

Heuristics to Approach the Orienteering Problem through Network Analysis in GIS

Software

A Thesis submitted in partial fulfillment of the requirements for the degree of Master of

Science at George Mason University

by

John K Robinson

Master of Arts

The George Washington University, 2010

Bachelor of Arts

University of Virginia, 2001

Director: Matthew Rice, Associate Professor

Department of Geography and Geoinformation Science

Fall Semester 2018

George Mason University

Fairfax, VA

ii

Copyright 2018 John K Robinson

All Rights Reserved

iii

DEDICATION

This is dedicated to my family and friends who have supported me continuously as I

plugged away at this project.

iv

ACKNOWLEDGEMENTS

I would like to thank the many friends, relatives, and supporters who have helped to

make this happen. I would like to thank in particular Dr. Kevin Curtin, Professor in the

Department of Geography at the University of Alabama and formerly of the Department

of Geography and Geoinformation Science at George Mason University, for his tutelage,

guidance, and inspiration over the last several years. His help made it possible to take a

real-world problem and design a research study out of that experience. In addition, I

would like to thank two faculty members at George Mason University: Dr. Matt Rice,

Associate Professor in the Department of Geography and Geoinformation Science, for his

guidance in completing the work; and Dr. Andrew Loerch, Associate Chair of the

Department of Systems Engineering and Operations Research, for his support with

Operations Research concepts and other assistance throughout. Finally, I would like to

thank all of my professors from my time at George Mason for inspiring me and helping

me to learn so much about geography and its myriad practices.

v

TABLE OF CONTENTS

Page

List of Tables .. vii

List of Figures .. viii

List of Equations .. ix

List of Abbreviations and Symbols... x

Abstract .. xi

1. Introduction and Research Question .. 1

2. Literature Review .. 5

2.1. Overview of Orienteering Problem Solution Approaches in the Literature 5

2.2. Problem Definition and Mathematical Formulation ... 9

2.2.1. Ensuring an Appropriate Problem Formulation .. 9

2.2.2. Unrooted Orienteering Problem .. 12

2.3. Developing GIS Software Heuristics for the TSP Family of Problems 14

3. Methods ... 17

3.1 Initial Heuristic Development ... 17

3.1.1. Nearest Neighbor Heuristic... 19

3.1.2. Highest Available Heuristic .. 20

3.1.3. Heuristic Initialization .. 22

3.2. Finding Optimal Results ... 24

3.2.1. Microsoft Excel 2010 Solver Add-In .. 26

3.2.2. Gurobi Optimizer .. 30

4. Data .. 34

5. Results ... 38

5.1. Initial Rooted OP Heuristics ... 38

5.1.1. Initial Heuristic Results... 38

5.1.2. Initial Heuristics with Initialization Results ... 41

5.1.3. Initial Heuristic Results Summarized ... 42

5.2. Unrooted OP Optimal Solutions ... 43

5.3. Example Implementation of Unrooted OP Heuristics 45

5.4. Unrooted OP Results: Heuristics Versus Optimal .. 48

vi

6. Conclusions ... 53

7. Future Research Opportunities .. 58

Appendix A – Rooted OP Heuristics Definitions ... 63

Nearest Neighbor Heuristic ... 63

Highest Available Heuristic .. 64

Appendix B – Rooted OP Heuristics Implementation Output .. 67

Appendix C – Sample Optimal Model Gurobi Code .. 69

Appendix D – Iterative Process Identifying Total Cost Constraints 72

References ... 82

vii

LIST OF TABLES

Table Page

Table 1: Heuristic Results on the Rooted OP Using Sets of All 66 Vote Locations and

Cmax of 15,000 m ... 43

Table 2: Optimal Results for Dataset 10n_set2 with Progressively Smaller Cmax Values 44
Table 3: Results of Implementation of NNH on Dataset 10n_set2 with Cmax of 4,696 m. 45
Table 4: Results of Implementation of HAH on Dataset 10n_set2 with Cmax of 4,696 m. 47
Table 5: Heuristic Performance Relative to Optimal Results for the Unrooted OP 49
Table 6: Means, Standard Deviations, and 95% Confidence Intervals for Percentage of

Optimal Measurements for Each Heuristic ... 50
Table 7: Means, Standard Deviations, and 95% Confidence Intervals for Percentage of

Optimal Measurements for Each Heuristic, by Dataset Size .. 51

Table 8: Statistical Summary of Difference in Percentage Optimal Measurements

between Heuristics .. 52
Table 9: Statistical Summary of Difference in Percentage Optimal Measurements for

Heuristics Found Significantly Different .. 52

viii

LIST OF FIGURES

Figure Page

Figure 1: Screenshot of the Excel model for a 5-vertex problem—constraint 5 is built into

the sheet in cells below this screenshot... 27

Figure 2: The Excel Solver Add-In pop-up window seen on right showing the objective

cell, decision variable cells, and most of the constraints of the model. 29
Figure 3: First part of a 10-vertex LP-format model run by the Gurobi Optimizer at the

command line. ... 32
Figure 4: The complete city of Fairfax, Virginia road network and 66 vote location sites.

... 35
Figure 5: Solution path found by the Nearest Neighbor Heuristic for rooted OP set 1. ... 39

Figure 6: Solution path found by the Highest Available Heuristic for rooted OP set 1. .. 40

Figure 7: Solution path found by the Nearest Neighbor Heuristic for unrooted OP dataset

10n_set2 with Cmax of 4,696m. ... 46
Figure 8: Solution path found by the Highest Available Heuristic for unrooted OP dataset

10n_set2 with Cmax of 4,696m. ... 47

ix

LIST OF EQUATIONS

Equation Page

Equation 1: Unrooted Orienteering Problem Formulation ... 13

x

LIST OF ABBREVIATIONS AND SYMBOLS

∆ .. Change in

Ant Colony System .. ACS

Attractive Traveling Salesman Problem ... AtTSP

Biobjective Shortest Path Problem .. BSP

Geographic Information System ... GIS

Highest Available Heuristic .. HAH

Highest Available Heuristic with Initialization .. HAHwI

Integer Linear Programming ..ILP

Linear Programming ... LP

Mixed Integer Programming .. MIP

Nearest Neighbor Heuristic... NNH

Nearest Neighbor Heuristic with Initialization ... NNHwI

Orienteering Problem ... OP

Orienteering Problem with Mandatory Visits and Conflicts OPMVC

Orienteering Problem with Time Windows ... OPTW

Operations Research .. OR

Orienteering Tour Problem .. OTP

Selective Traveling Salesman Problem ... STSP

Time-Dependent Orienteering Problem ... TD-OP

Team Orienteering Problem ... TOP

Traveling Salesman Problem .. TSP

xi

ABSTRACT

HEURISTICS TO APPROACH THE ORIENTEERING PROBLEM THROUGH

NETWORK ANALYSIS IN GIS SOFTWARE

John K Robinson

George Mason University, 2018

Thesis Director: Dr. Matthew Rice

The orienteering problem (OP) is a subclass of the traveling salesman problem (TSP) that

includes a constraining function on the solution path that may restrict the number of

vertices visited and a requirement to maximize the value of the vertices visited. Solving

the OP is often approached by using linear programming (LP) and branch-and-bound

algorithms. Existing research on the OP does not provide algorithms or heuristic

approaches for solving this class of problems using only geographic information system

(GIS) software and a spreadsheet. Several new heuristic approaches are presented and

tested on small and medium real-world road network datasets. The heuristics are

evaluated relative to the optimal solution found through an integer linear programming

(ILP) approach. Heuristics evaluated include the Nearest Neighbor Heuristic (NNH) and

Highest Available Heuristic (HAH). A centralizing initialization step is also introduced

and evaluated. The new heuristic approaches make it possible to find a good solution for

xii

a small OP in network space without requiring knowledge of or access to LP software.

Future research is called for to develop more effective heuristics, further validate existing

heuristics, and improve the implementation times of existing heuristics.

1

1. INTRODUCTION AND RESEARCH QUESTION

The traveling salesman problem (TSP) is one of the most studied problems in

combinatorial optimization. Within this broad category of problem type exist multiple

subclasses of problems, one of which is known by several names in the literature—most

prominently as the orienteering problem (OP). In the OP, each vertex has a score, and the

goal is to maximize the value of the vertices visited while staying within a defined cost

constraint. Similar to the TSP, each vertex has a set distance between it and all other

vertices, and so the vertices are typically treated as sitting on a defined network. The cost

constraint of the OP can be operationalized in many ways such as travel cost or time, but

is often defined as travel distance.

The name for the orienteering problem is derived from the sport of orienteering,

wherein competitors using a map and compass work to navigate a set of points. The sport

of orienteering itself arose from military training exercises of land navigation. According

to Orienteering USA, the national governing body for the sport in America, there are four

internationally sanctioned formats of orienteering competition: foot orienteering, trail

orienteering, ski orienteering, and mountain bike orienteering (Orienteering USA, 2018).

Other styles include adventure racing, canoe orienteering, radio orienteering, and

rogaining.

2

Foot orienteering is the classic format of the sport and somewhat resembles the

TSP: competitors seek to visit all control points as quickly as possible, usually with a set

start and end point. While the TSP is frequently placed in network space, foot

orienteering is different in that it is practiced in planar space and in some cases the order

of points to visit is defined (Orienteering USA, 2018). Ski and mountain bike

orienteering also involve visiting an ordered set of points as quickly as possible, but these

disciplines usually require staying on a defined network of paths. Rogaining is a long-

distance and cross-country form of competitive orienteering practiced in small teams that

introduces scored checkpoints. (The name for the sport was coined from blending parts of

the names of the three inventors: Rod, Gail, and Neil (Victorian Rogaining Association,

2016).) A variation of foot orienteering that incorporates scored control points is known

as Score-O. Rogaining courses are typically designed so that teams will not be able to

visit all checkpoints within the time limit (anywhere from 2 to 24 hours) (International

Rogaining Federation, 2017). Thus rogaining teams must strategically plan their route to

accumulate as many points as possible from the checkpoints they do visit. Rogaining, like

foot orienteering, is also conducted in planar space rather than network space. This aspect

is important because the landscape can vary dramatically with hills, rivers, or canyons,

and so the shortest “distance” between two points may be based on time to traverse

instead of straight-line distance. This also means that the shortest “distance” between two

points in rogaining may vary among competitors. With respect to specific orienteering

competition types, the OP can best be thought of as rogaining but conducted in more

restricted network space like ski and mountain bike orienteering.

3

The OP can have numerous potential applications beyond an orienteering

competition, such as a traveling politician attending a number of rallies where he or she

will attempt to secure the votes of the attendees at each differently-sized event, or

similarly for a college recruiter attending high schools seeking to accumulate applications

at each stop. Another variation of the problem could be as an inventory and delivery

routing problem for a single vehicle, such as the delivery of home heating fuel. The OP

has also been formulated as a prize-collecting TSP scenario. Extensions of the OP have

been studied that may apply to school bus routing, industrial refuse collection, and dial-a-

ride services. In addition, as the orienteering problem is a subclass of the traveling

salesman problem, the team orienteering problem (TOP) is a subclass of the vehicle

routing problem, with its own body of research.

A number of solution techniques have been proposed for various formulations of

the OP, as will be outlined in chapter 2. However, there appears to be a paucity of

research into heuristics that can be applied using only geographic information system

(GIS) software. Given the large array of real world applications of variations of the OP

and the complexity typically involved in the implementation of a linear programming

approach (access to specialized software and the programming ability required to use

such software), there is a need for more accessible solution approaches to the OP for GIS

users of varying expertise. While heuristic techniques using a GIS software package may

not match the optimality achieved by linear programming (LP) or other complex

programming approaches in every case, such techniques may be more accessible for

many users with access only to GIS software and a spreadsheet or limited training on

4

complex programming approaches. Solution times with heuristics in the GIS may be

significantly shorter than those experienced with optimal solution procedures.

The goal of this study will be to identify the best heuristic possible, or at least to

suggest one or more good heuristics, for application to the OP with GIS software and a

spreadsheet. The rest of this thesis is organized as follows: in chapter 2 the literature of

the orienteering problem is reviewed and the mathematical formulation for the OP is

specifically defined. In chapter 3 the methods employed in the study are outlined,

including heuristic formation and finding optimal solutions for problem sets. Chapter 4

describes the data to be used in the study and chapter 5 describes the results found,

including examples of successful implementation of the heuristics and that the average

percent optimal achieved by the Highest Available Heuristic (HAH) and HAH with

Initialization (HAHwI) were higher than that of the Nearest Neighbor Heuristic with

Initialization (NNHwI) to a statistically significant degree. Chapter 6 outlines the

conclusions derived from the work and chapter 7 adds future areas of research that may

be suggested by the results and conclusions of the study.

5

2. LITERATURE REVIEW

What follows is an overview of the academic research on the Orienteering

Problem. Additionally, a presentation of the mathematical formulation for the OP is

provided along with an explanation for why the unrooted variant of the OP was selected

for this research over the rooted variant of the problem. Finally, research related to the

utilization of heuristics in a GIS environment is briefly discussed.

2.1. Overview of Orienteering Problem Solution Approaches in the Literature

The orienteering problem has been approached in a number of ways that utilized

some type of computer programming approach. One of the early research efforts was

from Tsiligirides (1984) who developed two heuristics to solve the OP. The first was

called the stochastic algorithm (S-algorithm), which used a Monte Carlo method to create

many possible routes and a desirability factor and then pick the best route. The second

heuristic was called the deterministic algorithm (D-algorithm), which built on a vehicle

routing concept that utilized two concentric circles to identify the next possible point to

add to the route. A vertex switching post-processor module was also added to improve

the results of both heuristics (Tsiligirides, 1984). Kataoka and Morito (1988) employed a

branch-and-bound algorithm to solve a relaxed variant of the OP (deemed the single

constraint maximum collection problem there) that may include subtours sometimes

precluded in some definitions of the parent problem. Laporte and Martello (1990) called

this problem the Selective TSP (STSP), and employed a branch-and-bound algorithm to

gradually extend the path through a breath-first branch and bound process. They also

6

used two heuristics—a nearest neighbor greedy heuristic and a cheapest insertion

heuristic to provide initial feasible solutions for the branch-and-bound algorithm (Laporte

& Martello, 1990).

Another approach for the OP was provided by Ramesh and Brown (1991), who

used a four-phase process. The first phase used a single-point and then double-point

insertion procedure to build an initial path. The second phase used a 2-opt and then 3-opt

procedure for each edge along the path. Phase three deleted various vertices to allow

more room under the budget constraint for the future addition of more points. After

phases 1–3 were performed iteratively, in phase four relatively lower value points that

might have been missed thus far were checked for addition to the solution path (Ramesh

& Brown, 1991). Chao, Golden, and Wasil (1996) presented a heuristic that was

initialized by installing an ellipse over the vertices with the start and end points as foci

and the cost constraint set as the long axis. A path was then constructed using a greedy

cheapest-insertion concept until the cost constraint was hit. Additional paths were

constructed in this way from the remaining available points in the ellipse. The highest

scoring path was the initial path for the heuristic. The improvement step of the heuristic

utilized a two-point switch mechanism using a greedy cheapest-switch concept. The third

step was a single-point insertion step to add any additional available points not on the

currently best path, again using a greedy concept. The authors found their heuristic to

perform as well or better than seven other heuristics and algorithms in the literature

(Chao et al., 1996). Gendreau, Laporte, and Semet (1998) developed a tabu search

heuristic process to solve the OP, or STSP as it is called there. This tabu search initialized

7

with their Insert and Shake heuristic and then used their GENIUS program tour

construction and post-optimization phase to begin building improved solution paths.

Additional steps in the solution process included identifying potential clusters of points to

add to the tour, iterating through potential moves while periodically increasing the

importance of the length of the tour and profits collected, and again applying the

GENIUS process at regular intervals. This tabu heuristic was found better and more

stable than other contemporary heuristics (Gendreau et al., 1998).

Several solution approaches to variations of the OP also appear in the literature.

Righini and Salani (2009) presented a dynamic programming algorithm to solve the OP

with Time Windows (OPTW). This variation of the OP stipulates that some vertices can

only be visited to collect a score during certain time windows; this formulation can apply

to bus route planning and repair technician scheduling. The algorithm used a technique

called decremental state space relaxation to develop a solution. The problem was relaxed

to initially allow multiple location visits while defining a set of critical vertices that can

be visited only once. All vertices were labeled, solution paths were tested bidirectionally,

and several existing point insertion techniques were applied (Righini & Salani, 2009).

Verbeeck, Sörensen, Aghezzaf, & Vansteenwegen (2014) provided a solution method for

the time-dependent OP (TD-OP), in which the travel time (edge cost) between two

vertices varied depending on the time of day. This problem modeled congestion related

factors found in rush hour and off-peak use on a road or other network types, and was

presented in a mixed integer programming (MIP) formulation. The solution implemented

a metaheuristic based on an ant colony system (ACS), which used an insert local search

8

procedure, a modified 2-opt procedure on edges, and the ACS framework to

incrementally construct multiple solution paths that were increasingly greedy. This

method performed very successfully with a low average result gap relative to the optimal

result (Verbeeck et al., 2014). Other variations on the OP found in the literature included

the OP with compulsory vertices; and the capacitated OP, which allowed for additional

constraints to the OP such as vehicle capacity.

More complex formulations of the OP have been addressed as well. Duque,

Lozano, and Medaglia (2015) presented a solution algorithm for the biobjective shortest

path problem (BSP), which is similar to the OP except that the primary cost/distance

constraint is separated into two variables, typically noted as time and cost. The pulse

algorithm, which was programmed to search forwards and backwards through possible

solution paths while incrementally pruning inefficient paths, was found to be effective

and more efficient for the BSP than existing label-setting techniques. In addition, the

pulse algorithm was also able to find a good approximation of the most optimal path very

quickly and was cited for possible use as a heuristic in time-restricted settings (Duque et

al., 2015). Erdoğan, Cordeau, and Laporte (2010) addressed a variation of the TSP called

the Attractive TSP (AtTSP), where each vertex on the graph was assigned a fractional

attractiveness value representing the ratio of potential customers drawn to each facility.

In this research, after the attractiveness probability was described as a variation on an

existing gravity function in the literature, a non-linear integer programming formulation

was provided to describe the AtTSP. For solution approaches, a branch-and-cut algorithm

and tabu search heuristic were proposed and implemented (Erdoğan et al., 2010).

9

In addition to this review, three surveys of the OP and related problems have been

published in recent years. The paper by Vansteenwegen, Souffriau, and Oudheusden

(2011) covered research on various OP and TOP problems and serves as a useful

introduction to the problem. Feillet, Dejax, and Gendreau (2005) called this class of

problems TSP with profits, and sorted much of the research up to that time into several

classifications by specific problems and by solution approaches. Gunawan, Lau, &

Vansteenwegen (2016) provided a survey of more than 80 recent research papers on OP

variants, solution approaches, and modern practical applications.

2.2. Problem Definition and Mathematical Formulation

With numerous variants to the OP as well as slightly different formulations for the

general OP found in the literature, the exact formulation used in this research must be

specified before any heuristics can be evaluated. The intention for this research was

always to work with the general OP formulation, with OP variants reserved for possible

future research. However, one factor that needed to be determined was whether to use a

rooted or unrooted variant of the general OP—that is whether the problem would require

finishing at the same start vertex (rooted) or would permit finishing at a separate end

vertex (unrooted).

2.2.1. Ensuring an Appropriate Problem Formulation

Research and experimentation was undertaken to select for the study an OP

formulation that would be appropriate and correct for the problem type used. The OP

type envisioned originally for this research was the rooted—or circuit—variant, wherein

the solution path is required to return to the start vertex. The first heuristics created and

10

tested were implemented using the rooted OP concept. However, during optimal solution

procedure development, problems and errors arose in testing the model and the specific

formulation used could not be eliminated as a source of problems. As a result, a further

review of OP literature was conducted specifically focusing on research that included a

written formulation of the general OP. This was done with the goal of identifying a

formulation that would best facilitate a successful optimal solution procedure

development process. Both rooted and unrooted formulations for the OP were considered

during this review, though the rooted OP was preferred since it was used in the initial

heuristic development.

The first paper identified with a math formulation for the OP was Kataoka and

Morito’s paper in 1988. This work provided two formulations for what can be considered

the rooted OP. The first was a formulation that included edges and vertices, and the

second a Lagrange-relaxed variant that included self-loops at each vertex (Kataoka &

Morito, 1988). The Laporte and Martello research of 1990 used an integer decision

variable (rather than a binary variable) for its bidirectional graph variant of the problem.

Their subtour elimination/connectivity constraints used set notation not typically found in

other OP research. A paper by Ramesh, Yoon, and Karwan (1992) also included a

formulation for the rooted OP, which was called the orienteering tour problem (OTP) in

that case. This solution approach assigned all vertices in the complete graph to either the

solution subgraph or a subgraph of dummy edges for unvisited vertices, which was

deemed likely to be quite labor intensive to model for application to this research.

11

In addition to early OP literature, several recent papers that explored extensions to

and variants of the OP also provided written formulations of the problem. A paper by

Palomo-Martínez, Salazar-Aguilar, and Albornoz (2017) that explored an OP variant

known as the OP with Mandatory Visits and Conflicts (OPMVC) also provided analysis

of various subtour elimination approaches to OP formulations in the literature. The

approach that used a single-commodity flow formulation to avoid subtours was found to

solve to optimality within one hour more often than the other formulations. While this

finding is of note and should be considered for future work, the single-commodity flow

subtour elimination constraint formulation was not chosen for implementation in this

research.

Another option was provided in the survey of the OP literature by Vansteenwegen

et al. (2011). A survey was identified as a reliable source because the authors reviewed

multiple formulations in the literature and published a version of the OP formulation that

used relatively modern and standardized notation. The formulation published in this

survey used the unrooted variation of the OP.

While this review of the OP literature and formulations was pursued, development

of an optimal solution model was ongoing at the same time. In addition to experimenting

with approaches to model the rooted OP, development of an optimal solution model for

the unrooted OP formulation laid out in Vansteenwegen et al. (2011) was also attempted.

Ultimately, through trial and error, the first model built successfully to find an optimal

solution for the OP used the unrooted OP variant, and thus the research shifted to

applying and evaluating the developed heuristics to this particular formulation of the OP.

12

2.2.2. Unrooted Orienteering Problem

The unrooted formulation for the OP can be understood as follows: Let V be the

set of vertices (or locations) such that 𝑉 = {𝑣1, … , 𝑣𝑛} and E be the set of bidirectional

edges in between the points in V. The complete graph of the vertices and edges is 𝐺 =

{𝑉, 𝐸}. Each edge (𝑒𝑖) is assigned a cost (𝑐𝑖𝑗), which is typically a symmetric nonnegative

value associated with the distance, travel time, cost, or some other function of traveling

from 𝑣𝑖 to 𝑣𝑗 . The start point is vertex 1 (𝑣1) and the end point is vertex n (𝑣𝑛). (To make

the problem into a rooted variation of the OP, the end point is also set to vertex 1.) Each

vertex 𝑣𝑗 has a score (𝑠𝑖) that is nonnegative (some variations of the OP assign a negative

penalty score to a vertex under certain conditions). The start vertex 𝑣1 and end vertex 𝑣𝑛

are given a score of zero. The scores 𝑠𝑖 are completely additive and each vertex 𝑣𝑗 can

only add to the total score S once in the solution path. The goal is to maximize the total

score S while keeping the total travel cost function under the preset value 𝐶𝑚𝑎𝑥 by

finding the Hamiltonian path G’ over some subset of V’ of the total set of vertices V. The

two primary tasks required in the OP have been called vertex selection and finding the

shortest Hamiltonian path between the selected vertices (Vansteenwegen et al., 2011).

The unrooted OP can be illustrated using the following mathematical formulation

(Equation 1). Two decision variables are used in the formulation below: the binary

variable 𝑥𝑖𝑗 = 1 if a stop at vertex i is followed by a stop at vertex j, and 𝑥𝑖𝑗 = 0 if not;

and the integer variable 𝑢𝑖, which assigns the relative position of the vertex in the path.

13

Equation 1: Unrooted Orienteering Problem Formulation

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 ∑ ∑ 𝑆𝑖𝑥𝑖𝑗 ,

𝑛

𝑗=2

𝑛−1

𝑖=2

 (0)

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜

∑ 𝑥1𝑗

𝑛

𝑗=2

= ∑ 𝑥𝑖𝑛

𝑛−1

𝑖=1

= 1, (1)

∑ 𝑥𝑖𝑘

𝑛−1

𝑖=1

= ∑ 𝑥𝑘𝑗

𝑛

𝑗=2

≤ 1; ∀𝑘 = 2, … , 𝑛 − 1, (2)

∑ ∑ 𝑐𝑖𝑗𝑥𝑖𝑗

𝑛

𝑗=2

𝑛−1

𝑖=1

≤ 𝐶𝑚𝑎𝑥 , (3)

2 ≤ 𝑢𝑖 ≤ 𝑛; ∀𝑖 = 2, … , 𝑛, (4)

𝑢𝑖 − 𝑢𝑗 + 1 ≤ (𝑛 − 1)(1 − 𝑥𝑖𝑗); ∀𝑖, 𝑗 = 2, … , 𝑛, (5)

𝑥𝑖𝑗 ∈ {0,1}; ∀𝑖, 𝑗 = 1, … , 𝑛; 𝑖 ≠ 𝑗. (6)

The objective function (0) seeks to maximize the total collected score S. The

remaining equations represent the constraints that define the OP. Constraint (1) initializes

the path by ensuring vertex 𝑣1 is part of the solution path G’ and that the solution path

finishes at vertex 𝑣𝑛. The constraints in (2) are the flow conservation constraints that

ensure the path is fully connected and that the vertices are visited no more than once on

the solution path. Constraint (3) is the total travel cost function constraint. Constraints (4)

and (5) ensure that no subtours are included in the solution path, and are formulated per

the Miller-Tucker-Zemlin TSP formulation (Miller, Tucker, & Zemlin, 1960). Constraint

14

(6) defines the decision variable 𝑥𝑖𝑗 as binary and that the path cannot exit a vertex and

return to that same vertex in a loop.

2.3. Developing GIS Software Heuristics for the TSP Family of Problems

Limited research has been conducted relating to the development of heuristic

solution approaches for the TSP family of problems that utilize just GIS software; most

approaches utilize some form of linear programming. The primary factor driving the use

of such approaches is that the OP has been shown to be NP-hard (Gendreau et al., 1998;

Golden, Levy, & Vohra, 1987; Laporte & Martello, 1990). Since the goal of operations

research (OR) frequently is to find optimal solutions to combinatorially complex

problems, researchers naturally seek solution approaches that offer the most optimal

results in the most efficient manner. However, since there are many real world

applications of the OP but also many challenges involved in the implementation of a

linear programming approach (such as specialized software and advanced programming

capabilities), there is a need for more approachable solution techniques to the OP for GIS

users of varying expertise. Church (2002) described the prevalence of GIS software

packages in public and private settings and several ways that GIS can be used to find

solution approaches to some GIS-Location problems.

With respect to research related to GIS-based solutions for the TSP family of

problems, Curtin, Voicu, Rice, & Stefanidis (2014) showed that four undisclosed solution

approaches for the general TSP programmed into GIS software packages by Esri and

Intergraph must be heuristics because each approach failed to find known optimal

solutions for several cases of between 12 and 20 points. This finding was consistent with

15

the work of Church and Sorenson (1994), which made it clear through the example of the

p-median problem that tackling complex location science problems is challenging for

GIS software, especially because of the issue of solution approaches becoming stuck in

local optima. In Curtin et al. (2014), the heuristics by Esri and Intergraph provided

solutions that were found to be up to 14% suboptimal, and even the optimal solutions for

smaller datasets could not be guaranteed to be optimal by the software packages.

Concepts employed from other areas of research may be appropriated and used in

the development of heuristics to approach the OP. One study of participants from

orienteering competitions with a defined end point found that more experienced

participants built solution paths in a backwards-looking manner, whereas inexperienced

participants built forward-looking paths (Eccles, Walsh, & Ingledew, 2002). Developing

heuristic concepts that look throughout the dataset before adding vertices to the solution

path may prove fruitful and improve the efficiency of the heuristic. In addition, Cao, Sun,

& Macleod (1999) implemented a GIS platform serving as a user interface in conjunction

with a computer program operating in the background to solve TSP-type problems after

user input was provided to define the problem parameters. The GIS interface did not

conduct any of the problem-solving, but significantly eased the user’s interaction with the

problem-solving structure. This concept may suggest an approach to solve problems such

as the OP with sufficient power while maintaining a relatively lower bar of expert

knowledge required to access the problem-solving technique.

While the research literature on the OP has grown and developed dramatically

since 1984, no research was found specific to development of solution approaches for the

16

OP that has been implemented entirely in GIS software. In addition, there is limited

research into practical solution approaches for the broader category of the TSP family of

problems that can be implemented using GIS software and a spreadsheet and without

complex LP. This research is an effort to begin to address this gap in the current

literature.

17

3. METHODS

The methods employed in this study to develop and evaluate the heuristics

utilized were constructed and refined through iterative processes. Early work included

developing the main heuristics with inspiration from concepts in geospatial analysis.

Later work focused on developing a process to calculate the optimal solution for each

problem set in order to be able to evaluate the relative merits of each heuristic in

comparison with the optimal solution. These methods are enumerated in the subsections

below.

3.1 Initial Heuristic Development

During the initial period of heuristic development, ArcMap 10.2.2 for Desktop

with Network Analyst extension was employed on a Dell OptiPlex 9010 Intel® Core™

i7-3770 CPU running Windows 7 Enterprise. Sixty-six address locations in the city of

Fairfax, Virginia were geocoded to the city of Fairfax, Virginia road layer, and a network

dataset was constructed using this address and road layer information. In order to build a

matrix of all possible trip lengths from one location to each of the others, the OD Cost

Matrix tool through the Network Analyst toolbar was run for all 66 locations.

During initial heuristic development the rooted OP concept was used. It was a

simple task later to modify the initial heuristics to fit the unrooted OP variant. (The initial

rooted OP heuristics can be found in Appendix A.) For initial development and heuristic

testing, the complete set of 66 points was used. The total cost constraint of the OP

(distance is the cost function in this study) was set at 15,000 meters (m), which was just

18

over half the mean minimum distance needed to travel a complete circuit of all 66

locations to include starting from and returning to the root location; this mean minimum

circuit distance was 29,158 m. The mean minimum distance needed to travel a complete

circuit of all locations including returning to the root location was computed by using the

New Route tool available through the Network Analyst toolbar to find the minimum

distance to travel a complete circuit with each of the 66 locations set as the root location.

The total cost constraint can be adjusted to create further variations of problem instances

on which to test the heuristics without requiring additional new datasets. We know from

Curtin et al. (2014) that this function in ArcMap 9.1 returned results up to 14% lower

than the optimal path found through an LP process; however, this function was the best

known method available at the time of initial heuristic development to find this distance.

The heuristics presented in the following sections are framed in terms of a

traveling politician attending rallies and gathering all of the votes available at each

location at which she stops. These heuristics use standard built-in ArcGIS tools that

should be straightforward to use for any intermediate user. They are presented below in a

format conducive to manual implementation by any user, but different options exist for

automating some or all parts of their implementation, including the ArcGIS

ModelBuilder environment. The heuristic procedures were tested on two sets of the 66

address locations with different root locations and randomized vote values at all

locations. After a procedure to find optimal solutions for problem instances was

developed, the initial heuristics were converted to address the unrooted variant of the OP.

19

3.1.1. Nearest Neighbor Heuristic

A relatively simple heuristic to implement is the Nearest Neighbor Heuristic

(NNH). This path construction heuristic starts at the start vertex 𝑣1, finds the nearest

location on the network that is not already in the solution path, and continues to add

locations while checking to make sure the path includes room under the total cost

constraint for the trip to the end vertex 𝑣𝑛 to complete the path.

Nearest Neighbor Heuristic:

Step 1: Start at the start vertex 𝑣1.

Step 2: Find the nearest available vote location.

a. Using the OD Cost Matrix, find the trip length to the nearest available

undiscarded vote location 𝑣𝑗 that is not already on the solution path

and check to see if the point is within the total cost constraint 𝐶𝑚𝑎𝑥.

b. If there are no unselected and undiscarded destinations 𝑣𝑗 available

within the total cost constraint 𝐶𝑚𝑎𝑥, proceed to Step 3.

c. Ensure that there is sufficient distance remaining in the total cost

constraint 𝐶𝑚𝑎𝑥 to travel to the end vertex 𝑣𝑛 from the proposed

destination. If there is not sufficient distance remaining, the destination

cannot be selected and is discarded for this iteration. Return to Step

2(a).

d. Compute the distance traveled on the trip.

e. Add the distance traveled on the trip to the total distance traveled, and

the votes obtained on the trip to the total votes.

20

f. Proceed from the selected destination to Step 2(a).

Step 3: Once it is shown that no more vote locations 𝑣𝑗 can be added to the trip

without violating the total cost constraint 𝐶𝑚𝑎𝑥, including the distance needed to travel to

the end vertex 𝑣𝑛, the final step is simply to proceed to the end vertex 𝑣𝑛. The distance of

this final trip is added to the total distance traveled subtotal to confirm that the total trip

has remained under the total cost constraint 𝐶𝑚𝑎𝑥. No additional votes are added at the

end vertex 𝑣𝑛.

Each tested destination was catalogued in a spreadsheet to track all visited and

rejected destinations, total votes accrued, and the total distance traveled. When testing the

rooted OP variant of the NNH, additional vote destinations located on the final path back

to the root were checked for in Step 3 using the Find Route function in ArcGIS to draw

the shortest path between the last point on the path and the root location.

3.1.2. Highest Available Heuristic

The Highest Available Heuristic (HAH) uses many of the basic mechanics of the

Nearest Neighbor Heuristic, but is built as a greedy heuristic by searching iteratively for

the highest scoring location available.

Highest Available Heuristic:

Step 1: Start at the start vertex 𝑣1.

Step 2: Find the highest available vote location.

a. Select the highest available undiscarded vote location 𝑣𝑗 .

21

b. Using the OD Cost Matrix, find the trip length to the highest available

undiscarded vote location 𝑣𝑗 and check to see if the point is within the

total cost constraint 𝐶𝑚𝑎𝑥.

c. If there are no unselected and undiscarded destinations available

within the total cost constraint 𝐶𝑚𝑎𝑥, proceed to Step 3.

d. Ensure that there is sufficient distance remaining in the total cost

constraint 𝐶𝑚𝑎𝑥 to travel to the end vertex 𝑣𝑛 from the proposed

destination. If there is not sufficient distance remaining, the destination

cannot be selected and is discarded for this iteration. Return to Step

2(a).

e. Select and note all additional unvisited destinations that are located on

the trip.

f. Compute the distance traveled on the trip and total votes obtained at all

destinations.

g. Add the distance traveled on the trip to the total distance traveled, and

the votes obtained on the trip to the total votes.

h. Proceed from the selected destination to Step 2(a).

Step 3: Once it is shown that no more locations can be added to the trip without

violating the total cost constraint 𝐶𝑚𝑎𝑥, including the distance needed to travel to the end

vertex 𝑣𝑛, check the trip from the last destination on the path to the end vertex for any

additional destinations that have not been added to the total trip thus far. Add the vote

22

totals from any locations on the final trip to the end vertex to the overall total votes

accumulated.

Again, each tested destination was catalogued in a spreadsheet to track all visited

and rejected destinations, total votes accrued, and the total distance traveled. To identify

visually all additional destinations located on a tested trip, the Find Route function in

ArcGIS was used to draw the shortest path between the tested origin and destination

points.

3.1.3. Heuristic Initialization

The Nearest Neighbor and Highest Available Heuristics described above initialize

from the start vertex and proceed directly into path-building. The performance of these

heuristics could be significantly affected by the geography of the underlying network and

vertex locations, especially the start vertex of the dataset. An outlying start vertex is more

likely to affect the NNH since the solution path is built by adding the next closest

location to the path without consideration of the broader result.

One option to address possible reductions in performance by the heuristics due to

the geography of the data is to introduce a centralizing initialization step to the heuristic

process. To mitigate the potential effect of a remote start vertex or outlying points on the

heuristics, a simple initialization step to find the 1-median of all locations in the dataset

was implemented with both heuristics. The Location-Allocation tool available through

the Network Analyst toolbar in ArcGIS was set to solve the problem type Minimize

Impedance for 1 facility (the 1-median of the dataset on the network is the “facility” in

this tool) in order to find the 1-median of the locations in the dataset. This initialization

23

step was first tested on the rooted OP variants of the heuristics, and has been modified

below to apply to the unrooted OP heuristics.

The initialization step can be inserted as a new step 2 to both the NNH and HAH,

moving their original step 2 to step 3:

Step 2: Find the 1-median of all vote locations.

a. Identify the 1-median of vote locations through Location-Allocation

analysis.

b. If the 1-median vote location is also the start vertex, proceed to step 3.

c. Select the 1-median vote location or other central location.

i. Using the OD Cost Matrix, ensure that the 1-median vote

location is within the total cost constraint 𝐶𝑚𝑎𝑥.

ii. If the 1-median vote location is not within the total cost

constraint 𝐶𝑚𝑎𝑥 then the initialization step may not be efficient

for the solution path.

iii. If a central location is still desired for initialization, use the OD

Cost Matrix to find the location nearest to the 1-median and

check to see if its distance to the start vertex is within the total

cost constraint 𝐶𝑚𝑎𝑥. Proceed iteratively through the locations

closest to the 1-median until one is identified that is within the

total cost constraint 𝐶𝑚𝑎𝑥 to the start vertex.

24

iv. Ensure that there is sufficient distance remaining in the total

cost constraint 𝐶𝑚𝑎𝑥 to travel to the end vertex from the 1-

median location (or other central location selected).

d. Select and note all additional destinations that are located on the trip

from the start vertex 𝑣1 to the 1-median or other central location

selected for inclusion on the solution path.

e. Compute the distance traveled on the trip and total votes obtained at all

destinations.

Initializing the heuristics by first moving to the 1-median of the dataset is

designed to quickly move the solution path closer to more candidate points. This

initialization step will not always improve the performance of a heuristic, depending on

the underlying network and location data. It may be beneficial to apply the heuristics with

and without the centralizing initialization step to find the best possible result.

3.2. Finding Optimal Results

After the development of two heuristics and one initialization step, it was

necessary to develop a procedure that would find the optimal solution (or one of multiple

optimal solutions in some cases) to the problem instances. In order to assess the

performance of the heuristics presented in this study, the optimal solution path for each

dataset would have to be determined in order to provide a point of comparison for the

heuristics.

Optimal solution procedure development was conducted using ArcMap versions

10.3.1 and 10.6.1 on a Dell XPS L502X Intel® Core™ i7-2670QM CPU running

25

Windows 7 Home Premium. As has been consistently shown in the literature, in general

terms the best approach for solving the OP and other problems from the TSP family is to

employ an LP approach. Powerful software suites for application to optimization

problems using LP include the Mathematical Programming Language (MPL) Modeling

System from Maximal Software used in conjunction with IBM’s CPLEX solver, and the

Gurobi Optimization math programming solver. Before proceeding to develop a full LP

model able to handle small to large problem sizes, an initial effort to build a working

model for small problems was made using a Microsoft Excel 2010 spreadsheet and the

Excel Solver Add-In built by Frontline Solvers, Inc. Since Excel and the Excel Solver

Add-In were more familiar than any of the LP solver software packages, by first

developing a model in a spreadsheet setting it would facilitate the process of ensuring that

the model and the basic model parameters were built correctly.

After developing a model to solve a small theoretical example of the OP, the next

goal was to scale that model up incrementally to optimally solve a representation of a

small to moderate-size real world problem such as that presented by the Fairfax city data

in this study. However, scaling up the model was not a linear process since the model was

first built in an Excel spreadsheet for validation and then was expanded by coding the

model into an LP-format file to be run at the command line by the Gurobi Optimizer. The

next sections describe the processes of building the solver model in Excel and then in an

LP-format file.

26

3.2.1. Microsoft Excel 2010 Solver Add-In

The first effort to build a working model in Excel was intended to be built with a

rooted OP and ten random points chosen from the Fairfax City dataset of 66 points (this

dataset is described in chapter 4). Each of the ten points randomly was assigned a score

between 1 and 100. Before the ten-vertex model was completed, it became clear during

early testing that the problem was too large for the native Excel Solver Add-In to handle.

The native Excel Solver is limited to 100 constraints and 200 decision variables, and the

number of constraints in the model needed to solve a ten-vertex problem was larger than

that limit. The test problem was shrunk down by randomly selecting five of the original

ten points in order to build a model that would fit under the constraints and decision

variables limits. Basic aspects of the Excel model included: a binary decision variable

cell matrix corresponding to every i, j pair and where the Solver would assign a value of

1 to all vertices included in the solution path; a cell matrix of the distances between all

vertices; an objective function cell that added the score of each vertex included in the

solution path; and cells to calculate or otherwise handle most of the constraints in the

model. See Figure 1 for a basic layout of the model components in an Excel sheet.

Multiple approaches to solving the first rooted OP model formulation on the five-

point dataset using Excel Solver were constructed. During this model development

process, it was necessary to work through issues with handling correctly several of the

model’s constraints. Building into the model the constraints to handle path initializing

and the total travel cost was straightforward. To initialize the solution path, it was

necessary to ensure that the sum of all the binary decision variable cells in the row where

27

𝑖 = 1 (except for 𝑗 = 1) was set to a total of 1. For the total travel cost function constraint

𝐶𝑚𝑎𝑥, the binary decision variable cells were multiplied by the corresponding distance

cells and added together using Excel’s SUMPRODUCT function. The first constraint to

cause issues was the flow conservation constraint, which ensured that the solution path

stopped at each vertex no more than one time per vertex. This constraint was handled by

ensuring that each row (not including the initial vertex) and column (except for 𝑗 = 1 and

not including the last vertex of the path) of binary decision variable cells summed to 0 or

1, and that the sum for matching i and j values was equal for all values from 2 to 𝑛 − 1.

Figure 1: Screenshot of the Excel model for a 5-vertex problem—constraint 5 is built into the sheet in cells below

this screenshot.

28

The next constraint addressed was the first of the two subtour elimination

constraints, which works simultaneously in the formulation with the second subtour

constraint to assign the vertices to the solution path in an order such that the path would

finish at the assigned last vertex (whether the first vertex for the rooted model or the end

vertex for the unrooted model). Before the second subtour elimination constraint was

constructed correctly to work in conjunction with the first subtour constraint, the

“alldifferent” constraint available in the Excel Solver Add-In was utilized in an attempt to

ensure that each vertex was assigned to the solution path in a unique position on the path.

However, this construction proved not to work in conjunction with the second subtour

constraint and the “alldifferent” constraint was removed. The equations of the

formulation to be evaluated by the Solver Add-In were entered into a pop-up window, as

seen in Figure 2.

29

Figure 2: The Excel Solver Add-In pop-up window seen on right showing the objective cell, decision variable

cells, and most of the constraints of the model.

As the second subtour elimination was also under construction, it became clear

that to handle that constraint in Excel it was necessary to build a pair of cells to evaluate

the constraint for every i, j pair after the start vertex. After building the second constraint,

it was possible to add the cells corresponding to the first subtour constraint to the Excel

Solver as decision variable cells with values set to be between 2 and n, as defined by the

formulation. By doing this, the Solver would then assign values (𝑢𝑖) to those cells, and

each unique value 𝑢𝑖 assigned would correspond to that vertex’s position in the solution

path, with the exception of the final vertex. The final vertex was not identified by a

unique 𝑢𝑖 value assigned to the first subtour constraint, but would be apparent in the

definition of the problem and labeled in the decision variable cell matrix.

30

A fundamental aspect of the rooted OP formulation that proved challenging to

build in Excel was a structure to handle the rooting constraint—that the solution path be

rooted and return to the initial vertex on the final arc of the path. As a result of this

problem, the decision was made that, while also working on building the other constraints

listed above, to switch the model formulation to the unrooted variant of the OP. Since the

unrooted OP was the first formulation found in Vansteenwegen et al. (2011) for this

research, removing the aspects of the model that were manually added to convert the

formulation to a rooted form would likely make building a model in Excel from a

formulation that was known to be correct an easier process. This theory proved to be

successful for the construction of the first Excel OP model. Similar to the initializing

constraint, the sum for the column of all binary decision variable cells where 𝑗 = 𝑛

(except for 𝑖 = 𝑛) was set to a total of 1. After switching to the unrooted OP formulation,

all of the constraints were added to the Excel model successfully and the model was

found to work correctly with five vertices. The five vertex problems were small enough

that it was possible to verify that the results were correct with straightforward

calculations. Through experimentation, the maximum possible problem size given the

Solver constraint and decision variable limits was found to be 𝑛 = 9.

3.2.2. Gurobi Optimizer

After the upper bound of tractability was established for the Excel model, work

transitioned to development of an optimal solver using an ILP approach. The Gurobi

Optimizer was selected to develop an ILP model that accurately represented the OP

formulation in order to find the optimal solution for each dataset. The Gurobi Optimizer

31

is free for educational research use and it is stated on the website that it is “a state-of-the-

art solver” that was “designed from the ground up to exploit modern architectures and

multi-core processors, using the most advanced implementations of the latest algorithms”

(Gurobi Optimization, n.d., paras. 5–6). Rather than constructing a computer program in

Python or another language and then calling Gurobi in that program, the first effort to use

Gurobi was through writing a specific model in LP format as described in the Gurobi

documentation with all relevant problem data (i.e. the distance matrix, etc.) built directly

in the model. The main work in creating an LP-format model written in WordPad was to

translate the calculations built into the Excel model into accurate formulae using the

correct semantics.

The first attempt at constructing a model using LP format was undertaken using a

small 5-vertex problem. Converting the Excel model including the constraints

constructed in the Excel Solver Add-In was mostly straightforward. The only constraint

that needed to be modified from the Excel model structure was subtour elimination

constraint 5. To be utilized in the LP format, these formulae were converted into a format

that had all variables on the left side of the inequality sign (formula are required to have

all variables on the left side of an equality/inequality sign in LP format). The first attempt

to build an LP-format model on a 5-vertex problem instance provided expected results

that were confirmed against results from the Excel model. The next step was to expand

the LP-format model and so a model for a larger 9-vertex problem was then attempted.

This effort was ultimately successful as well, though it became clear that the LP-format

model itself quickly got much larger with the slightly larger problem. The LP-format

32

model for the first 5-vertex problem was just 63 lines long; the LP-format problem for the

first 9-vertex problem was 222 lines long and a 10-vertex set had a solution model of 298

lines. The 15-vertex model came to 615 lines. The objective function and constraint 1 for

a 10-vertex problem written in LP format can be seen in Figure 3; a complete 5-vertex

model is included in Appendix C.

Figure 3: First part of a 10-vertex LP-format model run by the Gurobi Optimizer at the command line.

Three 5-vertex sets, five 10-vertex sets, and five 15-vertex sets were evaluated for

optimal solutions across a range of total cost constraint 𝐶𝑚𝑎𝑥 values. Since the unrooted

OP variant ensures that the start and end vertices have no bearing on the value of the

objective function, this meant that for 5-vertex sets only three of the five vertices

impacted the outcome. After limited testing, it was determined that while the 5-vertex

33

sets were useful for construction and testing of the optimal solution procedures, they were

very possibly would be too small for worthwhile evaluation of the heuristics.

The process of constructing models written in LP format was not very technically

challenging once the basic conventions were understood. The process was substantially

reliant on correct manual data entry. For the purpose of aiding that manual process,

values transcribed from ArcGIS were always rounded down to the nearest meter. While

this is unlikely to cause significant issues for problems at the scale of a city road network,

nevertheless in network space inconsistent measurements could lead to an incorrect result

at the margins.

34

4. DATA

In order to create a small network of data points on which to test various heuristic

processes while trying to retain short processing times, road network data and a set of

addresses for a small jurisdiction was obtained. A TIGER/line feature from the 2000

United States census for the road network for Fairfax City, Virginia was downloaded

from ESRI.com (this data is no longer available at that website). The road network is

assumed to be barrier-free for this study.

A list of 66 mailing addresses located in Fairfax city was provided by Dr. Kevin

Curtin. Since the jurisdiction is of a small land area—6.24 square miles in 2010 (“U.S.

Census Bureau QuickFacts,” n.d.)—the data was projected into Universal Transverse

Mercator (UTM) zone 18 north. This projection is designed for use in a region of the

surface of the earth that entirely includes Fairfax city, and minimizes distance distortion

to four parts in 10,000 along the central meridian of the zone. See Figure 4 for the Fairfax

City road network and vote location sites. Using the road network for a small city like

Fairfax, Virginia is an appropriate setting for this research because it is a location where

many real-life applications of the OP might be used in a day. It is also not a network that

to the eye is obviously very irregular or unusual in relation to a typical American town.

These attributes render the network appropriate to evaluate heuristics to approach the OP.

To identify appropriate distances to test as the total cost constraint for the study

during the initial heuristic development using the rooted OP variant, the total distance to

traverse the road network and visit all 66 locations and return to the set root location was

35

analyzed for all 66 locations using the Find Route tool in ArcGIS. The total distance to

travel to all 66 locations and return to the root location ranged from 29,002 m to 30,237

m, and the mean of all 66 minimum distances was 29,158 m. While it is not assumed that

these results are all guaranteed optimal due to Curtin et al. (2014), knowing the average

minimum total distance to travel to all 66 points provided a useful frame of reference on

which to define the total cost constraint later.

Figure 4: The complete city of Fairfax, Virginia road network and 66 vote location sites.

Two sets of the 66 address locations were created with random vote totals during

initial development and testing of the heuristics. For both datasets, each of the address

locations was assigned a random weighting value between 1 and 100 inclusive using the

36

Random Integer Set Generator tool available from www.random.org. To determine the

root location for each set of locations, the order of the set of locations was randomized

using the Random Sequence Generator available from www.random.org, and the first

location from that process was deemed the root point and assigned a vote total of zero.

The sum total of all random vote amounts assigned to these datasets used with the rooted

OP after setting the root location to zero was 3,386 for set 1 and 3,207 for set 2.

For the purposes of creating smaller datasets (of 5, 10 , and 15 points) during the

development of the optimal solution procedures using the unrooted OP variant, subsets of

the 66 Fairfax city points were built. The Random Integer Set Generator on

www.random.org was used to select which of the 66 points to include in 5, 10, and 15-

vertex sets and to assign values to the selected vertices. Five sets each of 5, 10, and 15

vertices were created in this fashion.

An important step in creating the datasets on which to evaluate the heuristics was

to define an appropriate total cost constraint (𝐶𝑚𝑎𝑥) value. If the 𝐶𝑚𝑎𝑥 is set too high, the

OP becomes the TSP because all vertices can be visited. If the 𝐶𝑚𝑎𝑥 is set too low, the

solution becomes too straightforward and not an interesting problem to solve. Guidance

for setting worthy 𝐶𝑚𝑎𝑥 values was found in Vansteenwegen (as cited in Vansteenwegen

et al., 2011), where his research showed that the most difficult OP problems to solve are

those where the number of vertices in the solution are just over half the total number of

vertices. For the purposes of the research, it was a logical choice to seek the most difficult

versions of the problem on which to evaluate the heuristics. As a result, for each 10-

vertex dataset the smallest 𝐶𝑚𝑎𝑥 value that solved in six vertices was chosen. Later the

37

largest 𝐶𝑚𝑎𝑥 value that solved optimally in six vertices was also used to test the heuristics

in order to add an additional data point of analysis for each 10-vertex dataset. Using this

justification, eight vertices were chosen for the same purpose on the 15-vertex datasets.

The datasets each were solved first to find the smallest 𝐶𝑚𝑎𝑥 that made it possible

to visit all 10 vertices in the set—in other words the non-capacitated TSP. Then each set

was solved for iteratively smaller 𝐶𝑚𝑎𝑥 values in order to find the smallest 𝐶𝑚𝑎𝑥 value

that solved optimally in six or eight vertices respectively. Determining the length of the

solution path obtained from implementing a specific model in Gurobi was achieved by

inputting the decision variables from the solution into a custom Excel model built for

each dataset. The results of this iterative process for each 10 and 15-vertex set can be

found in Appendix D.

38

5. RESULTS

Results were generated first using the initial rooted OP formulation applied to the

full set of 66 vote locations on the city of Fairfax, VA road network. These initial results

can provide some idea of how the heuristics might perform on a medium to large set of

points; although without optimal results to compare against the value of these initial

results were somewhat limited. After the optimal solution procedures were developed,

more results were generated using the unrooted OP formulation applied to smaller subsets

of the complete set of 66 vote locations on the same road network. The unrooted OP

heuristic results were then generated and evaluated relative to the optimal solutions for

each dataset.

5.1. Initial Rooted OP Heuristics

The first results generated for the study came from the initial effort to develop

potential solution heuristics for the rooted OP. The NNH and HAH were developed first

and applied to the complete set of 66 vote locations geocoded to the city of Fairfax,

Virginia road network. Soon after, an initialization step was developed and subsequently

tested with the NNH and HAH. The exact definitions for the rooted OP heuristics can be

found in Appendix A. Optimal solutions were not obtained for these initial heuristic

results to be compared against.

5.1.1. Initial Heuristic Results

The NNH succeeded in providing solutions for the rooted OP as presented above

using the data from Fairfax city, Virginia. For set 1, the heuristic found a solution trip

39

that would accumulate 1,390 votes, which was 41.1% of the 3,386 total possible votes.

The trip had 28 stops and a total length of 14,359 m, less than the 15,000 m total cost

constraint, but with 641 m of allowed distance unused. The data of the steps taken using

this heuristic on set 1 can be seen in Table B1 in Appendix B, and the path across the

road network can be seen in Figure 5. For set 2 the NNH was less successful,

accumulating 1,229 votes and therefore 38.3% of the 3,207 possible votes for the dataset.

The total trip for set 2 had 25 stops and was 12,944 m, leaving 2,056 m of the cost

constraint unused in that case.

Figure 5: Solution path found by the Nearest Neighbor Heuristic for rooted OP set 1.

The HAH also provided a solution for the rooted OP as described above. For set 1

the heuristic provided a trip with 8 destination stops and 8 additional locations on the way

40

to those destinations that accumulated 1,020 votes, which was 30.1% of the 3,386 total

possible votes. This trip had a total length of 14,914 m, which is just under the total cost

constraint of 15,000 m. The results of the steps taken using this heuristic on this set of

data can be seen in Table B2 in Appendix B, and the solution path across the road

network can be seen in Figure 6. For dataset 2 the HAH found a trip of 9 destination

stops and 9 additional locations on the way to those destinations that gathered 1,079

votes, which is 33.6% of the 3,207 possible votes. The trip had a total length of 14,678 m.

Figure 6: Solution path found by the Highest Available Heuristic for rooted OP set 1.

41

5.1.2. Initial Heuristics with Initialization Results

After implementing the NNH and HAH on 2 66-vertex sets of the Fairfax data,

the two heuristics were also applied to the same Fairfax datasets with the centralizing

initialization step included. The initialization step improved the results found with the

NNH. For set 1, the NNH with initialization found a solution trip that accumulated 1,975

votes, which was 58.3% of the 3,386 possible votes. This trip had 33 stops and 1

additional location visited on the way to the set’s 1-median, with a total length of 14,943

m. The NNH with initialization gathered 585 more votes for set 1 than the NNH alone,

which was a 42.1% increase in votes. For set 2, the NNH with initialization generated a

trip that gathered 1,611 votes, which was 50.2% of the 3,207 possible votes. The solution

trip for set 2 also had 33 stops and 1 additional location on the way to the set median and

was 14,906 m long. The NNH with initialization accumulated 382 more votes for set 2

than the NNH alone, which was a 31.1% increase in votes.

The results for the HAH with initialization were mixed. For set 1, the solution trip

that was found accumulated 1,209 votes, which was 35.7% of the possible votes. This trip

had 10 stops and 7 additional locations and a total distance of 14,982 m. The HAH with

initialization accumulated 189 more votes than the HAH alone for set 1, which was an

18.5% increase in votes. For set 2, the HAH with initialization generated a solution trip

that obtained 1,006 votes, which was 31.4% of the total votes possible for this set. The

trip had 9 destination stops and 7 additional locations and was 14,856 m long. The HAH

with initialization accumulated 73 fewer votes for set 2 than the HAH alone, which was a

6.8% decrease in votes.

42

5.1.3. Initial Heuristic Results Summarized

The NNH was the stronger performing of the two heuristics developed when

applied to the two 66-vertex datasets with the rooted OP by accumulating 41.1% and

38.3% of the total votes possible. These NNH solution paths traveled 49.2% and 44.4%

respectively of the mean minimum path to visit all locations. While the HAH is a greedy

heuristic—a concept employed in other studies in the OP literature—the HAH

accumulated 30.1% and 33.6% of the total votes possible for both datasets on paths that

traveled 51.2% and 50.3% of the mean minimum path to visit all locations.

For the address locations and underlying Fairfax city network dataset used with

the rooted OP, in three of four cases the heuristic procedures achieved double-digit

percentage improvements in votes accumulated when employing the centralizing

initialization step. The initialization step was more successful on the NNH, which is a

logical result since the solution path is built by adding iteratively the next-closest location

to the path. More results would be needed to confirm these preliminary results. All results

of the initial heuristic implementations to the rooted OP are displayed in Table 1.

43

Table 1: Heuristic Results on the Rooted OP Using Sets of All 66 Vote Locations and Cmax of 15,000 m

Heuristic Votes
Percent

of total

∆ Votes

wIa

∆ Percent

votes wIa
Stops

No. of add’l

locations

Path dist.

(m)

Dataset 1

NNH 1,390 41.1% - - 28 - 14,359

NNHwIa 1,975 58.3% +585 +42.1% 33 1 14,943

HAH 1,020 30.1% - - 8 8 14,914

HAHwIa 1,209 35.7% +189 +18.5% 10 7 14,982

Dataset 2

NNH 1,229 38.3% - - 25 - 12,944

NNHwIa 1,611 50.2% +382 +31.1% 33 1 14,906

HAH 1,079 33.6% - - 9 9 14,678

HAHwIa 1,006 31.4% -73 -6.8% 9 7 14,856
a with Initialization

5.2. Unrooted OP Optimal Solutions

Three 5-vertex problem instances were evaluated for optimal solutions by

implementing the Gurobi procedure using several different total cost constraint 𝐶𝑚𝑎𝑥

values. After considering that two of the five vertices in each set were predefined with

scores of 0, leaving only three vertices at most to be part of a solution, it was decided that

5-vertex problem instances were likely too small to provide a worthwhile testing scenario

on which to evaluate the heuristics. The particular details of the dataset (distance values

and vertex scores) were likely to play a strong role in the result, possibly more so than the

heuristic used in a given circumstance. No data were gathered to validate this hypothesis.

Five sets of 10-vertex problems were then evaluated for optimal solutions using

the Gurobi procedure. As described in the Data section, each set was repeatedly solved

using iteratively smaller 𝐶𝑚𝑎𝑥 values with an eye towards identifying the largest and

smallest 𝐶𝑚𝑎𝑥 values that could be solved optimally with six vertices. For each 10-vertex

44

set, these 𝐶𝑚𝑎𝑥 values were selected as the values at which to evaluate the heuristics. This

progression of results for one dataset can be seen in Table 2, where the first row

represents a TSP result for the problem instance since the 𝐶𝑚𝑎𝑥 was set large enough to

allow the solution path to include all vertices. For each 15-vertex set, 𝐶𝑚𝑎𝑥 values were

sought for the largest and smallest eight vertex optimal solutions in order to search for

solutions using just over half the points in the dataset. Tables for the progression of

results for all 10 and 15-vertex datasets are included in Appendix D.

Table 2: Optimal Results for Dataset 10n_set2 with Progressively Smaller Cmax Values

Dataset & Cmax Total votes
Total solution

distance cost (m)

No. of vertices in

solution

10n_set2 10000 372 9,608 10

10n_set2 9607 365 9,557 9

10n_set2 9556 365 9,484 9

10n_set2 9483 352 9,260 9

10n_set2 9259 345 9,137 8

10n_set2 9136 306 9,119 8

10n_set2 9118 305 9,102 8

10n_set2 9101 299 8,372 7

10n_set2 8371 299 8,350 7

10n_set2 8349 299 8,349 7

10n_set2 8348 279 8,002 6

10n_set2 8001 239 7,967 6

10n_set2 7966 234 6,751 8

10n_set2 6750 234 5,754 8

10n_set2 5753 234 5,202 8

10n_set2 5201 227 5,150 7

10n_set2 5149 227 5,078 7

10n_set2 5077 214 4,854 7

10n_set2 4853 207 4,731 6

10n_set2 4730 168 4,713 6

10n_set2 4712 167 4,696 6

10n_set2 4695 161 3,966 5

Note. The yellow cell is the smallest Cmax to include all 10 vertices in the solution. The green cell is the largest

Cmax to use 6 vertices in the solution. The blue cell is the smallest Cmax to use 6 vertices in the solution.

45

5.3. Example Implementation of Unrooted OP Heuristics

The modified heuristics using the unrooted OP formulation were first tested on a

10-vertex set of points (10n_set2) that were selected at random from the original 66-point

Fairfax City dataset. This set of 10 vertices was used with a total cost constraint of 4,696

m, as chosen by the iterative process highlighted in the previous section and shown in

Table 2. The NNH found a solution trip that would accumulate 148 votes, which was

39.8% of the 372 total votes that would be gathered from visiting all 10 locations. The

trip had 3 stops that accumulated votes (in addition to the start and end vertices) and a

total length of 4,473 m, and thus only 223 m of allowed distance unused. The data for the

steps taken using this heuristic on 10n_set2 can be seen in Table 3 and the solution path

is displayed in map format in Figure 7.

Table 3: Results of Implementation of NNH on Dataset 10n_set2 with Cmax of 4,696 m.

Step
Origin

vertex

Dest.

vertex
Votes

Trip

dist.

Path

subtotal

Dist. to

end

Path

dist.

Total

votes

1 54 25 81 351 351 2,650 3,001 81

2 25 7 60 269 620 2,998 3,618 141

3_1 7 58 43 951 1,571 3,232 4,803

3_2 7 56 23 1,191 1,811 2,992 4,803

3_3 7 20 7 1,203 1,823 2,650 4,473 148

4_1 20 56 23 465 2,288 2,992 5,280

4_2 20 58 43 705 2,528 3,232 5,760

4_3 20 13 20 2,664 4,487 334 4,821

4_4 20 49 65 3,318 5,141 5,141

4_5 20 52 73 3,320 5,143 5,143

Final 20 18 0 2,650 4,473 148
Note. Distances are in meters. Distance subtotals in green were less than the Cmax value and the corresponding

destination vertices thus were added to the solution path. Subtotals in red violated the Cmax constraint and the

corresponding destination vertices were discarded for that step.

46

Figure 7: Solution path found by the Nearest Neighbor Heuristic for unrooted OP dataset 10n_set2 with Cmax of

4,696m.

The HAH also provided a solution for the unrooted OP. For dataset 10n_set2 the

heuristic provided a solution path with 3 stops that accumulated 161 votes (with no

additional locations on the way to those stops), which was 43.3% of the 372 total votes

that would be gathered from visiting all 10 locations. This trip had a total length of 3,966

m, which left 730 m unused under the total cost constraint of 4,696 m. The data of the

steps taken using this heuristic on this set of data can be seen in Table 4 and the solution

path is displayed in map format in Figure 8.

47

Table 4: Results of Implementation of HAH on Dataset 10n_set2 with Cmax of 4,696 m.

Step
Origin

vertex

Dest.

vertex
Votes

Trip

dist.

Path

subtotal

Dist. to

end

Path

dist.

Total

votes

1 54 25 81 351 351 2,863 3,214 81

2_1 25 52 73 3,533 3,884 3,523 7,407

2_2 25 49 65 3,530 3,881 3,520 7,401

2_3 25 7 60 269 620 2,998 3,618 141

3_1 7 52 73 3,669 4,289 3,523 7,812

3_2 7 49 65 3,666 4,286 3,520 7,806

3_3 7 58 43 951 1,571 3,232 4,803

3_4 7 56 23 1,191 1,811 2,992 4,803

3_5 7 13 20 3,012 3,632 334 3,966 161

4_1 13 52 73 3,536 7,168

4_2 13 49 65 3,534 7,166

4_3 13 58 43 3,246 6,878

4_4 13 56 23 3,005 6,637

4_5 13 20 7 2,664 6,296

Final 13 18 0 334 3,966 161

Note. Distances are in meters. Distance subtotals in green were less than the Cmax value and the corresponding

destination vertices thus were added to the solution path. Subtotals in red violated the Cmax constraint and the

corresponding destination vertices were discarded for that step.

Figure 8: Solution path found by the Highest Available Heuristic for unrooted OP dataset 10n_set2 with Cmax of

4,696m.

48

5.4. Unrooted OP Results: Heuristics Versus Optimal

The NNH and HAH results for each dataset evaluated for the unrooted OP can be

compared against the optimal solution found using the Gurobi approach. For the first

dataset itemized in the previous section, the solver found that with a total cost constraint

𝐶𝑚𝑎𝑥 of 4,696 m, the optimal solution for an unrooted OP applied to 10n_set2 travelled

to 4 stops that accumulated 167 votes, which was 44.9% of the 372 total possible votes.

Therefore, the NNH gathered 88.6% of the optimal solution, and the HAH gathered

96.4% of the optimal solution in that case. After completing the first set of 10 vertices,

four additional sets of 10 vertices were evaluated with the heuristics. These sets were

evaluated at two different 𝐶𝑚𝑎𝑥 values—both the largest and the smallest value that

resulted in an optimal result that used six vertices (just over half the vertices). After

evaluating five sets of 10 vertices at two different 𝐶𝑚𝑎𝑥 values, five sets of 15 vertices

were evaluated in the same manner. The heuristic performance results compared to the

optimal solution for each dataset and 𝐶𝑚𝑎𝑥 value are summarized in Table 5.

The combination of five sets each of 10 and 15 vertices with two 𝐶𝑚𝑎𝑥 values

evaluated for each set provided 19 results for the NNH and HAH (one dataset only had

one 𝐶𝑚𝑎𝑥 value that solved in the desired number of vertices). Due to three of the ten

datasets having the start vertex coincide with the 1-median of the dataset, only 13 of the

dataset and 𝐶𝑚𝑎𝑥 combinations made it possible to evaluate heuristics with the

initialization step. Across the 19 dataset and 𝐶𝑚𝑎𝑥 combinations, the NNH provided

results that averaged to 79.7% of the optimal solution for each set. For the 13 sets where

the start vertex was not already the 1-median of the set, the NNHwI performed worse

49

than the NNH alone by averaging 70.7% of the optimal solution. The HAH achieved an

average result slightly better than the NNH with 81.6% of the optimal solution. The

HAHwI yielded an average 80.7% of the optimal solution for the applicable sets.

Table 5: Heuristic Performance Relative to Optimal Results for the Unrooted OP

Dataset &

Cmax (m)

Optimal

votes

NNH

votes

Percent

optimal

HAH

votes

Percent

optimal

NNHwIa

votes

Percent

optimal

HAHwIa

votes

Percent

optimal

10n_1 4,961 169 169 100% 169 100% 162 95.9% 162 95.9%

10n_1 6,822 271 169 62.4% 271 100% 169 62.4% 271 100%

10n_2 4,696 167 148 88.6% 161 96.4% c c c c

10n_2 7,616 269 234 87.0% 154 57.2% c c c c

10n_3 5,031b 219 156 71.2% 188 85.8% 120 54.8% 120 54.8%

10n_4 3,843 246 246 100% 197 80.1% 197 80.1% 197 80.1%

10n_4 7,487 288 246 85.4% 288 100% 246 85.4% 288 100%

10n_5 2,339 151 151 100% 139 92.1% c c c c

10n_5 7,502 237 183 77.2% 205 86.5% c c c c

15n_1 8,426 352 224 63.6% 278 79.0% 222 63.1% 278 79.0%

15n_1 10,373 423 277 65.5% 341 80.6% 366 86.5% 315 74.5%

15n_2 7,898 386 347 89.9% 291 75.4% c c c c

15n_2 8,825 481 431 89.6% 299 62.2% c c c c

15n_3 6,984 224 224 100% 185 82.6% 174 77.7% 185 82.6%

15n_3 8,761 393 205 52.2% 322 81.9% 224 57.0% 326 83.0%

15n_4 8353 341 255 74.8% 193 56.6% 140 41.1% 193 56.6%

15n_4 9122 341 255 74.8% 208 61.0% 193 56.6% 208 61.0%

15n_5 5029 301 186 61.8% 268 89.0% 269 89.4% 271 90.0%

15n_5 8754 431 301 69.8% 361 83.8% 301 69.8% 397 92.1%
a with Initialization
b 10n_set3 only had one optimal solution that used 6 vertices across all Cmax values
c Initialization not applied because start vertex was already the 1-median of the dataset

Descriptive statistics for the percent optimal results were calculated for each

heuristic and heuristic with initialization evaluated in the study. Since the best fitting

distribution for the particular phenomena observed in this study was not known, the

student’s t-test distribution was selected to generate statistics because it has fatter tails

than the normal distribution. Therefore the student’s t-test can accommodate some of the

variance that comes from sampling and that the complete population of datasets on which

50

the heuristics could be tested is not known. These results are presented in Table 6. It is

important to remember that these descriptive statistics just apply to the implementation of

these heuristics in the conditions described in the study, including the number of vertices

in the datasets and the underlying network. These summary statistics might change

substantially if the heuristics were to be systematically applied to datasets of more points

on the same underlying network or if other characteristics were to be changed, including

the problem formulation or range of scores (votes) applied to vertices in the set.

Table 6: Means, Standard Deviations, and 95% Confidence Intervals for Percentage of Optimal Measurements

for Each Heuristic

 95% CI

Heuristic n M SD LL UL

NNH 19 79.7% 15.1% 72.4% 86.9%

NNHwI 13 70.7% 16.4% 60.8% 80.7%

HAH 19 81.6% 14.0% 74.9% 88.3%

HAHwI 13 80.7% 15.5% 71.4% 90.1%

Separating out the results for each heuristic by the number of vertices in the test

datasets provided a clear distinction in performance for all heuristics. All four heuristics

and heuristics with initialization performed better on average on the smaller 10-vertex

sets than on the 15-vertex sets. Summary descriptive statistics for this breakdown can be

seen in Table 7.

51

Table 7: Means, Standard Deviations, and 95% Confidence Intervals for Percentage of Optimal Measurements

for Each Heuristic, by Dataset Size

 95% CI

Heuristic No. of

vertices

n M SD LL UL

NNH 10 9 85.6% 13.5% 75.4% 96.1%

NNH 15 10 74.2% 14.9% 63.5% 84.9%

NNHwI 10 5 75.7% 16.8% 54.8% 96.6%

NNHwI 15 7 67.6% 16.5% 53.9% 81.4%

HAH 10 9 88.9% 13.8% 78.1% 99.3%

HAH 15 10 75.2% 11.2% 67.2% 83.2%

HAHwI 10 5 86.1% 19.3% 62.1% 110.1%

HAHwI 15 7 77.3% 12.8% 66.6% 88.0%

No absolute measurements of the effectiveness of the heuristics were determined

for this study. However, relative measurements of the heuristics can provide information

on performance beyond the summary descriptive statistics already presented. Paired t-

tests were performed for each heuristic and heuristic with initialization combination to

determine if there was a statistically significant difference between the percent optimal

measurements for each heuristic and all other heuristics. These results, using α = 0.05,

can be found in Table 8. Examining the one-tail p-values resulting from this analysis

indicated that it was not possible to reject the null hypothesis that there was no difference

in the percent optimal performance of the heuristics in four of six pairings. However, two

pairings did show a significant difference: HAHwI – NNHwI with a one-tail p = 0.0103

and HAH – NNHwI with a one-tail p = 0.0024. Drilling down further, the HAHwI –

NNHwI pairing showed that the HAHwI had a significantly larger mean percent optimal

measurement with a two-tail p = 0.0205. In addition, the HAH – NNHwI pairing showed

that the HAH had a significantly larger mean percent optimal measurement with a two-

52

tail p = 0.0048. The statistical summary for the two pairings where a statistically

significant difference was found can be found in Table 9.

Table 8: Statistical Summary of Difference in Percentage Optimal Measurements between Heuristics

 95% CI

Heuristics compared n M SD tobs p (one-tail) LL UL

HAH - NNH 19 1.9% 20.2% 0.4133 0.3421 -7.8% 11.6%

NNH - NNHwI 13 4.8% 17.3% 0.9927 0.1702 -5.7% 15.2%

HAH - HAHwI 13 2.4% 9.2% 0.9331 0.1846 -3.2% 7.9%

HAHwI - NNHwI 13 10.0% 13.5% 2.6673 0.0103 1.8% 18.1%

HAHwI - NNH 13 5.2% 21.1% 0.8938 0.1945 -7.5% 18.0%

HAH - NNHwI 13 12.4% 12.9% 3.4452 0.0024 4.5% 20.2%

Table 9: Statistical Summary of Difference in Percentage Optimal Measurements for Heuristics Found

Significantly Different

 95% CI

Heuristics compared n M SD tobs p (two-tail) LL UL

HAHwI - NNHwI 13 10.0% 13.5% 2.6673 0.0205 1.8% 18.1%

HAH - NNHwI 13 12.4% 12.9% 3.4452 0.0048 4.5% 20.2%

53

6. CONCLUSIONS

Two heuristics and an initialization step were developed that provide solutions to

the OP using just a GIS software program and a spreadsheet. Given that there are

numerous real-world applications to the OP in generalized form as well as various

specialized forms, making OP solution approaches more widely accessible through

heuristics that can be implemented with just GIS software and a spreadsheet is a

worthwhile goal that was accomplished in this research.

These heuristics can be applied by GIS professionals or others with a limited

training in GIS software and without knowledge of linear programming, Python, or other

computer programming languages. After completing the initial setup of building the OD

Cost Matrix for the problem set, the remaining work in implementing the heuristics was

technically trivial and should be accessible with a basic understanding of ArcGIS. A

consideration for users employing these heuristics with just a GIS software package and a

spreadsheet may be that complete application of the heuristics can be time and labor-

intensive with large data sets. However, the heuristics in the study are fairly simple

concepts and could serve as the basis for more complex or customized models for a

variety of problem scenarios.

The Nearest Neighbor Heuristic is of a basic design and the performance of the

heuristic is very dependent on the data inherent to the particular problem. The distribution

of vertices across the network, the scores affiliated with the vertices, and the layout of the

network itself could change dramatically the effectiveness of the heuristic and the results

54

found relative to the optimal solution. Initializing the heuristic with a first step to the 1-

median location of the network dataset did not prove to be an effective supplement to the

heuristic with the datasets tested in this study—in fact for the 13 sets where the

initialization step was implemented the heuristic result averaged a lower percentage of

the optimal result than the NNH did itself. More testing is suggested before eliminating

the initialization step from consideration completely, especially since the initialization

step improved results in both cases when applied to the larger 66-point datasets. The

initialization step could be appropriate for problem scenarios with a remote root location

or vertex set with a mix of clustered and dispersed vertices. The heuristic could present

strong appeal for approaching OP scenarios where the simplest or fastest available

answer was needed and optimality was a secondary consideration. In addition, the

concepts of the heuristic may itself be appropriate as a subset of a more complex

heuristic, such as an initialization phase to find an initial feasible solution that could be

improved through some other iterative process.

The greedy Highest Available Heuristic performed slightly better than the NNH

in this series of tests on average, though not to a statistically significant degree. This

heuristic could prove to be the most effective option given certain data parameters, such

as on a set of vertices with a very wide range of scores or a more clustered network, or

potentially on a problem scenario with a restrictive total cost constraint. Employing the

centralizing initialization step with the heuristic may improve the result found or may

prove to be more inefficient, depending on the dataset of the problem. Instances of the

55

initialization step in some cases improving and other times curtailing performance of the

HAH were observed in the study.

In terms of statistically significant conclusions achieved, it can be stated with

95% confidence that for the particular parameters evaluated in this study (unrooted OP,

Fairfax City road network, vertex scores ranging from 1 to 100, 10 or 15 vertices per

dataset, total cost constraints set to achieve optimal solutions using just more than half

the total vertices per dataset), the NNHwI average percent optimal measurement was

found to be lower than the HAH and HAHwI percent optimal measurements. Additional

evaluation is suggested before concluding that the HAH and HAHwI would perform

markedly better than the NNHwI in other situations outside the specific problem

parameters of this study.

While the results from testing the heuristics using the rooted OP formulation on

the full set of 66 points can only be seen as anecdotal, the initialization step did provide

improvement over the original heuristic in three of four cases—substantial improvements

of 18.5%, 31.1%, and 42.1%. Again, this is not a statistically significant result or large

enough sampling upon which to draw any conclusions, but these particular results may

indicate that an initialization step is more beneficial on larger datasets when compared

against the 10 and 15-vertex datasets where the initialization step led to reduced

performance. Such reduced performance from using initialization was observed relative

to the original heuristic both for 10 and 15-vertex sets together and for the subsets of just

10-vertex sets and 15-vertex sets separately.

56

Objective evaluation of whether any heuristic performed sufficiently well to

recommend implementation was not achieved in the study. What standard is sufficient for

a user to determine that using one or more of the proposed heuristics would be more

beneficial than simply eyeballing a given dataset? Would a user want a heuristic to

regularly achieve 90% optimality? 80% optimality? Of course the particular application

and user needs play a role here as well. If a user requires a consistently high solution

performance—near optimal—then the proposed heuristics may not be sufficient and

investing in OR expertise or optimization software or both would be called for. However,

for circumstances where access to those resources is limited or nonexistent, the heuristics

developed here can provide at the very least a starting point for tackling a real-world OP

application.

Testing the heuristics with and without the initialization step on more datasets is

needed to get a better sense of the likely performance of each heuristic procedure. It is

not difficult to imagine that the nature of test data could dramatically alter the results

found in this study. It also may be possible to identify acceptable performance limits for

one or more heuristic with further evaluation. Evaluation dataset parameters that should

be varied beyond what was done in this study for additional testing include: varied range

of scores (votes) applied to vertices; number of vertices in test datasets; amount of

capacitation set by the cost constraint, i.e. relatively smaller and larger 𝐶𝑚𝑎𝑥 values than

those chosen for this study; nature of the underlying network—Manhattan/rectilinear,

radio-concentric, sprawling suburban, etc.; and other types of networks such as American

vs. European cities, bicycle paths, or utility networks. For example, if the scores assigned

57

to the locations varied more than was done here—if the events the politician attended on

the tour had from 1 to 1,000 attendees—then the greedy heuristic might perform

relatively better and the results could vary significantly.

All of the heuristic procedures presented in this study can be modified for

application to rooted variations of the OP, and this should be fairly straightforward in

most cases. Examples of such modifications are included in Appendix A. Modification of

these heuristics for application for other variations and subclasses of the OP should be

possible but may be significantly more involved.

With the development of these first heuristics designed specifically for finding

solutions to the OP using just GIS software and a spreadsheet, GIS users now have

options available to find solution paths for this subclass of problems. While ArcGIS has a

built-in function that finds a solution path for the basic TSP, which may or may not be

optimal, real world situations are often more closely simulated through the model of the

OP. No complex computer programming or specialized software is required to use these

heuristics; however, users should be aware that the heuristics do not guarantee optimal

results, and in some cases results may be significantly suboptimal.

58

7. FUTURE RESEARCH OPPORTUNITIES

Several areas of research are suggested by the results of the study. The heuristic

approaches presented here should be further tested against different data sets and

networks of varying sizes, as well as cost constraints ranging from minimal to nearly the

full length of the network. The heuristics should also be evaluated fully against optimal

solution procedures using the rooted OP. Any underlying network can be used multiple

times by varying the values applied to each vertex (both in larger and smaller ranges than

the 1-100 range employed here), adding and removing vertices, and varying the total cost

constraint applied to multiple test problems. As for the underlying network, the heuristics

should be tested on larger networks such as larger American and European cities to see if

they are still viable—not only in terms of being able to find an optimal or near-optimal

solution, but also with respect to the feasibility of processing time given that application

of the heuristics without programming may become extremely time intensive for the user.

The heuristics should also be tested on different types of underlying networks, from

rectilinear or Manhattan networks to more varied and disparate suburban or rural

networks. Testing the heuristics on classic datasets from the TSP and OP literature should

also be pursued where possible. More testing of the heuristics on a wider range of

problems will provide more credibility to the conclusions reached about the relative value

of each heuristic approach.

Additional heuristic concepts should be tested and compared against those

proposed here, such as a heuristic that might be considered a “maximum location”

59

heuristic, which would be designed to generate solutions that include as many destination

points as possible. Heuristics employing a combination of concepts may also be

successful, such as a heuristic that starts with a greedy approach like the HAH and then

switches over to a nearest neighbor concept partway through. Such an approach may

offer solid performance towards the objective function goal with the benefit of improved

implementation times. Additional techniques might be tested including other initialization

steps, backwards-looking approaches as suggested by research into experienced

orienteering competitors, and the utilization of cluster analyses to identify potential

locations to add to the solution path. Tools like network point cluster analysis available

through the SANET program—which works as an extension to ArcGIS—may provide

for the development of more complex heuristics that can still be implemented in a GIS

setting without complex LP programming (Okabe & Okunuki, 2013). Research presented

by Mei (2015) could also suggest methods to identify clusters of points or areas of

interest in network space that could be used in future heuristics. Work should also be

conducted to better understand the data conditions under which the initialization step

presented here would be beneficial or harmful to implementation with a heuristic.

Additionally, the heuristics presented here may be improved upon through further

refinements such as additional steps or post-processing methods that could be added.

And, just as heuristics are needed for the OP as a subclass of the TSP with additional

constraints, so too are heuristics needed for other variations and subclasses of the OP

such as the OPTW, OP with compulsory vertices, and TD-OP. Modified versions of the

60

heuristics in this study may be appropriate for some subclass problems of the OP, and

new heuristic approaches may prove best for other problem types.

A primary area of further research should be examining methods and techniques

to improve the time and effort required to implement these and future heuristics

implemented only with GIS software and a spreadsheet. While these heuristics that can

be applied without complex programming approaches present the desirable qualities of

being easier to implement and not requiring additional expensive software packages, they

can be time and labor intensive. Opportunities to capitalize on additional capabilities built

in to ArcGIS might include utilizing ModelBuilder or Python scripting within the

software to automate and speed up some aspects of heuristic implementation. In addition,

with some knowledge of traditional programming techniques and widely available

languages like Python, it may be possible to implement the heuristics presented here in

steps taking place both inside and outside the GIS platform. An added benefit to

increased automation in heuristic implementation should be a reduced likelihood of error

due to the manual data entry involved in the current processes.

Improving the processing time for existing heuristics could also involve designing

more efficient methods to achieve the same results, from more quickly eliminating poor

solution options to better initiation steps at the beginning of the heuristic. For example, as

the greedy HAH approaches the cumulative cost constraint, at some point (perhaps within

some percent of the cost constraint or when half the remaining possible locations are still

within the distance constraint) it may be more efficient to search for the nearest still-

available locations first and then employ the greedy concept to identify the next point to

61

add to the solution rather than continuing to iterate through locations that are no longer

feasible. One or more of the steps outlined above could dramatically reduce the

implementation times experienced and shift tractability concerns strictly to problem size

and away from heuristic implementation times.

As improved processing power becomes necessary to find solutions to larger and

more complex problem sets, a combination solution approach utilizing LP or ILP to solve

the problem with a GIS user interface to make the process accessible to lay users may be

the only viable approach available. Alternately, a user interface (UI) might be constructed

that would allow the user to solve a given OP using one of the developed heuristics

within a software suite such as ArcGIS without requiring knowledge of linear

programming. Such an interface may increase the size of the problem that can be solved

by one of the developed heuristics by dramatically lowering the time requirements for

implementation on the user. An additional factor that may lead to improved processing

times might be found in the OP formulations themselves. Research by Palomo-Martínez,

Salazar-Aguilar, and Albornoz (2017) suggested that it may be possible to implement

subtour elimination constraints that perform better than the standard Miller-Tucker-

Zemlin TSP formulation constraints frequently cited and used here.

In order to better understand the performance of the heuristics, additional research

efforts should pursue comparing the application of these heuristics using just a GIS

program and spreadsheet to other approaches using complex programming. The results

achieved and processing time required are both important results that should be

quantified and compared along with the costs and expertise needed to apply any

62

particular approach so that potential users can make an informed decision as to what

approach is best for a given application. Furthermore, additional research of the literature

may provide a recommended percentage of optimal that a heuristic should be expected to

achieve in similar circumstances to the research parameters. Alternately, individual user

best-guess solutions could be gathered and compared against heuristic performance for

additional context.

63

APPENDIX A – ROOTED OP HEURISTICS DEFINITIONS

Nearest Neighbor Heuristic

A relatively simple heuristic to implement is the Nearest Neighbor Heuristic

(NNH). This path construction heuristic starts at the root location, finds the nearest

location on the network that is not already in the solution path, and continues to add

locations while checking to make sure the path includes room under the total cost

function for the trip back to the root to complete the circuit.

Nearest Neighbor Heuristic:

Step 1: Start at the root location 𝑣1.

Step 2: Find the nearest available vote location.

a. Using the OD Cost Matrix, find the trip length to the nearest available

undiscarded vote location 𝑣𝑗 that is not already on the solution path

and check to see if the point is within the total cost constraint 𝐶𝑚𝑎𝑥.

b. If there are no unselected and undiscarded destinations available

within the total cost constraint 𝐶𝑚𝑎𝑥, proceed to Step 3.

c. Ensure that there is sufficient distance remaining in the total cost

constraint 𝐶𝑚𝑎𝑥to return to the root location 𝑣1 from the proposed

destination. If there is not sufficient distance remaining, the destination

cannot be selected and is discarded for this iteration. Return to Step

2(a).

d. Compute the distance traveled on the trip.

64

e. Add the distance traveled on the trip to the total distance traveled, and

the votes obtained on the trip to the total votes.

f. Proceed from the selected destination to Step 2(a).

Step 3: Once it is shown that no more locations can be added to the trip without

violating the total cost constraint, including the distance needed to return to the root

location, check the trip from the last destination on the path to the root location for any

additional destinations that have not been added to the total trip thus far. Add the vote

totals from any locations on the final trip to the root location to the overall total votes

accumulated.

Each tested destination was catalogued in a spreadsheet to track all visited and

rejected destinations, total votes accrued, and the total distance traveled. To find any

additional destinations located on the final path back to the root in Step 3, the Find Route

function was used to draw the shortest path between the last point on the path and the

root location.

Highest Available Heuristic

The Highest Available Heuristic (HAH) uses many of the basic mechanics of the

Nearest Neighbor Heuristic, but is built as a greedy heuristic by searching iteratively for

the highest scoring location available.

Highest Available Heuristic:

Step 1: Start at the root location 𝑣1.

Step 2: Find the highest available vote location.

a. Select the highest available undiscarded vote location 𝑣𝑗 .

65

b. Using the OD Cost Matrix, find the trip length to the highest available

undiscarded vote location 𝑣𝑗 and check to see if the point is within the

total cost constraint 𝐶𝑚𝑎𝑥.

c. If there are no unselected and undiscarded destinations available

within the total cost constraint 𝐶𝑚𝑎𝑥, proceed to Step 3.

d. Ensure that there is sufficient distance remaining in the total cost

constraint 𝐶𝑚𝑎𝑥 to return to the root location 𝑣1 from the proposed

destination. If there is not sufficient distance remaining, the destination

cannot be selected and is discarded for this iteration. Return to Step

2(a).

e. Select and note all additional destinations that are located on the trip.

f. Compute the distance traveled on the trip and total votes obtained at all

destinations.

g. Add the distance traveled on the trip to the total distance traveled, and

the votes obtained on the trip to the total votes.

h. Proceed from the selected destination to Step 2(a).

Step 3: Once it is shown that no more locations can be added to the trip without

violating the total cost constraint, including the distance needed to return to the root

location, check the trip from the last destination on the path to the root location for any

additional destinations that have not been added to the total trip thus far. Add the vote

totals from any locations on the final trip to the root location to the overall total votes

accumulated.

66

Again, each tested destination was catalogued in a spreadsheet to track all visited

and rejected destinations, total votes accrued, and the total distance traveled. To find all

additional destinations located on a tested trip, the Find Route function was used to draw

the shortest path between the tested origin and destination points.

67

APPENDIX B – ROOTED OP HEURISTICS IMPLEMENTATION OUTPUT

Table B1: Steps taken to apply the Nearest Neighbor Heuristic to set 1 using the rooted OP.

Note. Omitted for brevity are 37 steps attempted to find a 29th point to add to the solution path. Distances are in

meters. Distance subtotals in green were less than the Cmax value and the corresponding destination vertices thus

were added to the solution path.

68

Table B2: Steps taken to apply the Highest Available Heuristic to set 1 using the rooted OP.

Note. Distances are in meters. Distance subtotals in green were less than the Cmax value and the corresponding destination vertices thus were added to the

solution path. Subtotals in red violated the Cmax constraint and the corresponding destination vertices were discarded for that step.

69

APPENDIX C – SAMPLE OPTIMAL MODEL GUROBI CODE

The following code will find the optimal solution for a specific 5-vertex unrooted

OP dataset with a cost constraint 𝐶𝑚𝑎𝑥 set at 10,000 meters. This model was written in

WordPad and saved with the file extension .LP. The model was then executed in the

Gurobi Interactive Shell with a command at the command prompt such that the values for

the objective function and each decision variable were written to a new text file or

displayed on screen.

Maximize

 22 x22 + 22 x23 + 22 x24 + 22 x25 + 77 x32 + 77 x33 + 77 x34 +

77 x35 + 94 x42 + 94 x43 + 94 x44 + 94 x45

Subject to

\ Constraint 1

 c1A: x12 + x13 + x14 + x15 = 1

 c1B: x15 + x25 + x35 + x45 = 1

\ Constraint 2

 c2A1: x12 + x22 + x32 + x42 <= 1

 c2A2: x13 + x23 + x33 + x43 <= 1

 c2A3: x14 + x24 + x34 + x44 <= 1

 c2B1: x22 + x23 + x24 + x25 <= 1

 c2B2: x32 + x33 + x34 + x35 <= 1

 c2B3: x42 + x43 + x44 + x45 <= 1

 c2AB1: x12 + x32 + x42 - x23 - x24 - x25 = 0

 c2AB2: x13 + x23 + x43 - x32 - x34 - x35 = 0

 c2AB3: x14 + x24 + x34 - x42 - x43 - x45 = 0

\ Constraint 3

 c3: 1846 x12 + 3616 x13 + 2811 x14 + 3524 x15 + 3434 x23 +

2629 x24 + 2200 x25 + 3434 x32 + 1160 x34 + 5299 x35 + 2629 x42 +

1160 x43 + 4495 x45 + 2200 x52 + 5299 x53 + 4495 x54 <= 10000

70

\ Constraint 4 handled through Bounds and Generals

\ Constraint 5

 c5ui2uj2: 4 x22 <= 3

 c5ui2uj3: u2 - u3 + 4 x23 <= 3

 c5ui2uj4: u2 - u4 + 4 x24 <= 3

 c5ui2uj5: u2 - u5 + 4 x25 <= 3

 c5ui3uj2: u3 - u2 + 4 x32 <= 3

 c5ui3uj3: 4 x33 <= 3

 c5ui3uj4: u3 - u4 + 4 x34 <= 3

 c5ui3uj5: u3 - u5 + 4 x35 <= 3

 c5ui4uj2: u4 - u2 + 4 x42 <= 3

 c5ui4uj3: u4 - u3 + 4 x43 <= 3

 c5ui4uj4: 4 x44 <= 3

 c5ui4uj5: u4 - u5 + 4 x45 <= 3

 c5ui5uj2: u5 - u2 + 4 x52 <= 3

 c5ui5uj3: u5 - u3 + 4 x53 <= 3

 c5ui5uj4: u5 - u4 + 4 x54 <= 3

 c5ui5uj5: 4 x55 <= 3

Bounds

 2 <= u2 <= 5

 2 <= u3 <= 5

 2 <= u4 <= 5

 2 <= u5 <= 5

 x12 <= 1

 x13 <= 1

 x14 <= 1

 x15 <= 1

 x22 <= 1

 x23 <= 1

 x24 <= 1

 x25 <= 1

 x32 <= 1

 x33 <= 1

 x34 <= 1

 x35 <= 1

 x42 <= 1

 x43 <= 1

 x44 <= 1

 x45 <= 1

 x52 <= 1

 x53 <= 1

 x54 <= 1

 x55 <= 1

Binary

 x12 x13 x14 x15

 x22 x23 x24 x25

71

 x32 x33 x34 x35

 x42 x43 x44 x45

 x52 x53 x54 x55

Generals

 u2 u3 u4 u5

End

72

APPENDIX D – ITERATIVE PROCESS IDENTIFYING TOTAL COST

CONSTRAINTS

The following tables catalogue the results of the iterative process to identify the

desired total cost constraint values 𝐶𝑚𝑎𝑥 for each 10 and 15-vertex test dataset used in the

study. Once a model was built to optimally solve a dataset, the model was run repeatedly

by reducing by one meter the total cost constraint from the previous solution path

distance. The number of iterations run ranged from 12 to 33 for the 10-vertex sets, and

from 22 to 56 for the 15-vertex sets. Generally a few iterations were completed beyond

the observed lowest total cost constraint providing the desired number of vertices in the

solution to ensure the lowest total cost constraint had been identified. The results of this

iterative process for each dataset can be seen on the following pages.

Table D1: Results of Iterative Process to Identify Target Total Cost Constraint Values for Dataset 10n_set1

Dataset & Cmax

Objective

Value

Solution

Distance (m)

Max

vertices?

No. of

vertices

73

10n set1 12000 404 11,690 Y 10

10n set1 10000 404 9,974 Y 10

10n set1 9973 397 9,911 9

10n set1 9910 397 9,579 9

10n set1 9578 397 9,578 9

10n set1 9577 393 8,579 9

10n set1 8579 393 8,490 9

10n set1 8489 393 8,212 9

10n set1 8211 386 8,094 8

10n set1 8093 386 7,817 8

10n set1 7816 386 7,816 8

10n set1 7815 350 7,516 8

10n set1 7515 343 7,120 7

10n set1 7119 271 6,822 6

10n set1 6821 187 6,543 5

10n set1 6542 169 4,961 6

10n set1 4960 162 4,492 5

10n set1 4491 138 4,088 4
Note. The yellow cell is the smallest Cmax to include all 10 vertices in the solution. The green cell is the largest

Cmax to use 6 vertices in the solution. The blue cell is the smallest Cmax to use 6 vertices in the solution.

Table D2: Results of Iterative Process to Identify Target Total Cost Constraint Values for Dataset 10n_set2

Dataset & Cmax

Objective

Value

Solution

Distance (m)

Max

vertices?

No. of

Vertices

10n_set2 10000 372 9,608 Y 10

10n_set2 9607 365 9,557 9

10n_set2 9556 365 9,484 9

10n_set2 9483 352 9,260 9

10n_set2 9259 345 9,137 8

10n_set2 9136 306 9,119 8

10n_set2 9118 305 9,102 8

10n_set2 9101 299 8,372 7

10n_set2 8371 299 8,350 7

10n_set2 8349 299 8,349 7

10n_set2 8348 279 8,002 6

10n_set2 8001 239 7,967 6

10n_set2 7966 234 6,751 8

10n_set2 6750 234 5,754 8

Dataset & Cmax

Objective

Value

Solution

Distance (m)

Max

vertices?

No. of

Vertices

10n_set2 5753 234 5,202 8

74

10n_set2 5201 227 5,150 7

10n_set2 5149 227 5,078 7

10n_set2 5077 214 4,854 7

10n_set2 4853 207 4,731 6

10n_set2 4730 168 4,713 6

10n_set2 4712 167 4,696 6

10n_set2 4695 161 3,966 5

10n_set2 3965 161 3,943 5

10n_set2 3942 141 3,618 4
Note. The yellow cell is the smallest Cmax to include all 10 vertices in the solution. The green cell is the largest

Cmax to use 6 vertices in the solution. The blue cell is the smallest Cmax to use 6 vertices in the solution.

Table D3: Results of Iterative Process to Identify Target Total Cost Constraint Values for Dataset 10n_set3

Dataset & Cmax

Objective

Value

Solution

Distance (m)

Max

vertices?

No. of

vertices

10n set3 12000 326 11,589 Y 10

10n set3 11588 321 11,146 9

10n set3 11000 321 10,507 9

10n set3 10000 285 9,830 8

10n set3 9829 278 9,667 8

10n set3 9666 267 9,421 7

10n set3 9420 260 9,258 7

10n set3 9257 242 8,990 7

10n set3 8989 237 8,582 7

10n set3 8581 224 6,037 7

10n set3 6036 219 5,031 6

10n set3 5030 183 4,354 5

10n set3 4353 151 4,339 5

10n set3 4338 120 4,111 5

10n set3 4110 117 3,998 5

10n set3 3997 115 3,662 4

Note. The yellow cell is the smallest Cmax to include all 10 vertices in the solution. The green cell is the only Cmax

to use 6 vertices in the solution.

Table D4: Results of Iterative Process to Identify Target Total Cost Constraint Values for Dataset 10n_set4

Dataset & Cmax

Objective

Value

Solution

Distance (m)

Max

vertices?

No. of

vertices

75

10n set4 14000 501 13,936 Y 10

10n set4 13000 462 12,993 9

10n set4 12000 435 10,598 9

10n set4 11000 435 10,024 9

10n set4 10000 435 9,579 9

10n set4 9578 435 9,558 9

10n set4 9557 435 9,299 9

10n set4 9298 396 9,089 8

10n set4 9088 396 9,055 8

10n set4 9054 386 8,901 8

10n set4 8900 386 8,854 8

10n set4 8853 386 8,768 8

10n set4 8767 386 8,595 8

10n set4 8594 386 8,315 8

10n set4 8314 347 8,105 7

10n set4 8104 327 7,956 7

10n set4 7955 327 7,697 7

10n set4 7696 304 7,568 7

10n set4 7567 288 7,487 6

10n set4 7486 276 7,237 6

10n set4 7236 265 7,078 6

10n set4 7077 246 3,843 6

10n set4 3842 197 2,859 5

Note. The yellow cell is the smallest Cmax to include all 10 vertices in the solution. The green cell is the largest

Cmax to use 6 vertices in the solution. The blue cell is the smallest Cmax to use 6 vertices in the solution.

Table D5: Results of Iterative Process to Identify Target Total Cost Constraint Values for Dataset 10n_set5

Dataset & Cmax

Objective

Value

Solution

Distance (m)

Max

vertices?

No. of

vertices

10n set5 15000 327 14,139 Y 10

10n set5 14138 327 13,909 Y 10

10n set5 13908 327 13,819 Y 10

10n set5 13818 327 13,453 Y 10

10n set5 13452 327 12,858 Y 10

10n set5 12857 327 12,012 Y 10

10n set5 12011 327 11,936 Y 10

10n set5 11935 327 11,537 Y 10

10n set5 11536 320 10,161 9

Dataset & Cmax

Objective

Value

Solution

Distance (m)

Max

vertices?

No. of

vertices

10n set5 11000 320 10,450 9

76

10n set5 10160 320 9,762 9

10n set5 10000 320 9,762 9

10n set5 9761 308 9,062 8

10n set5 9061 308 8,821 8

10n set5 8820 308 8,820 8

10n set5 8819 285 8,683 7

10n set5 8682 276 8,533 7

10n set5 8532 260 7,640 7

10n set5 7639 260 7,639 7

10n set5 7638 237 7,502 6

10n set5 7501 228 7,352 6

10n set5 7351 219 7,297 7

10n set5 7296 219 7,093 7

10n set5 7092 219 6,851 7

10n set5 6850 196 6,714 6

10n set5 6713 187 6,564 6

10n set5 6563 183 5,105 7

10n set5 5104 183 3,821 7

10n set5 3820 171 2,879 6

10n set5 2878 151 2,738 6

10n set5 2737 151 2,581 6

10n set5 2580 151 2,339 6

10n set5 2338 139 1,397 5
Note. The yellow cell is the smallest Cmax to include all 10 vertices in the solution. The green cell is the largest

Cmax to use 6 vertices in the solution. The blue cell is the smallest Cmax to use 6 vertices in the solution.

Table D6: Results of Iterative Process to Identify Target Total Cost Constraint Values for Dataset 15n_set1

Dataset & Cmax

Objective

Value

Solution

Distance (m)

Max

vertices?

No. of

vertices

15n set1 80000 530 27,050 Y 15

15n set1 30000 530 26,401 Y 15

15n set1 20000 530 18,076 Y 15

15n set1 18075 530 17,748 Y 15

15n set1 17747 530 17,650 Y 15

15n set1 17000 530 16,497 15

15n set1 16496 530 16,484 15

15n set1 16483 530 16,479 15

15n set1 16100 530 16,095 15

Dataset & Cmax

Objective

Value

Solution

Distance (m)

Max

vertices?

No. of

vertices

15n set1 15000 529 14,703 14

77

15n set1 14000 510 13,997 11

15n set1 13500 504 13,461 11

15n set1 13000 495 12,901 12

15n set1 12500 476 12,359 10

15n set1 12358 472 12,215 11

15n set1 12214 472 12,101 11

15n set1 12100 472 12,039 11

15n set1 12038 470 11,894 10

15n set1 11893 470 11,823 10

15n set1 11821 470 11,761 10

15n set1 11760 460 11,755 11

15n set1 11754 458 11,477 10

15n set1 11476 453 11,378 9

15n set1 11377 442 11,245 10

15n set1 11244 442 11,034 10

15n set1 11033 440 10,967 9

15n set1 11000 440 10,967 9

15n set1 10966 440 10,756 9

15n set1 10755 435 10,687 9

15n set1 10686 435 10,615 9

15n set1 10614 423 10,373 8

15n set1 10000 407 9,888 9

15n set1 9887 405 9,610 8

15n set1 9609 390 9,505 8

15n set1 9504 388 9,227 7

15n set1 9226 380 9,215 8

15n set1 9214 380 9,163 8

15n set1 9162 380 9,153 8

15n set1 9152 368 9,122 7

15n set1 9121 368 8,911 7

15n set1 9000 368 8,911 7

15n set1 8910 363 8,780 7

15n set1 8779 363 8,770 7

15n set1 8769 352 8,426 8

15n set1 8425 350 8,359 7

15n set1 8358 350 8,148 7

15n set1 8147 335 8,043 7
Note. The green cell is the largest Cmax to use 8 vertices in the solution. The blue cell is the smallest Cmax to use 8

vertices in the solution.

78

Table D7: Results of Iterative Process to Identify Target Total Cost Constraint Values for Dataset 15n_set2

Dataset & Cmax

Objective

Value

Solution

Distance (m)

Max

vertices?

No. of

vertices

15n_set2 30000 699 29,616 Y 15

15n_set2 18000 699 17,953 Y 15

15n_set2 16000 699 15,280 Y 15

15n_set2 14000 684 13,919 13

15n_set2 13156 649 13,022 10

15n_set2 12000 605 11,565 12

15n_set2 11000 605 10,835 12

15n_set2 10000 590 9,886 10

15n_set2 9500 520 9,258 9

15n_set2 9257 501 9,255 9

15n_set2 9254 501 9,125 9

15n_set2 9124 501 8,962 9

15n_set2 8961 481 8,836 8

15n_set2 8835 481 8,825 8

15n_set2 7898 386 7,898 8

15n_set2 7897 379 7,630 7

15n_set2 7629 379 7,443 7

15n_set2 7442 379 7,442 7

15n_set2 7441 359 7,317 6

15n_set2 7316 359 7,305 6

15n_set2 7304 304 7,109 6

15n_set2 7108 304 7,108 6

15n_set2 7107 290 6,518 6

15n_set2 6517 270 6,382 5

Note. The green cell is the largest Cmax to use 8 vertices in the solution. The blue cell is the smallest Cmax to use 8

vertices in the solution.

Table D8: Results of Iterative Process to Identify Target Total Cost Constraint Values for Dataset 15n_set3

Dataset & Cmax

Objective

Value

Solution

Distance (m)

Max

vertices?

No. of

vertices

15n_set3 30000 668 27,851 Y 15

15n_set3 14000 641 13,968 14

15n_set3 12000 571 11,866 13

15n_set3 11000 521 10,737 12

15n_set3 10000 498 9,957 11

15n_set3 9956 491 9,884 10

15n_set3 9883 467 9,824 10

Dataset & Cmax

Objective

Value

Solution

Distance (m)

Max

vertices?

No. of

Vertices

79

15n_set3 9823 466 9,820 10

15n_set3 9819 460 9,751 9

15n_set3 9750 459 9,747 9

15n_set3 9746 454 9,686 11

15n_set3 9685 449 9,671 10

15n_set3 9670 447 9,613 10

15n_set3 9612 442 9,598 9

15n_set3 9597 431 9,569 10

15n_set3 9568 431 9,275 10

15n_set3 9274 431 9,028 10

15n_set3 9000 431 8,967 10

15n_set3 9027 431 8,967 10

15n_set3 8966 424 8,894 9

15n_set3 8893 400 8,834 9

15n_set3 8833 399 8,830 9

15n_set3 8829 393 8,761 8

15n_set3 8760 392 8,757 8

15n_set3 8756 375 8,734 8

15n_set3 8733 375 8,733 8

15n_set3 8732 368 8,697 8

15n_set3 8696 361 8,624 7

15n_set3 8623 346 8,503 9

15n_set3 8502 340 8,353 9

15n_set3 8352 340 8,292 9

15n_set3 8291 339 8,252 8

15n_set3 8251 339 8,241 8

15n_set3 8240 339 8,006 8

15n_set3 8005 308 7,743 7

15n_set3 7742 276 7,664 6

15n_set3 7663 276 7,607 6

15n_set3 7606 276 7,606 6

15n_set3 7000 224 6,984 8

15n_set3 6983 201 6,667 7

15n_set3 6666 197 6,290 7

15n_set3 6289 174 5,571 6
Note. The green cell is the largest Cmax to use 8 vertices in the solution. The blue cell is the smallest Cmax to use 8

vertices in the solution.

80

Table D9: Results of Iterative Process to Identify Target Total Cost Constraint Values for Dataset 15n_set4

Dataset & Cmax

Objective

Value

Solution

Distance (m)

Max

vertices?

No. of

vertices

15n_set4 30000 668 27,362 Y 15

15n_set4 20000 668 18,798 Y 15

15n_set4 18000 668 17,364 Y 15

15n_set4 16000 640 15,875 12

15n_set4 14000 546 13,955 11

15n_set4 12000 397 11,921 11

15n_set4 11000 397 10,800 11

15n_set4 10799 397 10,763 11

15n_set4 10762 385 10,463 10

15n_set4 10462 385 10,271 10

15n_set4 10270 385 9,879 10

15n_set4 9878 370 9,617 9

15n_set4 9616 353 9,237 9

15n_set4 9236 341 9,122 8

15n_set4 9121 341 9,083 8

15n_set4 9082 341 8,805 8

15n_set4 8804 341 8,353 8

15n_set4 8352 326 8,091 7

15n_set4 8090 287 8,019 7

15n_set4 8018 286 7,937 6

15n_set4 7936 272 7,757 6

15n_set4 7756 271 7,675 5

Note. The green cell is the largest Cmax to use 8 vertices in the solution. The blue cell is the smallest Cmax to use 8

vertices in the solution.

Table D10: Results of Iterative Process to Identify Target Total Cost Constraint Values for Dataset 15n_set5

Dataset & Cmax

Objective

Value

Solution

Distance (m)

Max

vertices?

No. of

vertices

15n_set5 20000 634 19,026 Y 15

15n_set5 16000 623 15,728 13

15n_set5 14000 594 13,949 12

15n_set5 12000 559 11,869 11

15n_set5 11868 536 11,528 11

15n_set5 11527 531 11,375 11

15n_set5 11374 527 11,289 10

15n_set5 11288 527 11,242 10

15n_set5 11241 512 11,094 10

15n_set5 11093 505 10,482 11

81

Dataset & Cmax

Objective

Value

Solution

Distance (m)

Max

vertices?

No. of

vertices

15n_set5 10481 505 10,228 11

15n_set5 10227 496 10,001 10

15n_set5 10000 496 9,648 10

15n_set5 9647 473 9,601 10

15n_set5 9600 473 9,369 10

15n_set5 9368 464 9,081 9

15n_set5 9080 464 9,068 9

15n_set5 9067 464 9,021 9

15n_set5 9020 449 8,873 9

15n_set5 8872 440 8,857 9

15n_set5 8856 431 8,754 8

15n_set5 8753 431 8,510 8

15n_set5 8509 417 8,306 8

15n_set5 8305 403 7,984 9

15n_set5 7983 385 7,658 8

15n_set5 7657 380 7,399 9

15n_set5 7398 371 7,051 8

15n_set5 7050 356 6,856 8

15n_set5 6855 353 6,748 7

15n_set5 6747 338 6,665 7

15n_set5 6664 338 6,595 7

15n_set5 6594 338 6,493 7

15n_set5 6492 324 6,289 7

15n_set5 6288 301 5,497 8

15n_set5 5496 301 5,261 8

15n_set5 5260 301 5,247 8

15n_set5 5246 301 5,029 8

15n_set5 5028 292 4,899 7

15n_set5 4898 292 4,856 7

Note. The green cell is the largest Cmax to use 8 vertices in the solution. The blue cell is the smallest Cmax to use 8

vertices in the solution.

82

REFERENCES

Cao, B., Sun, M., & Macleod, C. (1999). Applying GIS and Combinatorial Optimization

to Fiber Deployment Plans. Journal of Heuristics, 5(4), 385–402.

https://doi.org/10.1023/A:1009628321600

Chao, I.-M., Golden, B. L., & Wasil, E. A. (1996). A fast and effective heuristic for the

orienteering problem. European Journal of Operational Research, 88(3), 475–

489. https://doi.org/10.1016/0377-2217(95)00035-6

Church, R. L. (2002). Geographical information systems and location science. Computers

& Operations Research, 29(6), 541–562. https://doi.org/10.1016/S0305-

0548(99)00104-5

Church, R. L., & Sorensen, P. (1994). Integrating Normative Location Models into GIS:

Problems and Prospects with the p-median Model (94-5). EScholarship. Retrieved

from http://escholarship.org/uc/item/7nz7762k

Curtin, K. M., Voicu, G., Rice, M. T., & Stefanidis, A. (2014). A Comparative Analysis

of Traveling Salesman Solutions from Geographic Information Systems.

Transactions in GIS, 18(2), 286–301. https://doi.org/10.1111/tgis.12045

Duque, D., Lozano, L., & Medaglia, A. L. (2015). An exact method for the biobjective

shortest path problem for large-scale road networks. European Journal of

Operational Research, 242(3), 788–797.

https://doi.org/10.1016/j.ejor.2014.11.003

83

Eccles, D. W., Walsh, S. E., & Ingledew, D. K. (2002). The use of heuristics during route

planning by expert and novice orienteers. Journal of Sports Sciences, 20(4), 327–

337. https://doi.org/10.1080/026404102753576107

Erdoğan, G., Cordeau, J.-F., & Laporte, G. (2010). The Attractive Traveling Salesman

Problem. European Journal of Operational Research, 203(1), 59–69.

https://doi.org/10.1016/j.ejor.2009.06.029

Feillet, D., Dejax, P., & Gendreau, M. (2005). Traveling Salesman Problems with Profits.

Transportation Science, 39(2), 188–205. https://doi.org/10.1287/trsc.1030.0079

Gendreau, M., Laporte, G., & Semet, F. (1998). A tabu search heuristic for the undirected

selective travelling salesman problem. European Journal of Operational

Research, 106(2), 539–545. https://doi.org/10.1016/S0377-2217(97)00289-0

Golden, Levy, L., & Vohra, R. (1987). The Orienteering Problem. Naval Research

Logistics, 34, 307–318.

Gunawan, A., Lau, H. C., & Vansteenwegen, P. (2016). Orienteering Problem: A survey

of recent variants, solution approaches and applications. European Journal of

Operational Research, 255(2), 315–332.

https://doi.org/10.1016/j.ejor.2016.04.059

Gurobi Optimization. (n.d.). Mathematical Programming Solver | Gurobi. Retrieved

September 28, 2018, from http://www.gurobi.com/products/gurobi-optimizer

International Rogaining Federation. (2017, January 1). Rules of Rogaining.

84

Kataoka, S., & Morito, S. (1988). An Algorithm for Single Constraint Maximum

Collection Problem. Journal of the Operations Research Society of Japan, 31(4),

515–531. https://doi.org/10.15807/jorsj.31.515

Laporte, G., & Martello, S. (1990). The selective travelling salesman problem. Discrete

Applied Mathematics, 26(2), 193–207. https://doi.org/10.1016/0166-

218X(90)90100-Q

Mei, X. (2015). Approximating the Length of Vehicle Routing Problem Solutions Using

Complementary Spatial Information (Dissertation). George Mason University.

Retrieved from http://mars.gmu.edu/handle/1920/9623

Miller, C. E., Tucker, A. W., & Zemlin, R. A. (1960). Integer Programming Formulation

of Traveling Salesman Problems. J. ACM, 7(4), 326–329.

https://doi.org/10.1145/321043.321046

Okabe, A., & Okunuki, K. (2013). SANET: Spatial Analysis along Networks (Version

4.1). Tokyo, Japan. Retrieved from http://sanet.csis.u-

tokyo.ac.jp/download/manual_standalone.pdf

Orienteering USA. (2018). Orienteering Formats. Retrieved November 6, 2018, from

https://www.orienteeringusa.org/new-o/what-orienteering/o-formats

Palomo-Martínez, P. J., Salazar-Aguilar, M. A., & Albornoz, V. M. (2017). Formulations

for the orienteering problem with additional constraints. Annals of Operations

Research, 258(2), 503–545. https://doi.org/10.1007/s10479-017-2408-4

85

Ramesh, R., & Brown, K. M. (1991). An efficient four-phase heuristic for the generalized

orienteering problem. Computers & Operations Research, 18(2), 151–165.

https://doi.org/10.1016/0305-0548(91)90086-7

Ramesh, R., Yoon, Y.-S., & Karwan, M. H. (1992). An Optimal Algorithm for the

Orienteering Tour Problem. ORSA Journal on Computing, 4(2), 155.

Righini, G., & Salani, M. (2009). Decremental state space relaxation strategies and

initialization heuristics for solving the Orienteering Problem with Time Windows

with dynamic programming. Computers & Operations Research, 36(4), 1191–

1203. https://doi.org/10.1016/j.cor.2008.01.003

Tsiligirides, T. (1984). Heuristic Methods Applied to Orienteering. The Journal of the

Operational Research Society, 35(9), 797–809. https://doi.org/10.2307/2582629

U.S. Census Bureau QuickFacts: Fairfax city, Virginia (County). (n.d.). Retrieved

February 20, 2018, from

https://www.census.gov/quickfacts/fact/table/fairfaxcityvirginiacounty/PST04521

6

Vansteenwegen, P., Souffriau, W., & Oudheusden, D. V. (2011). The orienteering

problem: A survey. European Journal of Operational Research, 209(1), 1–10.

https://doi.org/10.1016/j.ejor.2010.03.045

Verbeeck, C., Sörensen, K., Aghezzaf, E.-H., & Vansteenwegen, P. (2014). A fast

solution method for the time-dependent orienteering problem. European Journal

of Operational Research, 236(2), 419–432.

https://doi.org/10.1016/j.ejor.2013.11.038

86

Victorian Rogaining Association. (2016). What is Rogaining? Retrieved November 6,

2018, from https://vra.rogaine.asn.au/getting-started/what-is-rogaining

87

BIOGRAPHY

John K Robinson graduated from Thomas Jefferson High School for Science and

Technology, Alexandria, Virginia, in 1997. He received his Bachelor of Arts in

Government from the University of Virginia in 2001 and his Master of Arts in Education

and Human Development from George Washington University in 2010. He has worked

as a Legislative Aide at the U.S. Senate, an Assistant Director of Undergraduate

Admissions at George Washington University, and Academy Coordinator for the

National Automobile Dealers Association. He enjoys being in the outdoors, listening to

music, and crime/mystery television shows. He plans to receive his Master of Science in

Geographic and Cartographic Sciences from George Mason University in 2018.

