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ABSTRACT 

AN ANALYSIS OF DISTURBANCES IN CRITICAL ENERGY INFRASTRUCTURE 
THROUGH SOCIAL MEDIA 

Katelyn Thomas, M.S. 

George Mason University, 2018 

Thesis Director: Dr. Arie Croitoru 

 

The onset of power grid failures and outages due to severe weather happen 

instantly. During a cyclonic weather event, critical infrastructure sustains damages and 

can be destroyed from tropical-force winds, storm surge, flooding, and tornadoes. 

Electricity is the most vulnerable infrastructure to severe weather impacts. Often, 

damages to electrical equipment and their impact can be hard to locate. Also weather 

conditions may not permit for a safe dispatch to locate, assess, and repair utility 

equipment. Therefore, this study is tasked to examine how social media users report 

blackouts and damages to electrical equipment of utility providers. Specifically, it aims to 

explore the possible relationship between the volume and the spatial footprint of weather 

and power-related tweets to the spatial extent of power outages reported by utility 

companies. Social media platforms, such as Twitter, now play a pivotal role in crisis 

management during severe weather events. However, limited research has been 
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completed on the concept of using social media to predict future disruptions in the energy 

grid. In order to determine whether or not this concept is feasible, a geosocial, 

spatiotemporal, and geospatial analysis are carried out, examining the relationships 

between social media usage and power outages in two case studies: Hurricane Harvey 

(2017) and Superstorm Sandy (2012). The results of these case studies suggest that, at 

least in some cases, social media can serve as a possible information source about the 

occurrences and the spatial extent of power outages due to extreme weather events. 
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1 INTRODUCTION 

Hurricane Harvey was a record-breaking hurricane that struck the Texas coastline. 

Hurricane Harvey became the first major hurricane (category 3 or higher) to hit the Texas 

coast since Hurricane Brett in 1999, the first hurricane to strike the Houston area since 

Hurricane Ike in 2008 [1], and the first major hurricane to make a United States landfall 

since Hurricane Wilma in 2005. On August 25th, Hurricane Harvey made landfall 

between Port Aransas and Rockport, Texas as a destructive category 4 hurricane. After 

making landfall, Harvey continued moving in an easterly direction before its center of 

circulation stalled over southeast Texas on August 26th.  Over the next four days, the slow 

forward momentum caused devastating flooding and catastrophic damage. The Harris 

County Flood Control District reported a total of 1 trillion gallons of water fell across 

Harris County over the four-day period [2].  

 

Superstorm Sandy was also a once in a lifetime storm, whose track took aim at the 

United States’ east coast, placing nearly 50 million people in harm’s way. At the time of 

its landfall, Sandy was the second costliest storm to ever hit the U.S. [3]. Also, Sandy 

holds the record for the largest diameter of a tropical cyclone [3]. The track of powerful 

Sandy proved to be a worst-case scenario for the mid-Atlantic states. As Sandy tracked 

north, it merged with an Arctic air mass and begun to lose some of its tropical 
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characteristics; no longer a hurricane, Sandy earned the title of superstorm. Late on 

October 29th, Sandy made its landfall near Brigantine, New Jersey as a post-tropical 

cyclone [3]. Landfall occurred simultaneously with high tide, which resulted in record 

tide levels [4]. Superstorm Sandy delivered strong winds, record flooding, extensive 

rainfall, and even a blizzard to the east coast— and is often referred to as a perfect storm. 

Overall, 24 states were impacted by Superstorm Sandy and years later are still in 

recovery [5].  

 

As a result of Hurricane Harvey and Superstorm Sandy, several states experienced 

severe damage to critical infrastructures. For this study, critical infrastructure is defined 

as sectors whose assets, systems, and networks, whether physical or virtual, are 

considered so vital to the United States that their incapacitation or destruction would have 

a debilitating effect on security, national economic security, and/or national public health 

or safety [6]. Since the energy sector sustained damages from Harvey and Sandy, which 

negatively impacted security, economic security, and public health, it will serve as the 

focal point of this research study. 

 

During Hurricane Harvey, Texas’ energy sector suffered major damages which 

led to widespread power outages. The power outages stemmed from utility poles and 

transmission structures that were knocked down, destroyed or flooded. The severe 

flooding prevented utility crews from reaching damaged equipment and extended the 

duration of outages. Also, all flooded electrical equipment and circuit breakers had to be 



3 
 

inspected by utility crews before they could reactivate and restore electricity. Four major 

power and utility pools that were affected were American Electric Power Texas (AEP 

Texas), Electric Reliability Council of Texas (ERCOT), CenterPoint Energy, and Entergy 

Corp [7]. Overall, power outages were felt by 1.7 million customers across fourteen 

different power and utility pools [7] [8]. The longest outage lasted more than 12 and a 

half days [7]. The number of Texas outages (within a 24-hour period) peaked on August 

29th with 312,698 customers without electricity. The peak of Louisiana’s power outages 

(within a 24-hour period) occurred on August 30th with 11,857 customers without power 

[8].  

 

In the aftermath of Superstorm Sandy, 21 states’ energy sectors were affected. 

Similar to Hurricane Harvey, power outages originated from downed utility poles and 

flooded transmission structures. In the following days, electrical structures remained 

underwater making it impossible to restore power until the water receded. Power outages 

affected 8.5 million customers [3] across 22 electric and utility companies [9]. The lapse 

in electricity was felt as northern as Maine, southern as North Carolina, and western as 

Illinois [10]. The longest outage lasted over 14 days [9]. The total number of customers 

without electricity peaked on October 30th with 8.2 million customers [10]. Also, on this 

day the percentage of customers without power in the states of New Jersey and New 

York peaked at 65% and 23%, respectively [10].   
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One of the most common ways utility companies are notified of a power outage is 

by its customers calling to report an outage in their neighborhood. During a catastrophic 

weather event, such as Hurricane Harvey and Superstorm Sandy, cell towers become 

clogged due to the high volumes of incoming and outgoing calls. Ideally, phone lines 

should be used only in cases of emergencies. Therefore, social media platforms, such as 

Twitter, can potentially offer the best avenue to deliver reports of down power lines, 

damages to electric equipment, and power outages. Tweets with geographic information 

or that are geotagged could allow utility technicians to quickly locate outages and 

possibly damaged electrical gear. Geotagged tweets with pictures enable utility 

technicians to visually assess environmental conditions and damaged equipment before 

dispatching a team for repairs. Twitter data can also aid utility providers in prioritizing 

critical areas by the hardest hit regions.  

 

The integration of social media into every aspect of our lives, now offers 

assistance in a plethora of diverse disciplines. In extreme weather events, especially 

hurricanes, dangerous weather conditions can develop suddenly. These dangerous 

conditions have the potential to abruptly cause widespread blackouts. Additional 

resources, such as social media, could assist in pinpointing impacted areas experiencing 

power outages faster than traditional reporting. As a result, an increase the volume of 

Twitter activity could potentially identify areas with active power outages. Possibly, 

utility and electric companies could utilize the concept of event detection in social media 

platforms to serve as an extra form of verification. Current research explores whether 
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Twitter can play a pivotal role in crisis management before, during, and after severe 

weather events.  

 

This introduction provides brief glimpses into selected topics, motivations, and 

possible uses for this research. Related research that is complementary to themes 

explored throughout this introduction and research study will be introduced in chapter 2. 

Topics covered include volunteer geographic information and event detection in social 

media and background information about Hurricane Harvey, Superstorm Sandy, and the 

U.S. energy grid. The following chapter, chapter 3, will present the objectives and 

research questions. Then, the data sources and their structures and characteristics are 

discussed in chapter 4. Chapter 5 outlines the methodology used to analyze and answer 

each research question defined in chapter 3. The results from each analysis are displayed 

in chapter 6 and are further discussed and analyzed in chapter 7. Lastly, chapter 8 will 

state this study’s findings, discuss the challenges and limitations, and possible areas for 

future research.  
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2 LITERATURE REVIEW 

The literature review provides a glimpse into related research and scientific 

studies. The supplied literature provides brief introductions to the meteorological 

histories of Hurricane Harvey and Superstorm Sandy, social media’s role in volunteered 

geographic information, event detection in social media, the U.S. energy grid, and 

advancements in power outage detections. This literature review aids in understanding 

the purpose of selected research questions, data sources and analysis techniques 

harnessed by this research study. The given literature review arms the reader with 

contextual knowledge of event detection in social media and how it can be utilized to 

detect disturbances in critical infrastructure due to the aftermath of Hurricane Harvey and 

Superstorm Sandy.  

 

2.1 Meteorological History of Hurricane Harvey 

On August 13th, the National Hurricane Center (NHC) began to monitor an area 

of low pressure located southwest of the Cape Verde Islands [11]. Like many powerful 

hurricanes, Hurricane Harvey originated as a tropical wave off the west coast of Africa. 

Six hours later, the area of low pressure was upgraded to Tropical Storm Harvey [12]. As 

Harvey transverse westerly across the Atlantic Ocean, the system was weakened by 

upper-level wind shear and degenerated to an open wave [13]. However, in just 56 hours 
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over the Gulf of Mexico, Harvey underwent a period of rapid intensification and grew 

from a regenerated tropical depression into a category 4 hurricane [14]. On August 25th, 

Hurricane Harvey made landfall between Port Aransas and Rockport, Texas. Harvey 

broke the previous record of 54 hours by remaining a named storm for 117 hours after 

making a Texas landfall [15]. Within 24 hours of making landfall, the eye of Harvey 

begun to stall over south Texas before it gradually drifted back into the Gulf of Mexico 

[14]. Hurricane Harvey made a second landfall near Cameron, Louisiana on August 30th.  

 

 
Figure 1: Observed 7-Day precipitation over southern Texas. Source: [14] 

 

As Hurricane Harvey’s 130 mph winds pushed ashore, homes and infrastructures 

were destroyed by its powerful wind bands and storm surge. Although, Harvey spawned 

off numerous tornadoes reaching from Texas to Tennessee [14], the most widespread 
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damages were attributed to its monumental rainfall totals. The Federal Emergency 

Management Agency (FEMA) estimates over 19 trillion gallons of rainwater fell over 

parts of Texas [16]. Within seven days, over 6.7 million people within a 29,000-square 

mile area had received at least 20 inches of rain [17]. Historically, Harris County 

typically receives 50 inches of rainfall a year. However, as a result of Harvey stalling 

over southeast Texas, over two dozen rainfall gages registered seven-day readings 

topping 40 inches (Figure 1) [2]. The largest rainfall total ever recorded in the continental 

United States from a single storm was felt by Houston (51.88 inches) as a result of 

Hurricane Harvey [16]. Houston received a year worth of rain within seven days, 

resulting in approximately 780,000 Texans forced to evacuate their homes.  

 

After the storm passed, roughly 42,000 Texans were left in temporary housing 

across 692 shelters [16] and a total of 176,219 homes were impacted by Harvey [18]. 

Harris County’s 22 watersheds and approximately 120,000 structures and infrastructure 

were flooded [2]. Twenty-four hospitals were evacuated, 61 communities lost drinking 

water capability, 23 ports were closed, and roughly 780 roads were impassable [16]. Over 

the time period of Harvey, there were 122,331 people and 5,234 pets rescued by local, 

state and federal first responders. Despite emergency services working around the clock, 

Texas officials report approximately 80 people died as a result of Hurricane Harvey [19]. 

Texas Governor Abbott estimates the total damage from Hurricane Harvey is between 

$150 billion to $180 billion [20]. 
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Figure 2: Highlighted counties (in red) were declared disaster areas in the wake of Hurricane Harvey. 

 

Hurricane Harvey caused catastrophic damage throughout Texas and Louisiana. 

The recovery efforts continued months after the storm. Texas Governor Abbott renewed a 

State of Disaster proclamation on November 20th for 60 Texas counties. The counties that 

were declared major disaster areas are Angelina, Aransas, Atascosa, Austin, Bastrop, 

Bee, Bexar, Brazoria, Brazos, Burleson, Caldwell, Calhoun, Cameron, Chambers, 

Colorado, Comal, DeWitt, Fayette, Fort Bend, Galveston, Goliad, Gonzales, Grimes, 

Guadalupe, Hardin, Harris, Jackson, Jasper, Jefferson, Jim Wells, Karnes, Kerr, Kleberg, 

Lavaca, Lee, Leon, Liberty, Live Oak, Madison, Matagorda, Milam, Montgomery, 

Newton, Nueces, Orange, Polk, Refugio, Sabine, San Augustine, San Jacinto, San 

Patricio, Trinity, Tyler, Victoria, Walker, Waller, Washington, Wharton, Willacy and 

Wilson counties (Figure 2) [21]. An Emergency Declaration was declared for Louisiana 

Esri, HERE, Garmin, © OpenStreetMap contributors, and the GIS user community

Federally Declared Areas of Major Disaster
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on August 28th. Louisiana Governor Edwards designated Beauregard, Calcasieu, 

Cameron, Jefferson Davis, and Vermillion parishes as federal disaster areas (Figure 2) 

[22].  

 

2.2 Meteorological History of Superstorm Sandy 

Superstorm Sandy originated as a tropical wave off the west coast of Africa on 

October 11th, 2012 [3]. Over the next several days, the tropical disturbance encountered 

atmospheric conditions which inhibited further development. However, on October 18th 

the wave entered the eastern Caribbean Sea where environmental conditions became 

favorable for hurricane development [3]. By October 22nd and approximately 305nmi 

south-southwest of Kingston, Jamaica, the tropical low began to organize itself and was 

upgraded to a tropical depression [3]. Six hours later, an Air Force Reserve Hurricane 

Hunter aircraft reported that the depression strengthened to a tropical storm [3]. Tropical 

storm Sandy continued to intensify as a middle to upper-level trough forced Sandy to 

accelerate north-northeastward. By October 24th, aircraft reconnaissance observed that 

Sandy had intensified into a category 1 hurricane [3]. Later that day, Sandy came ashore 

between Kingston and South Haven, Jamaica [3]. As Hurricane Sandy moved over the 

deep, warm waters of the Cayman Trench, it underwent a period of rapid intensification. 

Then as a major hurricane, Sandy made a second landfall over Cuba on October 25th [3]. 

 

After making landfall in Cuba, Sandy began to weaken as it turned to the 

northeast. This steering pattern drove Sandy through the Bahamas, which weakened the 
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system to below hurricane strength. However, the system’s radii had nearly doubled since 

it’s landfall over Cuba; reconnaissance aircraft data determined the radius of maximum 

winds was over 100nmi [3]. This enabled the storm to benefit from the warm advection 

aloft. Therefore, by October 27th Sandy was able to regain hurricane intensity. 

Nevertheless, shortly after Sandy encountered a blocking pattern stationed over the North 

Atlantic, which prevented the storm from moving out to sea [3]. After spending days in 

favorable conditions and roughly 220nmi southeast of Atlantic City, Sandy re-intensified 

into a category 2 hurricane [3].  Late on October 29th, Sandy moved over cooler water 

and became extratropical by 2100 UTC [3]. Two hours later, the heart of post-tropical 

cyclone Sandy, made landfall near Brigantine, New Jersey [3]. After landfall, Superstorm 

Sandy moved through southern New Jersey, northern Delaware, and southern 

Pennsylvania. By October 31st, Sandy’s structure started degenerating over northeastern 

Ohio. The remnants continued on to Ontario, Canada before integrating with an area of 

low pressure [3]. 

 

Superstorm Sandy came ashore as a large, extratropical cyclone, whose storm 

surge and winds caused destruction along the mid-Atlantic coastline. Although 

Superstorm Sandy did not make landfall as a hurricane, hurricane-force winds were felt 

along the coasts of New Jersey and Long Island, New York [3]. In the end, seven 

different states reported feeling hurricane strength wind gusts [3].  In addition to powerful 

winds, Sandy’s pressure at landfall (945.5mb) set a record for the lowest sea-level  
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Figure 3: Estimated inundation levels in New Jersey, New York, and Connecticut. Source: [3] 

 

pressure ever recorded north of North Carolina [3]. Nevertheless, these factors all 

contributed to Sandy’s most destructive force—storm surge. The entire east coast from 

Florida to Maine saw a rise in water levels. Ultimately, New Jersey (8.57 ft), New York 

(12.65 ft), and Connecticut (9.83 ft) reported the highest storm surges [3]. The low-lying 

coastlines of New Jersey and New York, especially New York City, exposed essential 

infrastructures to the raw power of Sandy’s surge and damaging waves. Record storm 

tides brought catastrophic flooding. The highest inundation felt in New York occurred in 

Staten Island and Manhattan with floodwaters 4-9ft above ground level (Figure 3) [3]. 

Similarly, in New Jersey the highest inundation was 4-9ft felt by Monmouth and 

Middlesex counties (Figure 3) [3]. More than 80% of Atlantic City was underwater [23]. 

Although rainfall did contribute to the extensive inundation across New Jersey and New 

York, the highest rainfall total (12.83 in) was recorded in Bellevue, Maryland [3]. 

Although very seldomly seen with tropical cyclones, Superstorm Sandy remarkably 
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caused a widespread blizzard. The snowfall fell along the Appalachian Mountains from 

North Carolina to Pennsylvania. Wolf Laurel, North Carolina and Richwood, West 

Virginia recorded the highest snowfall totals of 36 inches [3].  

 

At the time of its landfall, Superstorm Sandy was the second costliest ($71.4 

billion) tropical cyclone to ever hit the U.S. [24]. Five states issued evacuations in 

preparation for Sandy. New York City mayor Michael Bloomberg ordered the mandatory 

evacuation of 375,000 residents [25]. In the immediate aftermath 23,000 people took 

refuge in temporary shelters [26]. At least 650,000 homes were either damaged or 

destroyed by the storm’s surge [23]. New Jersey estimated a total of $8.3 billion in small 

business losses [3]. Approximately 8.5 million customers were without power for weeks. 

Lower Manhattan lost all power, leaving important infrastructures like hospitals and 

transportation hubs completely in the dark and closed [23]. Due to the extended power 

outages and cold weather about 50 people died from hypothermia, falls in the dark (by 

senior citizens), or carbon monoxide poisoning. Overall, Sandy was responsible for 147 

deaths [3]. Seventy-two direct deaths were reported in the United States; forty-one of 

those deaths were attributed to storm surge [3].   
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Figure 4: Highlighted counties (in red) were declared disaster areas in the wake of Superstorm Sandy 

 

Superstorm Sandy caused damage along the U.S. eastern seaboard, however 

catastrophic destruction was seen throughout New York and New Jersey. The recovery 

efforts continue years after the storm. On October 28th, Disaster Declarations were 

declared for the states of Connecticut, District of Columbia (D.C.), Massachusetts, 

Maryland, New York, and New Jersey; by October 29th and 30th additional Disaster 

Declarations were declared for the states of Delaware, New Hampshire, Pennsylvania, 

Rhode Island, Virginia, and West Virginia. Additionally, over 12 states had counties 

which were declared areas of Major Disaster—Connecticut (7 counties), D.C., Delaware 

(3 counties), Massachusetts (6 counties), Maryland (24 counties), New Hampshire (6 

counties), New Jersey (21 counties), New York (14 counties), Ohio (2 counties), 

Pennsylvania (18 counties), Rhode Island (4 counties), Virginia (28 counties), and West 

Virginia (18 counties) (Figure 4) [27]. 
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2.3 Social Media and Geoinformatics 

The growth of Web 2.0 has sparked an expansion of the use of social media and 

its wide-range of applications. Popular social media platforms, such as Facebook, 

Twitter, and Instagram, now allow users to easily add geographic information into their 

posts and pictures. Furthermore, users with location services turned on have their 

geographic coordinates embedded into everything they post on social media without 

having to manually add or tag locations. As a result, the growth and advancements of 

social media has widened the potential and capabilities of volunteered geographic 

information (VGI) [28]. Volunteer geographic information is a term used to describe the 

collection of widespread geographic information, which is provided voluntarily by 

private citizens. Recently, a focus has been placed on the VGI concept of sensor 

networks. One type of sensor network consists of humans and our ability to compile and 

interpret our surroundings while freely roaming the Earth [28]. In times of a natural 

disaster, volunteer geographic information with humans acting as sensors, can report 

conditions through electronic devices faster than satellites [28]. In the future, volunteer 

geographic information could possibly be the solution to overcoming common problems, 

such as inadequate imagery and dangerous weather conditions.  

 

Volunteer geographic information provides researchers with a new source for 

geographic information. This new information source calls for innovative data mining 

techniques to enable researchers to explore data [29]. Popular VGI crowdsourcing 
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platforms are OpenStreetMap and Wikimapia. The purpose of these platforms is for users 

to provide accurate geographic information that will be used for mapping purposes. 

Volunteered geographic information is sometimes the only available data source because 

access to geographic information in specific areas is a risk to national security [28]. 

However, volunteered geographic information provided by social media is published 

differently than other crowdsourcing platforms. Social media often contains geographic 

information without it being knowingly provided by an application. Geographic content 

is often embedded in the author’s message, reply, picture, or links. Therefore, embedded 

geographic information in social media must be harvested and analyzed before it can be 

used [30]. This extracted information is an extension of the VGI concept called Ambient 

Geographic Information (AGI) [30].  

 

A prominent example of an AGI data source is the social media platform, Twitter. 

Twitter is a popular micro-blogging web service, in which users can share “tweets” with 

other users [31]. In 2016, Twitter reported 313 million monthly active Twitter users [32]. 

Twitter users are provided with many different avenues to communicate with one 

another. Users interact by responding to each other in one of two ways: mentions or 

replies and retweeting. A tweet is considered a mention when it is written to address a 

specific user [31]. There are many different reasons cited by Twitter users for reasons 

why they retweet; one of the top reasons being to spread information to new audiences 

[33]. Therefore, breaking news tends to be often retweeted in the form of links to articles 

from media sources [33]; nearly 92% of retweets contain a URL or link [34]. The focus is 
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on content for retweets, therefore the number of retweets can represent the content value 

of one’s tweets [34]. 

 

2.4 Early Event Detection in Social Media 

 
Current literature investigates social media’s event detection ability. There exist 

two categories for event detection algorithms—feature-pivot and document-pivot 

methods. A feature-pivot method, which shows promising results in detecting events is 

the Event Detection with Clustering of Wavelet-based Signals (EDCoW) [35]. The 

EDCoW algorithm analyzes tweets published on Twitter to detect events. This approach 

requires each event of interest to have at least two words to describe the event [35]. This 

is practical because large events tend to be described by several different words by many 

people. The EDCoW algorithm applies clustering techniques to detect events [35]. 

Another approach to using a feature-pivot algorithm is to model event topics as “burst of 

activities”, where certain features rise suddenly in frequency as the event is ongoing [36]. 

To detect events the algorithm uses an infinite-state automaton, in which events are 

modeled as state transitions [36]. Additional research has been done to model sets of 

words used during bursts of activity to apply to future events [37]. These studies advise 

that algorithms should model an individual word’s appearance as a binomial distribution 

and then identify the burst of each word with a threshold-based heuristic [37]. A research 

study used the “burst of activity” feature-pivot algorithm to detect events from a major 

English newspaper from Hong Kong over a two-year period. The results showed that 
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feature-pivot clustering approach was highly successful in detecting events from bursts of 

features (words) [37].  

 

Event detection algorithms, such as the ones outlined above, have been used to 

detect real world events from Twitter activity. The main advantages of Twitter-based 

detection systems over sensor-based systems is that they are inexpensive, have a quick 

detection speed [38], and Twitter is widely used. The growing use of Twitter during 

disasters offers a new information source that could provide authorities with an enhanced 

emergency situation awareness [39]. Also, Twitter’s ability to reflect a variety of events 

in short messages proves to be well suited as a source of real-time event content [40]. In 

order to identify events, recent research experiments have successfully used clustering 

techniques to group together similar tweets based on common features [40]. These 

clusters are then furthered studied to determine identifying features that can be used to 

train classifiers to distinguish future events [40]. In one study, a train classifier was 

overall successful in differentiating between real world event and non-event clusters [40].  

 

Social media location services can supplement traditional geographic information 

sensors, such as seismic sensors and remote sensing, to produce a fuller, coherent 

situational report [38]. Yet, researchers have experimented with relying solely on Twitter 

as a sensor to detect real world events, such as earthquakes and hurricanes. One study, 

focusing on detecting earthquakes and typhoons in Japan, was able to produce a 

probabilistic spatiotemporal model. This early earthquake reporting system can detect an 
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earthquake within the first minute of the initial shaking [41]. Therefore, the early 

detection system is able to issue alerts within the first minutes of an earthquake; this is 

roughly six times faster than traditional broadcasted alerts [41]. Using Twitter as an early 

event detector resulted in successfully detecting 96% of major Japanese earthquakes [41]. 

Real-time monitoring of social media is essential because early detection of seismic 

waves can be used to warn people further along the coastline, allowing them to get to 

safety in the case of a tsunami [38]. The spatiotemporal model also uses particle filtering 

to estimate the location of the earthquake’s epicenter [41]. The same study also had 

success using particle filtering to estimate the trajectory of a typhoon [41]. 

 

Another option researchers are utilizing to examine natural disasters through a 

social media lens is automated social media analytics and mapping platforms. Social 

media crisis-mapping platforms map geographic data for areas at risk of natural disaster 

through geo-parsing real-time Twitter data streams [38]. Then they use statistical analysis 

to generate real-time crisis maps [38]. Geographic information collected from gazetteers, 

street maps, and VGI are compiled to make a crisis map [38]. An example of a social 

media analytic platform, which uses crisis mapping is Floodtags. Floodtags, filters, maps, 

and analyzes Twitter data. One research study examined Twitter activity during the 2015 

Philippine floods and an additional 80 smaller floods in Pakistan [42]. By using the 

longitude and latitude coordinates stored in each tweet’s metadata, Twitter acted as a 

crowdsourcing virtual sensor network [38]. Ultimately, the study found that during a 

local flooding event Twitter was able to detect flooding two days earlier than any official 
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reports [42]. The research also discovered that while satellites were more appropriate for 

monitoring widespread flooding, Twitter is better skilled to monitor floods of any 

magnitude [42].  

 

As a result, social media analytic platforms can offer quick, additional assistance 

to emergency services in the wake of a natural disaster. Utilizing the public's collective 

intelligence is especially useful during emergency incidents, in which people within 

blackout areas experience limited communication ability [39]. Utility companies could 

utilize social media analytic platforms to aid in mapping outage areas and possibly 

locating compromised electrical equipment by identifying the extent of inundation. After 

all, the purpose of a social-media assisted platform is to produce a coherent situation 

assessment picture, that could be presented to emergency and relief responders to help 

coordinate response efforts and improve overall situational awareness [38].  

 

 

2.5 The U.S. Energy Grid  

2.5.1 Regulatory Structure 

The DOE outlines the regulatory structure of the United States’ electricity 

structure in the Department of Energy’s publication, United States Electricity Industry 

Primer [43]. The United States’ electric grid is overseen by a major regulatory body, 

regional organizations, and utilities’ ownership structures. Overall, the electricity sector 

is managed by the Federal Energy Regulatory Commission (FERC). The FERC is the 
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independent agency within the U.S. Department of Energy, which regulates the interstate 

transmission of electricity within the United States [43]. Within the electricity sector, 

some of FERC’s responsibilities include regulating the transmission and wholesale of 

electricity in interstate commerce, reviewing electricity companies’ mergers and 

acquisitions, reviewing siting applications for electric transmission projects, protecting 

the reliability of the high voltage interstate transmission system, and overseeing financial 

reporting regulations and conduct of regulated companies [43]. In recent years, the 

Energy Policy Act of 2005, expanded FERC's power to implement regulations regarding 

the availability of reliable energy resources [43]. At the consumer level, the FERC is 

responsible for attaining reliable, efficient, and sustainable energy services at a 

reasonable cost [43].  

 

In 2006, FERC designated the North American Electric Reliability Corporation 

(NERC) as the government’s electrical reliability organization (ERO) [43]. The NERC is 

an international regulatory authority, which ensures the reliability of the bulk power 

system in North America. As an ERO, NERC has jurisdiction over electric users, owners, 

and operators of the bulk power system [43]. The NERC is also authorized to enforce and 

develop reliability standards, monitor the bulk power system, assess seasonal and long-

term reliability, and train and certify personnel [43]. North America’s bulk power system 

consists of four distinct power grids called interconnections. The NERC’s area of 

responsibility spans across the continental United States, Canada, and the northern 

portion of Baja California, Mexico. The four interconnections are the Western 
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Interconnection, ERCOT Interconnection, Eastern Interconnection, and Quebec 

Interconnection. Interconnections are zones, which utilities are electrically tied together 

during usual system conditions (Figure 5) [43]. Each interconnection operates 

independently of one another and strive to operate at a synchronized average frequency. 

 

 
Figure 5: The North American Power Grid Interconnections. Source: [43] 

 

The FERC further defines areas within NERC regions as regional transmission 

organizations (RTO) and independent system operators (ISO) [43]. The formation of 

RTOs and ISOs comes at the recommendation of the FERC. There are seven ISOs and 

four RTOs in North America (Figure 6). The seven ISOs are California ISO (CAISO), 

New York ISO (NYISO), Electric Reliability Council of Texas (ERCOT), Midcontinent 

Independent System Operator (MISO), ISO New England (ISONE), Alberta Electric 

System Operator (AESO), and Independent Electricity System Operator (IESO) [43]. The 
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Electric Reliability Council of Texas is an ISO and NERC region. The four RTOs are 

PJM Interconnection (PJM), Midcontinent Independent System Operator (MISO), 

Southwest Power Pool (SPP), and ISO New England (ISONE) [43]. Midcontinent 

Independent System Operator and ISO New England are also ISOs.  

 

 
Figure 6: The North American Transmission Operators. Source: [43] 

 

According to the Department of Energy, ISOs operate the area’s electricity grid, 

administers the region's wholesale electricity markets, and provides reliability planning 

for the territory’s bulk electricity system. RTOs are similar to ISOs; however, they have 

greater responsibility for the transmission network established by the FERC [43]. In 

addition, RTOs coordinate and control the functions of the electric system within their 

region and monitor their transmission network by providing fair transmission access [43]. 

Both, ISOs and RTOs, are involved in regional planning to ensure the needs of the 
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electric system are met with the appropriate infrastructure. Before RTOs and ISOs were 

created, power and utility companies were responsible for developing and coordinating 

transmission plans [43]. This still holds true for regions without ISO and RTO coverage.  

 

2.5.2 Delivery 

According to the Department of Energy, the structure of electricity delivery can 

be categorized into three functions: generation, transmission, and distribution. Each 

function is linked by key assets known as substations (Figure 7). The U.S. energy 

generation begins in a power plant. A power plant often has one or more generators, 

which sometimes can be used across different types of fuel [43]. The United States’ 

energy supply is generated by a diverse mixture of fuels. In 2014, the Department of 

Energy reported there were 19,023 commercial generators at 6,997 operational power 

plants in the United States [43]. Electricity is generated when mechanical energy is 

transformed into electrical power. Once electricity is generated “step-up substations” are 

used to increase power generation voltage to the transmission system level [43].  

 

 
Figure 7: Flow chart of the delivery of electricity. Source: [43] 

 

At the transmission system level, electric power travels more than 360,000 miles 

of transmission lines connecting to approximately 7,000 power plants [43]. Of those 
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360,000 miles of transmission lines, there are 180,000 miles of high-voltage transmission 

lines [43]. Transmission line networks are designed to carry energy over long distances 

with minimal power loss. This is possible by boosting voltages at certain points along the 

electricity supply chain [43]. RTOs and ISOs routinely regulate transmission systems. 

Once power has reached a load center, a “step-down substation” uses transformers to 

decrease the voltage to a medium range for major distribution networks [43]. This is done 

because it is cost efficient to transmit on a sub-transmission network at a voltage level 

between standard transmission and distribution voltages [43]. Transformers are crucial 

substation equipment for delivering electricity to customers. However, many 

transformers are located in remote regions and are vulnerable to weather events, acts of 

terrorism, and sabotage [43]. The loss of transformers at substations raises a momentous 

concern for energy security in the electricity supply chain due to shortages in inventory 

and manufacturing materials, increased global demand, and limited domestic 

manufacturing capabilities [43].  

 

The low voltage can now be carried over distribution power lines to commercial 

and residential customers. At the distribution system level, power generation voltage is 

further reduced by a distribution substation [43]. Distribution transformers are the 

cylindrical devices, which can be seen mounted on local power lines or on concrete pads 

in neighborhoods; distribution transformers can also be located underground [43]. After 

the electricity reaches a distribution substation it is finally deliverable to the customer. 
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2.5.3 Storm Preparedness and Restoration 

Even though power infrastructure is highly redundant and resilient, customer 

outages do occur as a result of system disruptions. The most common disruptions are due 

to weather-related events [43]. The energy sector actively prepares, plans, and anticipates 

severe weather events. One of the ways the energy sector is regularly preparing its 

infrastructure is called “hardening” [43]. Hardening is the process of physically changing 

a utility’s infrastructure to mitigate the effects of storm damage [43]. The goal of 

hardening is to increase the durability and dependability of transmission and distribution 

assets. One hardening method is undergrounding, which is the act of burying 

transmission and distribution lines underground [43]. Although undergrounding protects 

electrical lines from severe incidents above ground, the trade-offs are that it is expensive, 

difficult to repair, and more susceptible to flooding [43].  

 

Newer hardening methods, such as the smart grid and microgrid, are attributed to 

technological advancements [43]. The Department of Energy says smart grids are slowly 

becoming implemented by utilities, which allows for utilities to quickly identify outage 

areas. Smart Grid receives information from electricity distribution systems, enabling it 

to be able to detect problems and potentially re-route power while alerting system 

operators to the location of the issue [44]. Smart Grids allow for utilities to use their 

resources and personnel more efficiently by eliminating the need to send out crews just to 

identify a problem area. A less common hardening technique, yet effective, is the 

microgrid. A microgrid is described as an isolated “island” of electricity generation, 
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transmission, and distribution [43]. In the event of a service interruption, microgrids are 

able to disconnect from the main grid and operate independently [43].  

 

Once a storm is forecasted to strike an area, utility companies pre-position 

mobilized crews and restoration resources [43]. Mobile command centers are set up to 

serve as a hub for communication and coordination for restoration efforts. Mutual 

assistance—agreement between neighboring utilities to assist one another when outages 

occur—is enacted [43]. Once the storm passes, utility companies can begin their 

restoration process. The restoration process begins with utilities dispatching crews to 

access the damage to power lines and substations [43]. However, locations where Smart 

Grids are installed, eliminate this step of the restoration process. Also, at this point utility 

customers can report outages to their local electric companies [43]. This helps utility 

restoration teams to know where they need to direct their crews and resources.  

 

Next, restoration crews need to alleviate hazardous conditions. The Department of 

Energy states that crews prioritize repairs to equipment that poses a threat to the public. 

At this stage, down and damaged lines and substations are turned off. Starting at the base 

of the electricity delivery process, crews first begin repairing damaged power plants, then 

move on to repairs to the high-voltage transmission lines and finally the substations [43]. 

At this point, power is attempted to be restored to critical public safety and health 

infrastructure, such as emergency responders [43]. Subsequently, repairs continue on 

distribution lines and substations to restore power to businesses and residential 



28 
 

neighborhoods [43]. Delays in this process are often attributed to equipment that has 

endured significant damage or lingering storm impacts, such as flooding. 

 

2.3.4 Impacts 

In addition to periods of blackouts, electricity outages have propagating effects 

because the energy infrastructure is interdependent upon its entities [43]. This mutual 

dependence can make power restoration difficult. For example, the creation and delivery 

of oil and gas heavily relies on the supply of electricity. Nonetheless, the generation of 

electricity requires the continuous supply of resources, such as natural gas, coal, and oil 

[43]. Furthermore, critical infrastructures, such as water treatment facilities, pumping 

stations, gas stations, communications systems, and natural and petroleum pipelines, 

depend on a consistent supply of electricity [43].  

 

2.6 Advancements in Power Outage Detections 

The United States’ energy infrastructure which serves the power grid is aging. As 

older systems and components are retired, they are replaced with newer components 

often linked to communications or automated systems [44]. As previously mentioned, 

one improvement modernizing the electrical grid is the Smart Grid [44]. Smart Grid is an 

evolving electric power network that has the ability to aid in avoiding extensive power 

outages. Another modernization for detecting power outages is patented by Verizon. A 

network device receives a loss of power alarm from a network interface device (NID) 

associated with a customer premise [45]. The loss of power alarm includes a particular 
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NID identifier that is associated with a specific address and identifies a power outage in a 

particular region associated with the address [45]. The systems then determine if other 

loss of power alarms have been received from the same area [45]. However, the privacy 

of customer information has been raised as an issue with smart meters [44].  

 

The electricity industry is beginning to look to social media to assist in detecting 

and locating areas experiencing power outages. Social media users can provide nearly 

real-time observations in disaster zones [39]. Tweets can use embedded links or photos to 

offer more information. This is particularly useful during emergency situations, when 

people within blackout areas experience limited communications methods [39]. One 

company called DataCapable is already exploring this idea. Recently, DataCapable has 

created a new outage reporting tool in the form of an app. DataCapable’s UtiliSocial 

portal gathers posts from social media and the DataCapable app and maps it out. The map 

is then ready to be used by a utility's Outage Management System (OMS) tools to direct 

their repair teams to outage areas [46]. This technology could prove to be essential during 

natural disasters.  
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3 OBJECTIVES AND RESEARCH QUESTIONS 

The incorporation of social media into our daily lives, now offers assistance in a 

variety of diverse disciplines. In extreme weather events, such as hurricanes, dangerous 

conditions can develop suddenly. Strong tropical force wind bands can knock down 

powerlines and damage utility boxes. Flash floods can develop in a matter of minutes, 

which makes repairing down electrical lines an extremely dangerous task during the 

aftermath of a storm. Also, storm surge can shut down entire electrical plants resulting in 

complete power grids shutting off. Overwhelmed, clogged cell towers coupled with no 

power can make identifying problem areas and prioritizing repairs difficult. Thus, 

additional resources such as social media, could help locate the extent of areas without 

power. When disastrous weather strikes, Twitter users can act as “eyewitnesses” by 

updating other users of developing conditions. For example, Twitter users can report 

power outages in areas, some so remote that otherwise wouldn’t be officially reported. 

The VGI concept of using humans as geospatial sensors is described as a citizen science 

[28]. Citizen science is a term used to describe networks of people who serve as 

observers in some scientific field of study [28]. This research hinges on citizen science 

and its nontraditional approach to assist in detecting disturbances in the energy 

infrastructure. 
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Power outages, which were a consequence of Hurricane Harvey and Superstorm 

Sandy, will be the center focus of this research. Twitter activity during Harvey and 

Sandy, service interruption datasets and shapefiles of the energy grid from the U.S. 

Energy Information Administration (EIA), reported customer outages from the U.S. 

Department of Energy (DOE), census data from the U.S. Census Bureau and information 

about Harvey and Sandy’s aftermath will be used to answer this study’s research 

questions. This research will explore whether power outages due to a severe weather 

event can be identified using Twitter. This study will start by assessing the textual 

content of collected tweets. A geosocial analysis of the Twitter network will provide 

insight on the size and range of the social network. An investigation will explore the most 

commonly used words and hashtags to determine which events and topics widely 

engaged the Twitter network. The messages in tweets can also divulge information about 

the locations of life-threatening aftermath. This evaluation can reveal whether or not a 

linkage between social media activity and power outages exists and if it can be later used 

to identify locations without power. Therefore, a geosocial analysis of the population 

captured from social media will allow us to answer the first research question: 

(1) Does the textual content of Twitter reveal an association between disturbances in 

critical infrastructures and social media usage?  

 

Next, this research will examine when power outages were felt according to 

Twitter. Based on Twitter activity, a temporal analysis can be used to further study a 

timeline of when customers started to experience power grid blackouts. This timeline will 
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be used to compare to a documented timelines of statewide customer power outages. A 

spatiotemporal analysis can tell whether or not social media activity could act as an 

indicator of a loss of electricity. Also, this analysis has the ability to reveal if a spike in 

social media activity could indicate a power outage prior to traditional reports by utility 

and power companies. Therefore, a spatiotemporal analysis will allow us to answer the 

second research question in this study: 

(2) Does Twitter capture when customers lost power due to Hurricane Harvey and 

Superstorm Sandy?  

 

Lastly, a geospatial analysis will be performed to determine whether increased 

Twitter activity can be used as an indicator of power outages. Also, the analysis can 

disclose which power and utility providers were heavily affected. The results from the 

geospatial analysis will provide a visual, which compares the Twitter activity and 

reported power outages within each utility service area relative to one another. This 

analysis can be used by utility companies to aid in future storm preparations. This 

geospatial analysis will allow us to answer the third and final set of research questions of 

this study: 

(3) Can the volume of Twitter activity serve as an indicator for the location of an active 

power outage? Is there a correlation between the volume of Twitter activity and reported 

power outages? 
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4 DATA STRUCTURES AND CHARACTERISTICS 

The following chapter provides a thorough overview of the datasets used in this 

study. The data structures and storage are the primary focuses in the 4.1.1, 4.1.2, and 

4.1.3 subsections. Section 4.2 of this chapter discusses the characteristics of the datasets. 

 

4.1 Data Structures 

4.1.1 Twitter Datasets 

The primary datasets used in the Harvey analysis are Twitter datasets collected 

worldwide between August 24th - September 2nd, 2017. The first dataset was collected 

using the keywords flood, flashflood, and flash flood. The second dataset was collected 

using the keywords hurricane, tornado, storm, thunderstorm, cyclone, derecho, heat, 

heatwave, draught, typhoon, ice, snow, snowstorm, blizzard, and Harvey. The datasets 

were collected and formatted into tab-separated files. The datasets were received from 

George Mason University’s Center for Geospatial Intelligence after initial pre-processing. 

Additional pre-processing was necessary to preserve special characters, correctly encode, 

and to obtain only the geo-located tweets. This pre-processing step was completed by 

running the dataset through a python script.  
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The primary datasets used in the Sandy analysis are Twitter datasets collected 

worldwide between October 29th and October 30th, 2012 using the keywords hurricane 

and Sandy. The dataset was collected and formatted into a tab-separated file. The dataset 

was also received from George Mason University’s Center for Geospatial Intelligence 

after initial pre-processing. Additional pre-processing was necessary to preserve special 

characters, correctly encode, and to obtain only the geo-located tweets. This pre-

processing step was completed by running the dataset through a python script.  

 

ArcGIS 10.6 software stored the datasets and organized each row and column by 

tweets and their nineteen attributes. Each row represents a single tweet and each column 

contains an attribute for that tweet. The nineteen attributes include ID, location, country, 

state, zip, longitude, latitude, publication time, author, coordinates from, retweeted ID, 

retweet author’s user ID, retweet author’s user name, quoting, response ID, response 

author, language, text, and extracted links. The ID attribute is a tweet identifier assigned 

by Twitter. The next six attributes offer information about geo-tagged tweets. The 

location, country, state, and zip are the location/country/state/zip from which the tweet is 

sent. The longitude (x) is the longitude of the geolocated tweet and the latitude (y) is the 

latitude of the geolocated tweet. Each tweet’s timestamp, the date and time it was 

published, is stored in the published_at attribute. The author’s twitter handle and name 

are collected and saved in the author column. The coords_from attribute offers 

information about the origin of the geospatial information of the tweet.  
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The next four attributes offer information about retweets. The retweeted ID field 

holds the unique Twitter assigned identifier of the retweeted tweet. The retweet author’s 

user ID, is the numeric ID of the user who sent the original tweet. The retweeted_uname 

attribute is the username of the author of the original tweet. The quote field is a collection 

of 1’s and 0’s—a numeral 1 is present if the retweeted tweet quotes the original tweet and 

a numeral 0 if the retweet is not quoted. The next two attributes contain information 

about tweets that are responses to another tweet. The response_id attribute includes the 

ID of the tweet to which the current tweet responds and the response_author attribute is 

the author’s Twitter handle of the tweet to which the current tweet responds. The last 

three fields indicate information about the tweet’s message. The lang attribute holds 

information about the tweet’s language declared by the author’s profile. Lastly, the text 

field is the text of the tweet and the extracted links column contains links embedded 

within the tweet. 

 

4.1.2 Energy Datasets 

4.1.2.1 U.S. Energy Information Administration Data 

The U.S. Energy Information Administration datasets were retrieved from the 

EIA’s Electric Power Monthly reports. Within these reports there are tables published 

that capture all reports of disturbances in electric services during the year. The tables 

retrieved are titled, “Major Disturbances and Unusual Occurrences, Year-to-Date 2012” 

[9] and “Major Disturbances and Unusual Occurrences, Year-to-Date 2017” [7]. The 

datasets were downloaded and formatted into tab-separated files. Tableau stored these 
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datasets and organized each row and column by each report and its eleven attributes. 

Each row represents a reported disturbance in service and each column contains an 

attribute for that event. The eleven attributes include year, month, event and time, 

restoration date and time, outage duration, utility/power pool, the NERC region, area 

affected, type of disturbance, megawatts lost, and number of customers affected.  

 

The first five attributes offer information about the event’s outage date, 

restoration date, and the duration of the service interruption. The next attribute identifies 

the utility company/power pools, which experienced the power failure event. The 

succeeding two attributes give geographic information about where the electricity outage 

transpired. The NERC column signifies the regional council that suffered the outage. The 

following are the eight different councils represented in NERC: Florida Reliability 

Coordinating Council (FRCC), Midwest Reliability Organization (MRO), Northeast 

Power Coordinating Council (NPCC), ReliabilityFirst Corporation (RFC), Southeastern 

Electric Reliability Council (SERC), Southwest Power Pool (SPP), Texas Regional Entity 

(TRE), and Western Energy Coordinating Council (WECC). The area affected column 

labels the state and/or the counties where the outages were felt. The succeeding column, 

type of disturbance, offers information about the cause for the loss of power. Lastly, the 

last two attributes offer numerical information about the loss of power (in megawatts) 

and the number of customers affected.   
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4.1.2.2 Department of Energy Data 

During a natural disaster, the Department of Energy publishes situation reports 

documenting general overviews and impacts on the electricity, oil, and natural gas 

sectors. During Hurricane Harvey and Superstorm Sandy’s immediate aftermaths, the 

report updates were published bi-daily. As restoration efforts continued for days and 

weeks later, situation reports were only published daily. The reports are published and 

formatted in a text portable document format (PDF). Each report contained important 

energy information such as, executive summaries, electricity sector impacts, oil and 

natural gas sector impacts, an incident overview, and electricity outage data. Overall, 

there were 21 situation reports documenting electricity outages for Hurricane Harvey [8] 

and 19 situation reports detailing electricity outages for Superstorm Sandy [10]. The 

electricity outage tables were exported and stored in separate excel sheets.  

 

Electricity outages due to Hurricane Harvey were documented bi-daily starting 

from August 26th until September 3rd and daily reports from September 4th through 

September 6th [8]. Each row in the outages table represented a state and the columns held 

their attributes. The first column identifies the states that faced power outages due to 

Harvey. The next column stores the current number of confirmed customers experiencing 

outages. The third column contains the percentage of confirmed customers without power 

for each state. The last column has the peak number of customer outages within a 24-hour 

period. Within the text of the situation reports are details about each utility and power 

companies’ outages and restoration efforts. Information regarding the date, time, utility 
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company, and number of outages was used to create an additional dataset for Hurricane 

Harvey’s geospatial analysis. The DOE’s situation reports provide more information 

about the affected utility companies than the datasets provided by EIA. 

 

Power outages due to Superstorm Sandy were also recorded and stored in a 

similar style. Energy situation reports were recorded bi-daily beginning October 29th 

through November 6th [10]. One additional report was published on November 7th [10]. 

Identical to Harvey’s tables, rows in Sandy’s customer outage tables also denoted a state 

and the columns held their attributes. The first column identified the impacted states. The 

following column held the current number of customers outages in each state. The third 

attribute stored the percentage of customers without power. The next column contains the 

peak number of reported outages and the last attribute reveals the number of customers 

whose power has been restored since the peak.  

 

4.1.2.3 The United States Energy Grid Data 

The United States’ energy grid structure is represented by map layers in a 

shapefile format. The energy grid is recreated structurally starting from the local level 

and working up to the national level. Vector data of transmission lines, substations, utility 

service territories, and NERC regions are used in this analysis to reconstruct the electric 

grid. These shapefiles are retrieved from the EIA’s maps layer information page [47] and 

are stored in ArcGIS 10.6 software. 
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Figure 8: U.S. Energy Grid recreated in ArcGIS 

 

The transmission lines feature class represents the system of structures, wires, 

insulators and associated hardware, which carry electric energy from one point to 

another. While the substations feature class includes all locations where power on a 

transmission line is tapped by another transmission line. This feature class contains 

transmission lines that are above and underground. The transmission lines and substations 

shapefiles’ source are the Department of Homeland Security’s Geospatial Platform. The 

transmission lines are polyline features, whereas the substations are point features (Figure 

8). The transmission lines feature class contains 56,909 objects that have 13 attributes. 

Each transmission line has a unique identifier, ID. The rest of the attributes offer 

information about the transmission lines, such as the owner, operating status, the voltage 

(in kV), the voltage class, beginning and ending substations, the source, and the review 

date of the geographic placement. The substation feature class has 66,617 objects with 17 

U.S. Energy Grid
Electric Power Transmission Lines

Utility Service Territories

NERC Regions
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attributes. Each substation also has a unique identifier, ID. The other attributes include 

the substation’s name, city, state, zip code, country, number of incoming and outgoing 

transmission lines, the maximum and minimum voltage, the source method, latitude, 

longitude, and the source.  

 

The utility service territories are a polygon feature class, which represents all the 

electric power retail service territories in the United States. These electric power utilities 

service areas are responsible for the retail sale of electric power to local customers. The 

utility service territories feature class’ source is also the Department of Homeland 

Security’s Geospatial Platform. The utility service territories feature class contains 2,873 

polygonal features with 33 attributes (Figure 8). Each utility service territory has a unique 

identifier, ID. Also recorded for each service territory is the name, phone number, 

address, city, state, zip code, country, website, owner type, regulated status, holding 

company, the RTO/ISO control area, electric power generation peaks and caps, net 

generation, number of customers, and the source.  

 

The NERC regions feature class represents all the NERC regions in the United 

States. The polygon feature class source is the EIA’s approximation based on a NERC 

map. The NERC feature class contains nine polygon objects with two attributes (Figure 

8). The two attributes are the NERC region abbreviation and the full NERC names. The 

feature class contains an object for uncategorized NERC memberships, as well as the 

eight known NERC regions—FRCC, MRO, NPCC, RFC, SERC, SPP, TRE, and WECC.  
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4.1.3 U.S. Census Data 

The United States census block data was retrieved from the United States’ Census 

Bureau’s Tiger/Line Download Center [48]. The Tiger/Line Download Center has 

available downloads for both the 2010 Census and the 2016 American Community 

Survey (ACS). The 2010 census block group housing characteristic table and census 

block group shapefile were retrieved for Superstorm Sandy. Whereas, the 2016 ACS 

census block group housing characteristic table and census block group shapefile were 

downloaded for Hurricane Harvey’s case study. Within each housing characteristic table, 

the column of interest was the “Total Households” column, which contains the number of 

households within each census block group. Block groups were chosen because they are 

the smallest census geometry and therefore will provide more precision in calculations of 

the population of interest.  

 

4.2 Data Characteristics 

4.2.1 Hurricane Harvey Tweet Distribution  

The Hurricane Harvey flood dataset contains 1,348,585 geographically located 

tweets out of a total of 2,366,531 tweets. From the original dataset, 56.9% of tweets are 

geo-located. The second dataset, Harvey’s weather dataset contains 7,769,176 geotagged 

tweets, which is 54.1% of the original 14,352,975 tweets. The two datasets are combined 

together to give a more accurate overview of the impacted population. Once combined 

and all duplicate tweets are removed, the Hurricane Harvey Twitter dataset contains 
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8,588,000 geotagged tweets. Hurricane Harvey’s geotagged tweets contain precise and 

imprecise geographic coordinates. Precisely geotagged tweets use coordinates obtained 

from the user’s GPS or computed through cell tower triangulation. Imprecisely geotagged 

tweets estimate the user’s geographic coordinates from either their location listed in their 

Twitter profile or it is inferred from the user’s IP address. The geotagged dataset contains 

0.69% precise geotagged tweets and 99.31% imprecise geotagged tweets.  

 

As expected, the distribution of the geotagged tweets appears to mirror the United 

States’ population distribution. The datasets are densely clustered around every 

metropolitan area. There are some compact clusters that extend alongside the Pacific 

coast of Washington, Oregon, and California and there are elongated clusters along the 

windward side of the Cascade and Sierra Nevada mountain ranges. Moving easterly, the 

distribution becomes sparse in the Rocky Mountain and Great Plains states. From east of 

the Great Plains to the east coast, the distribution of tweets appears densely packed. The 

majority of the geotagged tweets appear tightly clustered around the Texas cities of 

Houston and Dallas. The highest concentrations of tweets extend between the Texas 

cities of Dallas, Austin, San Antonio, Galveston, and Houston. There is also a compact 

cluster which extends along the Interstate-95 corridor from Boston, Massachusetts to 

Washington D.C. The datasets also have a world wide geographic spread. Internationally, 

the data is sparsely distributed with small clusters around capital cities.  
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Data collection begins one day before Hurricane Harvey makes landfall in 

southern Texas. Hurricane Harvey’s Twitter activity steadily increases as the hurricane 

makes landfall. Over the next 24 hours Hurricane Harvey begins to gradually move 

towards southeastern Texas, where it becomes stalled over the city of Houston. During 

this time period there appears to be a sharp, rapid increase in Twitter activity. Between 

August 25th and August 26th, the data exhibits a 40% increase in Twitter activity. The 

dataset experiences its third largest peak (67,359 tweets) during this time period on 

August 26th. Later during August 26th, activity levels out around 45,000 tweets hourly. 

By morning on August 27th, activity sharply increases to an absolute maxima of 67,823 

tweets and is shortly followed by another peak of 67,741 tweets two hours later. From 

these peaks, activity slowly, cyclical decreases and reaches an absolute minima of 5,355 

tweets on August 29th. By August 30th, Twitter activity seems to follow a daily diurnal 

cycle which gradually decreases daily for the rest of the collection period.  

 

4.2.2 Superstorm Sandy Tweet Distribution 

The Superstorm Sandy dataset is comprised of 2,268,692 tweets. There are 

1,470,864 geotagged tweets, which is roughly 65% of the original dataset. Superstorm 

Sandy’s geotagged tweets also contain precise and imprecise geographic coordinates. 

Precisely geotagged tweets use coordinates obtained from the user’s GPS or computed 

through cell tower triangulation. While, imprecisely geotagged tweets estimate the user’s 

coordinates from their location listed in their Twitter profile. The geotagged dataset 

contains 1.55% of precise geotagged tweets and 98.45% of imprecise geotagged tweets.  
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The Sandy dataset also follows the United States’ population distribution and has 

highly concentrated clusters around every major U.S. city. There are looser, elongated 

clusters in California along the Pacific coast, the Sierra Nevada range, and southern 

California. Looking easterly, the Rocky Mountain and Great Plains states are scarcely 

distributed with tweets. The majority of the geotagged tweets are located in the eastern 

half of the continental United States. The cities of Boston, New York City, Philadelphia, 

Baltimore, Washington D.C., Pittsburg, Detroit, and Chicago are heavily clustered with 

tweets. Also, Long Island and the coastline of New Jersey are moderately dispersed with 

tweets. The highest concentration of tweets extends along the Interstate-95 corridor from 

Boston, Massachusetts to Washington D.C. Similar to the Hurricane Harvey Twitter 

distribution, the geographic spread is not just nationally, it is worldwide. Outside of the 

United States the dataset is moderately clustered around capital cities.  

 

The data collection starts at 2300 UTC on October 29th which corresponds to 

Sandy’s landfall. At the time of landfall, the volume of Twitter activity abruptly 

increases. The maxima in the volume of tweets occurs on October 30th with 94,273 

tweets. The volume of activity remains constant with 90,000 tweets for the next four 

hours before the volume plunges. The volume continues to decrease until it reaches a 

minimum with 59,044 tweets. Then in the morning hours of October 30th, the Twitter 

activity rises for the next 12 hours. Four hours later, Twitter activity levels out before it 

sharply declines until the data collection ends.  
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5 METHODOLOGY 

 The following chapter provides a thorough overview of the methodological 

approaches used in this study (Figure 9). The processing methods and analytical 

techniques used to answer the research questions introduced in Chapter 3 are addressed in 

this chapter. The sections of 5.1, 5.2, and 5.3 of this chapter discusses the software, 

scripts, procedures, and methods used in each of the analyses of the datasets. 

 

 
Figure 9: Flow diagram of the methodologies used to answer this study's research questions. 

 

5.1 Geosocial Analysis 

 
In order to examine the content of tweets and to better understand the network of 

the Twitter datasets, a geosocial analysis was conducted. The investigation of the Twitter 
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network begun by finding the most commonly tweeted words and hashtags during the 

collection period. A python script was used to filter through tweets to get a frequency 

count for each tweeted word. The word frequency script received each Twitter text file as 

the input; the output is an excel spreadsheet. The spreadsheet contains the word counts 

for only tweets that are geotagged. Within the spreadsheet, each row holds a word and its 

frequency count. The Superstorm Sandy and Hurricane Harvey Twitter dataset were 

individually run through the word frequency script and have separate spreadsheet outputs. 

The output spreadsheets were sorted in descending order and further filtered for stop 

words. Stop words are common words that when taken out of context don’t particularly 

convey a certain meaning. Of the remaining words, the twenty most frequently used 

words were selected and organized into a table.  

  

A similar method was used to determine the most frequently used hashtags during 

the collection periods. A hashtag frequency script took each Twitter dataset as its input 

and the output was an excel spreadsheet which contained the hashtags from geotagged 

tweets in one column and their frequency counts in the corresponding column. The 

Hurricane Harvey and Superstorm Sandy Twitter datasets were individually run through 

the hashtag frequency script and each have separate spreadsheet outputs. The output 

spreadsheets sorted frequency counts in a descending order. Then the top twenty hashtags 

were selected and organized into a table. The frequency output spreadsheets were further 

searched for other interesting hashtag usage, which could reveal more information about 

the social network at the time of the storms.  
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5.2 Spatiotemporal Analysis 

 
In order to temporally analyze the volume of Twitter activity during the reported 

outages, the initial task was to create a subset of tweets discussing power outages. Before 

a new dataset can be constructed, the word usage from each dataset is studied. This step 

makes sure the words chosen to depict power outages, accurately represents the language 

used on Twitter. The data processing used in this spatiotemporal analysis utilizes the 

word frequency outputs from the previous section. For each output dataset, the 

frequencies are sorted in decreasing order and stop words were filtered. Then each output 

spreadsheet is thoroughly searched to determine the most commonly used words that 

pertain to power outages. The keywords chosen from the Hurricane Harvey dataset are 

the following: gas, power, plant, energy, infrastructure, dark, outages, lights, and 

electricity. Additionally, the keywords selected for the Superstorm Sandy Twitter dataset 

are the following: power, dark, lights, darkness, outages, blackout, outage, and 

electricity. These words were considered possible indications of a loss of electricity.   

 

Once the power outage keywords are identified, the new data subsets could be 

created. A python script aided in filtering each collected tweet’s text field word-by-word 

to determine if it matched one of the power keywords. If the tweet’s text contained a 

keyword and was geographically located, that tweet’s ID, latitude, longitude, published 

date/time, and text fields are rewritten to a new comma-separated values (CSV) file. This 

process is completed for the Hurricane Harvey and Superstorm Sandy Twitter datasets.  
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This study also examines whether weather events can serve as possible secondary 

indicator of power outages. Therefore, a set of weather-related keywords captured by the 

Twitter network needs to be identified. Once again, the word frequency outputs from the 

geosocial analysis are used to search thoroughly for extreme weather incidents that could 

be responsible for damage to electrical equipment and ultimately cause outages. The 

same method to determine the power outage keywords is used to find the keywords for 

weather incidents. The keywords chosen from the Hurricane Harvey dataset are the 

following: flood, flooding, floods, flooded, waters, water, floodwaters, surge, tornado, 

and underwater. The chosen Superstorm Sandy keywords are: water, flooding, flooded, 

Frankenstorm, snow, flood, floods, and surge. After the weather incident keywords are 

selected, a python script is used again to filter through each tweet’s text field to determine 

if it contains any of the weather keywords. If the tweet’s text contained a keyword and is 

geotagged, that tweet’s ID, latitude, longitude, published date/time, and text fields are 

rewritten to a new CSV file. This process is completed for the Superstorm Sandy and 

Hurricane Harvey Twitter datasets.  

 

These newly created power outage and weather incident datasets are now ready 

for further refinement. The keyword datasets are loaded into ArcMap and individually 

clipped to each state that experienced an outage of power due to Hurricane Harvey or 

Superstorm Sandy. The states of Texas and Louisiana are used for the Harvey case study 

and the states of Connecticut, Delaware, District of Columbia, Illinois, Indiana, 

Kentucky, Maine, Maryland, Massachusetts, Michigan, New Hampshire, New Jersey, 
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New York, North Carolina, Ohio, Pennsylvania, Rhode Island, Tennessee, Vermont, 

Virginia, and West Virginia are used for the Sandy case study. After the clipping 

geoprocess is completed for each state, each clipped layer’s attribute table is exported as 

a new text file. After this step, the number of power-related and weather-related tweets 

are revealed for each state. The statewide number of tweets are normalized with each 

state’s total number of households. The normalization allows for an accurate account of 

tweet volume for each state. Hurricane Harvey’s case study used the 2016 ACS to 

normalize data for every 1,000 households and Superstorm Sandy used the 2010 Census 

to normalize data for every 100,000 households.  

 

Before the volume of Twitter activity and customer outages could be analyzed, 

each state’s bi-daily reported customer outages have to be totaled and added to a new 

excel spreadsheet. The state’s total customer outages are normalized with their respective 

number of households to offer a more precise interpretation of outage volume. This also 

allows for the data to form a fuller representation of the population. Next, the new 

keyword Twitter datasets and the DOE’s customer outages are loaded into the Tableau 

software as data sources. Each Twitter keyword data source is plotted with their 

published date and time on the x-axis and the number of tweets on the y-axis. This shows 

the volume of Twitter activity, mentioning power outages or weather incidents, over the 

collection period. Similarly, the DOE’s customer outages data are plotted with the date 

and time on the x-axis and the number of reported customers without power on the y-

axis. Time series plots of power-related tweets versus reported outages and weather-
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related tweets versus reported outages are made for each state included in the dataset. 

This allows for a cleaner and clearer visual for the spatiotemporal analysis.  

 

5.3 Geospatial Analysis 

The final exploration of this research looks at the Twitter and power outage data 

spatially. ArcMap is used to better visualize and examine the relationship between 

Twitter activity and hurricane induced power outages. The first step to examine this 

relationship is to create new sublayers from the larger utility service territories shapefile. 

The individual service territory layers will be used in future steps to find the number of 

tweets and households in each service area.  Using the EIA’s “Major Disturbances and 

Unusual Occurrences” datasets, each power/utility company that experienced a 

disturbance in electricity during Superstorm Sandy is identified in the utility service 

territories shapefile. The affected utility territories and their attributes are selected and 

saved as a layer. Then each selected service area is individually saved as their own layer. 

The additional dataset created from the DOE’s situation reports are used for Hurricane 

Harvey’s geospatial analysis. The affected utility companies listed in the situation reports 

are selected from the utility service territories shapefile and saved as one layer. Then each 

service provider is individually saved as their own layer. The same procedure is repeated, 

but at the state level for both Harvey and Sandy case studies. 

 

The following steps in this analysis are used to find the number of power-related 

tweets and households in each utility service area and state. In order to complete this, the 
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power keyword dataset is loaded into ArcMap as a table. The latitude and longitude are 

used to spatially plot each tweet. The geoprocessing clip tool is then used to ‘clip’ the 

tweets layer to each service area. In this case, the input layer is the power-related tweets 

and the clipping layer is each individual utility company. The output of this geoprocess is 

a layer of tweets over the input area. The attribute table for each output reveals the 

number of tweets contained in that service territory or state. In a separate excel sheet, 

each service provider and their reported power outages and number of tweets are tracked. 

This process is repeated for all service areas and states for Hurricane Harvey and 

Superstorm Sandy. 

 

A similar procedure is used to find the number of households per utility provider 

and state. The 2010 Census block groups shapefile and housing characteristics table is 

loaded into ArcMap for Superstorm Sandy; and the 2016 ACS block groups shapefile and 

housing characteristics table is loaded in ArcMap for Hurricane Harvey. The housing 

characteristics table is joined to the block group shapefile by their “GEOID” attributes. 

Then the geoprocessing tool is used to ‘clip’ the block groups to each service territory 

and state. The input layer is the block groups shapefile and the clipping layer is a service 

area or state. The output of this geoprocess is a layer of block groups which are contained 

within the input layer. In each output’s attribute table, the column holding the number of 

housing units is totaled using the statistics tool. The total number of households for each 

service territory and state is recorded in the previously mentioned excel sheet with each 



52 
 

service provider and their reported number of outages and tweets. This practice is 

repeated for all service areas and states for Hurricane Harvey and Superstorm Sandy. 

 

Retrieving the number of households for every service territory and state allows 

the analyst to normalize the number of tweets and report outages. Hurricane Harvey’s 

data is normalized for every 1,000 households, while Superstorm Sandy’s data is 

normalized for every 100,000 households. The normalization difference is due to the 

difference in housing density. The Northeast and Mid-Atlantic states have a higher 

population density than Texas and Louisiana, and therefore have a higher housing 

density. It is imperative to normalize all data to allow for a more accurate and precise 

interpretation of Twitter usage and power outages. The new values of tweets per every 

1,000 or 100,000 households and power outages per every 1,000 or 100,000 households, 

for Harvey and Sandy respectively, are stored in the excel sheet.  

 

The last step of the geospatial analysis is to open the layer with all service areas, 

for each the Harvey and Sandy case studies, in ArcMap and begin an editing session. In 

this editing session, the information recorded and calculated in the excel sheet is 

transferred to the selected service areas’ attribute table. Now, the attribute table contains 

columns consisting of the raw tweet counts, raw number of power outages, the 

normalized tweet counts, and the normalized number of power outages. These new 

columns are used to make a choropleth map to visualize the relationship between Twitter 

usage and power outages.  
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6 RESULTS 

The next chapter presents the results for each of the research questions described 

in Chapter 3. The results from the geosocial, spatiotemporal, and geospatial analyses are 

broken up into the separate sections of 6.1, 6.2, and 6.3. Subsections 6.1.1, 6.2.1, and 

6.3.1 address the analysis for Hurricane Harvey, while subsections 6.1.2, 6.2.2, and 6.3.2 

discuss the results for Superstorm Sandy. The results are further discussed in the next 

chapter, chapter 7. 

 

6.1 Geosocial Analysis 

The geosocial analysis found the most commonly tweeted words and hashtags 

from the Twitter network during Hurricane Harvey and Superstorm Sandy. The 

examination of the results allows for a better understanding of the social community 

during a natural disaster. The results below are of the geosocial analysis for all geotagged 

tweets from the Hurricane Harvey and Superstorm Sandy Twitter datasets. 

 

6.1.1 Hurricane Harvey 

The geosocial analysis revealed the main topics of discussion throughout the 

Twitter network. The Twitter network was made up of 8,588,000 geotagged tweets. The 

top two most commonly tweeted words within the Hurricane Harvey dataset identified 
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the location that suffered from major flooding—Texas and Houston (Table 1). Texas 

appeared 783,296 times and Houston was used in 711,954 instances. However, although 

Rockport and Port Arthur were the cities where Hurricane Harvey made landfall, they 

were only mentioned 40,463 and 16,096 times respectively. As well as Louisiana, which 

was also affected by Harvey’s aftermath, only appeared 42,369 times. Therefore, this 

analysis revealed that Houston and Texas are the locations in which the social community 

showed more concern.  

 

Table 1: 20 Most Common Words Tweeted during Hurricane Harvey. 
Word Frequency Word Frequency 
Texas 783,296 Flooding 152,792 

Houston 711,954 God 145,078 
Flood 648,507 Category 123,186 
Storm 625,368 Climate 112,304 
Help 403,740 Tropical 111,600 
Victims 341,300 Donate 109,659 
Relief 270,014 Water 102,044 
Katrina 199,763 History 99,555 
Please 163,252 Warning 99,381 
Million 158,036 Disaster 99,044 
 

Of the top 20 most commonly used words, over half of the words have 

meteorological connotations (Table 1). These words consisted of flood, storm, Katrina, 

flooding, category, climate, tropical, water, history, warning, and disaster. The most 

common words pertained to updates on Hurricane Harvey and the rising floodwaters 

surrounding Houston and its neighboring areas. Many people compared the images of the 
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historical flooding to flooding experienced from Hurricane Katrina. Other popular words 

consisted of help, victims, relief, please, million, God, and donate (Table 1). Tweets with 

these words generally tweeted about the number of affected people, links for donating, 

and areas in need of emergency rescues and resources.  

 

Although the dominating topics of concern were flooding and rescues, the topic of 

power did appear within the Twitter dialogue. There are many different words to describe 

a loss of electricity and power outages. Therefore, there was not an overwhelmingly 

popular word to describe a power outage. Within the social network the word power 

appeared 19,327 times, energy was used 8,684 times, dark appeared in 4,008 instances, 

lights appeared 2,647 times, outage(s) was used 2,366 times, electricity appeared in 1,760 

instances, darkness appeared 594 times, blackout(s) was used 396 times, and powerless 

appeared 71 times. Also interesting was that the affected utility and power providers were 

only mentioned approximately 800 times within the Harvey dataset. These results are 

also reflected in the hashtag analysis.   

 

The prevailing hashtag topics were Hurricane Harvey and it’s sequential flooding 

in Houston, Texas. The top hashtag was #harvey, which was used 815,464 times and was 

used over five times more than the second most popular hashtag, #hurricaneharvey. 

Within the top 20 hashtags, Hurricane Harvey appeared four times as #harvey, 

#hurricaneharvey, #hurricane, and #harvey2017 (Table 2). As seen in the word frequency 

analysis, Houston and Texas also appeared in hashtag form. The #houston and #texas are 
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mentioned 96,341 and 58,858 times respectively (Table 2). Similar to the word frequency 

analysis, the main focus of hashtags was on Houston. However, the landfall cities of Port 

Arthur and Rockport appeared more frequently as hashtags than they did in the word 

frequency analysis. The #rockport is the 39th most common hashtag with 5,387 mentions 

and #portarthur is the 45th most common hashtag with 4,678 mentions.   

 

The most common topic found within the hashtag analysis was flooding. In the 

top 20 most common hashtags, there are five hashtags that mention flooding (Table 2). 

The popular hashtags of #houstonflood, #flood, #harveyflood, #flooding, and 

#houstonfloods talk about the historic flooding in Houston due to Hurricane Harvey. 

Another five hashtags were concerned with flood relief efforts and spreading situational 

awareness (Table 2). The hashtags #houstonstrong, #harveyrelief, #texasstrong, 

#prayfortexas, and #redcross were used as a national campaign to bring awareness to the 

natural disaster. Lastly, the hashtags #txwx, #houwx, #climatechange, and #goes16 have 

a meteorological denotation (Table 2). Texas weather (#txwx) and Houston weather 

(#houwx) were frequently used in tweets to distribute weather updates by meteorological 

Twitter accounts. The #goes16 hashtag refers to the National Oceanic and Atmospheric 

Administration’s Geostationary Operational Environmental Satellite (GEOS-16), whose 

images circulated imagery of Hurricane Harvey on Twitter.   

 

The main focus of hashtags was on the historic flooding and helping flood 

victims. In contrast, the topic of power and electricity outages was not a popular hashtag 



57 
 

trend. Again, Twitter users used many different words to describe an outage of electricity. 

The top four were #power, #electricity, #poweroutage, and #poweroutages. The #power 

was the 2,076th common hashtag and was only used 86 times. The 3,426th most common 

hashtag was #electricity and was used 47 times. Lastly, #poweroutage and 

#poweroutages were the 3,497th and 4,798th most common hashtags and were used 

merely 46 and 31 times, respectively. Overall, the Twitter network did not show as much 

concern over power outages as they did for the historic flooding.  

 

Table 2: 20 Most Common Hashtags Tweeted during Hurricane Harvey. 
Hashtag Frequency Hashtag Frequency 
#harvey 815,464 #harveyrelief 15,231 
#hurricaneharvey 145,241 #houwx 11,314 
#houston 96,341 #texasstrong 9,598 
#texas 58,858 #climatechange 9,521 
#hurricane 46,148 #harveyflood 9,443 
#harvey2017 39,948 #flooding 9,311 
#houstonflood 28,591 #houstonfloods 7,192 
#houstonstrong 25,816 #goes16 6,994 
#txwx 20,028 #prayfortexas 6,780 
#flood 16,519 #redcross 6,470 
 

6.1.2 Superstorm Sandy 

The geosocial analysis unveiled the Twitter network’s main topics of discussion 

during Superstorm Sandy. The social media dataset is comprised of 1,470,864 geotagged 

tweets. Within those 1.47 million tweets, the two most commonly used words refers to 

states that suffered heavily from Superstorm Sandy. New York and New Jersey are 
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represented by york and jersey, which were mentioned 103,218 and 76,747 times 

respectively (Table 3). The social network revealed that New York, New Jersey, New 

York City, the east coast, Manhattan, and metropolitan areas were among the most talked 

about regions during Superstorm Sandy.  

 

Table 3: 20 Most Common Words Tweeted during Superstorm Sandy. 
Word Frequency Word Frequency 
York 103,218 Manhattan 29,163 

Jersey 76,747 Thoughts 25,579 
Power 70,778 Please 25,469 
NYC 69,047 Without 23,111 
Safe 56,548 Metro 22,189 
Storm 55,536 Rain 22,187 
East 54,748 Water 22,168 
Coast 49,693 Million 19,780 
Superstorm 34,233 Flooding 17,358 
Prayers 31,292 Damage 17,222 
 

The third most commonly used word was power. Power appeared 70,778 times 

and was a major topic of discussion among the Twitter network (Table 3). Frequently, 

tweets conversing about power outages often mentioned the number of customers without 

power. Therefore, the words without and million indicate discussions of power outages 

and appear in the top 20 commonly used words (Table 3). Within the top 20 most tweeted 

words, storm, superstorm, rain, water, flooding, and damage were used to talk about 

Superstorm Sandy and its lingering aftermath (Table 3). The social community was also 

dominated by tweets of sympathy. The words safe, prayers, thoughts, and please are 
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commonly used to offer signs of concern and well wishes (Table 3). Overall in the top 20 

most commonly used words, there were seven words discussing locations of impacts, 

nine words to describe Superstorm Sandy and its aftermath, and four words denoting 

sympathy towards the natural disaster (Table 3).  

 

During Superstorm Sandy, power was a large topic of discussion throughout 

Twitter. Power was the third most commonly tweeted word, but many other words were 

used to signify discussions of power outages. Some of these words were lights, darkness, 

outage(s), blackout(s), electricity, energy, utility, and powerless. Lights was used 5,195 

times, darkness had 5,137 mentions, outages appeared 4,914 times, blackout was tweeted 

in 4,289 instances, outage appeared 4,112 times, electricity was used 3,537 times, energy 

had 967 mentions, utility was tweeted 432 times, and powerless appeared 424 times 

within the social network. Also, there was over 6,700 occurrences in which names of 

major utility and power companies were mentioned throughout the Twitter community. 

Therefore, power outages were a prevailing topic of discussion on Twitter during 

Superstorm Sandy.  

 

The 20 most common hashtags resemble the dominant topics of discussion from 

the word frequency analysis. The most commonly used hashtag to talk about Superstorm 

Sandy was #sandy. The #sandy was tweeted 848,927 times (Table 4). There were five 

other hashtags within the top 20 hashtags that were used to directly discuss Superstorm 

Sandy—#hurricane, #hurricanesandy, #frankenstorm, #superstorm, and #storm (Table 4). 
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Once again, hashtags containing the locations of impacted areas were found among the 

top 20 hashtags. These hashtags included #nyc, #newyork, #ny, #manhattan, #newjersey, 

and #nj (Table 4). The landfall city of Brigantine was the 1,105th most popular hashtag. A 

more popular hashtag was Atlantic City, which was the next closest major city to Sandy’s 

landfall. The #atlanticcity was the 189th most common hashtag and was tweeted 363 

times. However, the social media community appeared to be most concerned about New 

York City.  

 

Table 4: 20 Most Common Hashtags Tweeted during Superstorm Sandy. 
Hashtag Frequency Hashtag Frequency 
#sandy 848,927 #manhattan 4,227 

#nyc 39,160 #newjersey 3,742 
#hurricane 34,291 #cnn 3,646 
#hurricanesandy 22,515 #superstorm 3,560 
#frankenstorm 12,803 #911buff 2,906 
#prayforusa 10,953 #nj 2,293 
#newyork 9,524 #storm 2,234 
#staysafe 6,370 #fema 2,064 
#ny 5,604 #blackout 1,643 
#news 5,093 #redcross 1,470 
 

The social media community suggests that there was a large presence of 

emergency relief agencies during Sandy because they appeared as trending hashtags. The 

Federal Emergency Management Agency and the American Red Cross had their own 

popular hashtags, #fema and #redcross; #fema was tweeted 2,064 times and #redcross 

was mentioned 1,470 times (Table 4). The community also used hashtags to send well 
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wishes to those affected by the catastrophic event. The #prayforusa, #staysafe, #prayers, 

#prayfornewyork, and #prayforamerica were popular hashtags across the Twitter 

network. Unlike the word frequency analysis, hashtags pertaining to breaking news, news 

networks and news accounts seemed to be commonly tweeted. The #news, #cnn, and 

#911buff (@911buff is a popular breaking news Twitter account) fall within the top 20 

tweeted hashtags (Table 4). Lastly, the term blackout is the 19th most commonly used 

hashtag. The #blackout is mentioned 1,643 times (Table 4). Other popular hashtags 

regarding power outages include #nopower, #power, #poweroutage, and #powerout. 

These hashtags were used roughly a combined 1,400 times. There were also 13 other 

hashtags with smaller frequencies, which mention power outages. The social network 

suggests that power outages were a main concern of many Twitter users.   

 

 

6.2 Spatiotemporal Analysis 

The spatiotemporal analysis developed timelines for power and weather-related 

tweets. These timelines were used to further examine how their timing coincided to 

reported power outages. The reported power outages were documented twice daily. In 

order to produce accurate timelines, the Twitter datasets are binned according to the 

outages reported time periods. The results below illustrate this analysis at the state level 

for Hurricane Harvey and Superstorm Sandy. 
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6.2.1 Hurricane Harvey 

The spatiotemporal analysis developed a timeline for power outages and 

compared them to social media discussions of floods and power in Texas and Louisiana. 

The Hurricane Harvey power keyword dataset contained 108,949 tweets and the 

Hurricane Harvey weather keyword dataset contained 1,281,152 tweets. The weather 

keyword dataset was roughly 12 times larger than the power keyword dataset. This 

significant difference of volume can be seen mirrored from the geosocial analysis from 

the previous section above. The geosocial analysis revealed that the Twitter network was 

more concerned with the historic flooding event in Houston than power outages.  

 

The state of Texas begun experiencing a spike in power outages on August 25th at 

1000 UTC (Figure 10). During this time, the volume of both keyword datasets were 

slowly increasing and following a diurnal pattern. From August 24th to August 30th, the 

power keyword dataset remained constantly centered around 1-2 tweets per every 1,000 

households; while the volume of the weather dataset begun to quickly increase on August 

26th. The weather-related tweets arrived at a small peak on August 27th at 0300 UTC. 

This sharp increase can be seen as a gradual increase in power outages. An absolute 

maximum in the weather-related tweets followed on August 28th at 0300 UTC. This peak 

corresponded to a peak in power outages on August 28th. Simultaneously, there were 

roughly 30.6 tweets per every 1,000 households from the weather dataset and 

approximately 27.8 power outages per every 1,000 households.  
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Figure 10: Timelines (in UTC) plotting the volume of weather-related Twitter activity (top) and power-related 

Twitter activity (bottom) against the volume of customers experiencing power outages in Texas. 
 

 

Later on August 28th, there is a noticeably downward trend in all three datasets. 

Over the next two days, the Twitter datasets experience a dip in volume on August 29th at 

1000 UTC.  This dip in volume follows a slight dip in the power outage dataset at 0300 

UTC. After this dip, the volume of power-related tweets begun to gradually increase over 

the next day and a half.  The next peak in Twitter activity comes from the power-related 

Twitter dataset throughout August 31st. The dataset peaked on August 31st at 1000 UTC 

reporting 3.98 tweets for every 1,000 households. During this time, the volume of power 

outages had continued to plunge, but shortly leveled out near 18 power outages for every 
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1,000 households. Shortly after, all three datasets showed increasingly downward trends 

until the end of the data collection period. 

 

 
Figure 11: Timelines (in UTC) plotting the volume of weather-related Twitter activity (top) and power-related 

Twitter activity (bottom) against the volume of customers experiencing power outages in Louisiana. 
 

Opposite trends were seen for the state of for Louisiana (Figure 11). The power 

keyword dataset closer reflected the power outage dataset. The power-related tweets 

appeared to have a five-hour offset after the reported power outages. Both Twitter 

datasets appeared to gradually increase between August 24th and August 26th, while the 

reported power outages remained constant at zero. By August 27th, all three datasets 
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showed a sharp increase in volume. Around 1000 UTC, the reported power outages 

seemed to have a small peak of 2.6 power outages for every 1,000 households. Four 

hours later, the power-related tweets followed with a peak of 0.45 tweets per every 1,000 

households and the weather-related tweets peaked nine hours later with 8.99 tweets per 

every 1,000 households. From this peak, the weather dataset progressively declined until 

the end of the data collection. While power-related tweets continued to mimic dips in the 

reported power outages throughout August 28th - 29th.  By August 29th, the volume of 

power-related tweets and the reported power outages begun to exhibit an upward trend. 

As Twitter activity decreased, reported power outages peaked with 8.2 power outages per 

every 1,000 households on August 30th. The power-related dataset didn’t peak again until 

24 hours later with roughly 2 tweets for every 1,000 households. After their final volume 

summits, both datasets gradually dropped until the end of the collection period.   

 

In Texas, weather-related tweets appeared to have a closer relationship to reported 

power outages than the power-related tweets. Both the weather keyword dataset and the 

reported outages dataset showed an overall increasing trend between August 25th and 

August 28th. They then started to gradual descend over the next day. A decrease in 

weather-related tweets occurred on August 29th at 0300 UTC and it is associated with a 

slight drop in reported outages. After this small peak, both datasets progressively 

decreased until the end of collection on September 2nd.  Therefore, the monitoring of 

weather-related tweets revealed insight into the timing of Texas power outages. In 

Louisiana, the power-related tweets seem to have a closer relationship to reported power 
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outages. Reports of power outages begun to come in early on August 27th. Hours later, 

power-related tweets started to rise. Days later, a large spike in power outages are 

reported. Then twenty-four hours later the power-related tweets responded with a spike in 

volume.  

 

6.2.2 Superstorm Sandy 

Superstorm Sandy’s spatiotemporal analysis developed timelines for power 

outages and compared them to social media discussions of floods and power across 

twenty states and the District of Columbia. The Superstorm Sandy power keyword 

dataset contained 106,483 geotagged tweets and the Superstorm Sandy weather keyword 

dataset contained 96,554 geotagged tweets. The power keyword dataset contained more 

tweets than the weather keyword dataset. This difference of volume is reflected from the 

geosocial analysis, which revealed that the widespread power outages were a dominate 

topic of discussion throughout the Twitter network. The spatiotemporal analysis 

discovered that trends in Twitter activity and reported power outages were more similar 

across states that were in closer proximity to each other. This analysis will closely 

examine the results of each state by the geographic regions of New England, Mid-

Atlantic, South Atlantic, and the Mid-West/Central.  

 

The New England states include Connecticut, Maine, Massachusetts, New 

Hampshire, Rhode Island and Vermont. The New England states saw a rapid increase in 

Twitter activity over the first hours of collection. The power-related Twitter dataset came 
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to a peak on October 30th between 0000 and 0100 UTC.  Likewise, the weather-related 

Twitter dataset experienced a spike in activity at 0100 UTC. The reported power outages 

also saw a steep increase roughly 4 hours later. Simultaneously, all New England states’ 

(except for Vermont) weather-related datasets drastically declined and remained 

oscillating between 2 – 3 tweets per every 100,000 households until the end of collection. 

After undergoing a rapid increase, the reported power outages plateau and remained at a 

steady volume from 0500 to 0900 UTC. Over the next hour, Rhode Island and  

 

 
Figure 12: Timelines (in UTC) plotting the volume of weather-related Twitter activity (top) and power-related 

Twitter activity (bottom) against the volume of customers experiencing power outages in Massachusetts. 
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Connecticut displayed a slight increase in power outages. While Maine, Massachusetts, 

New Hampshire, and Vermont saw a drop in customer outages. This drop coincided with 

an earlier dip in the power and weather-related tweets across all New England states. This 

dip can be seen between 0600 and 0800 UTC above in Figure 12 for Massachusetts. After 

this minimum, all states see another peak in power-related tweets between 1100 and 1300 

UTC. While the power-related discussions increase, the reported outages remained steady 

until the end of the data collection. By 1400 UTC, the power-related Twitter dataset 

begun to decline until the end of collection. Overall, peaks in the volume of power-

related and weather-related tweets seemed to be offset prior to the surge of reported 

power outages across the New England states.  

 

The Mid-Atlantic states saw nearly identical trends between the reported outages 

and Twitter activity as the New England states. However, the volume of reported power 

outages for New York and Pennsylvania is nearly doubled that of the New England 

states. Additionally, the reported power outages in New Jersey was over six times greater 

than the average number of documented outages for the New England states. The Mid-

Atlantic states also saw a rapid increase in Twitter activity over the first hours of 

collection. In New Jersey and Pennsylvania, the power-related dataset came to a peak on 

October 30th at 0000 UTC. New York started to see a steep incline of power-related 

tweets at 0000 UTC, however the dataset did not peak until two hours later. The weather 

keyword datasets seemed to be nearly identical across all Mid-Atlantic states. All states 

have a spike in weather-related Twitter activity at 0100 UTC. These peaks in Twitter 
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Figure 13: Timelines (in UTC) plotting the volume of weather-related Twitter activity (top) and power-related 

Twitter activity (bottom) against the volume of customers experiencing power outages in New Jersey. 
 

activity coincide with a sudden increase of power outages reported at 0400 UTC. After 

undergoing a period of rapid volume growth, both Twitter datasets saw a drastic decrease 

in volume. The states experienced a minimum of weather and power-related tweets at 

0800 UTC. This dip in volume corresponds to a decline in Pennsylvania power outages 

which occurred between 0800 and 0900 UTC. The opposite is true for New Jersey and 

New York. Power outages across New York and New Jersey remained constant during 

the decrease of tweet volume. However, New Jersey (Figure 13) and New York displayed 

an increase in outages and tweets during the 0900 and 1000 UTC timeframe. Across all 
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three states, the weather and power-related tweets continued to increase until 1200 UTC, 

then they began to progressively decline until the end of the data collection period. 

 

 
Figure 14: Timelines (in UTC) plotting the volume of weather-related Twitter activity (top) and power-related 

Twitter activity (bottom) against the volume of customers experiencing power outages in Delaware. 
 

The spatiotemporal analysis for D.C. and the South-Atlantic states of Virginia, 

Maryland, and Delaware was nearly identical to those of Pennsylvania. All regions 

experienced the same peaks in power-related tweets at 0000 UTC and peaks in weather-

related discussions at 0100 UTC. However, Delaware had a second peak at 0500 UTC, 

which corresponded to the 13,000 increase in reported power outages (Figure 14). These 
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peaks were followed by a steep incline of power outages at 0400 UTC and plateaus until 

0900 UTC. By this time, Twitter volume begun to fall until it reached a minimum at 0800 

UTC. An hour later, the power and weather discussions started to steadily increase in 

volume. Whereas the reported power outages started to decline over the next hour before 

plateauing again. Chatter across both, weather and power-related datasets progressively 

increased over the 0800 to 1400 UTC timeframe. Then all Twitter activity declines until 

the end of their collection period.  

 

The South-Atlantic states of North Carolina and West Virginia had very different 

relationship trends between Twitter activity and reported power outages. Twitter activity 

in North Carolina and West Virginia displayed a small peak in power and weather-related 

tweets at 0100 UTC. By 0500 UTC, West Virginia’s reported power outages had 

increased to over 27,000 outages per every 100,000 households and remained steady until 

0900 UTC. Whereas, North Carolina’s reported power outages had already peaked with 

over 400 outages per every 100,000 households at the beginning of collection. Therefore 

by 0500 UTC, North Carolina was already seeing a dramatic decrease in outages. The 

decrease in reported outages occurred simultaneously with decreases in power and 

weather-related Twitter discussions. However, between 0800 and 0900 UTC chatter on 

Twitter begun to slightly pick back up again as the reported power outages continued its 

downward momentum. During this same timeframe, West Virginia was still experiencing 

additional power outages and increased weather and power-related discussions. West 

Virginia reached 35,000 outages for every 100,000 households by 1000 UTC. This 
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volume of outages persisted until the end of the collection period. Across West Virginia 

and North Carolina, the volume of tweets from both datasets begun to decrease around 

1200 UTC; this trend also endured until the end of the data collection.  

 

Lastly, the spatiotemporal analysis looked at the Mid-West and Mid-Central states 

of Illinois, Indiana, Kentucky, Michigan, Ohio, and Tennessee. At the start of the data 

collection, Michigan, Illinois, and Tennessee saw a peak in weather-related tweets earlier 

than a spike in power-related tweets. While Kentucky, Ohio, and Indiana displayed peaks 

in power discussions before peaks in weather discussions. After these peaks occurred 

between 0000 and 0200 UTC, the weather and power discussions on Twitter slowly 

dwindled down. Within this timeframe, power outages in Ohio, Indiana, and Michigan 

started to surge at 0400 UTC. Two of these states, Ohio and Indiana, had seen surges of 

power-related discussions prior to storm-related conversations. On the other hand, 

Tennessee (Figure 15) and Illinois first saw increases in weather-related tweets and as a 

result, Tennessee, Illinois, and Kentucky didn’t report any power outages until 0900 

UTC. However, regardless of when states begun to see power outages, all Twitter 

datasets displayed increases in volume from 0900 to 1300 UTC. Ohio, Indiana, and 

Michigan, which had reported power outages earlier than other neighboring states, saw a 

slight increase in power outages during this time. Finally, as the Twitter datasets begun to 

approach the end of the collection period their volume started to progressively decline. 
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Figure 15: Timelines (UTC) plotting the volume of weather-related Twitter activity (top) and power-related  

Twitter activity (bottom) against the volume of customers experiencing power outages in Tennessee. 
 

Overall, the temporal monitoring of weather and power-related tweets disclosed a 

relationship of when power outages are documented. It appears that the states that were 

closer to where Superstorm Sandy made landfall had higher volumes of power-related 

tweets. The rise in the volume of power-related discussions was also an indicator of a 

later rise in power outages. States that were further away from the track of Superstorm 

Sandy often saw closer relationships between weather-related discussions and reported 

outages. In this case, rises in the volume of weather-related tweets were frequently 

followed by increases in documented power outages.  
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6.3 Geospatial Analysis 

The geospatial analysis revealed which areas contributed to discussions pertaining 

to power outages and how their initial volume of tweets compared to their reported 

number of power outages. The results below illustrate this analysis at the state and utility 

service territories levels for Hurricane Harvey and Superstorm Sandy. 

 
6.3.1 Hurricane Harvey 

The geospatial exploration revealed which states and service areas had the most 

power-related tweets per every 1,000 households and their comparison to the number of 

power outages for every 1,000 households. Of the fourteen utility companies, the top 

eight utilities with reported power outages and the top ten utilities with power-related 

tweets were located in Texas. This discovery is supported by the power outage data, 

which shows that nearly 90% of reported power outages due to Hurricane Harvey 

occurred in Texas. Also, the Hurricane Harvey power-related Twitter dataset confirms 

that roughly 94% of power-related discussions were in Texas. Figure 16 also illustrates 

the dramatic differences in the volume of power-related tweets and reported power 

outages between Texas and Louisiana.  

 

The geospatial analysis was also completed on a smaller scale—utility service 

areas. Overall, the Houston area and southern Texas utility companies had the highest 

volume of power-related tweets and outages. Austin Energy (3268.07 tweets per 1,000 

households), CenterPoint Energy (3015.89 tweets per 1,000 households), Entergy Texas 
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Inc. (2780.39 tweets per 1,000 households), and AEP Texas (2575.63 tweets per 1,000 

households) were the service providers which had the most tweets per 1,000 households. 

CenterPoint Energy, Entergy Texas Inc., and AEP Texas were also among the top four  

 

 
Figure 16: Choropleth map illustrating the spatial relationship between Twitter usage  

and power outages at the state level. 
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utility companies that reported outages due to Hurricane Harvey. The top utility 

companies reporting power outages were AEP Texas (87592.70 outages per 1,000 

households), CenterPoint Energy (42818.90 outages per 1,000 households), Entergy 

Texas Inc. (25671.90 outages per 1,000 households), and Nueces Electric Cooperative 

(21293.30 outages per 1,000 households). The top six utility territories with the highest 

tweet volumes were within the top seven utility providers that reported outages. Also, six 

utilities with the lowest tweet volumes fell within seven of the utilities with the least 

number of power outages.  

 

As seen in Figure 17, the highest volume of reported power outages was from the 

utility providers along the Gulf of Mexico’s coast. The service territories with the next 

highest number of reported outages were from Houston area utility companies. These 

areas also had the highest number of power-related tweets and therefore acted as a good 

indicator for power outages. In contrast, large utility areas in central and northern Texas 

had moderate volumes of power-related tweets, but they also recorded the least number 

of outages. Lastly, utility companies in Louisiana that had very little power-related 

discussions and reported a small volume of power outages. 
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Figure 17: Choropleth map illustrating the spatial relationship between Twitter activity  

and power outages by utility service territories during Hurricane Harvey. 
 

 

6.3.2 Superstorm Sandy 

The geospatial examination revealed which states and service areas had the most 

power-related discussions and power outages per every 100,000 households due to 

Superstorm Sandy. The relationship between power-related tweets and power outages  
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Figure 18: Choropleth map illustrating the spatial relationship between Twitter usage  

and power outages by states during Superstorm Sandy. 
 

were more consistent at the state level (Figure 18). The highest volume of power-related 

tweets was in the District of Columbia. New Jersey had the next highest volume of 

power-related tweets and was also the state with the highest volume of outages. Other 

states with moderately light volumes of power outages were Vermont, New Hampshire, 
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Connecticut, Rhode Island, Massachusetts, Maine, Pennsylvania, Maryland, Delaware, 

West Virginia, and Virginia. All of these states, except for New Hampshire, Connecticut, 

Pennsylvania, and West Virginia, also had light to moderate volumes of power-related 

tweets. While heavier volumes of reported outages were documented in New Hampshire, 

Connecticut, Pennsylvania, and West Virginia. New York reported very light volumes of 

Twitter activity, but suffered from a large number of power outages.  Lastly, the lowest 

volumes of outages and tweets were found in Michigan, Illinois, Indiana, Kentucky, 

Tennessee, and North Carolina. 

 

The same analysis was completed at a finer granularity—utility service areas. The 

top five utilities with the highest volume of tweets were Consolidated Edison Co-NY Inc. 

(312.15 tweets per 100,000 households), Atlantic City Electric Co. (213.22 tweets per 

100,000 households), Jersey Central Power & Lt Co. (121.65 tweets per 100,000 

households), Public Service Elec & Gas Co. (110.80 tweets per 100,000 households), and 

PECO Energy Co. (106.49 tweets per 100,000 households). These companies surround 

the highly populated areas of New York City, New Jersey, and Philadelphia. Although 

these areas had a large volume of tweets, they all did not exhibit a high volume in overall 

power outages. The five utilities with the highest volume of outages were Orange & 

Rockland Utilities Inc. (69899.79 outages per 100,000 households), Monongahela Power 

Co (53176.5 outages per 100,000 households), PECO Energy Co (47890 outages per 

100,000 households), CONVEX (37322.3 outages per 100,000 households), and Long 

Island Power Authority (36435.10 outages per 100,000 households). The only utility 
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company to have both a high volume of power-related tweets and reported outages was 

PECO Energy. Otherwise, of the 22 utility companies only six of the eleven utility 

companies with high tweet volumes were within the highest eleven companies with 

reported outages. 

 

 
Figure 19: Choropleth map illustrating the spatial relationship of Twitter activity  

and power outages by service provider during Superstorm Sandy. 
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Using Figure 19, the relationship between power outages and tweet volume can 

be further viewed. The highest volume of power outages was around New York City, 

Philadelphia, northern West Virginia, eastern Ohio, Long Island, southern New Jersey, 

and western Massachusetts and Connecticut. While, the highest volume of power-related 

tweets were near New York City, New Jersey and Philadelphia. On the contrary, the 

lowest volume of power-related tweets was located just northwest of New York City and 

throughout parts of Ohio, Michigan, Indiana, Illinois, and Kentucky. Whereas Virginia, 

Rhode Island, and eastern Massachusetts and Connecticut had the lowest volume of 

power outages. 

 

The utility companies in eastern Massachusetts, Rhode Island and Connecticut 

had a low to moderate distribution of tweets, but only had a very small volume of power 

outages. Western Massachusetts and Connecticut had the opposite relationship; their 

volume of tweets was moderate; however they had a high volume of power outages. 

Utility companies in Vermont were consistent with lower volumes of tweets and power 

outages. In New York, the New York State Elec & Gas Corp., which provides electricity 

across the state of New York, had a moderately light volume of tweets and a moderate 

volume of reported outages. Long Island also had a moderately light volume of tweets, 

but had a high volume of outages. Moving towards New York City, Consolidated Edison 

Co-NY Inc., had the highest number of power-related tweets and a high volume of 

outages. Yet, Orange & Rockland Utilities Inc., which is the utility provider just 

northwest of New York City, displayed extremes on both sides of the scale. Orange & 
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Rockland Utilities Inc. had the lowest number of power-related tweets and the highest 

volume of power outages. PECO Energy Co. also had one of the highest volumes of 

power outages, but it also had a corresponding high tweet volume. Other outages 

throughout Pennsylvania, eastern Maryland, and Delaware coincided with a moderate 

volume of tweets and reported outages. Northern New Jersey also had a moderate volume 

of outages, but it had a higher volume of tweets. The same association applied to 

southern New Jersey. Virginia also saw slightly higher volumes of tweets than power 

outages. While Maryland and northern West Virginia exhibited the exact opposite 

relationship. Those utility companies experienced low to moderate volumes of tweets, but 

actually displayed moderate to very high volumes of power outages. Lastly, utilities in 

Ohio, Michigan, Illinois, Indiana, and Kentucky all-around had a low volume of tweets 

and power outages.  
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7 DISCUSSION 

Chapter 7 presents the discussions for each of the analyses described in chapter 5. 

The discussion of the results from the geosocial, spatiotemporal, and geospatial analyses 

are broken up into the separate sections of 7.1, 7.2, and 7.3. Each section addresses one of 

the research questions listed in chapter 3. Additionally, the results from the previous 

chapter are supplemented with information and overall themes discussed previously 

throughout this paper. These discussions will aid in the drawing of conclusions found in 

the next chapter.  

 

7.1 Geosocial Analysis 

 
The main discussion topics discovered in the geosocial analysis differed between 

Hurricane Harvey and Superstorm Sandy. As previously mentioned the Hurricane Harvey 

case study appeared to be more concerned with the record flooding in Houston than 

widespread power outages. These concerns were expressed through words such as flood, 

flooding, Houston, help, victims, and relief (Table 1); and expressed through hashtags, 

such as #harveyrelief, #harveyflood, #houstonflood, and #houstonstrong (Table 2). The 

word power didn’t emerge until the top 500 words and #power emerged as the 2,076th 

most common hashtag. Whereas, power outages were a major discussion topic during 

Superstorm Sandy. The word power was the third most used word during Superstorm 
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Sandy (Table 3). Also, the words without and million were frequently used to talk about 

the millions of customers without power. The #blackout was also commonly used to talk 

about power outages during Sandy (Table 4). The variance in the volume of power 

outages during Harvey and Sandy is observable by the most commonly tweeted words 

and hashtags. In the aftermath of Sandy, over 8.5 million customers were without power 

[3].  While, 1.7 million customers were without power due to Hurricane Harvey [8]. The 

disparity in topics of concern made these storms excellent case studies because they each 

served as an example illustrating the relationship between Twitter activity and different 

magnitudes of power outages.  

 

Another noticeable difference between Superstorm Sandy and Hurricane Harvey’s 

geosocial results were the geographic extent. The top 20 most frequently tweeted words 

showed the general range of impacted areas. Superstorm Sandy’s top 20 words included 

more locations than Hurricane Harvey’s results. Within Sandy’s results the locations of 

New York, New Jersey, New York City, Manhattan, the U.S. east coast and metropolitan 

areas were commonly identified by Twitter as impacted areas. While Harvey’s geosocial 

results focused on the heavily impacted Houston, Texas region. This dissimilarity in 

geographic extent is because Sandy’s impacts were widespread across 21 states. 

Whereas, Harvey’s wrath was primarily felt by Texas and Louisiana. However 

comparably, both case studies captured the large volumes of tweets expressing signs of 

sympathy. Tweets offering thoughts and prayers were prevalent throughout both 
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Hurricane Harvey and Superstorm Sandy.  Also, the #redcross was a trending hashtag 

during both storms.  

 

Overall, the results of Hurricane Harvey and Superstorm Sandy’s geosocial 

analysis were able to capture discussions of power outages. The analysis also revealed 

that there exists an association between Twitter activity and reported power outages. 

Power outages due to severe weather are observable within discussions among the 

Twitter community. These discussions covered various topics of the powerful storms and 

their dangerous aftermath, such as flooding, rain, floodwaters, damages, relief efforts and 

power outages. The word and hashtag frequency analysis also divulged information about 

the locations of life-threatening aftermath. The locations identified within the top 20 

tweeted words were places which felt the largest impacts. Ultimately, the semantic 

analysis of tweets disclosed a linkage between disturbances in critical infrastructure and 

social media usage. 

 

7.2 Spatiotemporal Analysis 

 
In Hurricane Harvey’s case study, there was a higher volume of weather-related 

tweets than power-related tweets. As a result, the temporal analysis displayed a closer 

relationship between reported power outages and weather-related tweets in Texas. The 

onset of reported power outages started as Hurricane Harvey made landfall on August 

25th [14]. Just before the initial reports of power outages, there are small spikes in 

weather and power-related Twitter discussions. However, the largest spike in weather-
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related tweets occurs on August 28th. This is roughly 48 hours after Harvey’s landfall and 

the first reports of power outages. This peak is associated with the flooding caused from 

Harvey stalling over Texas. On August 26th, Harvey begun to stall over south Texas 

before it gradually moved back into the Gulf of Mexico on August 28th [14]. The slow 

forward momentum quickly caused catastrophic flooding and therefore caused an 

increase in weather-related Twitter discussions. Days later, Texas’ power-related tweets 

peaked between August 31st and September 1st. This spike in power-related discussions is 

possibly attributed to tweets mentioning the slow return of power. The opposite 

relationship was true for Louisiana; the spatiotemporal analysis illustrated a closer 

relationship between reported power outages and power-related tweets. The major onset 

of power outages occurred on August 29th. This is just hours before Hurricane Harvey 

made a second landfall near Cameron, Louisiana on August 30th [14]. The peak in power-

related tweets comes 24 hours after the peak in reported power outages. This peak in 

Twitter activity could be a delayed response to the large volume of outages. Another 

possible explanation could be discussions of power returning because the number of 

reported power outages begins to gradually decline during this time. As seen in Texas, 

Louisiana’s weather-related tweets also peaked on August 28th. This peak can be 

attributed to the national discussions of the historic flooding in Texas.  

 

Superstorm Sandy’s spatiotemporal analysis revealed higher volumes of power-

related tweets than weather-related tweets. Within each state, the relationships between 

power and weather-related tweets appear to follow similar trends. Both Twitter datasets 
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see large peaks 2-3 hours before the initial onset of power outages. Superstorm Sandy 

made landfall late at 2330 UTC on October 29th [3] and nearly four hours later came the 

first reports of power outages. These large surges in tweet volume serves as a good 

indicator a power outage would follow. In most states the weather and power-related 

Twitter datasets saw a second peak between 1000 and 1400 UTC. These peaks were 

generally of equal or lesser magnitude of the prior peak. This trend could serve as a sign 

of an outage because over time social media usage would become limited due to the 

inability to recharge electronics. However, in some states the second peak in Twitter 

activity was of greater magnitude than the first. In most states this accompanied a 

decrease in the magnitude of power outages. As seen in Harvey’s spatiotemporal 

analysis, Twitter users tweeting about power being returned could be responsible for the 

increase in Twitter activity while there was a decrease in the volume of power outages. 

 

Throughout both case studies, Harvey and Sandy, the daily diurnal cycle is 

present. The daily cycle is easily visualized in the Superstorm Sandy spatiotemporal 

analysis (Figure 10 and Figure 11). The dip in Twitter activity between 0400 and 1100 

UTC coincides with night on the United States’ east coast. As expected, Twitter activity 

decreases in the overnight and the early morning hours. The nightly dips can also be seen 

in Hurricane Harvey’s spatiotemporal analysis (Figure 12, Figure 13, Figure 14, and 

Figure 15).  
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The spatiotemporal analysis discovered that Twitter has the ability to capture 

when customers lost power due to Hurricane Harvey and Superstorm Sandy. In Sandy 

and Harvey’s spatiotemporal analysis, an increase in the volume of weather and power-

related Twitter activity could be used as reconfirmation of an active power outage. 

Therefore, the spatiotemporal analysis proved that Twitter activity could serve as an 

indicator of a loss of electricity. Also, Superstorm Sandy’s analysis revealed that social 

media activity that was highly concerned about power outages, could be used to identify 

an active power outage before traditional reporting by power and utility companies.  

 

7.3 Geospatial Analysis 

 
Hurricane Harvey’s geospatial analysis was able to identify areas that had a high 

volume of Twitter activity and a high volume of reported power outages. The areas with 

the highest number of reported outages and power-related tweets were located in southern 

Texas. This region is where powerful, category 4 Hurricane Harvey made landfall 

between the coastal cities of Port Aransas and Rockport, Texas [14]. The highly 

populated area surrounding Houston also had a high volume of power-related tweets and 

the results reported a moderately high volume of power outages. Elsewhere in Texas and 

Louisiana, there was light to moderate Twitter activity. However, compared to the 

volume of outages reported along Texas’ coastal zone, the geospatial results showed 

smaller volumes of power outages throughout these regions. Overall, the geospatial 

analysis discovered a moderately weak positive correlation between power-related 

Twitter activity and reported power outages (Figure 20). A regression of the logarithmic 
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functions of reported power outages and power-related tweets resulted in a r2 value of 

0.3291 and a p-value of 0.0319. The p-value is less than the accepted alpha level of 0.05, 

which indicates that the result is statistically significant. Ultimately, areas with higher 

power-related Twitter activity tended to have a higher number of reported power outages.  

 

 
Figure 20: Regression of power-related tweets and reported power outages per 1,000 households. 
 

To contrast, Superstorm Sandy’s geospatial analysis determined that the 

relationship between power-related tweets and reported power outages had little to no 

correlation and is not statistically significant. A regression of the logarithmic values of 

reported power outages and power-related tweets resulted in a r2 value of 0.0011 and a p-

value of 0.8852 (Figure 21). The p-value is greater than the accepted alpha level of 0.05, 

which indicates that this result is not statistically significant. Although the volume of 

Twitter activity was a relatively good indicator for the number of outages in some areas, 
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such as Vermont, New York City, eastern Pennsylvania, Delaware, Maryland, and parts 

of Ohio, Michigan, Illinois, Indiana, and Kentucky, it was a poor indicator for areas 

closer to the landfall region. Utilities areas laying in the coastal zones of Connecticut, 

Massachusetts, Rhode Island, New York, and New Jersey had more discrepancies 

between power outages and Twitter activity. A possible explanation for these 

inconsistencies could possibly be attributed to mandatory evacuations.  

 

 
Figure 21: Regression of power-related and reported power outages per 100,000 households. 

 

Evacuations could be a possible explanation of discrepancies between the number 

of tweets and number of power outages. The major variances between Twitter activity 

and reported outages lies in an area northwest of New York City, Long Island, and 

western Massachusetts and Connecticut. Not only did these areas see a lower volume of 

Twitter activity and extremely high numbers of power outages, but they were all affected 

by mandatory evacuations. Mandatory evacuations were ordered for the low laying 
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coastal zones of lower Manhattan, Long Island, Connecticut, and New Jersey [52]. An 

estimated 375,000 people were evacuated from evacuation Zone A in New York City and 

another 360,000 people were evacuated from the Connecticut coast [52]. Evacuations of 

this magnitude could explain the decrease of Twitter activity in those areas and the high 

volumes of power outages. Large evacuations of this degree were not seen during 

Hurricane Harvey. Mandatory evacuations were issued for the immediate coastal counties 

around Harvey’s possible landfall trajectory [53]. The Houston area was only issued a 

voluntary evacuation [53]. These evacuations ordered thousands of people to flee low 

lying coastal areas. The evacuations during Hurricane Harvey were at a lesser degree than 

Superstorm Sandy. This is why there were more discrepancies between Twitter activity 

and power outages in Sandy’s case study as opposed to Hurricane Harvey.  

 

Lastly, an additional discrepancy found in both case studies can be attributed to 

the normalization factor. This research used the number of households to normalize the 

datasets. However, the normalization factor does not account for the density of 

households. This primarily effected utility areas which covered more land area. An 

example from the Superstorm Sandy case study is the utility area located in northern New 

Jersey (Figure 19). This utility area roughly covers the entire state of New Jersey. The 

discrepancy arises from the fact that most of the power outages were felted by populated 

coastal areas, which only make up a minor percentage of the total households within the 

entire the utility area. As a result, the large number of reported outages are normalized by 

all households throughout the northern and central parts of New Jersey; and therefore, 
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have less of an impact compared to smaller utility areas. The same principle can also be 

used to explain the results found in New York and Virginia from the Sandy case study 

(Figure 19) and in northern Texas from the Harvey case study (Figure 17). Factoring in 

the density of households could aid in understanding outages in larger service areas. 

Additionally, areas with higher household densities may have one main power line to 

distribute power. As a result, if a main power line loses power in a high-density area it 

affects more households. 

 

Ultimately, the volume of power-related tweets preformed well as an indicator for 

power outages during Hurricane Harvey. The relationship between Twitter activity and 

reported power outages had a moderately, weak positive correlation, which was statically 

significant. In the Superstorm Sandy case study, the volume of power-related tweets 

preformed well as an indicator for power outages in utility companies with smaller land 

coverage. However, the relationship between outages and Twitter activity had little to no 

correlation and was found not to be statically significant. Overall, the performance of 

using Twitter activity as an indicator of power outages is affected by the magnitude of 

evacuations and the normalization factor. 

 



93 
 

8 CONCLUSIONS 

Chapter 8 presents the final conclusions drawn from this research study. Section 

8.1 will discuss the main themes and overall outcomes from each analysis and how it can 

impact real-world applications. Since this study does have real implications, the 

challenges and limitations of certain aspects, such as data and resources, are considered 

in section 8.2. Finally, section 8.3 introduces topics for future research studies in the 

areas of energy, natural disasters, and geographic information systems.  

 

8.1 Outcomes 

Overall, this research was able to determine that Twitter had the ability to capture 

discussions of power outages during Hurricane Harvey and Superstorm Sandy. Power 

outages due to severe weather events are largely, observable within discussions among 

the Twitter community. Therefore, this research study revealed there exists an association 

between reported power outages and Twitter activity. Likewise, the temporal monitoring 

of power and weather-related Twitter activity can serve as a secondary indicator of a loss 

of electricity. Hurricane Harvey’s spatiotemporal results showed that an increase in the 

volume of weather and power-related tweets can act as reconfirmation of an active power 

outage within the state. Also, the Twitter community throughout Texas and Louisiana 

exhibited delayed reactions to power outages. Sandy’s spatiotemporal results discovered 
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that spikes in power and weather-related tweets can signify the onset of power outages 2-

3 hours before traditional reporting. However, using the volume of power-related tweets 

to indicate locations of power outages is dependent on other factors, such as evacuations. 

Finally, the relationship between the volume of power-related tweets and reported power 

outages had a positive moderately, weak correlation in Harvey’s case study. As a result, 

areas with higher power-related Twitter activity tended to have a higher number of 

reported power outages. Whereas, the same relationship had little to no correlation in 

Superstorm Sandy’s case study.  

 

The results from this study are expected to serve as an additional aid to help 

electric and utility providers quickly identify areas without electricity during future 

power outages. The findings from this research can also aid local governments and 

disaster relief organizations’ funding decisions for future disasters. As well, conclusions 

from this study could aid in developing a standardized framework for detecting blackouts 

from social media platforms. A social-media-assisted framework can allow utility 

companies to quickly detect and prioritize areas which need power returned. Information 

gathered from social media could be used to locate damaged electrical equipment and to 

allow technicians to assess whether conditions permit for safe repairs. A standardized 

structure would provide utility providers with an additional avenue to work with local 

governments and relief organizations to quickly restore electricity. A social-media-

assisted framework can also serve as another resource in case of a power grid failure due 

to a cyber-attack on the U.S. energy grid. The close observations of social media activity 
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could be a valid option to detect outages when traditional equipment fail. The constant 

monitoring of social media can determine regions, which are without power for an 

extended period of time and are in need of crucial resources and supplies. 

 

8.2 Challenges and Limitations 

During this research study, there were some challenges that slowly emerged. The 

first challenge dealt with the consistency and accuracy of the geographic coordinates and 

locations. This study used a mixture of precise and imprecise coordinates. Also, this 

study assumes that a user tweeting about a loss of power is indeed in an area experiencing 

a power outage. However, extracted coordinates correspond to the location of the Twitter 

user and not the location mentioned within a message of a tweet. As a result, a person 

could be tweeting about a power outage but still have power. Another challenge dealt 

with the spatial distribution of tweets. Realistically, highly populated areas produce more 

tweets than lower populated areas. Therefore, dense urban and metropolitan areas are 

well accounted for, however rural areas are not as well represented. To limit this 

challenge, normalized tweet counts for each state and service territory were used. 

 

Language bias was a limiting factor in this research study. Nearly 20% of 

languages spoken in the United States are a language other than English [49]. The most 

common languages spoken in the United States are English, Spanish, Chinese, and 

French. Approximately 13% of the population is Spanish speaking [49]. However, this 

study only analyzed tweets which were tweeted using the English language. The word 
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and hashtag frequency analysis only examined English words. Also, only the English 

words for power outages and weather events were used to develop the individual 

keyword Twitter datasets. Therefore, this study has an English language bias. Also, 

important be noted is Twitter’s age bias. There are substantial differences in social media 

usage by age. A Pew Research Institution 2016 report showed that 24% of Internet users 

use Twitter [50]. This statistic has been unchanged from a previous study. These studies 

show that young Americans are 3 times more likely to use Twitter than older Americans 

[50].  An updated 2018 report published by the Pew Institution states that 45% of 18-24 

year olds, roughly 32% of 25-29 year olds, 27% of 30-49 year olds, and 14% of 50 years 

and over use Twitter [51]. As a result, Twitter usage is skewed towards the younger 

generations.   

 

Finally, inconsistencies amid the collection of energy data between service 

territories and states levels was another challenge of this research study. Inconsistencies 

exist between power outage documentation between EIA and DOE reports. This research 

mitigated these discrepancies by working with the fullest and most complete reports. 

Also, the granularity of energy reports was a limiting factor. At most DOE published 

energy updates bi-daily and EIA only published the overall length of power outages. 

Power outage reporting could be further improved with an hourly reporting system. A 

dataset of the volume of power outages reported hourly would be beneficial for similar 

future studies.  
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8.3 Future Research 

 
Overall, this research explored the relationship between Twitter usage and power 

outages. Future research should be conducted by applying the same research methods to 

past and future hurricanes to confirm and verify the results found during this case study. 

Future studies should explore the how the relationships between power outages and social 

media users' behavior change depending on the magnitude of the hurricane. This research 

can also be expanded by analyzing the mood of tweets. By examining the sentiment of 

tweets, more information about the Twitter community could be divulged. This could 

also help separate tweets talking positively and negatively about power outages. For 

example, tweets expressing happiness that power is return would be in a separate dataset 

than tweets expressing concern because of a loss of power. Also, if the Twitter collection 

period could be expanded to include the entire outage length, the positive and negative 

power-related Twitter datasets could be used to detect the onset and the return of power 

to customers. This research concept would offer a more in-depth look at the social media 

community during a power outage in its entirety.  

 

Another future research idea that could build off of this study, is to see if there is a 

correlation between power outages and other major weather events. Other severe weather 

events that would make interesting case studies would be the 2012 Washington D.C. 

derecho, the 2017 Mid-West derecho, the March 2018 Nor’easter, and 2016 Winter storm 

Jonas. The same methodologies could be applied to these extreme weather events to see 

whether the Twitter community’s response differs during different types of weather 
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events. Also, by using various types of weather events, all with different impacts to 

critical infrastructure, researchers could learn about how the online community reacts 

when faced with different durations of outages. Ultimately, researching additional 

weather phenomenology could further confirm the findings of this study. 

 

Lastly, future work could possibly continue analyzing the Harvey weather 

keyword dataset to see if the volume of tweets could help meteorologists validate 

essential forecasts. In the future, operational meteorologists could use similar procedures 

as additional sources of confirmation for forecasts and verification for watches and 

warnings. Ultimately, this can help meteorologists increase the accuracy and precision of 

their warnings. Also, a similar analysis could explore whether higher tweet volumes 

occur in areas that FEMA has declared areas of major disasters. The findings from this 

research can also aid local governments and disaster relief organizations during future 

disasters. Outcomes from this type of research could be used to help direct crucial 

resources and supplies to inundated areas.   
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