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Abstract

WEIGHTED CLUSTERING ENSEMBLES

Muna Saleh Al-Razgan, PhD

George Mason University, 2008

Dissertation Director: Dr. Carlotta Domeniconi

Clustering is a popular approach to exploratory data analysis and mining. How-

ever, clustering faces difficult challenges due to its ill-posed nature. First, it is well

known that off-the-shelf clustering methods may discover different patterns in a given

set of data, because each clustering algorithm has its own bias resulting from the op-

timization of different criteria. Second, there is no ground truth against which the

clustering result can be validated. High dimensional data also pose a difficult chal-

lenge to the clustering process. Various clustering algorithms can handle data with

low dimensionality, but as the dimensionality of the data increases, these algorithms

tend to break down. In this dissertation, we introduce novel clustering ensemble

techniques and novel semi-supervised approaches to address these problems.



Clustering ensembles offer a solution to challenges inherent to clustering arising

from its ill-posed nature: they can provide more robust and stable solutions by mak-

ing use of the consensus across multiple clustering results, and they can average out

the emergent spurious structures which arise due to the various biases of each par-

ticipating algorithm, and due to the variance induced by different data samples. We

introduce and analyze three new consensus functions for ensembles of subspace clus-

terings. The ultimate goal of our consensus functions is to provide hard partitions

of the data, and weight vectors which convey information regarding the subspaces

within which the individual clusters exist. We demonstrate the effectiveness of our

three techniques by running experiments with several real datasets, including high

dimensional text data, and investigate the issue of diversity and accuracy in our

ensemble techniques.

We also study scenarios in which limited knowledge on the data (in terms of pair-

wise constraints) is available from the user. We develop a methodology to embed such

constraints into the ensemble components, so that the desired structure emerges via

the consensus clustering. We introduce a mechanism which leverages the ensemble

framework to bootstrap informative constraints directly from the data and from the

various clusterings, without intervention from the user. We demonstrate the effec-

tiveness of our proposed techniques with experiments using real datasets and other

state-of-the-art semi-supervised techniques.



Chapter 1: Introduction

1.1 Data Mining Overview

Advances made in data collection and improvements achieved in database technology

have contributed to the amassing of data in recent years. These data include Web

data, e-commerce records, tallies of purchases at department and grocery stores, and

credit card transactions. However, the amassing of data has not led to a corresponding

increasing of knowledge. With such a large amount of data, the extraction of useful

information is a difficult task. To solve this problem, data mining strategies have

been developed that automatically extract interesting knowledge from datasets [33].

Data mining extracts “implicit, previously unknown and potentially useful infor-

mation” from data [62]. Thus, data mining contributes to knowledge discovery, the

process of translating the raw data in a database into useful knowledge. Data mining

is a multi-disciplinary field that draws from areas such as statistics, data warehousing,

machine learning, information retrieval, and pattern recognition. Data mining helps

us answering questions that database queries cannot. For example, retailers could

identify what type of customers respond to mass marketing, or financial institutions

could model and predict market behavior.
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1.2 Data Mining Techniques

To meet the difficulties and challenges of dealing with large amounts of data with

high dimensionality, consistently accurate techniques must be developed. These tech-

niques must be efficient and scalable to handle large data sets with different formats.

Research inquiring into the development of such techniques has been done. Some of

these techniques were borrowed from advances made in the fields of statistics, pattern

recognition, and machine learning. Data mining owes a particular debit to research in

sampling, search algorithms, query processing, and modeling techniques. Several dif-

ferent data mining techniques for classification, association rules, and clustering have

been developed. Data mining tasks are usually grouped into two types, predictive

(classification) and descriptive (association rule discovery, clustering).

Classification is the task of building a set of models that identify classes or con-

cepts. These models are then used to predict the class labels of unknown or new

objects [33]. To establish a classification model, one trains the model using n train-

ing data, with their J classes. The training observations consist of D attribute mea-

surements x = (x1, ..., xD) ∈ <D and the known class labels x = {(xi, yi)}n
i=1 where

yi ∈ {1, ..., J}. Training data are samples drawn from the underlying unknown distri-

bution. Test data are also vector of observations, but without predefined class labels.

The objective of the classification model is to predict the class label of newly coming

data points. Classification models have been utilized in many disparate fields such as

marketing, medical analysis, and information retrieval [62].

Association rules discover patterns of dependence, by predicting the likelihood of

the occurrence of a given item based on the occurrence of other items. Given a set

of items of inventory Q = {t1, ..., tm} that contains all items in a market basket data

and a set of all transactions D = {d1, ..., dn}, each transaction di contains a set of

2



items of inventory from Q such that di ⊆ Q. The objective of association rules is

to find rules that correlate the attendance of one set of items with the attendance

of another set of items. For example, a transaction d contains a set of items X. An

association rule can be represented as X ⇒ Y , such that X, Y ⊆ Q, and X ∩ Y = ∅.
The rule X ⇒ Y holds with support s, where s indicates the probability of the item

sets X and Y in the data set, P (X∪Y ). Support s is the number of transactions that

contains both X and Y divided by the number of transactions in the dataset. The

rule X ⇒ Y has confidence c, where c is probability that Y occurs in transactions

already containing X, P (Y |X). Confidence c is the number of times X and Y occur

together in the transactions divided by the number of transactions containing X.

This method is widely used in market basket, or transaction data analysis. For

example, association rules might discover that customers who buy bagels are likely to

also buy cheese, or might discover that other items are frequently purchased together

by customers. This kind of analysis requires a large amount of several computations

as combinations of the entire dataset need to be analyzed to find different patterns

of interest [33].

Sometimes training data are not available in advance, or one has a huge amount

of data without any related ground truth. In order to extract useful information

from these kinds of datasets, a technique that works in an unsupervised fashion

is needed. One of these techniques is clustering. Clustering groups data points

which are similar to each other in one cluster, and places data points which are not

similar to each other in different clusters. The process works according to similarity

measures, and different similarity measures partition the data in different structures.

A few examples of similarity (distance) measures are the Euclidean distance [62],

the Pearson correlation [62], and the Jaccard index [62]. The choice of a specific

similarity measure is particularly important, as it drives the structure being discovered

3



in the data. Most clustering algorithms find different structures in a given dataset

based on different optimization criteria. Clustering is a studied problem in disciplines

such as pattern recognition, image processing, marketing, and statistics. Wide usage

of clustering algorithms proves their usefulness in exploratory data analysis [40].

In this study we will look at clustering methods in more detail.

1.3 Challenges

Although clustering has proven useful in several fields, significant challenges remain

to be met. Most clustering techniques do not produce acceptable results due to issues

with clustering algorithms and data distributions.

Issues with clustering algorithms

There are two significant challenges inherent to clustering algorithms. First, var-

ious clustering algorithms find different structures (e.g., size, shape) in the same

dataset. This is because each individual clustering algorithm has its own preferences

due to the optimization of different criteria. Second, a single algorithm with different

parameter settings can find various structures on the same dataset. Since no labeled

data are available, no cross-validation can be used to tune the parameters. These

challenges confront the user, making the selection of a proper clustering technique

very difficult. He or she is left without any guidance for selecting the appropriate

clustering technique or parameter values for a given set of data.

Issues with data distributions

• There are usually many samples to be clustered, and with a large amount of

data, scaling issues must be considered. Therefore, an algorithm that scales

linearly with the number of samples is desirable.

• Some datasets have a significant number of outliers. Failure to detect these

4



outliers adversely affects the clustering result, and leads to the discovery of

inaccurate structures.

An additional difficulty is introduced when the data belong to a high dimensional

space. Often clusters of data are embedded in subspaces comprised of a subset of

original feature set. Different cluster may exist in different subspaces, in which find-

ing regions populated with a large number of points becomes difficult. Researchers

developed dimensionality reduction techniques in order to reduce the dimensionality

of the feature space. However, well known dimensionality reduction techniques are

global, and thus unable to capture local structure in the data. In order to overcome

this problem subspace clustering algorithms have been introduced. Subspace cluster-

ing algorithms locate clusters in subspaces of the original space. Applying subspace

clustering techniques avoids the loss of local information inherent to global dimen-

sionality reduction techniques. However, the overwhelming majority of these methods

depend on input parameters such as the number of dimensions per cluster, density

thresholds, etc. Often, these parameters are unknown in advance to the user.

A solution to the challenges of clustering and subspace clustering methods remains

an ultimate goal. As part of the endeavor to reach this goal, researchers devised the

process of combining different clusterings into a single clustering, a process known

as “cluster ensembles.” Cluster ensembles can provide more robust and stable solu-

tions across different domains and datasets. However, designing a proper consensus

function for cluster ensembles is far from trivial. The design of an effective consensus

function is a difficult task since data are unlabeled, and thus there is no well defined

correspondence between the different clusterings of a given dataset.

Another avenue to address the ill-posed problem of clustering is through the use of

semi-supervised clustering where some information about the data is indeed available.

Semi supervised clustering uses prior knowledge to guide the clustering process, and
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to provide results that adhere to the user’s preference. In this way, semi-supervised

clustering techniques promise an ease of use and a natural approach along with accu-

rate results. However, there are some open challenges to semi supervised clustering.

These challenges are: identify reliable and useful constraints under limited resources

(e.g limited access to an oracle). Labels for the dataset are generally unavailable or

prohibitively expensive to obtain. However, an end user might be able to provide

pairs of similar and dissimilar examples. For instance, a human expert may be able

to identify two text documents that discuss similar or related topics. The question

then becomes how to leverage this minimal knowledge to accurately group the re-

maining members of the dataset. This situation, which is known as semi-supervised

clustering, has attracted researchers.

The challenges of combining partitions and producing better overall clustering

results with or without prior knowledge are under intense study by researchers. The

discovery of new approaches to clustering is the focus of our research.

1.4 Contributions

The goal of this dissertation is to improve upon cluster analysis. We overcome some

of the challenges inherent to clustering and subspace clustering by designing new

approaches for clustering ensembles and semi-supervised clustering. A summary of

our contributions follows:

• Weighted Similarity Partitioning Algorithm (WSPA): Defines a consensus func-

tion for an ensemble of clusterings by mapping the problem onto a k-way par-

titioning problem. This method measures pairwise similarities in different sub-

spaces of the input space. No assumption is made about the underlying distri-

bution of the data, thereby avoiding parameter estimations. It is shown that
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this ensemble technique can produce partitions that are as good as or better

than the best individual clustering.

• Weighted Bipartite Partitioning Algorithm (WBPA): Maps the problem of find-

ing a consensus partition to a bipartite graph partitioning problem with weight

values ranging to [0,1]. This method has a conceptual advantage in that par-

titions both cluster vertices and instance vertices simultaneously. To the best

of our knowledge, WBPA and WSPA are the first attempts to design cluster

ensembles for subspace clustering. It is shown that this ensemble technique

can produce partitions that are as good as or better than the best individual

clustering.

• Weighted Subspace Bipartite Partitioning Algorithm (WSBPA): This method

is an extension of WBPA: it provides hard partitions of the data along with

weight vectors that convey information regarding the subspaces within which

the individual clusters exist. To the best of our knowledge, this technique is the

first attempt in the literature to produce subspace clustering results within the

context of ensemble research. The weight vector produced by WSBPA captures

the local relevance of features within each cluster.

• Categorical Similarity Partitioning Algorithm (CSPA) and Categorical Bipar-

tite Partitioning Algorithm (CBPA): These methods are generalizations of our

WSPA and WBPA techniques to be used with categorical data. These methods

compute the distance between a point and a cluster in categorical data by con-

sidering the Jaccard distance. It is shown that these ensemble methods filter

spurious structures, and achieve better results with respect to individual base

clusterings.

• Constrained Locally Adaptive Clustering (CLAC): Embeds constraints into the
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initialization and iterative phases of subspace clustering. This algorithm rep-

resents an attempt to incorporate constraints, which capitalize on information

known to a human expert, to mitigate the ill-posed nature of clustering and

allow an end user to tune preferences. It is shown that this algorithm, because

it is capable of handling high-dimensional data, is an improvement over other

semi-supervised clustering algorithms.

• Constrained-Weighted Bipartite Partitioning Algorithm (C-WBPA): Embeds

knowledge-based constraints during the partitioning process of each ensemble

component to improve the quality of the overall ensemble. By enforcing the

resulting constraints at the components level, it ensures that the corresponding

structure they represent is carried into the consensus function, and therefore

into the consensus partition. C-WBPA produces a robust and stable solution

of the given data that adheres to the users preference.

• Bootstrapping of Constraints: Penta-training Bootstraps constraints from the

data for subspace clustering ensembles where few or no constraints are provided

by the user. This method makes use of the collaborative knowledge produced

by ensemble to generate constraints directly from the data. To best of our

knowledge, this is the first attempt to bootstrap constraints using clustering

ensembles.

The efficacy of the techniques presented is demonstrated through experimental

evaluations, using a variety of simulated and real world problems. In addition,

we investigate in great detail the issue of diversity and accuracy for our ensemble

techniques. Our results reveal that high diversity signifies high accuracy.
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Chapter 2: Clustering Algorithms

2.1 Introduction

Clustering is the process of discovering homogeneous groups or clusters according to

a given similarity measure. Clustering maximizes intra-connectivity among patterns

in the same cluster while minimizing inter-connectivity between patterns in differ-

ent clusters. Connectivity is measured using the attribute values that represent the

objects in the dataset [46].

Definition: Given a set of n patterns in D-dimensional space, xi = (x1, ..., xD)

∈ <D, i = 1, ..., n, Clustering algorithms find a partition of the data into k clusters

that achieves a required objective, defined in terms of a given similarity (distance)

measure d(xi,xj). The clustering algorithm partitions the data such that patterns in

one cluster are more similar to each other than to patterns in different clusters.

Because the measurement of connectivity and the succeeding grouping are per-

formed without knowledge about the patterns’ class labels, clustering is known as an

unsupervised method. This unsupervised quality is one of several challenges facing

the researcher. One must also select an algorithm, a similarity measure, criterion

function, and initial condition, all of which must provide clusters of suitable size,

shape, and density [46].

Clustering is an important technique in discovering meaningful groups of data

points. Clustering provides speed and reliability in grouping similar objects in very

large datasets, which makes it a remarkably effective method for use in multiple appli-

cations. The exploratory character of clustering makes it well suited to data mining
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techniques such as database segmentation, predictive modeling, and visualization

[41]. Both because it provides significant benefit to the study of data structures, and

because advances remain to be made in the field of clustering study, clustering is an

ideal candidate for research [40].

There exist several clustering algorithms. The two most common methodologies

to perform clustering are hierarchical and partitioning. Hierarchical clustering algo-

rithms group data objects by similarity. They create sets of nested clusters, produc-

ing a hierarchical tree [33]. Unlike the vertical organization of hierarchical clustering,

partitional clustering organizes data into sets based on data density. These sets

are selected by the algorithm to ensure minimal within-cluster scatter and maximal

between-cluster scatter [40].

2.1.1 Hierarchical Clustering Algorithms

Hierarchical clustering algorithms produce trees, called dendograms, that represent

nested groups of data organized hierarchically. This algorithm does not require infor-

mation about the number of clusters, but does require information about where to cut

the dendogram to produce final clustering results. Hierarchical clustering algorithms

can be classified as either agglomerative or divisive. The agglomerative technique

begins by considering each object to be a cluster, and then gradually merges simi-

lar clusters until the termination condition is met. The divisive technique, however,

begins with all patterns grouped into one cluster, and then performs a splitting pro-

cess until the termination condition is achieved [41]. No matter which technique is

used, the resulting dendogram reveals cluster-subcluster relationships, and the order

in which the clusters were merged or split [62].

Agglomerative hierarchical clustering can be approached by three methods: single-

link, complete-link, and average-link. The single-link method considers the distances
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between two clusters based on the closest points in those clusters. The complete-link

method considers the most distant points between two clusters. The average-link

method considers the average pairwise distance between all points in two clusters.

While hierarchical clustering does have few strengths (it does not require informa-

tion about the number of clusters, for example) it also possesses significant drawbacks.

First, the computation necessitated by hierarchical clustering is O(n3), and the stor-

age required is O(n2) where n is the number of data points, since a distance matrix

must be calculated at each step. Second, decisions about merging or splitting clusters

cannot be reversed. Third, hierarchical clustering lacks a global objective function.

These drawbacks pose concerns for the researcher [62].

2.1.2 Partitioning Clustering Algorithms

Partitioning clustering algorithms partition the dataset into clusters such that points

in one cluster are more similar to each other than to points in different clusters.

Partitioning clustering divides a dataset into k number of clusters. The partition-

ing must satisfy two conditions: each cluster must contain at least one point, and each

point must belong to only one cluster. Searching the entire dataset for all possible

partitions, a search necessary for global optimization, is prohibitively expensive. A

local optimization method is called for, the most commonly used of which is k-means

[33].

k-means clustering is relatively simple. First, it selects randomly k instance as

centroids. Second, it assigns the remaining instances to the closest centroids. Third,

it updates the centroids for each cluster by taking the mean of all points in that

cluster. Finally, it iterates until no changes are made to the centroids (there is no

reassignment of any point from one cluster to another) [46].

k-means clustering, like all partitioning, avoids many of the pitfalls inherent in
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hierarchical clustering, and so is used more frequently by researchers. Partitioning

methods optimize objective functions. k-means, for example, minimizes the sum

of the squared distances between all points in a cluster and their centroids to find

compact and dense groups. Partitioning methods decisions are reversible, and the

intensity of the calculation is less than in hierarchical, requiring a much more modest

amount of storage space and time. k-means stores only the data points and centroids,

therefore the storage required is O((n + k)D), where n is the number of data points,

k is the number of clusters, and D is the number of attributes. In addition, the

time complexity is O(IknD) where I is the number of iterations required to reach

convergence [62].

Another partitioning algorithm is Fractal clustering [11] which discovers clusters

of arbitrary shape based on the notion of fractal dimension [59]. It is an incremental

technique that adds points to clusters, specified through an initial process as cells

in a grid. A point is assigned to the cluster that has the minimum fractal impact,

that is the cluster whose fractal dimension changes the least when the point is added.

Fractal clustering provides a partition of the data, where each cluster is associated

with the corresponding fractal dimension.

In general, the partitioning process is sensitive to the initial choice of centroids,

and it tends to break down when the data have high dimensionality. Partitioning

algorithms may produce increasingly poor results as the dimensionality increases [62].

2.2 The Curse of Dimensionality

The phrase the curse of dimensionality was introduced by Bellman in 1961. It refers

to the increase in the sparsity of data as dimensionality increases. In high dimen-

sional spaces, finding regions of dense points becomes a difficult task. Contrary to
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data in low dimensional space, where clusters can be found easily and patterns can

be easily recognized, data in space of four or more dimensions is less dense, and so

not easily grouped. Part of this difficulty lies in the fact that data distributed over

high dimensions become nearly equidistant, such that for any single data point the

distances to its nearest and farthest neighbors are almost equal [56]. Thus, in high

dimensional spaces, clustering algorithms that equally use all features are likely to be

not effective. In high dimensional spaces, in fact, it is highly likely that, for any given

pair of points within the same cluster, there exist at least a few dimensions on which

the points are far apart from each other. In high dimensional spaces many dimen-

sions may be irrelevant; since clustering algorithms are based primarily on similarity

measures, most clustering algorithms fail in high dimensional spaces. In order to

surmount the high dimensionality problem, dimensionality reduction techniques have

been proposed. These methods have been successful to a certain degree. The most

popular methods of feature transformation is Principal Component Analysis (PCA).

Principal Component Analysis (PCA) combines the original dimensions into fewer

dimensions. The dimensions constructed by PCA are linear combinations of the

original dimensions, ordered by nondecreasing variance of the data, and allow the

algorithm to successfully discover latent structures in the dataset [56].

While PCA succeeds in reducing the dimensionality, it selects features globally.

Thus, it fails when different groups of data clusters with respect to different subsets

of dimensions. In this situation, we may not be able to filter out too many features

without incurring a loss of crucial information. This is because each feature may be

relevant for at least one cluster.

To illustrate the problem inherent in global dimensionality reduction techniques,

we can consider a simple example of two clusters distributed according to a two

dimensional Gaussian. In Figure 2.1, each cluster is closely grouped with respect to

13



0 5 10 15 20 25
−6

−4

−2

0

2

4

6

8

10

12

14
cluster 0
cluster 1

Figure 2.1: Two Gaussian Clusters

one dimension. Points in cluster 0 are closely clustered along the horizontal dimension,

and points in cluster 1 are closely clustered along the vertical dimension. Therefore,

pruning either one of these dimensions will result in the loss of crucial information,

and will prevent the discovery of the two groups of data.

Global dimensionality reduction techniques are unable to capture local structure

in the data. Thus, a proper feature selection procedure should operate locally in

input space. Local feature selection allows one to embed different distance measures

in different regions of the input space; such distance metrics reflect local correlations

of data. Subspace clustering algorithms provide local feature selection [56].

2.3 Subspace Clustering Algorithms

Clusters may exist in multiple subspaces composed of multiple combination of dimen-

sions. In many real-world problems, some points are correlated with respect to a given

set of dimensions, while others are correlated with respect to different dimensions.

Each dimension could be relevant to at least one of the clusters.

Recently, many different subspace clustering methods have been proposed [56].
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They all attempt to dodge the curse of dimensionality which affects any algorithm

in high dimensional spaces. Subspace clustering extends the rationale of feature

selection, by locating clusters in subspaces of the original space. Because subspace

clustering looks for clusters in subspaces, it is well suited for high dimensional spaces.

Its use avoids the loss of information inherent to global dimensionality reduction

techniques.

However, the number of subspaces is exponential in the number of dimensions.

Thus, an exhaustive search of all the subspaces is not computationally feasible, and

a more effective technique is necessary. A group of techniques exists that derives

heuristics based on the identification of subspaces densely populated with data. There

are two major types of search algorithms based on density: top-down search and

bottom-up search [56]. In the following we outline the major techniques in each of

these two categories.

2.3.1 Bottom-Up Search Methods

The bottom-up subspace search method is based on the presence of dense units in

all (k − 1) dimensions when dense units are present in k dimensions. Based on this

property, subspaces in two dimensions which contain dense units can be identified.

Neighboring dense units are then combined to form clusters. The primary bottom-up

search method is CLIQUE [3]; a closely related modification is ENCLUS [16].

CLIQUE [3] is a grid- and density-based subspace clustering method. CLIQUE

first divides each dimension into the same number ξ of equal length intervals, which

creates non-overlapping rectangular units. These units are considered dense if the

density of the points within them exceeds a certain threshold τ . The algorithm then

finds adjacent dense units and connects them to create clusters. ENCLUS [16] is

closely related to CLIQUE. It is based on the idea that a subspace which contains
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clusters has lower entropy than a subspace which does not.

Both CLIQUE and ENCLUS scale well with changing numbers of instances and

dimensions between datasets. However, both techniques require some input parame-

ters from the user, whose values are not easily known in advance. CLIQUE requires

as input parameters the grid size and the density threshold. ENCLUS requires as

input parameters the grid interval size and the entropy threshold [56].

2.3.2 Top-Down Search Methods

The top-down subspace search method begins by considering an initial estimation of

clusters in all dimensions. It first assigns an equal amount of weight to each dimension

for each cluster; in succeeding iterations, the algorithm assigns an updated weight to

each dimension. These updated weights are used to discover the structure of each

cluster. A popular approach that falls in this categories is projected clustering, which

projects the data on the relevant features, and discards irrelevant features for each

cluster [56].

Projected clustering considers all features in the first iteration and in the following

iterations assigns a binary weight for each dimension. The dimensions with which the

clusters are highly correlated receive a weight of one, and the dimensions with which

the clusters are uncorrelated (or have low correlation) receive a weight of zero, and

are discarded.

Projected clustering algorithms were introduced to avoid the problem of methods

such as CLIQUE [3] and ENCLUS [16], which do not produce hard partitioning of

the data. Applying these algorithms often results in overlapping clusters, as dense

regions are projected on lower dimensions, and reported. Contrary to this, projected

clustering produces hard partitions of the data, such that each subset of data points is

tightly clustered in a subspace of the dimensions [1]. Projected clustering algorithms

16



include PROCLUS [1] and ORCLUS [2].

PROCLUS [1] seeks to select subsets of dimensions such that the points within

them are densely clustered. The algorithm requires input parameters (the number of

clusters and the average number of dimensions for each cluster) from the user. PRO-

CLUS begins by choosing k number of medoids randomly from the dataset. It then

applies an iterative hill climbing procedure, discarding “bad” medoids. PROCLUS

searches for the dimensions most relevant to each cluster by considering those along

which data are tightly clustered around the medoid’s coordinate.

ORCLUS [2] is an extension of the method employed by PROCLUS. ORCLUS

looks for hidden subspaces that contain clusters of inter-attribute correlations. It

further extends the process of PROCLUS in that it merges clusters and selects for

each cluster principal components instead of attributes [56].

In order to eliminate the need for setting the number of dimensions and avoid a

possible loss of information, LAC (Locally Adaptive Clustering) [19,20] considers all

features in the input space, but properly assigns a weight value to each feature within

each cluster. We describe LAC in more details in the next section.

2.3.3 Locally Adaptive Clustering (LAC)

Locally Adaptive Clustering (LAC) is a soft feature selection procedure that assigns

weights to features according to the local variance of data along each dimension.

Dimensions along which data are loosely clustered receive a small weight, which has

the effect of elongating distances along that dimension. Features along which data

manifest a small variance receive a large weight, which has the effect of constricting

distances along that dimension. Thus the learned weights perform a directional local

reshaping of distances which allows a better separation of clusters, and therefore the

discovery of different patterns in different subspaces of the original input space.
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Let us consider a set of n points in some space of dimensionality D. A

weighted cluster C is a subset of data points, together with a vector of weights

w = (w1, . . . , wD)t, such that the points in C are closely clustered according to

the L2 norm distance weighted using w. The component wj measures the degree of

correlation of points in C along feature j. The problem is how to estimate the weight

vector w for each cluster in the dataset.

In traditional clustering, the partition of a set of points is induced by a set of

representative vectors, also called centroids or centers. The partition induced by

discovering weighted clusters is formally defined as follows.

Definition: Given a set S of n points x ∈ <D, a set of k centers {c1, . . . , ck}, cj ∈
<D, j = 1, . . . , k, coupled with a set of corresponding weight vectors {w1, . . . ,wk},
wj ∈ <D, j = 1, . . . , k, partition S into k sets:

Sj = {x|(
D∑

s=1

wjs(xs − cjs)
2)1/2 (2.1)

< (
D∑

s=1

wli(xs − cls)
2)1/2,∀l 6= j}, j = 1, . . . , k

where wjs and cjs represent the sth components of vectors wj and cj respectively

(ties are broken randomly).

The set of centers and weights is optimal with respect to the Euclidean norm, if

they minimize the error measure:

E1(C, W ) =
k∑

j=1

D∑
s=1

(wjs
1

|Sj|
∑
x∈Sj

(cjs − xs)
2) (2.2)
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subject to the constraints ∀j, ∑
s wjs = 1. C and W are (D × k) matrices whose

columns are cj and wj respectively, i.e. C = [c1 . . . ck] and W = [w1 . . .wk]. For

mathematical convenience, we set Xjs = 1
|Sj |

∑
x∈Sj

(cjs − xs)
2, where |Sj| is the car-

dinality of set Sj. Xjs represents the average distance from the centroid cj of points

in cluster j along dimension s. The solution

(C∗,W ∗) = argmin(C,W )E1(C,W )

will discover one dimensional clusters: it will put maximal (unit) weight on the feature

with smallest dispersion Xjs within each cluster j, and zero weight on all other fea-

tures. Our objective, instead, is to find weighted multidimensional clusters, where the

unit weight gets distributed among all features according to the respective dispersion

of data within each cluster. One way to achieve this goal is to add the regularization

term
∑D

s=1 wjslogwjs, which represents the negative entropy of the weight distribu-

tion for each cluster. It penalizes solutions with maximal weight on the single feature

with smallest dispersion within each cluster. The resulting error function is

E2(C,W ) =
k∑

j=1

D∑
s=1

(wjsXjs + hwjslogwjs) (2.3)

subject to the same constraints ∀j, ∑
s wjs = 1. The coefficient h ≥ 0 is a pa-

rameter of the procedure; it controls the strength of the incentive for clustering on

more features. Increasing (decreasing) its value will encourage clusters on more (less)

features. This constrained optimization problem can be solved by introducing the
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Lagrange multipliers. It gives the solution

w∗
js =

exp(−Xjs/h)∑D
s=1 exp(−Xjs/h)

(2.4)

c∗js =
1

|Sj|
∑
x∈Sj

xs (2.5)

Solution (2.4) puts increased weights on features along which the dispersion Xjs is

smaller, within each cluster. The degree of this increase is controlled by the value h.

Setting h = 0, places all weight on the feature s with smallest Xjs, whereas setting

h = ∞ forces all features to be given equal weight for each cluster j.

A search strategy needs to be designed to find a partition P that identifies the

solution clusters. The authors propose an approach that progressively improves the

quality of initial centroids and weights, by investigating the space near the centers

to estimate the dimensions that matter the most. Well-scattered points in S are first

chosen as the k centroids. All weights are initially set to 1/D. Given the initial

centroids cj, for j = 1, . . . , k, the corresponding sets Sj are computed as previously

defined. The average distance Xjs along each dimension from the points in Sj to cj is

then computed. The smaller Xjs, the larger the correlation of points along dimension

s. The value Xjs is used in an exponential weighting scheme to credit weights to

features (and to clusters), as given in equation (2.4). The computed weights are used

to update the sets Sj, and therefore the centroids’ coordinates as given in equation

(2.5). The procedure is iterated until convergence is reached. LAC algorithm is

summarized in Algorithm 1.

We point out that LAC has shown a highly competitive performance with re-

spect to other state-of-the-art subspace clustering algorithms [19, 20]. However, its
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Algorithm 1 LAC Algorithm

Input: n points x ∈ <D, k, and h.

1. Start with k initial centroids c1, c2, . . . , ck

2. Set wsj = 1/D, for each centroid cj, j = 1, ..., k and each feature s = 1, ..., D;

3. For each centroids cj, and for each point x:

• Set Sj = {x|j = argminlLw(cl,x)}, where Lw(cl,x) = (
∑D

s=1 wls(cls −
xs)

2)1/2;

4. Compute new weights: For each centroid cj, and for each feature s:

• Set Xjs =
∑

x∈Sj
(cjs − xs)

2/|Sj|;

• Set wjs =
exp(−Xjs/h)∑D

s=1 exp(−Xjs/h)

5. For each centroid cj, and for each point x:

• Recompute Sj = {x|j = argminlLw(cl,x)} ;

6. Compute new centroids. Set cj =
∑

x x1Sj
(x)∑

x 1Sj
(x)

, for each j = 1, ..., k, where

1S(.) is the indicator function of set S;

7. Iterate 3,4,5,6 until convergence.

Output: Set of centroid and weight vectors cj, wj for j = 1, ..., k

improvement remains desirable.

The clustering result of LAC depends on two input parameters. The first one is

common to all clustering algorithms: the number of clusters k to be discovered in the

data. The second one (called h) controls the strength of the incentive to cluster on

more features. The setting of h is particularly difficult, since no domain knowledge

for its tuning is likely to be available.

Both bottom-up and top-down search methods are useful for analyzing numerical

features. However, when the data is defined categorically, a new set of problems
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arises.

2.4 Clustering with Categorical Data

2.4.1 Problems and Background

The previous section emphasized techniques for clustering data which are defined in

terms of numerical features. Such techniques use inherent geometric properties to

define similarity (dissimilarity) between objects to group them. However, when the

data is defined by means of categorical features, a new challenge arises. Because each

object is described by multiple attributes, none of which can be ordered naturally,

attributes’ values cannot be ordered in a single way. For example, an attribute of

color or shape is not easily ordered [7].

The major issues related to categorical data values are summarized as follows:

• Because their relationship is not linear, categorical attributes have no single

ordering. Different orderings of the data lead to different results, none of which

can capture the underlying structure of the data.

• Data points which are defined categorically can be described in term of Boolean

values (0, 1) for the simple purpose of determining the presence or absence of

an object in the itemset. However, because the original categorical values do

not have the inherent geometrical structure implied by numerical values, the

resulting distance or similarity measures will not yield accurate findings.

Because of these special problems that accrue to the use of distance and similarity

measures in categorical data, a new measure is called for, one that is capable of

discovering the “natural” grouping of categorical data [7].

22



Recently, several clustering algorithms for data with categorical attributes have

been introduced. The authors in [39] introduced the k-modes algorithm, which is a

categorical clustering algorithm that resembles k-means for numerical features. The

authors used a new similarity measure that counts the number of mismatches attribute

values of pairs of points to update the modes in the clustering process.

Squeezer [68] is a categorical clustering algorithm that redefines similarity-based

measurements to assign tuples to clusters. Because categorical values resist attempts

to impose geometrical structures on them, the authors instead cast similarity as the

number of shared attribute values between a tuple and cluster. The number of shared

attribute values between a tuple and a cluster is computed; if the value of this fre-

quency is larger than a predetermined threshold, the tuple is added to the cluster. If

the value is lower, the tuple creates a new cluster.

ROCK (Robust Clustering using links) [31] is a hierarchical clustering algorithm

for categorical data. It uses the Jaccard coefficient to compute the distance between

points. Two points are considered neighbors if their Jaccard similarity exceeds a

certain threshold. A link between two points is computed by considering the number

of common neighbors. An agglomerative approach is then used to construct the

hierarchy.

Another method for clustering categorical data is COOLCAT [12]. Unlike the

methods above, which reach their results by applying distance or similarity measures,

COOLCAT examines the level of entropy within clusters to accurately group data.

As stated by the authors [12], COOLCAT is a more natural method of grouping

points, and one that is more closely aligned for categorical data. In addition to

these advantages, COOLCAT’s entropy-based process is better suited to categorical

data than distance- or similarity-based process due to the lack of inherent geometric

structures in the data as described above.
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2.4.2 COOLCAT

COOLCAT clustering algorithm [12] is a scalable clustering algorithm that discovers

clusters with minimal entropy in categorical data. COOLCAT uses categorical, rather

than numerical attributes, enabling the mining of real-world datasets offered by fields

such as psychology and statistics. The algorithm is based on the idea that a cluster

containing similar points has an entropy smaller than a cluster of dissimilar points.

Thus, COOLCAT uses entropy to define the criterion for grouping similar objects.

Formally, the entropy measures the uncertainty associated to a random variable.

Let X be a random variable with values in S(X), and let p(x) be the corresponding

probability function of X. The entropy of X is defined as follows:

H(X) = −
∑

x∈S(X)

p(x) log(p(x))

The entropy of a multivariate vector X = (X1, X2, . . . , Xn) is defined as:

H(X) = −
∑

x1∈S(X1)

· · ·
∑

xn∈S(Xn)

p(x1, ..., xn) log p(x1, ..., xn)

.

To minimize the entropy associated to clusters, COOLCAT proceeds as follows.

Given n points x1,x2, ...,xn, where each point is represented as a vector of D cate-

gorical values, xi = (x1
i , ..., x

D
i ), COOLCAT partitions the points into k clusters so

that the entropy of the clustering is minimized. Let Ĉ = {C1, . . . , Ck} represent the
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clustering. Then, the entropy associated to Ĉ is:

H(Ĉ) =
k∑

j=1

|Cj|
n

H(Cj)

where H(Cj) is the entropy of cluster Cj:

H(Cj) =
∑

x1
i∈S(X1)

· · ·
∑

xD
i ∈S(XD)

P (x1
i , . . . , x

D
i |Cj) log(P (x1

i , . . . , x
D
i |Cj))

COOLCAT uses an heuristic to incrementally build clusters based on the entropy

criterion. It consists of two main phases: an initialization step and an incremental

step.

During the initialization phase, COOLCAT bootstraps the algorithm by selecting

a sample of points. Out of this sample, it selects the two points that have the

maximum pairwise entropy, and so are most dissimilar. COOLCAT places these

points in two different clusters. It then proceeds incrementally: at each step, it

selects the point that maximizes the minimum pairwise entropy with the previously

chosen points. At the end, the k selected points are the initial seeds of the clusters.

During the incremental phase, COOLCAT constructs the k clusters. It processes the

data in batches. For each data point, it computes the entropy resulting from placing

the point in each cluster, and then assigns the point to the cluster that gives the

minimum entropy.

The final clustering depends on the order in which points are assigned to clusters,

thus there is a danger of obtaining a poor-quality result. To circumvent this problem,

the authors of COOLCAT propose a reprocessing step. After clustering a batch of

points, a fraction of the set is reconsidered for clustering, where the size of the fraction
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is an input parameter. The fraction of points that least fit the corresponding clusters

is reassigned to more fitting clusters. To assess which points least match their clusters,

COOLCAT counts the number of occurrences of each point’s attributes in the cluster

to which is assigned. This number of occurrences is then converted into a probability

value by dividing it by the cluster size. The point with the lowest probability for

each cluster is then removed and reprocessed according to the entropy criterion, as

before. By performing this assessment at the conclusion of each incremental step,

COOLCAT alleviates the risk imposed by the order of the input of points.

COOLCAT requires four input parameters: the number of clusters k, the sample

size used in the initialization step, the buffer size, and the number of points consid-

ered for reprocessing. The incremental step of COOLCAT Algorithm summarized in

Algorithm 2.

Algorithm 2 Incremental step of COOLCAT Algorithm

1.Given an initial set of clusters Ĉ = {C1, ..., Ck}:
2.Bring points into memory from disk; for each point x in memory

3.Forj = 1, . . . , k

4.Place x in Cj and compute H(Ĉj)

Ĉj denotes the clustering obtained by placing x in cluster Cj

5.Let t = arg minj(H(Ĉj));
6.Place x in Ct;

7.Until all points have been placed in some cluster

Like other single clustering methods, COOLCAT is liable to low accuracy due to

the difficulty of tuning input parameters without a cross-validation technique. To

compensate for this difficulty, cluster ensembles aggregate results.
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2.5 Ensemble Methods

2.5.1 Introduction

In an effort to achieve improved classification accuracy, extensive research has been

conducted in classifier ensembles. Ensemble techniques first build a set of base classi-

fiers using a training set, then aggregate the predictions made by the base classifiers

to classify the data [62]. In order for classifier ensembles to provide more accurate

results than single classifiers, the base classifiers must be both diverse and accurate.

Diversity among the classifiers reduces correlated errors. Classifiers that are not di-

verse produce correlated errors which are carried into the voting process, thereby

producing inaccurate results.

Accuracy is required to avoid poor classifiers to obtain a majority of votes. These

requirements have been measured. Under simple voting and independent error condi-

tions, if each base classifier has an error rate of less than 50%, then the error rate for

ensemble classifiers will decrease monotonically with an increasing number of classi-

fiers [6, 21,34,62].

The most well known ensemble techniques are Bagging and Boosting. In both

methods, sampling from the original training set is used to generate a set of base

classifiers. Bagging [15] uses repeated samples with replacement from the dataset

to generate base classifiers. To classify an instance using Bagging, a voting process

records votes in each classifier, and an aggregate scheme is applied to select the

class with the most votes. Unlike Bagging, Boosting [26] is an iterative procedure.

It focuses on misclassified instances, assigning more weight to them in successive

iterations and thus changing the distribution of the training set [62].

Classifier ensembles such as Bagging and Boosting have been effective in reducing

the generalization error. As the aggregation of classifiers proved to be fruitful, further
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research into cluster aggregation has been conducted. From this, cluster ensembles

have emerged.

2.5.2 Cluster Ensembles

It is well known that off-the-shelf clustering methods may discover very different

structures in a given set of data. This is because each clustering algorithm has its

own bias resulting from the optimization of different criteria. Furthermore, there

is no ground truth against which the clustering result can be validated. Thus, no

cross-validation technique can be carried out to tune input parameters involved in

the clustering process. As a consequence, the user is not equipped with any guidelines

for choosing the proper clustering method for a given dataset.

In addition to its resistance to cross-validation to tune input parameters, clus-

tering algorithms are dogged by the curse of dimensionality. As the dimensionality

of the data increases, clustering algorithms tend to break down. This is due to the

likelihood that they will miss important aspects of the clusters’ structure in sparse

data. Subspace clustering algorithms have been proposed as a method of dealing

with the curse of dimensionality, but they, too, have their pitfalls. Specifically, sub-

space clustering algorithms require input parameters which are not known to the user

in advance. Because of these deficiencies, improving upon the performance of both

clustering and subspace clustering is desirable.

One feasible solution to this problem is emergent cluster ensembles. Cluster en-

sembles capture the results produced by different clustering techniques, with the aim

of obtaining a new partition that is as good as or better than the best individual

clustering. A cluster ensemble can be defined as the process of combining multiple

partitions of the dataset into a single partition, with the objective of enhancing the

consensus across multiple clustering results. Cluster ensembles can provide robust
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and stable solutions by averaging out emergent affected structures due to the various

biases to which each participating algorithm is tuned.

2.5.3 Previous work

A cluster ensemble technique is characterized by two components: the mechanism to

generate diverse partitions, and the consensus function to combine the input partitions

into a final clustering.

Diverse partitions are typically generated by using different clustering algorithms,

or by applying a single algorithm with different parameter settings, possibly in com-

bination with data or feature sampling. The k-means algorithm with random ini-

tializations [25, 50], or with random number of clusters [49] has been widely used in

the literature to generate diverse clusterings. The authors in [64] introduce two tech-

niques, called weak clustering algorithms, to produce different partitions. The first

technique clusters random one-dimensional projections of multidimensional data; the

second one splits the data using random hyperplanes. Random projection is used in

[23]. A different approach is proposed in [65], where the ensemble is modeled as a

mixture of multivariate multinomial distributions. A unified framework for producing

multiple partitions is presented in [63]. [30] applies k-means, k-medoids, and fast weak

clustering as strategies to generate diversity in clustering results, while [54] proposes

a resampling technique that generates and then combines partitions of subsets of the

data, to obtain results that reflect the entire dataset.

One popular methodology to build a consensus function utilizes a co-association

matrix [25, 30, 54, 64]. An entry value of this matrix represents the average pair-

wise similarity between points across all input clusterings. Such matrix can be used

with any clustering algorithm which operates directly on similarities (e.g., hierarchi-

cal clustering) [30, 64]. [50] has shown that good results can be obtained when the
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co-association matrix is used as a data matrix in a new feature space, and k-means

is ran on it. In alternative to the co-association matrix, voting procedures have been

considered to build consensus functions in [65] and in [22]. [28] derives a consen-

sus function based on the Information Bottleneck principle: the mutual information

between the consensus clustering and the individual input clusterings is maximized

directly, without requiring an approximation.

A different popular mechanism for constructing a consensus maps the prob-

lem onto a graph-based partitioning setting [9, 38, 61]. In particular, [61] pro-

poses three graph-based approaches: Cluster-based Similarity Partitioning Algorithm

(CSPA), HyperGraph Partitioning Algorithm (HGPA), and Meta-Clustering Algo-

rithm (MCLA). In CSPA, a binary similarity matrix is constructed for each input

clustering. Each column corresponds to a cluster: an entry has a value of one if

the corresponding point belongs to the cluster, and zero otherwise. An entry-wise

average of all the matrices gives an overall similarity matrix, utilized to recluster

the data using a graph-partitioning based approach. The induced similarity graph,

where vertices correspond to data and edge weights to similarities, is partitioned us-

ing METIS [43]. HGPA seeks a partitioning of the hypergraph by cutting a minimal

number of hyperedges. (Each hyperedge represents a cluster of an input clustering.)

All hyperedges have the same weight. This algorithm looks for a hyperedge separator

that partitions the hypergraph into k unconnected components of approximately the

same size. It makes use of the package HMETIS [43]. MCLA is based on the cluster-

ing of clusters. It provides object-wise confidence estimates of cluster membership.

Hyperedges are grouped, and each data point is assigned to the collapsed hyperedge

in which it participates most strongly.

Although a considerable amount of research has been conducted in numerical en-

semble clustering techniques, less research has been devoted to categorical ensembles.

30



The authors of [36] generates a partition for each categorical attribute, so that points

in each cluster share the same value for that attribute. The resulting clusterings are

combined using the consensus functions presented in [61]. The work in [35] constructs

cluster ensembles for data with mixed numerical and categorical features.

2.6 Semi-supervised Learning

2.6.1 Introduction

All methods discussed thus far assume that the researcher has no prior knowledge

of the data. However, in many learning domains it is relatively easy for the user

to provide some information about the domain under study. In areas such as text

processing (determining whether two emails are spam or not spam, for example)

and image retrieval (determining whether a photograph is of a sporting event, for

instance), a human expert can provide some information. For example, the expert

can determine whether pairs are similar or dissimilar, and he/she can provide a label

for selected data points. Such knowledge is highly valuable and it is capitalizing on

this knowledge that attracts researchers to the field of semi-supervised learning.

Semi-supervised learning generally consists of two fields, semi-supervised classi-

fication and semi-supervised clustering. In semi-supervised classification, the classic

approach to classification, which uses only labeled data, is modified to use both labeled

and unlabeled data. Semi-supervised classification techniques use the labeled and un-

labeled data to learn models to classify new data. In contrast to this, semi-supervised

clustering techniques use the user’s knowledge to guide the clustering process of both

labeled and unlabeled data [71].
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2.6.2 Semi-supervised Classification

Semi-supervised classification uses both labeled and unlabeled data to influence the

classification function. Because both types of data are used, more data is available to

the classifiers, and a more accurate result is obtained. This distinction is based on the

assumption that the unlabeled data hold the same distribution as the labeled data

[13]. Examples of semi-supervised classification include self-training, co-training [14],

democratic co-learning [69], and tri-training [70].

In self-training, the algorithm employs its own prediction in a reiterative teaching

method [58]. The algorithm begins by using a small amount of labeled data to train a

given classifier. Next, a number of points with high confidence or high probability of

belonging to a certain class, are selected and added along with their anticipated labels

to the labeled set. Finally, the classifier retrains itself on this new set, and returns

to the unlabeled data. The iterations continue until all unlabeled data are labeled

[58]. The pitfall of this method is that an early error in the refinement process will

be reinforced in subsequent iterations [71].

Co-training expands on the teaching principle employed in self-training, to include

two sub-feature sets and two classifiers. The co-training algorithm assumes that the

features can be divided into two independent sets, each of which provides enough

information to build a good classifier. As in self-training, the co-training algorithm

trains each classifier with labeled data. However, although both classifiers receive

the same data, their respective features view it differently. Each classifier classifies

unlabeled data, and then supplies the other classifier with the set of points with the

highest confidence of accuracy. Finally, each classifier is retrained with the predicted

labels provided by its counterpart, and a new round begins. The liability inherent in

this method is its assumption of the availability of two independent features within

one dataset, a situation that may in fact not occur [14].
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Democratic co-learning has two advantages over co-training: first, it can be used

with a small amount of labeled data and, second, it does not require two separate

feature sets [69]. Democratic co-learning begins by training its multiple classifiers

individually on labeled data training sets. A weighted voting procedure is then under-

taken for an unlabeled example, and a label is predicted. Because multiple classifiers

have been used, it is likely that at least one classifier did not obtain the result pre-

dicted by the majority. In this case, the newly labeled example is added to that

classifier’s training set. This process continues until no further data can be added to

the training sets.

Finally, tri-training trains three classifiers using different sets of labeled data.

These classifiers predict the labels for unlabeled data through agreement and retrain-

ing: if two classifiers agree on the label for a point, this point is added to the training

set for the third classifier. This retraining continues until there are no changes in

the final results of each classifier. The benefits of tri-training are the avoidance of

measuring the confidence of each classifier, and the avoidance of the requirement for

independent feature subsets [70].

In our work we extended the co-training and tri-training frameworks to design a

semi-supervised clustering ensemble (Chapter 6).

2.6.3 Semi-supervised Clustering

In order to address the ill-posed nature of clustering, researchers have sought to use

prior knowledge about the domain to guide the clustering process, thus obtaining

clustering results that conform to the user’s preference. Because providing labels

for clustering algorithms is often prohibitively difficult or expensive, obtaining this

kind of knowledge is unrealistic. However, providing pairs of similar and dissimilar

examples from a clustering dataset is feasible for the end user. This information is
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provided by the end user under the form of must-link and cannot-link constraints on

pairs of instances. A must-link constraint indicates that the pair must reside in the

same cluster, whereas the cannot-link constraint indicates that the pair must reside

in different clusters.

There are two main approaches for semi-supervised clustering, constraint-based

and distance-based. In the constraint-based approach, the objective function is mod-

ified to satisfy the given constraints. The constraints are enforced during the initial-

ization phase and/or during the iterative phase of the clustering algorithm. In the

distance-based approach, the given constraints are used to learn a distance function,

which is then used to compute pairwise distances between points.

An example of the constraint-based approach is the COP-Kmeans algorithm [66].

COP-Kmeans is a variation of k-means, where constraints are embedded during the

clustering process: each point is assigned to the closest cluster that will enact the least

violation of constraints. The algorithm will not assign the point if no such cluster

can be found.

Two additional constraint-based variants of k-means are Seeded-KMeans and

Constrained-KMeans [13]. In both algorithms, the given labeled data are used to

initialize a seeded set; the constraints obtained from this labeled set are then used to

guide the k-means algorithm. Seeded-KMeans allows its constraints to be violated

in successive iterations, while Constraint-KMeans enforces the constraints in each

iteration.

An example of the distance-based approach is the method proposed in [67]. This

approach learns positive semi-definite similarity matrices from the given constraints

over the input space. The metric learning problem is formulated as a a convex opti-

mization problem which is local-minima-free.

A new approach to semi-supervised data problems was proposed in [18]. The
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authors introduced a two-step technique. In the first step, a clustering ensemble

approach is designed that uses both labeled and unlabeled points. Then, labeled

data points are used to assign clusters to classes. Finally, when a new point arrives

the resulting ensemble clustering is used to assign the point to the appropriate cluster,

and therefore to the associated class.

Most methods proposed in semi-supervised clustering have focused on develop-

ing new clustering algorithms; however, the choice of appropriate constraints has not

received enough consideration. In the approach proposed in [29], constraints are im-

puted from information provided by the co-association values between pairs of points

in a clustering ensemble. A co-association value between two points that is below

a predetermined threshold becomes a cannot-link constraints; a co-association value

above a predetermined threshold becomes a must-link constraint. For co-association

values which do not strongly indicate either a must-link or a cannot-link relationship,

an oracle expert is queried. These imputed constraints have proven to achieve more

accurate results in a semi-supervised clustering method than random constraints. Our

research in semi-supervised clustering uses this method of selecting constraints as its

basis (see Chapter 6).
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Chapter 3: Weighted Clustering Ensembles

3.1 Introduction

As we discussed in Section 2.5.2, clustering is beset by significant challenges. Its

difficulties include the question of how to tune input parameters without advance

knowledge and the inaccuracies that result in high dimensions.

Our research indicates that clustering ensembles can offer a solution to these

challenges.

Definition: Consider a set S = {x1,x2, . . . ,xn} of n points. A clustering ensemble

is a collection of m clustering solutions: G = {G1, G2, ..., Gm}. Each clustering

solution GL for L = 1, . . . , m, is a partition of the set S, i.e. GL = {G1
L, G2

L, ..., GKl
L },

where
⋃

K GK
L = S. Given a collection of clustering solutions G and the desired

number of clusters k, the objective is to combine the different clustering solutions

and compute a new partition of S into k disjoint clusters.

The challenge in cluster ensembles is the design of a proper consensus function

that combines the component clustering solutions into an “improved” final clustering.

Our methodology in designing a consensus function is to maximize the information

shared by multiple partitions of the data and filter out spurious structures discovered

by individual clustering algorithms. Designing such a consensus function is not a

trivial task. There are three reasons for this. First, the data are unlabeled and little

prior knowledge is available. Thus, we cannot design a consensus function based on a

voting procedure. Second, a single clustering algorithm can produce several different
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Figure 3.1: The clustering ensemble process

results in several applications to one dataset. Third, several individual clustering

algorithms produce multiple results when applied to one dataset. The production of

varying results is a difficulty in designing a consensus function because diverse results

may not have an explicit correspondence to each other. Despite its difficulties, the

clustering ensemble approach can produce results superior to those produced by any

single clustering technique, thus benefiting the quality of the research.

3.2 Consensus Functions

As a starting point in designing consensus functions, we introduce the problem of

combining multiple weighted clusters, discovered by LAC 2.3.3. Our cluster ensemble

methods can be easily extended for any subspace clustering algorithm. Our approach

up to this point is the first one that tries to solve the subspace clustering problem

through an ensemble function.

For producing multiple clustering results, we focus on setting the parameter h

which determines the strength of the incentive for clustering on multiple features.

We assume that the number of clusters k is fixed. We leverage the diversity of the

clusterings produced by LAC when different values of h are used, in order to generate

a consensus clustering that is superior to the participating ones. The major challenge
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we face is to find a consensus partition from the outputs of the LAC algorithm to

achieve an “improved” overall clustering of the data. Since we are dealing with

weighted clusters, we need to design a proper consensus function that makes use of

the weight vectors associated with the clusters. Our techniques leverage such weights

to define a similarity measure which is associated to the edges of a graph. Then we

reduce the problem of defining a consensus function to a graph partitioning problem.

This approach has shown good results in the literature [17, 24, 61]. Moreover, the

weighted clusters computed by the LAC algorithm offer a natural way to define a

similarity measure to be integrated in the weights associated to the edges of a graph.

The overall clustering ensemble process is illustrated in Figure 3.1.

In the following subsection we introduce our three consensus functions.

3.2.1 Weighted Similarity Partitioning Algorithm (WSPA)

LAC outputs a partition of the data, identified by the two sets {c1, . . . , ck} and

{w1, . . . ,wk}. Our aim here is to generate robust and stable solutions via a con-

sensus clustering method. We can generate contributing clusterings by changing the

parameter h (as illustrated in Figure 3.1). The objective is then to find a consen-

sus partition from the output partitions of the contributing clusterings, so that an

“improved” overall clustering of the data is obtained. Since LAC produces weighted

clusters, we need to design a consensus function that makes use of the weight vectors

associated with the clusters. The details of our approach are as follows.

For each data point xi, the weighted distance from cluster Cl is given by

dil =

√√√√
D∑

s=1

wls(xis − cls)2
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Let Di = maxl{dil} be the largest distance of xi from any cluster. We want to define

the probability associated with cluster Cl given that we have observed xi. At a given

point xi, the cluster label Cl is assumed to be a random variable from a distribution

with probabilities {P (Cl|xi)}k
l=1. We provide a nonparametric estimation of such

probabilities based on the data and on the clustering result. We do not make any

assumption about the specific form (e.g., Gaussian) of the underlying data distribu-

tions, thereby avoiding parameter estimations of models, which are problematic in

high dimensions when the available data are limited.

In order to embed the clustering result in our probability estimations, the smaller

the distance dil is, the larger the corresponding probability credited to Cl should be.

Thus, we can define P (Cl|xi) as follows:

P (Cl|xi) =
Di − dil + 1

kDi + k −∑
l dil

(3.1)

where the denominator serves as a normalization factor to guarantee
∑k

l=1 P (Cl|xi) =

1. We observe that ∀l = 1, . . . , k and ∀i = 1, . . . , n P (Cl|xi) > 0. In particular,

the added value of 1 in (3.1) allows for a non-zero probability P (CL|xi) when L =

arg maxl{dil}. (Any small positive constant achieves this goal, with the normalization

factor properly adjusted.) In this last case P (Cl|xi) assumes its minimum value

P (CL|xi) = 1/(kDi + k −∑
l dil). For smaller distance values dil, P (Cl|xi) increases

proportionally to the difference Di − dil: the larger the deviation of dil from Di,

the larger the increase. As a consequence, the corresponding cluster Cl becomes more

likely, as it is reasonable to expect based on the information provided by the clustering

process. Thus, equation (3.1) provides a nonparametric estimation of the posterior

probability associated to each cluster Cl.
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We can now construct the vector Pi of posterior probabilities associated with xi:

Pi = (P (C1|xi), P (C2|xi), . . . , P (Ck|xi))
t (3.2)

where t denotes the transpose of a vector. The transformation xi → Pi maps the D

dimensional data points xi onto a new space of relative coordinates with respect to

cluster centroids, where each dimension corresponds to one cluster. This new repre-

sentation embeds information from both the original input data and the clustering

result.

To compute the similarity between xi and xj we used both the cosine similarity

and the Kullback-Leibler (KL) divergence. The cosine similarity between probability

vectors associated to xi and xj is defined as:

s(xi,xj) =
P t

i Pj

‖Pi‖‖Pj‖ (3.3)

In alternative, we compute the distance between xi and xj using the symmetric KL

divergence [47]:

d(xi,xj) =
1

2

k∑

l=1

Pil log2

Pil

Pjl

+
1

2

k∑

l=1

Pjl log2

Pjl

Pil

(3.4)

We then transform the distance into a similarity measure: s(xi,xj) = 1 −
d(xi,xj)/(maxp,q d(xp,xq)). Both versions of WSPA (with cosine similarity and KL

divergence) gave similar results. Thus, we report the results obtained with cosine

similarity.

We combine all pairwise similarities (3.3) into an (n × n) similarity matrix S,
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where Sij = s(xi,xj). We observe that, in general, each clustering may provide a

different number of clusters, with different sizes and boundaries. The size of the

similarity matrix S is independent of the clustering approach, thus providing a way

to align the different clustering results onto the same space, with no need to solve a

label correspondence problem.

After running the LAC algorithm m times for different values of the h parameter,

we obtain the m similarity matrices S1, S2, . . . , Sm. The combined similarity matrix Ψ

defines a consensus function that can guide the computation of a consensus partition:

Ψ =
1

m

m∑

l=1

Sl (3.5)

Ψij reflects the average similarity between xi and xj (through Pi and Pj) across the

m contributing clusterings.

We now map the problem of finding a consensus partition to a graph partitioning

problem. We construct a complete graph G = (V, E), where |V | = n and the

vertex Vi identifies xi. The edge Eij connecting the vertices Vi and Vj is assigned

the weight value Ψij. We run METIS [43] on the resulting graph to compute a

k-way partitioning of the n vertices that minimizes the edge weight-cut 1. This

gives the consensus clustering we seek. The size of the resulting graph partitioning

problem is n2. The steps of the algorithm, which we call WSPA (Weighted Similarity

Partitioning Algorithm), are summarized in Algorithm 3.

1In our experiments we also apply spectral clustering to compute a k-way partitioning of the n
vertices
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Algorithm 3 Weighted Similarity Partitioning Algorithm

Input:n points x ∈ RD, and k.

1. Run LAC m times with different h values. Obtain m partitions:
{cν

1, . . . , c
ν
k},{wν

1 , . . . ,w
ν
k}, ν = 1, . . . , m

2. For each partition ν = 1, . . . , m:

(a) Compute dν
il =

√∑D
s=1 wν

ls(xis − cν
ls)

2

(b) Set Dν
i = maxl{dν

il}

(c) Compute P (Cν
l |xi) =

Dν
i −dν

il+1

kDν
i +k−∑

l dν
il

(d) Set P ν
i = (P (Cν

1 |xi), P (Cν
2 |xi), . . . , P (Cν

k |xi))
t

(e) Compute the similarity

sν(xi,xj) =
P ν

i P ν
j

‖P ν
i ‖‖P ν

j ‖
,∀i, j

(f) Construct the matrix Sν where Sν
ij = sν(xi,xj)

3. Build the consensus function Ψ = 1
m

∑m
ν=1 Sν

4. Construct the complete graph G = (V, E), where |V | = n and Vi ≡ xi. Assign
Ψij as the weight value of the edge Eij connecting the vertices Vi and Vj

5. Run METIS (or spectral clustering) on the resulting graph G

Output: The resulting k-way partition of the n vertices
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3.2.2 Weighted Bipartite Partitioning Algorithm (WBPA)

Our second approach (WBPA) maps the problem of finding a consensus partition to

a bipartite graph partitioning problem. This mapping was first introduced in [24]. In

[24], however, 0/1 weight values are used. Here we extend the range of weight values

to [0,1].

The technique described here has a conceptual advantage with respect to WSPA.

We observe that the consensus function ψ used in WSPA measures pairwise sim-

ilarities which are solely instance-based. On the other hand, the bipartite graph

partitioning problem, to which the WBPA technique reduces, partitions both cluster

vertices and instance vertices simultaneously. Thus, it also accounts for similarities

between clusters. Consider, for example, four instances x1, x2, x3, and x4. Suppose

that x1 and x2 are never clustered together in the input clusterings, and the same

holds for x3 and x4. However, the groups to which x1 and x2 belong often share the

same instances, but this is not the case for the groups x3 and x4 belong to. Intuitively,

we would consider x1 and x2 more similar to each other than x3 and x4. But WSPA

is unable to distinguish these two cases, and may assign low similarity values to both

pairs. On the other hand, WBPA is able to differentiate the two cases by modeling

both instance-based and cluster-based similarities.

The graph in WBPA models both instances (e.g., data points) and clusters, and

the graph edges can only connect an instance vertex to a cluster vertex, forming a

bipartite graph. In detail, we proceed as follows for the construction of the graph.

Suppose, again, that we run the LAC algorithm m times for different values of the h

parameter. For each instance xi, and for each clustering ν = 1, . . . ,m we then can

compute the vector of posterior probabilities P ν
i , as defined in equations (3.2) and
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(3.1). Using the P vectors, we construct the following matrix A:

A =




(P 1
1 )t (P 2

1 )t . . . (Pm
1 )t

(P 1
2 )t (P 2

2 )t . . . (Pm
2 )t

...
...

...

(P 1
n)t (P 2

n)t . . . (Pm
n )t




(3.6)

Note that the (P ν
i )ts are row vectors (t denotes the transpose). The dimensionality of

A is therefore n× km, under the assumption that each of the m clusterings produces

k clusters. (We observe that the definition of A can be easily generalized to the case

where each clustering may discover a different number of clusters.)

Based on A we can now define a bipartite graph to which our consensus partition

problem maps. Consider the graph G = (V, E) with V and E constructed as follows.

V = V C ∪ V I , where V C contains km vertices, each representing a cluster of the

ensemble, and V I contains n vertices, each representing an input data point. Thus

|V | = km + n. The edge Eij connecting the vertices Vi and Vj is assigned a weight

value defined as follows. If the vertices Vi and Vj represent both clusters or both

instances, then E(i, j) = 0; otherwise, if vertex Vi represents an instance xi and

vertex Vj represents a cluster Cν
j (or vice versa) then the corresponding entry of E is

A(i, k(ν − 1) + j). More formally:

• E(i, j) = 0 when ((1 ≤ i ≤ km) and (1 ≤ j ≤ km)) or ((km + 1 ≤ i ≤ km + n)

and (km + 1 ≤ j ≤ km + n)) (This is the case in which Vi and Vj are both

clusters or both instances.)

• E(i, j) = A(i− km, j) when (km + 1 ≤ i ≤ km + n) and (1 ≤ j ≤ km) (This is
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the case in which Vi is an instance and Vj is a cluster.)

• E(i, j) = E(j, i) when (1 ≤ i ≤ km) and (km + 1 ≤ j ≤ km + n) (This is the

case in which Vi is a cluster and Vj is an instance.)

Note that the dimensionality of E is (km + n)× (km + n), and E can be written as

follows:

E =




0 At

A 0




A partition of the bipartite graph G partitions the cluster vertices and the instance

vertices simultaneously. The partition of the instances can then be output as the final

clustering. Due to the special structure of the graph G (sparse graph), the size of the

resulting bipartite graph partitioning problem is kmn. Assuming that (km) << n,

this complexity is much smaller than the size n2 of WSPA.

The steps of the algorithm, which we call WBPA (Weighted Bipartite Partitioning

Algorithm), are summarized in Algorithm 4.

We observe that WBPA captures instance-based similarity. Suppose, for example,

that x1 and x2 are always clustered together in the m input clusterings. Then, the

weights, P (Cν
i |x1) and P (Cν

i |x2), of the edges connecting x1 and x2 to the same

cluster vertex Cν
i have high values, for ν = 1, . . . , m. As a consequence, the k-way

partitioning of the n instances will not cut such edges. As a result, x1 and x2 will be

grouped together in the final consensus clustering.
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Algorithm 4 Weighted Bipartite Partitioning Algorithm

Input: n points x ∈ RD, and k

1. Run LAC m times with different h values. Obtain the m partitions:
{cν

1, . . . , c
ν
k},{wν

1 , . . . ,w
ν
k}, ν = 1, . . . , m

2. For each partition ν = 1, . . . , m:

(a) Compute dν
il =

√∑D
s=1 wν

ls(xis − cν
ls)

2

(b) Set Dν
i = maxl{dν

il}

(c) Compute P (Cν
l |xi) =

Dν
i −dν

il+1

kDν
i +k−∑

l dν
il

(d) Set P ν
i = (P (Cν

1 |xi), P (Cν
2 |xi), . . . , P (Cν

k |xi))
t

3. Construct the matrix A as in (3.6)

4. Construct the bipartite graph G = (V, E), where V = V C ∪V I , |V I | = n and

V I
i ≡ xi, |V C | = km and V C

j ≡ Cj (a cluster of the ensemble). Set E(i, j) = 0

if Vi and Vj are both clusters or both instances. Set E(i, j) = A(i− km, j) =
E(j, i) if Vi and Vj represent an instance and a cluster

5. Run METIS (or spectral clustering) on the resulting graph G

Output: The resulting k-way partition of the n vertices in V I
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3.2.3 Weighted Subspace Bipartite Partitioning Algorithm

(WSBPA)

The two algorithms WSPA and WBPA provide as output a partition of the data into k

clusters, with no information regarding feature relevance for each of the clusters. Here,

we discuss a clustering ensemble algorithm (WSBPA) that provides weighted clusters

in output. Our approach represents the first attempt in the literature to produce

subspace clustering results within the context of ensemble research. This technique

advances the WBPA method (3.2.2) by adding to the final partition weighted fea-

tures associated with each cluster. By assigning a value to each dimension, WSBPA

captures the local relevance of features within each cluster. Thus, the structure of

the output provided by a single run of LAC is preserved. The output of WSBPA,

then, becomes twofold, and has good potential to advance the research on the label

assignment problem, which is a difficult and open research issue. For example, for

text documents, the analysis of weights assigned to features (i.e., terms) can guide

the identification of keywords representative of the topics discussed in the documents.

Possibly, relevant keywords, combined with associated weight values, can be used to

provide short summaries for clusters and to automatically annotate documents (e.g.,

for indexing purposes). We will demonstrate this further in Chapter 5.

As we mentioned in our discussion on WBPA, a partition of the bipartite graph

G partitions the cluster and the instance vertices simultaneously. However, only

the partition of the instance vertices is used to output the final result in WBPA;

the partition of the cluster vertices is discarded. WSBPA also uses the partition of

cluster vertices; such partition reflects cluster-based similarities. Specifically, WSBPA

utilizes the information associated with the partitioned cluster vertices to compute

weight vectors for the final clustering.
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Let us consider the bipartite graph G = (V, E) as constructed by the algorithm

WBPA. We recall that V = V C ∪ V I , where V C contains km vertices, each rep-

resenting a cluster of the ensemble, and V I contains n vertices, each represent-

ing an input data point. A k-way partition of the bipartite graph G partitions

the cluster vertices and the instance vertices simultaneously into k sets. Further-

more, the k-way partition of G provides a one-to-one correspondence between the

k elements of the partition of V C and the k elements of the partition of V I . In

symbols, let PV C = {V C
1 , V C

2 , . . . , V C
k } be the partition of V C into k sets, and

let PV I = {V I
1 , V I

2 , . . . , V I
k } be the partition of V I into k sets. V C

j and V I
j , for

j = 1, . . . , k, are the sets of cluster vertices and instance vertices grouped together by

the k-way partitioning of graph G.

As in WBPA, the partition PV I provides the resulting clustering of the n input

data points x1, . . . ,xn. Each element in PV C is a set of cluster vertices: V C
l =

{vC
l1
, . . . , vC

l|V C
l
|
}, for l = 1, . . . , k. Each element in V C

l represents a cluster from a

run of the LAC algorithm. Thus, it has an associated weight vector. Let wC
li

be the

weight vector associated with the cluster vertex vC
li
. We average the weight vectors

wC
li
, for i = 1, . . . , |V C

l |, to obtain the weights for cluster V I
l , for l = 1, . . . , k:

wl =
1

|V C
l |

|V C
l |∑

i=1

wC
li

(3.7)

We therefore obtain k clusters along with the associated weight vectors: {(V I
l ,wl)}k

l=1.

We observe that a k-way partitioning of G that minimizes the edge weight-cut groups

together instances x and clusters C with a high value for P (C|x). This means that,

according to LAC clustering, C is a likely cluster given that we have observed x. Thus,
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the weight vector for the cluster containing x should be close to the weight vector

associated with C. The averaging in (3.7) gives each cluster C (i.e., the corresponding

weight) with high P (C|x) equal importance for the computation of the weight of the

cluster containing x. The steps of the algorithm, which we call Weighted Subspace

Bipartite Partitioning Algorithm (WSBPA) are summarized in the following.

Algorithm 5 Weighted Subspace Bipartite Partitioning Algorithm

Input: n points x ∈ RD, and k

1. Run LAC m times with different h values. Obtain the m partitions:
{cν

1, . . . , c
ν
k},{wν

1 , . . . ,w
ν
k}, ν = 1, . . . , m

2. For each partition ν = 1, . . . , m:

(a) Compute dν
il =

√∑D
s=1 wν

ls(xis − cν
ls)

2

(b) Set Dν
i = maxl{dν

il}

(c) Compute P (Cν
l |xi) =

Dν
i −dν

il+1

kDν
i +k−∑

l dν
il

(d) Set P ν
i = (P (Cν

1 |xi), P (Cν
2 |xi), . . . , P (Cν

k |xi))
t

3. Construct the A matrix as in (3.6)

4. Construct the bipartite graph G = (V, E) as in the algorithm WBPA

5. Run METIS (or spectral clustering) on the resulting graph G. Consider the

resulting partitions PV C = {V C
1 , V C

2 , . . . , V C
k } and PV I = {V I

1 , V I
2 , . . . , V I

k } of
the cluster and instance vertices respectively

6. Compute the average weight vector wl for each element V C
l in PV C , as given

in equation (3.7)

Output: The resulting weight vectors coupled with the corresponding cluster cen-
troids: {(cI

l ,wl)}k
l=1, where cI

l is the centroid of cluster V I
l
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Figure 3.2: (Left): Two-Gaussian data. (Right): Random sampling of 100 points
(crosses and dots) from each cluster.

3.3 An Illustrative Example

Here we present and discuss an illustrative example to demonstrate that the relative

coordinates P (C|x) provide a suitable representation for the computation of pairwise

similarities. We emphasize that this is an important point since the information

provided by the subspace clustering is embedded into these coordinates, and, in turn,

the proposed consensus function is constructed upon such representation of the data.

Thus, the efficacy of the consensus function itself relies on the suitability of these

coordinates.

We have designed one simulated dataset with two clusters distributed as bivariate

Gaussians (Figure 3.2 (Left)). The mean and standard deviation vectors for each

cluster are as follows: m1 = (0.5, 5), s1 = (1, 9); m2 = (12, 5), s2 = (6, 2). Each

cluster has 300 points. We ran the LAC algorithm on the Two-Gaussian dataset

for two values of the 1/h parameter (7 and 12). For (1/h) = 7, LAC provides a

perfect separation (the error rate is 0.0%); the corresponding weight vectors associated

to each cluster are w
(7)
1 = (0.81, 0.19), w

(7)
2 = (0.18, 0.82). For (1/h) = 12, the

error rate of LAC is 5.3%; the weight vectors in this case are w
(12)
1 = (0.99, 0.01),
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Figure 3.3: (Left): Two dimensional probability vectors P = (P (C1|x), P (C2|x))t,
(1/h) = 7. LAC error rate is 0.0%. (Right): Two dimensional probability vectors
P = (P (C1|x), P (C2|x))t, (1/h) = 12.

w
(12)
2 = (0.0002, 0.9998).

For the purpose of plotting the two-dimensional posterior probability vectors as-

sociated with each point x, we consider a random sample of 100 points from each

cluster (as shown in Figure 3.2 (Right)). The probability vectors (computed as in

equations (3.2) and (3.1)) of such sample points are plotted in Figure 3.3 (Left)

and Figure 3.3 (Right), respectively for (1/h) = 7 and (1/h) = 12. We observe

that in Figure 3.3 (Left) ((1/h) = 7) for points x of cluster 1 (green points square-

shaped) P (C1|x) > P (C2|x), and for points x of cluster 2 (red points diamond-

shaped) P (C2|x) > P (C1|x). Thus, there is no overlapping (in relative coordinate

space) between points of the two clusters, and LAC achieves a perfect separation (the

error rate is 0.0%). On the other hand, Figure 3.3 (Right) ((1/h) = 12) demonstrates

that for a few points x of cluster 1 (green points square-shaped) P (C1|x) < P (C2|x)

(overlapping region in Figure 3.3 (Right)). LAC misclassifies these points as members

of cluster 2, which results in an error rate of 5.3%.
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Figure 3.4: Results on Two-Gaussian data. METIS was used in conjunction with
WSPA, WBPA, and WSBPA.

Thus, the relative coordinates P (C|x) provide a suitable representation to com-

pute the pairwise similarity measure in our clustering ensemble approaches. By com-

bining the clustering results in the relative coordinate space obtained by different runs

of LAC, we aim at utilizing the consensus across multiple clusterings, while averaging

out emergent spurious structures. The experimental results obtained for this dataset

(presented in the next Chapter) corroborate our analysis. In fact, we anticipate here

that our three clustering ensemble methods WSPA, WBPA, and WSBPA achieved

0.17%, 0.0%, and 0.0% error rates, respectively. Thus, they successfully separated

the two clusters, as the best input clustering provided by LAC did (see Table 4.3 and

Figure 3.4 for details).
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Chapter 4: Experimental Results

4.1 Experimental Design and Results

We have designed two simulated datasets to analyze the behavior of the proposed

techniques in a controlled setting. These datasets contain two and three clusters,

respectively, distributed as bivariate Gaussians (Figures 3.2 (Left) and 4.1). The

mean and standard deviation vectors for the Two-Gaussian dataset are as described

in Section 3.3. The mean and standard deviation vectors for the Three-Gaussian

dataset are as follows: m1 = (2, 5), s1 = (1, 9); m2 = (12, 5), s2 = (6, 2); m3 = (23, 5),

s3 = (1, 9). In our experiments, we also used seven real datasets. The characteristics

of all datasets are given in Table 5.3. Iris, Breast, Letter(A,B), and SatImage are

from the UCI Machine Learning Repository [8]. WDBC is the Wisconsin Diagnostic

Breast Cancer dataset [52]. Spam2000 and Spam5996 are two high dimensional text

(spam) datasets. The documents in each dataset were preprocessed by eliminating

stop words (based on a stop words list) and stemming words to their root source. As

feature values in the vector space model we have used the frequency of the terms in

the corresponding document. Both Spam2000 and Spam5996 belong to the Email-

1431 dataset1. This dataset consists of emails falling into three categories: conference

(370), jobs (272), and spam (786). We ran two different experiments with this dataset.

In one case we reduced the dimensionality to 2000 terms (Spam2000), and in the

second case to 5996 (Spam5996). In both cases we consider two clusters by merging

1The Email-1431 dataset was created by Finn Arup Nielsen. It is available at:
http://www.imm.dtu.dk/∼rem/data/Email-1431.zip
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Table 4.1: Characteristics of the datasets

Dataset k D n (points-per-class)
Two-Gaussian 2 2 600 (300-300)
Three-Gaussian 3 2 900 (300-300-300)

Iris 3 4 150 (50-50-50)
WDBC 2 31 424 (212-212)
Breast 2 9 478 (239-239)

Letter(A,B) 2 16 1555 (789-766)
SatImage 2 36 2110 (1072-1038)
Spam2000 2 2000 1284 ( 642- 642)
Spam5996 2 5996 1284 ( 642- 642)
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Figure 4.1: Three Gaussian dataset

the conference and jobs mails into one group (non-spam).

Since METIS [43] requires balanced datasets, we performed random sampling on

Breast, WDBC, Spam2000 and Spam5996. In each case, we sub-sampled the most

populated class: from 357 to 212 for WDBC, from 444 to 239 for Breast , and from 786

to 642 for Spam2000 and Spam5996. For the Letter dataset, we used the classes “A”

and “B” (balanced), and for the SatImage we used classes 1 and 7 (again balanced).

Besides METIS, we also used spectral clustering2 [55] to compute the k-way parti-

tioning of the resulting graph, for the three techniques WSPA, WBPA, and WSBPA.

2We used the Matlab Toolbox available at: http://www.cs.washington.edu/homes/sagarwal/code.html.
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The advantage of spectral clustering over METIS is that spectral clustering does not

require balanced data. Here, for comparison purposes, we apply both METIS and

spectral clustering on the same balanced data. Our objective is to demonstrate the

applicability of spectral clustering in conjunction with our ensemble techniques, thus

enabling the use of our methods also with unbalanced data.

We compared our weighted clustering ensemble techniques (WSPA, WBPA, and

WSBPA) with the three methods CSPA, HGPA, and MCLA [61]. Like our meth-

ods, these three techniques transform the problem of finding a consensus clustering

into a graph partitioning problem, and make use of METIS. Thus, it was a natural

choice for us to compare our methods with these approaches. We consider the par-

titions provided by LAC (and discard the weights) in order to run CSPA, HGPA,

and MCLA, since these methods are designed to accept clusterings (not subspace

clusterings). Here, we report the accuracy achieved by CSPA and MCLA, as HGPA

was consistently the worst. The ClusterPack Matlab Toolbox was used3.

To further analyzing the benefits of diverse results generated by means of subspace

clustering, we also considered a consensus function not based on a graph partitioning

problem. The specific goals of these experiments are: (1) Test whether the diverse

clusterings produced by LAC can be effectively combined using a consensus function

based on a co-association matrix; and (2) compare our approach of generating di-

versity with alternate approaches available in the literature (e.g., varying k-means).

To this end, we ran LAC with different values of h as before. For each of the m

resulting partitions (weights are discarded), we construct a co-association matrix T

of size n×n, where T
(l)
ij = 1 if xi and xj are clustered together in partition l, T

(l)
ij = 0

otherwise. A final co-association matrix T is derived by averaging the individual T (l),

l = 1, . . . , m: Tij = 1
m

∑m
l=1 T

(l)
ij , i, j = 1, . . . , n. Previous work [51,57] has shown that

3Available at: www.lans.ece.utexas.edu/∼strehl/
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good results can be obtained when T is used as a data matrix in a new feature space

(rather then a similarity matrix). Thus, we used T as data, and ran k-means on it

[51]. We identify the resulting method as LAC+Co-as. To account for the subspace

structure discovered by LAC, we also consider Ψ (as defined in (3.5)) as data matrix.

We call this approach LAC+wCo-as. In addition, we ran the same consensus function

on clusterings generated by k-means with random initializations as well. The result-

ing approach is denoted as k-means+Co-as. We observe that the consensus function

has a random element (as it relies on k-means). Thus, we ran it 10 times, and report

average accuracies.

Evaluating the quality of clustering is in general a difficult task. Since class labels

are available for the datasets used here, we evaluate the results by computing the

error rate and the normalized mutual information (NMI). The error rate is computed

according to the confusion matrix. The NMI provides a measure that is impartial

with respect to the number of clusters [61]. It reaches its maximum value of one

only when the result completely matches the original labels. The NMI is computed

according to the average mutual information between every pair of cluster and class

[61]:

NMI =

∑k
i=1

∑k
j=1 ni,j log

ni,jn

ninj√∑k
i=1 ni log ni

n

∑k
j=1 nj log

nj

n

(4.1)

where ni,j is the number of agreement between cluster i and class j, ni is the

number of data in cluster i, nj is the number of data in class j, and n is the total

number of points.

We observe that the algorithm WSBPA outputs weight vectors coupled with the

corresponding cluster centroids: {(cI
l ,wl)}k

l=1. In order to compute the corresponding
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partition, we assign each point to the closest centroid according to the locally weighted

Euclidean distance.

4.2 Analysis of the Results
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Figure 4.2: (Left): LAC: Clustering results for Three-Gaussian data, (1/h) = 1.
The error rate is 34.6%. (Right): LAC: Clustering results for Three-Gaussian data,
(1/h) = 4. The error rate is 1.3%

For each dataset, we ran the LAC algorithm for several values of the input pa-

rameter h. The clustering results of LAC are then given as input to the consensus

clustering techniques being compared. (As the value of k, we input both LAC and the

ensemble algorithms with the actual number of classes in the data.) Figures 3.4 and

4.3 plot the error rate (%) achieved by LAC as a function of the 1/h parameter, for

each dataset considered. The error rates of our weighted clustering ensemble methods

(WSPA, WBPA, and WSBPA in conjunction with METIS), and of the CSPA and

MCLA techniques are also reported. Each figure clearly shows the sensitivity of the

LAC algorithm to the value of h. The trend of the error rate clearly depends on the

data distribution. Detailed results for all data are provided in Tables 4.3-4.11, where

we report the NMI and error rate (ER) of the ensembles, and the maximum, minimum,
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and average NMI and error rate values for the input clusterings. Eleven methods are

being compared: our three methods WSPA, WBPA, WSBPA, each combined with

both METIS and spectral clustering (SPEC is short for spectral clustering), CSPA

and MCLA, and the three techniques based on a co-association matrix.

We further illustrate the sensitivity of the LAC algorithm to the value of h for

the Three-Gaussian data (Figure 4.1). Figures 4.2 (Left) and 4.2 (Right) depict the

clustering results of LAC for (1/h) = 1 and (1/h) = 4, respectively. Figure 4.2

(Left) clearly shows that for (1/h) = 1, LAC is unable to discover the structure

of the three clusters, and gives an error rate of 34.6%. On the other hand, LAC

achieves a nearly perfect separation for (1/h) = 4, as shown in Figure 4.2 (Right).

The error rate in this case is 1.3%, which is also the minimum achieved in all the

runs of the algorithm. Results for the ensemble techniques on the Three-Gaussian

data are given in Figure 4.3 and in Table 4.4. We observe that the WSPA(-METIS)

technique perfectly separates the data (0.0% error), and that WBPA(-METIS) gives

a 0.44% error rate. In both cases, the error rate achieved is lower than the minimum

error rate among the input clusterings (1.3%). Moreover, WSBPA gives an error

rate of 1.3%, which is equal to the lowest error rate achieved by LAC. We note that

WSBPA(-METIS) and MCLA provide the same error rate for this problem. However,

WSBPA produces not only a partition of points as the final result, but also relevance

values of features associated with each cluster. In this regard, WSBPA provides more

information, and is therefore superior to MCLA.

In general, all three our ensemble techniques were able to filter out spurious struc-

tures identified by individual runs of LAC, and provided a better error rate than (or

equal to) LAC’s minimum error rate. For all seven real datasets either WBPA, WSPA,

or WSBPA provided the lowest error rate among the methods being compared. For

the Iris, WDBC, Breast, SatImage, and Spam5996 datasets (five out of seven total),
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the error rate provided by the WBPA technique is as good or better than the best

individual input clustering. For the Letter(A,B) and Spam2000 datasets, the error

rate of WBPA is still below the average error rate of the input clusterings. WSPA

gave excellent results as well. For Iris, WDBC, Breast, SatImage, and Spam5996 the

error rate provided by WSPA is lower than the best individual input clustering. For

Spam2000 (with METIS) and Letter(A,B) the error rate of WSPA is well below the

average error rate of the input clusterings.

Also WSBPA performed quite well. It produced error rates comparable with, and

sometime better than, the other techniques. In addition, WSBPA provides infor-

mation on the relevance of features associated with each cluster. In each dataset,

WSBPA achieved a result far superior to the average error rate of the input cluster-

ings. Furthermore, we note that for Iris, SatImage, Spam2000, and Spam5996 (four

out of seven total) WSBPA has provided a result superior to both the results pro-

vided by CSPA and MCLA. In particular, WSBPA (both with METIS and SPEC)

produced excellent results for the high dimensional data Spam2000 and Spam5996. In

these two cases, WSBPA produced better results than the four competing techniques,

and achieved a lower error rate than (or equal to) the minimum error rate among the

input clusterings.

Clearly, our weighted clustering ensemble techniques are capable of achieving su-

perior accuracy results with respect to the CSPA and MCLA techniques on the tested

datasets. This result is summarized in Table 4.2, where we report the average NMI

and average error rate on all real datasets. We observe that, on average, SPEC

performed better than METIS. We also report the average values for the LAC algo-

rithm to emphasize the large improvements obtained by the ensembles across the real

datasets. Given the competitive behavior shown by LAC in the literature [19], this is

a significant result.

59



Table 4.2: Average NMIs and error rates
Avg-NMI Avg-Error

WSPA-METIS 0.693 7.07
WSPA-SPEC 0.729 6.04
WBPA-METIS 0.705 6.67
WBPA-SPEC 0.728 6.14
WSBPA-METIS 0.661 8.51
WSBPA-SPEC 0.669 8.32
CSPA 0.655 8.59
MCLA 0.647 9.36
LAC 0.576 13.59
LAC+Co-as. 0.646 10.07
LAC+wCo-as. 0.649 9.7
k-means+Co-as. 0.540 16.78

We observe that the consensus function Ψ defined in (3.5) measures the similarity

of points in terms of how close the “patterns” captured by the corresponding proba-

bility vectors are. As a consequence, Ψ (as well as the matrix A for the WBPA and

WSBPA techniques) takes into account not only how often the points are grouped

together across the various input clusterings, but also the degree of confidence of the

groupings. On the other hand, the CSPA and MCLA approaches take as input the

partitions provided by each contributing clustering algorithm. That is, ∀ν and ∀i,
P (Cν

l |xi) = 1 for a given l, and 0 otherwise. Thus, the information concerning the

degree of confidence associated with the clusterings is lost. This is likely the reason for

the superior performance achieved by our weighted clustering ensemble algorithms.

In some cases, the WBPA technique gives a lower error rate compared to the

WSPA technique (WBPA-METIS performs slightly better than WSPA-METIS, on

average). This result may be due to the conceptual advantage of WBPA with respect

to WSPA discussed at the beginning of Section 3.2.2. The consensus function ψ

used in WSPA measures pairwise similarities which are solely instance-based. On the

other hand, the bipartite graph partitioning problem, to which the WBPA technique
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Table 4.3: Results on Two-Gaussian data
Ens-NMI Ens-ER Max-NMI Min-NMI Avg-NMI Max-ER Min-ER Avg-ER

WSPA-METIS 0.984 0.17 1 0.75 0.88 5.5 0 2.2
WSPA-SPEC 0.911 1.3 1 0.75 0.88 5.5 0 2.2
WBPA-METIS 1 0 1 0.75 0.88 5.5 0 2.2
WBPA-SPEC 0.911 1.3 1 0.75 0.88 5.5 0 2.2
WSBPA-METIS 1 0 1 0.75 0.88 5.5 0 2.2
WSBPA-SPEC 1 0 1 0.75 0.88 5.5 0 2.2
CSPA 1 0 1 0.75 0.88 5.5 0 2.2
MCLA 1 0 1 0.75 0.88 5.5 0 2.2
LAC+Co-as. 1 0 1 0.75 0.88 5.5 0 2.2
LAC+wCo-as. 0.983 0.18 1 0.75 0.88 5.5 0 2.2
k-means+Co-as. 0.91 1.3 0.91 0.91 0.91 1.3 1.3 1.3

Table 4.4: Results on Three Gaussian data
Ens-NMI Ens-ER Max-NMI Min-NMI Avg-NMI Max-ER Min-ER Avg-ER

WSPA-METIS 1 0 0.940 0.376 0.789 34.9 1.3 10.5
WSPA-SPEC 0.912 2.2 0.940 0.376 0.789 34.9 1.3 10.5
WBPA-METIS 0.976 0.44 0.940 0.376 0.789 34.9 1.3 10.5
WBPA-SPEC 0.940 1.3 0.940 0.376 0.789 34.9 1.3 10.5
WSBPA-METIS 0.940 1.3 0.940 0.376 0.789 34.9 1.3 10.5
WSBPA-SPEC 0.933 1.56 0.940 0.376 0.789 34.9 1.3 10.5
CSPA 0.893 2.3 0.940 0.376 0.789 34.9 1.3 10.5
MCLA 0.940 1.3 0.940 0.376 0.789 34.9 1.3 10.5
LAC+Co-as. 0.795 17.3 0.940 0.376 0.789 34.9 1.3 10.5
LAC+wCo-as. 0.899 2.7 0.940 0.376 0.789 34.9 1.3 10.5
k-means+Co-as. 0.834 17.2 0.949 0.945 0.946 1.2 1.1 1.17

reduces, partitions both cluster vertices and instance vertices simultaneously. Thus,

it also accounts for similarities between clusters.

The results obtained for LAC+Co-as. and LAC+wCo-as. show that the diverse

clusterings produced by LAC can be effectively combined using also a consensus

function based on a co-association matrix. LAC+wCo-as. gives on average lower error

rates than LAC+Co-as. This is expected since LAC+wCo-as. embeds the subspace

structure discovered by LAC into the consensus function. The co-association matrix

is also effective when combined with k-means (note that the high error rate of k-

means+Co-as. on the WDBC data is due to the fact that k-means gave the same
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Table 4.5: Results on Iris data
Ens-NMI Ens-ER Max-NMI Min-NMI Avg-NMI Max-ER Min-ER Avg-ER

WSPA-METIS 0.744 10.00 0.758 0.657 0.709 17.3 9.3 12.9
WSPA-SPEC 0.824 6.00 0.758 0.657 0.709 17.3 9.3 12.9
WBPA-METIS 0.754 9.3 0.758 0.657 0.709 17.3 9.3 12.9
WBPA-SPEC 0.813 6.6 0.758 0.657 0.709 17.3 9.3 12.9
WSBPA-METIS 0.727 11.3 0.758 0.657 0.709 17.3 9.3 12.9
WSBPA-SPEC 0.774 9.3 0.758 0.657 0.709 17.3 9.3 12.9
CSPA 0.677 13.3 0.758 0.657 0.709 17.3 9.3 12.9
MCLA 0.708 13.3 0.758 0.657 0.709 17.3 9.3 12.9
LAC+Co-as. 0.654 20.8 0.758 0.657 0.709 17.3 9.3 12.9
LAC+wCo-as. 0.715 15.7 0.758 0.657 0.709 17.3 9.3 12.9
k-means+Co-as. 0.699 19.9 0.758 0.590 0.705 33.3 10.6 17.6

Table 4.6: Results on WDBC data
Ens-NMI Ens-ER Max-NMI Min-NMI Avg-NMI Max-ER Min-ER Avg-ER

WSPA-METIS 0.512 10.6 0.524 0.009 0.329 48.5 11.1 23.4
WSPA-SPEC 0.521 10.3 0.524 0.009 0.329 48.5 11.1 23.4
WBPA-METIS 0.573 8.7 0.524 0.009 0.329 48.5 11.1 23.4
WBPA-SPEC 0.521 10.3 0.524 0.009 0.329 48.5 11.1 23.4
WSBPA-METIS 0.482 12.5 0.524 0.009 0.329 48.5 11.1 23.4
WSBPA-SPEC 0.480 12.7 0.524 0.009 0.329 48.5 11.1 23.4
CSPA 0.498 11.1 0.524 0.009 0.329 48.5 11.1 23.4
MCLA 0.457 13.4 0.524 0.009 0.329 48.5 11.1 23.4
LAC+Co-as. 0.464 12.9 0.524 0.009 0.329 48.5 11.1 23.4
LAC+wCo-as. 0.469 12.7 0.524 0.009 0.329 48.5 11.1 23.4
k-means+Co-as. 0.0005 49.7 0.0005 0.0005 0.0005 49.7 49.7 49.7

high error rate on each single run. See Table 4.6.) Overall, though, LAC provides

better accuracy/diversity trade-offs, which lead to more accurate ensembles (see Table

4.2).

We finally tested how the size of the ensemble affects the error rate. Figure 4.4

shows the results for WSPA-METIS and WBPA-METIS on the real data sets. Each

point corresponds to an average of ten ensembles of the corresponding size. Ensemble

components are randomly chosen from a collection of 50 partitions obtained by run-

ning LAC with 1/h = 1, . . . , 50. Ensemble sizes between 10 and 45 are considered.

Overall, the error rate slowly decreases as the ensemble size increases. An ensemble
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Table 4.7: Results on Breast data
Ens-NMI Ens-ER Max-NMI Min-NMI Avg-NMI Max-ER Min-ER Avg-ER

WSPA-METIS 0.779 3.6 0.700 0.197 0.422 34.1 5.9 20.5
WSPA-SPEC 0.772 3.77 0.700 0.197 0.422 34.1 5.9 20.5
WBPA-METIS 0.779 3.6 0.700 0.197 0.422 34.1 5.9 20.5
WBPA-SPEC 0.772 3.77 0.700 0.197 0.422 34.1 5.9 20.5
WSBPA-METIS 0.585 9.6 0.700 0.197 0.422 34.1 5.9 20.5
WSBPA-SPEC 0.574 10.0 0.700 0.197 0.422 34.1 5.9 20.5
CSPA 0.722 4.8 0.700 0.197 0.422 34.1 5.9 20.5
MCLA 0.575 10.3 0.700 0.197 0.422 34.1 5.9 20.5
LAC+Co-as. 0.624 8.2 0.700 0.197 0.422 34.1 5.9 20.5
LAC+wCo-as. 0.561 11.0 0.700 0.197 0.422 34.1 5.9 20.5
k-means+Co-as. 0.722 5.2 0.737 0.722 0.728 5.2 4.8 5.1

Table 4.8: Results on Letter(A,B) data

Ens-NMI Ens-ER Max-NMI Min-NMI Avg-NMI Max-ER Min-ER Avg-ER
WSPA-METIS 0.579 8.6 0.707 0.001 0.514 47.9 6.4 13.6
WSPA-SPEC 0.698 6.6 0.707 0.001 0.514 47.9 6.4 13.6
WBPA-METIS 0.592 8.2 0.707 0.001 0.514 47.9 6.4 13.6
WBPA-SPEC 0.698 6.6 0.707 0.001 0.514 47.9 6.4 13.6
WSBPA-METIS 0.537 9.9 0.707 0.001 0.514 47.9 6.4 13.6
WSBPA-SPEC 0.551 9.4 0.707 0.001 0.514 47.9 6.4 13.6
CSPA 0.579 8.6 0.707 0.001 0.514 47.9 6.4 13.6
MCLA 0.512 10.8 0.707 0.001 0.514 47.9 6.4 13.6
LAC+Co-as. 0.512 10.8 0.707 0.001 0.514 47.9 6.4 13.6
LAC+wCo-as. 0.534 10.0 0.707 0.001 0.514 47.9 6.4 13.6
k-means+Co-as. 0.512 11.9 0.658 0.321 0.489 18.0 7.3 12.6

size of 25-30 components seems to be a reasonable choice in general.

63



0 5 10 15 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Three Guassian dataset 

1/h

E
rr

or
 R

at
e

LAC
WSPA
CSPA
MCLA
WBPA
WSBPA

0 5 10 15 20 25
0.09

0.1

0.11

0.12

0.13

0.14

0.15

0.16

0.17

0.18
Iris dataset 

1/h

E
rr

or
 R

at
e

LAC
WSPA
CSPA
MCLA
WBPA
WSBPA

0 2 4 6 8 10 12
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

1/h

E
rr

or
 R

at
e

WDBC dataset 

LAC
WSPA
CSPA
MCLA
WBPA
WSBPA

0 2 4 6 8 10 12
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1/h

E
rr

or
 R

at
e

Breast dataset 

LAC
WSPA
CSPA
MCLA
WBPA
WSBPA

0 5 10 15 20 25
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

1/h

E
rr

or
 R

at
e

Letter(A,B) dataset 

LAC
WSPA
CSPA
MCLA
WBPA
WSBPA

0 2 4 6 8 10
0.14

0.15

0.16

0.17

0.18

0.19

0.2

0.21

1/h

E
rr

or
 R

at
e

SatImage dataset 

LAC
WSPA
CSPA
MCLA
WBPA
WSBPA

0 2 4 6 8 10 12
0.006

0.008

0.01 

0.012

0.014

1/h

E
rr

or
 R

at
e

Spam2000  dataset 

LAC
WSPA
CSPA
MCLA
WBPA
WSBPA

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

1/h

E
rr

or
 R

at
e

Spam5996  dataset 

LAC
WSPA
CSPA
MCLA
WBPA
WSBPA

Figure 4.3: Clustering Ensemble Results. METIS was used in conjunction with
WSPA, WBPA, and WSBPA. 64



10 15 20 25 30 35 40 45
0.04

0.05

0.06

0.07

0.08

0.09

Ensemble size

E
rr

or
 R

at
e

WBPA−METIS, Iris data

10 15 20 25 30 35 40 45
0.088

0.09

0.092

0.094

0.096

0.098

Ensemble size

E
rr

or
 R

at
e

WSPA−METIS, Iris data

10 15 20 25 30 35 40 45
0.2

0.25

0.3

0.35

Ensemble size

E
rr

or
 R

at
e

WBPA−METIS, WDBC data

10 15 20 25 30 35 40 45
0.1

0.15

0.2

0.25

Ensemble size

E
rr

or
 R

at
e

WSPA−METIS, WDBC data

10 15 20 25 30 35 40 45

0.08

0.09

0.1 WBPA−METIS, Breast data

Ensemble size

E
rr

or
 R

at
e

10 15 20 25 30 35 40 45
0.07

0.075

0.08

0.085

0.09

0.095

Ensemble size

E
rr

or
 R

at
e

WSPA−METIS, Breast data

10 15 20 25 30 35 40 45
0.26

0.27

0.28

0.29

0.3

0.31

Ensemble size
E

rr
or

 R
at

e

WBPA−METIS, Letter(A,B) data

10 15 20 25 30 35 40 45
0.1

0.15

0.2

0.25

0.3

0.35

Ensemble size

E
rr

or
 R

at
e

WSPA−METIS, Letter(A,B) data

10 15 20 25 30 35 40 45
0.145

0.1455

0.146

0.1465

0.147

Ensemble size

E
rr

or
 R

at
e

WBPA−METIS, SatImage data

10 15 20 25 30 35 40 45
0.145

0.1455

0.146

0.1465

0.147

Ensemble size

E
rr

or
 R

at
e

WSPA−METIS, SatImage data

10 15 20 25 30 35 40 45
0.015

0.02

0.025

0.03

0.035

0.04

Ensemble size

E
rr

or
 R

at
e

WBPA−METIS, Spam2000 data

10 15 20 25 30 35 40 45
0.015

0.02

0.025

0.03

0.035

0.04

Ensemble size

E
rr

or
 R

at
e

WSPA−METIS, Spam2000 data

10 15 20 25 30 35
0.012

0.014

0.016

0.018

0.02 WBPA−METIS, Spam5996 data

Ensemble size

E
rr

or
 R

at
e

10 15 20 25 30 35
0.015

0.02

0.025

0.03

Ensemble size

E
rr

or
 R

at
e

WSPA−METIS, Spam5996 data

Figure 4.4: Error rate as a function of the ensemble size.
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Table 4.9: Results on SatImage data
Ens-NMI Ens-ER Max-NMI Min-NMI Avg-NMI Max-ER Min-ER Avg-ER

WSPA-METIS 0.392 14.9 0.433 0.400 0.423 16.5 15.4 15.8
WSPA-SPEC 0.467 13.2 0.433 0.400 0.423 16.5 15.4 15.8
WBPA-METIS 0.389 15.0 0.433 0.400 0.423 16.5 15.4 15.8
WBPA-SPEC 0.467 13.2 0.433 0.400 0.423 16.5 15.4 15.8
WSBPA-METIS 0.416 14.5 0.433 0.400 0.423 16.5 15.4 15.8
WSBPA-SPEC 0.426 15.2 0.433 0.400 0.423 16.5 15.4 15.8
CSPA 0.273 20.3 0.433 0.400 0.423 16.5 15.4 15.8
MCLA 0.427 15.6 0.433 0.400 0.423 16.5 15.4 15.8
LAC+Co-as. 0.427 15.6 0.433 0.400 0.423 16.5 15.4 15.8
LAC+wCo-as. 0.428 16.1 0.433 0.400 0.423 16.5 15.4 15.8
k-means+Co-as. 0.424 15.7 0.426 0.423 0.424 15.7 15.6 15.7

Table 4.10: Results on Spam2000 data
Ens-NMI Ens-ER Max-NMI Min-NMI Avg-NMI Max-ER Min-ER Avg-ER

WSPA-METIS 0.939 0.7 0.945 0.889 0.923 1.5 0.6 0.9
WSPA-SPEC 0.894 1.4 0.945 0.889 0.923 1.5 0.6 0.9
WBPA-METIS 0.939 0.7 0.945 0.889 0.923 1.5 0.6 0.9
WBPA-SPEC 0.894 1.4 0.945 0.889 0.923 1.5 0.6 0.9
WSBPA-METIS 0.946 0.6 0.945 0.889 0.923 1.5 0.6 0.9
WSBPA-SPEC 0.946 0.6 0.945 0.889 0.923 1.5 0.6 0.9
CSPA 0.939 0.7 0.945 0.889 0.923 1.5 0.6 0.9
MCLA 0.940 0.7 0.945 0.889 0.923 1.5 0.6 0.9
LAC+Co-as. 0.940 0.7 0.945 0.889 0.923 1.5 0.6 0.9
LAC+wCo-as. 0.936 0.8 0.945 0.889 0.923 1.5 0.6 0.9
k-means+Co-as. 0.677 9.7 0.751 0.054 0.472 47.9 5.4 22.3

4.3 Diversity and Accuracy Analysis

4.3.1 Measures of Diversity and Accuracy

Diversity is an important aspect in building clustering ensembles. It is expected that

the accuracy of the ensemble improves when a larger number of input clusterings is

given, provided that the clusterings are diverse. Diversity in clustering ensembles

is under investigation by many researchers. Here we study the interplay between

accuracy and diversity for our ensemble techniques.
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Table 4.11: Results on Spam5996 data
Ens-NMI Ens-ER Max-NMI Min-NMI Avg-NMI Max-ER Min-ER Avg-ER

WSPA-METIS 0.908 1.17 0.873 0.003 0.714 49.7 1.9 7.9
WSPA-SPEC 0.933 0.93 0.873 0.003 0.714 49.7 1.9 7.9
WBPA-METIS 0.908 1.12 0.873 0.003 0.714 49.7 1.9 7.9
WBPA-SPEC 0.933 0.93 0.873 0.003 0.714 49.7 1.9 7.9
WSBPA-METIS 0.933 0.93 0.873 0.003 0.714 49.7 1.9 7.9
WSBPA-SPEC 0.933 0.93 0.873 0.003 0.714 49.7 1.9 7.9
CSPA 0.898 1.3 0.873 0.003 0.714 49.7 1.9 7.9
MCLA 0.912 1.3 0.873 0.003 0.714 49.7 1.9 7.9
LAC+Co-as. 0.903 1.5 0.873 0.003 0.714 49.7 1.9 7.9
LAC-wCo-as. 0.899 1.6 0.873 0.003 0.714 49.7 1.9 7.9
k-means+Co-as. 0.749 5.4 0.749 0.006 0.39 49.7 5.4 41.2

[23] illustrate the importance of diversity for cluster ensemble accuracy. They

measure diversity using NMI, a pairwise similarity measure that quantifies the in-

formation shared between two partitions, as defined in (4.1). Since NMI measures

the similarity between two partitions, (1 − NMI) gives the pairwise diversity. The

pairwise measure of diversity, based on NMI, of an ensemble of L partitions is then

defined as follows:

DNMI =
2

L(L− 1)

L−1∑
i=1

L∑
j=i+1

(1−NMI(Pi, Pj)) (4.2)

where Pi and Pj are two of the L partitions.

[23] confirm that high diversity in clustering results contributes to high quality in

aggregation results. Moreover, their findings confirm that the quality of individual

clusterings affects the aggregate ensembles. As expected, both a high level of diver-

sity and the quality of individual clusterings are important in determining ensemble

quality. The authors in [30] define a non-pairwise measure of diversity based on en-

tropy; the larger the value of the entropy, the larger the diversity among partitions.
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Entropy of a given collection of partitions is defined as follows:

H =
2

n(n− 1)

n∑
i=1

n∑
j=i+1

−(pij log2 pij + (1− pij) log2 (1− pij)) (4.3)

where n is the number of data points, and pij represents the proportion of times points

xi and xj are clustered together. The authors discover that diversity among ensemble

members is important in producing better ensemble results, but that diversity alone

is not sufficient to guarantee good results. The selection of the ensemble method is

also important. [48] and [32] discuss diversity and accuracy measures in great depth.

In [48], the authors use three measures for diversity: Jaccard index, Adjusted Rand

Index, and NMI. They find that diverse ensemble members produce better ensemble

results than non-diverse members, even if non-diverse members are more accurate.

In particular, [32] investigate which diversity measure gives more accurate results.

In all, six measures were examined. One is based on the Adjusted Rand Index (ARI),

which measures the amount of departure from the assumption that any two cluster-

ing results have occurred by chance. ARI is a measure of similarity between two

partitions, and is defined as follows:

t1 =

cA∑
i=1




nA
i

2


 , t2 =

cB∑
j=1




nB
j

2


 , t3 =

2t1t2
n(n− 1)

,

ar(A,B) =

∑cA

i=1

∑cB

j=1




nij

2


− t3

1
2
(t1 + t2)− t3

, (4.4)
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where




a

b


 is the binomial coefficient. A and B are two partitions of a dataset with

n points, cA and cB are the number of clusters in partitions A and B respectively,

nA
i is the number of points in cluster i of partition A, nB

j is the number of points in

cluster j of partition B, and nij is the number of points cluster i of A and cluster j

of B have in common. Since ar() measures the similarity between two partitions, to

compute the pairwise diversity one would consider (1−ar()). Therefore, the measure

of diversity, based on ARI, of an ensemble is defined as follows:

Dp =
2

L(L− 1)

L−1∑
i=1

L∑
j=i+1

(1− ar(Pi, Pj))

Dp measures the diversity of an ensemble with L partitions, where Pi, Pj are two

such partitions.

Another measure discussed in [32] is entropy as defined in Equation (4.3) and

discussed by Greene in [30]. Other measures evaluate individual (i.e, non-pairwise)

diversities, by comparing individual clustering results with the ensemble result. One

such measure is:

Dnp1 =
1

L

L∑
i=1

(1− ar(Pi, P
∗))

where Pi and P ∗ are the individual clustering result and the ensemble result respec-

tively, and L is the number of clustering members.

An additional measure focuses on the spread of diversity (with respect to P ∗) of
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individual clusterings. It is defined as follows:

Dnp2 =

√√√√ 1

L− 1

L∑
i=1

(1− ar(Pi, P ∗)−Dnp1)
2

Using this measure, [32] discover that a larger spread is not strongly related to the

ensemble accuracy. To take this result into account, another measure was introduced:

DARI =
1

2
(1−Dnp1 + Dnp2) (4.5)

which considers both variability and accuracy. Assuming that the ensemble result

is close to the true labeling, we can measure the accuracy of individual clusterings

by measuring how close they are to the ensemble result. Thus, a larger value of

(1−Dnp1) means higher accuracy. At the same time, variability within the ensemble

can be measured using Dnp2 . Equation (4.5) achieves a tradeoff between accuracy

and variability.

The authors in [32] indicate that the most stable measures are Dnp1 and DARI .

The study focuses on the co-association approach to construct consensus functions.

The authors conclude that an ensemble selected through medium diversity will fare

better than either randomly selected ensembles or those selected through maximum

diversity.

Based on the findings discussed above, we investigate here the issue of diversity and

accuracy in more detail for our ensemble techniques (WSPA, WBPA, and WSBPA).

Our objective is to investigate which measure of diversity is the best indicator for a

good ensemble accuracy, and what is the preferred level of diversity (high, medium,

or low). Such findings would enable one to select, from a set of ensembles, the one
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that is most likely to provide good results. We consider two measures of diversity,

one based on NMI as defined in (4.2), and one based on ARI as defined in (4.5).

We observe that DNMI is a pairwise diversity measure that does not depend on the

ensemble methodology, while DARI is a non-pairwise diversity measure that depends

on the ensemble methodology. Furthermore, we experiment with two methods to

build a cluster ensemble: we run LAC with different values of h in one case, and with

initial random centroids in the second case. In the following, we provide the details of

the experiments, and discuss the results. The results obtained with random centroids

are consistent with those obtained by varying h. Therefore, in the following, we omit

the accuracy/diversity plots for random centroids.

4.3.2 Building cluster ensembles by varying h

To study how accuracy relates with the chosen measures of diversity, we created 50

ensembles of size 15 by varying the value of h. As clustering algorithm, we always

used LAC. For each of the 50 ensembles, we computed both measures of diversity

DNMI and DARI , and corresponding accuracy values. In details, we ran the following

procedure:

1. Run the LAC algorithm for 1/h = 1, . . . , 50;

2. Repeat the following 50 times:

(a) Sample 15 clusterings out of the 50 generated in 1;

(b) Run WBPA, WSPA, WSBPA (using METIS) on the selected 15 cluster-

ings;

(c) Compute the diversity measures DNMI as in (4.2) and DARI as in (4.5),

for L = 15;
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(d) Compute the average accuracy of the ensemble components, both based

on NMI and ARI, as follows:

AccNMI =
1

15

15∑
i=1

NMI(Pi, P
T ) (4.6)

AccARI =
1

15

15∑
i=1

ar(Pi, P
T ) (4.7)

where P T is the target partition (according to the ground truth);

(e) Compute the accuracy of the ensemble decision, both based on NMI and

ARI, as follows:

Acc∗NMI = NMI(P ∗, P T ) (4.8)

Acc∗ARI = ar(P ∗, P T ) (4.9)

where P ∗ is the ensemble partition, and P T is the target partition.

Figures 4.5-4.13 show the results of accuracy vs. diversity for our nine datasets.

To construct the plots, we proceeded as follows. We sorted the 50 DNMI values in in-

creasing order. Each DNMI value was associated with the corresponding AccNMI and

Acc∗NMI values. We plotted the collection of two dimensional points (DNMI , AccNMI)

and (DNMI , Acc∗NMI), and connected them with a line. We proceeded similarly for the

measures based on ARI. This procedure was performed for each of the three ensemble

techniques WSPA, WBPA, and WSBPA. In Figures 4.5-4.13, the points marked with

a “∗” symbol correspond to (DNMI , AccNMI) and (DARI , AccARI). The points marked

with an “open square” symbol correspond to (DNMI , Acc∗NMI) and (DARI , Acc∗ARI).

From the plots, we observe the following:
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1. Larger DNMI (DARI) values give larger AccNMI (AccARI) values, and larger

Acc∗NMI (Acc∗ARI) values, for all datasets and all the three ensemble methods.

This result suggests that, to obtain good ensemble accuracy, a high level of

diversity should be preferred. (The same trend was obtained when diversity

was generated by means of random centroids.)

2. For a given value of diversity DNMI (DARI), the accuracy of the ensemble

decision, Acc∗NMI (Acc∗ARI), is typically larger than the average accuracy of the

ensemble components, AccNMI (AccARI), for all three methods and all datasets

(with few exceptions discussed below). This demonstrates the efficacy of

our ensemble methods. Furthermore, the gain in accuracy, Acc∗NMI−AccNMI

(Acc∗ARI−AccARI), in many cases is larger for larger diversity values (DNMI and

DARI , respectively). Again, this confirms that a high level of diversity

should be preferred.

3. WDBC dataset and WSBPA ensemble method: For lower values of diversity

(both based on NMI and ARI), the accuracy of the ensemble decision is very

low, and slightly below the average accuracy of the ensemble components. As

diversity increases, the ensemble accuracy improves rapidly, and achieves sig-

nificant improvement upon the components. This case stresses the importance

of high diversity. Note that, for this dataset, also the WSPA and WBPA tech-

niques show a much larger accuracy gain for larger diversity values.

4. Results similar to WDBC are observed for the Letter(A,B) dataset, and accu-

racy/diversity measures based on NMI.

5. In general, given an ensemble of partitions, the average accuracy value of the

components computed according to NMI (AccNMI) is higher than the average

accuracy value computed according to ARI (AccARI). This is due to the fact that
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NMI() ∈ [0, 1], while ar() ∈ [−1, 1]. Thus, the summation in (4.7) may contain

negative values, which lead to smaller averages than in (4.6) (where the smallest

components are zeros). On the other hand, the values Acc∗NMI and Acc∗ARI ,

which measure the accuracy of the ensemble partitions, are in general closer to

each other. This happens because the largest value both for NMI() and ar(), in

(4.8) and (4.9) respectively, is 1. This different scaling of the accuracy/diversity

measures causes the values (DNMI , Acc∗NMI) to lie below the (DNMI , AccNMI)

values for the SatImage dataset (while the opposite trend is observed for the

measures based on ARI) (see Figure 4.11). We also observe that the range

for the diversity values is very narrow in this case, suggesting the presence

of correlated partitions in the ensembles. According to Table 4.9, our three

ensemble techniques provide a smaller error rate than the minimum error rate of

the input clusterings. This suggests that a measure of accuracy/diversity

based on ARI might be more robust and consistent than a measure

based on NMI. The results obtained in [32] corroborate our conclusions. In

fact, [32] also indicate that the most stable measures of diversity are based

on ARI. Furthermore, their study focuses on the co-association approach to

construct consensus functions. This provides evidence that DARI is a good

measure of diversity for both co-association based and graph partitioning based

ensemble scenarios. This is an interesting and relevant result since DARI does

depend on the ensemble methodology.
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4.3.3 Ensemble Selection Method: Medium vs. High Diver-

sity

To verify whether the ensemble selection method based on diversity is effective, and

which measure of diversity is a better index, we performed the following experiment:

1. Construct 50 ensembles of size 15 (e.g., using random centroids or varying h);

2. Compute the average accuracy AccNMI = 1
50

∑50
j=1 NMI(P ∗

j , P T );

3. Randomly select 15 ensembles out of the 50;

4. Compute DNMI for the 15 ensembles; order the DNMI values, and identify

the ensembles with median and maximum diversity. Compute their accuracy:

NMI(P ∗
med, P

T ) and NMI(P ∗
max, P

T );

5. Repeat steps 3 and 4 50 times;

6. Compute the average accuracy of the ensembles with median (maximum) di-

versity:

Accmed
NMI =

1

50

50∑
i=1

NMI(P ∗
i,med, P

T )

Accmax
NMI =

1

50

50∑
i=1

NMI(P ∗
i,max, P

T )

The above steps were executed also using ARI. In Tables 4.12-4.14 we report the

results obtained for WSPA, WBPA, and WSBPA respectively, varying the parameter

h over the values {1, 2, . . . , 50}. Similar results were obtained by using random cen-

troids. For WSPA and WBPA, the selection procedure based on Accmax
ARI provides the

highest accuracy value averaged across all tested datasets. In particular, for WSPA,
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Figure 4.5: Two Gaussian dataset: Accuracy vs. Diversity

Accmax
ARI = 0.81 vs. AccARI = 0.76, and Accmax

ARI ≥ AccARI for all datasets. For WBPA,

Accmax
ARI = 0.78 vs. AccARI = 0.74, and Accmax

ARI ≥ AccARI for all datasets but one (Iris).

For WSBPA, the selection procedure based on Accmed
ARI provides the highest accuracy

value averaged across the datasets. In this case, though, the improvement over the

entire collection of ensembles is less significant (Accmed
ARI = 0.67 vs. AccARI = 0.66).

For all three methods, the ensemble selection method using the non-pairwise di-

versity measure DARI appears to be the most effective. This finding is consistent with

our previous observations. Furthermore, for the WSPA and WBPA methods, a high

level of diversity is preferred, while for WSBPA a medium level of diversity appears to

be better on average. Due to the dependency on the specific dataset, though, results

are less significant and conclusive for WSBPA.
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Table 4.12: Ensemble accuracy: medium vs. high diversity (WSPA)

AccNMI Accmax
NMI Accmed

NMI AccARI Accmax
ARI Accmed

ARI

Two-Gaussian 0.96 0.99 0.97 0.98 0.99 0.99
Three-Gaussian 0.99 0.99 1.0 0.99 0.99 1.0
Iris 0.75 0.74 0.75 0.75 0.75 0.76
Breast 0.62 0.72 0.63 0.72 0.82 0.72
Letter (A,B) 0.36 0.58 0.41 0.44 0.66 0.57
SatImage 0.40 0.40 0.40 0.50 0.50 0.50
Spam2000 0.86 0.85 0.86 0.92 0.93 0.93

Averages 0.71 0.75 0.72 0.76 0.81 0.78

Table 4.13: Ensemble accuracy: medium vs. high diversity (WBPA)

AccNMI Accmax
NMI Accmed

NMI AccARI Accmax
ARI Accmed

ARI

Two-Gaussian 0.97 0.99 0.97 0.98 0.99 0.99
Three-Gaussian 0.99 0.98 0.99 0.99 0.99 0.99
Iris 0.83 0.80 0.83 0.85 0.81 0.86
Breast 0.60 0.69 0.61 0.71 0.80 0.71
Letter (A,B) 0.17 0.24 0.18 0.23 0.46 0.17
SatImage 0.40 0.40 0.40 0.50 0.50 0.50
Spam2000 0.85 0.77 0.86 0.91 0.94 0.92

Averages 0.69 0.70 0.69 0.74 0.78 0.73

Table 4.14: Ensemble accuracy: medium vs. high diversity (WSBPA)

AccNMI Accmax
NMI Accmed

NMI AccARI Accmax
ARI Accmed

ARI

Two-Gaussian 0.94 1.0 0.96 0.96 0.82 0.99
Three-Gaussian 0.94 0.94 0.94 0.96 0.97 0.96
Iris 0.77 0.78 0.77 0.80 0.79 0.80
Breast 0.27 0.40 0.25 0.20 0.11 0.18
Letter (A,B) 0.24 0.35 0.27 0.29 0.40 0.31
SatImage 0.41 0.42 0.41 0.50 0.50 0.50
Spam2000 0.83 0.73 0.85 0.90 0.93 0.92

Averages 0.63 0.66 0.64 0.66 0.65 0.67
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Figure 4.6: Three Gaussian dataset: Accuracy vs. Diversity
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Figure 4.7: Iris dataset: Accuracy vs. Diversity
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Figure 4.8: WDBC dataset: Accuracy vs. Diversity

0.2 0.3 0.4 0.5 0.6 0.7
0

0.2

0.4

0.6

0.8

D−NMI

A
cc

−
N

M
I

WSPA

0.2 0.3 0.4 0.5 0.6 0.7
0

0.2

0.4

0.6

0.8

D−NMI

A
cc

−
N

M
I

WBPA

0.2 0.3 0.4 0.5 0.6 0.7
0.1

0.2

0.3

0.4

0.5

D−NMI

A
cc

−
N

M
I

WSBPA

0.05 0.1 0.15 0.2 0.25
0

0.2

0.4

0.6

0.8

1

D−ARI

A
cc

−
A

R
I

WSPA 

0.05 0.1 0.15 0.2 0.25
0

0.2

0.4

0.6

0.8

1

D−ARI

A
cc

−
A

R
I

WBPA

0.2 0.25 0.3 0.35 0.4 0.45
0

0.1

0.2

0.3

0.4

0.5

D−ARI

A
cc

−
A

R
I

WSBPA

Figure 4.9: Breast dataset: Accuracy vs. Diversity
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Figure 4.10: Letter(A,B) dataset: Accuracy vs. Diversity

0.02 0.04 0.06 0.08 0.1
0.38

0.39

0.4 

0.41

0.42

0.43

0.44

D−NMI

A
cc

−
N

M
I

WSPA

0.02 0.04 0.06 0.08 0.1
0.38

0.39

0.4 

0.41

0.42

0.43

0.44

D−NMI

A
cc

−
N

M
I

WBPA

0.02 0.04 0.06 0.08 0.1

0.41 

0.42 

0.43 

0.44

D−NMI

A
cc

−
N

M
I

WSBPA

0.31 0.315
0.2

0.3

0.4

0.5

0.6

0.7

D−ARI

A
cc

−
A

R
I

WSPA 

0.31 0.315
0.2

0.3

0.4

0.5

0.6

0.7

D−ARI

A
cc

−
A

R
I

WBPA

0.4 0.405 0.41 0.415
0.2

0.3

0.4

0.5

0.6

0.7

D−ARI

A
cc

−
A

R
I

WSBPA

Figure 4.11: SatImage dataset: Accuracy vs. Diversity
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Figure 4.12: Spam2000 dataset: Accuracy vs. Diversity
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Figure 4.13: Spam5996 dataset: Accuracy vs. Diversity
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Chapter 5: Applications

In the previous chapters we have introduced our ensemble techniques and demon-

strated empirically their efficacy. Here we discuss the usage of our ensembles tech-

niques in two different applications. First, we investigate the feasibility of our sub-

space ensemble technique (WSBPA) for the categorization of unlabeled documents.

Second, we generalize the usage of our consensus functions WSPA and WBPA with

categorical data.

5.1 Categorization of Unlabeled Documents

We investigate the use of our subspace cluster ensemble technique (WSBPA) for the

categorization of unlabeled documents. The output of WSBPA is twofold: it provides

a partition of the data and a measure of local feature relevance for each identified

group of data. For text documents, the analysis of relevance values (i.e., weights)

credited to features (i.e., terms) can assist the identification of descriptive words

representative of topics discussed in the documents.

To demonstrate these concepts we performed experiments with two datasets: spam

Email-1431 and 20 Newsgroups. To reduce the dimensionality of the data, we followed

the procedure presented in [42]. Documents were first preprocessed by eliminating

stop and rare words, and by stemming words to their root source. A global un-

supervised feature selection procedure, based on frequent itemset mining, was then

applied. The objective of this step is to identify sets of terms that co-occur frequently
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Figure 5.1: Results on text datasets. (Left): Email-1431 dataset. (Right): 20 News-
groups dataset (electronic-medical)

in the given corpus of documents. Such terms become the features used in the final

representation of documents.

Email-1431 is the same dataset used in the experiments described in Section 4.1.

The original size of the dictionary is 38,713. After processing the data as described

above, the dictionary size was reduced to 285. As before, we ran a two-class classifica-

tion problem by merging the conference and jobs emails into one group (non-spam).

20 Newsgroups is a collection of 20,000 messages collected from 20 different netnews

newsgroups. One thousand messages from each of the 20 newsgroups were chosen at

random and partitioned by newsgroups name. In our experiments we consider the

categories medical (990) and electronics (981). The original size of the dictionary is

24,546; after processing the data, the dictionary size was reduced to 321.

Tables 5.1 and 5.2 report the results we obtained for these two datasets. We ran

our three methods (WSPA, WBPA, and WSBPA) using both METIS and spectral

clustering. We report the ensemble NMI, the ensemble error rate, and minimum,

maximum and average error rates of the input clusterings. (Figure 5.1 shows the

ranges of values for the parameter h used to construct the ensembles.)

WSBPA gives good results in both cases. We observe that for the Email-1431
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dataset, WSBPA gives the same error rate (1.6%) when combined with either METIS

or spectral clustering (as shown in Figure 5.1 (Left) and in Table 5.1). Such error

rate is very close to the minimum error rate provided by the runs of LAC. Moreover,

WSBPA significantly outperforms WSPA and WBPA when METIS is used. With

SPEC, all three methods provide similar results. The fact that SPEC performs better

than METIS might be due to the slightly unbalanced data (786 spams vs. 642 non-

spams). Also for the 20 Newsgroups dataset (electronic, medical), WSBPA gives an

error rate that is very close to the minimum error rate provided by LAC (for both

METIS and SPEC) (see Figure 5.1 (Right) and Table 5.2). In this case, METIS and

SPEC give similar results (the dataset is balanced).

5.1.1 Analysis of Weights

We analyzed the weights credited to features by the algorithm WSBPA (combined

with METIS). The analysis of weights assigned to words provides some insights on the

nature of the spam filtering problem and the general classification case. As Figures

5.2 and 5.3 show, the selected words (i.e., those words that receive largest weight

values) are representative of the underlying categories, which provides evidence that

our subspace cluster ensemble technique is capable of sifting relevant words, while

discarding (i.e., assigning a low weight value) spurious ones.

Let us consider the distribution of weights obtained for the Email-1431 dataset.

Figure 5.2 shows the weight values and corresponding words for the two class case

(the non-spam class corresponds to both conference and jobs emails). Here we plot

the top words that received highest weight for each class (discarding those without a

clear meaning, e.g., abbreviations, acronyms, etc.). We observe that words reflecting

the topic of a category receive a larger weight in the other class. For example, the
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words “sales”, “money”, “marketing”, “credit”, etc. get a larger weight in the non-

spam category (their weights in the spam class are very close to zero). Similarly,

the words “computational”, “neuroscience”, “neural”, “algorithms”, “deadline”, etc.

receive larger weights in the spam category. The weights for these words in the non-

spam class are very close to zero. While surprising at first, this trend may be due to

the nature of the spam and non-spam email distributions. Each of these two categories

is actually a combination of subclasses. The non-spam class in this case is the union

of conference and jobs emails (by construction). Likewise, the spam messages can

be very different in nature (sales, jokes, diets, fraud, etc.), and therefore different

in their word content. As a consequence, the variance of feature values for words

reflecting the general topic of a category is larger within the same category than in

the other one (e.g., the word “sales” appears only in half of the spam messages, and

does not appear in any of the non-spam emails). Since the weights computed by the

LAC algorithm are inversely proportional to a measure of such variance of values (i.e.,

Xjs), we obtain the “swapping phenomenon” depicted in Figure 5.2. This analysis

can be interpreted as the fact that the absence of a certain term (e.g., absence of

the word “sales” within the non-spam messages) is a characteristic shared across

the emails of a given category; whereas the presence of certain words shows a larger

variability across emails of a given category (e.g., the word “sales” appears only in

half of the spam messages).

Figure 5.3 shows the weight values and corresponding words for the 20 News-

groups (electronic, medical) dataset. In this case words receive largest weights within

the representative class (e.g., “system”, “noise”, “circuit”, “range”, for the electronic

class; “screen”, “hot”, “dead”, “cost”, “program” for the medical class). In this case,

categories represent focused topics, and therefore words reflecting the content of doc-

uments show a small variance (e.g., the word “system” appears in all documents on
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electronics, and thus its variance is zero).

For this dataset, we also analyzed the dictionary of the corpus, and noticed that

the majority of words is descriptive of the electronic category, while the medical do-

main is under represented. This bias was also reflected within the words that received

larger weights: we could easily identify many words of the electronic domain, while

words from the medical domains were less in number. Given the biased dictionary,

this result is expected.

The above results provide evidence that the weights computed by the WSBPA

algorithm are meaningful, that is the averaging of weights performed by Equation

(3.7) properly captures the local relevance of features. This is important for the

cluster prediction of future data. Local weights also provide information regarding

the subspace each cluster belongs to, thus allowing data interpretation, and possibly

data compression. Specifically, for text categorization, the analysis of weights can be

informative of the nature of the categorization problem, and can be used to guide the

process of text interpretation. Of course, we are not advocating that local weights

alone can solve the problem of automatic document annotation. Our results simply

show that they are useful for the identification of descriptive words. Local weights

alone, though, are not able to account for all possible configurations and words’

distributions. For example, a word that appears in all documents of one class and in

zero documents of the other, receives large weight in both (its variance is zero in both

cases). Considering the frequency of occurrence within each class, may clarify which

class the word is descriptive of. While this phenomenon was not observed in our data,

one has to account for such instances in general. Considering relative frequencies of

words that receive large weight in both classes is a viable solution.
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Table 5.1: Results on Email-1431
Ens-NMI Ens-ER Min-ER Max-ER Avg-ER

WSPA-METIS 0.741 5.3 1.5 2.2 1.95
WBPA-METIS 0.741 5.3 1.5 2.2 1.95
WSBPA-METIS 0.880 1.6 1.5 2.2 1.95
WSPA-SPEC 0.889 1.5 1.5 2.2 1.95
WBPA-SPEC 0.880 1.6 1.5 2.2 1.95
WSBPA-SPEC 0.880 1.6 1.5 2.2 1.95

Table 5.2: Results on 20 Newsgroups (electronic, medical)

Ens-NMI Ens-ER Min-ER Max-ER Avg-ER
WSPA-METIS 0.316 18.16 16.79 46.17 20.37
WBPA-METIS 0.344 16.95 16.79 46.17 20.37
WSBPA-METIS 0.353 16.89 16.79 46.17 20.37
WSPA-SPEC 0.343 17.15 16.79 46.17 20.37
WBPA-SPEC 0.344 17.09 16.79 46.17 20.37
WSBPA-SPEC 0.345 17.19 16.79 46.17 20.37
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Figure 5.2: Email-1431: Words and corresponding weight values.
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5.2 Clustering Ensembles for Categorical Data

5.2.1 Introduction

Clustering ensembles have been successfully designed for numerical features. On

the other hand, clustering ensembles for categorical data have not received much

attention in the literature. Categorical data present its own array of difficulties. First,

because their relationship is not linear, categorical attributes have no single ordering.

Second, because categorical attributes do not have the inherent geometrical structure

implied by numerical values, traditional distance and similarity measures will not

yield accurate results.

Although these difficulties are steep, they are not insurmountable. Clustering

techniques have been successfully applied to categorical data. However, these methods

have limitations similar to those found in numerical clusters. Difficulties include

the question of how to tune input parameters without a prior knowledge and the

inaccuracy that result in high dimensions.

In our work, we attempted to overcome the faults inherent to categorical clus-

tering methods by introducing two consensus functions for categorical data. Our

techniques use the clustering results produced by COOLCAT, but our methods are

flexible enough to be used in combination with any categorical clustering approach.

Our categorical clustering ensemble applications contribute to a currently under-

served area in the literature. Our applications filter out spurious structures identified

by individual runs of the clustering algorithm, and achieve results with a high level of

accuracy. Our methods surpasses previous categorical clustering ensembles in their

ability to handle data in high dimensions as will be described next.
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5.2.2 Enhancement of COOLCAT

To enhance the accuracy of the clustering given by COOLCAT, we construct an

ensemble of clusterings obtained by multiple runs of the algorithm. A good accuracy-

diversity trade-off must be achieved to obtain a consensus solution that is superior

to the components. To improve the diversity among the ensemble components, each

run of COOLCAT operates within a random subspace of the feature space, obtained

by random sampling a fixed number of attributes from the set of given ones. Thus,

diversity is guaranteed by providing the components different views (or projections)

of the data. Since such views are generated randomly from a (typically) large pool

of attributes, it is highly likely that each component receives a different prospective

of the data, which leads to the discovery of diverse (and complementary) structures

within the data.

The rationale behind our approach finds its justification in classifier ensembles,

and in the theory of Stochastic Discrimination [44,45]. The advantages of a random

subspace method, in fact, are well known in the context of ensembles of classifiers

[37,60].

Furthermore, we observe that performing clustering in random subspaces should

be advantageous when data present redundant features, and/or the discrimination

power is spread over many features, which is often the case in real life scenarios.

Under these conditions, in fact, redundant/noisy features are less likely to appear

in random subspaces. Moreover, since discriminant information is distributed across

several features, we can generate multiple meaningful (for cluster discrimination)

subspaces. This is in agreement with the assumptions made by the theory of stochastic

discrimination [45] for building effective ensembles of classifiers; that is, there exist

multiple sets of features able to discern between training data in different classes, and

unable to discern training and testing data in the same class.
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5.2.3 Categorical Similarity Partitioning Algorithm (CSPA)

Our aim is to generate robust and stable solutions via a consensus clustering method.

We can generate contributing clusterings by running multiple times the COOLCAT

algorithm within random subspaces. Thus, each ensemble component has access to

a random sample of f features drawn from the original d dimensional feature space.

The objective is then to find a consensus partition from the output partitions of

the contributing clusterings, so that an “improved” overall clustering of the data is

obtained.

In order to derive our consensus function, for each data point xi and each cluster

Cl, we want to define the probability associated with cluster Cl given that we have

observed xi. Such probability value must conform to the information provided by

a given component clustering of the ensemble. The consensus function will then

aggregate the findings of each clustering component utilizing such probabilities.

COOLCAT partitions the data into k distinct clusters. In order to compute

distances between data points and clusters, we represent clusters using modes . The

mode of a cluster is the vector of the most frequent attribute values in the given

cluster. In particular, when different values for an attribute have the same frequency

of occurrence, we consider the whole data set, and choose the attribute that has the

least overall frequency. Ties are broken randomly.

We then compute the distance between a point xi and a cluster Cl by considering

the Jaccard distance [53] between xi and the mode cl of cluster Cl, defined as follows:

dil = 1− |xi ∩ cl|
|xi ∪ cl| (5.1)

where |xi∩ cl| represents the number of matching attribute values in the two vectors,
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and |xi ∪ cl| is the number of distinct attribute values in the two vectors.

We then follow the same steps as in the Weighted Similarity Partitioning algorithm

(WSPA) presented in Section 3.2.1

5.2.4 Categorical Bipartite Partitioning Algorithm (CBPA)

Our second approach (CBPA) maps the problem of finding a consensus partition to

a bipartite graph partitioning problem. We follow the same steps as in the Weighted

Bipartite Partitioning algorithm (WBPA) presented in Section 3.2.2, however we

calculate the distances between a point xi and a cluster Cl by considering the Jaccard

distance [53] as explained in the previous section.

5.2.5 Experimental Design and Results

In our experiments, we used four real datasets. The characteristics of all datasets

are given in Table 5.3. The Archeological dataset is taken from [5], and was used in

[12] as well. Soybeans, Breast, and Congressional Votes are from the UCI Machine

Learning Repository [8].

The Soybeans dataset consists of 47 samples and 35 attributes. Since some at-

tributes have only one value, we have removed them, and selected the remaining 21

attributes for our experiments, as it has been done in other research [27]. For the

Breast-cancer data, we sub-sampled the most populated class from 444 to 239 as

we have conducted in our previous work to obtain balanced data [4]. The Congres-

sional Votes dataset contains attributes which consist of either ’yes’ or ’no’ responses;

we treat missing values as an additional domain attribute value for each feature as

conducted in [12].

Evaluating the quality of clustering is in general a difficult task. Since class labels
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Table 5.3: Characteristics of the data

Dataset k D n (points-per-class)
Archeological 2 8 20 (11-9)
Soybeans 4 21 47 (10-10-10-17)
Breast-cancer 2 9 478 (239-239)
Vote 2 16 435 (267-168)

are available for the datasets used here, we evaluate the results by computing the

error rate and the normalized mutual information (NMI) 4.1 described in Section

( 4.1).

5.2.6 Analysis of the Results

For each dataset, we ran COOLCAT 10 times with different sets of random features.

The number f of selected features was set to half the original dimensionality for each

data set: f = 4 for Archeological, f = 11 for Soybeans, f = 5 for Breast-cancer,

and f = 8 for Vote. The clustering results of COOLCAT are then given as input to

the consensus clustering techniques being compared. (As value of k, we input both

COOLCAT and the ensemble algorithms the actual number of classes in the data.)

Figures 5.4-5.7 plot the error rate (%) achieved by COOLCAT in each random

subspace, and the error rates of our categorical clustering ensemble methods (CSPA-

Metis, CSPA-SPEC, CBPA-Metis, and CBPA-SPEC, where SPEC is short for spec-

tral clustering). We also plot the error rate achieved by COOLCAT over multiple

runs in the entire feature space. The figures show that we were able to obtain diverse

clusterings within the random subspaces. Furthermore, the instable performance of

COOLCAT in the original space shows its sensitivity to the initial random seeding

process, and to the order according to which data are processed. (We kept the input

parameters of COOLCAT fixed in all runs: the sample size was set to 8, and the
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reprocessing size was set to 10.)

Detailed results for all data are provided in Tables 5.4-5.7, where we report the

NMI and error rate (ER) of the ensembles, as well as the maximum, minimum, and

average NMI and error rate values for the input clusterings.

In general, our ensemble techniques were able to filter out spurious structures iden-

tified by individual runs of COOLCAT, and performed quite well. Our techniques

produced error rates comparable with, and sometime better than, COOLCAT’s mini-

mum error rate. CSPA-Metis provided the lowest error rate among the methods being

compared on three data sets. For the Archeological and Breast-cancer data, the er-

ror rate provided by the CSPA-Metis technique is as good or better than the best

individual input clustering. It is worth noticing that for these two datasets, CSPA-

Metis gave an error rate which is lower than the best individual input clustering on

the entire feature space (see Figures 5.4 and 5.6) In particular, on the Breast-cancer

data all ensemble techniques provided excellent results. For the Soybeans dataset,

the error rate of CSPA-Metis is still well below the average of the input clusterings,

and for Vote is very close to the average.

Also CBPA (both with Metis and SPEC) performed quite well. In general, it

produced error rates comparable with the other techniques. CBPA produced error

rates well below the average error rates of the input clusterings, with the exception

of the Vote dataset. For the Vote data, all ensemble methods gave error rates close

to the average error rate of the input clusterings. In this case, COOLCAT on the full

space gave a better performance.

Overall, our categorical clustering ensemble techniques are capable of boosting the

performance of COOLCAT, and achieve more robust results. Given the competitive

behavior previously shown by COOLCAT, the improvement obtained by our ensemble

techniques is a valuable achievement.
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Figure 5.4: (Left): Archeological data: error rates of cluster ensemble methods, and
COOLCAT in random subspaces. (Right):Archeological data: error rates of cluster
ensemble methods, and COOLCAT using all features.
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Figure 5.5: (Left): Soybeans data: error rates of cluster ensemble methods, and
COOLCAT in random subspaces. (Right):Soybeans data: error rates of cluster en-
semble methods, and COOLCAT using all features.
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Figure 5.6: (Left): Breast-cancer data: error rates of cluster ensemble methods, and
COOLCAT in random subspaces. (Right): Breast-cancer data: error rates of cluster
ensemble methods, and COOLCAT using all features.
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Figure 5.7: (Left): Vote data: error rates of cluster ensemble methods, and COOL-
CAT in random subspaces. (Right): Vote data: error rates of cluster ensemble meth-
ods, and COOLCAT using all features.
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Table 5.4: Results on Archeological data
Ens-NMI Ens-ER Max-ER Min-ER Avg-ER Max-NMI Min-NMI Avg-NMI

CSPA-METIS 1 0 45.00 0 24.00 1 0.033 0.398
CSPA-SPEC 0.21 36.00 45.00 0 24.00 1 0.033 0.398
CBPA-METIS 0.5284 10.00 45.00 0 24.00 1 0.033 0.398
CBPA-SPEC 0.603 18.0 45.00 0 24.00 1 0.033 0.398

Table 5.5: Results on Soybeans data
Ens-NMI Ens-ER Max-ER Min-ER Avg-ER Max-NMI Min-NMI Avg-NMI

CSPA-METIS 0.807 10.6 52.1 0 24.4 1 0.453 0.689
CSPA-SPEC 0.801 12.3 52.1 0 24.4 1 0.453 0.689
CBPA-METIS 0.761 12.8 52.1 0 24.4 1 0.453 0.689
CBPA-SPEC 0.771 15.3 52.1 0 24.4 1 0.453 0.689

Table 5.6: Results on Breast cancer data
Ens-NMI Ens-ER Max-ER Min-ER Avg-ER Max-NMI Min-NMI Avg-NMI

CSPA-METIS 0.740 4.3 9.4 6.1 7.9 0.699 0.601 0.648
CSPA-SPEC 0.743 4.4 9.4 6.1 7.9 0.699 0.601 0.648
CBPA-METIS 0.723 4.8 9.4 6.1 7.9 0.699 0.601 0.648
CBPA-SPEC 0.743 4.4 9.4 6.1 7.9 0.699 0.601 0.648

Table 5.7: Results on Vote data
Ens-NMI Ens-ER Max-ER Min-ER Avg-ER Max-NMI Min-NMI Avg-NMI

CSPA-METIS 0.473 14.0 17.7 6.9 13.7 0.640 0.345 0.447
CSPA-SPEC 0.449 13.5 17.7 6.9 13.7 0.640 0.345 0.447
CBPA-METIS 0.473 14.0 17.7 6.9 13.7 0.640 0.345 0.447
CBPA-SPEC 0.439 14.2 17.7 6.9 13.7 0.640 0.345 0.447
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Chapter 6: Semi-Supervised Clustering

6.1 Introduction

In Chapters 3 and 4, we described the effectiveness and benefits of our consensus

functions, which overcome the problems inherent to individual clustering algorithms.

Each of our consensus functions is based on the assumption that no prior knowledge

is available, as this is the condition for many research problems, and therefore an

important matter to be addressed.

However, in some cases, limited information is indeed available to the end user.

The possibility of leveraging this knowledge has attracted the attention of many

researchers, who attempt to incorporate the available information as constraints into

the clustering process with the aim of improving the results. The problem these

researchers face is how to leverage this information. Although the presence of prior

knowledge would seem to dictate its use, the means of achieving this goal are unclear.

We explore three different, but related approaches:

1. embed constraints into the consensus clustering to improve the quality of the

ensemble.

2. embed constraints within individual clustering algorithms

3. embed constraints within individual clustering algorithms, and bootstrapping

of constraints driven by ensembles.

We will investigate each approach in details in this Chapter. Our achievements in

this area are:
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• Improved effectiveness of our clustering ensembles achieved by enforcing con-

straints during the partitioning process when knowledge is available from the

end-user.

• Improved effectiveness of the LAC algorithm achieved by using constraints to

both refine the initialization process and the partitioning dynamic.

• Bootstrapping of constraints from multiple data partitions, without the inter-

vention of an oracle.

6.2 Constraint Identification

6.2.1 Selecting Informative Constraints

A number of semi-supervised clustering algorithms have been proposed [66,67]. How-

ever, most of these techniques construct must-link and cannot-link constraints by first

randomly selecting pairs of points, and then querying the oracle expert for informa-

tion about their relationship. Although this method is relied on by many researchers,

it has the liability of not improving the clustering process to its fullest potential. Be-

cause the selection process is random, and does not seize on associations available in

the raw data, this method neglects a very important source of information. It tends

to reinforce existing relationships, rather than provide a strong rationale for labeling

difficult data.

To avoid these limitations, we follow the approach described in [29] to generate

constraints. Because they are formed using associations available in the raw data,

these constraints are stronger and more informative. The authors base their method

on the relationships between intra-cluster and inter-cluster data points. The informa-

tion provided from these relationships becomes must-link and cannot-link constraints.
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The authors begin by mapping the results of k-means to a co-association matrix.

The algorithm is then run ν times, and the resulting ν co-association matrices are

averaged into a final matrix T . With a sufficient number of base clusterings, infor-

mation about a pairwise relationship between two data points becomes apparent in

the final matrix T .

The entry Tij indicates the portion of the ν clusterings in which two data points xi

and xj, were assigned to the same cluster. A value of Tij = 1 indicates that the points

were assigned to the same cluster in each of the ν matrices, and therefore represents

a very high probability that the points belong to the same class. A value of Tij = 0,

on the other hand, indicates that the points were not assigned to the same cluster in

any of the ν matrices, and therefore represents a very low probability that the points

belong to the same cluster and should be placed in different cluster.

However, if Tij ≈ 0.5, it is not clear whether the corresponding two points should

belongs to the same cluster or not. Thus, querying on the underlying relationship

between such data would be partiality informative. Two threshold values tm and

tc are chosen to identify useful constraints. In particular pairs (xi,xj) such that

tc < Tij < tm.

Since this method proved to be effective, we adapted it for the selection of our

constraint sets. We run the LAC algorithm m times. Each partition ν gives a co-

association matrix Tν , from which we compute the average co-association matrix

T = 1
m

∑m
ν=1 Tν . We then select all pairs of points (xi,xj), such that Tij ∈ [tc, tm].

This selection mechanism allows us to identify pairs of points for which there exist

great uncertainty on their clustering. Thus, querying an oracle about the underlying

relationships adds valuable information which is not available from the data alone.

This process generates two constraint sets (M, C), where M corresponds to the

set of must-link constraints, and C corresponds to the set of cannot-link constraints.
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We use these constraints to form a chunklet graph as discussed in the next section.

The pseudo code for the imputation of constraints is given in Algorithm 6.

Algorithm 6 Identify Imputed Constraint sets (M,C) (IM-Constraint) Algorithm

Input: m partitions of n data points

1. For each partition ν = 1, . . . , m:

• Build the Co-Association matrix Tν of size n× n

Tνij
=

{
1 if xi,xj are in the same cluster in partition ν
0 if xi,xj are in different clusters in partition ν

2. Form the final Co-Association Matrix T from all Tν where ν = 1, . . . , m:

T =
1

m

m∑
ν=1

Tν

3. Select all pairs (or a random sample)(xi,xj) s.t Tij ∈ [tc, tm]

4. Query the oracle for the selected pairs (xi,xj)

5. Construct constraint sets (M,C)

Output: The resulting constraint sets (M, C)

6.2.2 Chunklet Graph

In devising our semi-supervised clustering methods, we have decided to build on

chunklets. Chunklets are an efficient mean of grouping points, and provide solid

information.

A chunklet is a group of points that belong to the same cluster, although the

identity of the cluster is unknown [10]. The size of the chunklet is equal to the

number of points it contains, so for chunklet 4 = (x1,x2), the size is | 4 | =2.

Each chunklet is formed by must-link constraints (M) obtained from the oracle

expert. These pairwise constraints are a realistic path for building groups, as labeled
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data is likely inaccessible. So, if the oracle imposes a must-link between points x1

and x2, then chunklet 41 = (x1,x2) is formed.

Following the formation of chunklets through must-link constraints, a transitive

closure process, in which chunklets are merged, is initiated. For example, if there is

a must-link constraint between (x1,x2) and (x1,x3) then by using transitive closure

the chunklet 42 = (x1,x2,x3) is formed.

Once chunklets are formed and all transitive closures completed, a graph is created

using the cannot-link constraints imposed by the oracle expert. These constraints

prevent the assignment of some chunklets to the same cluster. If, for example, there

is a cannot-link constraint between the pair (x3,x5) and we have the chunklet 43 =

(x4,x5), then our previously cited chunklet 42 = (x1,x2,x3) will be prevented from

the assignment to the same cluster as chunklet 43.

The cannot-link constraint is represented on the graph as an edge between two

vertices where each vertex corresponds to one chunklet. In this way the entire chunklet

graph is obtained, where each chunklet is a vertex, and each cannot-link constraint

is an edge. Edges indicate that the corresponding vertices (chunklets) should be

assigned to different clusters.

The chunklet graph Gch = (V,E) is constructed, where V is a set of vertices (or

chunklets) constructed from the must-link constraints M , and |V | is the total number

of chunklets. E is the set of edges, and an edge Eij exists between vertices (chunklets)

vi and vj iff there exist xi ∈ vi, xj ∈ vj such that (xi,xj) ∈ C. The pseudo code of

our chunklet graph construction is presented in Algorithm 7.

6.2.3 Chunklet Initialization

As with any clustering algorithm, such as the popular method k-means, the use

of good initial centroids will have an effect on the final partition. As in [13], the
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Algorithm 7 Chunklet Graph Algorithm

Input: constraint sets (M,C)

1. Compute the transitive closure for all the must-link constraints M

2. Build chunklets vi using the must-link constraints

3. Construct chunklet graph Gch = (V,E): where V corresponds to the set of
chunklets and Eij = 1 iff there exist xi ∈ vi, xj ∈ vj s.t (xi,xj) ∈ C

Output: The resulting Graph Gch

use of prior knowledge in the form of labeled data is helpful in constructing a good

initialization. Because labeled data is rarely accessible, we make use of the constraint-

based chunklet graph to identify initial centroids.

Once we have constructed the graph, we build the initial centroids using the

vertices, with cannot-link constraints between them. Thus, we select the vertices vi

and vj such that Eij = 1. We then obtain the mean vectors of the points contained

in each corresponding chunklet. These mean vectors become the initial centroids.

If the number of selected chunklets is less than k (the number of desired clusters),

we choose as additional initial centroids the points that are the farthest from the

already chosen centroids. The selection is iterated until we reach k initial centroids.

6.2.4 Chunklet Assignment

Chunklet assignment is the process of assigning vertices (chunklets) in the graph

to the appropriate centroid without violating any of the must-link or cannot-link

constraints. We consider each chunklet to be a group of points and assign all points

in the chunklet to the closest centroid.

Let us assume we use LAC as clustering algorithm. All points in each chunklet

are assigned to the centroid that minimizes the sum of the weighted squared dis-

tance between them and the centroid. Given a vertex (chunklet) vi, we calculate
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the weighted Euclidean distances between all the points xj ∈ vi and each centroid cl

where l = 1, . . . , k, and look for the centroid ck that satisfies ck= argminl(d(vi, cl)),

where d(vi, cl) =
∑|vi|

j=1

√∑D
s=1 wls(xjs − cls)2. D is the dimensionality of the data,

and wl is the weight vector associated with centroid cl.

We need to satisfy all given constraints in the assignment process by assigning

vertices in the graph that have at least one or more edges to an appropriate centroids,

and keep track of such assignments. In the following, we discuss three situations that

require different centroid assignment strategies.

Case 1 An isolated chunklet vi that does not have an edge in the graph Gch. We

assign this chunklet to the closest centroid cl that minimizes the sum of the

weighted squared distances between all the chunklet’s points (xj ∈ vi) and the

centroid itself.

Case 2 A chunklet vi that has at least one neighbor in the graph Gch, and none of

its neighbors have been assigned to any centroid. In this case, as before, we

assign vi to the closest centroid.

Case 3 A chunklet vi that has at least one neighbor in the graph Gch that has been

assigned to a centroid. We construct the set of centroids Sc, to which the

neighboring nodes of vi have been assigned. We then consider each centroid cu,

where cu /∈ Sc, and find the closest centroid to vi among them.

The process of treating each chunklet as a bulk of points, and then taking the

weighted Euclidean distance to identify the appropriate centroids will aid in mak-

ing reliable assignments. The pseudo code of the chunklet assignment procedure is

illustrated in Algorithm 8.
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Algorithm 8 Chunklet Assignment Algorithm

Input: Chunklet Graph Gch, centroids {c1, . . . , ck}, and weights {w1, . . . ,wk}
1. Create a matrix O = zeros(u, k), where u is the total number of points in all

chunklets of Gch.

2. For each vertex vi ∈ Gch, we consider three cases:

(a) Chunklet vi does not have a neighbor in the graph Gch

Assign chunklet vi to the closest centroid:

i. ck= argminl(d(vi, cl)), s.t.

d(vi, cl) =
∑

xj∈vi

√∑D
s=1 wls(xjs − cls)2

ii. ∀ (xj ∈ vi), set Oj,k = 1

(b) Chunklet vi does not have a neighbor that has been assigned to a cen-
troid.

i. Assign chunklet vi to the closest centroid ck as above.

ii. ∀ (xj ∈ vi), set Oj,k = 1

(c) Chunklet vi has at least one neighbor that has been assigned to a cen-
troid.

i. Construct the set of centroids, Sc, to which the neighboring chun-
klets have been assigned.

ii. Find the closest centroid, ck, to chunklet vi as described above,
satisfying the condition ck /∈ Sc.

iii. ∀ (xj ∈ vi), set Oj,k = 1

Output: The resulting matrix O
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6.3 Constrained Locally Adaptive Clustering

(CLAC)

6.3.1 Introduction

A wide range of research have been proposed for semi-supervised clustering. These

algorithms often improve the clustering performance with respect to unsupervised

clustering methods. Most of these techniques are capable of finding partitions for

low dimensional dataset. However, as the dimensionality of the data increases, dis-

covering meaningful clustering solutions become a difficult task even with the help of

limited supervision. In this section, we address the high dimensionality problem by

incorporating the side information in the initialization and re-iterative process of the

LAC (2.3.3) algorithm. LAC is an effective subspace clustering algorithm that asso-

ciates to each cluster a weight vector, whose values capture the relevance of features

within the corresponding cluster. LAC avoids the risk of loss of information due to

global dimensionality reduction techniques by considering all features, but properly

weight each feature. Incorporating side information into LAC algorithm makes it

a subspace clustering that adhere to the user’s preferences. We call this technique

CLAC (Constrained Locally Adaptive Clustering).

6.3.2 The CLAC Algorithm

Constrained Locally Adaptive Clustering (CLAC) is a soft feature selection proce-

dure that integrates constrained learning through the refining of initial centroids, and

during successive iterations. CLAC assigns weights to features according to the local

correlations of data. Dimensions along which data are loosely correlated receive a
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small weight, which has the effect of elongating distance along that dimension. Fea-

tures along which data are strongly correlated receive a large weight, which has the

effect of constricting distances along that dimension. CLAC produces weighted clus-

ters without violating any must-link or cannot-link constraints (under the assumption

that the satisfaction of all constraints is feasible).

In order to generate informative constraints to be incorporated into CLAC, we

used the same approach as described in Section 6.2.1. Once we have identified the

proper constraints, we build the chunklet graph as illustrated in Section 6.2.2. We

incorporate the graph into CLAC as follows. CLAC selects the initial centroids using

the chunklet graph as described in Section 6.2.3. Overall, this initialization proce-

dure is able to take into account the side information provided, to obtain cluster

representatives that can lead to a good initial partitioning of the data.

In addition, CLAC embeds the constraints during each iteration. CLAC incor-

porates the given constraints during each update of the centroids without violating

any cannot-link constraints. This is achieved using the procedure described in Sec-

tion 6.2.4. This assignment strategy ensures that at each iteration the data partition

discovered satisfies the user’s constraints. The process is iterated until convergence.

CLAC partitions the data into k clusters by assigning each data point to the

closest centroid using a weighted Euclidean distance. However CLAC treats points

in the chunklets as a group by assigning each chunklet to the closest centroid that

minimizes the sum of the squared weighted distances between all the points in each

chunklet and each centroid. It also ensures assigning chunklets connected by an edge

to different centroids.

CLAC selects the initial centroids from the chunklet graph. As LAC, CLAC

initializes all weights to 1/D. The initial partition is obtained by using the chunklet

assignment algorithm outlined in Algorithm 8. Points which are not contained in
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any of the chunklets, are assigned to the closest centroid according to the weighted

Euclidean distance. Weights are updated according the same equation (2.4)derived

for LAC , the partition of the data is recomputed (again making use of constraints)

and centroids are updated. The procedure is iterated until convergence. As LAC,

CLAC requires the h parameter in input. The CLAC algorithm is summarized in

Algorithm 9.

6.4 Weighted Clustering Ensembles with Limited

Prior Knowledge

6.4.1 Introduction

Here we propose an extension of the applicability and effectiveness of our clustering

ensemble discussed in Chapter (3), to situations where some knowledge is available

from the end user. Our newly proposed method combines a clustering ensemble’s

ability to overcome the ill-posed nature of clustering with semi-supervised cluster-

ing’s ability to leverage an end user’s knowledge. Our technique enforces knowledge-

based constraints during the partitioning of each component clustering to improve

the quality of the ensemble.

Our approach is motivated by the work of [18] where they used ensemble to pro-

duce final partition then use labeled data to assign cluster to class. Their approach

aim on the improvement of semi-supervised classification to label new coming point;

whereas our approach aim to enhance the clustering ensembles technique by enforcing

constraints during the partitioning process.

Enforcing constraint sets provided by the end user would improve the performance

of the ensemble. This prior knowledge carries information on the underlying structure
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Algorithm 9 CLAC Algorithm

Input: n points x ∈ <D, k, and h.
1. (M,C)= IM-Constraint (m partitions)
2. S1 = ∅, . . . , Sk = ∅
3. (Gch)= Chunklet-Graph (M,C);
Chunklet Initialization
∀ vi ∈ Gch such that Eij = 1 for some j

Compute the mean of points in vi and assign it as initial centroid;
Set z = number of selected centroids;
while (z < k)

Select the farthest point from the already selected centroids, and assign it as
initial centroid;

Let {c1, . . . , ck} be the resulting centroids;
4. Set wsj = 1/D, for each centroid cj, j = 1, ..., k and each feature s = 1, ..., D;
5. O= Chunklet-Assignment (Gch, {c1, . . . , ck}, {w1, . . . ,wk})

For each vi ∈ Gch, let ti be the assigned cluster centroid (as determined by the
chunklet assignment procedure)
∀x ∈ vi, Sti = Sti

⋃{x};
6. For each centroids cj, and for each point x /∈ vi, ∀i

St = St

⋃{x|t = argminlLw(cl,x)}
where Lw(cl,x) = (

∑D
s=1 wls(cls − xs)

2)1/2;
7. Compute new weights

For each centroid cj, and for each feature s:
Set Xjs =

∑
x∈Sj

(cjs − xs)
2/|Sj|;

Set wjs =
exp(−Xjs/h)∑D

s=1 exp(−Xjs/h)
;

8. O= Chunklet-Assignment (Gch, {c1, . . . , ck}, {w1, . . . ,wk})
For each vi ∈ Gch, let ti be the assigned cluster centroid (as determined by

the chunklet assignment procedure)
∀x ∈ vi, Sti = Sti

⋃{x};
9. For each centroids cj, and for each point (x /∈ vi, ∀i)

St = St

⋃{x|t = argminlLw(cl,x)}
where Lw(cl,x) = (

∑D
s=1 wls(cls − xs)

2)1/2;
10. Compute new centroids

Set cj =
∑

x x1Sj
(x)∑

x 1Sj
(x)

, for each j = 1, ..., k, where 1S(.) is the indicator function of
set S;
11. Iterate 5-10 until convergence (no change in cluster assignment).
Output: The partition S = {S1, . . . , Sk}
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of the data on which the components of the ensemble were not able to agree. By

enforcing such constraints at the components’ level, we ensure that the corresponding

structure they represent is carried out into the consensus function, and therefore into

the consensus partition. Thus, we aim to produce a robust and stable solution of the

given data that adheres to the user’s preference.

6.4.2 Constrained-Weighted Bipartite Partitioning Algo-

rithm (C-WBPA)

Our goal is to generate robust and stable solutions via a consensus clustering method

that makes use of prior knowledge under the form of must-link (two points must

be assigned to the same cluster) and cannot-link (two points must be assigned to

different clusters) constraints. We generate contributing clusterings by running the

LAC algorithm multiple times by changing the h parameter. The process of our

approach is as follows.

We generate imputed constraints using the approach described in Section 6.2.1.

Once we have identified the proper constraints, we build the chunklet graph as il-

lustrated in Section 6.2.2. We then incorporate the graph into clustering ensembles

components without violating any cannot-link constraints using the procedures de-

scribed in Section 6.2.4. The assignment strategy is applied for each run of the LAC

algorithm, changing the h parameter in each run.

Since LAC produces weighted clusters, we use this information to assign the ver-

tices in the chunklet graph to the closest centroid. For each partition of LAC we

assign each chunklet to the closest centroid which minimizes the sum of the squared

weighted distances between all the points in each chunklet and each centroid. This

assignment will produce a matrix O of values [0,1], where the number of rows is equal
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to the number of points in the chunklet graph, and the number of columns is equal

to the number of k clusters. The entry (ij) = 1 means that the point i is most likely

belongs to cluster j. We also ensure the assignment of chunklets connected by an edge

to different centroids. However, for points xi not involved in the constraint sets, and

for each clustering ν = 1, . . . , m we follow our consensus clustering approach WBPA

(introduced in Section 3.2.2).

We then initialize a matrix N to zeros values, where the rows are equal to the

total number of n points, and the columns are equal to the number of k clusters. We

then start filling the matrix N for each data point x. For the points participating in

the chunklet graph, we retrieve their row value from the i-th row matrix O and assign

it to N (i-th row of N). For points not involved in the constraint set, we extract their

probability vectors Pi and assign it to Ni. We follow the above procedure for each

partition. Finally, we construct the following AN matrix:

AN =

(
N1 N2 . . . Nm

)
(6.1)

For the aggregation step, we rely on the consensus clustering approach WBPA

(introduced in Section 3.2.2). The steps of the algorithm, which we call C-WBPA

(Constrained, Weighted Bipartite Partitioning Algorithm), are summarized in Algo-

rithm 10.

6.4.3 Experimental Design

In our experiments, we used eight real datasets. The characteristics of all datasets

are given in Table 6.1. Iris, Breast, Letter(A,B), Wine and Ionosphere are from the

UCI Machine Learning Repository [8]. WDBC is the Wisconsin Diagnostic Breast

Cancer dataset [52]. Ling-Spam and 20Newsgroups are two high dimensional text
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Algorithm 10 Constrained-Weighted Bipartite Partitioning Algorithm

Input: n points x ∈ RD, and k

1. Run LAC m times with different h values. Obtain the m partitions:
{cν

1, . . . , c
ν
k},{wν

1 , . . . ,w
ν
k}, ν = 1, . . . , m

2. (M, C)= IM-Constraint (m− partitions)

3. (Gch)= Chunklet-Graph (M, C, )

4. For each partition ν = 1, . . . , m:

(a) Oν= (chunklet-Assg) (Gch, {cν
1, . . . , c

ν
k}, {wν

1 , . . . ,w
ν
k})

(b) ∀ xi not involved in any constraints

i. Compute dν
il =

√∑D
s=1 wν

ls(xis − cν
ls)

2

ii. Set Dν
i = maxl{dν

il}
iii. Compute P (Cν

l |xi) =
Dν

i −dν
il+1

kDν
i +k−∑

l dν
il

iv. Set P ν
i = (P (Cν

1 |xi), P (Cν
2 |xi), . . . , P (Cν

k |xi))
t

(c) Initialize N ν = zeros
∀ xi not involved in constraints

N ν = P ν
i , [i-th row of N ν is set equal to P ν

i ]

∀ xi in constraints
N ν = Oν , [i-th row of N ν is set equal to Oν ]

5. Construct the matrix AN as in (6.1)

6. Construct the bipartite graph G = (V,E), where V = V C ∪ V I , |V I | = n
and V I

i ≡ xi, |V C | = km and V C
j ≡ Cj (a cluster of the ensemble). Set

E(i, j) = 0 if Vi and Vj are both clusters or both instances. Set E(i, j) =
AN(i− km, j) = E(j, i) if Vi and Vj represent an instance and a cluster

7. Run METIS on the resulting graph G

Output: The resulting k-way partition of the n vertices in V I

112



Table 6.1: Characteristics of the datasets

Dataset k D n (points-per-class)
Iris 3 4 150 (50-50-50)

WDBC 2 31 424 (212-212)
Breast 2 9 478 (239-239)

Letter(A,B) 2 16 1555 (789-766)
Wine 3 13 178 (59-71-48)

Ionosphere 2 33 239 (126-113)
20Newsgroups(ele-med) 2 321 1971 (981-990)

Ling-Spam 2 350 906 (453-453)

datasets. The text documents in each dataset were preprocessed by eliminating stop

words (based on a stop words list) and stemming words to their root source. As

feature values in the vector space model we have used the frequency of the terms in

the corresponding document. To reduce the dimensionality of the data, we followed

the procedure presented in [42].

Ling-Spam is a mixture of spam messages (453) and messages (561) sent via the

linguist list, a moderated (hence, spam-free) list about the profession and science of

linguistics. The original size of the dictionary is 24627. After processing the data as

described above, the dictionary size was reduced to 350. 20 Newsgroups is a collection

of 20,000 messages collected from 20 different netnews newsgroups. One thousand

messages from each of the 20 newsgroups were chosen at random and partitioned by

newsgroups name. In our experiments we consider the categories medical (990) and

electronics (981). The original size of the dictionary is 24,546; after processing the

data, the dictionary size was reduced to 321.

Since METIS [43] requires balanced datasets, we performed random sampling on

Breast, WDBC, Ionosphere, and Ling-Spam. In each case, we sub-sampled the most

populated class: from 357 to 212 for WDBC, from 444 to 239 for Breast , from 225 to

113 for Ionosphere, and from 561 to 453 for LingSpam. Also For the Letter dataset,
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we used the classes “A” and “B” (balanced).

We compared our constrained bipartite partitioning algorithm (C-WBPA), with

other semi-supervised clustering approaches: COP-Kmeans [66], and Seeded-COP-

Kmeans. We ran COP-Kmeans ten times with random initialization. Seeded-

COP-Kmeans was initialized using the initialization procedures described in Section

6.2.3. We also compared C-WBPA with the Constrained Locally Adaptive Cluster-

ing (CLAC) algorithm presented in Section 6.3. CLAC was ran multiple times for

different value of the h parameter.

Evaluating the quality of clustering is in general a difficult task. Since class labels

are available for the datasets used here, we evaluate the results by computing the

error rate. The error rate is computed according to the confusion matrix.

6.4.4 Analysis of the Results

We input the same set of constraints used for C-WBPA into COP-Kmeans, Seeded-

COP-Kmeans, and also into the CLAC to have a fair comparison. (As the value of k,

we input for all the techniques the actual number of classes in the data.) Figure 6.1

plots the error rate (%) and standard deviations for an increase number of constraints

for each dataset. Each figure clearly shows the improvement of our (C-WBPA) al-

gorithm with respect to the other techniques. The trends of the error rate clearly

depends on the data distribution.

We notice the smooth trends of our technique (C-WBPA) with an increasing

number of pairwise constraints.

Our technique achieves the lowest error rate with small number of constraints in

most cases. This is because the ensemble is able to filter superior structures in the

data and if limited information is available, our C-WBPA will achieve a good result.

This characteristic makes our approach valuable asset to be used with very limited
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knowledge with no need to query oracle for more information.

CLAC also achieve smooth trends with the increase number of pairwise con-

straints, this because CLAC depends on the setting of h parameter. CLAC achieves

improvement result with respect to the LAC algorithm, but not for all values of the

h parameter. For example, for the Breast cancer dataset we notice the large value of

standard deviations for each input of constraints. This indicates a great variability of

the error rate between individual components from the mean. Further investigation

leads to notice that CLAC achieves good result for various value of the h parameter,

but not for the case where h = 10. For h = 10 CLAC achieves an error rate of 34.94%

even with the increase number of pairwise constraints, which made the average of the

error rate very bad with respect to other techniques.

Also, for the WDBC dataset we notice the increase rate of the error and standard

deviations with the increase number of pairwise constraints. This is clear from the

figure, especially when the input constraints reaches to 50 of the number of pairwise

constraints or more. The increase of the error rate along with the increase of standard

deviations make CLAC not stable for some value of the h parameter and indicate a

great scatter of the individual components with a wide range. Therefore, an increase

of the number of pairwise constraints is not necessary would reduce the error rate

and the standards deviations for different value of the h parameter.

Increasing the number of constraints made available to each component may in-

duce a high degree of correlation between them, causing diversity to decrease. We

proved in Section 4.3.1 that a high diversity in clustering results contributes to a

high accuracy in the aggregation results. This phenomenon might be the reason for

the stable error rate of C-WBPA for increasing constraints. We emphasize the large

improvements obtained by both C-WBPA and CLAC for high dimensional datasets
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(20Newsgroups, Ling-Spam) we tested. This is because the LAC and CLAC algo-

rithm techniques are designed to handle data with high dimensionality, while any

variation of k-means tends to break down for datasets with high dimensionality.
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Figure 6.1: Constrained Clustering Ensemble Results
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6.5 Bootstrapping of Constraints: Penta-training

6.5.1 Introduction

In our penta-training framework we combine clustering ensembles with semi-

supervised clustering. We use the ensemble framework to bootstrap informative con-

straints directly from the data, and from the different clustering components. Our

approach is well suited for problems where the information available from an external

source (e.g., domain expert) is very limited. We also demonstrate the feasibility of

our technique to situations where prior knowledge is absent. Our work is motivated

by co-training [14] and tri-training [70]. As co-training and tri-training, we leverage

the ensemble methodology to perform semi-supervised learning. While co-training

and tri-training use classifiers as learning components, and propagate labels among

them, our technique uses a collection of clusterings (five, from which the name Penta-

Training) to derive constraints. To the best of our knowledge, this is the first attempt

of its kind. We use CLAC as the basic component of our penta-training framework,

where the individual clusterings are iteratively refined using constraints generated

during the penta-training process.

6.5.2 Penta-Training Algorithm

Penta-Training assembles multiple (five) clusterings obtained by CLAC, and boot-

straps constraints to improve the quality of the components, and ultimately of the

ensemble.

Given an initial collection of constraints (M , C), we run CLAC five times with

different values of the h parameter. Each run of CLAC is provided with the en-

tire data set and the entire constraint set. We obtain five clusterings of the data.

Penta-training leverages the consensus achieved across such partitions to bootstrap
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and propagate constraints: we look for pairs of points on which four (out of the

five) clusterings agree (and the fifth disagree), i.e., all four clusterings group the two

points together, or separately. In the first case, a must-link constraint is generated

for the fifth component; in the second case, a cannot-link constraint is generated.

Once all constraints for a given component have been generated, they are added to

the current set of constraints of that component, and CLAC is re-run. The process

is iterated for all combinations of four components, until no change in all five clus-

terings is observed. To ensure that only relevant constraints are propagated, we rank

the candidate constraints, and use only the top ranked ones. In particular, for each

candidate must-link constraint (xn,xm), we compute the four weighted Euclidean

distances, using the corresponding weights of the clusters the two points xn and xm

are assigned to, and compute their average. The average distances are then sorted in

ascending order. We select the top ranked pairs (with smallest distances) as must-

link constraints for the fifth component. We proceed similarly for the cannot-link

contraints. For each candidate cannot-link constraint we compute their Euclidean

distance (note that in this case, four clusterings place the points in different clusters,

and therefore there is no single weight vector associated with them). We then sort

the distances in descending order. We select the top ranked pairs (with largest dis-

tances) as cannot-link constraints for the fifth component. In our experiment, at each

iteration of penta-training, we select the top five ranked must-link and the top five

ranked cannot-link constraints.

We observe that penta-training can be applied also when no constraints are ini-

tially available. In this case, we start building the ensemble by simply running the

original LAC algorithm (with no side-information) using different values of h. As

constraints are bootstrapped during the rounds of penta-training, LAC is substituted

by CLAC. We test this scenario as well in our experiments.
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Table 6.2: Characteristics of the datasets

Dataset k D n (points-per-class)
Iris 3 4 150 (50-50-50)

WDBC 2 31 424 (212-212)
Breast 2 9 478 (239-239)
Wine 3 13 144 (48-48-48)

Ionosphere 2 33 239 (126-113)

At convergence, we have available five partitions (precisely, each partition corre-

sponds to k centroids, and corresponding weight vectors). We map the problem of

finding a consensus function to a graph partitioning problem, by applying the WBPA

(Weighted Bipartite Partitioning) algorithm presented in Section 3.2.2, which has

been demonstrated to be effective. The WBPA algorithm takes into account not only

how often points are grouped together across the clusterings, but also the degree of

confidence of the groupings (by means of the weights). The Penta-Training algorithm

is summarized in Algorithm 11.

6.5.3 Experimental Design

In our experiments, we used five real datasets. The characteristics of all datasets

are given in Table 6.2. Iris, Breast, Wine and Ionosphere are from the UCI Machine

Learning Repository [8]. WDBC is the Wisconsin Diagnostic Breast Cancer dataset

[52].

The clustering ensemble algorithm WBPA uses METIS [43] to compute the k-way

partitioning of a graph. Since METIS [43] requires balanced datasets, we performed

random sampling on Breast, WDBC, Wine, and Ionosphere. In each case, we sub-

sampled the most populated class: from 357 to 212 for WDBC, from 444 to 239 for

Breast, from 59 to 48 and 71 to 48 for Wine, and from 225 to 113 for Ionosphere.
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Algorithm 11 Penta-training Algorithm

Input: n points x ∈ <D, and k.
Run LAC algorithm m times for ν = 1, . . . , m
(M, C)= IM-Constraint (m− partitions)
(Gch)= Chunklet-Graph (M, C)
S(hi)= CLAC({x}, k, hi, M , C), for i = 1, . . . , 5;
Let T

(hi)
n ∈ S(hi), be the set in partition S(hi) to which xn is assigned;

[Initialization of constraints for each component]
for i = 1, . . . , 5

M (hi) = M, C(hi) = C;
repeat

for l = 1, . . . , 5
[Bootstrapping of must-link constraints]

for every pair (xn,xm) /∈ M
if ( (T

(hl)
n 6= T

(hl)
m ) and (∀i 6= l, T

(hi)
n = T

(hi)
m ))

Calculate the average weighted distance:
d(xn,xm) = 1

4

∑
i 6=l(

∑D
s=1 wts(xns − xms)

2)1/2;
[wt is the weight vector of the cluster the points xn and xm are assigned

to]
end if

end for
Sort above distances in ascending order;
Select a percentage of top ranked pairs (with smallest distances), and add

them to Mhl
;

[Bootstrapping of cannot-link constraints]
for every pair (xn,xm) /∈ C

if ( (T
(hl)
n = T

(hl)
m ) and (∀i 6= l, T

(hi)
n 6= T

(hi)
m ))

Calculate the Euclidean distance:
d(xn,xm) =

∑D
s=1 wts(xns − xms)

2)1/2;
end if

end for
Sort above distances in descending order;
Select a percentage of top ranked pairs (with largest distances), and add them

to Chl
;
Run CLAC({x}, k, hl, Mhl

, Chl
);

end for
until convergence [all five clusterings do not change]
Input the obtained five partitions (and corresponding weights) to WBPA presented
in Section 3.2.2;
Output: Partition of the n data points into k clusters.
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We tested our penta-training framework with two scenarios: in one case, a lim-

ited number of constraints is initially available; in the second case, no constraints are

available. For the first scenario, to generate the initial set of constraints, we follow the

procedure introduced in Section 6.2.1. For each dataset, the number of constraints

generated is equal to 20% the number of data available. The obtained constraints are

given in input to all five CLAC components. Each run of CLAC uses a different values

of the h parameter. In our experiments we use the values {1, 3, 5, 7, 10}. According

to our experience, this range of values provides in general diverse and accurate com-

ponents. In the second case, when no initial constraints are available, we build the

ensemble by running the LAC algorithm with the five values of h. As constraints are

bootstrapped during the iterations of penta-training, LAC is substituted by CLAC.

At each iteration of penta-training, for each component, we bootstrap the top five

ranked must-link constraints, and the top five ranked cannot-link constraints. We

compare the following technniques:

• LAC [19]. We run the LAC algorithm five times for h ∈ {1, 3, 5, 7, 10}, and

report average error rates and standard deviations.

• CLAC. We run the CLAC algorithm five times for h ∈ {1, 3, 5, 7, 10}, and

report average error rates and standard deviations. We provide CLAC the set

of constraints generated according to the procedure described in Section 6.2.1

• Penta-Training with initial constraints. We start penta-training with the same

initial set of constraints we feed all competitive semi-supervised techniques.

• Penta-Training without initial constraints. In this case, no external con-

straints are used. The ensemble starts off in an unsupervised mode (LAC

components), and constraints are bootstrapped in successive iterations from

the data.
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6.5.4 Analysis of the Results

Table 6.3: Penta-training accuracy results

Methods Iris Breast WDBC Ionosphere Wine
LAC 14.13 ± 2.18 15.9 ± 11.78 19.76 ± 15.7534.06 ± 4.2015.16 ± 11.15
CLAC (20%) 13.06 ± 1.7420.08 ± 13.15 16.69 ± 8.92 32.38 ± 3.0815.69 ± 11.59
Penta-training (20%) 10.67 3.56 9.19 31.38 11.11
Penta-training (w/o const) 14 3.14 8.73 31.38 9.03

Error rates and standard deviations are reported in Table 6.3. In all five prob-

lems, penta-training provided the lowest error rate, or an error rate very close to

the minimum. In some cases, penta-training provides huge improvements with re-

spect to LAC, and CLAC. This indicates that the collaborative approach adopted by

penta-training allows the bootstrapping of accurate and relevant constraints for the

clustering process. In particular, as expected, the largest improvements are achieved

when LAC and CLAC have large standard deviations (i.e., on Breast, WDBC, and

Wine). In these cases, the components are diverse, and the ensembles become most

effective. Also, In one dataset, Ionosphere, penta-training without constraints and

penta-training with constraints achieved equally accurate results. Quite interesting is

the fact that penta-training without initial constraints in most cases performs better

than penta-training with initial constraints. This shows the efficacy of our data-driven

and ensemble-driven constraints.
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Chapter 7: Conclusion and Future Research

This chapter summarizes the dissertation, and suggests directions for future research.

7.1 Conclusions

We have discussed the challenges related to clustering and semi-supervised clustering,

and presented novel techniques to address them.

In applying clustering methods, researchers have found problems arising from high

dimensionality and parameter tuning. Our three algorithms make use of the ensemble

methodology, which capture the common structures discovered by multiple clustering

results, while averaging out emergent spurious structures. We apply our techniques

to several real datasets, including high-dimensional text data, and categorical data.

The experimental results show that our clustering ensembles can provide solutions

that are as good as or better than the best individual clustering. Furthermore, our

results show that a high level of diversity is correlated with a high level of accuracy.

Thus, provided that input clusterings are diverse, our weighted ensemble methods

can provide robust and stable solutions.

We also developed three methodologies for semi-supervised clustering techniques.

Our techniques embed side-information (in terms of pair-wise constraints) into clus-

tering ensembles. The first technique enforces constraints during the partitioning pro-

cess of each component to improve the quality of the overall ensemble, and achieve a

result that adheres to the user preference. The second technique embeds constraints

into the initialization and iterative phases of subspace clustering, thereby providing
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a subspace semi-supervised clustering that can handle high dimensional data. The

third technique, bootstraps constraints for the data without the intervention of an

oracle expert.

The experimental results show that our semi-supervised clustering ensembles can

provide solutions that are as good as or better than other semi-supervised clustering

approaches.

7.2 Future Research

Because of its scope, there are many possibilities for extending the research described

in this dissertation. Here we highlight directions for future work.

We have investigated the role of diversity in selecting ensemble components that

can provide a high quality consensus clustering. Future work includes the definition

of a selection mechanism that depends on the dataset and the ensemble components.

In addition, we have developed new and effective techniques in the area of semi-

supervised clustering that make use of side-information in different ways. We foresee

many possibilities to extend our work.

In our future work we will consider the design of a semi-supervised clustering

method that embeds constraints in the final consensus function. Also, we will inves-

tigate techniques to embed constraints across different ensemble components.

For penta-training we would like to achieve an optimal trade-off between boot-

strapping reliable constraints and maintaining a certain level of diversity among the

components. One possibility, is to generate a large number of clustering components,

and randomly select three partitions to bootstrap constraints.

Finally, the proposed techniques assume that the number of clusters to be found

is given. A future research may venture into estimate the number of clusters using
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the side-information provided by the end user.
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