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ABSTRACT 

 

  

MAPPING AND PREDICTING COMMUNITY VULNERABILITY TO HURRICANE 

FLORENCE IN COASTAL NORTH CAROLINA USING MACHINE LEARNING 

Om Dahal, M.S. 

George Mason University, 2019 

Thesis Director: Dr. Donglian Sun 

 

 

Extreme record breaking hurricanes followed by heavy rainfall and flooding claimed 

dozens of lives and damaged billions of dollar worth of property every year in the 

Atlantic coastal areas of the United States indicating that they are most vulnerable areas 

to hurricane hazards. Nevertheless, all the communities are not equally vulnerable due to 

their varying degrees of exposure and coping abilities. Thus, it is of vital importance to 

study the extent of vulnerability in different communities for the purpose of prevention, 

preparedness, response, and recovery efforts. This study attempted to predict and 

categorize vulnerability of communities to the hurricane Florence in the New Hanover 

County, North Carolina considering hurricane and subsequent disasters as a composite 

event. The Random Forests, a data driven machine learning method, was used to predict 

and categorize vulnerability of communities in census blocks. The explanatory variables 

were created from distance features and raster datasets. The training features were 



 

 
 

selected from crowdsourced data, disaster emergency evacuation locations, and satellite 

imagery collected during hurricane events. The regression results showed 0.93 percent R2 

value with tweets, roads, elevation, NDVI, and waterbodies as top five important 

variables. The classification results showed the accuracy per variable ranging from 0.96 

to 1.00 with NDVI, roads, elevation, SPI, and tweets as top five important variables. The 

results demonstrated that the Random Forests ensemble learning method can be a 

valuable tool for categorical prediction and mapping of vulnerable communities from 

hurricanes. Furthermore, the results from both regression and classification models 

revealed that demographic variables are among the least important variables however 

they are not insignificant. It is recommended to combine all the three types of variables in 

prediction modeling for community vulnerability to hurricanes. The novel method used in 

this study may be used to identify the categories of vulnerable communities from various 

types of natural disasters in the other communities. It is also likely that predictions for 

vulnerability of buildings in the communities can be made using this method.
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CHAPTER 1 INTRODUCTION 
 
 
 

High wind and storm surge coupled with inundation are the major causes of 

infrastructure damage, loss of lives, and damage of property in the coastal United States 

(Helderop and Grubesic, 2019). The extreme weather events (e.g., hurricanes, floods, and 

fires) are increasing in number and intensity. The adverse effects on life and property are 

expected to only increase in the future as a consequence (Bouwer, 2019; Hoque et al., 

2017), and that will make coastal human communities more vulnerable (Hoque et al., 

2017). 

Understanding demography of coastal areas is vital for hurricane vulnerability 

analysis. About 94.7 million (29.1 percent of the total U.S. population) live in coastline 

regions, of which about 44.4 million people live in the Atlantic coastline. The Atlantic 

coastline witnessed 13.2 percent population growth between 2000 and 2017. The 

percentage population of 85 and older is higher in the coastline counties compared to that 

of the United States (Cohen, 2019). The population in the Atlantic coastal areas is most 

vulnerable to hurricanes due to high frequency of devastating hurricanes in this region. It 

is evident from the fact that eight hurricanes made landfall in the Atlantic coastal areas 

between 2000 and 2017, each of which caused more than $10 billion worth of damages 

(Cohen, 2019). 
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The hurricane Florence is another disaster event of most devastating impact 

occurred in 2018 hurricane season. This hurricane lasted until September 18 since it made 

landfall in September 14 with the slow motion of about 3-4 miles per hour with a zone of 

tropical storm force winds nearly 400 miles wide (Feaster et al., 2018). This hurricane 

was at the intensity of category one along the southeastern coast of North Carolina. It 

caused a total of 52 fatalities, and estimated damage of approximately $24 billion of 

which a significant portion of loss was in North Carolina having to lose power in about 

one million households. Numerous trees were uprooted due to strong force of hurricane 

winds, but most of the damages to homes and commercial buildings were caused by 

freshwater flooding, with approximately 74,563 structures being flooded (Stewart and 

Berg, 2019). The loss of agricultural farm products and livestock from the hurricane 

Florence was accounted for at least $1.1 billion (Feaster et al., 2018). 

The hurricane Florence produced 10 to 30 inches of rainfall in the New Hanover 

County and its surrounding areas due to slow movement and persistent rain bands before 

and after the hurricane made landfall that established a new highest record of rainfall in 

two decades. This extreme rain resulted in excessive low-land record breaking river 

floods across the New Hanover County. Eighteen record breaking peaks of streamflow 

were observed in North Carolina, and some of them were the highest since 1940 (Stewart 

and Berg, 2019). 

The New Hanover County is a coastline county in the tidewater area in North 

Carolina (Figure 1a). The area of this county is approximately 329 square miles, of which 

approximately 192 sq. miles (58%) is land and 137 sq. miles (42%) is water (US Census 
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Bureau, 2019). This is one of the densely populated county in North Carolina with 

232,274 population, 91,673 households, and 113,215 housing units according to US 

Census Bureau (2018). 

 

 

 
Figure 1 (a) The New Hanover County, North Carolina, (b) the hurricane Florence wind track and swath 

 
 
 

  The New Hanover County is one of the hardest hit area by the hurricane Florence 

in North Carolina coast where worst flash floods were experienced in the history of this 

locality. The Florence made landfall near Wrightsville Beach (Figure 1.b) causing up to 

three feet of flash flood that inundated Northchase, Writsboro, and Ogden neighborhoods. 

Similarly, downtown Wilmington was inundated by two feet of flood from the Cape Fear 
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River. As a result, the entire county was generally isolated from outside world due to 

access road closures for several days (Stewart and Berg, 2019). 

Since the devastating hurricane, rainfall, and flooding events occur frequently in 

the coastal United States, it is vital to learn the levels of vulnerability of different 

communities for the purpose of damage prevention, preparedness, rescue, and recovery 

efforts. Moreover, it is necessary to understand what factors should be given higher 

priority in the efforts to deal with hurricanes. Similarly, whether the extensively used 

machine learning algorithm in prediction (mainly used to predict areas of potential 

landslides and flooding), Random Forests (RF), can be useful to predict vulnerable 

communities from hurricane hazards. Thus, the set of objectives for this study are as 

follows: 

(a) To identify the level of vulnerability of different communities in the coastal 

New Hanover County, North Carolina from the hurricane Florence using geo-physical, 

socio-economic, and social media-generated explanatory variables. 

(b) To examine the usefulness and applicability of the Random Forests algorithm 

to make categorical prediction of vulnerability in coastal communities from hurricane 

hazards. 
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CHAPTER 2 LITERATURE REVIEW 
 
 
 

Disaster is an overall consequence of a hazard event (Klonner et al., 2016). 

Vulnerability is a function of exposure and coping ability, or it is an inability of people to 

deal with the hazards due to physical and social conditions of the place of their residence 

(Wu et al., 2002). Vulnerability of communities varies with their coping ability. Coping 

ability is combined derivative of resistance and resilience (Rygel et al., 2006). Also, 

levels of risks depend on the hazard intensity and levels of vulnerability. Hence, same 

hazard may have different impacts on different communities or places depending on their 

exposure and coping ability (Klonner et al., 2016). Vulnerability has been conceptualized 

as pre-existing conditions that potentially expose humans to hazards, e.g., human settled 

in hazardous areas. Loss of life and property is likely in the hazardous areas when there is 

a catastrophic natural event. This is the kind of vulnerability caused due to biophysical 

settings of the area of residence (Rygel et al., 2006). Second way of conceptualizing 

vulnerability is social vulnerability that stem from social marginalization due to age, race, 

disability, or income (Morrow, 199; Rygel et al., 2006). Assessment of social or 

community vulnerability needs to include select demographic data, essentially, disability, 

vulnerable age groups (children and aged population), and poverty (Morrow, 1999; 

Aubrecht et al., 2013). The third approach is the vulnerability of places which combines 

biophysical as well as social risk within a specific geographic area to evaluate 
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vulnerability (Rygel et al., 2006). These are multiple frameworks to explain the root 

cause of vulnerability to natural disasters from social conditions inherent in the 

community (Morrow, 1999) to biophysical environment around the community, or 

combination of both. It is crucial to consider a coupled human-environmental system to 

identify the vulnerable communities (Cutter et al., 2008).  

Identification and mapping of coastal communities at risk from hurricane hazards 

is crucial for every stage of disaster management consisting of prevention, preparedness, 

response and recovery. Use of remote sensing data analysis methods have been 

increasingly used for risk assessment from hurricane disasters (Hoque et al., 2017). This 

is promising due to the fact that large quantities of remotely sensed data are being 

collected having very high applicability in hurricane risk assessment (Zhang et al., 2019; 

Zhou et al., 2019). 

The geotagged information from Twitter, Facebook, or Flicker also have been 

proved that they have high applicability in hurricane impact study because they provide 

valuable information regarding geometries, attributes, and semantic information. The 

social media-generated data can have spatial patterns. The social media posts during 

disaster strikes are at or closer to the affected areas. Therefore, they are likely to capture 

the information regarding the effects of disasters. For these reasons, social media-

generated geographic information is a promising alternative geospatial data for natural 

hazard analysis. So, crowdsourced locations, messages, or images can be used as valuable 

complementary data for the natural disaster vulnerability models (Klonner et al., 2016). 
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Statistical, physical, and data-driven (e.g., machine learning) models were 

typically used in prediction of natural hazards risks. Even though the physical models 

have great capabilities of prediction of natural hazards risks, they require datasets 

collected from the ground, intensive computation, and high level of expertise (Mosavi et 

al., 2018). The most remarkable drawback of this modeling is that the prediction cannot 

be carried out in short time frame because of data collection efforts taking long time 

(Mosavi et al., 2018). Similarly, numerical prediction models could have systematic 

errors (Mosavi et al., 2018). In order to overcome the shortcomings of these models data-

driven prediction modeling have been widely used. The strengths of machine learning 

models are that they do not require to have the knowledge of underlying physical 

processes, quicker to develop, allow fast training, validation, testing, and evaluation. 

Moreover, this approach has outperformed the conventional approaches with higher 

prediction accuracy, and data-driven algorithms can predict beyond the range of training 

datasets spatially and temporally (Mosavi et al., 2018). Artificial Neural Networks 

(ANNs), Multiple Perception (MLP), Adaptive Neuro-Fuzzy Inference System (ANFIS), 

Wavelet Neural Network (WNN), Support Vector Machine (SVM), Decision Tree (DT), 

and Ensemble Prediction Systems (EPSs) are the algorithms have highest favorability 

among natural hazards modeling community (Mosavi et al., 2016). 

In the hurricane hazard risk analyses literature, apparently, socio-economic 

variables were preferred less than geo-physical variables to analyze vulnerability of 

coastal communities from hurricane hazards although it is a multi-variate non-linear 

problem. 
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CHAPTER 3 METHODOLOGY 
 
 
 

This study was performed as shown in the workflow diagram in Figure 2 below. 

First, explanatory variables for input to the model were selected that likely could explain 

vulnerability from the hurricane Florence. The selected data for explanatory variables 

were then pre-processed and stored in a geodatabase. Features were collected and 

categorized for training and validation data for the model and stored in the same 

geodatabase. Likewise, polygon features to receive prediction were collected and stored. 

After building satisfactory RF classification and regression models separately, they were 

executed with input distance features and raster datasets to calculate explanatory 

variables that were later used to predict the vulnerability levels and generate two different 

predicted maps from these models. 
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Figure 2 Workflow for hurricane vulnerability prediction modeling 

 
 
 

Section 3.1 Training Features 

 

NAPSG Foundation, GISCorps, and CEDR Digital maintained a Story Map 

displaying 2018 hurricane crowdsourced photos collected from Instagram, Twitter, 

Facebook and online news media (Figure 3). This is a collection of photos with the brief 

description of events by social media users illustrating the incidences (e.g., hurricane 

impact, hurricane intensity, damage, storm surge, flooding, and rescue efforts) before, 
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during, and after the hurricane event (NAPSG Foundation et al., 2018). After careful 

observation of photos and their descriptions, they were classified into four different levels 

of severity as class vulnerability categories and were assigned the numbers from 1 to 4 (1 

indicates the most at risk location, highest vulnerability, and 4 indicates the least at risk 

location, lowest or no vulnerability). Total of 99 locations within the study area were 

identified from the story map appropriate for training input. Similarly, emergency 

shelters (shelter locations designated by the New Hanover County to evacuate county 

residents during natural disaster emergencies including hurricanes and floods) were 

collected and they were considered as no risk or least risk locations. They were assigned 

to 5 and 6 in vulnerability categories. More locations were identified by observing 

satellite imagery and flood maps collected during the hurricane Florence and assigned 

numbers from 1 to 6 vulnerability categories depending on the severity of the impact 

observed. Total of 273 location points were identified for input as training features. These 

training features with their corresponding vulnerability labels are summarized in Table 1 

and displayed on the map in Figure 4a below. 
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Figure 3 2018 hurricane crowdsourced photos:  

Photos above  are powered by NAPSG Foundation, GISCorps, and CEDR Digital, a Story Map (a) upper left 

picture is a general map with cluster of locations with impacted locations; (b) upper right picture  showing 

location of damaged gas station in Wilmington, NC on 9/14/2018, (c) lower left map showing location of a 

downed tree on a house on 9/14/2018; (d) lower right picture is the location on map and an abandoned car in 

Wilmington, NC on 9/15/2018. 

 

 
 
Table 1 Vulnerability categories and number of locations for model training 

Vulnerability Category Number of Locations 

1 highest 59 

2 77 

3 51 

4 31 

5 17 

6 lowest 38 

Total 273 
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Figure 4  (a) left, training point features corresponding to Table 01, (b) right, prediction polygon features 

(census blocks) 

 
 

 

Section 3.2 Prediction Polygon Features 

 

Prediction polygon features are the features representing polygons to receive the 

results of the predictions made by the models. Since the goal of this work is to make 

prediction for vulnerability of communities, the census blocks would be ideal polygon 

features to predict on because census blocks are the areas that encompass small 

communities with distinctive geophysical and demographic similarities. The New 

Hanover County consists 5069 census blocks as delineated by the US Census Bureau in 

2010 census (Figure 4b). 
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Section 3.3 Explanatory Variables 

 

The vulnerability is due to combination of multiple geophysical, demographic, and 

socio-economic conditions of people and places where they live. These geophysical 

conditions, demographic conditions, information generated regarding these conditions, 

and information regarding hurricane itself can be defined as explanatory variables for 

hurricane disaster analysis. There is no consensus as to which factors should be given 

higher priority when categorizing vulnerability of communities from hurricanes in coastal 

areas (Bathi and Das, 2016). This work used combination of geo-physical, demographic, 

and social media-generated information as explanatory variables and found variable 

importance by a semi-automated process as discussed in the following sections. 

Geophysical variables 

1. Land use/land cover 

Sentinel-2 high resolution (10m) multispectral imagery for surface reflectance was 

used for land-use/land-cover (LULC) classification. The imagery was classified using 

Semi-automatic Classification Plugin for QGIS version 2.18. Out of 12 Sentinel-2 

spectral bands, bands 1 (coastal aerosol), 9 (water vapor), and 10 (cirrus) were excluded 

from classification dataset. The imagery was classified into nine different land-use and 

land-cover classes: (a) forest, (b) ocean, (c) river, (d) lake/pond, (e) road, (f) residential, 

(g) agricultural, (h) commercial, and (i) marsh. The Maximum Likelihood algorithm was 

used to classify the imagery, which calculates the probability distribution for the classes, 

related to the Bayesian theorem to find a pixel that belongs to the land cover class in 

training (Richards and Jia, 2006). The classified output raster then resampled to 30m 
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(Figure 7c) to reduce the number of pixels to synchronize with the processing ability of 

ArcGIS Pro version 2.2, Forest-based Classification and Regression tool.  

2. Elevation 

 3D Elevation Program (3DEP) (https://www.usgs.gov/core-science-systems/ngp/3dep), 

USGS, National Map Services collects 1/9 arc seconds (approximately 1m resolution) 

digital elevation model (DEM) (https://viewer.nationalmap.gov/basic/#productSearch) 

data. It was used as an elevation dataset for elevation explanatory variable. The DEM was 

resampled to 30m in order to overcome the computational limitation of the tool. The 

elevation of New Hanover County ranges from 0m to 30m (Figure 7b). 

3. Slope 

Slope tells steepness of a raster surface. Slope was calculated in degrees using 

DEM dataset discussed in previous section. Planar method parameter was used where 

slope is measured as maximum rate of change in value from a cell to its immediate 

neighbors. The following slope algorithm was used (Equation 1). 

Equation 1 Algorithm to calculate slope in degrees 

 Slope degrees = ATAN ( √ ([dz/dx]2 + [dz/dy]2) ) * 180/ 

Where, 
𝑑𝑧

𝑑𝑥
  is rate of change in x-direction, and  

𝑑𝑧

𝑑𝑦
 is rate of change in y-direction. Slope 

indicates the topographic change and variability of surface. Lower slope means flatter 

surface which has higher risk of flooding (Wang et al., 2015). Slope raster used as an 

input explanatory variable is shown in map (Figure 8) 

https://viewer.nationalmap.gov/basic/#productSearch
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4. Stream Power Index (SPI) 

 Stream Power Index (SPI) is a measure of power of flowing water on terrain surface. 

The higher the stream power index the more erosion it can cause downstream. Stream 

power is a hydrological factor that can condition or explain how damaging the flood 

could be (Wang et al., 2015; Lee et al., 2017). The SPI was calculated from slope and 

flow accumulation raster datasets obtained from terrain analysis of digital elevation 

models (Figure 7d). The percent rise slope was used to calculate SPI by the formula in 

ArcGIS raster calculator (Equation 2). 

Equation 2 Percent rise slope 

 SPI = Ln (Flow accumulation raster + 0.001) * ((Slope raster /100) + 0.001)). 

5. Normalized Difference Vegetation Index (NDVI) 

 Normalized Difference Vegetation Index (NDVI) measures the difference between 

near-infrared (NIR) and red values of wavelengths. NDVI values range from -1 to 1. 

Healthy vegetation has highest NDVI value, i.e., inclined towards 1 and water inclined 

towards -1. Other land cover values fall between these two extremes depending on the 

type, growth, soil moisture, and presence or absence of vegetation, snow, and soil 

roughness (Wang et al., 2015). NDVI of area of interest was computed from Sentinel-2 

imagery bands, Band 4 (Red) and Band 8 (NIR), as given by the formula in Equation 3 

below. NDVI explanatory variable used as an input is shown in map below (Figure 7c). 

Equation 3 Normalized Difference Vegetation Index 

 NDVI = 
𝑁𝐼𝑅 (𝐵𝑎𝑛𝑑 8)−𝑅𝑒𝑑 (𝐵𝑎𝑛𝑑 4)
𝑁𝐼𝑅 (𝐵𝑎𝑛𝑑 8)+𝑅𝑒𝑑 (𝐵𝑎𝑛𝑑 4)

. 

 



 

16 
 

6. Major roads 

 Major roads play a critical role before, during and after natural disasters from the 

perspective of evacuations, rescue and recovery needs. The wider roads available closer 

by a settlement the easier it will be to evacuate and provide post event assistance. As a 

result, the communities could become safer from the impacts of hurricanes and floods. 

Thus, road features can be considered as a remarkable variable to explain vulnerability 

prediction. Road features were obtained from North Carolina Department of 

Transportation (NCDOT) for explanatory variable (Figure 5b). 

7. Water features 

NC Center for Geographic Information and Analysis distributes the major 

hydrography data that include major rivers and water bodies (lakes, ponds, dams etc.) 

(Figures 5c and 5d). Rivers and other water features are the areas where floods surge 

during hurricane and heavy rainfall. People adjacent to water features could be in danger 

of being affected by flood. For this reason, this is an important addition to the list of 

explanatory variable of vulnerability prediction. 

Demographic variables 

 Poverty, gender, race, ethnicity, age, and disability are demographic indicators of 

social vulnerability. Poor people, women, children, people with disability, and aged 

people are vulnerable because of their inability to have access to resources needed to 

protect themselves when disaster strikes, and recover in the aftermath of disaster (Rygel 

et al., 2006). Age groups 0-14 and 65 and older, population with disability, and 

population with poverty are considered more vulnerable than the rest of the population in 
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the event of natural disasters such as hurricanes (Morrow, 1999). So, American 

Community Survey (ACS) 2017 data at block group level for age, disability and poverty 

were used for demographic explanatory variables (Figures 6a, 6b, 6c, and 6d). 

Social media-generated variables 

 Social media is a fundamental tool for people to discriminate and consume real time 

information regarding storm intensity, routes, damages, safety, evacuation, rescue and 

recovery. As part of data collection, real time twitter stream was downloaded using 

“#Florence” as keyword during hurricane Florence, September 14 through September 19, 

2018. Out of thousands of tweets with this hashtag from all over the world, 65 tweets 

were geo-enabled, and were posted from the New Hanover County (Figure 5a). Though 

the number is small, tweets are significant explanatory variable as they were tweeted real 

time and place as the hurricane event unfolded. Geographic information collected and 

disseminated online are crucial alternative of conventional data, and immensely useful for 

preparedness, response, and recovery in the event of natural disasters (Goodchild, 2010). 
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Figure 5 Explanatory variables: (a) tweets, (b) major roads, (c) major rivers, and (d) water bodies 
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Figure 6 Explanatory variables: (a) poverty, (b) disability, (c) children, and (d) aged population 
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Figure 7 Explanatory variables: (a) land use/land cover, (b) elevation, (c) NDVI, and (d) SPI 
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Figure 8 Explanatory variable: slope 

 
 

 

Section 3.4 Random Forest Classification and Regression 

Natural hazard risk prediction is multivariate and non-linear task (Wang et al., 

2015) due to the combined role of a number of disaster-inducing factors. Several methods 

and machine learning algorithms have been employed to solve the predictive analysis 

such as the Support Vector Machine (SVM), the Artificial Neural Networks (ANN), and 

the Decision Trees (DT). The major weakness of these algorithms is their inability to 

estimate each conditioning factors contribution to the total risk (Wang et al., 2015). The 

Classification and Regression Trees (CART) algorithm decision trees are greedy. Even 

with bagging, the trees can have structural similarities that will result in high correlation 

in predictions. However, in the RF the trees are uncorrelated or least correlated because 



 

22 
 

learning algorithms just select random sample of features from random sample of 

variables as specified in parameters (Storey, 2019). The RFs are modification of CART 

algorithms (Pourghasemi and Kerle, 2016). It is a supervised classification and regression 

method of modeling that allows growing an ensemble of trees and letting them vote for 

the most occurred class as the predicted class (Breiman, 2001). The RF is an algorithm 

capable of estimating the contribution of each factor to the total effect (Wang et al., 

2015). The RF has high forecast accuracy, acceptable tolerance to outliers and noise, and 

has ability to easy avoidance of outfitting (Wang et al., 2015). The RF algorithm 

generates numerous binary trees which collectively called forests (Park and Kim, 2019). 

In the RF, trees grow based upon a bootstrap sample. For each node, random subsets of 

samples are selected. The “out-of-bag” error rate is calculated using samples out of the 

bootstrap sample (Park and Kim, 2019). Mean decrease in accuracy and mean in the Gini 

are calculated in the process, which then are used to calculate the variable importance 

scores (Park and Kim, 2019). 

Given an observation for each tree in the model, the RF predicts outcomes using 

tree applied to an observation and store outcome as a list. If the model is classifier, it 

returns maximum count. If the model is regression, it returns average (Storey, 2018) 

(Figure 9). 
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Figure 9 Random Forests process flow based on Storey (2018) 

 

 

 

The RF algorithm relies on a parallel ensemble method known as “bagging” or 

bootstrap aggregation to generate classifiers. This is a method that averages multiple 

estimates that are measured from random subsamples of variables. A subset of 

observation are selected at random to form a subsample and used to train the model, and 

the process is repeated again to select the subset of samples from the original observation 

until the specified number of tree limit is reached. This process is known as bootstrapping 

(Storey, 2018). Random Forests is built by: specifying number of  trees, specifying 

number of variables, specifying number of features (columns) to be used in each tree, 

Then, for each tree: number of samples are selected with replacement from all 

observations.  Also, given number of features are selected randomly and a decision tree is 

trained with selected samples and features (Storey, 2018). Specified number of samples 
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selected from original dataset is known as bootstrap samples. The RF process randomly 

selects variables from the sample for each node split. An unpruned classification tree is 

grown for each bootstrap sample. Finally, all the trees are aggregated and prediction for 

the new label is performed by majority votes (Ai et al., 2014). 

Variable importance 

 Mean decrease accuracy and mean decrease Gini are widely used for measuring, 

ranking, and selecting variable importance (Park and Kim, 2019). Often in regression 

problems the drop in sum of squared errors, and in classification problems the Gini 

impurity score are calculated to estimate errors. The greater the impurity the greater the 

importance of variable (Brownlee, 2019). Gini impurity is computed by summing the 

probability of each item chosen multiplied by the probability of an error to classify that 

item into correct class (Ai et al., 2014). Gini impurity is obtained by the following 

equation (Equation 4). 

Equation 4 Gini impurity 

 G(k) = ∑ 𝑃(𝑖) × (1 − 𝑃(𝑖))𝑛
𝑖=1 , where P(i) is the probability at node (i). 

 Gini impurity of parent node is higher than that of child node (Wang et al., 2017). The 

Gini decrease of each individual explanatory variable is combined to estimate the total 

contribution of it in the prediction of vulnerability (Wang et al., 2017). The variable 

importance is calculated by the given formula (Equation 5). 

Equation 5 Variable importance 
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Where, Pk = the variable importance, m = total number of explanatory variables, n = total 

number of classification trees, t = total number of nodes, and DGkij = Gini decrease value 

of the jth node in the ith tree that belongs to the kth vatiable. Mean-squared error (MSE) is 

obtained by the given equation (Equation 6). 

Equation 6 Mean-squared error 

  ԑ = (Vobserved – Vresponse)
 2 

Where, ԑ is mean squared error, Vobserved is the variable from observed data, and Vresponse is 

the variable from result (Lee et al., 2017) 

Out-of-bag (OOB) error 

 Each tree in RF is constructed from a random sample of observations, usually called 

bootstrap samples. The observations that are left out from constructing a tree during 

classification process are called “out-of-bag” (OOB) observations, i.e., unseen data in 

classification (or out of bootstrap samples). Therefore, each tree is constructed from 

different samples from the whole dataset. The prediction for an observation is made from 

the trees for which the observations were not used to build them. The error rate estimated 

from these predictions is known as “out-of-bag” error (Ai et al., 2014; Janitza and 

Hornung, 2018). 
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CHAPTER 4 RESULTS AND DISCUSSION 
 
 
 

The Random Forests (RF) regression and classification models were constructed 

and executed using “Forest-based Classification and Regression” tool in ArcGIS Pro 2.2. 

The explanatory distance variables and explanatory raster variables described in previous 

section were used to predict hurricane vulnerability by classification and regression 

methods separately. The model was constructed based on “vulnerability levels” that were 

the variables to predict. Variables to predict were classified into 6 categories from 1 to 6 

(1 indicating the most vulnerable and 6 indicating the least vulnerable to hurricane 

hazards) as an attribute in training feature class. Thirteen vector and raster geospatial 

datasets that realistically would explain the vulnerability of communities in New Hanover 

County, North Carolina were used together as input variables in the analysis. 

Explanatory variables from distance features were calculated by first finding 

distances from the nearest input distance features to each of the input training features. 

Likewise, explanatory variables were extracted from input raster dataset for each point 

location. The distance attributes were calculated from the training features to the closest 

segments of the polygons or lines of explanatory variables. The explanatory variables 

were then used in the constructed model and vulnerability of communities was predicted 

using census blocks as prediction areas. 
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Section 4.1 Regression Results and Analysis 

Two thousand decision trees parameter was found to be optimal number of trees 

during model construction process. The prediction from regression model was made to 

census blocks to produce predicted vulnerability output corresponding to vulnerability 

levels in input training features. After the model is trained, the validation data were used 

to predict the values of the test data. The predicted values were then compared to the 

observed values to provide a measure of prediction accuracy based on data that were not 

included in the training process. 

Leaf size parameter is the number of observations required to keep a terminal 

node without further split. Minimum leaf size parameter set for this regression model was 

5, i.e., tree stopped growing after it has achieved minimum observation of 5 at its 

terminal node. Tree depth means number of nodes in each tree from root node to leaf. 

The tree depths in the forest ranged between 0-18, having 5 mean tree depth. Number of 

variables available to construct each tree was set to 100%, number of randomly sampled 

variables for each tree was 3 (square root of total number of variables, i.e., 12), and 

percent of data excluded for validation was set to 30 (Table 2). 

 

 

Table 2 Regression model characteristics 
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Variable importance is a measure of how important a variable is in the prediction 

process. The RF determines variable importance by complex interactions among the 

variables by observing how much prediction error increased when data for that variable is 

permuted while all others are left unchanged. The calculations are carried out from each 

tree, and final variable importance score is obtained. 

Mean decrease in accuracy is a measure to express the extent of contribution of a 

variable towards decreasing in accuracy of prediction during OOB error calculation. The 

variable with a large mean decrease in accuracy are more important for classification. 

The more the accuracy of a variable decreases due to the exclusion of a single variable 

the more important that variable is considered. The mean decrease in Gini is a measure of 

how each variable contributes to the homogeneity of the nodes. Each time a particular 

variable is used to split a node, the Gini for the child nodes are calculated and compared 

to that of the original node. Variables that result in nodes with higher purity have a higher 

decrease in Gini (San Diego State University, n.d.). 

 Mean squared error (MSE) is the average squared difference between the 

predicted values and the observed values. This is another measure of the quality of a 

model. The values closer to zero are better. In this model, the MSE for number of trees 

1000 and 2000 were 1.728 and 1.729 respectively. While doubling the number of trees, 

the error decreased but not significantly in regression model. 

Percent of variation explained is the determination of the degree of relationship in 

the patterns of variation, or how well the variation of one variable is explained by the 

variation of the other variable. The coefficient of determination (R2) is the measure of the 



 

29 
 

variation explained. The higher the value of R2 the higher the predictive value of the 

regression may be. There can be situations that percent of variation explained and R2 may 

be insignificant in case the number of data points is higher (Colby College, n.d.). The 

value of R2 from this model for training data and validation data were 93% and 21% 

respectively (Tables 4 and 5). This R2 value for validation data appears to be significantly 

lower than that training data. Even though this is the case, it should not be interpreted that 

the goodness of fit for validation data was insignificant and erroneous. The reason for 

that is: the quality of model should not be evaluated based solely on the value of R2, 

besides P-values and standard errors are other measures that should be taken into account 

to evaluate the quality of model outcomes (Nau, 2019; Shalizi, 2015). Shalizi (2015) even 

demonstrated that R2 can be low when the model is correct and claimed this alone most 

not be considered to evaluate the goodness of fit of any model. R2 value may be low if 

data have high amount of noise or high variance. Even though there is no any threshold to 

call R2 value good or bad for regression, it is always good to be in the position to have a 

higher value of R2 (Nau, 2019).  

Percent of variation explained may vary as the number of trees parameter is 

changed. In this case, percent of variation explained was 1.728 and 1.719 for 1000 and 

2000 trees respectively. It slightly decreased when number of trees were doubled 

indicating that predictive ability of the model increased as the number of tree parameter 

increased from 1000 to 2000. This showed that it did not make a remarkable difference in 

the ability of model to predict (Table 3). 
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Table 3 Model out-of-bag errors 

 
 

 

 

 P-value in regression analysis measures the relationship between change in 

predictor and response variables. Higher P-values means the response variable is 

insignificant for prediction (Nau, 2019). P-value of 0.05 or lower indicates a significant 

relationship with predicted outcome ( Minitab Blog, 2013). P-value in this analysis is 

zero (0) for both training and validation data. The standard errors for training and 

validation data are 0.014 and 0.048 respectively (Tables 4 and 5). These measures are 

alternatives to R2 to evaluate the model performance. This is the evidence that the 

variables used in this analysis were statistically very significant having decent 

relationship with predicted outcome. 

 

 

Table 4 Training data regression diagnostics 

 
 

 

 

Table 5 Validation data regression diagnostics 
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Variable importance ranked in Table 6 and Figure 10 demonstrate the 

contribution of each explanatory variable to predict the vulnerability situation of 

communities in the study area from hurricane Florence using regression model. Tweets, 

roads, elevation, and NDVI have highest contribution for predicting the vulnerable 

communities, whereas water body, land use/land cover, slope, demographic variables, 

and SPI have moderate contribution, yet not so much insignificant. 

 

 
Table 6 Variable importance output from the RF regression model 

 
 

 

 

 
 Figure 10 Summary of variable importance from RF regression model 
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The regression analysis predicted approximately 47 percent census blocks (2311) 

to category two, 31 percent (1538) to category 3, and the rest to category one, four, and 

five (Table 6 and Figure 11). Figure 12 shows vulnerability categories by explanatory 

variables indicating nearly 57 percent of the communities corresponding to the census 

blocks had highest level of vulnerability, 31 percent communities were moderately 

vulnerable, and the rest, 12 percent, had lower level of vulnerability to the risk associated 

to the hurricane Florence. Also, it is evident from the predicted map that generally the 

areas around the water features (ocean and rivers) and lowland areas have higher 

vulnerability than the areas away from these features (Figure 11). 
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      Figure 11 Predicted categories on census blocks from RF regression 
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Table 7 Predicted categories by number of census blocks from RF regression model 

 
 
 
 

Figure 12 Predicted categories for different explanatory variables on census blocks  

from the RF regression model  
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Section 4.2 Classification Results and Analysis 

One thousand was found to be optimal number during classification model 

construction process for decision trees parameter. The prediction from classification 

model was made to census blocks for predicted vulnerability output corresponding to 

vulnerability categories in the input training features. Explanatory variables were 

calculated from distance feature and raster datasets. Ten percent of training data were 

exclude from training the model for validation. The validation data were used to predict 

the values of the test data after the model was trained. The predicted values were then 

compared to the observed values to provide a measure of prediction accuracy based on 

the variables that were not included in the training process. 

Leaf size parameter is the number of observations required to limit a terminal node 

from further split. Minimum leaf size parameter set for the classification model was 1, 

i.e., tree stopped growing after it achieved minimum observation of 1 at its terminal node. 

Tree depth means the number of splits from its root node to terminal node. The tree 

depths in the forest ranged between 0-115 with a mean tree depth of 47. Number of data 

available to construct each tree was set to 100%, and number of randomly sampled 

variables for each tree was 4 (approximately one third of the total number of variables, 

i.e., 12) (Table 8). 
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Table 8 Classification model characteristics 

 
 

 

 

Following measures are often used to measure the accuracy of a model and 

dependability of predicted output in supervised classification problem. 

(a) Confidence: It is also referred to as “Precision.” It indicates the proportion of 

predicted positives that are real positives. This is a measure of accuracy of predicted 

positive rather than that of true positives (Powers, 2007). Confidence is given by 

Equation 7: 

Equation 7 Confidence 

Confidence = 
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 

(b) Sensitivity: It also referred to as “Recall.” It is the proportion of true positives 

that are predicted as positive. It describes the effectiveness of model to predict positive 

cases as positive (Powers, 2007). Sensitivity is given by the Equation 8: 

Equation 8 Sensitivity 

Sensitivity = 
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 

(c) Accuracy: It measures systematic errors and statistical bias. It is a nearness of 

a predicted value to an observed value, or it measures how close the predicted values are 

to the actual values. The best accuracy value is 1.  Accuracy is given by the formula in 

the Equation 9: 
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Equation 9 Accuracy 

Accuracy = 
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+ 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 

In this classification model, the accuracy of vulnerability categories for training 

data were near perfect (0.96) to perfect (1.00) indicating that the predicted outcomes were 

as expected. Similarly, the accuracy for validation data for vulnerability categories 

ranged between 0.70 and 0.85 which were not so much far off the training accuracy.  

(d) F1 Score: it is the harmonic mean of precision and recall and is used to 

measure prediction accuracy. F1-score is given by the Equation 10: 

Equation 10 F1-score 

F1-score = 2.  
𝑃𝑟𝑒𝑐𝑖𝑜𝑛  .  𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 

F1-score or harmonic mean of training data for all categories ranged between 0.94 and 

1.00, whereas F1-score of validation data for categories 3, 4, and 6 were lower than 

expected (Table 09 and 10). 

(e) Matthews Correlation Coefficient (MCC): It is a model performance measure 

of binary classification by taking true positive, true negative, false positive and false 

negative into account. This is a correlation coefficient between observed and predicted 

binary classification. This is an appropriate measure of prediction accuracy when there 

are very imbalanced data with different class sizes (Boughorbel et al., 2017). The values 

in this measure range between -1 and 1 (-1 indicates total disagreement and 1 perfect 

correlation) (Liu et al., 2015). The Matthews Correlation Coefficient is given by the 

Equation 11: 
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Equation 11 Mathews Correlation Coefficient (MCC) 

MCC = 
𝑇𝑃𝑥 𝑇𝑁−𝐹𝑃 𝑥 𝐹𝑁

√(𝑇𝑃+𝐹𝑃)(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁)
 

The Mathews Correlation Coefficient for training data ranged between 0.95 and 

1.00 in this analysis confirming the high level of correlation between observed data and 

predicted outcomes for all vulnerability categories. Nevertheless, MCC for validation 

data for vulnerability for all categories were lower than MCC for training data. MCC for 

category 4 is -0.18. Despite one negative value, overall correlation of validation data and 

predicted outcome was high enough to indicate that there was better degree of correlation 

between observed data and predicted outcome (Tables 9 and 10). 

 

 
Table 9 Classification model training data diagnostics 

 
 
 

 

Table 10 Classification model validation data diagnostics 
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Model “out-of-bag” (OOB) error (Table 11) shows average mean squared error 

(MSE) and MSE for each vulnerability category for the data that were excluded for trees 

construction. The average MSE decreased from 75.248 to 67.778 when number of trees 

were increased from 500 to 1000. The MSE increased for category 4 but MSE for 

category 5 did not change. 

 

 

Table 11 Classification out of bag errors 

 
 

 

 

Variable importance rank (Table 12 and Figure 13) shows the contribution of each 

explanatory variable to predict the vulnerability situation in the study area from hurricane 

Florence using the RF classification model. NDVI, roads, SPI, elevation, and tweets 

appeared have highest contribution in predicting the vulnerable communities, whereas 

water body, land use/land cover, slope, and demographic variables had moderate 

contribution. Despite low importance score, the contributions of demographic variables 

were not insignificant. 
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Table 12 Variable importance output from RF classification 

 
 

 

 

 
Figure 13 Summary of variable importance from classification model 

 

 

 

The classification model predicted approximately 44 percent census blocks (2121) 

to category one, 27 percent (1339) to category two, and the rest to category three, four, 

five, and six (Table 13 and Figure 14). Figure 15 shows vulnerability categories by 

explanatory variables, and it indicates nearly 71 percent of the communities 

corresponding to the census blocks had highest level of vulnerability, nearly 16 percent 
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communities were moderately vulnerable, and the rest (nearly 13 percent) had lower level 

of vulnerability to the risk attributed to the hurricane Florence. Also, it is evident from 

the map generated by prediction that the census blocks that are closer to the water bodies, 

and lowland areas appeared to have higher level of vulnerability than to the areas away 

from these physical features (Figure 14).  

 

 

 
       Figure 14 Predicted categories on census blocks from RF regression 
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Table 13 Predicted categories by number of census blocks from classification model 

 
 

 

 

 
Figure 15 Predicted categories for different explanatory variables on census blocks from RF 

classification model 
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Section 4.3 Comparison between Regression and Classification Outputs 

 The Figure 16 below elucidates the differences between the prediction from RF 

regression and classification models. In order to compare the results a quantile method 

was used which distributes the observations equally across the class interval giving 

unequal class widths but it keeps the same frequency of observation per class. 

 

 
          Figure 16 Predicted vulnerability categories:  left from RF regression and right from RF classification 

 

  This comparison revealed that apparent tendency of both models is to predict the 

census blocks away from large water bodies and higher elevation to lesser vulnerability 

categories. The regression model did not predict any census blocks to category 6, it 

predicted low number of census blocks to category 1, and it predicted higher number of 

census blocks to category 2. On the other hand, regression model predicted very low 
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number of census blocks to category 4 but higher number of census blocks to category 1. 

Despite these inconsistencies in the results, both models inclined to predict very high 

number of census blocks to the higher vulnerability categories and very low number of 

census blocks to the lower vulnerability categories. Further exhaustive investigation into 

the behaviors of these regression and classification models is required to understand this 

dissimilarity in the predicted outputs. 
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CHAPTER 5 CONCLUSIONS 
 
 
 

The trend of extreme hurricane events and frequency are increasing in the 

Atlantic coastal areas making coastal communities more vulnerable every year. 

The population in the United States coastal areas is growing that increases the 

chance of causing loss of more lives and damage of more properties if a hurricane 

strikes the populated areas. The hurricane Florence made landfall in the New 

Hanover County, North Carolina as a category one storm and caused at least 24 

billion dollar worth of property damage and loss of dozens of human lives. The 

damage on property and loss of human lives was mainly due to record breaking 

heavy rainfall and flooding. The area of this study, New Hanover County, is a 

coastal county comprising approximately 42% of water area. This is one of the 

main reasons New Hanover County witnessed most dangerous inundation flood 

resulting to be isolated from the rest of the world for several days. 

Geospatial predictive analysis of vulnerability to hurricane hazards were 

only occasionally preformed using the RF classification and regression modeling 

in the studies thus far. Moreover, geophysical variables were preferably used 

rather than combined use of socio-demographic and social media-generated 

variables to carry out hurricane vulnerability modeling. Given the fairly lack of 

researches with the use of combination of variables that potentially can better 
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explain vulnerability to hurricane, this work attempted to use demographic and 

social media-generated in addition to geophysical variables to initiate a new 

discourse in data modeling for hurricane vulnerability prediction. The objectives 

were to make categorical prediction and mapping vulnerable communities by the 

RF machine learning algorithm. 

The vulnerability levels of communities vary with the variation in 

demographic, socio-economic, and physical-environmental conditions of the 

place, i.e., exposure and coping ability. It is indispensable to consider coupled 

human-environment system when mapping vulnerability from natural hazards.  

Among statistical, physical, and data-driven models used to predict natural 

hazards, data-driven methods were proved to be the most useful. Thus, machine 

learning method with combination of geo-physical, demographic and social 

media-generated variables were used as explanatory variables for predicting 

vulnerability at the level of census blocks. Land use/land cover, elevation, NDVI, 

SPI, slope, major roads, major rivers, and water bodies were geo-physical 

variables; poverty, disability, and age were demographic variables; and tweets 

posted during hurricane event were social media-generated variable used to feed 

into the RF classification and regression models. Training data were collected 

from three different sources: (a) crowdsourced location features with photos from 

Instagram, Twitter, Facebook and online news media during the hurricane 

Florence; (b) the New Hanover County designated safe emergency shelter areas; 

and (c) imagery captured during hurricane event. Total of 273 point locations 
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were used as labelled feature data for model training. The census blocks were 

used as prediction polygon features since they represented areas with geophysical 

and demographic similarities. 

The RF is extensively used data modeling algorithm in natural hazard risk 

prediction such as landslides and floods. However, the uses of this modeling 

technique have been found to be very infrequent in hurricane vulnerability 

predictions. The RF is a supervised classification and regression method of 

modeling by growing ensemble of trees and selecting the predicted class by 

majority count or averaging. The trees grow based upon bootstrap samples, and 

the “out-of-bag” error rate is calculated using samples out of the bootstrap 

samples for validation. Variable importance is a fundamental output from the RF 

because it can be used to evaluate which variables are more useful than others to 

describe the vulnerability to the disaster event. 

For prediction by the RF regression, two thousand decision trees was used 

as a number of tree parameter. Similarly, three randomly sampled variables for 

constructing each tree was allowed, and 30 percent data were excluded for model 

validation. The MSE for number of trees 1000 and 2000 were 1.728 and 1.729 

respectively in regression model. It revealed that while doubling the number of 

trees the error decreased, but not significantly. Therefore, 2000 trees were 

considered an optimal number. However, the predictive ability did not appear to 

have increased remarkably by increasing the number of trees. Having R-squared 

value 0.931, P-value 0.000, and standard error 0.014 showed that variables used 
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were statistically significant having good relationships with the predicted 

outcomes. Even though R-squared value (0.210) appeared lower than expected, 

and standard error (0.048) appeared higher for the validation data compared to the 

data used to train the model, P-value of 0 indicated there was still a better 

relationship between observed and predicted values. The variables, including 

tweets, roads, elevation, and NDVI appeared to have high importance for 

vulnerability prediction from hurricane using the RF regression model. 

For classification model, 1000 decision trees was found to be an ideal 

number. Number of randomly sampled variables were 4 and percent of training 

data excluded for validation was 10. The classification accuracy of training data 

for different variables in this model ranged from 0.96 to 1.00, and that of 

validation data ranged from 0.70 to 0.85. The classification “out-of-bag” errors 

generally decreased from increasing number of decision trees from 500 to 1000 

for most of the vulnerability categories. NDVI, roads, elevation, SPI, and tweets 

appeared to be the most important variables, whereas age, poverty, and disability 

are least important variables. Even though the demographic variables were least 

important, their percent importance values showed that they were not trivial 

either. 

Both regression and classification results showed that geophysical and 

social media generated variables had higher weight in terms of importance than 

demographic variables. The communities in the majority of census blocks had 

highest level of vulnerability, whereas just around one tenth of the communities 
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were least vulnerable in study area from the hurricane Florence. Despite some 

inconsistencies in results between regression and classification, both models 

inclined to predict very high number of census blocks to higher vulnerability 

categories and very low number of census blocks to lower vulnerability 

categories. Results from regression appeared to be more appealing than result 

from classification in terms of categorizing the communities to different 

vulnerability categories. 

Conducting predictive analysis for vulnerability to hurricane risks using 

the RF algorithms for predicting the location of vulnerable communities is highly 

encouraged in the future works. Community vulnerability to hurricanes should be 

performed prior to hurricane strikes so that the findings help to reduce the loss. 

The novel method used in this study may be used to identify the categories of 

vulnerable communities from various types of natural disasters in the other 

communities. It is also highly likely that the prediction of vulnerability to 

hurricanes can be performed for each building in the hurricane affected or 

potentially affected communities. 
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