

A.3.7 Time Horizons 

Eight of the 12 airport studies in Table 2.8 that are DEA-based use 

observations from multiple time periods, and among those studies, only one applies 
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a Malmquist index.  Among the remaining seven studies, six conduct separate 

analyses for each year and one pools all observations into a single analysis. 

Determining whether to compute a Malmquist index depends on whether or 

not any changes in the underlying technology can be expected over time.  For 

instance, in the case of an airport benchmark that considers the runway to be a 

resource input and the number of aircraft movements to be an output, the analyst 

must consider the question whether the introduction of new equipment or 

procedures during the time period being analyzed would alter the feasible 

processing rate.  If such changes are expected, then a Malmquist index should be 

computed.  In contrast, if the analyst determines that no relevant changes occurred 

during the analysis time period, then either the first or the second option described 

in the previous section would be the most appropriate. 

Evidence of the existence of technological change in airport operations over 

time were found in the same study that also identified the existence of variable 

returns to scale (Martin & Voltes-Dorta 2008).  The study reviewed data from 1991 

to 2005 and used labor costs, capital costs, and material costs as inputs; and ATMs 

and WLUs as outputs.  The existence of technology changes over time indicates that 

studies which use these types of inputs and outputs across multiple time periods 

should compute a Malmquist index. 
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A practical drawback of computing separate analyses for each year (whether 

using a Malmquist index or not) rather than a single, combined analysis is that the 

number of observations in each model run is lower by a factor of t when a separate 

analysis is done for each year, where t is the number of time periods being analyzed.  

In cases where the ratio of the number of observations to the number of parameters 

being considered is low, this can be a limitation to the usefulness of the results. 

A.3.8 Tie-Breaking 

The tie-breaking function serves to ensure that the results are as fully ranked 

as possible.  Approaches to fully ranking airports were used in (Bazargan & Vasigh 

2003) and in (Adler & Berechman 2001). 

Each of the approaches to tie-breaking described in section 2.2.2.6 are more 

complex formulations of the general DEA models, suggesting that their use is moves 

the model further away from the original interpretation of DEA as formulating a 

frontier of efficient DMUs and measuring the distance to that frontier.  Accordingly, 

tie-breaking approaches should not be used in airport DEA modeling unless a 

reason that all airports must be fully ranked exists. 

If such a reason exists, the modeler should select the tie-breaking method 

which has a clear intuitive interpretation; as with the approach to FDH discussed in 
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section A.3.5, this provides results that are more likely to be accepted by the 

benchmark audience.  No general guidance can be provided as to which of the 

approaches to tie-breaking provides the best intuitive interpretation. 

A.3.9 Summary of Airport DEA Model Selection Heuristics 

A summary of the heuristics is included in Table A.3, and the heuristics are 

translated into specific modeling choices in Table A.4. 

  

Table A.3 - Airport DEA Framework and Heuristics  

Scalarizing function 

Aggregation 

Use either ε-maximin or additive.  If the ignorance of slacks in the 

efficiency score is acceptable, then ε -maximin is the choice that reflects 

management’s choices about the mix of inputs and/or outputs.  Otherwise, 

use the additive function.  In addition, if any parameters take on negative 

values then the additive function implemented in the additive model 

adjusted for negative data must be used. 

Weights 
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Use specific weights unless evidence exists that range-adjusted 

weights are more appropriate. 

Orientation 

If the model requires orientation, then choose orientation to reflect 

which parameters are controllable by management. 

Technology 

Returns to scale 

If modeling some version of labor and capital resources as inputs and 

passengers and aircraft movements as outputs, then use VRS.  Otherwise, 

study the parameters to determine if VRS or CRS exist. 

Free Disposal Hull 

Unless compelling evidence that study results will be better accepted 

if only observed values are used for peer comparisons, do not use FDH. 

Integer constraints 

Use integer constraints for inputs and outputs with low magnitudes, 

such as runways. 

Timespan 
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If modeling some version of labor and capital resources as inputs and 

passengers and aircraft movements as outputs over multiple time periods, 

then use a Malmquist index.  For other domains, review if technology 

changes over time have occurred. 

Tie breaking 

If the study requires that all airports be fully ranked, use the tie-

breaking function that provides the best intuitive interpretation; otherwise 

do not use a tie-breaking function. 
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Table A.4 - Translation of heuristics to specific model choices 

Element Choice Translation in modeling 

Aggregation 

ε-maximin 

Use CCR or BCC with minimum bounds on 

weights, as described in sections 2.2.2.6.1 and 

2.2.2.6.2. 

Additive 

Use SBM/Russell measure, since these provide 

units invariant modeling options, as described in 

section 2.2.2.6.4. 

Additive 

with 

tolerance for 

negative 

data 

Use the adaptation of the SBM/Russell measure 

model with tolerance for negative data, as 

described in section 2.2.2.6.11. 

Weights 
Specific 

weights 
Use original model as specified. 

Orientation Input/output 

If using an oriented model such as BCC, choose 

the input or output oriented version as 

appropriate. 
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Element Choice Translation in modeling 

Technology 

CRS 

If the aggregation function is ε -maximin, then 

choose CCR, as described in section 2.2.2.6.1.  If 

using some other model, ensure that no 

convexity constraint such as eλ=1 is present in 

the model. 

VRS 

If the aggregation function is ε -maximin, then 

choose BCC, as described in section 2.2.2.6.2.  If 

using some other model, ensure that a convexity 

constraint such as eλ=1 is present in the model. 

Free 

Disposal 

Hull 

Use FDH 
Use the FDH implementation as described in 

section 2.2.2.6.5. 

No use of 

FDH 
Use original model as specified. 

Integer 

constraints 

Some/all 

variables 

integer 

constraints 

Use the implementation as described in section 

2.2.2.6.12. 
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Element Choice Translation in modeling 

No integer 

constraints 
Use original model as specified. 

Timespan 

Use 

Malmquist 

index 

Use Malmquist index implementation as 

described in section 2.2.2.6.8. 

No 

Malmquist 

index 

Use original model as specified. 

Tie-

breaking 

Use tie-

breaking 

Use one of the implementations as described in 

sections 2.2.2.6.6, 2.2.2.6.9, or 2.2.2.6.10. 

No tie-

breaking 
Use original model as specified. 
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Appendix B: Matlab DEA Code 

B.1 Code for Single DEA Run 

function DEA(dataFile, numInputs, numOutputs, integerParams, DEAmodel, orientation, 

weightlbs, varargin) 

% Inputs:  

%    - An .xls data file with the inputs listed first in columns and then then the 

outputs.  The first row is the header with column names.  The DMU names are in 

column A 

%    - The number of inputs 

%    - The number of outputs 

%    - An integer matrix (numInputs+numOutputs,1) with 1s marking those 

inputs/outputs that are integer, and 0s otherwise. 

%    Integer parameters are currently only supported for CCR and BCC 

%    - The DEA model.  Current choices are (case sensitive): CCR, BCC, SBM, ADDNEG 

(Additive model adjusted for negative data) 

%    - The orientation of the DEA model ('input' or 'output') 

%    - The lower bounds on the variable weights (usually set to 0 or epsilon) 

%    - printMode (optional): 1 (def) - detailed; 2 - simple with headers; 3 - simple 

without headers 

%    - outfile (optional): defauls to the input file.txt instead of .xls.  Note that 

this should be the actual file "stream", not the file name 

% Outputs: The DEA scores and other parameters 

% DEA definitions: 

% X: The inputs matrix 

% Y: The outputs matrix 
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addpath cplexincludes; 

  

%start off with dealing with optional arguments 

%print mode 

if size(varargin,2) > 0 

    printMode = varargin{1}; 

else 

    printMode = 1; 

end 

% Set output file: 

if size(varargin,2) > 1 

    outfile = varargin{2}; 

else 

    outfile = fopen(strrep(dataFile,'.xls','.txt'),'w'); 

end 

 %Read in the .xls data file, which has this format: 

% DMUs, 'input1title', 'input2title', 'output1title', 'output2title', 

% DEA1Name,input1,input2,output1,output2,... 

% DEA2Name,input1,input2,output1,output2, ... 

% ... 

benchmarkData = csv2struct(dataFile); 

fns = fieldnames(benchmarkData); 

numDMUs = length(benchmarkData.(fns{1})); 

  

X = zeros(numDMUs, numInputs); 

for i=2:numInputs + 1 

    X(:,i-1) = benchmarkData.(fns{i}); 

end; 

  

Y = zeros(numDMUs, numOutputs); 

for i=numInputs+2:numInputs+1+numOutputs 



467 . 

 

    Y(:,i-1-numInputs) = benchmarkData.(fns{i}); 

end; 

  

% Determine model parameters: 

% Test for convexity  

if strcmp(DEAmodel,'BCC') || strcmp(DEAmodel,'ADDNEG') 

    convexity = true; 

else 

    convexity = false; 

end; 

% Structure the LP.  The main constraints section is standard.  What varies by model 

are the objective function and a few other factors.  We'll construct the dual 

problem. 

% Size of A: - One row for each input and one for each output.   

%            - One extra row for each integer constraint 

%            - One row to leave room if convexity constraints apply   

%            - One row for the value of theta (or t) in phase 2 

%            - One column for the theta (or t) 

%            - One column for each DMU  

%            - One column for the slack var for each input and output  

%            - One column for each integer constraint 

% Although the below could be written more concisely, it is spelled 

% out here to more clearly match the listings above 

A = zeros(numInputs + numOutputs + numInputs + numOutputs + 1 + 1, 1 + numDMUs + 

numInputs + numOutputs + numInputs + numOutputs); 

B = zeros(numInputs + numOutputs + numInputs + numOutputs + 1 + 1, 1); 

 % The A and F matrices are indexed by integer values.  To be able 

% to use proper variable names and indices, we create these arrays 

% to keep track of the variable to matrix index mapping: 

variables = struct('theta',{},'lambda',{},'xSlack',{},'ySlack',                    

{},'xInteger',{},'yInteger',{}); 

varCounter = 1; 

variables(1).theta = varCounter; 
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varCounter = 2; 

variables.lambda = (varCounter:varCounter + numDMUs - 1); 

varCounter = varCounter + numDMUs; 

variables.xSlack = (varCounter:varCounter + numInputs - 1); 

varCounter = varCounter + numInputs; 

variables.ySlack = (varCounter:varCounter + numOutputs - 1); 

varCounter = varCounter + numOutputs; 

if sum(integerParams(:)) > 0 

    % although we technically only need these variables for the 

    % integer variables, it's easier to make them for all variables 

    % if at least one integer variable is present. 

    variables.xInteger = (varCounter:varCounter + numInputs - 1); 

    varCounter = varCounter + numInputs; 

    variables.yInteger = (varCounter:varCounter + numOutputs - 1); 

    varCounter = varCounter + numOutputs; 

end; 

numVars = size(A,2); 

% Create the standard A matrix 

A = createBasicA(A, X, Y, numInputs, numOutputs, numDMUs, orientation, DEAmodel, 

variables, integerParams); 

% This adds the convexity constraint if necessary; e.g. for BCC 

if convexity 

    A(end-1,variables.lambda(1):variables.lambda(end)) = 1; 

    B(end-1,1) = 1; 

end; 

%Write the cplex problem 

%Determine if this is a min or max problem 

if strcmp(DEAmodel, 'SBM')  

    %min 

    sense=1; 

elseif strcmp(DEAmodel, 'ADDNEG') 

    %max 
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    sense=-1; 

elseif (strcmp(DEAmodel, 'BCC') || strcmp(DEAmodel, 'CCR')) && 

strcmp(orientation,'input') 

    %min 

    sense=1; 

else 

    %max 

    sense=-1; 

end; 

  

%Set constraint types (all ours are equality) 

ctype = blanks(size(B,1))'; 

ctype(1:end) = 'E'; 

%Set variable bounds  

lb = zeros(numVars,1); 

ub = inf(numVars,1); 

if strcmp(DEAmodel, 'SBM') 

    % in the SBM model, t must be positive 

    lb(variables.theta) = 0.0000001; 

end; 

vartype = blanks(numVars)'; 

vartype(1:end) = 'C'; 

%Set integrality constraints 

if sum(integerParams(:)) > 0 

    indexArray = (1:length(integerParams)); 

    for i=indexArray(ismember(integerParams,1)) 

        if i <= numInputs 

            vartype(variables.xInteger(i)) = 'I'; 

        else 

            vartype(variables.yInteger(i-numInputs)) = 'I';     

        end; 

        % set constraints that aren't equality 
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        if convexity 

            if strcmp(orientation,'input') 

                ctype(i) = 'G'; 

            else 

                ctype(i) = 'L'; 

            end; 

        end; 

    end; 

end; 

  

%suppress the full CPLEX output 

params.msglev=0; 

params.errmsg=0; 

%struct for storing results 

results = struct('DMUname',{},'efficiency',[],'vars',[],'lambda',[]); 

results(numDMUs).vars = []; 

%Loop through each DMU and compute its efficiency data  

for DMU=1:numDMUs 

    [A B] = createDMUSpecificAB(A, B, X, Y, numInputs, numOutputs, numDMUs, 

orientation, DMU, DEAmodel,                                 variables, 

integerParams); 

    F = setF(numDMUs, numInputs, numOutputs, DEAmodel, orientation, weightlbs, DMU, 

X, Y, variables, numVars); 

    %Run CPLEX    [xopt,opt,status,extra]=cplexmex(sense,[],F,A,B,ctype,lb, ub, 

vartype,[],params,0); 

    %Store results 

    results(DMU).DMUname = benchmarkData.(fns{1})(DMU); 

    results(DMU).efficiency = opt; 

    results(DMU).vars = xopt; 

    results(DMU).lambda = extra.lambda; 

    %Run phase 2, maximizing the slacks 

    if (strcmp(DEAmodel,'BCC') || strcmp(DEAmodel,'CCR')) &&             

sum(weightlbs) == 0 && sum(integerParams(:) == 0) 
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        Fphase2 = setFphase2(numDMUs, numInputs, numOutputs,                                      

orientation, variables, numVars); 

        A(end,variables.theta) = 1; 

        B(end,1) = opt; 

        [xopt,opt,status,extra]=cplexmex(sense,[],Fphase2,A,B, ctype, 

lb,ub,vartype,[],params,0); 

        %Store phase 2 updated values 

        results(DMU).vars = xopt;    

        %Clean up phase 2 

        A(end,variables.theta) = 0; 

        B(end,1) = 0; 

    end; 

    %re-convert variables for SBM 

    if strcmp(DEAmodel,'SBM') 

        %divide by t (we are using theta as t) 

        results(DMU).vars = results(DMU).vars / results(DMU).vars(variables.theta); 

    end; 

end; 

%DISPLAY THE DATA 

%To start, a summary to screen: 

fprintf('\nDMU\t\t  Score\n'); 

fprintf('----------------------------\n'); 

for DMU=1:numDMUs    

fprintf('%s\t\t%8.4f\n',char(results(DMU).DMUname),results(DMU).efficiency); 

end;   

fprintf('\n');  

if printMode == 1 

    %The same summary to file: 

    fprintf(outfile, '\nDMU\t\t  Score\n'); 

    fprintf(outfile, '----------------------------\n'); 

    for DMU=1:numDMUs 

        fprintf(outfile, '%s\t\t%8.4f\n', 

char(results(DMU).DMUname),results(DMU).efficiency); 
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    end;   

    fprintf(outfile, '\n'); 

    %Next, a detailed report for each DMU 

    fprintf(outfile, '\nDetailed results\n\n'); 

    for DMU=1:numDMUs 

        fprintf(outfile, '-----------------\nDMU: %s\n', char(results(DMU).DMUname)); 

        fprintf(outfile, 'Efficiency: %8.4f\n', results(DMU).efficiency); 

        fprintf(outfile, 'Peers:\n'); 

        for peer=1:numDMUs 

            fprintf(outfile, '  %s: %8.4f\n', char(benchmarkData.(fns{1})(peer)), 

results(DMU).vars(variables.lambda(peer))); 

        end; 

        fprintf(outfile, 'Slacks:\n'); 

        for var=1:numInputs 

            fprintf(outfile, '  s%d-: %18.10f\n', var, 

results(DMU).vars(variables.xSlack(var))); 

        end; 

        for var=1:numOutputs 

            fprintf(outfile, '  s%d+: %18.10f\n', var, 

results(DMU).vars(variables.ySlack(var))); 

        end; 

        fprintf(outfile, 'Weights:\n'); 

        for weight=1:numInputs 

            fprintf(outfile, '  v%d: %18.10f\n', weight, 

results(DMU).lambda(weight)); 

        end; 

        for weight=1:numOutputs 

            fprintf(outfile, '  u%d: %18.10f\n', weight, 

results(DMU).lambda(numInputs + weight)); 

        end; 

    end; 

else 

    if printMode == 2 

        % print row headers for efficiency 
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        for DMU=1:numDMUs 

            fprintf(outfile, '%s,',char(results(DMU).DMUname)); 

        end; 

        % print row headers for slacks and weights 

        for DMU=1:numDMUs 

            for var=1:numInputs 

                fprintf(outfile, '%s-s%d-,', char(results(DMU).DMUname), var); 

            end; 

            for var=1:numOutputs 

                fprintf(outfile, '%s-s%d+,', char(results(DMU).DMUname), var); 

            end; 

        end; 

        for DMU=1:numDMUs 

            for weight=1:numInputs 

                fprintf(outfile, '%s-v%d,', char(results(DMU).DMUname), weight); 

            end; 

            for weight=1:numOutputs 

                fprintf(outfile, '%s-u%d,', char(results(DMU).DMUname),weight); 

            end; 

        end; 

        fprintf(outfile, '\n'); 

    end; 

    %print the data 

    % print efficiency 

    for DMU=1:numDMUs 

        fprintf(outfile, '%8.4f,', results(DMU).efficiency); 

    end; 

    % print slacks 

    for DMU=1:numDMUs 

        for var=1:numInputs 

            fprintf(outfile, '%18.10f,', results(DMU).vars(variables.xSlacks(var))); 

        end; 
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        for var=1:numOutputs 

            fprintf(outfile, '%18.10f,', results(DMU).vars(variables.ySlacks(var))); 

        end; 

    end; 

    % print weights 

    for DMU=1:numDMUs 

        for weight=1:numInputs 

            fprintf(outfile, '%18.10f,', results(DMU).lambda(weight)); 

        end; 

        for weight=1:numOutputs 

            fprintf(outfile, '%18.10f,', results(DMU).lambda(numInputs + weight)); 

        end; 

    end; 

    fprintf(outfile, '\n'); 

end; 

end 

  

function [A B] = createDMUSpecificAB(A, B, X, Y, numInputs, numOutputs, numDMUs, 

orientation, targetDMU,  

DEAmodel, variables, integerParams) 

    if strcmp(DEAmodel, 'SBM') 

        %assign the t constraint for Y 

        A(end,variables.theta) = 1; 

        for i=1:numOutputs 

            A(end,variables.ySlack(i)) = 1/(numOutputs * Y(targetDMU,i)); 

        end; 

        B(end,1) = 1; 

        A(1:numInputs,variables.theta) = X(targetDMU,:); 

        A(numInputs+1:numInputs+numOutputs,variables.theta) = -Y(targetDMU,:); 

    elseif strcmp(DEAmodel, 'ADDNEG') 

            % Assign ya: 

            B(numInputs + 1:numInputs + numOutputs,1) = ... 
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                Y(targetDMU,:); 

            % Assign xa: 

            B(1:numInputs,1) = -X(targetDMU,:); 

    else 

        if strcmp(orientation,'input') 

            if sum(integerParams(:)) == 0 

                % Assign theta: 

                A(1:numInputs,variables.theta) = X(targetDMU,:);   

                % Assign ya: 

                B(numInputs + 1:numInputs + numOutputs,1) = Y(targetDMU,:); 

            else 

                % We have integer constrained variables 

                % Assign theta:  

   A(numInputs+numOutputs+1:numInputs+ numOutputs+ numInputs, 

variables.theta) = X(targetDMU,:);   

                % Assign ya: 

                B(numInputs + numOutputs + numInputs + 1:numInputs + numOutputs + 

numInputs + numOutputs,1) = Y(targetDMU,:); 

            end; 

        else 

            if sum(integerParams(:)) == 0 

                % Assign theta:  

   A(numInputs + 1:numInputs + numOutputs, variables.theta) = 

Y(targetDMU,:);   

                % Assign xa: 

                B(1:numInputs,1) = X(targetDMU,:); 

            else 

                % We have integer constrained variables 

                % Assign theta:  

                A(numInputs + numOutputs + numInputs + 1:numInputs + numOutputs + 

numInputs + numOutputs,variables.theta) = Y(targetDMU,:);   

                % Assign xa: 

                B(numInputs + numOutputs + 1:numInputs + numOutputs + numInputs,1) = 

X(targetDMU,:); 
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            end; 

        end; 

    end; 

end 

  

% This function creates the standard constraints and rhs matrices 

function A = createBasicA(A, X, Y, numInputs, numOutputs, numDMUs, orientation, 

DEAmodel,variables, integerParams) 

    if strcmp(DEAmodel,'SBM') || strcmp(DEAmodel,'ADDNEG') 

        % Assign X: 

       A(1:numInputs,variables.lambda(1):variables.lambda(end)) = -X'; 

        % Assign input slacks 

        for i=1:numInputs 

            A(i,variables.xSlack(i)) = -1; 

        end; 

        % Assign Y: 

        A(numInputs + 1:numInputs + numOutputs, 

variables.lambda(1):variables.lambda(end)) = Y'; 

        % Assign output slacks 

        for i=1:numOutputs 

            A(numInputs + i,variables.ySlack(i)) = -1; 

        end; 

    else  

        % This is CCR or BCC 

        if strcmp(orientation, 'input') 

            if sum(integerParams(:)) == 0 

                % Assign X: 

  A(1:numInputs, variables.lambda(1):variables.lambda(end)) = -X'; 

                % Assign input slacks 

                for i=1:numInputs 

                    A(i,variables.xSlack(i)) = -1; 

                end; 
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                % Assign Y: 

                A(numInputs + 1:numInputs + numOutputs, 

variables.lambda(1):variables.lambda(end)) = Y'; 

                % Assign output slacks 

                for i=1:numOutputs 

                    A(numInputs + i,variables.ySlack(i)) = -1; 

                end; 

            else 

                % We have integer constraints 

                % Assign X: 

   A(1:numInputs,variables.lambda(1) : variables.lambda(end)) = -

X'; 

                % Assign the intermediate integer variables 

                for i=1:numInputs 

                    A(i,variables.xInteger(i)) = 1; 

                end; 

                % Assign input slacks (these are separate 

                % constraints from the ones above) 

                for i=1:numInputs 

                    A(numInputs + numOutputs + i, variables.xSlack(i)) = -1; 

                    % Also assign the intermediate integer 

                    % variables 

                    A(numInputs+numOutputs+i, variables.xInteger(i)) = -1; 

                end; 

                % Assign Y: 

                A(numInputs + 1:numInputs + numOutputs, 

variables.lambda(1):variables.lambda(end)) = Y'; 

                % Assign the intermediate integer variables 

                for i=1:numOutputs 

                    A(numInputs+i, variables.yInteger(i)) = -1; 

                end; 

                % Assign output slacks (these are separate 

                % constraints from the ones above) 
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                for i=1:numOutputs 

                    A(numInputs+numOutputs+numInputs + i, variables.ySlack(i)) = -1; 

                    % Also assign the intermediate integer 

                    % variables 

                    A(numInputs + numOutputs + numInputs + i,                       

variables.yInteger(i)) = 1; 

                end; 

            end;             

        else 

            if sum(integerParams(:)) == 0 

                % Output oriented model 

                % Assign X:  

  A(1:numInputs, variables.lambda(1) : variables.lambda(end)) = 

X'; 

                % Assign input slacks 

                for i=1:numInputs 

                    A(i,variables.xSlack(i)) = 1; 

                end; 

                % Assign Y: 

                A(numInputs + 1:numInputs + numOutputs, variables.lambda(1) : 

variables.lambda(end)) = -Y';    

                % Assign output slacks   

                for i=1:numOutputs 

                    A(numInputs+ i, variables.ySlack(i)) = 1;   

                end;    

            else 

                % We have integer variables 

                % Output oriented model 

                % Assign X:  

  A(1:numInputs, variables.lambda(1) : 

variables.lambda(end)) = X'; 

                % Assign the intermediate integer variables 

                for i=1:numInputs 
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                    A(i,variables.xInteger(i)) = -1; 

                end; 

                % Assign input slacks (these are separate 

                % constraints from the ones above) 

                for i=1:numInputs 

A(numInputs + numOutputs + i, variables.xSlack(i)) = 1; 

A(numInputs + numOutputs + i, variables.xInteger(i)) = 1; 

                end; 

                % Assign Y: 

   A(numInputs + 1:numInputs + numOutputs, variables.lambda(1) : 

variables.lambda(end)) = -Y';    

                % Assign the intermediate integer variables 

                for i=1:numOutputs 

                    A(numInputs +i, variables.yInteger(i)) = 1; 

                end; 

                % Assign output slacks (these are separate 

                % constraints from the ones above) 

                for i=1:numOutputs 

                    A(numInputs+numOutputs + numInputs + i,variables.ySlack(i)) = 1; 

                    % Also assign the intermediate integer 

                    % variables 

                    A(numInputs+numOutputs+numInputs+i,  

                      variables.yInteger(i)) = -1; 

                end;    

            end; 

        end; 

    end; 

end 

  

function F = setF(numDMUs, numInputs, numOutputs, DEAmodel, orientation, weightlbs, 

DMU, X, Y, variables, numVars) 

    % Set the objective function: 
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    F = zeros(numVars,1)'; 

    if strcmp(DEAmodel,'BCC') || strcmp(DEAmodel,'CCR') 

        %this is theta 

        F(1,1) = variables.theta; 

        if strcmp(orientation, 'input') 

            F(variables.xSlack(1):variables.ySlack(end)) = -weightlbs; 

        else 

            F(variables.xSlack(1):variables.ySlack(end)) = weightlbs; 

        end; 

    elseif strcmp(DEAmodel,'SBM') 

        %this is t 

        F(1) = variables.theta; 

        for i=1:numInputs 

            F(variables.xSlack(i)) = -1/(numInputs * X(DMU,i)); 

        end; 

    elseif strcmp(DEAmodel,'ADDNEG') 

        for i = 1 :  numInputs 

            coeff = (numInputs+numOutputs)*(X(DMU,i) -  

min(X(:,i))); 

            if coeff ~= 0 

                F(variables.xSlack(i)) = 1/coeff; 

            else 

                F(variables.xSlack(i)) = 0; 

            end;                                    

        end; 

        for i = 1 : numOutputs 

            coeff = (numInputs+numOutputs)*(max(Y(:,i)) - Y(DMU,i)); 

            if coeff ~= 0 

                F(variables.ySlack(i)) = 1/coeff; 

            else 

                F(variables.ySlack(i)) = 0; 

            end; 
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        end; 

    end; 

end 

  

function Fphase2 = setFphase2(numDMUs, numInputs, numOutputs,  

orientation, variables, numVars) 

    % Set the phase2 objective function 

    Fphase2 = zeros(numVars,1)'; 

    if strcmp(orientation,'input') 

        Fphase2(variables.xSlack(1):variables.xSlack(end)) =-1; 

        Fphase2(variables.ySlack(1):variables.ySlack(end)) =-1; 

    else 

        Fphase2(variables.xSlack(1):variables.xSlack(end)) = 1; 

        Fphase2(variables.ySlack(1):variables.ySlack(end)) = 1; 

    end; 

end 
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B.2 Code for Batch Execution of DEA Run 

function batchDEA(outfileName, dataFiles, weightsLbs, numInputs, numOutputs, 

integerParams, DEAmodel, orientation) 

%This function calls DEA repeatedly for a large set of files. 

% Inputs:  

%    - outfileName: The file to which results should be printed 

%    - weightsLbs: The lower bound on weights for each run, indexed by i (run) and j 

(variable) 

%    - dataFiles: The list of datafiles to be used, indexed by i (run) 

%    - The number of inputs 

%    - The number of outputs 

%    - An integer matrix (numInputs+numOutputs,1) with 1s marking those 

inputs/outputs that are integer, and 0s otherwise. 

%    - The DEA model.  Current choices are (case sensitive): CCR, BCC, SBM, ADDNEG 

%    - The orientation of the DEA model ('input' or 'output') 

%    - The lower bounds on the variable weights (usually set to 0 or epsilon) 

    %set up outfile 

    outfile = fopen(outfileName,'w'); 

    for run=1:length(dataFiles) 

            % set print mode to 2 in the first loop and then 3 subsequently 

            DEA(dataFiles(i), outfile, DEAmodel, orientation, weightLbs(i,:), 

min(i+1,3), outfile); 

        end 

    end 

    fclose(outfile); 

end 
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Appendix C: C++ DEA Code 

  #include <ilcplex/ilocplex.h> 

  #include <iostream> 

  #include <string> 

  #include <fstream> 

  #include <sstream> 

  #include <vector> 

  #include <math.h> 

  #include <float.h> 

  using namespace std; 

 

  #ifndef EPSILON 

  #define EPSILON 0.000001 

  #endif 

 

  ILOSTLBEGIN 

   

  void readCSV(istream &input, vector< vector< double> > &output, vector< 

string> &DMUnames, vector< string> &varNames, vector< int> &inputVars, vector< 

int> &outputVars); 

 

  void printData(vector< vector< double> > &output, vector< string> &DMUnames, 

vector< string> &varNames, vector< int> &inputVars, vector< int> &outputVars); 

 

  int populateCCRProblem(vector< vector< double> > &output, vector< int> 

&inputVars, vector< int> &outputVars, int goalDMU, IloModel model, 

IloNumVarArray x, IloRangeArray c); 
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  int populateBCCProblem(vector< vector< double> > &output, vector< int> 

&inputVars, vector< int> &outputVars, int goalDMU, IloModel model, 

IloNumVarArray x, IloRangeArray c); 

 

  int populateSBMProblem(vector< vector< double> > &output, vector< int> 

&inputVars, vector< int> &outputVars, int goalDMU, IloModel model, 

IloNumVarArray x, IloRangeArray c); 

 

  void resultsPrinter(vector< double> &effScores, vector< string> 

&DMUnameListForResults, vector< vector< double> > &paramVals, int numParams, 

int numInputs, vector< string> &DMUnames); 

 

  void resultsPrinterSBM(vector< double> &effScores, vector< string> 

&DMUnameListForResults, vector< vector< double> > &paramVals, int numParams, 

int numInputs, vector< string> &DMUnames); 

 

  int main (int argc, char* argv[]) { 

    if (argc != 4 ) { 

      cout << "Incorrect usage.  Please type ./DEA <input filename> <target 

DMU> <DEA model>\n\n<target DMU> can be a numeric value or 'all' in order to 

calculate efficiencies for all DMUs.\n<DEA model can be: 'CCR','BCC', or 

'SBM'.\n  Only input-oriented models implemented."; 

      return 0; 

    } 

    else { 

      fstream file(argv[1], ios::in); 

      if(!file.is_open()) 

 { 

   cout << "File not found!\n"; 

   return 0; 

 } 

      // typedef to save typing for the following object                   

      typedef vector< vector< double> > csvVector; 

      csvVector csvData; 

       

      //list of DMU names                                                 

      vector< string> DMUnames; 

       

      //list of input and output variable names                                      

      vector< string> varNames; 
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      //list of input variable locations                                                

      vector< int> inputVars; 

       

      //list of output variable locations                            

      vector< int> outputVars; 

 

      //total number of variables in problem 

      int totalNumVars; 

 

      //list of results 

      vector< double> effScores; 

      vector< string> DMUnameListForResults; 

      vector< vector< double> > paramVals; 

      //can add more here as necessary 

       

      readCSV(file, csvData, DMUnames, varNames, inputVars, outputVars); 

       

      // this line can be deleted but should be moved to error message for when 

the read-in doesn't work  

      // printData(csvData, DMUnames, varNames, inputVars, outputVars); 

       

      IloEnv env; 

 

      int startingDMU, endingDMU; 

      if (strcmp(argv[2], "all") == 0) { 

 startingDMU = 0; 

 endingDMU = DMUnames.size() - 1; 

      } 

      else { 

 startingDMU = atoi(argv[2]); 

 endingDMU = startingDMU; 

      } 

      for(int i=startingDMU; i <= endingDMU; i++) { 

 try { 

   IloModel model(env); 

   IloNumVarArray var(env); 
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   IloRangeArray con(env); 

 

   // populate problem  

   if (strcmp(argv[3], "CCR") == 0) { 

     totalNumVars = populateCCRProblem(csvData, inputVars, outputVars, i, 

model, var, con); 

   } 

   else if (strcmp(argv[3], "BCC") == 0) { 

     totalNumVars = populateBCCProblem(csvData, inputVars, outputVars, i, 

model, var, con); 

   } 

   else if (strcmp(argv[3], "SBM") == 0) { 

     totalNumVars = populateSBMProblem(csvData, inputVars, outputVars, i, 

model, var, con); 

   } 

   else { 

     cout << "Incorrect DEA model specified.  Options are: CCR, BCC, or 

SBM\n"; 

     return 0; 

   } 

 

   IloCplex cplex(model); 

 

   // turn off cplex output to screen 

   cplex.setOut(env.getNullStream()); 

  

   // Optimize the problem and obtain solution.        

   if ( !cplex.solve() ) { 

     env.error() << "Failed to optimize LP" << endl; 

     throw(-1); 

   } 

  

   // writing results  

   IloNumArray vals(env); 

   effScores.push_back(cplex.getObjValue()); 

   DMUnameListForResults.push_back(DMUnames[i]); 

   cplex.getValues(vals, var); 

   vector< double> tempVals; 
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   for (int j = 0; j < totalNumVars; j++) { 

     tempVals.push_back(vals[j]); 

   } 

   paramVals.push_back(tempVals); 

 

   cplex.exportModel("lpex1.lp"); 

 } 

 catch (IloException& e) { 

   cerr << "Concert exception caught: " << e << endl; 

 } 

 catch (...) { 

   cerr << "Unknown exception caught" << endl; 

 } 

      } 

      // print results 

      if (strcmp(argv[3], "SBM") == 0) { 

 resultsPrinterSBM(effScores, DMUnameListForResults, paramVals, 

totalNumVars, inputVars.size(), DMUnames); 

      } 

      else { 

 resultsPrinter(effScores, DMUnameListForResults, paramVals, totalNumVars, 

inputVars.size(), DMUnames); 

      } 

      env.end(); 

       

    } 

    return 0; 

  } 

 

  void resultsPrinter(vector< double> &effScores, vector< string> 

&DMUnameListForResults, vector< vector< double> > &paramVals, int numParams, 

int numInputs, vector< string> &DMUnames) { 

 

    cout << "\n-------------\n-- Results --\n-------------\n\n"; 

    cout << "DMU name\tScore\t"; 

    // print header for lambdas 

    for (int i = 0; i < DMUnames.size(); i++) { 

      cout << "La" << DMUnames[i].substr(0,4) << "\t"; 
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    } 

    for (int i = 0; i < numInputs; i++) { 

      cout << "s" << i+1 << "-\t"; 

    } 

    for (int i = 0; i < numParams - numInputs - DMUnames.size() - 1; i++) { 

      cout << "s" << i+1 << "+\t"; 

    } 

    cout << "\n"; 

    for (int i = 0; i < numParams + 2; i++) { 

      cout << "--------"; 

    } 

    cout << "\n"; 

    for(int i = 0; i < effScores.size(); i++) { 

      cout << DMUnameListForResults[i] << "\t\t" << 

round(effScores[i]*100000)/100000 << "\t"; 

      for(int j = 1; j < numParams; j++) { 

        cout << round(paramVals[i][j]*100000)/100000 << "\t"; 

      } 

      cout << "\n"; 

    } 

  } 

 

  void resultsPrinterSBM(vector< double> &effScores, vector< string> 

&DMUnameListForResults, vector< vector< double> > &paramVals, int numParams, 

int numInputs, vector< string> &DMUnames) { 

    double t; 

 

    cout << "\n-------------\n-- Results --\n-------------\n\n"; 

    cout << "DMU name\tScore\tt\t"; 

    // print header for lambdas     

    for (int i = 0; i < DMUnames.size(); i++) { 

      cout << "La" << DMUnames[i].substr(0,4) << "\t"; 

    } 

    for (int i = 0; i < numInputs; i++) { 

      cout << "s" << i+1 << "-\t"; 

    } 

    for (int i = 0; i < numParams - numInputs - DMUnames.size() - 1; i++) { 
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      cout << "s" << i+1 << "+\t"; 

    } 

    cout << "\n"; 

    for (int i = 0; i < numParams + 3; i++) { 

      cout << "--------"; 

    } 

    cout << "\n"; 

    for(int i = 0; i < effScores.size(); i++) { 

      t = paramVals[i][0]; 

      cout << DMUnameListForResults[i] << "\t\t" << 

round(effScores[i]*100000)/100000 << "\t"; 

      cout << round(paramVals[i][0]*100000)/100000 << "\t"; 

      for(int j = 1; j < numParams; j++) { 

 cout << round(paramVals[i][j]/t*100000)/100000 << "\t"; 

      } 

      cout << "\n"; 

    } 

  } 

 

  void readCSV(istream &input, vector< vector< double> > &output, vector< 

string> &DMUnames, vector< string> &varNames, vector< int> &inputVars, vector< 

int> &outputVars) { 

    string csvLine; 

    // read in input and output variable locations 

    getline(input, csvLine); 

    istringstream csvStream(csvLine); 

    string csvElement; 

 

    //clean out the first empty cell 

    getline(csvStream, csvElement, ','); 

    // read every element from the line that is separated by commas                                                  

    // and put it into the vector or strings                                                  

    int colCounter = 1; 

    while( getline(csvStream, csvElement, ',') ){ 

      if(csvElement == string("i")) { 

 inputVars.push_back(colCounter); 

      } 
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      else { 

 outputVars.push_back(colCounter); 

      } 

      colCounter++; 

    } 

 

    // read in variable names 

    getline(input, csvLine); 

    istringstream csvStream2(csvLine); 

 

    //clean out the first empty cell     

    getline(csvStream2, csvElement, ','); 

    // read every element from the line that is separated by commas    

    // and put it into the vector or strings   

    while( getline(csvStream2, csvElement, ',') ){ 

      varNames.push_back(csvElement); 

    } 

 

    // read every remaining line from the stream 

    while( getline(input, csvLine) ) 

      { 

 istringstream csvStream(csvLine); 

 vector<double> csvColumn; 

 string csvElement; 

 // read every element from the line that is separated by commas 

 // and put it into the vector or strings 

 getline(csvStream, csvElement, ','); 

 DMUnames.push_back(csvElement); 

 while( getline(csvStream, csvElement, ',') ){ 

   csvColumn.push_back(atof(csvElement.c_str())); 

 } 

 output.push_back(csvColumn); 

      } 

  } 
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  int populateCCRProblem(vector< vector< double> > &output, vector< int> 

&inputVars, vector< int> &outputVars, int goalDMU, IloModel model, 

IloNumVarArray x, IloRangeArray c) { 

    IloEnv env = model.getEnv(); 

    IloObjective obj = IloMinimize(env); 

 

    // number of variables for CCR dual is 1 (theta) + numDMUs (rows in output) 

+ numInputs (length of inputVars) + numOutputs (length of outputVars) 

    int numVars = 1 + output.size() + inputVars.size() + outputVars.size(); 

    for(int i = 0; i < numVars; i++) { 

      x.add(IloNumVar(env)); 

    } 

 

    for(int i = 0; i< inputVars.size(); i++) { 

      c.add(IloRange(env, 0.0, 0.0)); 

    } 

    for(int i = 0; i< outputVars.size(); i++) { 

      double rhsValue = output[goalDMU][outputVars[i] - 1]; 

      c.add(IloRange(env, rhsValue, rhsValue)); 

    } 

 

    obj.setLinearCoef(x[0], 1.0); 

 

    //count which constraint row we're on 

    int constraintCounter = 0; 

 

    //write input constraints 

    int varCounter; 

    int varOffset = 0; 

    for(vector< int>::iterator j = inputVars.begin(); j != inputVars.end(); 

++j) { 

      varCounter = 0; 

      c[constraintCounter].setLinearCoef(x[0], output[goalDMU][*j - 1]); 

      varCounter++; 

      for(vector< vector< double> >::iterator i = output.begin(); i != 

output.end(); ++i) { 

        c[constraintCounter].setLinearCoef(x[varCounter], -i[0][*j - 1]); 

        varCounter++; 
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      } 

      c[constraintCounter].setLinearCoef(x[varCounter + varOffset], -1); 

      constraintCounter++; 

      varOffset++; 

    } 

 

    //write output constraints 

    for(vector< int>::iterator j = outputVars.begin(); j != outputVars.end(); 

++j) { 

      varCounter = 1; 

      for(vector< vector< double> >::iterator i = output.begin(); i != 

output.end(); ++i) { 

        c[constraintCounter].setLinearCoef(x[varCounter], i[0][*j - 1]); 

        varCounter++; 

      } 

      c[constraintCounter].setLinearCoef(x[varCounter + varOffset], -1.0); 

      constraintCounter++; 

      varOffset++; 

    } 

 

    model.add(obj); 

    model.add(c); 

    return numVars; 

  } 

 

  int populateBCCProblem(vector< vector< double> > &output, vector< int> 

&inputVars, vector< int> &outputVars, int goalDMU, IloModel model, 

IloNumVarArray x, IloRangeArray c) { 

    IloEnv env = model.getEnv(); 

    IloObjective obj = IloMinimize(env); 

     

    // number of variables for BCC dual is 1 (theta) + numDMUs (rows in output) 

+ numInputs (length of inputVars) + numOutputs (length of outputVars)        

    int numVars = 1 + output.size() + inputVars.size() + outputVars.size(); 

    for(int i = 0; i < numVars; i++) { 

      x.add(IloNumVar(env)); 

    } 
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    for(int i = 0; i< inputVars.size(); i++) { 

      c.add(IloRange(env, 0.0, 0.0)); 

    } 

    for(int i = 0; i< outputVars.size(); i++) { 

      double rhsValue = output[goalDMU][outputVars[i] - 1]; 

      c.add(IloRange(env, rhsValue, rhsValue)); 

    } 

     

    //add room for the unity constraint 

    c.add(IloRange(env, 1.0, 1.0)); 

     

    obj.setLinearCoef(x[0], 1.0); 

     

     

    //count which constraint row we're on                      

    int constraintCounter = 0; 

     

    //write input constraints      

    int varCounter; 

    int varOffset = 0; 

    for(vector< int>::iterator j = inputVars.begin(); j != inputVars.end(); 

++j) { 

      varCounter = 0; 

      c[constraintCounter].setLinearCoef(x[0], output[goalDMU][*j - 1]); 

      varCounter++; 

      for(vector< vector< double> >::iterator i = output.begin(); i != 

output.end(); ++i) { 

 c[constraintCounter].setLinearCoef(x[varCounter], -i[0][*j - 1]); 

 varCounter++; 

      } 

      c[constraintCounter].setLinearCoef(x[varCounter + varOffset], -1); 

      constraintCounter++; 

      varOffset++; 

    } 

     

    //write output constraints                                                                  
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    for(vector< int>::iterator j = outputVars.begin(); j != outputVars.end(); 

++j) { 

      varCounter = 1; 

      for(vector< vector< double> >::iterator i = output.begin(); i != 

output.end(); ++i) { 

 c[constraintCounter].setLinearCoef(x[varCounter], i[0][*j - 1]); 

 varCounter++; 

      } 

      c[constraintCounter].setLinearCoef(x[varCounter + varOffset], -1.0); 

      constraintCounter++; 

      varOffset++; 

    } 

     

    //write unity constraint in BCC model 

    for(varCounter = 1; varCounter <= output.size(); varCounter++) { 

      c[constraintCounter].setLinearCoef(x[varCounter], 1.0); 

    } 

     

    model.add(obj); 

    model.add(c); 

    return numVars; 

  } 

 

  int populateSBMProblem(vector< vector< double> > &output, vector< int> 

&inputVars, vector< int> &outputVars, int goalDMU, IloModel model, 

IloNumVarArray x, IloRangeArray c) { 

    IloEnv env = model.getEnv(); 

    IloObjective obj = IloMinimize(env); 

     

    // number of variables for dual is 1 (theta) + numDMUs (rows in output) + 

numInputs (length of inputVars) + numOutputs (length of outputVars)             

    int numVars = 1 + output.size() + inputVars.size() + outputVars.size(); 

    for(int i = 0; i < numVars; i++) { 

      x.add(IloNumVar(env)); 

    } 

     

    c.add(IloRange(env, 1.0, 1.0)); 
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    for(int i = 0; i< inputVars.size(); i++) { 

      c.add(IloRange(env, 0.0, 0.0)); 

    } 

    for(int i = 0; i< outputVars.size(); i++) { 

      c.add(IloRange(env, 0.0, 0.0)); 

    } 

    

    // SBMt objective 

    obj.setLinearCoef(x[0], 1.0); 

    int objVarCounter = output.size(); 

    for(int i = 0; i< inputVars.size(); i++) { 

      //      cout << "inputVars.size(): " << inputVars.size() << " 

output[goalDMU][inputVars[i] - 1]: " << output[goalDMU][inputVars[i] - 1] << " 

Res: " << (-1.0/inputVars.size()) * (1.0/output[goalDMU][inputVars[i] - 1]) << 

"\n"; 

      obj.setLinearCoef(x[objVarCounter + 1], (-1.0/inputVars.size()) * 

(1.0/output[goalDMU][inputVars[i] - 1])); 

      objVarCounter++; 

    } 

     

    //count which constraint row we're on                                               

    int constraintCounter = 0; 

 

    // write initial t constraint 

    int initialVarCounter = output.size() + inputVars.size(); 

    c[constraintCounter].setLinearCoef(x[0], 1.0); 

    for(int i = 0; i< outputVars.size(); i++) { 

      c[constraintCounter].setLinearCoef(x[initialVarCounter + 1], 

1.0/outputVars.size()*1.0/output[goalDMU][outputVars[i] - 1]); 

      initialVarCounter++; 

    } 

    constraintCounter++; 

     

    //write input constraints                                                              

    int varCounter; 

    int varOffset = 0; 

    for(vector< int>::iterator j = inputVars.begin(); j != inputVars.end(); 

++j) { 
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      varCounter = 0; 

      c[constraintCounter].setLinearCoef(x[0], output[goalDMU][*j - 1]); 

      varCounter++; 

      for(vector< vector< double> >::iterator i = output.begin(); i != 

output.end(); ++i) { 

 c[constraintCounter].setLinearCoef(x[varCounter], -i[0][*j - 1]); 

 varCounter++; 

      } 

      c[constraintCounter].setLinearCoef(x[varCounter + varOffset], -1); 

      constraintCounter++; 

      varOffset++; 

    } 

     

    //write output constraints                                                                               

    for(vector< int>::iterator j = outputVars.begin(); j != outputVars.end(); 

++j) { 

      c[constraintCounter].setLinearCoef(x[0], output[goalDMU][*j - 1]); 

      varCounter = 1; 

      for(vector< vector< double> >::iterator i = output.begin(); i != 

output.end(); ++i) { 

 c[constraintCounter].setLinearCoef(x[varCounter], -i[0][*j - 1]); 

 varCounter++; 

      } 

      c[constraintCounter].setLinearCoef(x[varCounter + varOffset], 1.0); 

      constraintCounter++; 

      varOffset++; 

    } 

 

    // workaround to specify variable t > 0 

    c.add(x[0] >= EPSILON); 

     

    model.add(obj); 

    model.add(c); 

    return numVars; 

  } 
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Appendix D: Stakeholder Knowledge Elicitation 

D.1 Subject-Matter Experts 

Table D.1 presents the participating subject-matter experts.  The knowledge 

elicitation sessions took place in 2009 and were conducted by David Schaar in-

person and via phone. 

Table D.1 – Participants in knowledge elicitation sessions on the definition of airport 

stakeholders, their goals, and key performance indicators for airports. 

Person Title Organization Date  

Jim Bennett 

President and Chief 

Executive Officer 

Metropolitan 

Washington Airports 

Authority 16 Oct, 2009 

Frank Berardino President GRA, Inc. 10 Nov, 2009 

Les Berry 

Director of Strategic 

Planning DEN Airport 18 Nov, 2009 
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Person Title Organization Date  

Tom Bock 

General manager for 

airspace technology 

and airspace 

enhancements  

Port Authority of 

New York New Jersey 22 Apr, 2009 

Chellie Cameron 

Manager of Financial 

Strategy and Research 

Metropolitan 

Washington Airports 

Authority 27 Oct, 2009 

Michael Cintron 

Head of advocacy and 

traveler consumer 

affairs 

International Air 

Passengers 

Association 20 Oct, 2009 

Ken Cushine Vice President Frasca and Associates 9 Nov, 2009 

Dallas Dawson 

Performance 

Management Analyst TPA Airport 19 Oct, 2009 

Lorie Dewitt Hub supervisor United Airlines 1 Jul, 2009 

Matt Erskine Executive Director 

Greater Washington 

Board of Trade 4 Nov, 2009 

Kurt Forsgren 

Vice President of 

credit analysis for 

public transportation 

infrastructure Standard and Poor's 28 Oct, 2009 

Stephen Freibrun 

Head of advisory 

practice on non-

aeronautical revenue 

for airports 

SH&E / ICF 

International 19 Oct, 2009 

Jeff Gilley 

Airports Operations 

Division 

National Business 

Aviation Association 3 Nov, 2009 
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Person Title Organization Date  

Dilwyn Gruffydd Project Manager Landrum Brown 5 Nov, 2009 

Liying Gu  

Senior Director of 

Economic Affairs and 

Research 

Airports Council 

International - North 

America 21 Oct, 2009 

Susan Kopinski 

Chief Financial Officer 

and deputy airports 

director for finance 

and administration STL Airport 10 Nov, 2009 

Kurt Krummenacker 

Vice President, Global 

Infrastructure and 

Project Finance Moody's 16 Oct, 2009 

Seth Lehman and 

Emma Walker 

Senior Director and 

Associate Director, 

respectively Fitch Ratings 10 Nov, 2009 

Peter Mackenzie 

Williams Associate Director Jacobs Consultancy 5 Nov, 2009 

Laura McKee 

Managing Director - 

Airport Affairs 

Air Transport 

Association 11 Nov, 2009 

Paul McKnight Associate Director Jacobs Consultancy 3 Nov, 2009 

Pat Oldfield 

Manager of 

operations analysis 

group United Airlines 20 Oct, 2009 

Bob O'Roark Design task manager 

Metropolitan 

Washington Airports 

Authority 12 Jun, 2009 
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Person Title Organization Date  

Jake Plante 

Noise and air quality 

resource expert FAA Airports Office 3 Nov, 2009 

Chris Poinsatte 

Executive Vice 

President and Chief 

Financial Officer DFW Airport 16 Nov, 2009 

Theresia Schatz 

Senior Program 

Officer 

Airport Cooperative 

Research Program 22 Apr, 2009 

Peter Stettler Director 

Ricondo and 

Associates 11 Nov, 2009 

Terry Thompson 

Vice President and 

Chief Environmental 

Scientist Metron Aviation 29 Oct, 2009 

Jim Walsh Vice President Landrum Brown 5 Nov, 2009 

Jim Wilding 

Former President and 

Chief Executive 

Officer 

Metropolitan 

Washington Airports 

Authority 19 Apr, 2009 

Gregg Wollard Aviation Planner 

Metropolitan 

Washington Airports 

Authority 20 Mar, 2009 

Alex Zaslov 

Senior Aviation 

Consultant HNTB Inc. 25 Jun, 2009 
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D.2 Knowledge Elicitation Form 

Each knowledge elicitation session followed the same structure, using the 

questions listed below: 

1. What is your position? 

 

2. What do you consider the goals and objectives for the airport to be? 

 

3. Who do you consider to be the main constituents of the airport? 

 

4. Which performance metrics do you consider to be the most important 

for the airport? 

 

5. What do these metrics tell you and which decisions do they support? 

 

6. Are there any metrics that you don’t currently track that you think 

would help gauge the airport’s performance? 

 

7. Who else would you recommend I speak with about this topic? 
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Appendix E: Detailed Benchmark Data and Results 

This appendix provides details of the inputs and outputs used in each 

benchmark, and details of each benchmark’s results.  The data sources, as described 

in section 3.4, include: 

• Data on airline service: Data on the traffic between airport pairs was 

obtained from the T100 database which is compiled from data 

collected by Office of Airline Information (OAI) at the Bureau of 

Transportation Statistics (BTS) (Bureau of Transportation Statistics 

2010b).  It included variables such as the frequency of service, the 

available seat capacity, and the number of passengers carried.   

• Airfare data: Data on airfares was obtained from the Airline Origin 

and Destination Survey (DB1B) database (Bureau of Transportation 

Statistics 2010c). 
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• Airport financial data: Data on airport revenues and costs was 

obtained from the FAA’s Compliance Activity Tracking System 

provides (Federal Aviation Administration 2010a). 

• Aircraft movement volume data: Data on aircraft movements  was 

obtained from the FAA’s Air Traffic Activity System (Federal Aviation 

Administration 2010) 

• Data on on-time performance: On-time data was compiled from 

data collected by the OAI at the BTS (Bureau of Transportation 

Statistics 2010b).   

• GDP data: Data on GDP by metropolitan area was obtained from the 

U.S. government’s Bureau of Economic Analysis (BEA) (Bureau of 

Economic Analysis, U.S. Department of Commerce 2010). 

• Population data: Data on the population by metropolitan area was 

obtained from the U.S. Census Bureau (U.S. Census Bureau 2010b). 

• Runway capacity: This data was derived from the analysis described 

in (Kumar & Sherry 2009).  This analysis in turn was conducted using 

the Aviation System Performance Metrics (ASPM) database (Federal 

Aviation Administration 2010d) along with the T100 database 
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described above and the Airline Origin and Destination Survey 

(DB1B) database (Bureau of Transportation Statistics 2010c). 

• Runways: This data was compiled from the FAA’s National Plan of 

Integrated Airport Systems  (FAA 2008). 

E.1 Case Study 1: Benchmarking the Level of Domestic Air 

Service to U.S. Metropolitan Areas 

E.1.1 Benchmark Data 

Table E.1 - Case study 1 benchmark data 

Metropolitan area Population 

GDP (million 

current US$) 

Number of non-

hub nonstop 

destinations 

Number of 

departures to 

top 5 hubs 

2005 

Atlanta 4,945,773 243,020 158 110 

Boston 6,463,090 336,653 72 79 

Charlotte 1,518,488 101,877 94 59 

Chicago 9,390,691 459,013 135 159 

Cincinnati 2,944,294 122,942 127 82 

Cleveland 2,116,304 98,109 73 50 

Dallas 5,817,696 315,710 138 113 

Denver 2,358,271 131,072 120 93 

Detroit 4,496,480 199,441 124 66 

Honolulu 899,673 41,295 27 9 

Houston 5,302,908 312,314 119 97 

Las Vegas 1,702,957 83,153 99 77 

Los Angeles 16,686,936 738,967 76 139 

Memphis 1,252,785 57,419 83 49 

Miami 5,375,410 233,824 64 98 

Minneapolis 3,131,632 172,356 140 99 

New York 18,812,037 1,055,344 103 175 

Orlando 1,935,502 90,129 82 63 

Philadelphia 5,786,636 295,454 88 76 
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Metropolitan area Population 

GDP (million 

current US$) 

Number of non-

hub nonstop 

destinations 

Number of 

departures to 

top 5 hubs 

Phoenix 3,873,404 163,452 89 75 

Pittsburgh 2,372,356 100,018 77 44 

Portland 2,087,066 93,734 42 32 

Salt Lake City 1,045,905 51,386 89 50 

San Diego 2,931,689 147,733 34 42 

San Francisco 5,900,486 396,088 62 97 

Seattle 3,197,370 183,671 66 51 

St. Louis 2,773,156 115,125 79 71 

Tampa 2,637,036 100,907 68 42 

Washington-Baltimore 7,868,885 463,723 102 179 

2006 

Atlanta 5,113,924 255,382 173 105 

Boston 6,470,867 355,331 71 76 

Charlotte 1,580,070 113,498 94 58 

Chicago 9,439,805 488,255 136 164 

Cincinnati 2,960,941 126,019 117 75 

Cleveland 2,103,850 100,073 73 49 

Dallas 5,995,596 340,639 133 113 

Denver 2,403,113 138,450 125 93 

Detroit 4,486,620 198,513 121 72 

Honolulu 904,134 44,263 28 8 

Houston 5,485,545 346,338 117 95 

Las Vegas 1,770,676 89,881 115 81 

Los Angeles 16,779,490 787,499 81 134 

Memphis 1,270,263 60,381 81 49 

Miami 5,402,334 251,501 60 96 

Minneapolis 3,164,180 178,479 130 95 

New York 18,848,240 1,134,178 101 182 

Orlando 1,993,945 97,837 82 62 

Philadelphia 5,805,349 309,977 87 70 

Phoenix 4,035,176 179,788 90 83 

Pittsburgh 2,360,750 105,459 69 39 

Portland 2,126,475 104,426 43 33 

Salt Lake City 1,074,254 56,260 99 55 

San Diego 2,937,023 155,458 33 42 

San Francisco 5,939,869 422,805 64 95 

Seattle 3,253,977 195,167 68 55 

St. Louis 2,790,760 117,833 75 67 

Tampa 2,687,091 108,159 63 40 

Washington-Baltimore 7,917,819 486,633 99 164 

2007 

Atlanta 5,261,296 267,295 175 102 

Boston 6,491,746 372,977 76 74 

Charlotte 1,646,431 116,501 96 58 
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Metropolitan area Population 

GDP (million 

current US$) 

Number of non-

hub nonstop 

destinations 

Number of 

departures to 

top 5 hubs 

Chicago 9,496,853 510,666 147 150 

Cincinnati 2,982,652 129,878 109 76 

Cleveland 2,094,885 102,956 73 46 

Dallas 6,153,474 362,075 131 107 

Denver 2,453,393 143,914 134 92 

Detroit 4,457,523 200,742 122 70 

Honolulu 900,525 46,358 28 8 

Houston 5,597,958 375,451 116 94 

Las Vegas 1,827,655 95,737 124 78 

Los Angeles 16,851,185 811,689 87 139 

Memphis 1,279,120 62,953 78 48 

Miami 5,392,118 260,043 62 98 

Minneapolis 3,197,620 186,738 129 89 

New York 18,922,571 1,209,997 107 184 

Orlando 2,028,669 102,118 83 66 

Philadelphia 5,823,285 322,325 84 67 

Phoenix 4,165,921 186,577 91 80 

Pittsburgh 2,354,159 110,489 64 38 

Portland 2,166,491 109,637 46 30 

Salt Lake City 1,095,362 60,594 101 54 

San Diego 2,959,734 162,118 44 42 

San Francisco 6,002,480 448,161 67 95 

Seattle 3,298,225 210,364 70 55 

St. Louis 2,805,465 122,096 69 69 

Tampa 2,715,273 110,743 61 42 

Washington-Baltimore 7,966,100 508,455 100 151 

2008 

Atlanta 5,376,285 269,799 162 101 

Boston 6,521,511 385,524 76 68 

Charlotte 1,701,799 118,350 104 59 

Chicago 9,569,624 520,672 146 143 

Cincinnati 2,991,681 132,528 105 73 

Cleveland 2,088,291 104,425 84 42 

Dallas 6,300,006 379,863 134 107 

Denver 2,506,626 150,810 142 88 

Detroit 4,425,110 200,856 124 69 

Honolulu 905,034 48,095 24 7 

Houston 5,728,143 403,202 115 90 

Las Vegas 1,865,746 97,053 118 71 

Los Angeles 16,988,679 830,964 87 133 

Memphis 1,285,732 63,826 81 47 

Miami 5,414,772 261,263 77 99 

Minneapolis 3,229,878 193,947 134 89 

New York 19,006,798 1,264,896 106 180 



507 . 

 

Metropolitan area Population 

GDP (million 

current US$) 

Number of non-

hub nonstop 

destinations 

Number of 

departures to 

top 5 hubs 

Orlando 2,054,574 103,985 82 63 

Philadelphia 5,838,471 331,897 88 69 

Phoenix 4,281,899 187,431 87 74 

Pittsburgh 2,351,192 114,707 42 34 

Portland 2,207,462 112,420 47 30 

Salt Lake City 1,115,692 62,525 95 56 

San Diego 3,001,072 169,325 47 44 

San Francisco 6,093,729 457,512 68 87 

Seattle 3,344,813 218,771 71 56 

St. Louis 2,816,710 128,467 67 68 

Tampa 2,733,761 110,510 64 41 

Washington-Baltimore 8,025,247 528,759 104 151 
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E.1.2 Results 

Table E.2 - Case study 1 benchmark results 

Metropolitan area 

Results 

2005 2006 2007 2008 
Atlanta 1.0000 1.0000 1.0000 1.0000 

Boston 1.7847 1.7827 1.7405 1.8013 

Charlotte 1.0681 1.1768 1.2324 1.1039 

Chicago 1.0000 1.0000 1.0000 1.0000 

Cincinnati 1.0000 1.0912 1.1560 1.1282 

Cleveland 1.5082 1.6243 1.7280 1.4440 

Dallas 1.0870 1.1024 1.1209 1.0872 

Denver 1.0000 1.0000 1.0000 1.0000 

Detroit 1.1847 1.2650 1.2723 1.2130 

Honolulu 1.0000 1.0000 1.0000 1.0000 

Houston 1.2368 1.2540 1.2436 1.2564 

Las Vegas 1.0000 1.0000 1.0000 1.0000 

Los Angeles 1.2857 1.2829 1.1913 1.2186 

Memphis 1.1005 1.1746 1.1568 1.1835 

Miami 1.2184 1.2086 1.1247 1.0763 

Minneapolis 1.0000 1.0333 1.0814 1.0572 

New York 1.0155 1.0000 1.0000 1.0000 

Orlando 1.2540 1.3359 1.2166 1.1520 

Philadelphia 1.6548 1.7260 1.7502 1.6447 

Phoenix 1.3539 1.2272 1.2408 1.2619 

Pittsburgh 1.4913 1.7458 2.0060 2.2129 

Portland 2.5082 2.5867 2.6919 2.5386 

Salt Lake City 1.0000 1.0000 1.0000 1.0000 

San Diego 2.3335 2.3071 2.2573 2.0747 

San Francisco 1.5326 1.4515 1.3636 1.4704 

Seattle 2.0001 1.8626 1.8468 1.7411 

St. Louis 1.2462 1.3084 1.2429 1.1856 

Tampa 1.6956 1.9271 1.9392 1.8327 

Washington-Baltimore 1.0000 1.0000 1.0000 1.0000 
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E.2 Case Study 2: Benchmark of the Level of Capacity 

Utilization at U.S. Airports 

E.2.1 Benchmark Data 

Table E.3 - Case study 2 benchmark data 

Airport 

Number of non-

hub nonstop 

destinations 

Number of 

departures to 

top 5 hubs 

Enplaned domestic 

passengers 

annually 

Capacity for domestic 

passenger flights (number 

of flights per 15 minutes) 

2005 

ATL 158 110 38,977,547 47.82 

BOS 71 55 11,275,847 21.97 

BWI 59 47 9,950,019 18.01 

CLE 73 50 5,448,414 21.79 

CLT 94 59 13,343,785 28.36 

CVG 126 56 10,828,255 44.21 

DCA 69 67 8,560,309 16.46 

DEN 120 93 20,315,605 55.19 

DFW 138 113 25,853,877 45.16 

DTW 124 66 15,877,941 34.18 

EWR 84 73 11,870,774 16.07 

FLL 57 38 9,853,012 15.88 

HNL 27 9 7,791,782 22.24 

IAD 84 65 10,753,502 29.24 

IAH 118 77 15,798,725 33.99 

JFK 56 17 10,998,696 12.54 

LAS 99 77 21,025,158 25.60 

LAX 75 81 21,714,443 28.69 

LGA 65 81 12,268,482 16.89 

MCO 82 63 15,672,082 36.97 

MDW 59 44 8,727,436 16.81 

MEM 83 49 5,537,595 20.87 

MIA 43 44 7,830,714 15.19 

MSP 140 99 16,843,327 32.35 

ORD 130 115 31,596,042 40.53 

PDX 42 32 6,669,393 23.71 

PHL 88 76 13,876,702 21.17 

PHX 89 75 20,358,777 31.64 

PIT 77 44 5,193,210 36.16 

SAN 34 42 8,629,842 11.34 
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Airport 

Number of non-

hub nonstop 

destinations 

Number of 

departures to 

top 5 hubs 

Enplaned domestic 

passengers 

annually 

Capacity for domestic 

passenger flights (number 

of flights per 15 minutes) 

SEA 66 51 13,453,176 18.99 

SFO 57 56 12,472,436 18.38 

SLC 89 50 10,669,931 32.08 

STL 79 71 7,104,506 29.11 

TPA 68 42 9,280,042 26.20 

2006 

ATL 173 105 37,435,075 47.36 

BOS 71 55 11,677,157 22.17 

BWI 55 46 10,549,699 17.98 

CLE 73 49 5,369,092 21.78 

CLT 94 58 13,991,100 28.42 

CVG 116 48 7,625,303 45.14 

DCA 67 67 8,901,154 16.47 

DEN 125 93 22,132,888 55.16 

DFW 133 113 26,396,788 45.05 

DTW 121 72 15,846,969 34.14 

EWR 80 70 12,809,318 15.80 

FLL 50 38 9,314,653 15.61 

HNL 28 8 7,852,255 22.68 

IAD 80 51 8,600,046 27.83 

IAH 116 74 16,952,946 34.06 

JFK 59 18 11,481,445 12.67 

LAS 115 81 21,611,422 25.62 

LAX 80 82 21,778,244 28.87 

LGA 69 91 12,279,330 16.96 

MCO 82 62 15,971,444 37.04 

MDW 54 50 9,329,558 16.86 

MEM 81 49 5,412,395 20.63 

MIA 44 43 8,355,291 15.10 

MSP 130 95 16,128,647 32.15 

ORD 133 114 31,493,226 40.25 

PDX 43 33 6,814,532 23.78 

PHL 87 70 13,936,097 21.22 

PHX 90 83 20,690,143 31.69 

PIT 69 39 4,975,637 35.91 

SAN 33 42 8,703,594 11.38 

SEA 68 55 13,827,492 19.17 

SFO 57 56 12,436,322 18.23 

SLC 99 55 10,292,948 31.69 

STL 75 67 7,351,497 29.24 

TPA 63 40 9,195,480 26.22 

2007 

ATL 175 102 38,950,038 47.23 

BOS 76 54 11,881,356 22.02 



511 . 

 

Airport 

Number of non-

hub nonstop 

destinations 

Number of 

departures to 

top 5 hubs 

Enplaned domestic 

passengers 

annually 

Capacity for domestic 

passenger flights (number 

of flights per 15 minutes) 

BWI 59 43 10,766,947 18.03 

CLE 73 46 5,434,231 21.78 

CLT 96 58 15,684,161 28.56 

CVG 108 47 7,378,115 45.41 

DCA 68 63 8,899,333 16.58 

DEN 134 92 23,390,913 54.85 

DFW 131 107 26,305,140 45.02 

DTW 122 70 15,727,865 34.03 

EWR 83 68 12,833,251 15.51 

FLL 52 39 9,564,488 15.43 

HNL 28 8 8,524,306 22.93 

IAD 81 46 9,007,457 27.54 

IAH 115 73 16,936,107 33.99 

JFK 61 28 12,801,910 13.06 

LAS 124 78 21,844,934 25.51 

LAX 85 84 22,287,234 28.91 

LGA 69 87 11,856,324 16.98 

MCO 83 66 16,658,633 37.13 

MDW 60 41 9,578,510 16.90 

MEM 78 48 5,450,488 20.64 

MIA 44 43 8,546,808 15.20 

MSP 129 89 15,830,779 32.12 

ORD 140 110 31,089,529 40.10 

PDX 46 30 7,089,451 23.79 

PHL 84 67 13,971,199 21.20 

PHX 91 80 20,857,326 31.69 

PIT 64 38 4,875,841 35.81 

SAN 44 42 9,137,301 11.45 

SEA 70 55 14,390,682 19.19 

SFO 59 57 13,271,672 18.32 

SLC 101 54 10,566,545 31.72 

STL 69 69 7,426,714 29.14 

TPA 61 42 9,341,561 26.21 

2008 

ATL 162 101 39,301,439 47.36 

BOS 75 53 11,051,321 22.16 

BWI 58 42 10,472,809 18.12 

CLE 84 42 5,178,839 21.64 

CLT 104 59 16,319,115 28.56 

CVG 104 46 6,246,714 45.20 

DCA 66 65 8,606,561 16.57 

DEN 142 88 23,781,956 55.02 

DFW 133 105 24,991,709 45.16 

DTW 124 69 15,211,968 33.94 
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Airport 

Number of non-

hub nonstop 

destinations 

Number of 

departures to 

top 5 hubs 

Enplaned domestic 

passengers 

annually 

Capacity for domestic 

passenger flights (number 

of flights per 15 minutes) 

EWR 87 66 12,178,200 15.30 

FLL 66 40 9,499,787 15.47 

HNL 24 7 7,274,736 22.57 

IAD 85 44 8,508,942 27.07 

IAH 114 69 16,062,085 33.75 

JFK 60 29 12,704,955 12.83 

LAS 118 71 20,465,085 25.41 

LAX 83 82 21,068,641 29.00 

LGA 70 84 10,992,362 16.87 

MCO 82 63 16,190,173 36.85 

MDW 51 36 8,643,396 16.94 

MEM 81 47 5,238,874 20.92 

MIA 46 43 8,420,971 14.96 

MSP 134 89 15,205,998 32.24 

ORD 144 107 28,435,305 39.90 

PDX 47 30 6,846,649 23.76 

PHL 88 69 13,917,484 21.23 

PHX 87 74 19,467,741 31.59 

PIT 42 34 4,290,700 35.54 

SAN 47 44 9,097,505 11.49 

SEA 71 56 14,608,747 19.28 

SFO 62 54 14,121,045 18.63 

SLC 95 56 9,895,444 31.91 

STL 67 68 7,009,994 29.20 

TPA 64 41 8,903,700 26.16 
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E.2.2 Results 

Table E.4 - Case study 2 benchmark results 

Airport 

Results 

2005 2006 2007 2008 
ATL 1.0000 1.0000 1.0000 1.0000 

BOS 1.4067 1.4359 1.4148 1.4087 

BWI 1.4159 1.4215 1.4487 1.4532 

CLE 1.4204 1.3878 1.4892 1.2671 

CLT 1.3050 1.3029 1.3664 1.2025 

CVG 1.2207 1.4405 1.5808 1.5193 

DCA 1.1303 1.1581 1.1901 1.1859 

DEN 1.2040 1.1857 1.1586 1.1408 

DFW 1.0065 1.0105 1.0220 1.0232 

DTW 1.1463 1.1383 1.1804 1.1061 

EWR 1.0000 1.0000 1.0000 1.0000 

FLL 1.2970 1.4112 1.4088 1.3104 

HNL 2.3989 2.4598 2.3877 2.7784 

IAD 1.4717 1.5113 1.5898 1.4341 

IAH 1.2026 1.1856 1.2277 1.1970 

JFK 1.0000 1.0000 1.0000 1.0000 

LAS 1.0000 1.0000 1.0000 1.0000 

LAX 1.0645 1.0896 1.0543 1.0742 

LGA 1.0000 1.0000 1.0000 1.0000 

MCO 1.6580 1.6532 1.6049 1.6322 

MDW 1.4429 1.4665 1.4750 1.6494 

MEM 1.2111 1.2003 1.3340 1.2870 

MIA 1.4594 1.4740 1.4936 1.4489 

MSP 1.0000 1.0000 1.0256 1.0000 

ORD 1.0000 1.0000 1.0000 1.0000 

PDX 2.5056 2.4827 2.5263 2.3937 

PHL 1.0817 1.1231 1.1857 1.1237 

PHX 1.2417 1.2120 1.2013 1.2514 

PIT 1.8758 2.0646 2.3155 2.9777 

SAN 1.0000 1.0000 1.0000 1.0000 

SEA 1.1458 1.1673 1.1568 1.1094 

SFO 1.1624 1.2168 1.1756 1.1166 

SLC 1.5629 1.3253 1.3722 1.4024 

STL 1.3775 1.4683 1.4351 1.4155 

TPA 1.7185 1.8507 1.9532 1.8551 
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E.3 Case Study 3: Re-design of an Existing Benchmark 

E.3.1 Benchmark Data 

E.3.1.1 Original Study 

Table E.5 - Case study 3 benchmark data for original study 

Airport 

Run-

ways Gates 

Operating 

expense 

(US$ 

million) 

Non-

operating 

expense 

(US$ 

million) 

On-time 

perfor-

mance 

Aero-

nautical 

revenues 

(US$ 

million) 

Non-aero-

nautical 

revenues 

(US$ 

million) 

Enplane-

ments 

(million 

pax) 

Air carrier 

operations 

Other 

operations 

2005 

ATL 5 184 94.1 78.4 72.6% 97.1 182.9 42.6 692,165 288,221 

BOS 6 102 208.8 62.5 75.5% 190.1 177.8 13.2 217,775 203,650 

BWI 4 78 123.0 23.4 79.7% 67.4 51.8 10.2 216,520 87,338 

CLE 4 68 67.0 32.8 81.5% 69.6 41.5 5.6 80,978 178,693 

CLT 3 85 48.7 34.2 80.1% 57.0 45.2 14.3 258,693 264,542 

CVG 4 87 62.9 6.2 83.2% 48.0 39.3 11.4 165,397 330,051 

DCA 3 44 110.6 39.8 80.6% 93.0 87.9 8.7 183,001 95,133 

DEN 6 144 231.1 228.2 82.0% 315.5 179.0 21.1 384,384 183,132 

DFW 7 174 247.9 84.8 80.5% 198.3 190.7 28.4 486,401 229,598 

DTW 6 139 181.7 87.7 77.9% 104.1 113.5 17.8 315,031 206,868 

EWR 3 91 369.6 58.2 69.5% 443.6 221.4 16.6 265,300 175,041 

FLL 3 57 96.2 39.4 73.4% 44.5 99.7 11.0 180,546 150,147 

HNL 4 47 88.0 32.1 90.8% 77.8 92.4 10.2 183,510 144,803 

IAD 3 120 171.4 70.1 79.7% 142.5 153.8 13.2 154,286 396,566 

IAH 5 82 172.6 59.9 83.2% 206.4 86.4 19.1 268,715 294,729 

JFK 4 172 584.1 56.5 73.5% 570.9 245.0 20.3 296,228 66,452 

LAS 4 95 134.3 68.7 77.2% 112.8 151.4 21.9 393,137 221,175 

LAX 4 106 408.0 20.3 81.7% 211.2 271.5 30.3 454,920 195,526 

LGA 2 74 216.1 18.2 72.3% 174.9 107.3 13.0 211,334 194,179 

MCO 4 96 162.6 71.6 78.8% 90.5 175.5 16.8 255,548 104,049 

MDW 5 29 88.2 48.0 79.8% 45.2 47.0 8.8 185,616 104,975 

MEM 4 81 41.2 34.1 81.4% 76.4 31.2 5.7 223,707 170,907 

MIA 4 107 343.6 113.5 75.1% 348.0 154.0 15.2 294,465 86,841 

MSP 4 125 113.2 85.4 78.8% 104.6 123.9 18.2 338,496 193,451 

ORD 6 171 352.0 199.9 74.3% 332.0 200.9 37.1 620,875 351,371 

PDX 3 68 76.5 33.5 80.3% 94.7 65.7 6.9 135,552 123,777 
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Airport 

Run-

ways Gates 

Operating 

expense 

(US$ 

million) 

Non-

operating 

expense 

(US$ 

million) 

On-time 

perfor-

mance 

Aero-

nautical 

revenues 

(US$ 

million) 

Non-aero-

nautical 

revenues 

(US$ 

million) 

Enplane-

ments 

(million 

pax) 

Air carrier 

operations 

Other 

operations 

PHL 4 63 147.7 60.4 71.8% 143.4 69.2 15.7 291,731 244,421 

PHX 3 105 143.0 54.1 80.4% 90.7 128.4 21.2 409,711 140,468 

PIT 4 50 72.9 34.9 80.8% 77.4 47.7 5.3 82,491 186,132 

SAN 1 45 91.4 13.4 81.3% 50.2 57.9 8.8 151,925 73,498 

SEA 2 96 155.0 120.9 76.0% 173.8 138.0 14.7 254,829 86,641 

SFO 4 67 276.6 259.7 78.6% 296.6 180.9 16.4 241,492 112,104 

SLC 4 83 65.0 1.3 84.3% 40.7 50.5 10.9 168,433 281,782 

STL 6 87 79.5 37.5 81.7% 70.8 40.2 7.2 138,320 158,099 

TPA 3 60 73.1 26.1 79.1% 43.0 101.9 9.5 158,712 110,435 

2006 

ATL 5 184 73.4 37.5 71.8% 53.2 101.1 41.6 673,734 302,713 

BOS 6 102 234.0 67.5 74.6% 213.9 186.5 13.6 212,509 203,060 

BWI 4 78 143.3 24.1 79.3% 69.7 62.9 10.8 209,198 92,849 

CLE 4 68 62.4 45.7 80.5% 63.0 42.8 5.5 73,733 175,733 

CLT 3 85 59.3 44.0 76.8% 68.4 54.7 15.0 259,276 251,642 

CVG 4 87 58.2 11.3 83.8% 41.6 39.6 8.1 93,312 252,446 

DCA 3 44 109.0 38.5 79.2% 96.0 88.8 9.1 157,864 120,607 

DEN 6 144 256.1 222.2 78.4% 302.5 198.4 23.1 428,653 180,861 

DFW 7 174 334.9 234.3 77.3% 259.8 225.7 29.0 481,026 221,660 

DTW 6 139 179.7 102.3 76.9% 92.0 125.9 17.7 289,637 192,103 

EWR 3 91 372.6 55.3 67.2% 434.3 231.1 17.9 273,776 174,786 

FLL 3 57 109.8 43.0 79.1% 54.8 105.3 10.6 179,848 117,227 

HNL 4 47 103.6 29.7 91.1% 77.3 93.2 10.0 187,058 127,980 

IAD 3 120 180.9 75.1 75.2% 137.5 148.9 11.2 163,072 256,944 

IAH 5 82 160.0 77.8 78.7% 230.7 100.3 20.6 271,072 332,041 

JFK 4 172 576.2 57.4 72.3% 553.8 244.4 21.3 319,380 77,354 

LAS 4 95 149.4 83.5 75.9% 121.5 170.5 22.6 402,222 217,252 

LAX 4 106 451.3 19.1 78.6% 259.8 280.9 30.2 463,341 193,345 

LGA 2 74 216.6 18.4 69.5% 168.6 112.9 12.9 206,305 199,906 

MCO 4 96 169.8 68.8 80.5% 92.2 188.7 17.0 265,134 90,878 

MDW 5 29 97.4 52.8 75.1% 56.7 48.9 9.4 193,307 104,993 

MEM 4 81 45.8 34.8 78.9% 80.9 29.1 5.6 212,571 175,322 

MIA 4 107 348.1 113.3 77.3% 378.3 146.9 15.8 297,032 89,412 

MSP 4 125 111.6 94.9 80.5% 87.4 136.7 17.4 297,424 178,209 

ORD 6 171 354.6 201.0 68.5% 340.3 205.7 37.2 629,241 329,402 

PDX 3 68 77.5 34.0 80.9% 91.6 71.0 7.1 139,419 119,968 

PHL 4 63 160.2 51.7 71.3% 158.4 74.2 15.7 271,341 244,527 

PHX 3 105 163.7 43.4 79.8% 90.8 155.0 21.6 411,928 122,123 

PIT 4 50 73.5 39.7 77.9% 83.1 45.3 5.1 89,223 145,315 

SAN 1 45 101.4 9.4 80.2% 53.0 66.5 8.9 156,335 69,449 

SEA 2 96 160.8 130.5 76.2% 187.6 149.9 15.0 253,507 85,917 

SFO 4 67 292.3 201.7 73.1% 259.0 192.5 16.6 248,297 110,905 
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Airport 

Run-

ways Gates 

Operating 

expense 

(US$ 

million) 

Non-

operating 

expense 

(US$ 

million) 

On-time 

perfor-

mance 

Aero-

nautical 

revenues 

(US$ 

million) 

Non-aero-

nautical 

revenues 

(US$ 

million) 

Enplane-

ments 

(million 

pax) 

Air carrier 

operations 

Other 

operations 

SLC 4 83 68.7 2.2 84.3% 41.7 55.1 10.5 165,035 252,257 

STL 6 87 82.1 48.9 79.3% 77.5 38.3 7.5 136,131 144,981 

TPA 3 60 82.6 31.4 80.5% 47.1 109.1 9.4 161,690 95,247 

2007 

ATL 5 184 148.3 140.8 73.2% 137.2 215.4 43.5 722,461 269,156 

BOS 6 102 244.1 75.8 72.5% 220.4 199.7 13.8 205,620 197,164 

BWI 4 78 157.4 24.1 77.1% 77.1 66.1 11.0 209,182 84,215 

CLE 4 68 69.4 47.4 77.1% 61.4 44.4 5.6 72,118 173,052 

CLT 3 85 62.6 45.9 71.6% 66.6 67.0 16.8 289,850 236,093 

CVG 4 87 62.0 16.8 77.2% 44.3 40.7 7.8 90,151 238,110 

DCA 3 44 126.4 45.3 74.4% 97.4 98.6 9.1 155,425 124,036 

DEN 6 144 290.8 237.0 76.0% 316.3 213.8 24.5 451,192 168,736 

DFW 7 174 342.2 233.1 71.4% 223.0 344.6 28.8 477,920 208,752 

DTW 6 139 184.2 101.6 75.4% 95.4 133.7 17.7 271,034 196,200 

EWR 3 91 398.2 56.6 63.6% 472.3 239.5 18.2 273,652 168,042 

FLL 3 57 125.9 42.6 76.0% 57.8 113.5 11.1 193,712 114,230 

HNL 4 47 116.2 26.9 91.4% 78.9 90.4 10.6 182,455 123,734 

IAD 3 120 210.1 94.8 73.4% 150.9 163.6 12.0 185,807 232,250 

IAH 5 82 168.0 91.4 79.2% 248.7 106.9 20.8 290,886 312,751 

JFK 4 172 597.3 50.9 65.9% 612.6 260.2 23.6 356,364 100,471 

LAS 4 95 202.7 80.2 76.5% 145.8 184.5 23.1 407,618 211,669 

LAX 4 106 468.7 15.4 78.3% 329.1 232.0 30.9 467,193 213,761 

LGA 2 74 227.9 16.4 65.0% 185.3 109.9 12.5 200,814 196,466 

MCO 4 96 180.3 68.2 77.9% 97.8 201.2 17.8 291,400 76,460 

MDW 5 29 111.3 57.4 75.8% 54.9 53.2 9.7 198,949 105,450 

MEM 4 81 50.4 33.3 79.0% 78.5 33.0 5.7 212,347 164,181 

MIA 4 107 357.4 123.4 72.1% 387.2 167.8 16.4 294,307 91,993 

MSP 4 125 124.6 95.6 75.0% 95.9 142.3 17.1 286,310 167,256 

ORD 6 171 398.1 206.5 66.2% 429.4 226.1 36.9 617,135 309,838 

PDX 3 68 82.6 29.8 79.9% 89.2 77.4 7.4 148,756 115,258 

PHL 4 63 179.2 55.1 68.1% 165.0 80.9 15.9 274,720 224,963 

PHX 3 105 186.6 42.7 77.7% 94.0 179.4 21.7 408,641 121,108 

PIT 4 50 79.3 31.0 74.0% 90.9 50.2 5.0 87,354 123,365 

SAN 1 45 104.6 16.6 80.5% 56.7 68.7 9.4 161,896 72,474 

SEA 2 96 171.6 124.8 74.0% 195.0 152.5 15.7 276,954 69,198 

SFO 4 67 311.6 197.8 72.7% 292.4 211.6 17.6 262,135 117,365 

SLC 4 83 70.5 2.6 82.0% 45.1 60.3 10.8 166,816 254,171 

STL 6 87 94.6 124.5 76.4% 88.3 37.5 7.6 128,372 127,586 

TPA 3 60 89.7 32.8 78.8% 47.8 118.3 9.5 169,973 88,342 

2008 

ATL 5 184 175.7 112.3 76.2% 161.4 224.8 44.0 750,597 227,487 

BOS 6 102 261.5 78.6 76.4% 229.3 220.5 12.8 193,229 182,161 



517 . 

 

Airport 

Run-

ways Gates 

Operating 

expense 

(US$ 

million) 

Non-

operating 

expense 

(US$ 

million) 

On-time 

perfor-

mance 

Aero-

nautical 

revenues 

(US$ 

million) 

Non-aero-

nautical 

revenues 

(US$ 

million) 

Enplane-

ments 

(million 

pax) 

Air carrier 

operations 

Other 

operations 

BWI 4 78 154.4 23.1 80.2% 92.3 78.1 10.7 204,221 68,295 

CLE 4 68 74.9 43.2 78.6% 62.9 48.5 5.4 67,842 168,127 

CLT 3 85 70.2 54.1 79.1% 71.4 75.8 17.5 315,130 222,468 

CVG 4 87 62.9 14.5 79.5% 46.2 38.5 6.7 78,604 207,464 

DCA 3 44 128.2 105.2 80.4% 97.3 100.8 8.8 172,122 105,799 

DEN 6 144 373.8 258.6 78.5% 319.6 222.1 24.8 460,311 165,533 

DFW 7 174 371.3 251.2 75.0% 232.9 394.2 27.5 475,921 179,385 

DTW 6 139 199.1 96.7 80.1% 121.0 134.6 17.1 241,757 222,027 

EWR 3 91 415.7 100.5 65.7% 483.4 235.0 17.7 287,967 154,130 

FLL 3 57 123.3 42.1 77.1% 63.0 124.2 11.1 194,695 100,970 

HNL 4 47 137.4 37.8 88.1% 82.0 92.4 9.1 153,256 127,714 

IAD 3 120 197.9 268.1 75.0% 185.5 167.4 11.6 186,097 205,529 

IAH 5 82 181.0 85.4 78.7% 256.9 117.7 20.1 276,828 301,460 

JFK 4 172 657.5 85.9 72.1% 673.1 277.5 23.8 356,397 90,571 

LAS 4 95 239.4 166.7 77.9% 163.9 264.1 21.6 388,750 190,196 

LAX 4 106 517.9 18.3 78.9% 432.3 280.3 29.5 453,232 169,274 

LGA 2 74 237.4 25.5 68.9% 205.8 101.9 11.6 204,053 180,027 

MCO 4 96 198.1 64.2 79.0% 134.7 208.2 17.5 293,229 50,171 

MDW 5 29 109.7 62.0 78.7% 70.0 55.0 8.7 188,477 79,043 

MEM 4 81 50.6 32.1 80.6% 78.7 31.5 5.5 208,188 154,790 

MIA 4 107 382.9 154.6 71.3% 387.9 174.0 16.5 297,779 73,740 

MSP 4 125 126.7 86.7 80.5% 98.5 143.0 16.5 286,192 163,780 

ORD 6 171 428.5 224.2 68.1% 461.8 222.5 34.0 580,967 300,599 

PDX 3 68 87.4 31.2 80.8% 96.8 81.1 7.2 155,088 96,965 

PHL 4 63 189.0 52.1 75.0% 160.1 90.5 15.8 278,807 213,231 

PHX 3 105 196.6 41.1 81.1% 97.4 184.5 20.4 391,518 109,007 

PIT 4 50 82.1 28.6 78.2% 81.1 48.6 4.4 88,201 79,165 

SAN 1 45 114.0 17.8 79.8% 59.5 76.2 9.2 164,382 61,775 

SEA 2 96 195.2 137.6 78.2% 204.4 154.0 16.0 306,425 38,632 

SFO 4 67 326.1 208.6 72.1% 300.7 235.0 18.3 284,350 103,620 

SLC 4 83 77.1 7.9 85.0% 45.4 65.3 10.3 169,154 220,303 

STL 6 87 99.4 75.5 78.2% 91.5 43.1 7.2 124,898 122,741 

TPA 3 60 91.8 31.2 79.7% 48.3 119.1 9.1 165,448 72,437 
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E.3.1.2 Operational Efficiency Benchmark 

Table E.6 - Case study 3 benchmark data for operational efficiency study 

Airport 

Total runway capacity 

(number of flights per 

15 minutes) 

Total passenger 

delay (millions of 

hours) 

Enplanements 

(million pax) 

Total operations 

(thousands of 

movements) 

2005 

ATL 52 19.14 42.62 980.4 

BOS 25 4.74 13.23 421.4 

BWI 19 2.31 10.24 303.9 

CLE 23 1.29 5.59 259.7 

CLT 30 2.38 14.34 523.2 

CVG 47 3.34 11.37 495.4 

DCA 17 2.38 8.74 278.1 

DEN 58 4.09 21.11 567.5 

DFW 50 6.69 28.38 716.0 

DTW 37 3.96 17.78 521.9 

EWR 21 6.38 16.55 440.3 

FLL 20 3.80 10.96 330.7 

HNL 28 0.97 10.21 328.3 

IAD 32 2.53 13.15 550.9 

IAH 41 4.40 19.15 563.4 

JFK 20 4.68 20.34 362.7 

LAS 27 4.43 21.86 614.3 

LAX 37 4.73 30.26 650.4 

LGA 18 5.90 13.03 405.5 

MCO 40 3.67 16.77 359.6 

MDW 17 1.99 8.83 290.6 

MEM 35 1.08 5.73 394.6 

MIA 32 3.20 15.24 381.3 

MSP 35 4.00 18.16 531.9 

ORD 46 10.05 37.10 972.2 

PDX 27 1.38 6.91 259.3 

PHL 24 5.06 15.72 536.2 

PHX 34 3.89 21.25 550.2 

PIT 38 1.18 5.28 268.6 

SAN 12 1.79 8.80 225.4 

SEA 22 3.62 14.67 341.5 

SFO 22 3.54 16.41 353.6 

SLC 34 2.36 10.85 450.2 

STL 30 1.17 7.23 296.4 

TPA 27 2.29 9.46 269.1 

2006 

ATL 52 12.24 41.59 976.4 

BOS 25 4.21 13.58 415.6 
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Airport 

Total runway capacity 

(number of flights per 

15 minutes) 

Total passenger 

delay (millions of 

hours) 

Enplanements 

(million pax) 

Total operations 

(thousands of 

movements) 

BWI 19 2.30 10.84 302.0 

CLE 23 1.30 5.50 249.5 

CLT 30 2.95 15.02 510.9 

CVG 47 1.90 8.09 345.8 

DCA 17 2.34 9.08 278.5 

DEN 58 6.83 23.12 609.5 

DFW 50 7.97 29.01 702.7 

DTW 37 3.78 17.70 481.7 

EWR 21 7.07 17.90 448.6 

FLL 20 2.17 10.56 297.1 

HNL 28 1.19 9.99 315.0 

IAD 32 2.68 11.21 420.0 

IAH 41 4.41 20.59 603.1 

JFK 20 4.72 21.33 396.7 

LAS 27 4.02 22.61 619.5 

LAX 37 5.66 30.19 656.7 

LGA 18 5.74 12.95 406.2 

MCO 40 3.31 17.01 356.0 

MDW 17 2.36 9.42 298.3 

MEM 35 1.06 5.61 387.9 

MIA 32 2.52 15.84 386.4 

MSP 35 3.43 17.38 475.6 

ORD 46 16.20 37.25 958.6 

PDX 27 1.36 7.07 259.4 

PHL 24 4.25 15.71 515.9 

PHX 34 3.37 21.58 534.1 

PIT 38 1.01 5.05 234.5 

SAN 12 2.08 8.86 225.8 

SEA 22 3.56 15.02 339.4 

SFO 22 4.04 16.56 359.2 

SLC 34 2.33 10.54 417.3 

STL 30 1.58 7.48 281.1 

TPA 27 1.97 9.39 256.9 

2007 

ATL 52 13.99 43.48 991.6 

BOS 25 6.69 13.81 402.8 

BWI 19 3.46 11.02 293.4 

CLE 23 1.65 5.63 245.2 

CLT 30 5.06 16.79 525.9 

CVG 47 2.52 7.81 328.3 

DCA 17 4.07 9.11 279.5 

DEN 58 7.85 24.50 619.9 

DFW 50 17.08 28.84 686.7 

DTW 37 7.08 17.68 467.2 
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Airport 

Total runway capacity 

(number of flights per 

15 minutes) 

Total passenger 

delay (millions of 

hours) 

Enplanements 

(million pax) 

Total operations 

(thousands of 

movements) 

EWR 21 9.56 18.24 441.7 

FLL 20 2.86 11.13 307.9 

HNL 28 1.50 10.59 306.2 

IAD 32 4.11 11.97 418.1 

IAH 41 4.61 20.82 603.6 

JFK 20 9.08 23.62 456.8 

LAS 27 4.92 23.06 619.3 

LAX 37 7.56 30.85 681.0 

LGA 18 9.20 12.54 397.3 

MCO 40 4.81 17.80 367.9 

MDW 17 2.71 9.66 304.4 

MEM 35 2.24 5.66 376.5 

MIA 32 3.55 16.40 386.3 

MSP 35 7.00 17.11 453.6 

ORD 46 22.23 36.87 927.0 

PDX 27 1.60 7.38 264.0 

PHL 24 6.21 15.88 499.7 

PHX 34 5.17 21.74 529.7 

PIT 38 1.62 4.98 210.7 

SAN 12 2.50 9.35 234.4 

SEA 22 4.70 15.70 346.2 

SFO 22 5.72 17.59 379.5 

SLC 34 2.76 10.83 421.0 

STL 30 2.45 7.61 256.0 

TPA 27 2.67 9.53 258.3 

2008 

ATL 52 10.74 43.95 978.1 

BOS 25 4.13 12.85 375.4 

BWI 19 2.25 10.66 272.5 

CLE 23 1.35 5.42 236.0 

CLT 30 3.57 17.49 537.6 

CVG 47 1.63 6.74 286.1 

DCA 17 2.14 8.76 277.9 

DEN 58 5.57 24.84 625.8 

DFW 50 10.46 27.47 655.3 

DTW 37 3.91 17.13 463.8 

EWR 21 6.89 17.69 442.1 

FLL 20 2.26 11.09 295.7 

HNL 28 1.27 9.11 281.0 

IAD 32 2.46 11.56 391.6 

IAH 41 4.89 20.10 578.3 

JFK 20 6.41 23.79 447.0 

LAS 27 4.76 21.60 578.9 

LAX 37 5.76 29.52 622.5 
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Airport 

Total runway capacity 

(number of flights per 

15 minutes) 

Total passenger 

delay (millions of 

hours) 

Enplanements 

(million pax) 

Total operations 

(thousands of 

movements) 

LGA 18 5.55 11.58 384.1 

MCO 40 4.16 17.49 343.4 

MDW 17 1.98 8.67 267.5 

MEM 35 1.56 5.46 363.0 

MIA 32 3.26 16.48 371.5 

MSP 35 3.65 16.50 450.0 

ORD 46 15.53 33.96 881.6 

PDX 27 1.60 7.17 252.1 

PHL 24 3.79 15.79 492.0 

PHX 34 4.57 20.41 500.5 

PIT 38 0.93 4.36 167.4 

SAN 12 2.19 9.22 226.2 

SEA 22 3.64 16.02 345.1 

SFO 22 5.19 18.35 388.0 

SLC 34 2.13 10.25 389.5 

STL 30 1.91 7.20 247.6 

TPA 27 2.20 9.09 237.9 
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E.3.1.3 Investment Quality Benchmark 

Table E.7 - Case study 3 benchmark data for investment quality study 

Airport 

Regional growth Air service Financial factors 

Regional 

population 

growth 

(2007-

2008) 

Regional 

GDP 

growth 

(2007-

2008) 

Growth in 

enplaned 

pax 

(2007-

2008) 

O&D pax 

as 

portion 

of all pax 

(2008) 

Portion of 

the main 

carrier's pax 

enplaned at 

this airport 

(2008) 

Portion of 

total OEP-

35 pax 

enplaned at 

this airport 

(2008) 

Debt 

service 

coverage 

ratio 

(2008) 

Non-aero-

nautical 

revenue as 

portion of 

total revenue 

(2008) 

ATL 2.19% 0.94% 1.07% 36.19% 43.89% 7.43% 2.81 58.20% 

BOS 0.46% 3.36% -6.96% 96.43% 12.68% 2.17% 1.26 49.02% 

BWI 0.74% 3.99% -3.30% 80.26% 9.90% 1.80% 1.62 45.85% 

CLE -0.31% 1.43% -3.71% 72.00% 4.68% 0.92% 1.20 43.52% 

CLT 3.36% 1.59% 4.18% 26.32% 22.43% 2.96% 1.63 51.49% 

CVG 0.30% 2.04% -13.76% 28.95% 4.18% 1.14% 0.71 45.44% 

DCA 0.74% 3.99% -3.83% 77.46% 4.77% 1.48% 1.11 50.87% 

DEN 2.17% 4.79% 1.38% 53.13% 18.14% 4.20% 0.62 41.00% 

DFW 2.38% 4.91% -4.76% 45.09% 29.01% 4.64% 1.52 62.86% 

DTW -0.73% 0.06% -3.12% 55.71% 27.47% 2.89% 0.86 52.66% 

EWR 0.45% 4.54% -3.05% 86.17% 27.58% 2.99% 3.70 32.71% 

FLL 0.42% 0.47% -0.33% 95.63% 44.42% 1.87% 1.09 66.34% 

HNL 0.50% 3.75% -14.03% 79.65% 77.60% 1.54% 1.14 53.00% 

IAD 0.74% 3.99% -3.46% 64.46% 8.99% 1.95% 1.05 47.43% 

IAH 2.33% 7.39% -3.49% 44.13% 34.95% 3.40% 1.10 31.43% 

JFK 0.45% 4.54% 0.74% 82.85% 40.94% 4.02% 4.52 29.19% 

LAS 2.08% 1.37% -6.34% 81.46% 14.32% 3.65% 0.25 61.70% 

LAX 0.82% 2.37% -4.31% 82.25% 6.35% 4.99% 4.31 39.33% 

LGA 0.45% 4.54% -7.63% 92.14% 3.25% 1.96% 4.58 33.11% 

MCO 1.28% 1.83% -1.73% 93.72% 6.70% 2.96% 0.53 60.71% 

MDW 0.77% 1.96% -10.24% 70.04% 12.78% 1.46% 0.56 44.02% 

MEM 0.52% 1.39% -3.54% 37.76% 6.48% 0.92% 1.15 28.58% 

MIA 0.42% 0.47% 0.47% 80.77% 15.50% 2.79% 1.21 30.97% 

MSP 1.01% 3.86% -3.54% 52.11% 28.38% 2.79% 0.69 59.20% 

ORD 0.77% 1.96% -7.88% 53.91% 22.73% 5.74% 1.13 32.51% 

PDX 1.89% 2.54% -2.73% 85.81% 2.25% 1.21% 1.79 45.61% 

PHL 0.26% 2.97% -0.56% 64.82% 13.67% 2.67% 1.83 36.12% 

PHX 2.78% 0.46% -6.12% 60.80% 17.32% 3.45% 4.28 65.44% 

PIT -0.13% 3.82% -12.38% 92.71% 1.86% 0.74% 0.62 37.47% 

SAN 1.40% 4.45% -1.36% 94.39% 5.93% 1.56% 10.74 56.18% 

SEA 1.41% 4.00% 2.05% 77.93% 48.87% 2.71% 1.69 42.97% 

SFO 1.52% 2.09% 4.30% 82.20% 13.30% 3.10% 0.21 43.87% 

SLC 1.86% 3.19% -5.34% 56.07% 7.20% 1.73% 1.35 58.99% 

STL 0.40% 5.22% -5.31% 78.55% 4.25% 1.22% 1.08 32.04% 

TPA 0.68% -0.21% -4.62% 92.60% 4.86% 1.54% 1.04 71.14% 
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E.3.2 Results 

E.3.2.1 Original Study 

Table E.8 - Case study 3 benchmark results for original study 

Airport 

Results 

2005 2006 2007 2008 
ATL 0.4380 0.6240 0.3397 0.2879 

BOS 0.2366 0.2328 0.2255 0.2466 

BWI 0.3264 0.3237 0.3138 0.3384 

CLE 0.5526 0.6485 0.6129 0.6023 

CLT 0.7465 0.6512 0.6306 0.6463 

CVG 0.6007 0.7238 0.6866 0.7256 

DCA 0.5856 0.5730 0.5366 0.6012 

DEN 0.1819 0.1733 0.1676 0.1794 

DFW 0.1478 0.1414 0.1667 0.1667 

DTW 0.1948 0.2152 0.2257 0.2310 

EWR 0.2719 0.2743 0.2570 0.2484 

FLL 0.4116 0.4417 0.4229 0.4454 

HNL 0.6170 0.6170 0.6170 0.6170 

IAD 0.3333 0.2750 0.2677 0.2837 

IAH 0.3244 0.3537 0.3537 0.3537 

JFK 0.2500 0.2500 0.2500 0.2500 

LAS 0.2611 0.2552 0.2557 0.2699 

LAX 0.2736 0.2736 0.2344 0.3846 

LGA 0.3982 0.3812 0.3558 0.3909 

MCO 0.2624 0.2668 0.2575 0.2709 

MDW 0.8793 0.8241 0.8293 0.8935 

MEM 0.8965 0.8662 0.8646 0.9145 

MIA 0.2242 0.2299 0.2139 0.2193 

MSP 0.3163 0.3623 0.3318 0.3645 

ORD 0.1521 0.1682 0.1680 0.1691 

PDX 0.4766 0.5247 0.5336 0.5309 

PHL 0.3643 0.3603 0.3429 0.3916 

PHX 0.2952 0.2919 0.2836 0.3066 

PIT 0.5162 0.5331 0.5143 0.5470 

SAN 0.8957 0.8802 0.8805 0.9056 

SEA 0.4186 0.4182 0.4048 0.4437 

SFO 0.3750 0.3473 0.3444 0.3543 

SLC 0.9286 0.9249 0.8970 0.9645 

STL 0.4663 0.4854 0.4454 0.4516 

TPA 0.4915 0.4899 0.4846 0.4986 
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E.3.2.2 Operational Efficiency Benchmark 

Table E.9 - Case study 3 benchmark results for operational efficiency study 

Airport 

Results 

2005 2006 2007 2008 
ATL 1.0000 1.0000 1.0000 1.0000 

BOS 1.3474 1.3729 1.4223 1.3891 

BWI 1.1828 1.1039 1.3561 1.0330 

CLE 1.1697 1.0000 1.0000 1.0000 

CLT 1.0000 1.0485 1.1882 1.0000 

CVG 1.2033 1.3081 1.2315 1.2064 

DCA 1.2083 1.1313 1.3066 1.0076 

DEN 1.1026 1.2164 1.1928 1.0378 

DFW 1.0805 1.1174 1.4127 1.4438 

DTW 1.1932 1.2317 1.5150 1.1535 

EWR 1.0350 1.0211 1.0868 1.0537 

FLL 1.3237 1.1112 1.1421 1.0075 

HNL 1.0000 1.0000 1.0000 1.0000 

IAD 1.0000 1.2261 1.3136 1.0833 

IAH 1.1512 1.0549 1.0000 1.0702 

JFK 1.0000 1.0000 1.0000 1.0000 

LAS 1.0000 1.0000 1.0000 1.0000 

LAX 1.0000 1.0000 1.0000 1.0000 

LGA 1.0000 1.0000 1.0099 1.0200 

MCO 1.4668 1.2504 1.2733 1.2714 

MDW 1.0686 1.0635 1.0052 1.0000 

MEM 1.0000 1.0000 1.0022 1.0000 

MIA 1.3779 1.0773 1.1008 1.1004 

MSP 1.1738 1.1746 1.5541 1.1345 

ORD 1.0000 1.0000 1.0000 1.0008 

PDX 1.4080 1.2494 1.1566 1.2183 

PHL 1.0160 1.0578 1.0969 1.0000 

PHX 1.1041 1.0000 1.0954 1.1354 

PIT 1.4561 1.0000 1.5099 1.0000 

SAN 1.0000 1.0000 1.0000 1.0000 

SEA 1.2594 1.2410 1.2266 1.0860 

SFO 1.1371 1.2172 1.1716 1.1613 

SLC 1.1745 1.1682 1.0146 1.0181 

STL 1.2433 1.3659 1.5464 1.4612 

TPA 1.5890 1.4098 1.5389 1.3942 
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E.3.2.3 Investment Quality Benchmark 

Table E.10 - Case study 3 benchmark results for investment quality study 

Airport 

Results 

Regional growth Air service Financial factors 
ATL 0.0000 0.2784 0.3730 

BOS 0.0000 0.4413 0.5476 

BWI 0.3728 0.4695 0.5347 

CLE 0.4162 0.4861 0.5726 

CLT 0.0000 0.4128 0.0000 

CVG 0.5122 0.4726 0.5537 

DCA 0.3998 0.4207 0.5347 

DEN 0.2341 0.5012 0.3769 

DFW 0.3396 0.3034 0.2914 

DTW 0.3410 0.3968 0.5821 

EWR 0.2043 0.5369 0.5482 

FLL 0.0000 0.3274 0.5492 

HNL 0.0000 0.3918 0.5459 

IAD 0.3921 0.4563 0.5347 

IAH 0.3265 0.5411 0.0000 

JFK 0.0000 0.5478 0.5482 

LAS 0.2638 0.3582 0.3963 

LAX 0.0000 0.5099 0.5309 

LGA 0.3796 0.5355 0.5482 

MCO 0.0000 0.3499 0.5009 

MDW 0.4416 0.4828 0.5335 

MEM 0.4552 0.5495 0.5452 

MIA 0.2231 0.5425 0.5492 

MSP 0.3522 0.3450 0.5198 

ORD 0.2648 0.5376 0.5335 

PDX 0.3864 0.4714 0.4317 

PHL 0.3267 0.5243 0.5552 

PHX 0.3627 0.0414 0.3876 

PIT 0.4481 0.5186 0.5676 

SAN 0.2765 0.0000 0.4908 

SEA 0.0000 0.4897 0.4894 

SFO 0.0000 0.4838 0.4790 

SLC 0.4352 0.3200 0.4372 

STL 0.4254 0.5391 0.5499 

TPA 0.3748 0.0000 0.5377 
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