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“Climate variability” is defined as the temporal variations of the atmosphere-ocean system 
around a mean state. The term “natural climate variability” is further used to identify climate 
variations that are not attributable to or influenced by any activity related to humans (American 
Meteorological Society, 2021). Regarding “climatic trends”, those are defined as a climate 
change characterized by a reasonably smooth, monotonic increase or decrease of the average 
value of one or more climatic elements during the period of record (American Meteorological 
Society, 2021).  
 
The variability of precipitation has two dimensions in climate. The first one is how precipitation 
departs from the average over a number of years, say the 1990–2020 mean over the 1960–
1990 mean, at each location on the globe. The second one is how to gauge climate variability 
as a whole looking at precipitation. The latest is the province of studies analyzing the dominant 
modes of variability and includes research on the Pacific Decadal Oscillation (PDO), the 
Atlantic Multidecadal Oscillation (AMO), the Indian Ocean Dipole (IOD) and the El Niño 
Southern Oscillation (ENSO). Good climate models correctly simulate the Madden-Julian 
Oscillation (MJO), ENSO and the mean Intertropical Convergence Zone (ITCZ). Those 
processes are also precisely identified as a fingerprint in the precipitation field. Thus, satellite 
precipitation estimates are fundamental to achieve a proper representation of such climate 
variability and to validate models (cf. Chapter 2.3 below).  
 
Precision and accuracy of the precipitation estimates are both important, as is the global scope. 
It is known that the changes in global mean precipitation are determined by changes in 
radiative cooling of the atmosphere (Stephens and Ellis, 2008), so it is extremely important to 
be as precise as possible in determining such changes to understand changes in the radiative 
forcing, either by natural or anthropogenic causes. Regional estimates are also a must. In the 
tropics, mean precipitation and the extreme of the distribution is largely dominated by 
organized mesoscale convective systems (Roca et al., 2014; Rossow et al., 2013), and the 
trends in precipitation are related to the fate of organized convection (Tan et al., 2015). Latent 
heating algorithms that have been developed for satellite rain data diagnose the 
convective/stratiform partitioning from characteristics of the rain and reflectivity fields to 
produce realistic heating profiles and thus to improve the modeling of the climate variability. 
Indeed, model parameterization errors become obvious only when higher-order variability 
metrics such as PDO, AMO, IOD, MJO and ENSO are used. The continental diurnal cycle, 
which depends on the timing of the transition from bottom-heavy to top-heavy latent heating 
profiles, is also relevant for climate variability and trends analyses. In fact, precipitation was 
instrumental in documenting the existence and propagation of MJO anomalies (Madden and 
Julian, 1994; Del Genio et al., 2015; Wang et al., 2015). Here, the advantage of precipitation 
over the more commonly-used outgoing longwave radiation (OLR) is that OLR anomalies over 
the Maritime Continent can be affected by the fairly ubiquitous high cloud cover. Instead, the 
rain anomalies have proved to be very helpful in isolating the onset phase of the MJO, when 
shallow and congestus rain dominate as the biggest sources of error in GCM cumulus 
parameterizations and in preventing the development of a robust MJO. This particular case 
illustrates that it is precisely because of its complexity that precipitation can be superior to other 
variables: OLR-based indices of convection greatly overestimate surface rain over Africa, 
because they sense only the high cold clouds and cannot tell that rain is evaporating more 
strongly into the relatively dry lower troposphere there and not reaching the ground to the 
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extent that it does in humid regions such as the Amazon (Liu and Zipser, 2005; Ling and 
Zhang, 2011).  

Regarding the ENSO, a precipitation-based definition of an extreme El Niño event (those 
events for which the Niño-3 rainfall index is above 5 mm day–1) has been proposed. It is based 
on the precipitation anomalies averaged over the Niño-3 (5°S–5°N, 150°–90°W) region (Cai et 
al., 2014, 2017). Based on this precipitation-based index, Cai et al. (2014) analyzed Coupled 
Model Intercomparison Project (CMIP) phase 3 (CMIP3) and CMIP5 models and found a 
doubling in the occurrence of extreme El Niño events in the future in response to greenhouse 
warming, while no significant change in statistics in extreme El Niño events is found based on 
the “classical” Niño-3.4 SST index. Power et al. (2013) also shows that ENSO-driven 
precipitation exhibits a clearer longer-term change than SST anomalies. Thus, precipitation 
may be seen as a better field to reveal, diagnose and quantify the nonlinear relationship 
between the variability in the climate system and changes in mean state. There is more 
evidence on the central role of precipitation: the precipitation response to SST during strong El 
Niño events encapsulates the process associated with the nonlinear amplification of the 
Bjerknes feedback (Takahashi and Dewitte, 2016) and therein can be considered a better 
metric of El Niño–Southern Oscillation (ENSO) extremes than SST anomalies alone. Thus, the 
relationship between precipitation in the eastern equatorial Pacific (Niño-3 region) and the SST 
gradient near the equatorial region during El Niño exhibits a marked nonlinear pattern that 
enhances or eases the detection of extreme events.  

There are many available precipitation datasets suitable for climate validation (Tapiador et al., 
2017). The existence of different approaches and merging methods is a plus in climate 
variability and trends studies. When satellite estimates differ, important information is revealed. 
Identifying trends and breakpoints in precipitation series is not trivial, but has proved useful in 
the context of validating climate models (Figure 2.2.1, Tapiador et al., 2018; Tan et al., 2015). 
For example, the considerable discrepancy between passive microwave and radar estimates of 
rain rate in the eastern Pacific ITCZ (Liu and Zipser, 2013) revealed that assumptions about the 
depth or microphysical properties of rain-producing clouds are valid. While the issue has been 
known for a long time, the specific details, and crucially the mechanistic description, are better 

Figure 2.2.1. Time series of tropical (30S–30N) precipitation (mm/day) over land for 1980–2000. From 
Tapiador et al., 2018 
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expressed in terms of precipitation. Therein, it is important to keep and maintain a host of 
precipitation datasets from different sources and methodologies. Single, one-instrument and 
multisource datasets are both valuable for analyzing different aspects of the climate variability 
and the trends. Section 2.4 below delves more deeply into the nature of 11 comprehensive 
datasets and acknowledges that none of them can be considered as the “true” representation 
of global precipitation. A first-order metric such as the global (60N-60S) mean precipitation over 
land can vary from 1.81 mm/day (GSMap) to 2.33 mm/day [PERSIANN-Climate Data Record 
(PERSIANN-CDR)]. Differences in the polar areas are larger. Such discrepancies raise several 
challenges on the appropriate approach to follow in the validation of climate models for present 
climate simulations (cf. Chapter 2.3 below). Careful consideration of the algorithmic choices 
and the sampling errors (cf. Chapter 1.1 above) is also required when these datasets are used 
for analyzing climate variability and trends. Large uncertainties in extremes in both reanalysis 
and observations (Chapter 2.5 below) also raise issues on their fitness-for-purpose on this 
realm. Error modeling (Chapter 3.2 below) is fundamental for the use of satellite precipitation 
datasets for these applications.  
 
There are more examples of the need for satellite precipitation data in climate variability 
research. Processes of SST-wind-precipitation interaction are also likely involved in long-term 
trends and variability in the surface circulation in the tropics (Tapiador et al., 2019). For 
instance, while in the subtropical eastern boundary upwelling regions, an increase of the 
equatorward winds is expected (and observed in some regions) owing to the poleward 
displacement and intensification of the anticyclone/Hadley cells. In the tropical Pacific region, 
the trends in upwelling-favorable winds are more ambiguous and are sensitive to concurrent 
changes in SST and rainfall, as observed off Peru from coupled model experiments (Belmadani 
et al., 2014). Therefore, processes associated with moist convection and subsidence in the far 
eastern Pacific are likely important to understand trends in upwelling systems, and their 
investigation will benefit from precipitation observations and will require model evaluations 
based on those. 
 
Regarding climate variability in precipitation, the fingerprints have been observed following 
different methods and approaches (Hidalgo et al., 2017; Kenyon and Hegerl, 2010). The impact 
of anthropic activity in climate variability is a major driver (Vera et al., 2019). Multidimensional 
analyses involving other environmental sciences also require detailed precipitation data 
(Trauernicht, 2019; Suarez and Kitzberger, 2010). The use of precipitation data for analyzing 
extremes in the climate variability realm is also valuable (van Pelt et al., 2015; Shawul and 
Chakma, 2020; Liu and Allan, 2012; Ummenhofer and England, 2007; Teegavarapu, 2016). 
Precipitation estimates over the poles are also of interest: Antarctica is significantly colder and 
more prone to climate variability than the Arctic, although both regions are strongly responsive to 
large-scale variability including the northern and southern annular modes (Screen et al., 2018).  
 
To conclude this section, it is worth noting that climate variability and trends are relevant for a 
number of applications. Climate services are mostly targeted at informing adaptation to them, 
widely recognized as an important challenge for sustainable development. The role of satellite 
precipitation datasets is central in this realm. Better identification of the modes of climate 
variability, the definition of new precipitation-based metrics and novel methods to gauge trends 
and changes, all depend on the continuous availability of long, continuous and global 
measurements of liquid and solid precipitation (cf. Chapter 3.1 below). The need to continually 
improve the precipitation estimates from satellite and new developments in the observation 
network should follow the path imposed by progresses in modeling. 
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