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EXECUTIVE SUMMARY

One of the central limitations of current machine vision systems is that they have no or very
limited learning capabilities. In recent years, there has been increasing realization among re-
searchers that the incorporation of such capabilities in vision systems is highly desirable, and
constitutes an exciting new challenge for interdisciplinary research on vision through learning.
Vision systems capable of learning would apply to a wider range of practical problems, wouid be
easier to adapt to new problems, would be more flexible and more robust. Due to the rapid
progress in the field of machine learning, implementing such capabilities in vision systems is be-
coming increasingly feasible.

In reflection of these developments, there has been growing interaction and collaboration
between the machine learning and vision communities. By 1992, these research interests and
interactions had reached a point at which current research activities and future perspectives
needed to be discussed and analyzed. To this end, the NSF/ARPA Workshop on Machine Learn-
ing and Vision was organized by George Mason University in collaboration with the University
of Maryland, and was held on October 15-17, 1992 in Harper’s Ferry, WV. The workshop
brought together researchers in vision and leamning to discuss the possibilities of cross-fertilizing
the two fields and implementing learning capabilities in vision systems. It was attended by 45
participants representing universities (21), industrial and governmental laboratories (16), and
sponsoring agencies (8).

This report is based on the discussions at this Workshop and on a preliminary report written
by the participants (Michalski et al., 1993). Part 1 of the report provides research overviews—
one on machine vision (by A. Rosenfeld) and one on machine learning (by R. S. Michalski). Part
2 discusses potential roles of learning in task-independent and task-oriented (purposive) vision
systems; the framework of this discussion was developed by Y. Aloimonos. Much of the material
in Part 2 is based on group discussions at the workshop, which were coordinated and initially
summarized by J. Shavlik and T. Poggio (object recognition), T. Dean and T. Kanade (navi-
gation), and R. Bajcsy and T. Mitchell (sensory-motor control). P. Pachowicz made substantial
contributions to the editing of the preliminary report and the preparation of the supplemental
bibliography for this report.

Overviews

The goal of machine vision is to derive descriptions of a scene, given one or more images of
that scene. Traditionally, theoretical work on machine vision has pursued a task-independent ap-
proach which attempts to derive “complete”, “general purpose” descriptions using methods that
are applicable to broad classes of scenes. An important conceptual advance during the past few
years is the development of the purposive approach, which seeks partial descriptions that are
meaningful in connection with specific tasks being performed by a vision-based system
operating in a specific domain.

Machine learning is the branch of artificial intelligence devoted to the study of computational
processes by which a system can construct representations of knowledge or skills, using infor-
mation provided by the external world and its own previous knowledge. The types of
representations that need to be constructed and the methods for constructing them can vary
greatly, and this leads to a tremendous diversity of possible learning approaches and techniques.

Machine Vision and Learning 1



For example, learning may involve building general object descriptions from specific
observations, acquiring problem solving methods on the basis of examples of solutions,
improving algorithms through practice or experimentation, constructing control heuristics from
experience, creating solutions to new problems by analogy with solutions to similar problems,
discovering statistical or logical regularities or relationships among entities, and so on.

Candidate descriptions or algorithms must satisfy certain constraints that can be usually
expressed in a functional form. Therefore, many learning problems can be characterized as
determining a complete description of a function on the basis of examples of input-output pairs
that satisfy the function. Learning problems can then be classified according to the nature of the
range and domain of this function. In the purposive approach, the search for the desired
description can be restricted to the relevant subsets of the range and domain, or the function can
be decomposed into simpler functions.

Learning and vision

Children (and anirnals) “learn” vision—i.e., acquire skills that make use of visnal input—
merely by being immersed in their environment; they can learn from unordered visual experi-
ences and without a designated teacher. A long-term challenge to researchers in machine learning
and machine vision is to eventually give vision systems this ability.

Vision systems can make use of learning in many different ways. For example, learning can
be employed in developing or improving various components of “general-purpose” (task-
independent) vision systems, for building general descriptions of visual objects from object
examples, or for discovering constraints on a class of scenes from cbservations and prior
knowledge. It also provides a general approach to designing task-oriented (“purposive™) vision
systems, using task-independent learning methods. In particular, it can be used for controlling the
dynamical processes used by vision-based autonomous systems (*“‘agents’).

In task-independent approaches to learning in vision, many interesting theoretical questions
arise—for example, how to determine relevant features, how to choose or search for the most
appropriate representation spaces, what languages to use for building object descriptions in those
spaces, what are the complexities of different learning tasks, how to learn models for shapes,
textures and motions, and how to synergistically integrate these models.

The purposive approach to learning in vision can be well illustrated by the many roles of
learning in vision-based navigation. Any active agent requires an ability to navigate, or more
generally, to coordinate vision and action, in order to operate effectively in its environment.
Navigation problems arise at many levels, from local (steering, tracking, obstacle avoidance) to
global (route planning). The problems vary in difficulty depending on how strongly constrained
the agent’s actions are, how unstructured and dynamic the environment is, and how sophisticated
the agent’s observations are. Navigation tasks can be classified in accordance with how much
inference they require, how much time is available, how much supplemental (non-sensory)
knowledge is available, and how complex the required behavior is.

Current research on learning vision systems has been exploring a spectrum of approaches and
problems. A large portion of this research has dealt with neural net applications, for example, to
road navigation, object detection in various types of images (visible, range, sonar, radar, etc.), or
learning control functions. Advantages of these methods include their generality and their ability
to learn continuous transformations. Disadvantages include the difficulty of incorporating prior
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knowledge (especially relational knowledge), the difficulty of learning complex structural
knowledge, slow learning rates, and lack of comprehensibility of the learned knowledge. While
symbolic learning methods suffer much less from the latter problems, they have been primarily
oriented toward learning discrete concepts and transformations and applied mostly in areas other
than computer vision. In computer vision, they may be particularly useful for feature extraction,
new feature generation, learning visuval surface descriptions (e.g., textures), learning complex
shape descriptions, acquisition of structural or relational models of objects, construction and
updating of model bases, “conceptual” scene segmentation, and others. Applications of symbolic
approaches to vision problems remain an insufficiently explored but potentially very fruitful
domain of future research. Because of this, and because of the existence of extensive literature on
the applications of neural net and closely related approaches to vision, this report gives special
emphasis to symbolic learning methods.

Although many examples of the application of learning methods to vision-related tasks have
been reported in the literature, there is a lack of principles for deciding which approaches and
methods to use, and for guiding the design of learning vision systems to perform specific tasks in
specific situations. Such principles are essential for developing systems that are well-suited for
given tasks, can deal with a wide range of vision problems, and can work in environments whose
characteristics vary significantly and change over time.

Recommendations

« Machine learning offers significant opportunities to extend current vision techniques, par-
ticularly in the area of task-oriented vision. Selected projects, oriented toward important
potential applications, should be established with short-term and long-term goals.

* Promising research opportunities for the use of learning approaches in vision systems
include:

- Autormnated selection or determination of sensors, features, algorithms and modules that
are most appropriate to given classes of scenes and given tasks; identification of “key”
characteristics of given object classes and automated synthesis of new features.

- Acquisition of general object descriptions from object samples; specific problems
include learning 2D or 3D shape models, learning surface descriptions from samples, and
decomposing objects or scenes into semantically meaningful components (“conceptual
segmentation™).

- Coordination of the vision modules that perform common or similar visual computations.

- Control of the image acquisition process in active vision systems, in order to acquire the
data most useful for the given task.

- Identification of contexts and tracking of changes in the environment, so that the system
can adapt appropriately to variations in the class of scenes.

- Task decomposition and planning—reducing vision tasks to combinations of simpler
subtasks, so that sequences of subgoals can be selected that result in a desired goal.

 Collaboration between the machine learning and vision communities, involving extended
visits, shared testbeds, benchmarks, and competitions, should be encouraged.
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1. RESEARCH OVERVIEWS

1.1. Perspectives on Machine Vision
1.1.1. Introduction

The goal of machine vision is to derive descriptive information about a scene by an analysis
of images of the scene (Figure 1); obviously, the nature of the information to be derived depends
on the goals of the system that needs the information. Vision algorithms can serve as computa-
tional models for biological visual processes, and they also have many practical uses; but this
overview treats machine vision as a subject in its own right. Vision problems are often ill-
defined, ill-posed, or computationally intractable; nevertheless, successes have been achieved in
many specific areas. It is suggested that by considering the vision system of an organism or robot
(“agent™) as an embodiment of the agent’s relationship to its environment, useful solutions to
many vision problems can be obtained.

Figure 1: Neither objects nor properties of objects (such as shape, movement, color, etc.) exist in our brains as
such. When we see, computations are performed inside our heads that make us understand the visible world
(objects and their properties). It is difficult to explain how this is done; many theories of visual perception
have been formulated. This figure shows visual areas in the brain. The eye forms an optical image of the scene
an the retina, an array of photoreceptors which discretely sample the image. Other layers of cells associated
with the retina perform various types of local computations on the sampled image. The processed image is
transmitted in parallel along the optic nerve, through the lateral geniculate body, to the striate visual cortex,
where additional types of local processing are performed; these processes are sensitive to the presence of local
features such as spots, bars, and edges in the image. The outpuis of these processes are transmitted to other
areas of the cortex, particularly to the posterior parietal cortex and the inferior temporal cortex, where global
properties of the image appear to be analyzed.

The most common class of images used in machine vision systems are optical images whose
brightness at a point is determined by the amount of light received by the sensor (e.g.,aTV
camera) from a given direction. Images can also be formed using other types of radiation (e.g.,
infrared or ultrasound), or they can measure the distance from the sensor to the nearest surface in
the scene in a given direction (e.g., radar or range sensing); but in what follows we will usually
assume an ordinary optical image.

An image is input to a digital computer by sampling its brightness at a regularly spaced gnd
of points, resulting in a digital image array. The elements of the array are called pixels (short for
“picture elements”), and their values are called gray levels. Given one or more digital images
obtained from a scene, a machine vision system attempts to (partially) describe the scene as con-
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sisting of surfaces or objects; this class of tasks will be discussed further in Section 1.1.2.

Animals and humans have impressive abilities to successfully interact with their environ-
ments—navigate over and around surfaces, recognize objects, etc.—using vision. This perfor-
mance constitutes a challenge to machine vision; at the same time, it serves as an existence proof
that the goals of machine vision are attainable. Conversely, the algorithms used by machine
vision systems to derive information about a scene from images can be regarded as possible
computational models for the processes employed by biological visual systems.

Vision techniques for analyzing images have many practical uses. Areas of application
include document processing (e.g., character recognition), industrial inspection, medical image
analysis, remote sensing, target recognition, and robot guidance. There have been successful
applications in all of these areas, but many tasks are beyond current capabilities (e.g., reading
unconstrained handwriting). These potential applications provide major incentives for continued
research in vision. However, successful performance of specific tasks on the basis of image data
is not the primary goal of machine vision; such performance is often possible even without
obtaining a correct description of the scene.

Viewed as a subject in its own right, the goal of machine vision is to derive descriptions of a
scene, given one or more images of that scene. Vision can thus be regarded as the inverse of
computer graphics, in which the goal is to generate (realistic) images of a scene, given a
description of the scene. The vision goal is more difficult, since it involves the solution of
inverse problems that are highly under-constrained (“ill-posed”). A more serious difficulty is that
the problems may not even be well-defined, because many classes of real-world scenes are not
mathematically definable. Finally, even well-posed, well-defined vision problems may be com-
putationally intractable. These sources of difficulty will be discussed in Section 1.1.3.

1t is difficult to formulate a satisfactory theory of visual perception; such a theory would have
to take into account the environment, the visual stimuli, the sensory receptors, the brain, and the
effectors (Figure 2). This may be the reason for the large variety of theories of visual perception
that have been formulated over the past few hundred years. At the same time, vision is studied by
researchers in many different disciplines (mathematics, engineering, psychology, anatomy, etc.)
Researchers in different areas ask different questions about vision (Figure 3). Some ask theoreti-
cal questions (what could be: What kind of descriptive information can be derived about a scene
from an analysis of its images?); this question is the subject of research in physics, mathematics,
computer science, eic. Some ask empirical questions (what is: How are the visual systems of
existing organisms designed?); this question is studied in zoology, psychology, neuroanatomy,
etc. Finally, some ask purposive or normative questions (what should be: How should the visual
system of an organism or robot be designed so that it can best perform a set of tasks?); these
questions are of interest to engineering disciplines. The three types of questions are related but do
not necessarily have the same answers; what exists could be suboptimal, and only a small subset
of what is theoretically possible could be of practical relevance to autonomous “seeing” systems.

In this overview we restrict our attention to the theoretical and purposive questions. In the
theoretical approach we consider vision in isolation and we study what could be possible; we
regard vision as a process that generates general-purpose descriptions of scenes (Figure 4). These
descriptions are then given as inputs to cognitive processes, such as reasoning, planning, etc.,
appropriately modified as necessary to suit the needs of these processes. In the purposive
approach, on the other hand, we consider vision as a part of a larger system and we study what
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should be; we regard vision as a process that generates partial descriptions of a scene that are
purposive, i.e. that are meaningful in conjunction with a given task or action (Figure 5). Thus this
approach views vision as creating an interface between the world and the cognitive processes
(reasoning, planning, etc.) for the purpose of taking an action. An action can be practical (like a
motor command), theoretical (like reaching a decision or building a specific representation), or

aesthetic.

perceivers. (3) Receptors (sensory

Environment
some of which can be detected by

Figure 2: Topics of interest to any theory of visual perception. (1) The environment: the physical world of
surfaces and objects, which we assume to exist independently of the perceiver. (2) Incoming stimulation:

objects in the world give rise to events,
The goal of vision becomes feasible only if restrictions are imposed on the class of possible

scenes. These restrictions may be very broad (the class of scenes that can occur in a terrestrial

If a scene could be completely arbitrary, not very much could be inferred about it by analyz-
environment, with which an agent might have to deal), or they may be very narrow (c.g., the

surfaces and peripheral neurons): before a perceiver can respond to stimuli, stimulus energy must be con-
ing images. The gray levels of the pixels in an image measure the amounts of light received by
the sensor from various directions. Any such set of brightness measurements could arise in in-

verted into a neural {or computer) code. (4) The brain. (3) Effector systems. (6) Motor responses.
class of scenes that can occur on a conveyor belt in an industrial facility). The central problem of

vision can then be reformulated as follows: given a set of constraints on the allowable scenes,
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1.1.2. Vision Tasks
finitely many different ways as a result of light emitted by a set of light sources, transmitted

through a sequence of transparent media, and reflected from a sequence of surfaces.



and given a set of images obtained from a scene that satisfies these constraints, derive a
description of that scene. It should be pointed out that unless the given constraints are very
strong, or the given set of images is large, the scene will not be uniquely determined; the images
only provide further constraints on the subclass of scenes that could have given rise to them, so
that only partial descriptions of the scene are possible.

Theoretical What kind of descriptive information can be

(what could be) |derived about a scene from an analysis of its
images?

Empirical How are the visual systems of existing

(what 1s) organisms designed?

Purposive How should the visual system of an organism

(what should be)} | or robot be designed so that it can best perform
a set of tasks?

Figure 3: Three different questions that we can ask about the processes involved in visual perception. The
theoretical question is a subject of research in mathematics and physics while the empirical question is
studied in zoology, psychology, neurcanatomy, etc. Purposive or normative questions are of interest to
engineering disciplines. The three questions, although related, do not necessarily have the same answer. What
exists could be suboptimal and only a small subset of what is theoretically possible could be of practical
relevance to autonomous real-time inteiligent “seeing” systems.

Figure 4: The theoretical approach views vision as a mechanical act whose purpose is to perform recovery of
the scene. Vision is studied in isolation and it amounts to deriving general-purpose descriptions of the visible
world. These descriptions are then given as inputs to cognitive processes (reasoning, planning, etc.), appro-
priately modified as necessary to suit the needs of these processes.

Vision tasks vary widely in difficulty, depending on the nature of the constraints that are
imposed on the class of allowable scenes and on the nature of the partial descriptions that are
desired. The constraints can vary greatly in specificity. At one extreme, they may be of a general
nature—for example, that the visible surfaces in the scene are all of some “simple” type (e.g.,
quadric surfaces with diffuse reflectivities), and that the illumination consists of a single distant
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light source. Note that the surfaces may be “simple” in a stochastic rather than a deterministic
sense; for example, they may be fractal surfaces of given types, or they may be smooth surfaces
(e.g., quadric) with spatially stationary variations in reflectivity (i.e., uniformly textured
surfaces). At the other extreme, the constraints may be quite specialized—for example, that the
scene contains only objects having given geometric ("CAD”) descriptions and given optical
surface characteristics.

Reasoning

Figure 5: The purposive or normative approach views vision as creating an interface between the world and
the cognitive processes (reasoning, planning, etc.) for the purpose of taking an action. Vision is studied as a
part of a larger system and creates partial descriptions of the world that are not general-purpose, but that make
sense in conjunction with a task or action (or a set of them). An action can be practical (like a motor com-
mand), theoretical (like reaching a decision or building a specific representation), or aesthetic.

Similarly, the desired scene descriptions can vary greatly in completeness. In the theoretical
approach, a vision task is a recovery task, i.e. the development of a general-purpose description.
In the purposive approach, on the other hand, a vision task is the development of a description
sufficient for achieving a specific goal; common classes of goals involve navigation and
recognition. Recovery tasks call for descriptions that are as complete as possible, but recognition
and navigation tasks usually require only partial descriptions—for example, identification and
location of objects or surfaces of specific types if they are present in the scene. This classification
of vision tasks is illustrated schematically in Figure 6. Note that by definition, recovery tasks
require correct descriptions of the scene; but recognition and navigation tasks can often be per-
formed successfully without completely describing even the relevant parts of the scene. For
example, obstacles can often be detected, or object types identified, without fully determining
their geometries.

In its earliest years (beginning in the mid-1950’s), machine vision research was concerned
primarily with recognition tasks, and dealt almost entirely with single images of (essentially)
two-dimensional scenes: documents, photomicrographs (which show thin “slices” of the subject,
because the depth of field of a microscope image is very limited), or high-altitude views of the
earth’s surface (which can be regarded as essentially flat when seen from sufficiently far away).
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The mid-1960°’s saw the beginnings of research on robot vision; since a robot must deal with
solid objects at close-by distances, the three-dimensional nature of the scene cannot be ignored.
Research on recovery tasks began in the early 1970’s, initially considering only single images of
a static scene, but by the mid-1970’s beginning to deal with time sequences of images (of a pos-
sibly time-varying scene) obtained by a moving sensor.

CLASSES OF VISION TASKS
Complete i RAL” “BIN OF PARTS”
information GENE RECOVERL RECOVERY
: NAVIGATION TASKS
Partial OBJECT RECOGNITION
information | GUALITATIVE RECOVERY

General - Specialized

constraints constraints

Figure 6: A classification of visual problems (tasks) along dimensions of generality vs. specificity in the
assumptions made, the constraints employed or the problems considered, and completeness vs. partialness in
the amount of information about the scene that needs to be recovered.

Forty years of research have produced theoretical solutions to many vision problems; but
many of these solutions are based, explicitly or tacitly, on unrealistic assumptions about the class
of allowable scenes, and as a result, they often perform unsatisfactorily when applied to real-
world images. As we shall see in the next section, even for static, two-dimensional scenes, many
vision problems are ill-posed, ill-defined, or computationally intractable.

Readers interested in more details about vision tasks and techniques may consult any of a
large number of textbooks, monographs, and paper collections; we cite here only the texts by
Ballard and Brown (1982), and Rosenfeld and Kak (1982), and the monographs by Marr (1982)
and by Aloimonos and Shuiman (1989).

1.1.3. Sources of Difficulty

1.1.3.1. Ill-posedness

As already mentioned, the gray levels of the pixels in an image represent the amounts of light
received by the sensor from various directions. If the scene does not contain transparent objects
(other than air, which we will assume to be clear), the light contributing to a given pixel usually
comes from a small surface patch in the scene (on the first surface intersected by a line drawn
from the sensor in the given direction). This surface patch is illumninated by light sources, as well
as by light reflected from other patches. Some fraction of this illumination is reflected toward the
sensor and contributes to the pixel; in general, this fraction depends on the orientation of the sur-
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face patch relative to the direction(s) of illumination and the direction of the sensor, as well as on
the reflectivity of the patch. In short, the gray level of a pixel is the resultant of the illumination,
orientation, and reflectivity of a surface patch. If these quantities are unknown, it is not possible
in general to recover them from the image.

This example is a very simple illustration of the fact that mosl: vision problems are “ill-
posed”, i.e., under-constrained; they do not have unique solutions. Even scenes that satisfy con-
straints usually have more degrees of freedom than the images to which they give rise; thus even
when we are given a set of images of a scene, the scene is usually not uniquely determined.

In applied mathematics, a common approach to solving ill-posed problems is to convert them
into well-posed problems by imposing additional constraints. A standard method of doing this,
known as regularization, makes use of smoothness constraints; it finds the solution that mini-
mizes some measure of non-smoothness (usually defined by a combination of derivatives). Regu-
larization methods were introduced into vision in the mid-1980’s, and have been applied to many
vision problems. Evidently, however, solutions found by regularization often do not represent the
actual scene; for example, the actual scene may be piecewise smooth, but may also have
discontinuities, and a regularized solution tends to smooth over these discontinuities. To handle
this problem, more general approaches have been proposed which allow discontinuities, but
which minimize the complexity of these discontinuities—e.g., minimize the total length and total
absolute curvature of the borders between smooth regions. In effect, these approaches find
solutions that have minimum-length descriptions (since the borders can be described by encoding
them using chain codes). However, the actnal scene is not necessarily the same as the scene
(consistent with the images) that has the simplest description. Evidently, not all scenes of a given
class are equally likely; but the likelihood of a scene depends on the physical processes that give
rise to the class of scenes, not on the simplicity of a description of its image.

1.1.3.2. [ll-definedness

It is often assumed in formulating vision problems that the class of allowable scenes is
“piecewise simple”—e.g., that the visible surfaces are all smooth (e.g., planar or quadric) and
diffusely reflective. This type of assumption seems at first glance to strongly constrain the class
of possible scenes (and images), but in fact, the class of images is not constrained at all unless a
lower bound is specified on the sizes of the “pieces”. If the pieces can be arbitrarily small, each
pixel in an image can represent a different piece (or even parts of several pieces), so that the
image can be completely arbitrary. For a two-dimensional scene, it suffices to specify a lower
bound on the piece sizes; but for a three-dimensional scene, even this does not guarantee a lower
bound on the sizes of the image regions that represent the pieces of surface; occlusions and
nearly-grazing viewing angies can still give rise to arbitrarily small or arbitrarily thin regions in
the image.

Lower bounds on piece sizes are desirable for another very important reason: they make it
easier to distinguish between the ideal scene and various types of “noise”. In the real world,
piecewise simple scenes are an idealization; actual surfaces are not perfectly planar or quadric or
perfectly diffuse reflectors, but have fluctuating geometries or reflectivities. (Note that these
fluctuations are in the scene itself; in addition, the brightness measurements made by the sensor
are noisy, and the digitization process also introduces noise.) If the fluctuations are small relative
to the piece sizes, it will usually be possible to avoid confusing them with “real” pieces.
(Similarly, the noisy brightness measurements—assuming that they affect the pixels

Machine Vision and Learning 10



independently—yield pixel-size fluctuations, and digitization noise is also of at most pixel size;
hence these types of noise too should usually not be confused with the pieces.) Of course, even if
we can avoid confusing noise fluctuations with real scene pieces, their presence can still interfere
with correct estimation of the geometries and photometries of the pieces.

Most analyses of vision problems (e.g., for piecewise simple ideal scenes) do not attempt to
formulate realistic models for the “noise” in the scene; they usually assume that the noise in the
image (which is the net result of the scene noise, the sensor noise, and the digitization noise) is
Gaussian and affects each pixel independently. Examination of images of most types of real
scenes shows that this is not a realistic assumption; thus the applicability of the resulting analyses
to real-world images is questionable.

The problem of ill-definedness becomes even more serious if one attempts to deal with
scenes containing classes of objects that do not have simple mathematical definitions——for
example, dogs, bushes, chairs, alphanumeric characters, etc. Recognition of such objects is not a
well-defined vision task, even though humans can recognize them very reliably.

1.1.3.3. Intractability

Even well-defined vision problems are not always easy to solve; in fact, they may be compu-
tationally intractable. An image can be partitioned in combinatorially many ways into regions
that could correspond to simple surfaces in the scene; finding the correct (i.e., the most likely)
partition may thus involve combinatorial search. For example, even for scenes consisting of
wireframe polyhedral objects, the problem of deciding whether a set of straight lines in an image
could represent such a scene is NP-complete. Even identifying a subset of image features that
represent a single object of a given type is exponential in the complexity of the object, if more
than one object can be present in the scene, or if the features can be due to noise.

Parallel processing is widely used to speed up vision computations; it is also used very exten-
sively and successfully in biological visual systems, Very efficient speedup can be achieved
through parallelism in the early stages of the vision process, which involve simple operations on
the image(s); but little is known about how to efficiently speed up the later, potentially combina-
torial stages. Practical vision systems must operate in “real time” using limited computational
resources; as a result, they are vsually forced to use suboptimal techniques, so that there is no
guarantee of correct performance.

In principle, the computations performed by a vision system should be chosen to yield maxi-
mal expected gain of information about the scene at minimal expected computational cost.
Unfortunately, even for well-defined vision tasks, it is not easy to estimate the expected gain and
cost. Vision systems therefore usually perform standardized types of computations that are not
necessarily optimal for the given scene domain or vision task; this results in both inefficiency
and poor performance.

1.1.4. Recipes for Success

Define Your Domain (What is the system’s perceptual world?)

Weill-defined vision problems should involve classes of scenes in which both the ideal scene
and the noise can be mathematically (and probabilistically) characterized. For example, in scenes
that contain only known types of man-made objects, the allowable geometric and optical charac-
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teristics of the visible surfaces can be known to any needed degree of accuracy. If the objects are
“clean”, and the characteristics of the sensor are known, the noise in the images can also be
described very accurately. In such situations, the scene descriptions that are consistent with the
images are generally less ambiguous (so that the problem of determining these descriptions is
relatively well-posed) because of the restricted nature of the class of allowable scenes. If, in
addition, the number of objects that can be present is limited, the complexity of the scene
description task and the computational cost of recognizing the objects are greatly reduced.
Referring back to Figure 2, these remarks imply that in studying vision we have to consider the
environment in which the visual system needs to operate. If the environment is very complex, we
can attempt to determine those aspects of the environment which it is necessary for the system to
recognize—in other words, we can attempt to define the system’s perceptual world.

Pick Your Problem (What are the system’s tasks?)

Even for specialized scene domains, deriving complete scene descriptions from images—the
general recovery problem—can still be a very difficult task. However, there is no reason to insist
on complete recovery. The images (further) constrain the class of possible scenes; the task of the
vision system is to determine these constraints. This yields a partial description of the scene, and
for some purposes this description may be sufficient. In fact, in many situations only specific
kinds of partial descriptions of the scene are needed, and such descriptions can often be derived
inexpensively and reliably. A partial description may require only the detection of a specific type
of object or surface, if it is present, or it may require only partial (“qualitative™) characterizations
of the objects that are present (e.g., are their surfaces planar or curved?).

Improve Your Inputs

Vision tasks that are very difficult to perform when given only a single image of the scene
generally become much easier when additional images are available. These images could come
from different sensors {e.g., we can use optical sensors that detect energy in different spectral
bands; we can use imaging sensors of other types such as microwave or thermal infrared; or we
can use range sensors that directly measure the distances to the visible surface points in the
scene). Alternatively, we can use more than one sensor of the same type—for example, stereo
vision systems use two or more cameras. Even if we use only a single sensor, we can adjust its
parameters—for example, its position, orientation, focal length, etc.—to obtain muitiple images;
control of sensor parameters in a vision system is known as active vision. It has been shown that
by using the active vision approach, ill-posed vision problems can become well-posed, and their
solutions can be greatly simplified. These improvements are all at the sensor level; similarly, one
can improve the inputs to the higher levels of the vision process by extracting multiple types of
information from the image data using different types of operators.

Take Your Time

Since the early days of machine vision, the power of general-purpose computational
resources has improved by many orders of magnitude, as regards both processing speed and
memory capacity. This, combined with the availability of special-purpose parallel hardware, both
analog and digital (VLSI), has greatly expanded the range of tractable vision tasks. The avail-
ability of increasingly powerful computing resources allows the vision system designer much
greater freedom to adopt an attitude of “take your time”: use vision algorithms that are as com-
plex as necessary, and use as much input or intermediate data as necessary, without being overly
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concerned with current computational costs. With no end yet in sight as regards expected
improvements in computing power, the time required to solve given vision problems will con-
tinue to decrease. Conversely, it will become possible to solve problems of increased complexity
and problems that have wider domains of applicability.
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1.2. Perspectives on Machine Learning
1.2.1. Introduction

Machine learning is concerned with the development of computational models of processes
by which a system can acquire or improve its knowledge or skills. Because the types of
knowledge or skills that may be acquired and the methods for doing this can vary very greatly,
there is a tremendous diversity of possible learning approaches and techniques. Learning may
involve, for example, building general object descriptions from specific observations, acquiring
problem solving methods on the basis of examples of solutions, improving algorithms through
practice or experimentation, constructing control heuristics from experience, creating solutions to
new problems by analogy with solutions to similar problems, discovering statistical regularities
or logical relationships among entities, and so on.

The underlying theme of all these processes 1s that a learning system constructs or improves
some type of knowledge structure or knowledge representation. The great variety of views,
methods, and approaches that have been developed in the field of machine learning differ in their
assumptions about

—what is known a priori to the learner,

-—what and how input information is provided to the system,

—what type of knowledge the learning system is trying to acquire,

—how this knowledge is represented,

—what inferential or computational mechanisms are nsed to acquire it, and
—what criteria and methods are used to evaluate the results of learning.

The study of learning and its relationship to other aspects of intelligence has puzzled
philosophers and scientists for a long time. Consider, for example, the following sentence about
knowing (Wittgenstein, 1938): “The grammar of the word ‘knows’ is evidently closely related to
that of ‘can’, ‘is able to’. But it is also closely related to that of ‘understands’.” Since learning
includes such processes as acquiring knowledge, the ability to perform: some acts, or understand-
ing of some facts, it is clear that all these concepts are intimately related. The guestion of how
learning is accomplished has divided philosophers into two opposing parties, the empiricists and
the rationalists. Similar divisions exists among the scientists who study computational
approaches to learning processes. There is a large subfield of research concerned with developing
and experimenting with learning methods and systems (“Experimental Machine Learning”), and
there is a subfield concerned with mathematically analyzing formal properties of various learning
algorithms (“Computational Theory of Learning” or COLT). These two subfields have held, until
very recently, separate workshops and conferences. To encourage interaction, in 1994, the annual
conferences in these two subfields were held in the same location, during partially overlapping
periods (Cohen and Hirsh, 1994; Warmuth, 1994). There exists also a large amount of literature
in statistics and in psychology devoted to learning problems.

In various studies of learning, a lot of effort has been devoied to ways of formally represent-
ing learning behavior from the “black box” (stimulus-response) viewpoint. Two theoretical
approaches can be distinguished: statistical and deterministic. The statistical approach describes
the behavior in probabilistic terms, aiming at developing statistical models of learning behaviors.
It characterizes a learning behavior by a probability distribution, p(x), where x ranges over the
space D =8 x R, the Cartesian product of the stimulus space and the response space. After learn-
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ing is accomplished, the system’s decisions are generated on the basis of the acquired probability
distribution. A related model involves representing the conditional probability p(ris), defined as
p(rs) = p(s,r)/ p(s). Although the statistical approach is theoretically appealing and very gen-
eral, it has a pragmatic limitation, namely, that real applications rarely provide enough data to
determine desirable probability distributions and construct statistically significant relationships.

An interesting survey of efforts to view learning as a problem of statistical estimation is in
(Landelivs, 1993).

The deterministic approach describes learning processes in terms of algorithms, symbolic
descriptions or mathematical transformations. It tackles issues that are central for implementing
learning processes, such as how to construct and manipulate structures representing the
knowledge or skill to be acquired, how to derive them from a given set of facts, how to utilize
prior knowledge, and how to model different types of learning, such as inductive learning,
knowledge-based deductive learning (“explanation-based learning™) or analogy-based learning.
The evaluation of the results obtained from applying deterministic algorithms to specific
problems and the characterization of the formal properties of algorithms usually involve methods
of statistics. Ultimately, the deterministic approach will have to incorporate statistical ideas and
techniques in order to provide estimates of the plausibility of the developed models, solutions
and resuits.

This section provides an overview of general ideas and basic methodologies of machine
learning, concentrating primarily on methods representing the deterministic approach, developed
mainly by the artificial intelligence community. The review does not try to prejudge which
methodologies may ultimately play central roles in machine vision. Instead, it attempts to present
a broad characterization of major approaches, including those that at present seem unlikely to be
particularly applicable to vision. We begin by presenting a general view of learning processes.

1.2.2. Basic Components of Learning Processes

Any form of learning can be characterized as a process of acquiring a model of some real or
abstract entity . This model may be in the form of declarative knowledge, procedural knowledge
(algorithms, skills), or a combination of both. A learning process can be generally represented by
the functional diagram in Figure 7. Input stands for information that the leamer receives from an
external source. Interface transforms this input into a form needed by the learning system, or
generates requests for new information. The input transformation may involve a mapping of the
input into a new representation space, €.g., by applying transformations that enhance relevant
information and disregard information irrelevant to the learning goal. Memory contains
knowledge components that affect the learning process. One of these is the learning goal, which
specifies criteria for evaluating knowledge to be acquired and controlling the learner's attention
mechanism. Another component is the learner’s prior knowledge relevant to the learning goal

(background knowledge).

The input is processed by Inference Mechanism, which applies “knowledge operators” to
the input and background knowledge to generaie desired knowledge. These operators make
modifications or transformations of the knowledge structures residing in Memory and/or those
obtained as input. Classes of such operators include various forms of generalization, specializ-
ation, abstraction, concretion, explanation, prediction, selection, generation, and others (Michal-
ski, 1994). Depending on the knowledge representation employed, these operators can be
implemented in many different ways.
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The resulting knowledge undergoes evaluation in the Evaluation module in accordance with
the learning goal. If the goal is satisfied, the learning process stops; otherwise, it continues.

The modules in Figure 7 may be implemented in learning systems in many different ways.
For example, in an artificial neural net, Memory consists of the structure of the network and the
settings of the weights of the interconnections between the network units. The learning goal is
defined by the designer and embedded in the way the network operates. The function of
Interface is also usually performed by a human expert. Inference Mechanism makes modifica-
tions of the weights according to some algorithm (e.g., backpropagation). These modifications
produce a new state of the network that represents the system’s new knowledge.

Inputf
—
<
Requesls

Figure 7: A functional diagram of a leaming system. Different types of learning differ in terms of the knowl-
edge operators used by the Inference Mechanism. In inductive learning, the Inference Mechanism inductively
generalizes the input. In deductive learning, it draws deductive inferences from the input and from back- -
ground knowledge, In learning by analogy, it derives new knowledge structures by modifying preexisting
structures that represent knowledge similar to the desired. Different learning systems may use very different
computational and representational mechanisms for accomplishing these functions.

In symbolic inductive learning, Inference Mechanism creates symbolic knowledge struc-
tures (e.g., rules, trees, grammars, etc.) representing a hypothesis induced from the input and
current background knowledge (such a process can be described as applying “inductive general-
ization rules”; Michalski, 1983). Evaluation evaluates the resulting hypotheses and selects the
“best” one according to criteria reflecting the learning goal. In many existing systems, the func-
tion of Interface is performed by a user; in more recent systems, Interface performs complex

multistep transformations of the initial knowledge representation space (e.g., Wnek and
Michalski, 1994a,b).

As mentioned above, both machine vision and machine learning systems aim at creating
descriptions of entities. Thus, in an abstract sense, the two fields have similar goals. In a prag-
matic sense, however, they are very different and have followed different paths.

a) Most machine learning methods assume (notable exceptions include artificial neural nets
and adaptive control systems) that the inputs are preprocessed symbolic quantities.
Machine vision systems, on the other hand, deal specifically with the interpretation of
visual sensory signals. Consequently, if such machine learning systems are applied to the
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problems requiring understanding of a visual scene, they need vision systems to generate
symbolic inputs for them.

b) In machine learning, knowledge representations are often symbolic structures, such as
decision rules, decision trees, semantic networks, etc. (except, of course, for systems that
learn numerical parameters of given mathematical expressions, or connection weights 1n
artificial neural nets). In contrast, vision systems much more frequently employ
geometric models or sets of equations.

c) Machine learning concerns an automated acquisition of new or better knowledge, as well
as the acquisition of skills and control procedures. While both types of problems have
parallels in machine vision (the first relates to building models of objects or scenes from
images, and the second to controlling parameters of the image acquisition system, e.g., a
camera, as in active vision), most research in machine vision has been primarily
concerned with the first class of problems.

One of the advantages of symbolic learning systems is that the knowledge they acquire 1s
usually easy to explain and relate to human knowledge. This is, obviously, an important factor
for knowledge-based systems. The above feature is missing in “subsymbolic” learning systems,
such as artificial neural nets, in which learned knowledge resides in new values of the weights,
and it is difficult to translate it to a form comprehensible by humans. In many machine vision
applications, however, this feature may not be important.

Evidently, systems that can handle continuous numerical attributes and transformations, such
as artificial neural nets and other connectionist systems, are readily applicable to many vision
problems. It is much less clear how symbolic learning systems can be utilized in machine vision.
At higher levels of processing, however, visual information (combined with other sensory infor-
mation) may be converted into a form amenable to symbolic reasoning; at these levels, symbolic
learning becomes applicable.

Questions arise as to what machine learning approaches are most appropriate to what kind of
vision problems, and how they can be effectively applied to these problems. As a starting point
in dealing with these questions, the next section provides a classification of existing machine
learning methodologies and attempts to briefly characterize their applicability to vision problems.

1.2.3. A Classification of Machine Learning Methodologies

Over the years, machine leaming research has developed a number of methodologies. Each
methodology is oriented toward a somewhat different learning task and often uses a different
computational or representational mechanism. A learning task is specified by the type of input
information (i.e., the information provided to the learner through its senses), the learning goal
(which defines the knowledge to be acquired through learning), and the background knowledge
(i.e., the learner’s prior knowledge relevant to the learning goal). In order to explore the
apphcablhty of machine learning to vision, the following paragraphs summarize major learning
methodologies. Many of these methodologies are clearly applicable to various vision problems.

e Symbolic learning from examples

Inducing general concept descriptions from examples (“supervised learning™). Descriptions
can be attributional (expressed in terms of attributes—continuous or discrete) or structural (ex-
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pressed in terms of attributes and relations). A learning process can be empirical (with littie
background knowledge) or constructive (with enough knowledge to be able to generate addi-
tional problem-oriented attributes and concepts). The descriptions can be in the form of decision
trees, decision rules, semantic networks, frames, grammars, eic. Most methods make few
assumptions about the knowledge to be learned, and can be directly applied to many problems.
Symbolic methods are particularly useful for domains in which it is important that the learned
knowledge be comprehensible by a human expert. Their main limitation is that they are primarily
oriented toward learning problems characterized by symbolic variables. Symbolic learning
methods, especially those using decision tree or decision rule representations, have been widely
applied to classification problems in many different domains, including vision.

» Connectionist (artificial neural net) learning

Inducing transformations representing desired input-output behaviors by determining appro-
priate weights in connectionist systems. The most active research in this area involves represen-
tations based on artificial neural networks. Systems of this type can be applied to a wide range of
vision problems; they seem to be particularly useful for learning continuous transformations.
Their disadvantages are that leaming processes tend to require many iterations and thus are slow,
and that the learned knowledge is in a form incomprehensible to humans. It is also difficult to
incorporate background knowledge into such systems or perform explicit forms of inference or
knowledge transformations.

+ Genetic algorithm-based learning

Iteratively modifying knowledge structures by random or partially random operators, and
selecting best performing structures (according to some performance measure) for the next itera-
tion. These methods are particularly useful for searching highly unstructured problem spaces.
They are relatively slow and are not desirable when relevant background knowledge is readily
available and can be used to guide the leaming process.

* Case-based learning

Storing past cases (situation-decision pairs, solutions to past problems, etc.) as representatives
of concepts or problem solutions. New concept instances are recognized or new problems are
solved by matching them with the most similar past cases. The matching may involve complex
transformations and inference. These methods are relatively easily to implement, but are not
useful when it is important to seek general problem solutions, or to relate concept descriptions to
each other, determine their differences, etc.

+« Quantitative and/or qualitative discovery

Discovering equations characterizing a collection of data, These methods differ from conven-
tional curve fitting or regression analysis algorithms in that they make weaker assumptions about
the underlying form of the equations, and utilize heuristics in the process of equation discovery.
More advanced methods can also formulate symbolic rules or conditions characterizing the
ranges of applicability of the created equations.

» Explanation-based learning

Deductively deriving effective (“operational”) concept descriptions (or control rules) from
abstract ones, using an input example to guide the process. The methods trade the cost of obtain-
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ing examples and conducting inductive inference for the cost of handcrafting abstract concept
descriptions and drawing deductive inferences from them. Unlike inductive learning methods,
explanation-based methods produce descriptions which are as valid as the abstract descriptions.

« Reinforcement learning

Learning a mapping from situations to actions so that a reward function is maximized. The
difference between the observed and desired behavior drives the modification of the system’s
parameters. These methods are particularly relevant to sensor-based control (e.g., for navigation).

* Statistical learning

A class of methods that characterize learning processes by probability distributions in a priori
given representation spaces, such as stimulus-response space or feature space. The probability
distributions are estimated on the basis of given facts or observations. Two approaches to doing
this stand out. One is to let the system model the average mapping from stimuli to responses, and
then apply some form of distribution with this mapping as its mean value. Another approach is to
let the system estimate an analytic form of the distribution of the decisions, and calculate the
specific distribution from the stimulus-response pairs.

¢ Clustering (“unsupervised learning”)

Organizing a collection of entities (objects, observations, etc.) into clusters or classes, or a
hierarchy of such clusters. The most common approach is to use some measure of similarity (or
distance) between entities, and seek clusters for which intracluster similarities are high and inter-
cluster similarities are low. Another approach, called “conceptual clustering,” was developed by
Al researchers. Instead of using an a priori given measure of similarity, it employs “conceptual
cohesiveness,” which uses a measure of fit between clusters and concepts that can be used to
characterize the clusters. In contrast to conventional clustering, conceptual clustering produces
not only clusters but also generalized symbolic descriptions of the clusters.

» Learning by analogy

Learning a new concept (or solving a new problem) by adapting and modifying the
description (or solution) of a previously learned similar concept (or problem solution). Learning
by analogy is related to case based learning. The difference is that analogical learning employs
generalized knowledge structures rather than cases.

* Abductive learning

Creating explanations of given facts/solutions, etc. by tracing backward domain-dependent
implicative relations.

* Multistrategy learning

Integrating multiple inferential strategies (e.g., inductive learning with explanation-based
learning) and/or multiple computational strategies (e.g., symbolic learning with genetic algorithm
based learning) in a learning process; this is one of the newest and most challenging research
directions in machine learning.

As mentioned earlier, in recent years computational studies of learning have split into two
related but distinct subfields: experimental machine learning, whose primary concern is to
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develop methods and implement effective learning systems, and computational theory of
learning, whose primary concern is to study formal properties of various learning algorithms (for
example, to determine the convergence of inductive learning algorithms, the “learnability” of
different types of descriptions, the relationship between the number of training examples and the
error rate of the learned descriptions, etc.).

1.2.4. Types of Learning Problems

While the above classification gives a sense of what types of learning methodologies have
been developed and for what purposes, it does not give much insight into the nature and diversity
of learning problems. Therefore, below we attempt to give a general classification of major types
of learning problems. To this end, we assume that learning problems can be viewed as the
determination of a complete description of a function:

£:Dy % Dy X Dy x++-x D, = D' x D? x D’ x...D™

where D.,i=1,2,...,n and D/, j=12,...,m are domains (value sets) of input and output vari-
ables, respectively, on the basis of limited samples of input-output pairs and the learner’s
background knowledge.

The domains D, and D’ can be discrete, continuous, structured, or relational. A structured
domain is a partially ordered set, e.g., a generalization hierarchy (an “is-a” hierarchy of concepts
ordered by the generalization relation); a relational domain is a set of well-formed sentences in a
language suitable for describing relations, e.g., first-order predicate logic. The domains of the in-
put variables represent legal value sets of “descriptors” (attributes or relations) that are used to
characterize entities that the system is learning about. The domains of the output variables are
sets of values that can be assigned to any entity. Different types of learning problems make dif-
ferent assumptions about the sets D; and D’, and the background knowledge available about the
function f. :

If the input domains are discrete, continuous or structured sets (i.e., not relational), they can
be viewed as legal value sets of certain attributes (zero-argument relations), in which case we
have attributional learning. If the domains are relational, then we have relational (or structural)
learning. For example, learning a decision tree, a numerical equation, or a set of weights in an
artificial neural net, is a form of attributional learning; learning a predicate logic description of a
scene is relational learning. Different types of learning problems are characterized in the
following subsections.

1.2.4.1. Single Concept Learning: D; are any sets; D is binary (m = 1)

The input domains can be any sets, i.e., discrete, continuous, structured or relational; the out-
put domain is binary. The values of the output domain can be interpreted as “belongs to the con-
cept” and *“does not belong to the concept”.

Single concept learning problems can be of two types:
1. Learning from examples and counterexamples (“positive” and “negative” examples)

The system is given both datapoints that belong to the function and datapoints that do not
belong to the function, called positive and negative exampies, respectively.

2. Learning from positive examples only
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The system is given only datapoints that belong to the function (positive examples). For
example: Given a set of datapoints, determine a simple equation that approximates these
datapoints with some accuracy &. Problems of curve fitting, function interpolation or
equation discovery belong to this category.

1.2.4.2. Multiple Concept Learning: D;,i =1,2,...,n are any sets

The input domains can be any sets, as in single concept learning. The output domain is a set
of concepts from a certain class. Depending on the output domain D, learning problems can be of
two types:

1. Learning disjoint concepts: D is an unordered discrete set
The output domain D is a set of names of concepts belonging to a given class.

2. Learning overlapping concepts: D’ are binary sets (m > 1).

Each output domain is associated with one concept to be learned. For example: Given a
set of entities, learn to assign to each of them various characteristics; a given object can
be assigned many such characteristics. |

1.2.4.3. Learning Continuous Transformations: D; and D) are continuous sets (m = 1)

The input and output domains are continuous sets—the domains of input and output variables
characterizing a transformation. For example: Learn a transformation that maps a set of state
variables into a control variable (e.g., in visuo-motor control).

1.2.4.4. Learning Ranked Concepts: D;,i =1,2,....n are any sets, D is an ordered discrete set

The input domains can be any sets; the output domain is a linearly ordered discrete set. For
example: Learn to rank entities by magnitude, complexity, etc.

1.2.4.5. Learning Structures: D;,i =1,2,...,n are any sets, D is a structured set

The input domains can be any sets; the output domain is a structured set, e.g., a classification
hierarchy.

1.2.4.6. Learning Sequences or Procedures: D;are any sets, DV are discrete sets

The input domains can be any sets; the output domains are relational sets. Each output do-

main D’is a set of entities (or operators) that can appear or can be executed at the j N position of
a sequence (or procedure). For example: Learn a control procedure for a visuo-motor function.

1.2.4.7. Learning Relational Descriptions: D; are any sets, D is a relational set

This large class of learning problems concerns building relational descriptions of structured
entities (e.g., visual scenes).
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1.2.4.8. Learning and Estimation

Most research in machine learning has been concerned with empirical inductive concept
learning from examples (types 1.2.4.1 and 1.2.4.2 above). Some of these methods have achieved
a relatively high level of sophistication and have already demonstrated their usefulness for
selected problems of machine vision. As mentioned above, in this class of problems the output
domain of functions to be learned is a discrete set. A different class of problems are those of
learning a continuous mapping from an input numerical space to an output numerical space (type
1.2.4.3 above). Such problems are usually viewed as problems of estimating a systein that
transforms inputs to outputs, given a set of examples of input-output pairs. Classical frameworks
for this problem are provided by the theory of approximation and the theory of optimization.

1.2.5. The Role of Representations

As in all of Al the determination of an appropriate representation is one of the central
problems in machine learning. Most of the current machine learning methods assume that the
search for the solution {desirable knowledge, hypothesis) is done in the same representation
space in which the training examples are presented. In many practical problems, however, this
assumption is too strong. If the representation space in inadequate, it may be difficult or impos-
sible to learn the correct description or transformation. (For example, in vision problems, the ori-
ginal representation space is an array of pixels, while the descriptions to be leamned are usually
formulated in terms of higher level attributes, representing conceptual components of images of
objects, which should be invariant to illumination, pose, and similar factors.) Thus a key problem
is how to transform the original representation space into a new space that is more relevant to the
learning problem at hand.

An approach to such problems has been proposed under the name of “constructive induc-
tion.” A constructive induction system conducts a double search, first for the most appropriate
knowledge representation space, and second for the “best” hypothesis in this space. Methods of
constructive induction can be divided into three basic categories:

* Hypothesis-driven methods, which look for patterns in the intermediate hypotheses in order to
determine desirable transformations of the representation space (e.g., what new attributes to
create, which attributes are irrelevant). A very simple method of hypothesis-driven induction
is to take as a new dimension (attribute) the most important part of the description obtained at
each iteration of the method (Wnek and Michalski, 1994b).

» Data-driven methods, which analyze input data to determine desirable modifications of the
original representation space; the created new attributes may represent mathematical or logical
combinations of the original attributes, or attributes created in previous iterations of the
method (Bloedom and Michalski, 1991; Bloedom, Wnek and Michalski, 1993).

 Knowledge-based methods, which utilize expert-provided rules and transformations to derive
higher-level attributes and determine desirable transformations of the representation space.

Automatically determining an appropriate representation space for learning is a very important,
and still relatively underdeveloped, direction in machine learning research (Fawcett, 1994).

Readers interested in more details on machine learning methods and methodologies may con-
sult a series of four books on Machine Learning [Vol. I and II (Michalski, Carbonell and
Mitchell, 1983 and 1986), Vol. III (Kodratoff and Michalski, 1990), and Vol. IV (Michalski and
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Tecuci, 1994)], or a number of other texts, for example, Carbonell (1990).

1.2.6. Recipes for Success

The four recipes for success in solving vision problems, discussed in Section 1.1.4, apply to
learning problems as well. If we regard the goal of learning as determining a mapping on the
basis of examples of input-output pairs, there are several basic ways to help this process. One 15
to apply whatever prior knowledge (approximate form, constraints, etc.) about the leaming prob-
lem is available in order to chose the most appropriate learning methodology and to properly set
up the parameters of the learning system. If the type of function to be learned is known (e.g., a
polynomial function, a2 Boolean function, a multivalued logic function, a complex non-linear
continuous transformation, a set of decision rules, a structural description), then the choice of the
methodology and the parameters is greatly simplified. Each methodology has its limitations and
is most appropriate for a certain class of learning problems. Another way to help the process is to
determine the most adequate representation space for learning. Formally, this means mapping the
given input domain A into a new domain A’ represented in a space that has more relevant dimen-
sions (attributes, relations). Also, some dimensions may be simplified by quantizing them to
larger units, which reduces the search space (“dimension abstraction”). Methods of “constructive
induction” are specifically oriented toward these issues, and may be useful here. It may also not
be necessary to learn a complete and/or very specific form of f. Depending on the learning task, it
may be sufficient to determine only a partial or more abstract description of f. Leamning a partial
description means reducing attention to a subset of A; learning a more abstract description means
reformulating A and B into a more abstract form. Finally, not all input-output pairs are (always)
possible; hence, the search for f can often be done in smaller spaces, involving only subsets of A
and B. Thus, we can reformulate the four recipes for success of Section 1.1.4 as follows:

e Define your domain: Learning is particularly useful in problem domains where algorith-
mic solutions are unavailable or difficult to obtain, but where it is relatively easy to give
examples of desirable solutions. Many problems of visual object recognition and naviga-
tion fall into this category. For example, it is much easier to point to a desk, and tell the
system “this is a desk”, than to define the “desk” concept generally and program the defi-
nition into the system. Learning problems can vary greatly in difficulty, depending on the

- complexity of the objects to be learned and the context in which they are learned; e.g.,
learning the concept of a triangle, presented in isolation to the system, vs. learning the con-
cept of a desk in a cluttered office scene, or the concept of a landmark or obstacle in a
navigational situation. Existing learning methods have strong limitations, and it is impor-
tant to choose a learning method appropriately for the given class of problems. Section
1.2.2. attempted to shed some light on this issue. Available learning methods are
particularly useful in domains where relevant attributes are known and can be relatively
easily measured, the concepts to be learned can be easily represented in one of the known
representational systems (e.g., as a set of attributional decision rules, a low degree
polynomial, etc.), and it is not too difficult to obtain sets of reliable training examples.

e Pick your problem: Given a problem, the desirable role of learning in it must be defined.
If part of the problem has a well-defined algorithmic solution, then programming the solu-
tion is usually much easier than applying machine learning. It is necessary to determine
which part of the problem needs to be solved by learning and determine the most appro-
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priate learning methodology for it. The learning problem may often be decomposed into
simpler problems. The set of tasks that the learning of the mapping will facilitate must be
defined. When this has been done, it becomes possible to concentrate on the parts of f that
are relevant to these tasks, and to decompose f into simpler mappings, which are easier to
learn. A crucial step in applying a learning method is the determination of the appropriate
representation space and knowledge representation language. A representation space is de-
fined by descriptors—attributes and relations used for characterizing objects or events.
Learning attributional descriptions (which use only variables or attributes, but not rela-
tions) is generally easier than learning relational descriptions. If the original problem is
stated in terms of low level attributes that may be only indirectly relevant to the problem at
hand (e.g., image pixels), new attributes (generally, descriptors) can be sought that are
more relevant. More formally, to learn f:A — B, itis easier to'learn f": A" ~> B, where A’
is the input domain transformed into a more adequate knowledge representation space. The
representation language defines the connectives and operators that can be applied to create
a representation of f (mathematical operators, logica!l operators, etc.). Different problems
require different representation languages. Moreover, it may be possible that only subsets
of A and B are relevant to the task at hand. Learning the restriction of f to these subsets
may be an easier problem.

» Improve your inputs: One way to improve the inputs is to represent them in the most rel-
evant representation space (as discussed above). However, even when the representation
space is well chosen, it is necessary to provide the learning system with a sufficient num-
ber of training examples. It is also important to choose examples carefully, so that they
adequately characterize the concepts or transformations to be learned (e.g., “near hits” and
“near misses” are often very helpful). This emphasizes the role of the teacher in the pro-
cess. Finally, the learning process is much easier when the examples are reliable, that is,
they do not have classification errors (“classification noise”) or measurement errors
(“measurement noise”). In some applications it is difficult to avoid such noise. In such situ-
ations, one should choose learning methods that are less noise sensitive (e.g., model-driven
methods rather than data-driven methods).

« Take your time: (See Section 1.1.4).
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2. INTEGRATING MACHINE LEARNING AND MACHINE VISION
2.1. Why Vision Systems Need Learning

The incorporation of learning capabilities into vision systems can be motivated in several
ways:

« The world often changes unpredictably; therefore it is impossible, in principle, to pre-
program all the knowledge necessary for understanding images into vision systems in
advance. '

« Handcrafting the knowledge needed for analyzing images into vision systems is very com-
plicated and time-consuming; learning provides a major mechanism for simplifying this
costly and difficult process.

« In biological vision systems, many aspects of perception are genetically preprogrammed,
but many are learned. Similarly, it seems desirable that machine vision systems should be
able to acquire some capabilities through learning.

Real-world vision systems must use real data, real sensors/manipulators, and must be judged
by real performance metrics. Therefore, such systems must reflect the reality of the external
world and the real agent’s perceptual and action systems, rather than just the designer’s aspira-
tions or hunches about these systems. Reality may include many aspects that cannot be captured
by the designer, either because of limitations of the analytic model of the system, or because of
errors in sensing due to noise, or because of inadequacies in algorithms. Different algorithms
may have differing reliabilities in different contexts; their appropriate attributes should be
emphasized according to context during recognition and control. Learning can capture regulari-
ties found in real data and biases present in algorithms, and take the relevant aspects into account
whether or not these were known to the designer.

As pointed out in Section 1.1.4, vision tasks are generally easier in restricted scene domains;
many vision problems have no answers until one poses them in a context, relative to a population
of images. But in order to take advantage of this principle, a vision system must know about the
restrictions on the domain. It may not be possible to provide all of this information to the system
in advance; indeed, the constraints satisfied by real-world classes of scenes are not always easy
to formulate. However, the system can learn more about these constraints in the course of exam-
ining different scenes. It can then, in principle, modify itself (by adjusting the parameters of the
operations it performs, or parameters that control how these operations are applied) to increase
its efficiency and improve its performance. It is impractical to manually program a system to
properly handle all possible combinations of features; instead, the system can learn how to per-
form properly from the statistics of the population it encounters, i.e. from the context in which
the vision task is embedded. The information that the system acquires by learning about the
scene domain can take many different forms, involving a wide variety of properties of the
domain (qualitative, numeric, structural, etc.); thus the systém can make use of many different
learning techniques.

In addition to “long-term” learning about the class of scenes that it can encounter, a vision
system can also benefit from “short-term” learning about the specific scene instance with which
it is currently dealing. Obviously, this instance is not known in advance (unless the vision task is
simply one of verification). When the system begins to analyze images of the scene, the nature of
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the scene becomes increasingly constrained; as the system learns about these constraints, it can
tune or “focus” the operations that it performs on the images. This process can even occur in real
time, e.g. if the system is controlling its sensors to acquire new images, or is searching for partic-
ular features in an image.

Many researchers feel that machine vision research has gone about as far as possible using
domain-independent and context-independent visual features. Although there is certainly room
for improvement in algorithms for extraction of specific features such as edges, significant pro-
gress now depends on the development of systems that can combine these lower-level features in
reliable and parsimonious ways. Unfortunately, constructing combinations of visual modules that
solve a given task is generally ad hoc and does not lead to solutions of great generality. The
solutions obtained depend on the particular task, user, and context, and are therefore not of great
scientific interest.

It seems that learning offers the possibility of obtaining general solutions for task-oriented
vision problems. While useful high-level visual features (e.g., a feature used for recognizing the
shoulder of a road) may necessarily be specific to a given task, the methods of learning
descriptions in terms of these features can be task-independent. Because learning methods can be
task-independent, the scientific impact of developing such methods will be far greater than the
impact of manually developing descriptions in terms of features specific to any single task.
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2.2. Roles of Learning in Vision

Learning is important for vision systems whether we consider them from a task-independent
or a purposive viewpoint. In both cases, a rich set of problems emerges (Figure 8).

Vision

Reasoning

(a) (b)

Figure 8: The study of vision and learning from task-independent and purposive viewpoints.

(a) Studying vision in isolation as a process of general-purpose recovery allows learning technigues to be
used in two places: the recovery algorithms themselves and the interface between general purpose scene
descriptions and other cognitive processes (e.g.. reasoning).

(b) Studying vision as a part of a larger system that performs actions allows learning techniques to be used
in several places: the algorithms that perform partial recovery, the reasoning and planning processes, and
the interfaces between purposive scene descriptions (partial descriptions that make sense in conjunction
with a given task (purpose) or set of tasks), reasoning, planning, and action.

In the task-independent approach, a vision system generates general-purpose descriptions of a
scene, using various types of representations, and may use these descriptions to recognize objects
and events in space-time, by comparing them to models that characterize these objects and
events, as described in Figure 9. The system proceeds from images, after appropriate processing,
to the development of a general description of the scene. Models of objects or events that exist in
the system’s memory are appropriately instantiated in the prediction process. The system’s goal
is to perform matching of predictions to descriptions at one or several levels. The output of the
system is given as input to other cognitive processes, such as reasoning. Learning techniques can
clearly be used in various parts of the system (see Figure 9). Various aspects of the uses of
learning in task-independent vision, as regards the learning of descriptions, representations, and
models, will be discussed in Section 2.3.

The purposive approach deals with autonomous systems that are capable of performing vari-
ous tasks with the aid of visual inputs. These systems must respond “appropriately” to changes in
their environment; thus, on a high level, they can be described as evolving or dynamical systems.

Such a system can be represented as a function from states and control signals to new states; both
the states and the control variables may be functions of time.
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Figure 9: The task-independent approach to studying vision. On the right we proceed to derive from images
of the world descriptions of objects or events (bottom-up). On the left we proceed from classes of models to
representations of objects or events and their images (top-down, prediction). Vision then entails matching pre-

dictions to descriptions at one or several levels. <L>—e indicates stages at which learning techniques could
be applied.

Such systems can be described in many ways—e.g., by a set of differential equations (or dif-
ference equations), a stochastic process, a finite automaton, or a set of expressions in a suitable
logic. Each of these descriptions gives rise to learning problems of different natures. In the dis-
crete case (see Figure 10), the dynamical system takes as input the current state x(r) (e.g.,
derived from the visual input) and the control signal x(r) and provides as output the next state. In
many such systems, the state is not immediately observable, because some filter g masks out or
corrupts the actual state. One approach to controlling such a system is to design an observer or
state estimator e to obtain an estimate of the state x; for example, this estimator might implement
a partial visual recovery process. This estimate is used by a controller or state regulator r to
compute a control signal to drive the dynamical system. Ideally, observation and controi are
separable in the sense that if we have an optimal controlier and an optimal observer then the
control system that results from coupling the two is guaranteed to be optimal.! Different agents,
i.e., dynamical systems, have different capabilities and different amounts of memory, with
simple reactive systems at one end of the spectrum and highly sophisticated and flexible systems,
making use of scene descriptions and reasoning processes, at the other end.

Learning can be useful in connection with the algorithms of the state estimator and the inter-
faces between the estimator e and the regulator 7. Equally important, learning can take place
across systems. When we consider an autonomous “seeing” agent as a dynamical system, we
must also consider various integration and control problems and how they relate to leaming. For
example, at what level do we put the modules of the system? Are behaviors (sequences of per-

11n the case of estimation, optimality might correspond to minimizing some measure of the error in estimating the
state. In the case of regulation, optimality might correspond to minimizing some measure of the error between the
actual state and some target state or state trajectory.
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ceptual recognitions and actions) the appropriate level?
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Figure 10: Block diagram of a dynamical system. f(x(r},u(r)) represents the system as a function from states
x and control signals u to new states.

To theoretically understand how purposive systems might be built, we need to know how to
build systems to accomplish simple purposes and how to integrate simple systems to accomplish

harder tasks. We need to create a logic and semantics for modality and reasoning by these agents.
These problems involve several issues related to learning.

It is useful to analyze certain systems teleologically, and to think teleologically when creating
systems. That means it is useful to pretend that robots or animals have purposes or goals, and that
they do the best they can to fulfill their goals. Here “best they can™ means best given what they
know, the knowledge they can acquire, the reasoning abilities they have, the actions they can
perform on their environment, etc.

The purposive analysis of robotic or animal behavior is based on such a view. We pretend
that agents have beliefs, goals, reasoning capabilities, etc. We pretend that agents can make
choices as to what actions they will perform in order to fulfill their goals. It may be that a
complex purposive agent can be conveniently viewed as a compound of simpler purposive
systems each with its own goals, beliefs, choices, etc. This is another fiction and we are free to
divide a complex agent into simpler agents in any way that works, We want to predict the actions
of agents, or analyze the actions of agents, or create an agent that can perform certain actions—
we accept any purposive analysis that allows us to predict or analyze or create agent behavior in
the way we want.

The fact that any actual agent is governed by deterministic or stochastic laws and not by
purposive choice is irrelevant; whether complex agents, including humans, actually are conscious
and can make conscious choices is irrelevant, We see the purposive language of belief, goal, rea-
soning, intention, etc., as a convenient specification language that could become a programming
language—a kind of nondeterministic logic programming that must ultimately be compiled in
machines that are either deterministic or stochastic. To specify an agent is to write a program;
learning can be incorporated into the program in many ways.

The description of an agent and a task also determines categories of objects or events that

Machine Vision and Learning 29



may need to be recognized in order for the agent to carry out the task. It would be an interesting
problem to study how these relevant categories couid be learned. In addition to the standard
kinds of models of objects, defined in terms of geometry and surface characteristics, we might
consider functional models, i.e., models that contain information about how an agent can “use”

or “interact with” the object under consideration. Learning such models would often be sufficient
for object utilization. |

We will not attempt in this report to formulate a general theory of purposive vision, since this
would require us to construct theoretical frameworks for describing environments, agents, and
tasks. Instead, in Section 2.4 we will discuss the rules of vision in an important class of tasks that

are common to nearly all purposive agents—namely, the class of navigational tasks.
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2.3. Learning in Task-independent Vision
2.3.1. Introduction

From the task-independent standpoint, as illustrated in Figure 9, an intelligent “seeing” sys-
tem recovers the structure of the scene in its visual field and builds representations that can be
compared to class models. The representations may be general descriptions of the scene, or they
may involve more specialized descriptions of objects or events. Many important theoretical
issues arise in connection with the learning of descriptions, representations, and models, as well
as with the complexity of the learning process itself. These issues will be discussed in the follow-
ing subsections.

2.3.2. Descriptors and Objects

Images contain very large amounts of information. They can be described at different levels
of detail and from different points of view. The characteristics of images, and of objects or events
that appear in them, include texture, motion, color, occlusion, as well as information obtained
from multiple views (such as stereo, for example). Such features, attributes, properties and rela-
tions, generally called descriptors, define dimensions of the image representation space. A
description of an object or event is created by specifying combinations of descriptor values for it.
Learning techniques are valuable in this connection, for determining the combinations that char-
acterize a given object. Whatever innate mechanisms are available to existing visual systems to
enable them to distinguish between important and unimportant features of the visible world,
there is no doubt that descriptions of objects built from these features are learned from examples.
For this reason alone the study of visual learning can provide important insights into the structure
of intelligent systems.

There are many theoretical problems inherent in recognizing objects visually, even for the
restricted case of recognizing rigid objects based primarily on their shapes. First, projection from
3D to 2D means that an object’s image can change radically as its pose changes. Second, the
interaction of light with the object’s surface means that its image can change radically when the
distribution of either surface materials or light sources changes. Third, objects are rarely seen in
isolation, which means that other objects may occlude them, and that large parts of the image
may contain other objects which typically need to be removed in some way for recognition to be
possible.

The first two problems suggest the need to find descriptors (input “features”)—which we
define generally as any measurements or characteristics of an image or its components—that
change as little as possible when pose, surface material, or lighting changes. Whether these
descriptors should be defined a priori (such as “edges” and filter values), or whether they should,
in some sense, be learned, is an important research issue for machine learning.

The third problem suggests the need for some way of dealing with only partial information
about an object, and a way of focusing attention on just that part of the image corresponding to a
given object. Both of these issues have been extensively studied in the vision community. The
issue of partial information appears to be one that standard machine learning algorithms can deal
with fairly effectively; many algorithms developed by the vision community, such as Hough
transforms and alignment techniques, are designed to deal with this problem. Furthermore, the
problem of partial information is not unique to vision, although particular ways in which visual
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information is incomplete may be specific to vision.

However, the general problems of focusing attention, and of image segmentation, remain
largely unsolved. No one has yet found an algorithm that can reliably segment an image into
parts that people would generally agree represent coherent parts of the scene. It is very likely that
such a generic aigorithm does not exist. Specific segmentation techniques have been developed,
however, that work well under special conditions. Relative motion, for instance, is a powerful
segmentation cue and one that 1s easy to use. We expect that more reliable segmentation requires
the integration of several different cues such as motion, stereo, texture, color, perspective,
occlusion, and so on; this provides another important area for learning. Several recent research
projects have demonstrated the usefulness of cue integration for image segmentation for the goal
of recognition. It should be emphasized that the segmentation process can be iterated several
times in a tight loop with a recognition module; we expect, therefore, that perfect segmentation is
not necessary and that model-based information is often necessary for segmentation.

2.3.3. Representations

Object representations and models may involve either two-dimensional image descriptions,
including texture, contours, 2D shape, image motion, color, etc., or three-dimensional descrip-
tions such as 3D shape, or both. The difficulty of learning how to recogmze objects or events
depends on the choice of appropriate representations.

Two extreme views about the nature of the representations employed in the recognition of
objects have appeared in the literature. One calls for the development of object-centered models
of objects and the other for the development of a database consisting of a set of viewer-centered
views of the object (2D vs. 3D or higher dimensional models).

Clearly, a very large number of views capturing all possible images of the object for all poses
and illuminations would make the problem trivially solvable through a look-up table approach.
How many views are really needed at the learning (or model acquisition) phase in order to recog-
nize an object? If the models employed are related to structure (shape), structure-from-motion
theorems ensure that under some conditions, such as rigidity, very few views (defined in such a
way as to factor out illumination and context) are sufficient to extract full information about the
3D structure of the visible parts of an object. Exploiting the literature on structure from motion
under orthographic projection, it is easy to demonstrate that any view of an object is a combina-
tion of a small number of views of the same object. These results have been obtained for parallel
projections (orthographic and various kinds of paraperspective), but these theorems may general-
ize to the case of perspective projection under additional assumptions about the environment.

Recent findings on the psychophysics of recognition indicate that object recognition by
humans may be accomplished through a relatively simple process involving a comparison of
viewer-centered views that, depending on the situation, may or may not contain 3D information.
Upon receiving input about an object, the brain compares the novel view to a series of viewer-
centered “snapshots” of previously seen objects, stored in memory. Recognition takes place
when the brain, through a classification process akin to interpolation, selects the snapshots that
most closely resemble the new object.

These conclusions stem from experiments in which subjects were first shown computer-
generated images of unfamiliar 3D objects defined as targets. Such targets were either thin wire-
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like structures or amoeba-like blobs with small projections. The subjects were then presented
with single views of either the target, after it had been rotated in various fashions, or a
distractor—an object similar to but not identical with the target. The subjects’ task was to press,
as quickly and as accurately as possible, a yes-button when the displayed object was the same as
the target and a no-button otherwise. The study showed that recognition was successful only
when the views of the target and the displayed object were sufficiently close for interpolation to
take place.

Human performance in recognition turned out to be limited just as it would be if its under-
lying computational mechanism were memory lookup. The main findings were as follows.

* When subjects had to recognize previously-seen views of objects appearing at arbitrary 3D
orientations, some of the views yielded shorter response times and lower error rates than
others. This happened even when each view was shown for the same number of times
during training.

» (Generalization to novel views was severely limited, with performance dropping to chance
level at misorientations of only about 40 degrees relative to familiar views.

» Adding binocular disparity to provide the subjects with an additional and reliable cue to the
third dimension reduced the mean error rate, but the performance was still far from view-
point-invariant. Importantly, the availability of depth information did not change the basic
feature of generalization to novel views—namely, the increase in the error rate with mis-
orientation relative to a familiar view.

These findings provide evidence against theories which maintain that the input image is
compared with a single model of the target, stored in memory in an object-centered fashion and
in three-dimensional detail. According to these theories, the brain can rotate this model i1n any
direction and to any degree until it aligns with the new image. The experiments described above
showed that recognition of radically different views of the same object is poor, meaning that the
brain probably does not have access to rotatable three-dimensional models stored in memory.
Thus it is possible that a recognition strategy based on memorizing specific 2D views of objects
is a viable alternative to sophisticated techniques employing 3D feature alignment, as well as a
better model of human performance in recognition. The findings also suggest that effective
object learning can be based on 2D views, rather than on 3D models.

2.3.4. Models

Whether the models employed for scene description are 2D (image-like) or of higher dimen-
sions, they have to be learned from examples. An interesting problern would be to study the com-
plexity of acquiring (learning) object models as a function of the dimensionality of the models
employed. This becomes more interesting if we put a bound on the available memory. Complex-
ity aspects of visual learning will be discussed further in the next subsection.

Recognizing three-dimensional objects from arbitrary viewpoints is difficult because an
object’s appearance may vary considerably depending on its pose relative to the observer. There
are two possible ways to approach this problem: (1) Find regularities in the set of views that
belong to a single object. These regularities allow the fitting of models to some of the features in
the image. (2) Store templates of all possible views of the object and compare them with the
actual view. In either case, when building a system for 3D object recognition, it does not seem
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feasible to create the object library manually. Rather, the ability to leamn from examples appears
to be essential for the achievement of high performance in real-world recognition tasks.

~ To learn the shapes of objects for the purposes of recognition using visual input would mean
to acquire models for the shapes from examples. Thus, the starting point is the selection of the
form of the models. Some types of models are of a simple geometric nature (usually polyhedra,
quadrics, superquadrics, etc.). Many systems have been constructed that recognize components
of mechanical (or other industrial) parts using small numbers of such models. However, for these
types of rigid objects, where an instance is a transformed (and possibly occluded) view of a
model (template) plus noise, recognition can be achieved without learning by examining possible
transformations of the template until an acceptable match is achieved. It would be interesting to
determine whether some formof learning could reduce the search space. Other types of trans-
- formable models, based on snakes or deformable contours and their variations, have been suc-
cessfully used in graphics. Still other types of models, which have not attracted as much
attention, are structural descriptions, which characterize objects as systems of parts and relations.
Machine learning has developed a number of systems for learning structural descriptions from
examples stated in terms of symbolic descriptors. They could be applied to vision problems by
coupling them with systems that handle lower level descriptions.

The problem of learning object surface characteristics—specifically, learning classes of tex-
tures-—has been extensively studied. Many standard approaches can be used to leamn such classes
from samples of texture feature vectors. Recent research has dealt with the development of
efficient methods for the inductive learning of texture descriptions, using multilevel symbolic
image transformations. Specific tools used include principal axis representations of texture
descriptions, and a combination of inductive rule leaming with genetic algorithm based rule
enhancement. A problem of particular concern in learning texture classes is the need to learn
from noisy inputs under varying perceptual conditions (illumination, resolution, pose, etc.).

Very often a moving object can be recognized on the basis of its motion—that is, the motion
field produced by the moving object has a set of characteristics (properties, regularities) that
allow us to uniquely identify the object (or its class). For example, we may be able to recognize
various types of natural objects (water, leaves, animals, etc.) by learning the appropriate motion
descriptions.

2.3.5. Complexity

Any investigation of visual learning at a task-independent level must start with the selection
of a class from which the concepts to be learned will be taken—for example, a class of shapes,
textures, or motions. Whatever the class, the concepts have to be sufficiently expressive to
describe what needs to be learned and to capture any fine distinctions that may be preseat in
images of the same concept. At the same time these concepts, whose descriptions need to be
learned from examples and must support generalization to novel situations, have to be kept as
simple as possible. One can envision a line of research on the complexity of visual learning
problems.

Learnability of visual concepts can be formalized as a problem of learning functions. Let I
be the problem of learning functions that belong to a representation space R, with domain X and
range Y. A pair (x,y)eS= X XY is called an example, and a sequence of examples is called a

sample. A function f defined for the set of all samples in R solves the visual learning problem, if
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it represents a hypothesis that is acceptably close to the “target” function in R. Various
theoretical frameworks have been proposed in the literature for handling the general problem
using tools taken from approximation theory and probability theory.

When facing a visual learning problem, the first step is to determine an appropriate represen-
tation space. The representation space is constrained by the fact that input transducers in both
biological and artificial systems provide a signal that is spatially discrete. Existing analyses of
visual learning have taken this at face value by assuming that the basic unit of representation is
the pixel. Results on the non-learnability of visual concepts have been obtained. Particularly, it
has been shown that the number of “templates™ needed to achieve learning of Boolean template
representations is impractically large.

It is possible, however, that pixel-based definitions of visual learning complexity are unreal-
istic and other scale-independent complexity measures might be more fruitful. For example, one
could develop complexity measures based on features such as those in the primal sketch and
show that learning visual concepts is a tractable problem. Determining the complexities of vari-
ous learning problems, such as learning 3D object recognition algorithms, learning visual search
techniques, and relating the complexity of a representation or description to recognition algo-
rithms, are important research problems.
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2.4. Learning in Purposive Vision
2.4.1. Introduction

The issues discussed in Section 2.3 were related to general aspects of scene and object
description, without reference to the purpose for which the scene is being described. This section
discusses vision from a purposive viewpoint. It does not attempt to formulate a general theory of
task-oriented vision; instead, it discusses a class of tasks that are basic to nearly all purposive
vision systems—namely, the class of vision-based navigational tasks.

One of the most fundamental abilities of an agent is the ability to move around in its envi-
ronment. An agent that cannot move, or at least move its sensors, is severely limited in its ability
to sense (which it must do from a fixed viewpoint); and an agent that cannot move any part of its
body cannot exercise motor control for mobility or manipulation. Conversely, an agent that can
move its body can use sensory data locally to control its motion, and globally to build up repre-
sentations of its environment (this includes recognition of objects in the environment, such as
obstacles or landmarks).

Navigation deals with both local and global aspects of sensor-based motion control. 1t is
inherently a purposive activity; navigational tasks depend on the nature of the environment, the
agent, and the agent's goals. As we shall see in this section, learning can play many roles in the
performance of such tasks.

2.4.2. Examples of Learning Problems in Navigation

Many different types of learning problems are encountered in vision-based navigation. In this
section we use two representative examples: Learning to drive a vehicle on a road (a local task),
and learning paths in an environment (a global task).

In the problem of learning to drive a vehicle on a road, the inputs x(¢) (see Section 2.2) might
correspond to the images seen by a camera mounted on the vehicle and the outputs u(z) to the
control actions taken by an expert driver (see Figure 11a). Using these examples, we might learn
a function r corresponding to a state regulator r(x(t)) = u(t), agreeing on the training examples
and hopefully generalizing to cover situations not encountered in the training data (see Fig-
ure 11b).The problem of learning to drive on a road will be discussed further below and in Sec-
tion 2.4.3. Some of the roles that learning can play in local navigation tasks will be discussed in
Section 2.4.4.].

In many navigation problems, observation and control cannot be easily separated. In driving a
vehicle on a busy highway, it is generally impossible to recover the entire state. Instead, the
control system must direct its sensory apparatus so as to estimate different state variables (e.g.,
the position of the vehicle on the road, the presence of traffic in other lanes) depending on the
situation. The system attends to different aspects of the environment depending on the task that it
is currently trying to perform. This interdependence of action and perception is critical in most
real-world navigation problems.

In the case of learning to drive a vehicle, we are assuming that estimating the state of the
dynamical system (or at least the relevant aspects) is relatively straightforward. In many
problems this assumption is not warranted and it will be necessary to learn a good state
estimator, e(¥(#)). In still other problems, estimation and regulation must be tightly coupled and
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the problem of control is considerably more complicated.
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Figure 11. Learning to navigate by observing an expert driver.

There are problems for which it is difficult or impossible to obtain appropriate training data.
For these problems it is sometimes possible to obtain a reinforcement signal from the envi-
ronment (e.g., overloading the drive motors is evidence of negative reinforcement—perhaps the
robot is pushing against an immovable object) and then use this signal to learn to improve per-
formance. This is the basic idea behind using learning methods based on stochastic dynamic pro-
gramming for control problems.

For path planning problems, it is often necessary to predict the consequences of acting. Such
prediction may require that we learn the dynamical system, f(x(¢),u(r)). For some navigation
problems, the dynamical system can be described by an annotated map of the environment where
the annotations indicate which of a set of navigation routines is most appropriate for getting from
one location to another. In most problems of this sort, there is no teacher and so various forms of
unsupervised learning must be employed.

Abstractly, the environment can be described as a labeled graph, and the dynamical system
can be represented as a finite state machine in which the inputs correspond to navigation proce-
dures and the outputs correspond to the features observable in a given state. Figure 12 shows
such a finite state machine in which the states (shown as circles) correspond to locations, the
transitions (shown as arrows) correspond to navigation procedures, and the outputs (shown as
Boolean values inside the circles) correspond to the features observable when in the location.
Possible roles of learning in global navigation tasks, and in the integration of large-scale and
local navigation, will be discussed in Section 2.4.4.2.

2.4.3. Classification of Navigation Problems

Now that we have some idea of the sorts of learning problems that arise in navigation, we
attempt to classify such problems a bit more systematically. In this section, we provide a set of
dimensions to characterize navigation problems that involve learning. We begin with dimensions
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that serve to characterize the environment and the ability of the vehicle to move about in that
environment and observe various features.

o)
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Figure 12. Automaton representation of a dynamical system.

Referring back to Figure 2, in order to classify the capabilities of autonomous “seeing”
agents, we should consider both the agent and its environment, in addition to the relationship
between the agent and the environment. Different environments differ in fundamental ways; an
agent trying to navigate on Mars would almost certainly rely on different navigation methods
than if it were operating on an interstate highway. Similarly, the agent’s task, e.g., following a
road as opposed to getting to some predetermined place, determines what navigation method
might be most appropriate. We characterize a given environment as a point in a three dimen-
sional space.

a) CONSTRAINED/UNCONSTRAINED: How constrained are-the agent’s actions? In
some environments, the agent has many possible actions available at any given point,
while in other environments only a few options are available. For example, on Mars (a
prototypical unconstrained environment) there are essentially an infinite number of

actions (e.g., directions) that can be taken at any given time. In contrast, navigating a
series of hallways constitutes a constrained environment.

b) STATIC/DYNAMIC: How dynamic is the environmenti? A dynamic environment is one
in which changes occur that are not caused by the agent. For example, shifting illumina-
tion patterns and weather conditions make for a dynamic environment. An interstate
highway is a dynamic environment to the extent that other cars are present.2 On the other
hand, agents operating alone and indoors must deal with a much more static environment.

¢) STRUCTURED/UNSTRUCTURED: The degree to which an environment is structured
depends on the distribution, accessibility, and uncertainty implicit in the observable fea-
tures. Thus a highly structured environment is one in which the observable features
uniquely identify the current situation with a high degree of certainty. In contrast, an un-
structured environment might be feature-poor, or there might be so many features that a
sort of saturation is achieved, where distinct situations are no longer separable.3

In Section 2.4.2, we described navigation in terms of a dynamical system corresponding to
the vehicle and the environment in which the vehicle is trying to negotiate. In characterizing

2The presence of multiple agents generally implies 2 dynamic environment. We will not, however, emphasize
coordination and negotiation involving multiple agents in this document.

3While we would like to pose this dimension in a task-independent manner, we acknowledge that there is an aspect
of task dependence about it.
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navigation problems, it is not clear whether the vehicle and its complement of sensors are part of
the problem or part of the solution. While we might be given a vehicle and asked to write soft-
ware to control it, we might also be asked to design or refine the hardware. In the latter case, the
vehicle is definitely part of the problem specification. We make no attempt to characterize all
aspects of the vehicle but we do mention one important dimension that affects perception and,
hence, impacts on the problems discussed in this section.

d)

SOPHISTICATION OF OBSERVATION: How sophisticated are the agent’s observa-
tional capabilities? There are several aspects: (a) ability to recognize objects in the envi-
ronment, (b) ability to re-acquire a formerly recognized object and relate it to previous
recognition instances, (c) ability to quantify spatial relationships between multiple objects
observed simultaneously, (d) ability to recognize motions of other objects. Note that there
are a wide range of possibilities in (a-d). For example, reasonable navigation in
constrained environments can be done when, for (a), objects are only avoided, not
distinguished. Wasps, on the other hand, are very good at both (a) and (b) to the level of
recognizing and re-acquiring individual bushes and buildings.

The second defining aspect of a navigation problem is the task that the agent is to accom-
plish. As we have done for navigation environments, we next characterize navigation tasks along
four dimensions.

e)

g)

5

SHALLOW/DEEP INFERENCE: How much inference is required in order to determine
‘what to do next? For certain navigation tasks, fast and cheap reactive behavior may suf-
fice. Consider, for example, a convoy-following problem; gradient descent is an example
of a fast and cheap inference technique that, given the appropriate sensory input space,
may be expected to attain reasonable performance for this particular task. Thus this is an
example of a task that requires only shallow inference. On the other hand, finding the
shortest path through some graph is an example of a task that requires some deliberation

(e.g., search) and would therefore be considered a deep inference task. A key component
of this distinction is whether or not an internal representation is used.

RESOURCE CONSIDERATIONS: How much time is available to decide and execute?
Real-world navigation tasks are by nature resource-critical. Resource limits may be
imposed on different aspects of the task. For example, it might be necessary to limit com-
putation time 1n order to ensure real-time response. For a different task, obtaining a more
efficient solution (in terms of execution-time resources) might be important. In a hostile
dynamic environment, doing something quickly may be much more effective than doing
the right thing slowly.

AVAILABILITY OF SUPPLEMENTARY KNOWLEDGE: How much additional
knowledge is available to the system? Types of additional knowledge include maps,
guidance from teachers, and a priori specification of landmarks. For example, easy avail-
ability of satellite position data clearly affects which solutions are viable. Note that addi-
tional knowledge may differ qualitatively from task to task; some feedback may be
immediate, (e.g., when the agent hits a wall), while other sources of supplementary
knowledge may not be quite so direct.

COMPLEXITY OF BEHAVIOR: Does behavior require long or short sequences of

primitive actions? Some navigation tasks decompose in such a way as to reduce the
overall complexity of the task. Thus some large-scale deep-inference navigation problems
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might naturally decompose into multiple shallow-inference problems. Other problems
may not be decomposable at all, or no reasonable decomposition may be known.

To illustrate these environment/task characterizations, let us consider ALVINN (Pomerleau,
1989), an existing simple visual navigation system developed at Carnegie-Mellon University, to
see how it fits into our classification. ALVINN is a neural-network based system that learns to
perform a road following task by observing a human driver. The input to an ALVINN network is

a low-resolution sensor image; the output is a continuous variable representing steering direction.
ALVINN networks learn to steer under specific conditions, such as highway driving, off-road
dirt path following, etc. Each individual network, then, could be considered an expert for a par-
ticular restricted visual navigation task.

ALVINN’s environment is constrained, since the agent is limited to following the road.
Choices occur occasionally (e.g., at intersections) and are of limited degree (that’s not to say the
problem is trivial, since there are infinitely many steering sequences that will keep the vehicle on
the road). The environment is dynamic, since each ALVINN net is expected to operate under
varying illumination, weather, road and traffic conditions. These aspects of the environment are
clearly beyond the agent’s control. Finally, AL VINN’s environment is a structured one, since
relevant features (e.g., lane markings) are always available on the input.

Clearly the visual road-following task, in its simplest form, is a shallow inference task. In
fact, each individual neural network serves to directly map inputs into steering responses. Note
that it is possible to integrate the different ALVINN networks into a single system by using some
meta-ievel reasoning procedure to arbitrate among experts. The particular arbitration procedure
used involves to some degree of inference; thus this version of ALLVINN is necessarily deeper
than the single network version.

From a resource perspective, ALVINN’s task is time critical. ALVINN’s design (i.e., the

neural network architecture used) reflects this constraint: it guarantees some output within a
fixed time frame.

Supplementary knowledge is provided to ALVINN in two forms, First, every ALVINN net-
work is structured according to some fixed architecture that embodies some domain bias.
Second, to avoid brittleness, ALVINN's training procedure is constrained according to domain-
specific knowledge. For example, each ALVINN network is trained on an equal number of left
and right turns. ALVINN is explicitly trained by adding structured noise to the input image in
order to ensure insensitivity to infrequent events, such as passing cars or guardrails.

2.4.4. Some Navigational Issues

In this section, we consider two sets of issues. The first set is concerned primarily with acting
and sensing in a constrained (“local”) spatiotemporal context; an example problem would be
steering a vehicle to remain on a roadway and avoid other vehicles. The second set is concerned
with building representations to facilitate planning in a larger (“global™) spatiotemporal context,
an example problem would be building a map to facilitate path planning. This distinction is not
always clear-cut, but it provides some useful structure for the following discussion.

2.4.4.1. Local Issues

We define local navigation issues as those pertaining to sensing and acting within a con-
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strained spatiotemporal context. The bounds of the context are determined relative to the physical
and information processing capabilities of the navigating system., Local issues are those that take
place over a small enough spatiotemporal interval not to need significant cognitive, symbol
processing activities, but rather those that produce control and other outputs more or less directly
from environmental and other inputs. Local navigation may be reactive (closed loop) or blindly
executed (open-loop)—some functions operate as reflexes, some as skilled behaviors.

We assume that local navigation takes place in the context of global navigation. That is, local
navigation tasks are always performed in a global context that provides information, repre-
sentations, part_icular requests, etc.

The inputs to a local navigation task include visual and nonvisual sensory input (e.g. inertial
sensors, dead reckoning or odometry, proximity sensors, range, velocity). Other important inputs
come from the global navigational context: visual and control tasks to be accomplished
(landmarks to be located or verified, lane change warnings, upcoming turnoffs or intersections,
and the like).

Outputs from local navigational tasks include the obvious control outputs (commands to
accelerators, steering, brakes) as well as outputs to control active visual capabilities (non-naviga-
tional control), and many varieties of information, either solicited or unsolicited, relevant to the
global navigation task—for instance, reconstruction of physical reality (time to collision, free
space, location of looming scene areas), landmark identification, and the degree of confidence
the local task system has in its decisions and reports. In what follows, we provide a catalog of
local navigation issues.

a) BEHAVIORS AND TASKS: Given a set of local navigational behaviors, how can we learn
what tasks they can be used to perform? Developing a flexible, uniform scheme for describ-
ing what behaviors do may be impracticable; some form of category or concept learning
might be useful, as well as more quantitative forms of characterizing performance.

b) COMBINING BEHAVIORS: How can we learn to combine behaviors? There is essentially
no theory about combining behaviors (aside from some work on discrete event dynamical
systems, DEDS), and the obvious questions arise as to the stability, deadlock properties,
controllability, predictability, etc. of such interacting systems. It seems that some innate rules
or structure might be necessary to assure reasonable behavior, but that within some limits
there might be the possibility of learning about interactions with an eye either to avoiding or
exploiting the results. Can the coordination take place without sensor input; does the central
coordinator perform strictly as a function of the modules or can it use input from the environ-
ment in making its choices? Is there in fact a central controlier or can control be distributed,
as in flocking or schooling behavior (cellular automata models, etc.)? Can reinforcement
learning be extended to deal with muitiple goals to be satisfied simultaneously?

¢) USING SENSORY DATA: How can we learn to use and combine sensory information?
Such information can be passive or active, sparse or dense, visual or tactile; clever combina-
tion of sensory modalities can lead to fast, dense depth data. Aspects of the algorithm that
combines the data might vary (thresholds, calibration), but effective methods of combination
could be learned. A related issue is learning to combine sensing with predicting. The global
behavior may furnish many sorts of predictions, from symbolic to iconic, about what is likely
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to be sensed by the local task. The incoming data must be matched to these expectations.
When can sensory data be disregarded?

d) USING MEMORY: How can we learn memory management? What should be remembered
and what can be forgotten? What are the roles of short-term and long-term memory? Of
iconic and symbolic memory? How do we sense events, and reason about events in time?

e} CALIBRATION: How can we learn calibration constants for sensors and effectors? The cali-
bration problem is a major curse of robotics and quantitative vision. Especially in systems
that are active, subjected to shock, and by their nature operating in rapidly changing
environments, calibration by the usual method of physical measurement or rituals involving
precise calibration objects are simply impractical. The hope is that reliable feedback and
closing the loop through tasks and attempts at tasks can substitute for off-line calibration
procedures.

f) CONTROL: How can we learn to select and adapt control functions? In particular, how can
we learn optimal feedback control? Abstractly, reinforcement learning yields optimal control;
practically, there may be issues involving the dimensionality of the state space and likewise
the length of description of control actions. Learning open-loop control is like learning be-
haviors, only the task to be learned may be parameterized. Thus optimal control for a class of
tasks must be learned, which amounts to learning a family of control trajectories for multiple
cooperating effectors. The goal here is to produce behaviors that are faster than those that can
be mediated through feedback. An issue is that the controlled plant may interact with a plant
whose properties are unknown and must be learned. We need to be able to learn task-level
control algorithms in which a parameterized version of a task is given (say following some
trajectory in the phase space of position, velocity, and load) and the output is a trajectory in
control phase space. Assumptions about the controlled plant may be available but the
problem could also include learning about the plant to be controlled and also learning
information about the task that is exogenous to the plant (e.g. road conditions) that never-
theless affect performance. In all but trivial cases, the dynamical model will be stochastic.

2.4.4.2. Global Issues

Large-scale or “global” navigation is the problem of traversing a large-scale environment of
which only a portion will be within the field of view at any given time. Such a task will therefore
involve reference to some type of internal representation of the large-scale space, even if that
representation is simply in the form of (re)actions of the agent to situations encountered while in
pursuit of specific goals. There are several areas here that provide opportunities for learning.

a) LEARNING REPRESENTATIONS OF LARGE-SCALE SPACE:

Representations of space for the purpose of navigation should allow the agent to make deci-
sions about what to do next; they should be able to handle different types of environments and to
support exploration of space at multiple spatial scales. To be useful, representations should
establish correspondences between actions and positions, to allow planning and simulation. They
should suppress information about the environment that is not relevant to potential navigation
goals, but maintain relevant information.
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Representations of space may be continuous or discrete, e.g., a Cartesian map (x-y coordi-
nates) or a finite automaton, and this choice influences the relevant issues and techniques with
respect to learning and sensing. Relevant information may vary significantly in level of abstrac-
tion: e.g., local coordinate systems with precise locations of landmarks versus spatial equivalence
classes of regions on the basis of landmark visibility. The representation may be purely symbolic
and topological, or may include metric information as well. Multiple representations may be
needed for different tasks.

Learning spatial representations may take place either by exploration or it may occur during
goal-directed activity. This involves the tradeoff between the goal of acquiring new information
and the goal of using current information, known in control engineering as the tradeoff between
identification and control.

In discrete representations that use spatial equivalence classes according to visible landmarks,
there is also a tradeoff between the simplicity of the representation and the ability to discriminate
between similar positions. As the number of landmarks increases, the size of each equivalence
class decreases, but the number of classes increases. This has implications for the complexity of
learning and planning methods that use the resulting representation.

b} LANDMARK ACQUISITION AND RECOGNITION:

Agents position themselves within the spatial map by recognizing landmarks. To the extent
that landmarks can be arbitrary objects, landmark recognition is an instance of the general object
recognition problem. Landmark recognition is distinct from traditional object recognition in
several respects, however:

 Indexing—the spatial map provides expectations of the landmarks to be recognized, sim-
plifying the object indexing problem.

» Context—whereas general object recognition systems often strive to be independent of
context, a landmark’s context is an integral part of its model. |

» Performance criteria—the goal of landmark recognition is to fix the viewer’s location with
respect to a spatial map, whereas the goal of object recognition is rarely explicit.

Another promising area for leamning is landmark acquisition. Autonomous navigation systems
must learn models of the landmarks in their environments, both for individual landmarks such as
buildings and mountain peaks and for *“class” landmarks, such as road intersections and stop
signs, that may occur repeatedly. Each landmark should be modeled so as to support recognition,
and should include (quantitatively or qualitatively) the landmark’s position in the spatial map.
Landmarks should be selected according to their distinctiveness, salience, and utility for localiza-
tion. Landmarks should also be visible from a wide range of viewpoints so that they can be
recognized when the location of the viewer is only approximately known.
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¢) INTEGRATION OF LARGE-SCALE AND LOCAL NAVIGATION:

Typically, a large-scale navigation system identifies goals for local navigation, and is alerted
when these goals are met. An example is following a road until a particular landmark is reached.
In general, the goals for local navigation will depend on the extent to which the environment
constrains the mobility of the agent (e.g., an environment with well-defined roads or corridors is
a highly constrained environment). The detection of the “termination” conditions for a particular
segment of local navigation requires monitoring the environment. Since the appearance of these
conditions is usually predictable from prior visual events (“context”), this process can benefit
from active visual investigation of the environment instead of passive detection of the conditions
when they appear.

The integration of large-scale and local navigation problems is a complex process which is
akin to real-time operating system design. It affords a number of opportunities for learning. For
example, while traversing familiar paths, the decomposition of large-scale navigation into a
sequence of local navigation steps can be learned. It may also be possible to generalize this
process and learn a common set of strategies for similar environments (e.g., traversing road net-

works may involve a common core set of strategies that are applicable over a wide range of
roads).

Since the local navigation process and the monitoring required for global navigation are both
based on visual information, the same processing resources may be expected to be required by
both processes. It may be possible to learn the active vision strategies needed for handling
resource contentions—e.g., learn a familiar sequence of moves to monitor the road while periodi-
cally investigating landmarks that appear and move toward the periphery of the field of view.
The usefulness of such a strategy depends on the types of visual processing architectures avail-
able, and may also have to be adapted to handle variations in the quality and characteristics of the
resources over time (e.g., sensor drifts, resource failures, etc.).
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3. RECOMMENDATIONS

The state of the art in both machine learning and machine vision is such that combining the
two fields promises to produce important scientific and practical results. This claim is supported
by recent progress in machine vision on 3D object recognition, successful application of machine
learning to a wide range of real-world problems, and concrete suggestions about feasible
approaches derived (or soon expected to be derived) from biological and ncurophysmlaglcal
experiments.

Further advances in learning technology and tools are needed for vision applications, in order
to handle the complexity and noisiness of vision data and to deal with different task require-
ments. Major efforts should be applied to task-driven learning, automatic selection or construc-
tion of key features, noise-tolerant learning, making effective use of prior, domain-specific
knowledge, learning multiple representations, multistrategy learning, and learning under variable
perceptual conditions. New tools must be created that will integrate the developed techniques.
Finally, the learning systems often will have to deal with environments where object character-
istics can change over time.

At the same time, new vision techniques should be developed to extract, manipulate, and
combine hybrid characteristics of objects on different levels of the vision hierarchy. Fast tech-
niques for matching image data and class descriptions (i.e., recognition modules) must be
developed. High-level scene segmentation and annotation through automated reasoning must be
advanced, utilizing learned concept descriptions, new matcmngfrecugmm:m techniques, and con-
cept manipulation techniques.

Continued connection with biology is important for the scientific content of the enterprise.
Increased knowledge about how the brain recognizes objects, and the role learning plays in this
task, will also provide useful guidelines to those designing practical systems.

Learning to perform vision-based tasks is an extremely rich problem domain, which, most
importantly, has many intermediate goals which will yield tangible benefits to the research and
applications communities in the long and short run. Some of the short-term research opportu-
nities relating to task-oriented vision are listed below.

1. Learning cost-efficient visual search and surveillance strategies by selection of sensors
and algorithms which are most discriminating in a given context. In other words, learning
what to sense and where to focus attention and resources at different stages of a task.

2. Combining multiple visual modules for task-oriented vision using learning approaches.

3. Learning to observe by segmenting actions temporally and learning appropriate percep-
tual actions to maximize the observability of processes by active vision systems.

4. Developing selective forgetting strategies which allow learners to track changes in the
environment, especially to allow system performance to re-adapt when system sensors
and actuators fail.

5. Learning contexts so that the environment and task can be partitioned into special cases
that require different perceptual and action control strategies.

6. Developing effective general-purpose methods for combining teaching, exploration, and
exploitation in learning.

7. Using learning algorithms for redundant actuators and sensors to achieve improved robot
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8.

g.

path planning in obstacle-filled environments.

Task planning using learning by observation for task decomposition, and specialization
using reinforcement learning for each sub-action.

Developing learning techniques that do not require explicit feature tracking, because they
combine the extraction of relevant features with simultaneous learning of action models.

We believe that the following issues are important considerations in planning future efforts in
learmning and vision:

a)

D)

d)

Machine learning can play an important role in vision. Machine learning appears to
offer significant opportunities to extend current methods for vision, especially in the area
of task-oriented vision. We have described a number of initial results, and a variety of
suggested roles for machine learning in visuomotor and visual tasks.

Reasonable expectations: We should certainly not assume that by introducing learning
into visual tasks one will soive all vision problems. Many of the short-term goals enumer-
ated above are restricted problems; however, solutions to any of these problems will have
important research implications and practical uses. Visual processing for almost any task
is extremely complex, which is the reason why progress in this area has been slow. This
complexity arises from the multivariate problem of varying illumination, the observer’s
optics, and the complexity of the environment. Furthermore, the data are spatially and
temporally distributed; hence the necessary data selection and reduction mechanisms are
very task- and context-dependent. We must therefore continue to study basic analysis of
data reduction and selection mechanisms. We must study invariances and spaces which
enhance these invariances.

Collaboration between the machine learning and the vision/robotics communities:
Many members of the machine learning community do not have access to the laboratory
facilities needed to pursue learning for visuomotor coordination. In particular, the equip-
ment costs and staff expertise necessary for designing and maintaining robotic and vision
hardware is out of the reach of most machine learning groups. To facilitate interchanges
between these two communities, cross-disciplinary postdoctoral fellowships should be
established to allow machine learning researchers to make extended visits to robotics and
vision facilities.

Infrastructure development, in the form of shared testbeds, is strongly recommended.
Shared testbeds provide a means of measuring and demonstrating progress; they have
proven useful in other fields and are likely to greatly benefit this one.

Competition: A robotic competition should be organized that encourages graduate
students to explore research in combining machine leaming, perception and robotics. This
could be held in conjunction with some major conference in either robotics or artificial
intelligence, such as IJCAI, AAAI or IEEE Robotics and Automation.

Goals: Selected projects should be established as long-term goals. These projects should

. focus on important potential applications. Applying machine learning and avoiding

(re)programming as much as possible is critical for future practical applications of
machine vision.
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