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Abstract

EXACT PROPERTIES OF RESTRICTED RANDOMIZATION PROCEDURES

Hui Shao, PhD

George Mason University, 2015

Dissertation Director: Dr. William F. Rosenberger

Restricted randomization is employed in clinical trials to achieve balanced or near bal-

anced treatment assignments, but is associated with a loss of randomness. For example, the

permuted block design, probably the most commonly used restricted randomization proce-

dure, randomizes patients block by block and achieves perfect balance within each block.

However, there is at least one predictable treatment assignment within each block. To avoid

deterministic treatment allocation in the permuted block design, many clinical trialists pre-

fer randomizing the block sizes as well. While such a procedure is rarely formalized, it is

generally assumed that the design will be less predictable.

In this research, we first formalize the random block design by assuming a discrete

uniform distribution for block size. We obtain its distributional properties such as the joint

distribution of the block size and position within the block. With this distribution theory,

we can analyze properties of prediction and balance. We then explore properties of restricted

randomization procedures in clinical trials, including the permuted block design, random

block design, Efron’s biased coin design and the big stick design. We investigate the degree

of predictability and balancing properties theoretically, and discuss the performance of

randomization tests by simulation. Additionally, we conduct graphical comparisons between

these randomization procedures with respect to bivariate objectives.



The goal of this study is first to provide a statistical understanding of the random block

design, and second to provide properties of some commonly used randomization procedures

for guidance in designing clinical trials. Our analysis allows clinical trialists to quantitatively

assess predictability and balance of a restricted randomization procedure without doing

simulations.



Chapter 1: Introduction and Literature Review

1.1 Randomization in Clinical Trials

Participants in a clinical trial are randomly assigned to one of two or more treatment

groups. Randomization offers at least three major advantages. First, it prevents both the

investigators and participants from guessing further treatment assignments. In unmasked

studies, investigators may be able to guess the treatment assignment for further patients if

they know the past treatment assignments. The investigators may wait to enter a patient

into a treatment which they consider to be better suited to that specific patient if they know

the next treatment assignment. In this case, a potential bias will be introduced into the

trial. Randomization mitigates this type of bias, which is known as selection bias. Selection

bias will be described more in Section 1.3.

Second, randomization generates comparable treatment groups in both known and un-

known covariates with high probability. Any baseline differences in participant characteris-

tics such as gender, age, race and some medical baseline measurements between treatment

groups may cause bias. These covariates are known in advance and their distribution within

each treatment group can be equalized by certain randomization techniques, for example,

stratified randomization and covariate-adaptive randomization. Randomization also helps

increase the probability of comparability with respect to unknown important covariates as

well (Cornfield, 2012).

Third, randomization provides an assumption-free statistical test of the treatment effect.

These tests are known as randomization tests, originally proposed by Fisher (Fisher, 1935).

Randomization tests are performed simply on the basis that participants were randomly

assigned to treatment groups. Proper randomization ensures that statistically significant

differences between treatment groups are indeed due to an actual treatment effect.
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Hu and Rosenberger (2006) described five classes of randomization procedures: com-

plete randomization, restricted randomization, covariate-adaptive randomization, response-

adaptive randomization, and covariate-adjusted response-adaptive randomization. Let Tj

be a random variable that is 1 if the jth patient is assigned to treatment A and 0 if the

jth patient is assigned to treatment B. Then T1, . . . , Tn be a sequence of random treatment

assignments. In complete randomization, a balanced coin is used to determine the assign-

ment. The assignment Tj is Bernoulli distributed with P (Tj = 1) = 1/2 and T1, . . . , Tn

are independent. Complete randomization has the largest degree of randomness but also

a large probability of producing imbalanced treatment groups and a small probability of

serious imbalance.

Restricted randomization is used to achieve equal or approximately equal assignments

among treatment groups. In a restricted randomization procedure, the jth patient is as-

signed to either treatment A or B with an allocation probability based on the prior treatment

assignment. The allocation probability is defined as φj = P (Tj = 1|T1, . . . , Tj−1).

Covariate-adaptive randomization is used to assign patients to minimize the imbalances

of certain known important covariates within treatment groups. Response-adaptive ran-

domization is employed when it is desirable to allow more patients to be assigned to the

superior treatment. For example, 50-50 allocation may be unethical if the outcome of the

control group is serious disease or high probability of death. In response-adaptive random-

ization, the treatment assignments depend on the responses of the previous patients. The

aim of covariate-adjusted response-adaptive randomization is to allocate greater numbers

of patients to the superior treatment according to the patients’ covariate values, achieving

high statistical efficiency and power in comparing treatment effects. In a covariate-adjusted

response-adaptive randomization procedure, the allocation probabilities depend on the pre-

vious patients’ responses and covariates as well as the incoming patient’s covariates.

A statistician always faces the question of selecting an appropriate randomization pro-

cedure when designing a randomized clinical trial. The goal of this research is to provide

properties of some commonly used restricted randomization procedures that are useful in

2



selecting the appropriate procedure. We only focus on some of the restricted randomiza-

tion procedures that could be easily implemented in clinical trials. We establish theoretical

results for the degree of predictability and treatment assignments balancing properties and

investigate the performance of randomization tests by simulation.

1.2 Restricted Randomization

Many restricted randomization procedures in two-armed trials are described in Chapter 3 of

Rosenberger and Lachin (2002). Let NA(j) and NB(j) be the number of patients assigned

to treatment A and treatment B after j patients have been assigned, respectively. Let n be

the total number of patients. Both the random allocation rule and the truncated binomial

design are ways to assign exactly n/2 patients to each treatment. The random allocation

rule (RAR) is defined by the following allocation probabilities

φj =


1/2, j = 1,

n/2−NA(j−1)
n−(j−1) , j = 2, . . . , n.

(1.1)

The truncated binomial design (TBD) is defined by the following allocation probabilities

φj =


1/2, if max{NA(j − 1), NB(j − 1)} < n/2,

0, if NA(j − 1) = n/2,

1, if NB(j − 1) = n/2.

(1.2)

In a permuted block design (PBD) procedure, first a number of blocks with even block

size are established, then treatment assignments are randomized within each block. For the

purpose of treatment balance, one can use either the random allocation rule (1.1) or the

truncated binomial design (1.2) within each block. We refer to the PBD with block size

3



2B using the RAR to fill each block as PBD(B; R), and the PBD using the TBD within

blocks as PBD(B; T ). Because there is at least one deterministic assignment within each

block under the PBD, sometimes the random block design (RBD) is used by varying the

block sizes. We have not seen a formal description of the RBD. We will devote a chapter

to formalize the RBD and study its distributional properties.

The family of biased coin designs includes Efron’s biased coin design (Efron, 1971), Wei’s

urn design (Wei, 1977), Wei’s adaptive biased coin design (Wei, 1978), Atkinson’s optimum

design (1982), Smith’s design (1984b), accelerated biased coin design (Baldi Antognini and

Giovagnoli, 2004) and dominant biased coin design (Baldi Antognini and Zagoraiou, 2014).

Among these biased coin designs, Efron’s biased coin design is the easiest one to implement.

Efron’s biased coin design is defined by

φj =


1− p, Dj−1 > 0,

1/2, Dj−1 = 0,

p, Dj−1 < 0,

(1.3)

where Dj is the difference between the number of treatment A and number of treatment

B, Dj = NA(j) − NB(j) = 2NA(j) − j, and p is a constant between (0.5, 1]. We refer to

this design as BCD(p). Unlike the BCD(p) that pj is a constant, under other biased coin

designs, pj is a function of Dj .

Another class of restricted randomization procedure includes the big stick design (Soares

and Wu, 1983) and the biased coin design with imbalance intolerance (Chen, 1999). Under

these two designs, a maximum tolerated imbalance bound is pre-specified. The big stick

design (BSD) is defined by

4



φj =


1, Dj−1 = −a,

1/2, −a < Dj−1 < a,

0, Dj−1 = a,

(1.4)

where a is the pre-specified maximum tolerated imbalance. We refer to this design as the

BSD(a). The biased coin design with imbalance intolerance (BCDII) is defined by

φj =



1, Dj−1 = −a,

1− p, −a < Dj−1 < 0,

1/2, Dj−1 = 0,

p, 0 < Dj−1 < a,

0, Dj−1 = a,

(1.5)

Berger, Ivanova and Deloria-Knoll (2003) introduce the maximal procedure. The max-

imal procedure is constructed by randomly selecting an allocation sequence with equal

probability from the whole set of sequences that satisfy final balance and the maximum

tolerated imbalance. The allocation rule is similar as the big stick design, but the transition

probabilities are different. This design requires the exact number of patient n is known,

and making the randomization-based inference from this design is more difficult.

One can think of the big stick design as complete randomization with an imbalance

intolerance; BCDII is Efron’s BCD with imbalance intolerance; and the maximal procedure

is the random allocation rule with imbalance intolerance.

5



1.3 Criteria for Restricted Randomization

The degree of randomness and variability of treatment balance are the two main criteria for

qualifying a restricted randomization procedure. A higher degree of randomness means a

lower chance of predictability of further assignments. We want the randomization sequence

to be less predictable because predictability can introduce selection bias. If the investigators

are unblinded to the previous treatment assignments, they may be able to guess the next

assignment hence may try to alter the entry sequence of patients to achieve the success of

the new treatment. This may happen in masked studies too; for example, if the results of

different treatments are adverse, or the masked treatment has distinguishing features. This

type of prediction of future allocations could lead to the imbalance of baseline covariates

across treatment groups which in turn could bias the study result when the unbalanced

covariates happen to be high related with the outcome. Green and Byar (1984) stated

that “even small imbalances in important prognostic factors could overwhelm treatment

differences, either producing apparent treatment effects when none in fact are present or

masking true treatment differences when they do exist”. Berger (2005) quantified the

covariate imbalance resulting from selection bias when a permuted block randomization

procedure is used. The covariate imbalance is a function of the block size and the level of

certainty about upcoming allocations. He found that, on average, a binary covariate can be

up to 50% unbalanced by selection bias. The induced covariate imbalance from selection

bias may result in biased parameter estimation, inflated type I error rates, or overly narrow

confidence intervals (Proschan, 1994; Berger and Exner, 1999). Therefore, “the elimination

of selection bias is the most essential requirement for a good clinical trial” (Chalmers, 1990).

Regarding the quantification of the prediction of future allocations, there are several

models. The most commonly used is the expected selection bias factor proposed by Black-

well and Hodges (Blackwell and Hodges, 1957). They proposed a convergence strategy for

guessing the upcoming assignment, which was to guess the treatment that has fewer prior

allocations, or to guess one of the treatments if both treatments have equal numbers of prior

allocations. Their model calculates the expected selection bias factor, E(F ), which is the

6



expected excess of correct guesses of treatment assignments beyond that expected by chance

when the investigator uses the convergence strategy. It is also equivalent to the difference

between the expected number of correct and incorrect guesses among all the guesses made

when the two treatment groups have different prior assignments. The proof can be found in

Chapter 6 of Rosenberger and Lachin (2002). If the treatment assignments remain masked

then there is no potential selection bias regardless of the methods of treatment assignment.

For any unmasked clinical trial with complete randomization, E(F ) = 0, since the number

of correct guesses guessing with probability 1/2 for each treatment is n/2, which is the same

as that using the optimal strategy. For the PBD(B, R), let M be the number of blocks,

then the expected selection bias factor is given by (Matt and Lachin, 1988):

E(F ) = M

 22B−1(
2B

B

) − 1

2

 . (1.6)

While E(F ) measures the difference between the expected number of correct and incorrect

guesses, Smith (1984a) suggested measuring the difference between expected percentage of

correct guesses and that of incorrect ones, which is equivalent to
∑n

j=1E(F )/n. This metric

has the advantage of ranging from 0 to 1. Many researchers have employed this measure

of selection bias in their studies (Baldi Antognini and Giovagnoli, 2004; Zhao et al, 2011;

Baldi Antognini and Zagoraiou, 2014; Atkinson, 2014). Smith also proposed a measure to

quantify the effect of selection bias based on the Blackwell and Hodges model, which is

E(F )xd/(2n), where xd is the mean difference in response between a patient selected in the

belief that the next treatment assignment will be treatment A and one selected in the belief

of treatment B (Smith, 1984b). Another measure of the selection bias based on E(F ) is

Chen’s (1999, 2000) method. He introduced the average excess selection bias up to epoch

n for assessing randomness:

7



n∑
j=1

E[max(φj , 1− φj)]
n

− 1

2
. (1.7)

He applied this quantity to measure the randomness of the BCDII, BCD, and BSD. We

will show that this is mathematically equivalent to
∑n

j=1E(F )/n later in Chapter 3.

Matts and Lachin (1988) proposed a type of predictability: prediction with certainty.

They assume the investigators only try to influence the patients’ entry when they know what

the next assignment is with certainty. For a PBD(B, R), the upcoming assignments are

deterministic after B allocations have occurred to one of the treatments within the block.

Therefore, the number of predictions with certainty can be from 1 to B within a block.

Matts and Lachin modified the Blackwell-Hodges model to measure E(F ′), the expected

number of assignments that are predictable with certainty. For an unmasked two-armed

PBD(B, R), E(F ′) is given by

E(F ′) =
2BM

B + 1
. (1.8)

Deterministic allocation does not occur in all the restricted randomization procedures, for

example, the BCD and Wei’s urn design. Dupin-Spriet, Fermanian and Spriet (2004) derived

a more general formula to measure the predictability which can also be used in a PBD with

three or more arms, and trials with unbalanced treatment allocation. They define the

predictability within a block as the proportion of the expected number of treatments which

are predictable within a block of known length. In the case of trials with two treatment arms

and balanced PBD, the predictability within a block is 1/(B + 1), which is equivalent to

the result (1.8) of Matts and Lachin. From this formula, we can see that the predictability

within a block decreases as in the block size increases.

Berger (2007) pointed out that the predictable allocations defined by Dupin-Spriet et

al. are actually deterministic allocations. He redefined predictable allocations as those
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whose conditional distribution differs from the unconditional distribution specified by the

allocation proportions. He also defines deterministic allocations as those for which the

conditional distribution is degenerate, having a positive probability of only one outcome.

For illustration, consider the sequence ABAB for a two-armed balanced PBD(2, R). The

fourth allocation in the sequence is deterministic because we know it must be B, given that

each block has only two allocations to A and two allocations to A have been already made

in this block. The second allocation is predictable because, given the first assignment to A,

there remain two assignments to B and one assignment to A. The conditional probability

of allocation to B is 2/3 while the unconditional probability is 1/2. The first and third

allocations are unpredictable because their conditional probabilities are 1/2 which is the

same as the unconditional probability. The results appear in Table 4.4 of the book are

reproduced here in Table 1.1 (Berger, 2007).

The correct guesses showed in the table are calculated based on the use of convergence

strategy. The results show that the probability of deterministic allocations decreases greatly

from 50% to 25% when the block size increases from 2 to 6. However, the chance of

predictable allocation increases and the probability of correct guesses only decreases slightly

from 75% to 68%.

Since restricted randomization is employed for achieving exact or approximate treatment

assignment balance, the treatment assignment balancing property, is another important

criteria for qualifying a restricted randomization procedure. The main reason for equal

allocation is statistical precision. The test and estimation procedure to be used in analyzing

the data are usually more efficient if the allocation is balanced (Soares and Wu, 1983). Large

imbalances in treatment assignments may create imbalances in important covariates; hence

they negatively impact the study results as we discussed before.

There is no uniform measure for balance in randomization procedures. Efron (1971)

looked at the probability of achieving exact balance. Soares and Wu (1983) proposed to look

at both the probability that the design produces an unacceptable imbalance, P (|Dn| ≥ n/3),

and the maximum absolute imbalance throughout the trial. Based on the fact that the
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variance of the estimated treatment difference is proportional to 1/nA+1/nB, Smith (1984a)

used E(1/nA + 1/nB − 4/n) to measure the imbalance for biased coin design. Chen (1999)

introduced the average imbalance between the treatment allocations up to epoch n to measure

the imbalance of the BCD, BSD and BCDII, which is given by

n∑
j=1

E(|Dj |)
n

. (1.9)

Burman (1996) considered the lack of balance at step n in the form

Ln = E

(
Dn√
n

)2

,

which in fact equals V ar(Dn)/n since E(Dn) = 0. This measure is also called loss of

precision and has been widely used in research (Atkinson 1999, 2002, 2003 and 2014, Baldi

Antognini and Zagoraiou 2014). Markaryan and Rosenberger measured the exact variance

of terminal imbalance of the BCD, V ar(Dn).

Ideally a restricted randomization procedure would be random and would produce bal-

anced allocation. In fact, randomness and balance are competing goals. The more restric-

tive the allocation procedure, the less randomness, and treatment imbalance, the greater the

predictability and potential for selection bias. The random allocation rule, the truncated

binomial design and the PBD with a completion of the last block produce exact balance

in treatment assignment at the cost of prediction. The BCD and Wei’s urn design are less

predictable but have potentially large imbalances when the sample size is large. Much of

the research on randomization procedures has been to find a trade-off between the degree of

randomness and balance in the treatment assignments. Researchers have attempted to find

a less restricted randomization procedure that minimizes the predictability while retaining

balance; for example, the big stick design, the biased coin design with imbalance intolerance

and the maximal procedure.
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Berger, Ivanova and Deloria-Knoll (2003) define three conditions for describing balance.

Condition T specifies the final treatment balance. Condition B specifies the maximum

tolerated imbalance. Condition F specifies perfect balance within each block. The big

stick design and biased coin design with imbalance intolerance are defined by Condition B

while the maximal procedure is defined by Conditions T and B. Because all the allocation

sequences for a PBD have to satisfy all three conditions, the big stick design, the biased

coin design with imbalance intolerance and the maximal procedure have less predictability

than the PBD. However, for the maximal procedure, this reduction of prediction does not

require a corresponding increase of imbalance, because Condition B specifies the largest

imbalance.

1.4 Permuted Block Design

The PBD is the most frequently used restricted randomization procedure in clinical trials.

If the enrollment of the last block is complete, this randomization procedure can achieve

a perfect balance between treatment groups, otherwise, it generates treatment groups with

unequal sample sizes. The imbalance at point n, which is |Dn|, is always less than or equal

to B.

The PBD can prevent the problem of severe imbalance during the course of the trial that

may occur in complete randomization, the random allocation rule and truncated binomial

design. If the baseline characteristics of patients change with time, such severe imbalance

could lead to differences between treatment groups in these important covariates, hence

introducing potential bias especially when the trial size is small. Choosing a small block

size could fix this problem. Block sizes greater than 2 are recommended, as a procedure with

a block size of 2 requires identical pairs and incurs a high risk of selection bias (Rosenberger

and Lachin, 2002).

The main disadvantage of the PBD is that selection bias arises frequently since the

allocation sequence will become known or predictable when the block size is fixed and

the previous treatment assignments are unmasked. For example, within a block, if the
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current assignment sequence is BAA, given a block size of 4, the last assignment must be

B in order to ensure treatment balance. Such a deterministic treatment assignment allows

the investigators to guess future treatment assignment correctly and they may alter the

patients’ entry. Using a large block size will help protect against the investigator predicting

the treatment assignment. However, if one treatment occurs frequently at the beginning of

a block, there will be a large imbalance if the trial is terminated midway through a block.

Therefore, the block size should be short enough to prevent a large imbalance and long

enough to decrease the predictability of further assignment.

The random block design (RBD), in which the block size is randomly selected, is pro-

posed to reduce the predictability of further assignments when the trial is not double-

blinded. Each of the M blocks has 2bi patients, i = 1, 2, . . . ,M . Each bi is an integer from

1, ...,K. The block size of the ith block is randomly selected with a probability of 1/K.

Since the block sizes are varied and concealed, the procedure helps preserve unpredictability.

Matts and Lachin (1988) calculated the expected selection bias factor E(F ) and the

modified selection bias factor E(F ′) for both PBD and RBD when the block sizes are

unmasked. For a PBD with equal block size 2B, E(F ) is given by (1.6) and E(F ′) is given

by (1.8). For a RBD with possibly unequal block sizes (2bi, i = 1, 2, . . . ,M), if every block

is filled, the overall selection bias factor E(F ) is given by

E(F ) =
M∑
i=1

 22bi−1(
2bi
bi

) − 1

2

 . (1.10)

The overall E(F ′) is given by

E(F ′) =

M∑
i=1

2bi
bi + 1

. (1.11)

Note here that bi is, itself, a random variable, and there is no assurance that the final block

will be filled. Based on the calculation, they argued that the selection bias factor of a RBD
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is approximately equal to the average of the bias factors over all blocks. For example, the

selection bias factor of a design with block sizes of 6 and 10 will be approximately the same

as that of a block size of 8. In this case, the RBD does not reduce the chance of selection

bias. Matts and Lachin further illustrated that the prediction with certainty is considerably

reduced by varying the block sizes instead of having a fixed block size only if the block sizes

are unknown to the investigators, by comparing the E(F ′) of an RBD with two block sizes

4 and 6 to a PBD having a block size of 6. When the sequence of block sizes is masked and

the sequence of treatment assignments is unmasked, treatment assignments are known with

certainty only when the imbalance reaches one-half of the block size. Hence, decreasing the

proportion of blocks with the largest block size will reduce the expected selection bias.

Many researchers pointed out that, even when the sequence of block sizes is unknown,

the RBD does not reduce the chance of selection bias and may introduce more prediction

than the PBD (Rosengerger and Lachin, 2002; Berger, Ivanova and Deloria-Knoll, 2003;

Berger, 2007; Salama, Ivanova and Qaqish, 2008). Berger, Ivanova and Deloria-Knoll (2003)

compared the type I error rate inflation of the PBD, RBD and the maximal procedure with

the same maximum imbalance to access the presence of selection bias based on a simulation

study. They showed that the RBD generates the most predictable allocations and the least

number of deterministic allocations; the PBD yields the most deterministic allocations.

Salama, Ivanova and Qaqish (2008) stated that some blocks are smaller in an RBD than

they could have been in a PBD, which makes it easier to predict the upcoming assignments

if the investigator is using the convergence strategy.

As stated earlier, when the sequence of block size is randomized, (1.10) and (1.11) are

inappropriate to measure the potential selection bias of an RBD due to unknown bi and M .

We will propose a metric to measure the degree of randomness of the RBD.
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1.5 Efron’s Biased Coin Design

1.5.1 Efron’s Original Article

Efron (1971) proposed his famous biased coin design (BCD) as a method to force a sequential

experiment to be balanced. The allocation rule is defined in (1.3). Efron pointed out in his

article that |Dj | forms a Markov chain with states 0,1,2,. . . . The transition probabilities

are given by

P (|Dj+1| = k + 1||Dj | = k) = 1− p (k ≥ 1),

P (|Dj+1| = k − 1||Dj | = k) = p (k ≥ 1),

P (|Dj+1| = 1||Dj | = 0) = 1.

This is a random walk which has a reflecting barrier at the origin, and the stationary

probabilities are the following:

π0 =
r − 1

2r
, πj =

r − 1

2r

r + 1

rj
(j ≥ 1),

where r = p/1− p. The period of this Markov chain is 2 because |Dj | can only be odd or

even values as j is odd or even. Therefore, the limiting probabilities of exact balance and

imbalance of 1 are given by

lim
m→∞

P (|D2m| = 0) = 2π0 =
r − 1

r
,

lim
m→∞

P (|D2m+1| = 1) = 2π1 =
r2 − 1

r2
.

Efron suggested that investigators use p = 2/3 (p. 405). The asymptotic probability of the

allocation being exactly balanced is 1/2 for even j, and the asymptotic probability of being

almost balanced (imbalance of 1) is 3/4 for odd j. The distribution of |Dj | gets closer to 0
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when p is increasing for any j, but Efron failed to provide the exact distribution of |Dj | to

support his claim.

Efron calculated the selection bias of BCD based on the definition proposed by Blackwell

and Hodges (1957). A measure of selection bias is the expectation of correct guesses of the

assignment if the investigator guesses optimally. The optimal guess against a BCD is the

treatment which has occurred least often so far. The probability of a correct guess for the

jth allocation is

1

2
P (|Dj−1| = 0) + pP (|Dj−1| > 0).

As j →∞, the asymptotic probability is

1

2
π0 + p(1− π0) =

1

2
+
r − 1

4r
.

Then the asymptotic selection bias in j assignments can be computed as

r − 1

4r
j. (1.12)

1.5.2 Markaryan and Rosenberger’s Work

In 2010, Markaryan and Rosenberger derived the exact distribution of the imbalance of the

treatment assignment and the variance-covariance matrix of the treatment assignments.

These results provide the means to derive an explicit form of the selection bias and the

variance of the imbalance, which reflect the degree of randomness and the variability of the

BCD procedure, respectively. Let n be the total number of assignments, n = 1, 2, 3, . . .. Let

0 ≤ k ≤ n, k and n have the same parity. Then the distribution of Dn is given by

15



P (Dn = ±k) =
1

2
p(n−1)/2

(n−k)/2∑
l=0

n+ k − 2l

n+ k + 2l

(n+k
2 + l

l

)
(1− p)k+l−1, when k > 0,

P (Dn = 0) = pn/2
n/2−1∑
l=0

n− 2l

n+ 2l

(n
2 + l

l

)
(1− p)l, when k = 0.

(1.13)

Hence the variance of Dn is given by

V ar(Dn) =
n∑

k=1, n−k even
k2p(n−k)/2

(n−k)/2∑
l=0

n+ k − 2l

n+ k + 2l

(n+k
2 + l

l

)
(1− p)k+l−1. (1.14)

Note that this variance is increasing in n when p if fixed and is decreasing in p for given

n. Using the steady state distribution property of the induced Markov chain, the limiting

variance of the imbalance is given by

4r(r2 + 1)

(r2 − 1)2
, when the number of trials is even,

8r2

(r2 − 1)2
+ 1, when the number of trials is odd.

The variances become stable and approach their limit when the size of the trials is between

75 to 100, which indicates the balancing properties of the BCD procedure stabilize for

clinical trials with sizes of 75 to 100.

The total selection bias in n trials is given by

1

2
+ (n− 1)p− (p− 1

2
)

[(n−1)/2]∑
m=1

pm
m− l
m+ l

(
m+ l

l

)
(1− p)l, (1.15)

where [a] denotes the integer part of a, and the sum is treated as zero if the upper limit of
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summation is smaller than the lower limit. Compared with Efron’s asymptotic result (1.12),

Markaryan and Rosenberger claim that the asymptotic limit is reached when n is as small

as 50.

1.6 Big Stick Design

1.6.1 Soares and Wu’s Original Article

The BSD was originally proposed by Soares and Wu in 1983. The allocation rule is defined

in (1.4). In the original paper, the final imbalance distribution was provided. Under the

BSD, |Dj | forms a finite Markov chain with states 0, 1, 2, . . . , a and transition probabilities

given by

P (|Dj+1| = k + 1||Dj | = k) =
1

2
, for 0 < k < a,

P (|Dj+1| = a− 1||Dj | = a) = 1,

P (|Dj+1| = 1||Dj | = 0) = 1.

This is a symmetric random walk with two reflecting barriers at the origin and at a, then

its stationary distribution can be found in Cox and Miller (1965):

π0 = πa =
1

2a
, πm =

1

a
, 0 < m < a.

The initial distribution P (|D0| = 0) is 0 and |Dj | has the same parity as j; in other words,

|Dj | takes on only odd (or even) values when j is odd (or even). Thus the period of the

Markov chain is 2 and the limiting probabilities are twice the stationary probabilities. When

a is even, the limiting probabilities are given by

lim
j→∞

P (|D2j | = 0) = lim
j→∞

P (|D2j | = a) =
1

a
,
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lim
j→∞

P (|D2j | = m) =
2

a
, 0 < m < a.

And when a is odd, the limiting distribution is

lim
j→∞

P (|D2j+1| = 0) = lim
j→∞

P (|D2j+1| = a) = 0,

lim
j→∞

P (|D2j+1| = m) =
2

a+ 1
, 0 < m < a.

Soares and Wu also studied the excess selection bias E(F ) defined by Blackwell and Hodges,

as well as the accidental bias for the BSD. For the calculation, they applied the result of

high-order transition probabilities of a random walk with two reflecting barriers in Karlin’s

book (1968). However, Karlin’s solution was proved to be incorrect later and omitted in his

second edition. Therefore, Soares and Wu’s calculation is incorrect.

1.6.2 Chen’s Work on the BSD

Chen (1999) made a correction of Karlin’s formula for the BSD(a), a > 1, in Corollary 2.1:

Corollary 2.1: Under the BSD(a), the absolute difference process Dn forms a Markov

chain and its j-step transition matrix, j ≥ 0, has entries

P
(j)
l,m = ηm + (−1)j+l+mηm + 2ηm

a−1∑
k=1

(
cos

kπ

a

)j

cos

(
lkπ

a

)
cos

(
mkπ

a

)
, (1.16)

where 0 ≤ l,m ≤ a, η0 = 1/(2a), η1 = · · · = ηa−1 = 1/a, and ηa = 1/(2a) are the

components of the stationary distribution of Dn.

With this formula, he found that, under the BSD (a), the average imbalance between the

treatment allocations up to epoch n (1.9) converges to a/2. The average excess selection
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bias up to epoch n (1.7) is given by

1

4a
+

(−1)a − (−1)a+n

8an
+

1

2an

a−1∑
k=1

1− cosn(kπ/a)

1− cos(kπ/a)
. (1.17)

The asymptotic average excess selection bias is 1/(4a). Thus, the asymptotic average excess

selection bias is monotonically increasing as a decreases.

1.7 Outline of the Thesis

This thesis is structured as follows. In Chapter 2, we formalize the RBD and derive some

important distributional properties. We investigate the degree of predictability of six re-

stricted randomization procedures in Chapter 3 and the variability of treatment assignments

imbalance in Chapter 4. In Chapter 5, randomization-base inference from the six designs is

explored. Comparisons among the six designs are made in Chapter 6. Chapter 7 is devoted

to general conclusions and remarks.

1.8 Contributions of the Thesis

The contributions of this thesis are listed here:

• Rigorously define the RBD.

• Find the exact distributional properties of the RBD such as the joint distribution of

the block size and position within the block.

• Compare the RBD to other restricted randomization procedures and conclude that

randomizing the block sizes is not better with respect to selection bias.

• Draw conclusions about appropriate procedures in practice.

• Investigate the properties of randomization tests.
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Table 1.1: Prediction of future allocations with balanced (1:1) blocks (from Berger 2007, p.
90)

Size Ratio Deterministic Predictable Correct guesses

2 1:01 50% 50% 75%
4 2:02 33% 58% 71%
6 3:03 25% 63% 68%
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Chapter 2: Distributional Properties of the Random Block

Design

To avoid deterministic treatment allocations in the PBD, many clinical trialists prefer the

random block design (RBD). However, this procedure is rarely carefully defined when it is

employed. In this chapter, we formalize the RBD by assuming a discrete uniform distribu-

tion for block size. We also provide the distributional properties of the RBD.

Consider a RBD with integer block sizes from b = 1, ..., Bmax, where 2b subjects are

randomized to either treatment A or B within each block using the random allocation rule.

Each block is randomly selected uniformly with a probability 1/Bmax. If T1, ..., Tn are the

treatment assignments, where Tj = 1 if A and 0 if B, j = 1, ..., n, then the randomization

procedure is defined as φj = E(Tj |T1, ..., Tj−1).

Let Bj be the block size of the jth subject, j = 1, ..., n, which can take the values

1,...,Bmax. Note that for n subjects, each block will be filled with the possible exception of

the last. We do not assume that n is known in advance. The position number, given Bj

is denoted Rj , j = 1, ..., n, and takes the values 1, ..., 2Bj . If Rn = 2Bn, then every block

is filled; otherwise, the last block is unfilled. Let NA(n) be the total number of patients

assigned to treatment A after assigning the nth patient, then NA(n) =
∑n

j=1 Tj and is a

random variable. Let NS
A(j) denote the number of patients assigned to treatment A only

within the block of the jth patient, before assigning the jth patient to any treatment, where

NS
A(j) =

∑j−1
l=j+1−Rj Tl. Note that if Rj = 1, NS

A(j) is 0. Given the position number, NS
A(j)

is still a random variable since Tl is random. Using the random allocation rule and knowing

the block size Bj and the position number Rj , the probability of assigning the jth patient

21



to treatment A is given by

φj = E(Tj |T1, ..., Tj−1, Bj , Rj) =
Bj −NS

A(j)

2Bj −Rj + 1
. (2.1)

When assigning patients to each treatment using the truncated binomial design, the allo-

cation probability with the knowledge of block size and position number is given by

φj =


1/2, if max{NS

A(j), NS
B(j)} < Bj ,

0, if NS
A(j) = Bj ,

1, if NS
B(j) = Bj .

In the future, we refer to each design as RBD(Bmax; R) for those filled using the RAR and

RBD(Bmax; T ) for those filled using the TBD.

This chapter lists 12 lemmas, which cover the following distributional results:

• joint distribution of the block size and the position number,

• distribution of the block size,

• conditional distribution of the position number within a block, given the block size,

• conditional distribution of the number of patients assigned to treatment A within a

block so far, given the block size and position number,

• conditional distribution of the imbalance, given the block size and position number,

• distribution of the imbalance.

All these results are obtained for the first time. With the help of these results, we are

able to derive the exact selection bias of the RBD, which will be given in a later chapter.
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2.1 Distributional Properties of the RBD

In this section, we present some distributional properties of the RBD. In all the proofs of

this chapter, we treat summations as 0 if the upper limit of the summation is smaller than

the lower limit.

Lemma 1 presents the joint distribution of the position number and the block size for

j ≤ 2Bmax + 2.

Lemma 1. Let b be an integer from 1 to Bmax. Let r be an integer from 1 to 2b. Let r and

j have the same parity. For j ≤ 2Bmax + 2, the joint distribution of Bj and Rj is given by

P (Rj = r,Bj = b) =



1

Bmax
, 1 ≤ r = j ≤ 2b,

1

Bmax(Bmax + 1)

(
Bmax + 1

Bmax

) j−r
2

, 1 ≤ r ≤ min(j − 2, 2b),

0, r > min(j, 2b).

(2.2)

Proof. This proof proceeds by induction.

Note that since r and j have the same parity, the following equation holds when j is

odd:

P (Rj = r,Bj = b) = P (Rj+1 = r + 1, Bj+1 = b). (2.3)

However, equation (2.3) does not hold when j is even.

We prove equation (2.2) is true when j is odd first. Equation (2.2) is trivially true for

the case j = 1 because of the following:

P (R1 = 1, B1 = b) = P (B1 = b) =
1

Bmax
.

We assume equation (2.2) is true for j when j is any positive odd integer up to and including

2Bmax− 1. Then we prove that (2.2) works for j+ 2. We separate the proof into two parts:
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r = 1 and r ≥ 3.

Case 1: r = 1 and j ≤ 2Bmax − 1 and j is odd:

P (Rj+2 = r,Bj+2 = b) = P (Rj+2 = 1, Bj+2 = b)

= P (Rj+1 = 2Bj+1, Bj+2 = b)

= P (Bj+2 = b|Rj+1 = 2Bj+1)P (Rj+1 = 2Bj+1)

=
1

Bmax
P (Rj+1 = 2Bj+1)

=
1

Bmax
P (Rj = 2Bj − 1). (2.4)

To complete the proof, we need to find P (Rj = 2Bj − 1).

P (Rj = 2Bj − 1) =

(j+1)/2∑
b=1

P (Rj = 2b− 1, Bj = b) since j + 1 ≤ 2Bmax

=

(j−1)/2∑
b=1

1

Bmax(Bmax + 1)

(
Bmax + 1

Bmax

) j+1−2b
2

+
1

Bmax

=
1

Bmax(Bmax + 1)

(
Bmax + 1

Bmax

) j+1
2

(j−1)/2∑
b=1

(
Bmax

Bmax + 1

)b

+
1

Bmax

=
1

Bmax(Bmax + 1)

(
Bmax + 1

Bmax

) j+1
2


(

Bmax
Bmax+1

)(j+1)/2

−
(

Bmax
Bmax+1

)
Bmax

Bmax+1 − 1

+
1

Bmax

=
1

Bmax(Bmax + 1)

(
Bmax + 1

Bmax

) j+1
2

[
Bmax −

(
Bmax

Bmax + 1

) j+1
2

(Bmax + 1)

]
+

1

Bmax

=
1

Bmax + 1

(
Bmax + 1

Bmax

) j+1
2

− 1

Bmax
+

1

Bmax

=
1

Bmax + 1

(
Bmax + 1

Bmax

) j+1
2

. (2.5)
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Now we plug equation (2.5) back into equation (2.4), and we get

P (Rj+2 = 1, Bj+2 = b) =
1

Bmax(Bmax + 1)

(
Bmax + 1

Bmax

) j+1
2

,

which is exactly the right hand side (RHS) of equation (2.2) with j replaced by j + 2.

Case 2: r ≥ 3 and j ≤ 2Bmax − 1 and j is odd:

P (Rj+2 = r,Bj+2 = b) = P (Rj = r − 2, Bj = b)

=



1
Bmax

, j + 2 = r ≥ 3,

1
Bmax(Bmax+1)

(
Bmax+1
Bmax

) j+2−r
2

, j + 2 > r ≥ 3,

0, j + 2 < r.

This proves equation (2.2) holds for all 1 ≤ j ≤ 2Bmax + 2 when j is odd.

Next, we prove equation (2.2) holds for all 1 ≤ j ≤ 2Bmax + 2 when j is even. It is true

since P (Rj = r,Bj = b) = P (Rj−1 = r − 1, Bj−1 = b) when j is even.

There are two corollaries following Lemma 1.

Corollary 1. Let b be an integer from 1 to Bmax. Let r be an integer from 1 to 2b. Let r

and j have the same parity. The joint distribution of the block size and the position number

for any integer j, P (Rj = r,Bj = b), does not depend on the value of b.

Proof. For j ≤ 2Bmax + 2, we see the joint distribution is only a function of the position

number r and does not depend on the block size b from Lemma 1. Therefore, we need to

prove it also does not depend on b for j ≥ 2Bmax + 3. We have separated the proof into

two cases: j is odd and j is even.

Case 1: j ≥ 2Bmax + 3 and j is odd, for any 1 < r ≤ 2b. We have

P (Rj = r,Bj = b) = P (Rj−(r−1) = 1, Bj−(r−1) = b) = P (Rj−r+1 = 1, Bj−r+1 = b).
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Hence, we only need to prove that P (Rj = 1, Bj = b) is independent of b in this case.

P (Rj = 1, Bj = b) = P (Rj−1 = 2Bj−1, Bj = b)

= P (Bj = b|Rj−1 = 2Bj−1)P (Rj−1 = 2Bj−1)

=
1

Bmax
P (Rj−1 = 2Bj−1)

=
1

Bmax

Bmax∑
b=1

P (Rj−1 = 2b, Bj−1 = b)

=
1

Bmax

Bmax∑
b=1

P (Rj−1−(2b−2) = 2, Bj−1−(2b−2) = b)

=
1

Bmax

Bmax∑
b=1

P (Rj−2b+1 = 2, Bj−2b+1 = b)

=
1

Bmax

Bmax∑
b=1

P (Rj−2b = 1, Bj−2b = b).

This is a recursive formula, hence it can be rewritten as a function of the initial Bmax values:

P (R1 = 1, B1 = b), P (R3 = 1, B3 = b), . . . , P (R2Bmax−1 = 1, B2Bmax−1 = b). As we know

from Lemma 1, these initial values are independent of b. Therefore, P (Rj = 1, Bj = b) is

not a function of b when j ≥ 2Bmax + 3 and j is odd.

Case 2: j ≥ 2Bmax + 3 and j is even, for any 1 < r ≤ 2b. We have

P (Rj = r,Bj = b) = P (Rj−(r−2) = 2, Bj−(r−2) = b) = P (Rj−r+2 = 2, Bj−r+2 = b).

Hence, we only need to prove P (Rj = 2, Bj = b) is independent of b when j ≥ 2Bmax+3 and

j is even. This is trivially true because P (Rj = 2, Bj = b) = P (Rj−1 = 1, Bj−1 = b).
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By Corollary 1, the following equation is true:

P (Rj = r,Bj = b) = P (Rj = r,Bj = Bmax), ∀ r ≤ 2b.

Corollary 2. For any odd j and j > 1,

P (Rj = 1, Bj = b) =
1

Bmax
P (Bj−1 = Bmax).

Proof. We separate the proof into two parts: 3 ≤ j ≤ 2Bmax and j > 2Bmax. When

3 ≤ j ≤ 2Bmax,

P (Rj = 1, Bj = b) =
1

Bmax
P (Rj−1 = 2Bj−1)

=
1

Bmax

(j−1)/2∑
b=1

P (Rj−1 = 2b, Bj−1 = b)

= 1
Bmax

[
P (Rj−1 = 2, Bj−1 = 1) + P (Rj−1 = 4, Bj−1 = 2) + . . .+ P (Rj−1 = j − 1, Bj−1 = j−1

2 )
]

= 1
Bmax

[
P (Rj−1 = 2, Bj−1 = Bmax) + P (Rj−1 = 4, Bj−1 = Bmax) + . . .+ P (Rj−1 = j − 1, Bj−1 = Bmax

]
=

1

Bmax
P (Bj−1 = Bmax).

When j > 2Bmax,

P (Rj = 1, Bj = b) =
1

Bmax
P (Rj−1 = 2Bj−1)

=
1

Bmax

Bmax∑
b=1

P (Rj−1 = 2b, Bj−1 = b)

=
1

Bmax

2Bmax∑
r=2

P (Rj−1 = r,Bj−1 = Bmax)

=
1

Bmax
P (Bj−1 = Bmax).
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Corollary 2 is proven.

Corollary 1 and Corollary 2 will be significant later in this chapter in the proof of Lemma

4.

The following Lemma provides the distribution of the block size.

Lemma 2. For j ≤ 2Bmax + 2 and j is odd, the distribution of Bj is given by

P (Bj = b) =


1

Bmax

(
Bmax + 1

Bmax

)(j−1)/2
[

1−
(

Bmax
Bmax + 1

)b]
, 1 ≤ b ≤ j−1

2 ,

1

Bmax

(
Bmax + 1

Bmax

)(j−1)/2
, j+1

2 ≤ b ≤ Bmax.
(2.6)

For j ≤ 2Bmax + 2 and j is even, the distribution of Bj is given by

P (Bj = b) =


1

Bmax

(
Bmax + 1

Bmax

)(j−2)/2
[

1−
(

Bmax
Bmax + 1

)b]
, 1 ≤ b ≤ j

2 − 1,

1

Bmax

(
Bmax + 1

Bmax

)(j−2)/2
, j

2 ≤ b ≤ Bmax.
(2.7)

Proof. By Lemma 1, for 1 ≤ j ≤ 2Bmax + 2, we have

P (Bj = b) =


2b∑
r=1

P (Bj = b, Rj = r), 2 ≤ 2b ≤ j − 1,

j∑
r=1

P (Bj = b, Rj = r), 2b ≥ j.
(2.8)

Note that r and j have the same parity.

We first prove (2.6) is true. Using (2.2), the first part of (2.8) is given by

P (Bj = b) =
2b∑
r=1

P (Bj = b, Rj = r)
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=

2b−1∑
r=1

1

Bmax(Bmax + 1)

(
Bmax + 1

Bmax

) j−r
2

=
1

Bmax(Bmax + 1)

(
Bmax + 1

Bmax

) j
2
2b−1∑
r=1

(
Bmax

Bmax + 1

) r
2

= 1
Bmax(Bmax+1)

(
Bmax+1
Bmax

) j
2

[(
Bmax
Bmax+1

) 1
2

+
(

Bmax
Bmax+1

) 3
2

+ · · ·+
(

Bmax
Bmax+1

) 2b−1
2

]

=
1

Bmax(Bmax + 1)

(
Bmax + 1

Bmax

) j
2

(
Bmax
Bmax+1

)n+ 1
2 −

(
Bmax
Bmax+1

) 1
2(

Bmax
Bmax+1

)
− 1

=
1

Bmax

(
Bmax + 1

Bmax

) j
2

[(
Bmax

Bmax + 1

) 1
2

−
(

Bmax
Bmax + 1

)b+ 1
2

]

=
1

Bmax

(
Bmax + 1

Bmax

) j−1
2

[
1−

(
Bmax

Bmax + 1

)b]
. (2.9)

The second part of (2.8) is given by

P (Bj = b) =

j∑
r=1

P (Bj = b, Rj = r)

= 1
Bmax(Bmax+1)

(
Bmax+1
Bmax

) j
2

[(
Bmax

Bmax+1

) 1
2

+
(

Bmax
Bmax+1

) 3
2

+ · · ·+
(

Bmax
Bmax+1

) j−2
2

]
+ 1

Bmax

=
1

Bmax(Bmax + 1)

(
Bmax + 1

Bmax

) j
2

(
Bmax

Bmax+1

) j
2 −

(
Bmax

Bmax+1

) 1
2(

Bmax
Bmax+1

)
− 1

+
1

Bmax

=
1

Bmax

(
Bmax + 1

Bmax

) j−1
2

− 1

Bmax
+

1

Bmax

=
1

Bmax

(
Bmax + 1

Bmax

) j−1
2

. (2.10)

Equations (2.9) and (2.10) complete the proof of (2.6) in Lemma 2.

The proof of (2.7) is trivial because when j is even, P (Bj = b) = P (Bj−1 = b). This
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completes the proof of Lemma 2.

Lemma 3 describes the conditional distribution of the position number given the block

size.

Lemma 3. For j ≤ 2Bmax + 2 and j is odd, the distribution of Rj, given the block size Bj,

is given by

P (Rj = r|Bj) =



(
Bmax

Bmax + 1

) r−1
2

, r = j ≤ 2Bj − 1,

1

Bmax + 1

(
Bmax

Bmax + 1

) r−1
2

, r < j ≤ 2Bj − 1,

1
Bmax+1

(
Bmax
Bmax+1

) r−1
2

1−
(

Bmax
Bmax+1

)Bj , r < 2Bj + 1 ≤ j ≤ 2Bmax + 1,

0, r > min{2Bj − 1, j}.

For j ≤ 2Bmax + 2 and j is even, the distribution of Rj, given the block size Bj, is given by

P (Rj = r|Bj) =



(
Bmax

Bmax + 1

) r−1
2

, r = j ≤ 2Bj − 1,

1

Bmax + 1

(
Bmax

Bmax + 1

) r
2
−1
, r < j ≤ 2Bj − 1,

1
Bmax+1

(
Bmax
Bmax+1

) r
2
−1

1−
(

Bmax
Bmax+1

)Bj , r < 2Bj + 1 ≤ j ≤ 2Bmax + 1,

0, r > min{2Bj − 1, j}.

Proof. The Lemma 3 can be proved by deriving the conditional probability using Lemma

1 and Lemma 2:

P (Rj = r|Bj) =
P (Rj = r,Bj = b)

P (Bj = b)
.

In Lemma 4, we will show that the probability of the block size is a recursive sequence.
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Lemma 1 and Lemma 4 together can be used to derive the exact distribution of the block

size for a RBD. Lemma 1, Lemma 4 and Lemma 5 can also be used together to obtain the

exact joint distribution of the position number and the block size.

Lemma 4. For j ≥ 2Bmax + 1, the distribution of the block size Bj is given by

P (Bj = b) =
1

Bmax

Bmax∑
i=1

P (Bj−2i = b). (2.11)

Proof. We will prove Lemma 4 by induction. The proof is broken into two parts: j is odd

and j is even.

Case 1: j is odd. When j = 2Bmax + 1, the LHS of (2.11) is

P (B2Bmax+1 = b) =
1

Bmax

(
Bmax + 1

Bmax

)(2Bmax+1−1)/2
[

1−
(

Bmax
Bmax + 1

)b]

=
1

Bmax

(
Bmax + 1

Bmax

)B
max

[
1−

(
Bmax

Bmax + 1

)b]
.

The RHS of (2.11) is

1

Bmax

Bmax∑
i=1

P (B2Bmax+1−2i = b)

=
1

Bmax
[P (B1 = b) + P (B3 = b) + . . .+ P (B2Bmax−1 = b)]

=
1

Bmax

{
b∑

i=1

1

Bmax

(
Bmax + 1

Bmax

)i−1

+
1

Bmax

[
1−

(
Bmax

Bmax + 1

)b
]

Bmax−1∑
i=b

(
Bmax + 1

Bmax

)i
}

=
1

Bmax

{
1

Bmax + 1

b∑
i=1

(
Bmax + 1

Bmax

)i

+
1

Bmax

[
1−

(
Bmax

Bmax + 1

)b
]

Bmax−1∑
i=b

(
Bmax + 1

Bmax

)i
}

= 1
Bmax

{
1

Bmax+1

(Bmax+1
Bmax

)
b+1−Bmax+1

Bmax
Bmax+1
Bmax

−1 + 1
Bmax

[
1−

(
Bmax

Bmax+1

)b] (Bmax+1
Bmax

)
Bmax−(Bmax+1

Bmax
)
b

Bmax+1
Bmax

−1

}
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=
1

Bmax

{[(
Bmax

Bmax + 1

)b

− 1

]
+

[
1−

(
Bmax

Bmax + 1

)b
][(

Bmax + 1

Bmax

)Bmax

−
(
Bmax + 1

Bmax

)b
]}

=
1

Bmax

{(
Bmax + 1

Bmax

)b

− 1 +

(
Bmax + 1

Bmax

)Bmax

−
(
Bmax + 1

Bmax

)b

−
(
Bmax + 1

Bmax

)Bmax−b

+ 1

}

=
1

Bmax

(
Bmax + 1

Bmax

)Bmax
[

1−
(

Bmax

Bmax + 1

)b
]
.

So both sides are equal and (2.11) is true for 2Bmax + 1.

Now we suppose (2.11) is true for any odd j ≥ 2Bmax + 1:

P (Bj = b) =
1

Bmax

Bmax∑
i=1

P (Bj−2i = b)

=
1

Bmax
[P (Bj−2 = b) + P (Bj−4 = b) + . . .+ P (Bj−2Bmax = b)] .

We will show that (2.11) holds for j + 2. We consider two cases: b < Bmax and b = Bmax.

In the case of b < Bmax, the LHS of (2.11) is

P (Bj+2 = b) =

2b−1∑
r=1

P (Bj+2 = b, Rj+2 = r)

= P (Rj+2 = 1, Bj+2 = b) + P (Rj+2 = 3, Bj+2 = b) + . . .+ P (Rj+2 = 2b− 1, Bj+2 = b)

= P (Rj+2 = 1, Bj+2 = b) + P (Rj = 1, Bj = b) + P (Rj = 3, Bj = b) + . . .+ P (Rj = 2b− 3, Bj = b)

= P (Rj+2 = 1, Bj+2 = b) +

2b−1∑
r=1

P (Rj = r,Bj = b)− P (Rj = 2b− 1, Bj = b)

=
1

Bmax
P (Rj+1 = 2Bj+1) + P (Bj = b)− P (Rj = 2b− 1, Bj = b). (2.12)
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We will find P (Rj+1=2Bj+1) first.

P (Rj+1 = 2Bj+1) =

Bmax∑
b=1

P (Rj+1 = 2b, Bj+1 = b) =

Bmax∑
b=1

P (Rj = 2b− 1, Bj = b)

= P (Rj = 1, Bj = 1) + P (Rj = 3, Bj = 2) + . . .+ P (Rj = 2Bmax − 1, Bj = Bmax)

= P (Rj = 1, Bj = b) + . . .+ P (Rj = 2b− 1, Bj = b)

+ P (Rj = 2b+ 1, Bj = Bmax) + . . .+ P (Rj = 2Bmax − 1, Bj = Bmax) by Corollary 1

=

2b−1∑
r=1

P (Rj = r,Bj = b) +

2Bmax−1∑
r=2b+1

P (Rj = r,Bj = Bmax)

= P (Bj = b) +

2Bmax−1∑
r=2b+1

P (Rj = r,Bj = Bmax)

= P (Bj = b) +

2Bmax−2b−1∑
r=1

P (Rj−2b = r,Bj−2b = Bmax). (2.13)

Next we rewrite P (Rj = 2b− 1, Bj = b) using Corollary 2.

P (Rj = 2b− 1, Bj = b) = P (Rj−2b+2 = 1, Bj−2b+2 = b)

=
1

Bmax
P (Bj−2b+1 = Bmax) by Corollary 2

=
1

Bmax
P (Bj−2b = Bmax) since j is odd

=
1

Bmax

min(2Bmax−1,j−2b)∑
r=1

P (Rj−2b = r,Bj−2b = Bmax). (2.14)

Now we plug (2.13) and (2.14) back into (2.12), we get

1

Bmax

P (Bj = b) + P (Bj = b) +

2Bmax−2b−1∑
r=1

P (Rj−2b = r,Bj−2b = Bmax)−
min(2Bmax−1,j−2b)∑

r=1

P (Rj−2b = r,Bj−2b = Bmax)


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=
1

Bmax

P (Bj = b) + P (Bj = b)−
min(2Bmax−1,j−2b)∑

r=2Bmax−2b+1

P (Rj−2b = r,Bj−2b = Bmax)



=
1

Bmax

P (Bj = b) + P (Bj = b)−
min(2b−1,j−2Bmax)∑

r=1

P (Rj−2Bmax = r,Bj−2Bmax = Bmax)



=
1

Bmax

P (Bj = b) + P (Bj = b)−
min(2b−1,j−2Bmax)∑

r=1

P (Rj−2Bmax = r,Bj−2Bmax = b)


by Corollary 1

=
1

Bmax
[P (Bj = b) + P (Bj = b)− P (Bj−2Bmax = b)] .

The RHS of (2.11) is

1

Bmax

Bmax∑
i=1

P (Bj+2−2i = b)

=
1

Bmax
[P (Bj = b) + P (Bj−2 = b) + P (Bj−4 = b) + . . .+ P (Bj+2−2Bmax = b)]

=
1

Bmax
P (Bj = b) +

1

Bmax
[P (Bj−2 = b) + . . .

+P (Bj+2−2Bmax = b) + P (Bj−2Bmax = b)]− 1

Bmax
P (Bj−2Bmax = b)

=
1

Bmax
P (Bj = b) + P (Bj = b)− 1

Bmax
P (Bj−2Bmax = b).

The LHS and the RHS are equal, hence (2.11) holds for the case j is odd and b < Bmax.

When b = Bmax,

P (Bj+2 = Bmax) =

2Bmax−1∑
r=1

P (Rj+2 = r,Bj+2 = Bmax)

= P (Rj+2 = 1, Bj+2 = Bmax) +

2Bmax−1∑
r=3

P (Rj+2 = r,Bj+2 = Bmax)
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= P (Rj+2 = 1, Bj+2 = Bmax) +

2Bmax−1∑
r=1

P (Rj = r,Bj = Bmax)− P (Rj = 2Bmax − 1, Bj = Bmax)

=
1

Bmax
P (Bj+1 = Bmax) + P (Bj = Bmax)− P (Rj−2Bmax+2 = 1, Bj−2Bmax+2 = Bmax)

by Corollary 2

=
1

Bmax
P (Bj+1 = Bmax) + P (Bj = Bmax)− 1

Bmax
P (Bj−2Bmax+1 = Bmax) by Corollary 2 again

=
1

Bmax
P (Bj = Bmax) + P (Bj = Bmax)− 1

Bmax
P (Bj−2Bmax = Bmax) since j is odd

=
1

Bmax
P (Bj = Bmax) +

1

Bmax
[P (Bj−2 = Bmax) + P (Bj−4 = Bmax) + . . .

+P (Bj−2Bmax = Bmax)]− 1

Bmax
P (Bj−2Bmax = Bmax)

=
1

Bmax
P (Bj = Bmax) +

1

Bmax
P (Bj−2 = Bmax) + . . .+

1

Bmax
P (Bj+2−2Bmax = Bmax)

=
1

Bmax

Bmax∑
i=1

P (Bj+2−2i = Bmax).

The proof of Lemma 4 when j is odd is complete.

Case 2: j is even.

P (Bj = b) = P (Bj−1 = b)

=
1

Bmax

Bmax∑
i=1

P (Bj−1−2i = b) since we have proved that Lemma 4 holds for odd numbers,

=
1

Bmax

Bmax∑
i=1

P (Bj−2i = Bmax) since j is even.

The proof of Lemma 4 is complete.

We treat P (Bj = 0) = 0 in the following lemma.
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Lemma 5. Let b be an integer from 1 to Bmax. Let r be an integer from 1 to 2b. Let r and

j have the same parity. When j is odd, the joint distribution of Rj and Bj is given by

P (Rj = r,Bj = b) =


P
(
Bj = r+1

2

)
− P

(
Bj = r−1

2

)
, r ≤ min{2b− 1, j},

0, otherwise.

(2.15)

When j is even, the joint distribution of Rj and Bj is given by

P (Rj = r,Bj = b) =


P
(
Bj = r

2

)
− P

(
Bj = r

2 − 1
)
, r ≤ min{2b, j},

0, otherwise.

(2.16)

Proof. We first prove Lemma 5 is true when j is odd, and separate the proof into two cases:

j = 1 and j > 1. For j = 1,

P (R1 = 1, B1 = b) = P (R1 = 1, B1 = b) =
1

Bmax
= P (B1 = 1).

For j > 1, the RHS of (2.15) is

P

(
Bj =

r + 1

2

)
− P

(
Bj =

r − 1

2

)

=
r∑
i=1

P

(
Rj = i, Bj =

r + 1

2

)
−

r−2∑
i=1

P

(
Rj = i, Bj =

r − 1

2

)

=

r∑
i=1

P (Rj = i, Bj = b)−
r−2∑
i=1

P (Rj = i, Bj = b) by Corollary 1 and r ≤ 2b

= P (Rj = r,Bj = b).

Both sides are equal and the lemma holds when j is odd.
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Next we prove equation (2.16) is true when j is even. For j = 2,

P (R2 = 2, B2 = b) = P (R1 = 1, B1 = b) =
1

Bmax
= P (B2 = 1).

For j > 1, the RHS of (2.16) is

P
(
Bj =

r

2

)
− P

(
Bj =

r

2
− 1
)

=
r∑
i=2

P
(
Rj = i, Bj =

r

2

)
−

r−2∑
i=2

P
(
Rj = i, Bj =

r

2
− 1
)

=

r∑
i=2

P (Rj = i, Bj = b)−
r−2∑
i=2

P (Rj = i, Bj = b) by Corollary 1 and r ≤ 2b

= P (Rj = r,Bj = b).

This completes the proof.

Lemma 6. Let b be an integer from 1 to Bmax. The distribution of Bj when j is odd and

greater than 2Bmax is given by

P (Bj = b) =
1

Bmax(Bmax + 1)

Bmax∑
h=1

(
2h+

Bmax−1∑
i=1

h∑
m=1

λ
j+1
2
−Bmax−m

i

)
P (B2h−1 = b),

and for even j > 2Bmax, the distribution of Bj is given by

P (Bj = b) =
1

Bmax(Bmax + 1)

Bmax∑
h=1

(
2h+

Bmax−1∑
i=1

h∑
m=1

λ
j
2
−Bmax−m

i

)
P (B2h−1 = b),

where λ1, . . . , λBmax−1 are all roots of the equation

xBmax−1 +
Bmax − 1

Bmax
xBmax−2 +

Bmax − 2

Bmax
xBmax−3 + · · ·+ 2

Bmax
x+

1

Bmax
= 0. (2.17)
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Proof. We only prove 2.11 holds for odd j. We use the following simplified notation through-

out the proof.

• a1, a2, . . . , aBmax denote P (B1 = b), P (B3 = b), . . . , P (B2Bmax−1 = b), which is known

from Lemma 2;

• an+Bmax denotes P (Bj = b) for odd j > 2Bmax, where n = j+1
2 −Bmax.

Lemma 4 shows that an+Bmax is the nth order of a linear recursive sequence and

an+Bmax =
1

Bmax
(an+Bmax−1 + an−Bmax−2 + · · ·+ an)

This linear recursive sequence system satisfies



an+Bmax

an+Bmax−1

an+Bmax−2
...

an+1


=



1
Bmax

1
Bmax

· · · · · · 1
Bmax

1 0 · · · · · · 0

0 1 · · · · · · 0

...
. . .

. . . 0

0 · · · 0 1 0





an+Bmax−1

an+Bmax−2

an+Bmax−3
...

an



=



1
Bmax

1
Bmax

· · · · · · 1
Bmax

1 0 · · · · · · 0

0 1 · · · · · · 0

...
. . .

. . . 0

0 · · · 0 1 0



2 

an+Bmax−2

an+Bmax−3

an+Bmax−4
...

an−1



= · · · =



1
Bmax

1
Bmax

· · · · · · 1
Bmax

1 0 · · · · · · 0

0 1 · · · · · · 0

...
. . .

. . . 0

0 · · · 0 1 0



n 

aBmax

aBmax−1

aBmax−2
...

a1


,
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then aa+Bmax is the inner product of the first row of the matrix Pn and the vector

(aBmax , aBmax−1, · · · , a1). Let

P =



1
Bmax

1
Bmax

· · · · · · 1
Bmax

1 0 · · · · · · 0

0 1 · · · · · · 0

...
. . .

. . . 0

0 · · · 0 1 0


,

the characteristic polynomial of matrix P is :

f(x) = xBmax − 1

Bmax
xBmax−1 − 1

Bmax
xBmax−2 − · · · − 1

Bmax
x− 1

Bmax

= (x− 1)

(
xBmax−1 +

Bmax − 1

Bmax
xBmax−2 +

Bmax − 2

Bmax
xBmax−3 + · · ·+ 2

Bmax
x+

1

Bmax

)
,

so P has a eigenvalue 1, and the rest Bmax − 1 eigenvalues are all roots of the equation

2.17, which are denoted as λ1, . . . , λBmax−1. It is easy to check the corresponding right

and left eigenvectors for the eigenvalue 1 are ~υ0 = (1, 1, . . . , 1)t and ~ν0 = (Bmax, Bmax −

1, . . . , 2, 1), respectively. The right and left eigenvectors corresponding to eigenvalue λi,

i = 1, 2, . . . , Bmax − 1, are ~υi and ~νi, respectively, where υi,h = λBmax−hi , and νi,h =

Bmaxλ
h
i −

∑h−1
m=1 λ

m
i ,h = 1, 2, . . . , Bmax.

In order to calculate Pn, we need to construct a pair of biorthogonal families to diag-

onalize P. Note that if λi 6= λj , then λi~νi ~υj = ~νiP ~υj = ~νiλj ~υj = λj ~νi ~υj , which implies

that ~νi ~υj = 0. Let ~φi = ~υi and ~ϕi = ci~νi, where ci is a constant such that ~ϕi ~φi = 1 for

i = 0, 1, . . . , Bmax− 1. We solve ci for i = 0 and i = 1, 2, . . . , Bmax− 1 separately. It is easy

to get c0 = 2
Bmax(Bmax+1) providing c0 ~ν0 ~υ0 = c0(Bmax, Bmax − 1, . . . , 2, 1)(1, 1, . . . , 1)t =

c0
∑Bmax

h=1 h = 1. For i = 1, 2, . . . , Bmax − 1,
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ci~νi~υi = ci

Bmax∑
h=1

νi,hυi,h = ci

Bmax∑
h=1

[
λBmax−hi

(
Bmaxλ

h
i −

h−1∑
m=1

λmi

)]

= ci

Bmax∑
h=1

[
Bmaxλ

Bmax
i − λBmax−hi

h−1∑
m=1

λmi

]

= ci

Bmax∑
h=1

[
Bmaxλ

Bmax
i −

λBmax−h+1
i − λBmaxi

1− λi

]

= ci

[
B2
maxλ

Bmax
i +

Bmaxλ
Bmax
i

1− λi
−
Bmax∑
h=1

λBmax−h+1
i

1− λi

]

= ci

[
B2
maxλ

Bmax
i +

Bmaxλ
Bmax
i

1− λi
−
λi(1− λBmaxi )

(1− λi)2

]

= ci

[
B2
maxλ

Bmax
i +

Bmaxλ
Bmax
i

1− λi
−
λi(1− λi)(λBmax−1i + λBmax−2i + · · ·+ λi + 1)

(1− λi)2

]

= ci

[
B2
maxλ

Bmax
i +

Bmaxλ
Bmax
i

1− λi
−
Bmaxλ

Bmax+1
i

1− λi

]

= ciBmax(Bmax + 1)λBmaxi = 1,

Hence, ci =
λ−Bmaxi

Bmax(Bmax+1) , and

ϕi,h = ciνi,h =
λ−Bmaxi

Bmax(Bmax + 1)

(
Bmaxλ

h
i −

h−1∑
m=1

λmi

)
, i = 1, . . . , Bmax−1, h = 1, . . . , Bmax.

(2.18)

If B = [~υ0, ~υ1, . . . , ~υBmax−1] and Ct = [~ϕ0, ~ϕ1, . . . , ~ϕBmax−1], then CB = IBmax×Bmax ,

the identity matrix, and CPB = D, the diagonal matrix with the eigenvalues of P on the

main diagonal. B,C,D are listed below.

40



B =



1 λBmax−11 · · · λBmax−1Bmax−1

1 λBmax−21 · · · λBmax−2Bmax−1
...

. . .
. . .

...

1 1 · · · 1



D =



1

λn1
. . .

λnBmax−1



C =



2Bmax
Bmax(Bmax+1)

2(Bmax−1)
Bmax(Bmax+1)

· · · 2
Bmax(Bmax+1)

Bmaxλ
1−Bmax
1

Bmax(Bmax+1)

λ
−Bmax
1

Bmax(Bmax+1)

(
Bmaxλ

2
1 − λ1

)
· · ·

λ
−Bmax
1

Bmax(Bmax+1)

BmaxλBmax1 −
Bmax−1∑
m=1

λ
m
1


.
.
.

.
.
.

.
.
.

.

.

.

Bmaxλ
1−Bmax
Bmax−1

Bmax(Bmax+1)

λ
−Bmax
Bmax−1

Bmax(Bmax+1)

(
Bmaxλ

2
Bmax−1 − λBmax−1

)
· · ·

λ
−Bmax
Bmax−1

Bmax(Bmax+1)

BmaxλBmaxBmax−1
−
Bmax−1∑
m=1

λ
m
Bmax−1





This diagonalization provides us Pn = BDnC. Hence,

an+Bmax = Pn1.(aBmax , aBmax−1, · · · , a1)t

=
1

Bmax(Bmax + 1)

Bmax∑
h=1

aBmax−h+1

2(Bmax − h + 1) +

Bmax−1∑
i=1

λBmax−1+n
i λ

−Bmax
i

Bmaxλhi −
h−1∑
m=1

λ
m
i



=
1

Bmax(Bmax + 1)

Bmax∑
h=1

aBmax−h+1

2(Bmax − h + 1) +

Bmax−1∑
i=1

Bmaxλn−1+h
i −

h−1∑
m=1

λ
n−1+m
i



=
1

Bmax(Bmax + 1)

Bmax∑
h=1

aBmax−h+1

2(Bmax − h + 1) +

Bmax−1∑
i=1

λ
n−1+h−Bmax
i

BmaxλBmaxi −
h−1∑
m=1

λ
Bmax−h+m
i



=
1

Bmax(Bmax + 1)

Bmax∑
h=1

aBmax−h+1

2(Bmax − h + 1) +

Bmax−1∑
i=1

λ
n−1+h−Bmax
i

Bmax−1∑
m=0

λ
m
i −

Bmax−1∑
m=Bmax−h+1

λ
m
i


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=
1

Bmax(Bmax + 1)

Bmax∑
h=1

aBmax−h+1

2(Bmax − h + 1) +

Bmax−1∑
i=1

λ
n−1+h−Bmax
i

Bmax−h∑
m=0

λ
m
i



=
1

Bmax(Bmax + 1)

Bmax∑
h=1

aBmax−h+1

2(Bmax − h + 1) +

Bmax−1∑
i=1

Bmax−h∑
m=0

λ
n−1+h−Bmax+m
i



=
1

Bmax(Bmax + 1)

Bmax∑
h=1

ah

2h +

Bmax−1∑
i=1

h−1∑
m=0

λ
n−h+m
i



=
1

Bmax(Bmax + 1)

Bmax∑
h=1

ah

2h +

Bmax−1∑
i=1

h∑
m=1

λ
n−m
i

.

This completes the proof.

With the help of Lemma 1, Lemma 4 and Lemma 6, we can obtain the limiting properties

of the distribution of the block size, the joint distribution of Bj and Rj , and the conditional

distribution of Rj given Bj .

Lemma 7. Let b be an integer from 1 to Bmax. The limiting distribution of Bj is given by

lim
j→∞

P (Bj = b) =
2b

Bmax(Bmax + 1)
.

The limit of the joint distribution of Bj and Rj is given by

lim
j→∞

P (Rj = r,Bj = b) =
2

Bmax(Bmax + 1)
.

The limit of the conditional distribution of Rj given Bj is given by

lim
j→∞

P (Rj = r|Bj) =
1

Bj
, 1 ≤ r ≤ 2Bj .

Proof. We prove the limiting distribution of Bj first.
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Since λi < 1, i = 1, 2, . . . , Bmax − 1, from Lemma 6, we have

lim
j→∞

P (Bj = b) = lim
j→∞

1

Bmax(Bmax + 1)

Bmax∑
h=1

(
2h+

Bmax−1∑
i=1

h∑
m=1

λ
j+1
2 −Bmax−m

i

)
P (B2h−1 = b)

=
2

Bmax(Bmax + 1)

Bmax∑
h=1

hP (B2h−1 = b)

=
2

Bmax(Bmax + 1)

{
b∑

i=1

i(Bmax + 1)i−1

Bi
max

+

Bmax∑
i=b+1

i(Bmax + 1)i−1

Bi
max

[
1− (

Bmax

Bmax + 1
)b
]}

By

n∑
i=1

iai =
a− an+1(1 + n− na)

(1− a)2
and

n∑
i=1

ai =
a− an+1

1− a
,

lim
j→∞

P (Bj = b) =
2

Bmax(Bmax + 1)

[
Bmax∑
i=1

i
(Bmax + 1)i−1

Bi
max

−
Bmax∑
i=b+1

i(Bmax + 1)i−1

Bi
max

(
Bmax

Bmax + 1
)b

]

=
2

Bmax(Bmax + 1)

[
Bmax −

Bmax−b∑
i=1

(b+ i)(Bmax + 1)i−1

Bi
max

]

=
2

Bmax(Bmax + 1)

{
Bmax −

1

Bmax

[
Bmax−b∑

i=1

b(
Bmax + 1

Bmax
)i +

Bmax−b∑
i=1

i(
Bmax + 1

Bmax
)i

]}

=
2

Bmax(Bmax + 1)
[Bmax − (Bmax − b)]

=
2b

Bmax(Bmax + 1)
.

By Lemma 5, the limit of the joint distribution of Bj and Rj can be derived by following.

lim
j→∞

P (Rj = r,Bj = b) = lim
j→∞

[
P

(
Bj =

r + 1

2

)
− P

(
Bj =

r − 1

2

)]

= lim
j→∞

P

(
Bj =

r + 1

2

)
− lim
j→∞

P

(
Bj =

r − 1

2

)

=
r + 1

Bmax(Bmax + 1)
− r − 1

Bmax(Bmax + 1)
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=
2

Bmax(Bmax + 1)
.

The proof of the limit of the conditional distribution is trivial.

Lemma 8, Lemma 9 and Lemma 10 give some distributional properties of the RBD

(Bmax; R) to assign patients within a block.

Lemma 8. The conditional distribution of NS
A(j) given Bj and Rj of the RBD (Bmax; R)

is given by

P (NS
A(j) = t|Rj , Bj , ) =

(
Rj − 1

t

)(
2Bj −Rj + 1

Bj − t

)
(
2Bj
Bj

) , t ∈


[0, Rj − 1], if 1 ≤ Rj ≤ Bj ,

[Rj −Bj − 1, Bj ], if Bj + 1 ≤ Rj ≤ 2Bj .

Proof. Think of an urn of 2Bj balls, Bj type A balls and Bj type B balls. We randomly

select Rj − 1 balls without replacement. The number of ways to draw Rj − 1 balls from the

urn is

(
2Bj
Rj − 1

)
. The number of ways to select t type A balls from Bj type A balls in the

urn is

(
Bj
t

)
. Similarly, the number of ways to select the remaining Rj − 1− t type B balls

from the Bj type B balls is

(
Bj

Rj − 1− t

)
. Therefore we have a hypergeometric distribution

with parameters 2Bj , Bj and Rj − 1. The probability mass function of NB
A (j − 1) is given

by

P (NS
A(j) = t|Rj , Bj , ) =

(
Bj
t

)(
Bj

Rj − 1− t

)
(

2Bj
Rj − 1

)

=

(
Rj − 1

t

)(
2Bj −Rj + 1

Bj − t

)
(
2Bj
Bj

) , t ∈


[0, Rj − 1], if 1 ≤ Rj ≤ Bj ,

[Rj −Bj − 1, Bj ], if Bj + 1 ≤ Rj ≤ 2Bj .
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The following lemma provides the conditional distribution of the imbalance after the

jth allocation and Lemma 8 displays the distribution of the imbalance.

Lemma 9. Let d be a nonnegative integer, d, Rj and j have the same parity. The condi-

tional distribution of Dj given Rj and Bj of the RBD (Bmax; R) is given by

P (Dj = ±d|Rj , Bj) =

(
Rj
d+Rj

2

)(
2Bj −Rj
Bj − d+Rj

2

)
(

2Bj
Bj

) , d ∈ [0,min{Rj , 2Bj −Rj}].

Proof. The proof is trivial. This is another hypergeometric distribution with parameters

2Bj , Bj and Rj .

Lemma 10. Let d be a nonnegative integer, r, d and j have the same parity. For j ≤

2Bmax + 2, the distribution of Dj of the RBD (Bmax; R) is given by

P (Dj = ±d) =

Bmax∑
b=1

min(2b,j)∑
r=1

(
r

d+r
2

)(
2b− r
b− d+r

2

)
(

2b

b

) 1

Bmax

[
1

Bmax + 1

(
1

Bmax
+ 1

) j−r
2

]I(r<j)
,

d ≤ min(r, 2b− r).

For j ≥ 2Bmax + 3, the distribution of Dj is given by

P (Dj = ±d) ≈
Bmax∑
b=1

2b∑
r=1

(
r
d+r
2

)(
2b− r
b− d+r

2

)
(

2b

b

) 2

Bmax(Bmax + 1)
, d ≤ min(r, 2b− r).

Proof. This lemma can be proven by deriving the joint distribution of Dj , Bj and Rj using

Lemma 9 and Lemma 1, then calculating the marginal distribution of Dj .

Lemma 11 and Lemma 12 present the distribution of imbalance of the RBD (Bmax; T ).
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Lemma 11. Let d be a nonnegative integer, r, d and j have the same parity. The conditional

distribution of Dj given Rj and Bj of the RBD (Bmax; T ) is given by

P (Dj = ±d|Rj , Bj) =



( Rj
Rj±d

2

) 1

2Rj
, d ∈ [0, Rj ], 1 ≤ Rj ≤ Bj ,

( Rj
Rj±d

2

) 1

2Rj

2Bj−Rj∑
x=1

(2Bj − x− 1

Bj − 1

) 1

22Bj−x−1
, d ∈ [0, 2Bj −Rj), Bj + 1 ≤ Rj ≤ 2Bj ,

Bj∑
x=2Bj−Rj+1

(2Bj − x− 1

Bj − 1

) 1

22Bj−x
, d = 2Bj −Rj , Bj + 1 ≤ Rj ≤ 2Bj .

Proof. The distribution of Dj can be obtained by finding the distribution of the number of

patients allocated to treatment A after the allocation of the jth patient, which is denoted

by N∗A(j). Hence

P (Dj = ±d|Rj , Bj) = P

(
N∗A(j) =

Rj ± d
2

∣∣∣∣Rj , Bj) ,
Given 1 ≤ Rj ≤ Bj , it is easy to see that N∗A(j) follows a binomial distribution (Rj ,

1
2).

When Bj + 1 ≤ Rj ≤ 2Bj , then randomization sequence will be entirely deterministic

after Bj patients have been assigned to either treatment A or B. Let X be the random

number of the trials in the tail. Then 2Bj − X follows a negative binomial distribution.

Therefore,

P (X = x) =

(
2Bj − x− 1

Bj − 1

)
1

22Bj−x−1
, x = 1, 2, . . . , Bj .

If X ≤ 2Bj − Rj , N∗A(j) still follows a binomial distribution Bin(n = 2Bj , p = 1/2) and

Rj −Bj < N∗A(j) < Bj , which is equivalent to 0 ≤ d < 2Bj −Rj . Therefore

P

(
N∗A(j) =

Rj ± d
2

, X ≤ 2Bj −Rj |Rj , Bj , Bj + 1 ≤ Rj ≤ 2Bj

)
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= P

(
N∗A(j) =

Rj ± d
2

, X = x|Rj , Bj , Bj + 1 ≤ Rj ≤ 2Bj

) 2Bj−Rj∑
x=1

P (X = x)

=

(
Rj
Rj±d

2

)
1

2Rj

2Bj−Rj∑
x=1

(
2Bj − x− 1

Bj − 1

)
1

22Bj−x−1
.

If X > 2Bj − Rj , which indicates Rj is in the tail and either N∗A(j) = Bj or N∗B(j) = Bj

each with a probability of 1/2. In this case, d = 2Bj −Rj .

P (Dj = ±(2Bj −Rj), X > 2Bj −Rj |Rj , Bj , Bj + 1 ≤ Rj ≤ 2Bj)

= P (Dj = ±(2Bj −Rj), X = x|Rj , Bj , Bj + 1 ≤ Rj ≤ 2Bj)

Bj∑
x=2Bj−Rj+1

P (X = x)

=
1

2

Bj∑
x=2Bj−Rj+1

(
2Bj − x− 1

Bj − 1

)
1

22Bj−x−1
.

Lemma 12. Let d be a nonnegative integer from 0 up to Bmax. Let r, d and j have the

same parity. For j ≤ 2Bmax + 2, the distribution of Dj of the RBD (Bmax; T ) is given by

P (Dj = ±d) =

Bmax∑
b=1

min(b,j)∑
r=max(d,1)

(
r

r±d
2

)
1

2r
1

Bmax

[
1

Bmax + 1

(
Bmax + 1

Bmax

) j−r
2

]I(r<j)

+

Bmax∑
b=d+2

min(j,2b−d−2)∑
r=b+1

2b−r∑
x=1

(
r

r±d
2

)(
2b− x− 1

b− 1

)
1

22b+r−x−1
1

Bmax

[
1

Bmax + 1

(
Bmax + 1

Bmax

) j−r
2

]I(r<j)

+

Bmax∑
b=d+1

b∑
x=d+1

(
2b− x− 1

b− 1

)
1

22b−x
1

Bmax

[
1

Bmax + 1

(
Bmax + 1

Bmax

) j−2b+d
2

]I(2b−d<j)

For j ≥ 2Bmax + 3, the distribution of Dj is given by

P (Dj = ±d) ≈
Bmax∑
b=1

b∑
r=max(d,1)

(
r
r±d
2

)
1

2r
2

Bmax(Bmax + 1)
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+

Bmax∑
b=d+2

2b−d−2∑
r=b+1

2b−r∑
x=1

(
r
r±d
2

)(
2b− x− 1

b− 1

)
1

22b+r−x−1
2

Bmax(Bmax + 1)

+

Bmax∑
b=d+1

b∑
x=d+1

(
2b− x− 1

b− 1

)
1

22b−x
2

Bmax(Bmax + 1)
.

Proof. This lemma can be proven by deriving the joint distribution of Dj , Bj and Rj by

P (Dj = ±d,Rj = r,Bj = b) = P (Dj = ±d|Rj = r,Bj = b)P (Rj = r,Bj = b)

using Lemma 1 and Lemma 11. Then calculate the marginal distribution.

2.2 Conclusion

In this section, we have formalized the RBD and obtained some important distributional

properties of the RBD. With the help of these distributional results, we will be able to

assess the predictability and balancing properties of the RBD, which will be given in the

following two chapters.

One may note that we are unable to provide an exact form for the λ1, . . . , λBmax−1 in

Lemma 6 when calculating the exact distribution of P (Bj = b) for j > 2Bmax+2. However,

one can solve the equation (2.17) using statistical or mathematical software, or solve the

exact distribution by the recursive equation in Lemma 5. In next two chapters, we are going

to use the asymptotic result from Lemma 7, which simulation shows is quite accurate.
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Chapter 3: Degree of Predictability of Restricted

Randomizations

As we discussed in Chapter 1, the degree of randomness is a very important criteria for

qualifying a randomization procedure. In this chapter, we study the degree of randomness

of restricted randomization procedures. In Section 3.1, we propose a metric to measure

the degree of randomness of restricted randomization procedures and call it the degree of

predictability. We also provide exact formulas for calculating the degree of predictability

of the RBD and PBD. Section 3.2 is the computation and comparison of the degree of

predictability of six randomization procedures. Section 3.3 gives a short summary and

discussion.

3.1 Degree of Predictability

Blackwell and Hodges (1957) developed a simple model to measure the potential for selection

bias. They proposed a convergence strategy for guessing the upcoming assignment, which

was to guess the treatment that has fewer prior allocations, or to guess one of the treatments

if both treatments have an equal number of prior allocations. Their model calculates the

expected selection bias factor, E(F ), which is the expected excess number of correct guesses

of treatment assignments beyond that expected by chance when the investigator uses the

convergence strategy. It is also equivalent to the difference between the expected number of

correct and incorrect guesses among all the guesses made when the two treatment groups

have different prior assignments.

Based on the fact that a larger degree of randomness corresponds to less predictability,

we propose a metric for measuring the degree of randomness of a restricted randomization
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procedure, which is the degree of predictability

ρPRED =

n∑
j=1

E

∣∣∣∣φj − 1

2

∣∣∣∣. (3.1)

This is similar to the metric proposed by Chen (1999). This degree of predictability describes

the expected deviation of a randomization procedure from complete randomization. For

complete randomization, (3.1) is 0 since the treatment allocation probability is 1/2; the

allocation has the largest degree of randomness and is unpredictable. When the allocation

probability differs from 1/2, the allocation is restricted and predictable. A large value of

(3.1) indicates a low degree of randomness, hence a high chance of correct prediction.

It turns out that the degree of predictability is mathematically equivalent to Blackwell-

Hodges expected selection bias factor.

Theorem 1. For all restricted randomization procedures that assign the next patient to any

treatment using a probability based on previous assignments, the degree of predictability is

mathematically equivalent to the Blackwell-Hodges selection bias factor with the convergence

strategy for guessing the upcoming assignment

ρPRED = E(F ).

Proof. Call a correct guess a ”hit” and an incorrect guess a ”miss” when the two treat-

ment arms have different prior allocations. Letting H and M denote the number of hits

and misses, respectively, then the expected number of hits and misses, given φ1, . . . , φn is

calculated as

E(H|φ1, · · · , φn) =

n∑
j=1

[
1

2
I
(
φj =

1

2

)
+ φjI

(
φj >

1

2

)
+ (1− φj)I

(
φj <

1

2

)]
,
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and

E(M |φ1, · · · , φn) =

n∑
j=1

[
1

2
I
(
φj =

1

2

)
+ (1− φj)I

(
φj >

1

2

)
+ φjI

(
φj <

1

2

)]
.

The expected selection bias factor is then given by

E(F ) =EE(F |φ1, · · · , φn) = E

(
E(H|φ1, · · · , φn)− E(M |φ1, · · · , φn)

2

)

=E
n∑
j=1

[(
φj −

1

2

)
I
(
φj >

1

2

)
+

(
1

2
− φj

)
I
(
φj <

1

2

)]

=

n∑
j=1

E

∣∣∣∣φj − 1

2

∣∣∣∣
=ρPRED.

Hence the metrics are equivalent. Next, with the help of (3.1), we show the degree of

predictability of the RBD(Bmax; R), RBD(Bmax; T ), PBD(Bmax; R) and PBD(Bmax; T ).

Note that we treat summations as 0 if the upper limit of the summation is smaller than the

lower limit.

Theorem 2. Let r and j have the same parity, the ρPRED in n, n ≥ 1, trials for the RBD

(Bmax; R) is given by

ρPRED ≈
min(n,2Bmax+2)∑

j=1

Bmax∑
b=1


min(b,j)∑
r=1

r−1∑
t=0

∣∣∣∣ b− t
2b− r + 1

− 1

2

∣∣∣∣
(
r − 1

t

)(
2b− r + 1

b− t

)
(
2b

b

)

+

min(2b,j)∑
r=b+1

b∑
t=r−b−1

∣∣∣∣ b− t
2b− r + 1

− 1

2

∣∣∣∣
(
r − 1

t

)(
2b− r + 1

b− t

)
(
2b

b

)
 1

Bmax

(
1

Bmax + 1

(
1 +

1

Bmax

) j−r
2

)I(r<j)
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+

n∑
j=2Bmax+3

Bmax∑
b=1


b∑
r=1

r−1∑
t=0

∣∣∣∣ b− t
2b− r + 1

− 1

2

∣∣∣∣
(
r − 1

t

)(
2b− r + 1

b− t

)
(
2b

b

)

+

2b∑
r=b+1

b∑
t=r−b−1

∣∣∣∣ b− t
2b− r + 1

− 1

2

∣∣∣∣
(
r − 1

t

)(
2b− r + 1

b− t

)
(
2b

b

)
 2

Bmax(Bmax + 1)
.

Proof. It is straightforward to verify Theorem 2 using equation (3.1), Lemma 1 and Lemma

8 by

n∑
j=1

E

∣∣∣∣φj − 1

2

∣∣∣∣ =

n∑
j=1

∑∑∑
over t,b,r

∣∣∣∣ b− t
2b− r + 1

− 1

2

∣∣∣∣P (NB
A (j) = t|Bj = b, Rj = r)P (Bj = b, Rj = r).

Theorem 3. Let r and j have the same parity, ρPRED, n ≥ 1 trials for the RBD(Bmax;

T ) is given by

ρPRED ≈
min(n,2Bmax+2)∑

j=1

Bmax∑
b=1

min(j,2b)∑
r=b+1

b∑
x=2b−r+1

(
2b− x− 1

b− 1

)
1

22b−x
1

Bmax

(
1

Bmax + 1

(
1

Bmax
+ 1

) j−r
2

)I(r<j)

+

n∑
j=2Bmax+3

Bmax∑
b=1

2b∑
r=b+1

b∑
x=2b−r+1

(
2b− x− 1

b− 1

)
1

22b−x
2

Bmax(Bmax + 1)
. (3.2)

Proof.

n∑
j=1

E

∣∣∣∣φj − 1

2

∣∣∣∣ =

n∑
j=1

[∣∣∣∣12 − 1

2

∣∣∣∣P (φj =
1

2

)
+

∣∣∣∣1− 1

2

∣∣∣∣P (φj = 1) +

∣∣∣∣0− 1

2

∣∣∣∣P (φj = 0)

]

=
1

2

n∑
j=1

[P (φj = 0) + P (φj = 1)]

=
1

2

n∑
j=1

[P (Rj is in the tail|Rj , Bj)P (Bj + 1 ≤ Rj ≤ 2Bj)]
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=
1

2

n∑
j=1

[P (2Bj −Rj + 1 ≤ X ≤ Bj)P (Bj + 1 ≤ Rj ≤ 2Bj)]

=

n∑
j=1

Bmax∑
b=1

2b∑
r=b+1

b∑
x=2Bj−Rj+1

(
2b− x− 1

b− 1

)
1

22b−x
P (Bj = b, Rj = r)

The proof is completed by plugging in Lemma 1 in Chapter 2.

Theorem 4. With n ≥ 1 trials for the PBD(B; R), ρPRED is given by

ρPRED =
⌊ n

2B

⌋ 22B−1(
2B

B

) − 1

2



+
m∑
r=1

I(r≤B)

r−1∑
t=0

∣∣∣∣ B − t
2B − r + 1

− 1

2

∣∣∣∣
(
r − 1

t

)(
2B − r + 1

B − t

)
(

2B

B

)

+ I(r≥B+1)

B∑
t=r−B−1

∣∣∣∣ B − t
2B − r + 1

− 1

2

∣∣∣∣
(
r − 1

t

)(
2B − r + 1

B − t

)
(

2B

B

)
 ,

where bac denotes the integer part of a and m = n− 2B
⌊ n

2B

⌋
.

Proof. Note that bac denotes the number of blocks that are fully filled. We can apply Matts

and Lachin’s result for the PBD(B; R) since ρPRED = E(F ). For the last block, if it is not

fully filled, we can apply Lemma 8 in Chapter 2 with non-random Bj and Rj .

Theorem 5. With n ≥ 1 trials for the PBD(B; T ), ρPRED is given by

ρPRED =
⌊ n

2B

⌋ [ 2B

22B+1

(
2B

B

)]
+

m∑
r=B+1

B∑
x=2B−r+1

(
2B − x− 1

B − 1

)
1

22B−x
.

where bac denotes the integer part of a and m = n− 2B
⌊ n

2B

⌋
.
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Proof. For the blocks that all fully filled, we apply the results of equation (6.8) in Rosen-

berger and Lachin (2002). For the last block, if it is incomplete, the proof is similar to the

proof of Theorem 3, but with non-random Bj and Rj .

3.2 Computation of the Degree of Predictability

We compare ρPRED for six restricted randomization procedures, including RBD(Bmax; R),

RBD(Bmax; T ), PBD(B; R), PBD(B; T ), BCD(p) and BSD(a), as a function of both n

and their parameters Bmax, B, p and a. Because we have proved the equivalence of ρPRED

and E(F ) in Theorem 1, we use equation (1.15) to calculate the degree of predictability for

the BCD(p), and equation (1.17) multiplying by n for the BSD(a).

Figure 3.1 presents an overall view of ρPRED for the six procedures. All the graphs

have been generated for n = 1, 2, . . . , 100, Bmax = 1, 2, . . . , 20 for the RBD(Bmax, R) and

RBD(Bmax, T ), B = 1, 2, . . . , 20 for the PBD(B, R) and PBD(B, T ), p = 0.5, 0.525, . . . , 1

for the BCD and a = 1, 2, . . . , 20 for the BSD. Color diverging from red to blue indicates

the increase of ρPRED.

Figure 3.2 shows the behavior of ρPRED for the six restricted randomization procedures

with some examples. All the graphs are generated for n = 1, 2, . . . , 50. For the RBD, PBD

and BSD, we choose Bmax/B/a = 3, 4, 6 and 10. For the BCD, we choose p = 3/5, 2/3, 3/4

and 5/6.

All the procedures RBD(1, R), RBD(1, T ), PBD(1, R), PBD(1, T ), BCD(1) and BSD(1)

generate the same deterministic sequence ABABAB · · · or BABABA · · · . Therefore these

designs have the same ρPRED of n/4, as shown in Figure 3.1. For fixed Bmax/p/a, ρPRED of

the RBD(Bmax, R), RBD(Bmax, T ), BCD(p) and BSD(a) are strictly monotone increasing

functions of n. For a fixed B, ρPRED of the PBD(B) increases periodically with a period

of half of the block size B.

The degree of predictably of the RBD and PBD for different values of n, Bmax and B

is provided in Tables 3.1 and 3.2. As expected, ρPRED is a monotone decreasing function
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in Bmax for the RBD. However, this does not hold for the PBD for some small size trials.

Observe that ρPRED is monotone increasing in p for the BCD, with the smallest ρPRED = 0

when p = 1/2 and largest ρPRED = n/4 when p = 1. For the BSD, as a increases, ρPRED

decreases, and ρPRED for a > 1 is greatly less than that when a = 1.

As can be seen in the graphs and tables, for the same value of Bmax/B, the block

design using the TBD to allocate patient to treatment group within blocks generates less

predictable treatment assignment sequences than the design using the RAR within blocks.

This agrees with Blackwell and Hodges (1957). It also shows that when Bmax = B, ρPRED

of the RBD(Bmax; R) is higher than the PBD(B; R). We see that the selection bias factor

of the RBD(3; R) is approximately the same as that of the PBD(2; R), and the selection

bias factor of the RBD(5; R) is approximately the same as that of the PBD(3; R). In order

to generate a randomization sequence with a comparable degree of predictability of PBD(B;

R), a larger value of Bmax has to be selected for the RBD(Bmax; R). It is also true between

the RBD(Bmax; T ) and PBD(B; T ). However, the RBD(Bmax; T ) and PBD(B, R) have

almost the same degree of predictability when Bmax = B.

The BSD has the smallest ρPRED comparing with the other five restricted randomization

procedures since it has the largest red area in Figure 3.1.

3.3 Conclusion

In this chapter, we investigated the degree of randomness of restricted randomization pro-

cedures. We provide a metric equivalent to the Blackwell-Hodges selection bias factor,

which is the degree of predictability ρPRED, to find the exact selection bias of restricted

randomization procedures. The Blackwell-Hodges model works well for the case that the

sample size n is known in advance, but it would be difficult for the case n is unknown,

like a permuted block design with an incomplete last block or a random block design with

unknown block sizes. Therefore, in light of this new approach, for the first time we find the

selection bias of the RBD when both the trial size and block size of all blocks are unknown,
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and the exact selection bias of the PBD when the trial size n is unknown.

It is generally assumed that the RBD will be less predictable. However, in this chapter,

we find that the RBD does not reduce predictability as one might expect compared to

the PBD. This agrees with the simulation results of Zhao, et al. (2011). One has to

choose a relatively larger value of Bmax for the RBD(Bmax) to produce a comparable or

less predictable allocation sequence than that under the PBD(B).

Matts and Lachin (1988) concluded that the selection bias factor of a design employing

multiple block sizes is approximately the same as that of a design with a block size equal to

the average of all the block sizes of the former design. Our results confirm their conclusion

and show that the degree of predictability of RBD(3; R) is slightly smaller than that of the

PBD(2; R). The RBD does not reduce the degree of predictability greatly, and there is an

explicit explanation in Berger’s book (2005).

When a = Bmax = B, the BSD(a) has a significantly smaller degree of predictability

compared with the RBD(Bmax; R), RBD(Bmax; T ), PBD(B; R) and PBD(B; T ).
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Table 3.1: Degree of predictability of the RBD(Bmax; R) and PBD(B; R) for different
values of n, Bmax and B

.
RBD(Bmax; R) PBD(B; R)

n 3 4 5 6 7 8 2 3 4 5 6 7
5 0.76 0.66 0.58 0.52 0.47 0.43 0.83 0.60 0.40 0.30 0.24 0.20

10 1.90 1.71 1.60 1.45 1.32 1.21 1.83 1.50 1.40 1.53 0.99 0.77
15 2.78 2.55 2.36 2.21 2.09 1.97 2.83 2.40 2.16 1.83 1.81 1.89
20 3.92 3.59 3.33 3.11 2.93 2.77 4.17 3.40 2.93 3.06 2.33 2.18
25 4.81 4.43 4.13 3.88 3.66 3.47 5.00 4.40 3.99 3.37 3.43 2.81
50 10.01 9.24 8.62 8.12 7.69 7.33 10.17 8.90 8.04 7.66 6.91 6.16
75 14.95 13.84 12.95 12.22 11.60 11.07 15.33 13.40 12.10 11.02 10.39 9.64

100 20.15 18.64 17.45 16.46 15.64 14.93 20.83 18.00 16.21 15.32 13.90 13.25

Table 3.2: Degree of predictability of the RBD(Bmax; T ) and PBD(B; T ) for different
values of n, Bmax and B

.
RBD(Bmax; T ) PBD(B; T )

n 3 4 5 6 7 8 2 3 4 5 6 7
5 0.65 0.48 0.38 0.31 0.27 0.23 0.75 0.44 0.06 0.00 0.00 0.00

10 1.64 1.41 1.28 1.09 0.92 0.78 1.50 1.06 1.09 1.23 0.48 0.13
15 2.46 2.16 1.93 1.75 1.61 1.48 2.50 1.88 1.69 1.23 1.35 1.47
20 3.46 3.05 2.74 2.49 2.28 2.11 3.75 2.81 2.19 2.46 1.43 1.47
25 4.29 3.80 3.44 3.14 2.90 2.69 4.50 3.75 3.28 2.46 2.71 1.77
50 8.93 7.97 7.25 6.68 6.21 5.82 9.00 7.50 6.56 6.15 5.41 4.41
75 13.40 12.01 10.96 10.13 9.45 8.88 13.75 11.25 9.84 8.61 8.12 7.33

100 18.05 16.18 14.77 13.66 12.76 12.00 18.75 15.12 13.12 12.30 10.83 10.26
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(a) RBD(Bmax; R) (b) RBD(Bmax; T )

(c) PBD(B; R) (d) PBD(B; T )

(e) BCD(p) (f) BSD(a)

Figure 3.1: Degree of predictability of the six restricted randomization procedures. Note
that each panel has different color scales.
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(a) RBD(Bmax; R) (b) RBD(Bmax; T )

(c) PBD(B; R) (d) PBD(B; T )

(e) BCD(p) (f) BSD(a)

Figure 3.2: Degree of predictability of the six restricted randomization procedures. Note
that each panel has different y-axis scales.
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Chapter 4: Variability of the Imbalance of Restricted

Randomization Procedures

In this chapter, we study the balancing properties of restricted randomization procedures.

Large imbalances in treatment assignments may result in large or significant differences of

baseline characteristics between treatment groups, hence lessen the creditability of the trial

results.

In complete randomization, patients are assigned to treatment groups without any con-

straint; however, there is a large probability of imbalanced treatment groups, which is a

special concern for a small clinical trials. Rosenberger and Lachin (2002) provide the asymp-

totic distribution of |Dn| for complete randomization based on the normal approximation

of binomial distribution. For r > 0, P (|Dn| ≤ r) ≈ 2Φ(r/
√
n) − 2. Table 4.1 shows the

probabilities of |Dn| falling in three intervals for different values of n. When n = 50, the

chance of an imbalance of more than 20% of 50 is 0.16. And for n = 100, that probability

is 0.05, corresponding to an imbalance of 60/40 in favor of treatment A (or B). When n is

large, the probability of large imbalances converges to 0.

For Efron’s biased coin design, with p = 2/3, the asymptotic probability of perfectly

balanced treatment groups is 0.5 for even n, and 0.75 for odd n. By equation (1.13),

P (0 ≤ |Dn| ≤ 0.10n) = 0.97 for n = 50 and almost 1 for n = 100. Compared with

complete randomization, the BCD(p) has a much smaller probability of producing extreme

imbalances. However, Soares and Wu (1983) believe that no experimenter would like to take

the risk to incur a serve imbalance in a trial, especially when the trial cannot be repeated.

In their BSD (a), a maximum imbalance bound a is prescribed to constrain the maximum

imbalance throughout the trial.

Block randomization controls the imbalance by randomizing the treatment assignment
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block by block. It ensures periodical treatment balances, and that the largest imbalance of

the whole course of the trial is not greater than half of the largest block size. If the number

of patients in the trial is known in advance, the PBD(B) produces balanced treatment group

by choosing B appropriately.

We have summarized the metrics for balance given in the literature in Section 1.3.

Soares and Wu (1983) argue that the expected final imbalance E(Dn) is a misleading way

of summarizing the final imbalance distribution, because it is more desirable to have an

imbalance distribution that does not produce extreme final imbalances. The simulation

results of Rosenberger and Lachin (2002) are consistent with Soares and Wu’s opinion.

When n = 50, E(Dn) is close to 0 for all the designs; for example, E(Dn) = −0.017 for

complete randomization and 0.002 for the BCD (2/3). However, V ar(Dn) for complete

randomization is 49.92, while V ar(Dn) for the other designs are less than 5 except the urn

design, which is 16.58. This example indicates that a small variability of the imbalance is

more important than controlling its expectation around 0. More recently, researchers have

proposed that measuring large imbalances throughout the trial is as important as terminal

imbalance, particularly for the trials with time-varying baseline covariates. One measure

of interest is E(max1≤j≤n |Dj |). According to Rosenberger and Lachin’s simulation results,

when n = 50, the average maximum imbalance of complete randomization is 8.88; 4.28 for

the BCD(2/3); and 2.34 for the RBD(3, R); and 3.75 for the RBD(10, R).

In Section 4.1, we provide exact formulas of the variance of the terminal imbalance,

V ar(Dn), for the RBD(Bmax), PBD(B), and BSD(a). In Section 4.2, we investigate and

compare this property for six restricted randomization procedures.

4.1 Variance of Terminal Imbalance

Theorem 8 and Theorem 9 provide V ar(|Dn|) of the RBD(Bmax; R) and RBD(Bmax; T ),

respectively. For the RBD with block sizes ranging from 2 to 2Bmax, the final imbalance

Dn varies from −Bmax to Bmax. A small variance of Dn indicates that repeating the RBD
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produces similar values of imbalance.

Theorem 6. Let n ≥ 1. Let r, d and n have the same parity. Then the variance of

imbalance of the RBD(Bmax; R) is given by following.

If n ≤ 2Bmax + 2,

V ar(Dn) = 2

Bmax∑
b=1

min(2b,n)∑
r=1

min(r,2b−r)∑
d=0

d2

(
r

d+r
2

)(
2b− r
b− d+r

2

)
(

2b

b

) 1

Bmax

[
1

Bmax + 1

(
1 +

1

Bmax

)n−r
2

]I(r<n)

.

If n ≥ 2Bmax + 3,

V ar(Dn) ≈ 2

Bmax∑
b=1

2b∑
r=1

min(r,2b−r)∑
d=0

d2

(
r
d+r
2

)(
2b− r
b− d+r

2

)
(

2b

b

) 2

Bmax(Bmax + 1)
.

Proof. The expectation of the terminal imblance if 0, E(Dn) = 0 because E(Dn) =∑
d(dP (Dn = d)+(−d)P (Dn = −d)) = 0. Therefore, V ar(Dn) = E(D2

n) = 2
∑

d d
2P (Dn =

d). Substituting Lemma 10 for P (Dn = d) in Chapter 2, we obtain the variance of the ter-

minal imbalance.

Theorem 7. Let n ≥ 1. Let r, d and n have the same parity. Then the variance of

imbalance of the RBD(Bmax; T ) is given by following. For n ≤ 2Bmax + 2,

V ar(Dn) =

Bmax∑
b=1

min(b,n)∑
r=1

r∑
d=0

d2
(

r
r+d
2

)
1

2r−1
1

Bmax

[
1

Bmax + 1

(
1 +

1

Bmax

)n−r
2

]I(r<n)

+

Bmax∑
b=1

min(2b,n)∑
r=b+1

2b−r−1∑
d=0

2b−r∑
x=1

d2
(

r
r+d
2

)(
2b− x− 1

b− 1

)
1

22b+r−x−2
1

Bmax

[
1

Bmax+1

(
1 + 1

Bmax

)n−r
2

]I(r<n)

+

Bmax∑
b=1

min(2b,n)∑
r=b+1

b∑
x=2b−r+1

(2b− r)2
(

2b− x− 1

b− 1

)
1

22b−x−1
1

Bmax

[
1

Bmax + 1

(
1 +

1

Bmax

)n−r
2

]I(r<n)

.
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For j ≥ 2Bmax + 3,

V ar(Dn) ≈ 2

Bmax∑
b=1

b∑
r=1

r∑
d=0

d2
(
r
r+d
2

)
1

2r
2

Bmax(Bmax + 1)

+ 2

Bmax∑
b=1

2b∑
r=b+1

2b−r−1∑
d=0

2b−r∑
x=1

d2
(
r
r+d
2

)(
2b− x− 1

b− 1

)
1

22b+r−x−1
2

Bmax(Bmax + 1)

+ 2

Bmax∑
b=1

2b∑
r=b+1

b∑
x=2b−r+1

(2b− r)2
(

2b− x− 1

b− 1

)
1

22b−x
2

Bmax(Bmax + 1)
.

Proof. The proof is same as the proof of Theorem 6 but substitute the Lemma 12 for

P (Dn = d).

Theorem 8. Let n ≥ 1. Let r, d and n have the same parity. Then the variance of

imbalance of the PBD(B; R) is given by

V ar(Dn) = 2

min(m,2B−m)∑
d=0

d2

(
m
m+d
2

)(
2B −m
B − m+d

2

)
(

2B

B

) ,

where bac denotes the integer part of a and m = n− 2B
⌊ n

2B

⌋
.

Proof. From Lemma 9 in Chapter 1, the distribution of the terminal imbalance of the PBD

(B; R) is as following by replacing Rj and B with m and B, respectively.

P (Dn = ±d) =

(
m
m±d
2

)(
2B −m
B − m±d

2

)
(

2B

B

) , d ∈ [0,min(m, 2B −m)].

Hence the variance of Dn is calculated by 2
∑
d

d2P (Dn = d).
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Theorem 9. Let n ≥ 1. Let r, d and n have the same parity. Then the variance of

imbalance of the PBD(B; T ) is given by following.

V ar(Dn) =



m∑
d=0

d2
(
m
m+d
2

)
1

2m−1
, 1 ≤ m ≤ B,

2B−m−1∑
d=0

d2
(
m
m+d
2

) 2B−m∑
x=1

(
2B − x− 1

B − 1

)
1

22B+m−x−2

+(2B −m)2
B∑

x=2B−m+1

(
2B − x− 1

B − 1

)
1

22B−x−1
, B + 1 ≤ m ≤ 2B.

where bac denotes the integer part of a and m = n− 2B
⌊ n

2B

⌋
.

Proof. The distribution of Dn of the PBD(B; T ) is as following by replacing Rj and B with

m and B in Lemma 11, respectively.

P (Dn = ±d) =



(
m

m±d
2

)
1

2m
, d ∈ [0,m], 1 ≤ m ≤ B,(

m
m±d
2

) 2B−m∑
x=1

(
2B − x− 1

B − 1

)
1

22B+m−x−1 , d ∈ [0, 2B −m), B + 1 ≤ m ≤ 2B,

B∑
x=2B−m+1

(
2B − x− 1

B − 1

)
1

22B−x
, d = 2B −m,B + 1 ≤ m ≤ 2B.

Chen investigated the balancing property of the BSD(a) by its asymptotic average im-

balance. We have not seen the general formula of the variance of the final imbalance of the

BSD(a). We provide it here.

Theorem 10. Let n ≥ 1. Let d and n have the same parity. For the BSD (a), when a = 1,

V ar(Dn) = 1 if n is odd, and V ar(Dn) = 0 if n is even. When a ≥ 2,

V ar(Dn) =
a−1∑
d=1

d2

[
2

a
+

2(−1)n+d

a
+

4

a

a−1∑
l=1

(
cos

lπ

a

)n
cos

(
dlπ

a

)]
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+ a+ (−1)n+aa+ 2a

a−1∑
l=1

(
cos

lπ

a

)n
coslπ.

Proof. Formula (1.15) provides the high-order transition probabilities P
(n)
0,d of Dn.

P (Dn = ±d) = ηd + (−1)n+dηd + 2ηd

a−1∑
l=1

(
cos

lπ

a

)n
cos

(
dlπ

a

)
,

where 0 ≤ d ≤ min(a, n), η0 = 1/(2a), η1 = · · · = ηa−1 = 1/a, and ηa = 1/(2a). Then

V ar(Dn) can be obtained by calculating E(D2
n). Notice that when n and d do not have the

same parity, P (Dn = ±d) = 0.

4.2 Computation and Comparison of the Terminal Imbalance

We compare V ar(Dn) for the six restricted randomization procedures, over a range of n

and the parameter of each procedure. For the BCD(p), we use the result from Markaryan

and Rosenberger and is given in equation (1.14). Figure 4.1 displays an overall view of

V ar(Dn) for the six randomization procedures. Colors diverge from red to blue, indicating

the increase of V ar(Dn). Note that the range of V ar(Dn) for each plot varies. While the

RBD(Bmax, R) has the smallest range from 0 to 5, the BCD(p) has the largest one from

0 to 100. We also plot the V ar(Dn) as a function of n for various values of the parameter

of each design in Figure 4.2. In addition, V ar(Dn) of the RBD(Bmax) and PBD(B) for

different values of n, Bmax, and B is provided in Table 4.2 and Table 4.3 for using the RAR

and TBD within blocks, respectively.

From Figure 4.1 and Figure 4.2, we observe that the RBD(Bmax, R) and RBD(Bmax,

T ) have a similar pattern: V ar(Dn) is a monotone increasing function in Bmax for each n,

the curves only cross at n = 1; for a fixed Bmax, as n increases, V ar(Dn) increases at the

beginning and reaches its maximum value at n = Bmax, then decreases to its local minimum
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point at n = 2Bmax. Then V ar(Dn) increases again and stays at two different values for

odd and even n respectively. The difference between the steady state for odd and even n is

larger using the RAR than the TBD within blocks.

The PBD(B, R) and PBD(B, T ) behave similarly. The variances repeat themselves

with every length of 2B as n increases. The value regresses to 0 at the end of every period.

For each n, V ar(Dn) does not increase as B increases; some n is a multiple for various

values of 2B, then for those n, V ar(Dn) achieves to 0 at different values B. If n is a prime

number, then V ar(Dn) never reach 0. The difference between the PBD(B, R) and PBD(B,

T ) is that for the PBD(B, R), the curve for the first half block is symmetric with the curve

for the second half block. For the PBD(B, T ), V ar(Dn) increases linearly in the first half

block, then drops smoothly in the second half block. The slope of the linear part is constant

across all values of B, which is 1.

BCD(0.5) is equivalent to complete randomization, hence it has a very large value of

V ar(D100), which is 100. When p rises to 0.55, V ar(D100) drops greatly to 33.5. For the

BCD(0.60), and BCD(2/3), V ar(D100) is 12.1 and 4.4, respectively. We see that V ar(Dn)

is a decreasing function in p for each n, because as p gets larger, the randomization is more

restricted, the probability of large imbalance gets smaller. For a fixed p, Figure 4.2 shows

an increasing concave curve in n. The curve is smoother for smaller value of p. For large

values of p, we see that V ar(Dn) converges to two different values for even and odd n.

The curves of V ar(Dn) for the BSD(a) look similar to those for the BCD(p). As a

increases, V ar(Dn) increases. Since the allocation probabilities for the first a treatment

assignments are 1/2, which is complete randomization, Figure 4.2(f) shows a linear rela-

tionship with slope 1 for n from 1 to a. From Figure 4.1(f) we notice that V ar(Dn) rises

after a exceeds 10.

When Bmax = B = a, RBD(Bmax), PBD(B) and BSD(a) control the maximum imbal-

ance throughout the trial at the same level, but the variabilities of the terminal imbalance

are different. The sequence is RBD(Bmax) < PBD(B) < BSD(a). For blocked randomiza-

tion, using the RAR to assign patients within each block has a smaller variability of final
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imbalance than using the TBD within each block.

Overall, the RBD(Bmax, R) outperforms the other five restricted randomization proce-

dures with respect to the variability of the terminal imbalance.

4.3 Conclusion

The variability of the terminal imbalance in treatment assignments for restricted random-

ization has been investigated in this chapter. Five theorems are provided to calculate the

variance of final imbalances of five restricted randomization procedure. If the only con-

sideration is the final imbalance in treatment assignments, the RBD(Bmax, R) is the best

procedure. If the total number of patients n is known, the clinical trialist can choose a

PBD design with 0 variances for the terminal imbalance. Alternatively, if one can establish

a fixed sample size that is divisible by all possible realizations of the block sizes from the

RBD, one can eliminate the possibility of imbalance (Heussen, 2004).

Regarding the maximum imbalance in the course of a trial, one can find the simulation

results of the average maximum imbalance of a trial with 50 patients for nine restricted

randomization procedures in Rosenberger and Lachin (2002). Further simulation results

of the maximum imbalance throughout a trial of size 100 for 20 restricted randomization

procedures are provided in Table IV of Zhao, et al. (2011). It is expected that both the

maximum imbalance and average maximum imbalance for the BSD(a) is a. The maximum

imbalance for the RBD(Bmax) and PBD(B) is Bmax and B, respectively. It is nontrivial to

establish the exact formula to calculate E(max1≤j≤n |Dj |) for blocked randomization.
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Table 4.1: Asymptotic distribution of |Dn| for complete randomization

n [0, 10%n) [10%n, 20%n) ≥ 20%n

50 0.52 0.32 0.16
100 0.68 0.27 0.05
150 0.78 0.21 0.01
200 0.84 0.15 0.00
400 0.95 0.05 0.00
800 1.00 0.00 0.00

Table 4.2: Variance of imbalance of the RBD(Bmax; R) and PBD(B; R) for different values
of n, Bmax and B

RBD(Bmax; R) PBD(B; R)

n 3 4 5 6 7 8 2 3 4 5 6 7

5 1.09 1.41 1.72 1.98 2.21 2.40 1.00 1.00 2.14 2.78 3.18 3.46
10 0.76 1.08 1.10 1.40 1.78 2.16 1.33 1.60 1.71 0.00 1.82 3.08
15 1.13 1.31 1.50 1.70 1.84 1.93 1.00 1.80 1.00 2.78 2.45 1.00
20 0.76 1.02 1.28 1.52 1.75 1.99 0.00 1.60 2.29 0.00 2.91 3.69
25 1.13 1.31 1.50 1.70 1.91 2.13 1.00 1.00 1.00 2.78 1.00 2.54
50 0.76 1.02 1.28 1.52 1.75 1.99 1.33 1.60 1.71 0.00 1.82 3.69
75 1.13 1.31 1.50 1.70 1.91 2.13 1.00 1.80 2.14 2.78 2.45 3.46

100 0.76 1.02 1.28 1.52 1.75 1.99 0.00 1.60 2.29 0.00 2.91 1.85

Table 4.3: Variance of imbalance of the RBD(Bmax; T ) and PBD(B; T ) for different values
of n, Bmax and B

.

RBD(Bmax; T ) PBD(B; T )

n 3 4 5 6 7 8 2 3 4 5 6 7

5 1.22 1.98 2.62 3.04 3.34 3.55 1.00 1.00 3.92 5.00 5.00 5.00
10 1.08 1.58 1.66 2.20 3.08 3.97 2.00 2.50 2.00 0.00 3.02 6.85
15 1.33 1.69 2.10 2.52 2.76 2.92 1.00 3.00 1.00 5.00 3.00 1.00
20 1.08 1.52 1.96 2.41 2.87 3.33 0.00 2.00 4.00 0.00 6.16 6.00
25 1.33 1.69 2.10 2.52 2.96 3.41 1.00 1.00 1.00 5.00 1.00 5.24
50 1.08 1.52 1.96 2.41 2.87 3.33 2.00 2.00 2.00 0.00 2.00 7.70
75 1.33 1.69 2.10 2.52 2.96 3.41 1.00 3.00 3.00 5.00 3.00 5.00

100 1.08 1.52 1.96 2.41 2.87 3.33 0.00 2.50 4.00 0.00 4.00 2.00
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(a) RBD (Bmax; R) (b) RBD (Bmax; T )

(c) PBD (B; R) (d) PBD (B; T )

(e) BCD(p) (f) BSD(a)

Figure 4.1: Variance of the final imbalance of six restricted randomization procedures. Note
that each panel has different color scales.
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(a) RBD (Bmax; R) (b) RBD (Bmax; T )

(c) PBD (B; R) (d) PBD (B; T )

(e) BCD(p) (f) BSD(a)

Figure 4.2: Variance of the final imbalance of six restricted randomization procedures. Note
that each panel has different y-axis scales.
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Chapter 5: Randomization Tests

One important advantage of randomization in clinical trials is that it provides an assumption-

free statistical test for the treatment effect, which is known as the randomization test. In

this chapter, we will investigate the performance of both the randomization test and the

standard two-sample population-based test under restricted randomization procedures.

5.1 Background

The traditional and commonly used parametric statistical tests for comparing two treat-

ments are based on random sampling from a population model. For example, in the two

sample Student’s t-test, it is assumed that the treatment groups are drawn randomly and

independently of each other from their respective populations. Each individual in the pop-

ulation has an equal probability of being selected in the sample. This assumption may

be inappropriate in a randomized clinical trial, where patients are not sampled randomly

from two infinite homogeneous populations. First, there are no populations of patients on

treatment A and B. Second, patients are selected non-randomly from non-randomly selected

clinics; see Rosenberger and Lachin (2002, Chapter 7).

The null hypothesis of the randomization test is that the two treatments have equal

effect. Under this null hypothesis, the observed response of each patient is independent of

its treatment assignment. Therefore, for any given sequence of responses, one can tabulate

all possible sequences of treatment assignments using the same randomization procedure,

which is called the reference set. Each randomization sequence in the reference set generates

a test statistic measuring the difference between the two treatment groups. Finally, the

exact null distribution is obtained and the p-value of the test is the proportion that the test

statistic is equal or greater than the observed one. Like all the basic hypothesis tests, the
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p-value is compared with the nominal level, usually 0.05, and a smaller p-value indicates

the extremeness of the observed value of the test statistic, hence a strong evidence of the

difference between the two treatment groups. For the test statistic, the family of linear rank

statistic is often used.

There are unconditional randomization test and conditional randomization test based

on which reference set is used. The unconditional reference set contains all the possible

permutation sequences, hence the number of sequences is 2n. The conditional reference

set only includes those sequences with the same number of patients assigned to treatment

A and B as the observed values from the trial, hence the number of sequences is

(
n

nA

)
.

For the block design with fully filled blocks, since the treatments assignments have been

forced to n/2, the sequences in unconditional reference set and conditional reference set

are exactly the same, but with different probabilities. The difficulty of implementing a

conditional randomization test is to determine the reference set and calculate the probability

of each sequence. Plamadeala and Rosenberger (2012) provided a computational method to

approximate conditional randomization test for those restricted randomization procedures

that assign next patient with respect to previous treatment assignments. In particular, they

derive the exact conditional distribution of NA(n) given NA(j) for the BCD(p), and also

the conditional variance-covariate matrix of the randomization sequence. In this study, we

only focus on the unconditional randomization test.

Today, the availability of fast computers has made randomization tests more feasible,

even for large data sets. Monte Carlo simulation with sufficient sequences can be employed

instead of enumerating all possible sequences (Zhang and Rosenberger, 2008). In a clini-

cal trial of size n, a randomization procedure is employed to assign treatment to patients,

and the response x1, x2, . . . , xn are observed. A test statistic Sobs is calculated to measure

the treatment difference between the two groups. To implement an unconditional Monte

Carlo re-randomization test, one simulates L randomization sequences using the same ran-

domization procedure as in the clinical trial and calculate the corresponding test statistic
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Sl, l = 1, 2, . . . , L, using the observations x1, x2, . . . , xn. The two-sided Monte Carlo p-value

estimator is then defined as

p̂u =

∑L
l=1 I(|Sl| ≥ |Sobs|)

L
.

Galbete and Rosenberger (2015) compared the Monte Carlo re-randomization test with the

exact and asymptotic test for some randomization procedures for which there is a known

exact or asymptotic distribution of the test statistic. They conclude that Monte Carlo re-

randomization test with sufficient sample size is very accurate. They find that L=15,000

is enough to produce a stable Monte Carlo distribution of the test statistic which is also

close to the computation of an exact test. When the response of the study is binary and

the sample size is small, the exact computation is theoretically the best and fastest to

compute, but Monte Carlo re-randomization can be used when it is difficult to obtain the

exact distribution. When the response of the study is continuous and the sample size is

large, they suggest using the Monte Carlo simulation.

In this study, we investigate the type I error rate and power of both the Monte Carlo re-

randomization test and standard two-sample t-test on restricted randomization procedures

with continuous responses. The responses follow two models: one is a population model

under which the assumption of the t-test is satisfied; the other one is a worse case scenario,

which is under a vigorous linear time trend and the assumption of the t-test is violated.

The restricted randomization procedures including the BCD(p), BSD(a), RBD(Bmax, R),

RBD(Bmax, T ), PBD(B,R), and PBD(B, T ).

5.2 Simulation Algorithm

A two-sided randomization test and a two-sided two-sample t-test are simulated. The test

statistic is the mean difference between two treatment groups. For each test, we choose

n = 50 and significant level α = 0.05. Each test is simulated 10,000 times. For each of the
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10,000 tests, the response data is generated under two models:

1. Under H0, X1, X2, . . . , X50 ∼ i.i.d. N (0, 1).

Under H1, treatment A has a mean shift of 1.

2. Under H0, X1, X2, . . . , X50 are distributed linearly on the interval (−2, 2] plus a

N (0, 1) random variable.

Under H1, treatment A has a mean shift of 1.

The treatment assignments are generated under the six restricted randomization proce-

dures. We choose p = 2/3, a = 3, 4, 6, 10, Bmax = 3, 4, 10, and B = 2, 3. For the t-test, we

do not assume equal variance though the data is generated under equal variance. Hence,

the degree of freedom of the test is calculated by the Welch-Satterthwaite equation. For

each Monte Carlo re-randomization test, L = 15, 000 sequences are used for computation.

5.3 Simulation Results

The simulation results of the nominal size and power are listed in Table 5.1 and Table 5.2,

respectively. We see under model 1, both tests have size around 0.05 and power around 0.93,

which indicates that both tests maintain size and power. The t-test is not more powerful

than the randomization test for all the restricted randomization procedures. Moreover,

there is no difference in the performance of the two tests among all the randomization

procedures.

Under model 2, when the linear time trend violates the assumption of the t-test, the

t-test fails to maintain nominal size and is very conservative except under the BSD(6) and

BSD(10). However, the size of the randomization test remains around 0.05 under all the

procedures.

The power of both tests is reduced under model 2. With the linear time trend, the

power of the t-test is around 0.64 under all the randomization procedures. The power

of the randomization test varies in procedures, with the lowest value under the BSD(10).
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We see the power decreases as a increases under the BSD. All the blocked randomization

procedures have similar power in randomization test.

5.4 Conclusion

We have conducted a comparison between the randomization test and t-test under 15 ran-

domization procedures from six restricted randomization designs. It is expected that a

parametric model would be more powerful than a nonparametric model if the data fits the

population assumption of the parametric model. In our simulation results, the random-

ization test is comparable to the t-test under a population model for 15 randomization

procedures. Moreover, the randomization test is robust to time trends in both size and

power. The t-test fails to preserve the nominal size and has much smaller power comparing

with that of the randomization test.

The type of randomization procedure does not affect the size and power under the

population model. However, when there is a time trend, the power of randomization test

depends on the randomization procedure. Using block randomization has a higher power in

the randomization test than using the BCD(p) or BSD(a), but there is not much difference

for the power between different block sizes. As a increases, the BSD(a) approaches to com-

plete randomization. Hence, the t-test behaves as under complete randomization (Tamm

and Hilgers, 2014).
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Table 5.1: Simulated size of the randomization test and t-test under a single time shift and
linear time trend. Each simulation based on 10,000 tests, n = 50. For the randomization
test, L = 15, 000

Model 1 Model 2

Procedures Randomization Test t-test Randomization Test t-test

BCD(2/3) 0.04 0.05 0.05 0.01
BSD(3) 0.05 0.05 0.05 0.00
BSD(4) 0.05 0.05 0.05 0.02
BSD(6) 0.05 0.05 0.06 0.04
BSD(10) 0.06 0.05 0.05 0.05
RBD(3,R) 0.05 0.04 0.05 0.00
RBD(3,T ) 0.05 0.05 0.05 0.00
RBD(4,R) 0.04 0.04 0.05 0.00
RBD(4,T ) 0.04 0.04 0.05 0.00
RBD(10,R) 0.05 0.05 0.05 0.01
RBD(10,T ) 0.05 0.05 0.05 0.01
PBD(2,R) 0.05 0.04 0.05 0.00
PBD(2,T ) 0.05 0.05 0.05 0.00
PBD(3,R) 0.05 0.05 0.05 0.00
PBD(3,T ) 0.05 0.05 0.05 0.00

Table 5.2: Simulated power of the randomization test and t-test under a single time shift and
linear time trend. Each simulation based on 10,000 tests, n = 50. For the randomization
test, L = 15, 000

Model 1 Model 2

Procedures Randomization Test t-test Randomization Test t-test

BCD(2/3) 0.92 0.93 0.78 0.64
BSD(3) 0.93 0.93 0.83 0.61
BSD(4) 0.94 0.94 0.82 0.64
BSD(6) 0.94 0.94 0.71 0.64
BSD(10) 0.94 0.94 0.63 0.63
RBD(3,R) 0.93 0.93 0.90 0.65
RBD(3,T ) 0.93 0.93 0.92 0.64
RBD(4,R) 0.93 0.94 0.92 0.64
RBD(4,T ) 0.94 0.94 0.91 0.64
RBD(10,R) 0.94 0.93 0.89 0.64
RBD(10,T ) 0.94 0.94 0.85 0.64
PBD(2,R) 0.93 0.93 0.88 0.65
PBD(2,T ) 0.93 0.94 0.91 0.64
PBD(3,R) 0.94 0.94 0.92 0.64
PBD(3,T ) 0.93 0.94 0.91 0.64
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Chapter 6: Graphical Comparisons with Bivariate Objectives

In practice, choosing an appropriate randomization procedure involves multiple criteria and

competing goals. In previous sections, we have compared the six restricted randomiza-

tion procedures with respect to the predictability, variability of terminal imbalance and

performance of randomization tests separately. In this chapter, we will conduct graphical

comparisons with respect to bivariate objectives.

Graphics has been used in many literatures for comparing many randomization designs

simultaneously or choosing the appropriate design for a given sample size when two objec-

tives are taking into account. Zhao, et al. (2011) plotted simulated correct guess probability

against the maximum absolute imbalance for 260 randomization design scenarios. Atkinson

(2014) plotted the simulated average expected selection bias and loss of precision for nine

randomization procedures. Such graphs can also be found in Atkinson (2012) and Baldi

Antognini and Zagoraiou (2014).

In this chapter, for both the predictability and imbalance metrics, we divide by n to

simplify the comparisons. The two metrics become the degree of predictability per patient

(ρPRED/n), which ranges from 0 to 0.5, and the average variance of terminal imbalance

(V ar(Dn)/n), which ranges from 0 to 1. We treat the predictability and imbalance equally

in importance. Therefore, in our trade-off plot, the ratio of range of x-axis and y-axis

is always 1:2, which ensures that same changes in x and y directions are equivalent in

importance.

Note that it is not necessary that same change in y and x directions are equivalent in

importance. We call this type of plot as a trade-off plot, mainly because predictability

and treatment imbalances are completing objectives. Any procedure appearing in the left

bottom corner would be the best procedure for a given sample size with the lowest variance

of terminal imbalance and lowest degree of predictability.
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6.1 Predictability Versus Imbalance

In this section, we compare restricted randomization procedures with respect to terminal

imbalance and treatment assignments predictability by plotting the average variance of

terminal imbalance against the average degree of predictability.

We first explore the trade-off between predictability and imbalance for each design in-

dividually in Figure 6.1 - 6.4. We consider both cases when n is even and odd. Lines in

different colors are for different values of sample size. Different symbols on the lines repre-

sent different values of the parameter for that randomization procedure. As observed from

these figures, the predictability and imbalance metrics are in conflict. We also see all the

randomization procedures have a similar pattern except the PBD(B). For the RBD(Bmax,

R) and RBD(Bmax, T ), as Bmax increases, for a given sample size, the average variance

of terminal imbalance decreases, the degree of predictability increases. A similar trend is

observed for the BCD(p) when p is increasing. For the BSD(a), the average variance of

imbalance decreases and the degree of predictability increases as a decreases. Moreover,

each of these four designs behaves almost the same for even n and odd n. The PBD(B,

R) and PBD(B, T ) behave quite differently from the previous four designs. For a given

sample size n, the PBD that has the largest divisor of n as its block size is the best design.

For example, when n = 200 in Figure 6.2, among the three divisors (2B = 4, 8, 20) of 200,

20 is the largest one. The PBD(10) appears in the left bottom corner of each panel, with

the smallest degree of predictability and perfect balance. However, the maximum absolute

imbalance throughout the experiment is also the largest.

When Bmax varies from 2 to 10, the difference of the average degree of predictability

is about 0.1 under both the RBD(Bmax, R) and RBD(Bmax, T ). But the difference of

the average variance of terminal imbalance between Bmax = 2 and Bmax = 10 under the

RBD(Bmax, T ) is much larger than that under the RBD(Bmax, R). The same phenomenon

is observed for the PBD.

The lines under the BSD are much steeper than under the RBD and BCD. The average
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variance of terminal imbalance increases sharply as a increases, but the average degree of

predictability declines slowly.

In Figure 6.5, we compare the following randomization procedures for a given sample

size in a trade-off plot. For the BSD(p), we choose p = 2/3, which is recommended by Efron

(1971), as well as p = 3/5, which is recommended by Pocock for a large trial (1983). For

the BSD(a), we choose a = 3, 4, 6 and 10. For the RBD(Bmax, R) and RBD(Bmax, T ), we

let Bmax = 2, 3, 4, 10. For the PBD(B, R) and PBD(B, T ), we choose B = 2, 3, 4, 10 as

well. We have seen that there is no significant difference between even and odd sample size,

hence we only consider the even n here. In Figure 6.5, different colors represent different

randomization designs. The labeling shown in each plot is the value of the design parameter.

For example, a green 4 means the BSD(4), and a red 10 means the RBD(10, R).

When n = 20 (top left plot), PBD(10, T ) and PBD(10, R) are closest to the origin

with perfect balance and average degree of predictability around 0.1. Again, these two

procedures suffer a downside of having a large maximum imbalance throughout the trial.

it appears that in the rest procedures, the BSD(3) is closest one to the origin. The BSD(a)

has a smaller average degree of predictability than the PBD(10, T ) and PBD(10, R), and

an average variance of terminal imbalance of 0.13. The BCD(2/3), PBD(4, T ) and RBD(10,

T ) have similar predictability and imbalance. The other blocked randomization procedures

have a very low variance of imbalance but a relatively high degree of predictability. When

n = 50 in the plot (b), the BSD(3) appears to be the best design or the BSD(4) with a

relatively high variance of imbalance and a smaller degree of predictability. When n = 100

and 200, the BSD(3), BSD(4) and PBD(10, T ) appear in the left quadrant. For a same n,

the PBD(10, T ) has similar degree of predictability to the BSD(3), and generates perfect

balanced treatment groups if n is divisible by 20.

We compare the RBD and PBD in Figure 6.6 to see whether the RBD is better than

the PBD. As observed in all four plots, the RBD does not perform better than the PBD.

There is a significant difference between even and odd sample size. Though the RBD have

relatively smaller variances of imbalance, the degree of predictability is higher.
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6.2 Predictability or Imablance Versus Type II Error

In order to show the best design in the left quadrant, we plot the type II error probability

instead of power since the higher power the lower the type II error probability. Note that

the best type II error probability is 0.07. We compare various restricted randomization

procedures with respect to the type II error probability under a linear time trend and

degree of predictability in Figure 6.7 and the type II error probability under a linear trend

and variance of imbalance in 6.8. For the type II error probability, the simulation results

in Chapter 5 are used here.

Figure 6.7 indicates that the type II error probability and degree of predictability are

competing. For the BSD, a smaller a a smaller type II error probability a larger degree of

predictability. For the blocked randomization, the type II error probability is around 0.1 for

all the parameter selected except the RBD(10, T ), which has a relative larger type II error

probability. No procedure appears in the left bottom corner in Figure 6.5. The RBD(4, T ),

RBD(4, R), PBD(3, R) or PBD(3, T ) have the smallest type II error probability with a

degree of predictability slightly less than 0.2 while the BSD(3) and BSD(4) have the degree

of predictability less than 0.1 but relatively higher type II error probability.

Figure 6.8 shows that the type II error probability and variance of imbalance behave

consistently. All the blocked randomization procedures have a similar variance of imbalance

and type II error probability except the RBD(10, T ). The BSD(10) with a large variance

of the imbalance and large type II error probability is almost in the middle of the graph.

6.3 Conclusion

In this chapter, we have conducted graphical comparison between six restricted random-

ization procedures with bivariate objectives: predictability versus imbalance, predictability

versus type II error probability and imbalance versus type II error probability. The pre-

dictability is competing with the imbalance and type II error probability. A small degree

of the predictability, a large variance of the terminal imbalance and a large type II error
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probability. For the goal of minimizing predictability and achieving treatment balance, the

BSD(3) appears to be the best procedure for a small size trial, and both the BSD(4) and

BSD(3) perform best for a moderate and large trial. For the goal of minimizing predictabil-

ity and preserving type II error probability under a linear time trend, when n = 50, the

best procedure does not exist. One can choose the RBD(4, T ), RBD(4, R), PBD(3, R)

or PBD(3, T ) if one prefers a smaller type II error probability, in other words, a higher

power. If a lower degree of predictability is preferable, the BSD(3) and BSD(4) are good

choices. Here we treat each objective equivalent; in practice, one can change the scaling if

one objective is considered more important, but then the criteria will not be on the same

scale.
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(a) RBD(Bmax; R), n is even (b) RBD(Bmax; R), n is odd

(c) RBD(Bmax; T ), n is even (d) RBD(Bmax; T ), n is odd

Figure 6.1: Trade-off plot for the RBD, comparing imbalance and predictability measures.
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(a) PBD(B; R), n is even (b) PBD(B; R), n is odd

(c) PBD(B; T ), n is even (d) PBD(B; T ), n is odd

Figure 6.2: Trade-off plot for the PBD, comparing imbalance and predictability measures.
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(a) BCD(p), n is even (b) BCD(p), n is odd

Figure 6.3: Trade-off plot for the BCD(p), comparing imbalance and predictability mea-
sures.

(a) BSD(a), n is even (b) BSD(a), n is odd

Figure 6.4: Trade-off plot for the BSD(a), comparing imbalance and predictability measures.
Note that axes scales are different from Figure 6.1-6.3.
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(a) n = 20 (b) n = 50

(c) n = 100 (d) n = 200

Figure 6.5: Trade-off plot for various restricted randomization procedures, comparing imbal-
ance and predictability measures. Note that the upper panel and lower panel have different
axes scales.
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(a) n = 20 (b) n = 21

(c) n = 50 (d) n = 51

(e) n = 100 (f) n = 101

Figure 6.6: Trade-off plot for the RBD and PBD, comparing imbalance and predictability
measures
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Figure 6.7: Trade-off plot for various restricted randomization procedures,n = 50, compar-
ing predictability and type II error probability under a linear time trend

Figure 6.8: Trade-off plot for various restricted randomization procedures,n = 50, compar-
ing imbalance and type II error probability under a linear time trend
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Chapter 7: Conclusions and Future Work

In this chapter, we reiterate the contributions of this thesis.

The random block design is rarely carefully defined when it is employed in clinical trials.

In this thesis, we have rigorously formalized the RBD by assuming a discrete uniform distri-

bution for block size. Blocks sizes are randomly selected from even integers 2, 4, . . . , 2Bmax

with equal probability, where Bmax is predefined by investigators, and then patients are

randomized within each block. Each block can be filled by either the RAR or the TBD. We

suggest that when referencing the RBD, it is necessary to indicate the range of the block

size and by which method each block is filled.

One of the contributions of this thesis is that we derived some important distributional

properties of the RBD by combinatorics, such as the joint distribution of the block size

and position number within the block, and the distribution of the terminal imbalance of

treatment assignments for both the RBD(Bmax, R) and RBD(Bmax, T ). We proposed the

degree of predictability ρPRED, which is mathematically equivalent to the Blackwell-Hodges

selection bias factor, to find the exact selection bias of restricted randomization procedures.

With the distribution results of the RBD, we quantified ρPRED and balancing properties

in closed-form formulas. This provides a statistical understanding of the RBD that can be

used in comparison with other restricted randomization procedures.

Matt and Lachin (1988) calculated the selection bias for the PBD when each block is

filled by the RAR and the last block is filled. We have not seen any research on the selection

bias and imbalance of the PBD with unknown n under which the last block may not be

fully filled. In this thesis, we have filled this gap by providing exact formulas to calculate

the selection bias and variance of terminal imbalance for the PBD when the last block is

unfilled. We have results for both the PBD using the RAR and the PBD using the TBD to

randomize patients within each block.
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We have conducted a comparison of the predictability and imbalance between the RBD

and the PBD. We found the RBD does not reduce predictability as one might expect

compared to the PBD. When Bmax = B, the sequence of the degree of predictability is

PBD(B, T ) < PBD(B, R) ≈ RBD(Bmax, T ) < RBD(Bmax, R). Regarding comparing the

variance of the imbalance between the RBD and PBD, any general conclusion would depend

on the value of n.

We also compared blocked randomization with other restricted randomization proce-

dures whose exact distribution has been found, including the BCD and BSD, with respect

to the selection bias and imbalance. Despite the fact that blocked randomization is the

most commonly used procedure in clinical trials, for a moderate and large trial, both the

BSD(3) and BSD(4) are better with comparative variances of imbalance to the blocked

randomization but much smaller degree of predictability, and smaller maximum imbalances

during the course of the trial. For a small trial, the BSD(3) performs better in balancing

the predictability and imbalance.

Additionally, we investigated the properties of randomization tests in restricted ran-

domization procedures. We found the randomization test is comparable to the two-sample

Student’s t-test under a population model, and robust to time trends in both size and power.

Under a linear time trend, using blocked randomization has a higher power than using the

BCD and BSD.

There are limitations in this study. While we claim we found the exact distribution for

the RBD, we were unable to find the exact distribution for j > 2Bmax + 2. In particular,

in Lemma 6, we did not obtain the closed form for λ1, . . . , λBmax−1. However, one can use

the recursive equation in Lemma 4 to calculate the exact distribution. When we quantify

the predictability and imbalance for the RBD, for j > 2Bmax + 2, we used the asymptotic

approximation in Lemma 7, which simulation shows was quite accurate, even for a small

sample. Another limitation is that we only investigated the performance of the random-

ization test under a few scenarios. A more explicit simulation is expected in the future,

including more values of n and more restricted randomization procedures.
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The following is the outline of future work:

1. When qualifying the balancing property of a randomization procedure, we want a

lower value of both the variance of terminal imbalance and the average maximum

imbalance throughout the trial. For example, a PBD with a block size 20 generates

perfect balancing treatment group for a trial of size n that is divisible by 20, but there

is a probability of having an imbalance of 10 during the trial, which may bias the

study result if there is a drift in patient characteristics. We suggest quantifying the

average maximum imbalance, E(max1≤j≤n |Dj |), of the blocked randomization in the

future, using the exact distributional results in Chapter 2.

2. One of the reasons that the RBD does not perform better than the PBD is that the

RBD involves blocks of size 2. This greatly increases the degree of predictability.

We propose the truncated random block design without a block of size 2, which is

the RBD(Bmax) with Bmax starting at 2. We are working on the distribution of this

truncated random block design. One also can consider varying the block sizes with

unequal probabilities which puts a lower weight on the block size of 2.

3. The exact distribution of terminal imbalance of the BCDII defined in (1.5), as well as

its selection bias, have been found by Chen (1999). However, there is little study on

the performance of this design in the selection bias and balance. We tend to obtain

the variance of the imbalance of the BCDII using the distribution of Dn and add this

design into our comparison.
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