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ABSTRACT 

HEURISTICS TO APPROACH THE ORIENTEERING PROBLEM THROUGH 

NETWORK ANALYSIS IN GIS SOFTWARE 

John K Robinson       

George Mason University, 2018 

Thesis Director: Dr. Matthew Rice 

 

The orienteering problem (OP) is a subclass of the traveling salesman problem (TSP) that 

includes a constraining function on the solution path that may restrict the number of 

vertices visited and a requirement to maximize the value of the vertices visited. Solving 

the OP is often approached by using linear programming (LP) and branch-and-bound 

algorithms. Existing research on the OP does not provide algorithms or heuristic 

approaches for solving this class of problems using only geographic information system 

(GIS) software and a spreadsheet. Several new heuristic approaches are presented and 

tested on small and medium real-world road network datasets. The heuristics are 

evaluated relative to the optimal solution found through an integer linear programming 

(ILP) approach. Heuristics evaluated include the Nearest Neighbor Heuristic (NNH) and 

Highest Available Heuristic (HAH). A centralizing initialization step is also introduced 

and evaluated. The new heuristic approaches make it possible to find a good solution for 
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a small OP in network space without requiring knowledge of or access to LP software. 

Future research is called for to develop more effective heuristics, further validate existing 

heuristics, and improve the implementation times of existing heuristics. 
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1. INTRODUCTION AND RESEARCH QUESTION 

The traveling salesman problem (TSP) is one of the most studied problems in 

combinatorial optimization. Within this broad category of problem type exist multiple 

subclasses of problems, one of which is known by several names in the literature—most 

prominently as the orienteering problem (OP). In the OP, each vertex has a score, and the 

goal is to maximize the value of the vertices visited while staying within a defined cost 

constraint. Similar to the TSP, each vertex has a set distance between it and all other 

vertices, and so the vertices are typically treated as sitting on a defined network. The cost 

constraint of the OP can be operationalized in many ways such as travel cost or time, but 

is often defined as travel distance.  

The name for the orienteering problem is derived from the sport of orienteering, 

wherein competitors using a map and compass work to navigate a set of points. The sport 

of orienteering itself arose from military training exercises of land navigation. According 

to Orienteering USA, the national governing body for the sport in America, there are four 

internationally sanctioned formats of orienteering competition: foot orienteering, trail 

orienteering, ski orienteering, and mountain bike orienteering (Orienteering USA, 2018). 

Other styles include adventure racing, canoe orienteering, radio orienteering, and 

rogaining.  
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Foot orienteering is the classic format of the sport and somewhat resembles the 

TSP: competitors seek to visit all control points as quickly as possible, usually with a set 

start and end point. While the TSP is frequently placed in network space, foot 

orienteering is different in that it is practiced in planar space and in some cases the order 

of points to visit is defined (Orienteering USA, 2018). Ski and mountain bike 

orienteering also involve visiting an ordered set of points as quickly as possible, but these 

disciplines usually require staying on a defined network of paths. Rogaining is a long-

distance and cross-country form of competitive orienteering practiced in small teams that 

introduces scored checkpoints. (The name for the sport was coined from blending parts of 

the names of the three inventors: Rod, Gail, and Neil (Victorian Rogaining Association, 

2016).) A variation of foot orienteering that incorporates scored control points is known 

as Score-O. Rogaining courses are typically designed so that teams will not be able to 

visit all checkpoints within the time limit (anywhere from 2 to 24 hours) (International 

Rogaining Federation, 2017). Thus rogaining teams must strategically plan their route to 

accumulate as many points as possible from the checkpoints they do visit. Rogaining, like 

foot orienteering, is also conducted in planar space rather than network space. This aspect 

is important because the landscape can vary dramatically with hills, rivers, or canyons, 

and so the shortest “distance” between two points may be based on time to traverse 

instead of straight-line distance. This also means that the shortest “distance” between two 

points in rogaining may vary among competitors. With respect to specific orienteering 

competition types, the OP can best be thought of as rogaining but conducted in more 

restricted network space like ski and mountain bike orienteering. 
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The OP can have numerous potential applications beyond an orienteering 

competition, such as a traveling politician attending a number of rallies where he or she 

will attempt to secure the votes of the attendees at each differently-sized event, or 

similarly for a college recruiter attending high schools seeking to accumulate applications 

at each stop. Another variation of the problem could be as an inventory and delivery 

routing problem for a single vehicle, such as the delivery of home heating fuel. The OP 

has also been formulated as a prize-collecting TSP scenario. Extensions of the OP have 

been studied that may apply to school bus routing, industrial refuse collection, and dial-a-

ride services. In addition, as the orienteering problem is a subclass of the traveling 

salesman problem, the team orienteering problem (TOP) is a subclass of the vehicle 

routing problem, with its own body of research. 

A number of solution techniques have been proposed for various formulations of 

the OP, as will be outlined in chapter 2. However, there appears to be a paucity of 

research into heuristics that can be applied using only geographic information system 

(GIS) software. Given the large array of real world applications of variations of the OP 

and the complexity typically involved in the implementation of a linear programming 

approach (access to specialized software and the programming ability required to use 

such software), there is a need for more accessible solution approaches to the OP for GIS 

users of varying expertise. While heuristic techniques using a GIS software package may 

not match the optimality achieved by linear programming (LP) or other complex 

programming approaches in every case, such techniques may be more accessible for 

many users with access only to GIS software and a spreadsheet or limited training on 
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complex programming approaches. Solution times with heuristics in the GIS may be 

significantly shorter than those experienced with optimal solution procedures.  

The goal of this study will be to identify the best heuristic possible, or at least to 

suggest one or more good heuristics, for application to the OP with GIS software and a 

spreadsheet. The rest of this thesis is organized as follows: in chapter 2 the literature of 

the orienteering problem is reviewed and the mathematical formulation for the OP is 

specifically defined. In chapter 3 the methods employed in the study are outlined, 

including heuristic formation and finding optimal solutions for problem sets. Chapter 4 

describes the data to be used in the study and chapter 5 describes the results found, 

including examples of successful implementation of the heuristics and that the average 

percent optimal achieved by the Highest Available Heuristic (HAH) and HAH with 

Initialization (HAHwI) were higher than that of the Nearest Neighbor Heuristic with 

Initialization (NNHwI) to a statistically significant degree. Chapter 6 outlines the 

conclusions derived from the work and chapter 7 adds future areas of research that may 

be suggested by the results and conclusions of the study. 
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2. LITERATURE REVIEW 

What follows is an overview of the academic research on the Orienteering 

Problem. Additionally, a presentation of the mathematical formulation for the OP is 

provided along with an explanation for why the unrooted variant of the OP was selected 

for this research over the rooted variant of the problem. Finally, research related to the 

utilization of heuristics in a GIS environment is briefly discussed. 

2.1. Overview of Orienteering Problem Solution Approaches in the Literature 

The orienteering problem has been approached in a number of ways that utilized 

some type of computer programming approach. One of the early research efforts was 

from Tsiligirides (1984) who developed two heuristics to solve the OP. The first was 

called the stochastic algorithm (S-algorithm), which used a Monte Carlo method to create 

many possible routes and a desirability factor and then pick the best route. The second 

heuristic was called the deterministic algorithm (D-algorithm), which built on a vehicle 

routing concept that utilized two concentric circles to identify the next possible point to 

add to the route. A vertex switching post-processor module was also added to improve 

the results of both heuristics (Tsiligirides, 1984). Kataoka and Morito (1988) employed a 

branch-and-bound algorithm to solve a relaxed variant of the OP (deemed the single 

constraint maximum collection problem there) that may include subtours sometimes 

precluded in some definitions of the parent problem. Laporte and Martello (1990) called 

this problem the Selective TSP (STSP), and employed a branch-and-bound algorithm to 

gradually extend the path through a breath-first branch and bound process. They also 
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used two heuristics—a nearest neighbor greedy heuristic and a cheapest insertion 

heuristic to provide initial feasible solutions for the branch-and-bound algorithm (Laporte 

& Martello, 1990).  

Another approach for the OP was provided by Ramesh and Brown (1991), who 

used a four-phase process. The first phase used a single-point and then double-point 

insertion procedure to build an initial path. The second phase used a 2-opt and then 3-opt 

procedure for each edge along the path. Phase three deleted various vertices to allow 

more room under the budget constraint for the future addition of more points. After 

phases 1–3 were performed iteratively, in phase four relatively lower value points that 

might have been missed thus far were checked for addition to the solution path (Ramesh 

& Brown, 1991). Chao, Golden, and Wasil (1996) presented a heuristic that was 

initialized by installing an ellipse over the vertices with the start and end points as foci 

and the cost constraint set as the long axis. A path was then constructed using a greedy 

cheapest-insertion concept until the cost constraint was hit. Additional paths were 

constructed in this way from the remaining available points in the ellipse. The highest 

scoring path was the initial path for the heuristic. The improvement step of the heuristic 

utilized a two-point switch mechanism using a greedy cheapest-switch concept. The third 

step was a single-point insertion step to add any additional available points not on the 

currently best path, again using a greedy concept. The authors found their heuristic to 

perform as well or better than seven other heuristics and algorithms in the literature 

(Chao et al., 1996). Gendreau, Laporte, and Semet (1998) developed a tabu search 

heuristic process to solve the OP, or STSP as it is called there. This tabu search initialized 
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with their Insert and Shake heuristic and then used their GENIUS program tour 

construction and post-optimization phase to begin building improved solution paths. 

Additional steps in the solution process included identifying potential clusters of points to 

add to the tour, iterating through potential moves while periodically increasing the 

importance of the length of the tour and profits collected, and again applying the 

GENIUS process at regular intervals. This tabu heuristic was found better and more 

stable than other contemporary heuristics (Gendreau et al., 1998). 

Several solution approaches to variations of the OP also appear in the literature. 

Righini and Salani (2009) presented a dynamic programming algorithm to solve the OP 

with Time Windows (OPTW). This variation of the OP stipulates that some vertices can 

only be visited to collect a score during certain time windows; this formulation can apply 

to bus route planning and repair technician scheduling. The algorithm used a technique 

called decremental state space relaxation to develop a solution. The problem was relaxed 

to initially allow multiple location visits while defining a set of critical vertices that can 

be visited only once. All vertices were labeled, solution paths were tested bidirectionally, 

and several existing point insertion techniques were applied (Righini & Salani, 2009). 

Verbeeck, Sörensen, Aghezzaf, & Vansteenwegen (2014) provided a solution method for 

the time-dependent OP (TD-OP), in which the travel time (edge cost) between two 

vertices varied depending on the time of day. This problem modeled congestion related 

factors found in rush hour and off-peak use on a road or other network types, and was 

presented in a mixed integer programming (MIP) formulation. The solution implemented 

a metaheuristic based on an ant colony system (ACS), which used an insert local search 
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procedure, a modified 2-opt procedure on edges, and the ACS framework to 

incrementally construct multiple solution paths that were increasingly greedy. This 

method performed very successfully with a low average result gap relative to the optimal 

result (Verbeeck et al., 2014). Other variations on the OP found in the literature included 

the OP with compulsory vertices; and the capacitated OP, which allowed for additional 

constraints to the OP such as vehicle capacity. 

More complex formulations of the OP have been addressed as well. Duque, 

Lozano, and Medaglia (2015) presented a solution algorithm for the biobjective shortest 

path problem (BSP), which is similar to the OP except that the primary cost/distance 

constraint is separated into two variables, typically noted as time and cost. The pulse 

algorithm, which was programmed to search forwards and backwards through possible 

solution paths while incrementally pruning inefficient paths, was found to be effective 

and more efficient for the BSP than existing label-setting techniques. In addition, the 

pulse algorithm was also able to find a good approximation of the most optimal path very 

quickly and was cited for possible use as a heuristic in time-restricted settings (Duque et 

al., 2015). Erdoğan, Cordeau, and Laporte (2010) addressed a variation of the TSP called 

the Attractive TSP (AtTSP), where each vertex on the graph was assigned a fractional 

attractiveness value representing the ratio of potential customers drawn to each facility. 

In this research, after the attractiveness probability was described as a variation on an 

existing gravity function in the literature, a non-linear integer programming formulation 

was provided to describe the AtTSP. For solution approaches, a branch-and-cut algorithm 

and tabu search heuristic were proposed and implemented (Erdoğan et al., 2010). 
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In addition to this review, three surveys of the OP and related problems have been 

published in recent years. The paper by Vansteenwegen, Souffriau, and Oudheusden 

(2011) covered research on various OP and TOP problems and serves as a useful 

introduction to the problem. Feillet, Dejax, and Gendreau (2005) called this class of 

problems TSP with profits, and sorted much of the research up to that time into several 

classifications by specific problems and by solution approaches. Gunawan, Lau, & 

Vansteenwegen (2016) provided a survey of more than 80 recent research papers on OP 

variants, solution approaches, and modern practical applications.   

2.2. Problem Definition and Mathematical Formulation 

With numerous variants to the OP as well as slightly different formulations for the 

general OP found in the literature, the exact formulation used in this research must be 

specified before any heuristics can be evaluated. The intention for this research was 

always to work with the general OP formulation, with OP variants reserved for possible 

future research. However, one factor that needed to be determined was whether to use a 

rooted or unrooted variant of the general OP—that is whether the problem would require 

finishing at the same start vertex (rooted) or would permit finishing at a separate end 

vertex (unrooted).  

2.2.1. Ensuring an Appropriate Problem Formulation 

Research and experimentation was undertaken to select for the study an OP 

formulation that would be appropriate and correct for the problem type used. The OP 

type envisioned originally for this research was the rooted—or circuit—variant, wherein 

the solution path is required to return to the start vertex. The first heuristics created and 



10 

 

tested were implemented using the rooted OP concept. However, during optimal solution 

procedure development, problems and errors arose in testing the model and the specific 

formulation used could not be eliminated as a source of problems. As a result, a further 

review of OP literature was conducted specifically focusing on research that included a 

written formulation of the general OP. This was done with the goal of identifying a 

formulation that would best facilitate a successful optimal solution procedure 

development process. Both rooted and unrooted formulations for the OP were considered 

during this review, though the rooted OP was preferred since it was used in the initial 

heuristic development. 

The first paper identified with a math formulation for the OP was Kataoka and 

Morito’s paper in 1988. This work provided two formulations for what can be considered 

the rooted OP. The first was a formulation that included edges and vertices, and the 

second a Lagrange-relaxed variant that included self-loops at each vertex (Kataoka & 

Morito, 1988). The Laporte and Martello research of 1990 used an integer decision 

variable (rather than a binary variable) for its bidirectional graph variant of the problem. 

Their subtour elimination/connectivity constraints used set notation not typically found in 

other OP research. A paper by Ramesh, Yoon, and Karwan (1992) also included a 

formulation for the rooted OP, which was called the orienteering tour problem (OTP) in 

that case. This solution approach assigned all vertices in the complete graph to either the 

solution subgraph or a subgraph of dummy edges for unvisited vertices, which was 

deemed likely to be quite labor intensive to model for application to this research.  
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In addition to early OP literature, several recent papers that explored extensions to 

and variants of the OP also provided written formulations of the problem. A paper by 

Palomo-Martínez, Salazar-Aguilar, and Albornoz (2017) that explored an OP variant 

known as the OP with Mandatory Visits and Conflicts (OPMVC) also provided analysis 

of various subtour elimination approaches to OP formulations in the literature. The 

approach that used a single-commodity flow formulation to avoid subtours was found to 

solve to optimality within one hour more often than the other formulations. While this 

finding is of note and should be considered for future work, the single-commodity flow 

subtour elimination constraint formulation was not chosen for implementation in this 

research.  

Another option was provided in the survey of the OP literature by Vansteenwegen 

et al. (2011). A survey was identified as a reliable source because the authors reviewed 

multiple formulations in the literature and published a version of the OP formulation that 

used relatively modern and standardized notation. The formulation published in this 

survey used the unrooted variation of the OP.  

While this review of the OP literature and formulations was pursued, development 

of an optimal solution model was ongoing at the same time. In addition to experimenting 

with approaches to model the rooted OP, development of an optimal solution model for 

the unrooted OP formulation laid out in Vansteenwegen et al. (2011) was also attempted. 

Ultimately, through trial and error, the first model built successfully to find an optimal 

solution for the OP used the unrooted OP variant, and thus the research shifted to 

applying and evaluating the developed heuristics to this particular formulation of the OP. 
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2.2.2. Unrooted Orienteering Problem 

The unrooted formulation for the OP can be understood as follows: Let V be the 

set of vertices (or locations) such that 𝑉 = {𝑣1, … , 𝑣𝑛} and E be the set of bidirectional 

edges in between the points in V. The complete graph of the vertices and edges is 𝐺 =

{𝑉, 𝐸}. Each edge (𝑒𝑖) is assigned a cost (𝑐𝑖𝑗), which is typically a symmetric nonnegative 

value associated with the distance, travel time, cost, or some other function of traveling 

from 𝑣𝑖 to 𝑣𝑗 . The start point is vertex 1 (𝑣1) and the end point is vertex n (𝑣𝑛). (To make 

the problem into a rooted variation of the OP, the end point is also set to vertex 1.) Each 

vertex 𝑣𝑗  has a score (𝑠𝑖) that is nonnegative (some variations of the OP assign a negative 

penalty score to a vertex under certain conditions). The start vertex 𝑣1 and end vertex 𝑣𝑛 

are given a score of zero. The scores 𝑠𝑖 are completely additive and each vertex 𝑣𝑗  can 

only add to the total score S once in the solution path. The goal is to maximize the total 

score S while keeping the total travel cost function under the preset value 𝐶𝑚𝑎𝑥 by 

finding the Hamiltonian path G’ over some subset of V’ of the total set of vertices V. The 

two primary tasks required in the OP have been called vertex selection and finding the 

shortest Hamiltonian path between the selected vertices (Vansteenwegen et al., 2011). 

The unrooted OP can be illustrated using the following mathematical formulation 

(Equation 1). Two decision variables are used in the formulation below: the binary 

variable 𝑥𝑖𝑗 = 1 if a stop at vertex i is followed by a stop at vertex j, and 𝑥𝑖𝑗 = 0 if not; 

and the integer variable 𝑢𝑖, which assigns the relative position of the vertex in the path. 
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Equation 1: Unrooted Orienteering Problem Formulation 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 ∑ ∑ 𝑆𝑖𝑥𝑖𝑗 ,

𝑛

𝑗=2

𝑛−1

𝑖=2

 (0) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  
 

∑ 𝑥1𝑗

𝑛

𝑗=2

= ∑ 𝑥𝑖𝑛

𝑛−1

𝑖=1

= 1, (1) 

∑ 𝑥𝑖𝑘

𝑛−1

𝑖=1

= ∑ 𝑥𝑘𝑗

𝑛

𝑗=2

≤ 1; ∀𝑘 = 2, … , 𝑛 − 1, (2) 

∑ ∑ 𝑐𝑖𝑗𝑥𝑖𝑗

𝑛

𝑗=2

𝑛−1

𝑖=1

≤ 𝐶𝑚𝑎𝑥 , (3) 

2 ≤ 𝑢𝑖 ≤ 𝑛; ∀𝑖 = 2, … , 𝑛, (4) 

𝑢𝑖 − 𝑢𝑗 + 1 ≤ (𝑛 − 1)(1 − 𝑥𝑖𝑗); ∀𝑖, 𝑗 = 2, … , 𝑛, (5) 

𝑥𝑖𝑗 ∈ {0,1}; ∀𝑖, 𝑗 = 1, … , 𝑛; 𝑖 ≠ 𝑗. (6) 

 

The objective function (0) seeks to maximize the total collected score S. The 

remaining equations represent the constraints that define the OP. Constraint (1) initializes 

the path by ensuring vertex 𝑣1 is part of the solution path G’ and that the solution path 

finishes at vertex 𝑣𝑛. The constraints in (2) are the flow conservation constraints that 

ensure the path is fully connected and that the vertices are visited no more than once on 

the solution path. Constraint (3) is the total travel cost function constraint. Constraints (4) 

and (5) ensure that no subtours are included in the solution path, and are formulated per 

the Miller-Tucker-Zemlin TSP formulation (Miller, Tucker, & Zemlin, 1960). Constraint 
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(6) defines the decision variable 𝑥𝑖𝑗 as binary and that the path cannot exit a vertex and 

return to that same vertex in a loop.  

2.3. Developing GIS Software Heuristics for the TSP Family of Problems 

Limited research has been conducted relating to the development of heuristic 

solution approaches for the TSP family of problems that utilize just GIS software; most 

approaches utilize some form of linear programming. The primary factor driving the use 

of such approaches is that the OP has been shown to be NP-hard (Gendreau et al., 1998; 

Golden, Levy, & Vohra, 1987; Laporte & Martello, 1990). Since the goal of operations 

research (OR) frequently is to find optimal solutions to combinatorially complex 

problems, researchers naturally seek solution approaches that offer the most optimal 

results in the most efficient manner. However, since there are many real world 

applications of the OP but also many challenges involved in the implementation of a 

linear programming approach (such as specialized software and advanced programming 

capabilities), there is a need for more approachable solution techniques to the OP for GIS 

users of varying expertise. Church (2002) described the prevalence of GIS software 

packages in public and private settings and several ways that GIS can be used to find 

solution approaches to some GIS-Location problems.  

With respect to research related to GIS-based solutions for the TSP family of 

problems, Curtin, Voicu, Rice, & Stefanidis (2014) showed that four undisclosed solution 

approaches for the general TSP programmed into GIS software packages by Esri and 

Intergraph must be heuristics because each approach failed to find known optimal 

solutions for several cases of between 12 and 20 points. This finding was consistent with 
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the work of Church and Sorenson (1994), which made it clear through the example of the 

p-median problem that tackling complex location science problems is challenging for 

GIS software, especially because of the issue of solution approaches becoming stuck in 

local optima. In Curtin et al. (2014), the heuristics by Esri and Intergraph provided 

solutions that were found to be up to 14% suboptimal, and even the optimal solutions for 

smaller datasets could not be guaranteed to be optimal by the software packages. 

Concepts employed from other areas of research may be appropriated and used in 

the development of heuristics to approach the OP. One study of participants from 

orienteering competitions with a defined end point found that more experienced 

participants built solution paths in a backwards-looking manner, whereas inexperienced 

participants built forward-looking paths (Eccles, Walsh, & Ingledew, 2002). Developing 

heuristic concepts that look throughout the dataset before adding vertices to the solution 

path may prove fruitful and improve the efficiency of the heuristic. In addition, Cao, Sun, 

& Macleod (1999) implemented a GIS platform serving as a user interface in conjunction 

with a computer program operating in the background to solve TSP-type problems after 

user input was provided to define the problem parameters. The GIS interface did not 

conduct any of the problem-solving, but significantly eased the user’s interaction with the 

problem-solving structure. This concept may suggest an approach to solve problems such 

as the OP with sufficient power while maintaining a relatively lower bar of expert 

knowledge required to access the problem-solving technique. 

While the research literature on the OP has grown and developed dramatically 

since 1984, no research was found specific to development of solution approaches for the 
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OP that has been implemented entirely in GIS software. In addition, there is limited 

research into practical solution approaches for the broader category of the TSP family of 

problems that can be implemented using GIS software and a spreadsheet and without 

complex LP. This research is an effort to begin to address this gap in the current 

literature. 
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3. METHODS 

The methods employed in this study to develop and evaluate the heuristics 

utilized were constructed and refined through iterative processes. Early work included 

developing the main heuristics with inspiration from concepts in geospatial analysis. 

Later work focused on developing a process to calculate the optimal solution for each 

problem set in order to be able to evaluate the relative merits of each heuristic in 

comparison with the optimal solution. These methods are enumerated in the subsections 

below. 

3.1 Initial Heuristic Development  

During the initial period of heuristic development, ArcMap 10.2.2 for Desktop 

with Network Analyst extension was employed on a Dell OptiPlex 9010 Intel® Core™ 

i7-3770 CPU running Windows 7 Enterprise. Sixty-six address locations in the city of 

Fairfax, Virginia were geocoded to the city of Fairfax, Virginia road layer, and a network 

dataset was constructed using this address and road layer information. In order to build a 

matrix of all possible trip lengths from one location to each of the others, the OD Cost 

Matrix tool through the Network Analyst toolbar was run for all 66 locations.  

During initial heuristic development the rooted OP concept was used. It was a 

simple task later to modify the initial heuristics to fit the unrooted OP variant. (The initial 

rooted OP heuristics can be found in Appendix A.) For initial development and heuristic 

testing, the complete set of 66 points was used. The total cost constraint of the OP 

(distance is the cost function in this study) was set at 15,000 meters (m), which was just 
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over half the mean minimum distance needed to travel a complete circuit of all 66 

locations to include starting from and returning to the root location; this mean minimum 

circuit distance was 29,158 m. The mean minimum distance needed to travel a complete 

circuit of all locations including returning to the root location was computed by using the 

New Route tool available through the Network Analyst toolbar to find the minimum 

distance to travel a complete circuit with each of the 66 locations set as the root location. 

The total cost constraint can be adjusted to create further variations of problem instances 

on which to test the heuristics without requiring additional new datasets. We know from 

Curtin et al. (2014) that this function in ArcMap 9.1 returned results up to 14% lower 

than the optimal path found through an LP process; however, this function was the best 

known method available at the time of initial heuristic development to find this distance.  

The heuristics presented in the following sections are framed in terms of a 

traveling politician attending rallies and gathering all of the votes available at each 

location at which she stops. These heuristics use standard built-in ArcGIS tools that 

should be straightforward to use for any intermediate user. They are presented below in a 

format conducive to manual implementation by any user, but different options exist for 

automating some or all parts of their implementation, including the ArcGIS 

ModelBuilder environment. The heuristic procedures were tested on two sets of the 66 

address locations with different root locations and randomized vote values at all 

locations. After a procedure to find optimal solutions for problem instances was 

developed, the initial heuristics were converted to address the unrooted variant of the OP. 
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3.1.1. Nearest Neighbor Heuristic 

A relatively simple heuristic to implement is the Nearest Neighbor Heuristic 

(NNH). This path construction heuristic starts at the start vertex 𝑣1, finds the nearest 

location on the network that is not already in the solution path, and continues to add 

locations while checking to make sure the path includes room under the total cost 

constraint for the trip to the end vertex 𝑣𝑛 to complete the path. 

Nearest Neighbor Heuristic: 

Step 1: Start at the start vertex 𝑣1. 

Step 2: Find the nearest available vote location. 

a. Using the OD Cost Matrix, find the trip length to the nearest available 

undiscarded vote location 𝑣𝑗  that is not already on the solution path 

and check to see if the point is within the total cost constraint 𝐶𝑚𝑎𝑥. 

b. If there are no unselected and undiscarded destinations 𝑣𝑗  available 

within the total cost constraint 𝐶𝑚𝑎𝑥, proceed to Step 3. 

c. Ensure that there is sufficient distance remaining in the total cost 

constraint 𝐶𝑚𝑎𝑥 to travel to the end vertex 𝑣𝑛 from the proposed 

destination. If there is not sufficient distance remaining, the destination 

cannot be selected and is discarded for this iteration. Return to Step 

2(a). 

d. Compute the distance traveled on the trip. 

e. Add the distance traveled on the trip to the total distance traveled, and 

the votes obtained on the trip to the total votes. 
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f. Proceed from the selected destination to Step 2(a). 

Step 3: Once it is shown that no more vote locations 𝑣𝑗  can be added to the trip 

without violating the total cost constraint 𝐶𝑚𝑎𝑥, including the distance needed to travel to 

the end vertex 𝑣𝑛, the final step is simply to proceed to the end vertex 𝑣𝑛. The distance of 

this final trip is added to the total distance traveled subtotal to confirm that the total trip 

has remained under the total cost constraint 𝐶𝑚𝑎𝑥. No additional votes are added at the 

end vertex 𝑣𝑛. 

Each tested destination was catalogued in a spreadsheet to track all visited and 

rejected destinations, total votes accrued, and the total distance traveled. When testing the 

rooted OP variant of the NNH, additional vote destinations located on the final path back 

to the root were checked for in Step 3 using the Find Route function in ArcGIS to draw 

the shortest path between the last point on the path and the root location.  

3.1.2. Highest Available Heuristic 

The Highest Available Heuristic (HAH) uses many of the basic mechanics of the 

Nearest Neighbor Heuristic, but is built as a greedy heuristic by searching iteratively for 

the highest scoring location available. 

Highest Available Heuristic: 

Step 1: Start at the start vertex 𝑣1. 

Step 2: Find the highest available vote location. 

a. Select the highest available undiscarded vote location 𝑣𝑗 . 
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b. Using the OD Cost Matrix, find the trip length to the highest available 

undiscarded vote location 𝑣𝑗  and check to see if the point is within the 

total cost constraint 𝐶𝑚𝑎𝑥. 

c. If there are no unselected and undiscarded destinations available 

within the total cost constraint 𝐶𝑚𝑎𝑥, proceed to Step 3. 

d. Ensure that there is sufficient distance remaining in the total cost 

constraint 𝐶𝑚𝑎𝑥 to travel to the end vertex 𝑣𝑛 from the proposed 

destination. If there is not sufficient distance remaining, the destination 

cannot be selected and is discarded for this iteration. Return to Step 

2(a). 

e. Select and note all additional unvisited destinations that are located on 

the trip. 

f. Compute the distance traveled on the trip and total votes obtained at all 

destinations. 

g. Add the distance traveled on the trip to the total distance traveled, and 

the votes obtained on the trip to the total votes. 

h. Proceed from the selected destination to Step 2(a). 

Step 3: Once it is shown that no more locations can be added to the trip without 

violating the total cost constraint 𝐶𝑚𝑎𝑥, including the distance needed to travel to the end 

vertex 𝑣𝑛, check the trip from the last destination on the path to the end vertex for any 

additional destinations that have not been added to the total trip thus far. Add the vote 
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totals from any locations on the final trip to the end vertex to the overall total votes 

accumulated. 

Again, each tested destination was catalogued in a spreadsheet to track all visited 

and rejected destinations, total votes accrued, and the total distance traveled. To identify 

visually all additional destinations located on a tested trip, the Find Route function in 

ArcGIS was used to draw the shortest path between the tested origin and destination 

points.  

3.1.3. Heuristic Initialization 

The Nearest Neighbor and Highest Available Heuristics described above initialize 

from the start vertex and proceed directly into path-building. The performance of these 

heuristics could be significantly affected by the geography of the underlying network and 

vertex locations, especially the start vertex of the dataset. An outlying start vertex is more 

likely to affect the NNH since the solution path is built by adding the next closest 

location to the path without consideration of the broader result.  

One option to address possible reductions in performance by the heuristics due to 

the geography of the data is to introduce a centralizing initialization step to the heuristic 

process. To mitigate the potential effect of a remote start vertex or outlying points on the 

heuristics, a simple initialization step to find the 1-median of all locations in the dataset 

was implemented with both heuristics. The Location-Allocation tool available through 

the Network Analyst toolbar in ArcGIS was set to solve the problem type Minimize 

Impedance for 1 facility (the 1-median of the dataset on the network is the “facility” in 

this tool) in order to find the 1-median of the locations in the dataset. This initialization 
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step was first tested on the rooted OP variants of the heuristics, and has been modified 

below to apply to the unrooted OP heuristics.  

The initialization step can be inserted as a new step 2 to both the NNH and HAH, 

moving their original step 2 to step 3: 

Step 2: Find the 1-median of all vote locations. 

a. Identify the 1-median of vote locations through Location-Allocation 

analysis. 

b. If the 1-median vote location is also the start vertex, proceed to step 3. 

c. Select the 1-median vote location or other central location.  

i. Using the OD Cost Matrix, ensure that the 1-median vote 

location is within the total cost constraint 𝐶𝑚𝑎𝑥. 

ii. If the 1-median vote location is not within the total cost 

constraint 𝐶𝑚𝑎𝑥 then the initialization step may not be efficient 

for the solution path. 

iii. If a central location is still desired for initialization, use the OD 

Cost Matrix to find the location nearest to the 1-median and 

check to see if its distance to the start vertex is within the total 

cost constraint 𝐶𝑚𝑎𝑥. Proceed iteratively through the locations 

closest to the 1-median until one is identified that is within the 

total cost constraint 𝐶𝑚𝑎𝑥 to the start vertex. 
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iv. Ensure that there is sufficient distance remaining in the total 

cost constraint 𝐶𝑚𝑎𝑥 to travel to the end vertex from the 1-

median location (or other central location selected). 

d. Select and note all additional destinations that are located on the trip 

from the start vertex 𝑣1 to the 1-median or other central location 

selected for inclusion on the solution path. 

e. Compute the distance traveled on the trip and total votes obtained at all 

destinations. 

Initializing the heuristics by first moving to the 1-median of the dataset is 

designed to quickly move the solution path closer to more candidate points. This 

initialization step will not always improve the performance of a heuristic, depending on 

the underlying network and location data. It may be beneficial to apply the heuristics with 

and without the centralizing initialization step to find the best possible result. 

3.2. Finding Optimal Results 

After the development of two heuristics and one initialization step, it was 

necessary to develop a procedure that would find the optimal solution (or one of multiple 

optimal solutions in some cases) to the problem instances. In order to assess the 

performance of the heuristics presented in this study, the optimal solution path for each 

dataset would have to be determined in order to provide a point of comparison for the 

heuristics.  

Optimal solution procedure development was conducted using ArcMap versions 

10.3.1 and 10.6.1 on a Dell XPS L502X Intel® Core™ i7-2670QM CPU running 
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Windows 7 Home Premium. As has been consistently shown in the literature, in general 

terms the best approach for solving the OP and other problems from the TSP family is to 

employ an LP approach. Powerful software suites for application to optimization 

problems using LP include the Mathematical Programming Language (MPL) Modeling 

System from Maximal Software used in conjunction with IBM’s CPLEX solver, and the 

Gurobi Optimization math programming solver. Before proceeding to develop a full LP 

model able to handle small to large problem sizes, an initial effort to build a working 

model for small problems was made using a Microsoft Excel 2010 spreadsheet and the 

Excel Solver Add-In built by Frontline Solvers, Inc. Since Excel and the Excel Solver 

Add-In were more familiar than any of the LP solver software packages, by first 

developing a model in a spreadsheet setting it would facilitate the process of ensuring that 

the model and the basic model parameters were built correctly.  

After developing a model to solve a small theoretical example of the OP, the next 

goal was to scale that model up incrementally to optimally solve a representation of a 

small to moderate-size real world problem such as that presented by the Fairfax city data 

in this study. However, scaling up the model was not a linear process since the model was 

first built in an Excel spreadsheet for validation and then was expanded by coding the 

model into an LP-format file to be run at the command line by the Gurobi Optimizer. The 

next sections describe the processes of building the solver model in Excel and then in an 

LP-format file. 
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3.2.1. Microsoft Excel 2010 Solver Add-In 

The first effort to build a working model in Excel was intended to be built with a 

rooted OP and ten random points chosen from the Fairfax City dataset of 66 points (this 

dataset is described in chapter 4). Each of the ten points randomly was assigned a score 

between 1 and 100. Before the ten-vertex model was completed, it became clear during 

early testing that the problem was too large for the native Excel Solver Add-In to handle. 

The native Excel Solver is limited to 100 constraints and 200 decision variables, and the 

number of constraints in the model needed to solve a ten-vertex problem was larger than 

that limit. The test problem was shrunk down by randomly selecting five of the original 

ten points in order to build a model that would fit under the constraints and decision 

variables limits. Basic aspects of the Excel model included: a binary decision variable 

cell matrix corresponding to every i, j pair and where the Solver would assign a value of 

1 to all vertices included in the solution path; a cell matrix of the distances between all 

vertices; an objective function cell that added the score of each vertex included in the 

solution path; and cells to calculate or otherwise handle most of the constraints in the 

model. See Figure 1 for a basic layout of the model components in an Excel sheet. 

Multiple approaches to solving the first rooted OP model formulation on the five-

point dataset using Excel Solver were constructed. During this model development 

process, it was necessary to work through issues with handling correctly several of the 

model’s constraints. Building into the model the constraints to handle path initializing 

and the total travel cost was straightforward. To initialize the solution path, it was 

necessary to ensure that the sum of all the binary decision variable cells in the row where 
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𝑖 = 1 (except for 𝑗 = 1) was set to a total of 1. For the total travel cost function constraint 

𝐶𝑚𝑎𝑥, the binary decision variable cells were multiplied by the corresponding distance 

cells and added together using Excel’s SUMPRODUCT function. The first constraint to 

cause issues was the flow conservation constraint, which ensured that the solution path 

stopped at each vertex no more than one time per vertex. This constraint was handled by 

ensuring that each row (not including the initial vertex) and column (except for 𝑗 = 1 and 

not including the last vertex of the path) of binary decision variable cells summed to 0 or 

1, and that the sum for matching i and j values was equal for all values from 2 to 𝑛 − 1. 

 

 
Figure 1: Screenshot of the Excel model for a 5-vertex problem—constraint 5 is built into the sheet in cells below 

this screenshot. 
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The next constraint addressed was the first of the two subtour elimination 

constraints, which works simultaneously in the formulation with the second subtour 

constraint to assign the vertices to the solution path in an order such that the path would 

finish at the assigned last vertex (whether the first vertex for the rooted model or the end 

vertex for the unrooted model). Before the second subtour elimination constraint was 

constructed correctly to work in conjunction with the first subtour constraint, the 

“alldifferent” constraint available in the Excel Solver Add-In was utilized in an attempt to 

ensure that each vertex was assigned to the solution path in a unique position on the path. 

However, this construction proved not to work in conjunction with the second subtour 

constraint and the “alldifferent” constraint was removed. The equations of the 

formulation to be evaluated by the Solver Add-In were entered into a pop-up window, as 

seen in Figure 2. 
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Figure 2: The Excel Solver Add-In pop-up window seen on right showing the objective cell, decision variable 

cells, and most of the constraints of the model. 

 

As the second subtour elimination was also under construction, it became clear 

that to handle that constraint in Excel it was necessary to build a pair of cells to evaluate 

the constraint for every i, j pair after the start vertex. After building the second constraint, 

it was possible to add the cells corresponding to the first subtour constraint to the Excel 

Solver as decision variable cells with values set to be between 2 and n, as defined by the 

formulation. By doing this, the Solver would then assign values (𝑢𝑖) to those cells, and 

each unique value 𝑢𝑖 assigned would correspond to that vertex’s position in the solution 

path, with the exception of the final vertex. The final vertex was not identified by a 

unique 𝑢𝑖 value assigned to the first subtour constraint, but would be apparent in the 

definition of the problem and labeled in the decision variable cell matrix.  
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A fundamental aspect of the rooted OP formulation that proved challenging to 

build in Excel was a structure to handle the rooting constraint—that the solution path be 

rooted and return to the initial vertex on the final arc of the path. As a result of this 

problem, the decision was made that, while also working on building the other constraints 

listed above, to switch the model formulation to the unrooted variant of the OP. Since the 

unrooted OP was the first formulation found in Vansteenwegen et al. (2011) for this 

research, removing the aspects of the model that were manually added to convert the 

formulation to a rooted form would likely make building a model in Excel from a 

formulation that was known to be correct an easier process. This theory proved to be 

successful for the construction of the first Excel OP model. Similar to the initializing 

constraint, the sum for the column of all binary decision variable cells where 𝑗 = 𝑛 

(except for 𝑖 = 𝑛) was set to a total of 1. After switching to the unrooted OP formulation, 

all of the constraints were added to the Excel model successfully and the model was 

found to work correctly with five vertices. The five vertex problems were small enough 

that it was possible to verify that the results were correct with straightforward 

calculations. Through experimentation, the maximum possible problem size given the 

Solver constraint and decision variable limits was found to be 𝑛 = 9. 

3.2.2. Gurobi Optimizer 

After the upper bound of tractability was established for the Excel model, work 

transitioned to development of an optimal solver using an ILP approach. The Gurobi 

Optimizer was selected to develop an ILP model that accurately represented the OP 

formulation in order to find the optimal solution for each dataset. The Gurobi Optimizer 
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is free for educational research use and it is stated on the website that it is “a state-of-the-

art solver” that was “designed from the ground up to exploit modern architectures and 

multi-core processors, using the most advanced implementations of the latest algorithms” 

(Gurobi Optimization, n.d., paras. 5–6). Rather than constructing a computer program in 

Python or another language and then calling Gurobi in that program, the first effort to use 

Gurobi was through writing a specific model in LP format as described in the Gurobi 

documentation with all relevant problem data (i.e. the distance matrix, etc.) built directly 

in the model. The main work in creating an LP-format model written in WordPad was to 

translate the calculations built into the Excel model into accurate formulae using the 

correct semantics.  

The first attempt at constructing a model using LP format was undertaken using a 

small 5-vertex problem. Converting the Excel model including the constraints 

constructed in the Excel Solver Add-In was mostly straightforward. The only constraint 

that needed to be modified from the Excel model structure was subtour elimination 

constraint 5. To be utilized in the LP format, these formulae were converted into a format 

that had all variables on the left side of the inequality sign (formula are required to have 

all variables on the left side of an equality/inequality sign in LP format). The first attempt 

to build an LP-format model on a 5-vertex problem instance provided expected results 

that were confirmed against results from the Excel model. The next step was to expand 

the LP-format model and so a model for a larger 9-vertex problem was then attempted. 

This effort was ultimately successful as well, though it became clear that the LP-format 

model itself quickly got much larger with the slightly larger problem. The LP-format 
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model for the first 5-vertex problem was just 63 lines long; the LP-format problem for the 

first 9-vertex problem was 222 lines long and a 10-vertex set had a solution model of 298 

lines. The 15-vertex model came to 615 lines. The objective function and constraint 1 for 

a 10-vertex problem written in LP format can be seen in Figure 3; a complete 5-vertex 

model is included in Appendix C. 

 

 
Figure 3: First part of a 10-vertex LP-format model run by the Gurobi Optimizer at the command line. 

 

Three 5-vertex sets, five 10-vertex sets, and five 15-vertex sets were evaluated for 

optimal solutions across a range of total cost constraint 𝐶𝑚𝑎𝑥 values. Since the unrooted 

OP variant ensures that the start and end vertices have no bearing on the value of the 

objective function, this meant that for 5-vertex sets only three of the five vertices 

impacted the outcome. After limited testing, it was determined that while the 5-vertex 
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sets were useful for construction and testing of the optimal solution procedures, they were 

very possibly would be too small for worthwhile evaluation of the heuristics. 

The process of constructing models written in LP format was not very technically 

challenging once the basic conventions were understood. The process was substantially 

reliant on correct manual data entry. For the purpose of aiding that manual process, 

values transcribed from ArcGIS were always rounded down to the nearest meter. While 

this is unlikely to cause significant issues for problems at the scale of a city road network, 

nevertheless in network space inconsistent measurements could lead to an incorrect result 

at the margins.  
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4. DATA 

In order to create a small network of data points on which to test various heuristic 

processes while trying to retain short processing times, road network data and a set of 

addresses for a small jurisdiction was obtained. A TIGER/line feature from the 2000 

United States census for the road network for Fairfax City, Virginia was downloaded 

from ESRI.com (this data is no longer available at that website). The road network is 

assumed to be barrier-free for this study.  

A list of 66 mailing addresses located in Fairfax city was provided by Dr. Kevin 

Curtin. Since the jurisdiction is of a small land area—6.24 square miles in 2010 (“U.S. 

Census Bureau QuickFacts,” n.d.)—the data was projected into Universal Transverse 

Mercator (UTM) zone 18 north. This projection is designed for use in a region of the 

surface of the earth that entirely includes Fairfax city, and minimizes distance distortion 

to four parts in 10,000 along the central meridian of the zone. See Figure 4 for the Fairfax 

City road network and vote location sites. Using the road network for a small city like 

Fairfax, Virginia is an appropriate setting for this research because it is a location where 

many real-life applications of the OP might be used in a day. It is also not a network that 

to the eye is obviously very irregular or unusual in relation to a typical American town. 

These attributes render the network appropriate to evaluate heuristics to approach the OP. 

To identify appropriate distances to test as the total cost constraint for the study 

during the initial heuristic development using the rooted OP variant, the total distance to 

traverse the road network and visit all 66 locations and return to the set root location was 
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analyzed for all 66 locations using the Find Route tool in ArcGIS. The total distance to 

travel to all 66 locations and return to the root location ranged from 29,002 m to 30,237 

m, and the mean of all 66 minimum distances was 29,158 m. While it is not assumed that 

these results are all guaranteed optimal due to Curtin et al. (2014), knowing the average 

minimum total distance to travel to all 66 points provided a useful frame of reference on 

which to define the total cost constraint later. 

 

 
Figure 4: The complete city of Fairfax, Virginia road network and 66 vote location sites. 

 

Two sets of the 66 address locations were created with random vote totals during 

initial development and testing of the heuristics. For both datasets, each of the address 

locations was assigned a random weighting value between 1 and 100 inclusive using the 
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Random Integer Set Generator tool available from www.random.org. To determine the 

root location for each set of locations, the order of the set of locations was randomized 

using the Random Sequence Generator available from www.random.org, and the first 

location from that process was deemed the root point and assigned a vote total of zero. 

The sum total of all random vote amounts assigned to these datasets used with the rooted 

OP after setting the root location to zero was 3,386 for set 1 and 3,207 for set 2. 

For the purposes of creating smaller datasets (of 5, 10 , and 15 points) during the 

development of the optimal solution procedures using the unrooted OP variant, subsets of 

the 66 Fairfax city points were built. The Random Integer Set Generator on 

www.random.org was used to select which of the 66 points to include in 5, 10, and 15-

vertex sets and to assign values to the selected vertices. Five sets each of 5, 10, and 15 

vertices were created in this fashion.  

An important step in creating the datasets on which to evaluate the heuristics was 

to define an appropriate total cost constraint (𝐶𝑚𝑎𝑥) value. If the 𝐶𝑚𝑎𝑥 is set too high, the 

OP becomes the TSP because all vertices can be visited. If the 𝐶𝑚𝑎𝑥 is set too low, the 

solution becomes too straightforward and not an interesting problem to solve. Guidance 

for setting worthy 𝐶𝑚𝑎𝑥 values was found in Vansteenwegen (as cited in Vansteenwegen 

et al., 2011), where his research showed that the most difficult OP problems to solve are 

those where the number of vertices in the solution are just over half the total number of 

vertices. For the purposes of the research, it was a logical choice to seek the most difficult 

versions of the problem on which to evaluate the heuristics. As a result, for each 10-

vertex dataset the smallest 𝐶𝑚𝑎𝑥 value that solved in six vertices was chosen. Later the 



37 

 

largest 𝐶𝑚𝑎𝑥 value that solved optimally in six vertices was also used to test the heuristics 

in order to add an additional data point of analysis for each 10-vertex dataset. Using this 

justification, eight vertices were chosen for the same purpose on the 15-vertex datasets.  

The datasets each were solved first to find the smallest 𝐶𝑚𝑎𝑥  that made it possible 

to visit all 10 vertices in the set—in other words the non-capacitated TSP. Then each set 

was solved for iteratively smaller 𝐶𝑚𝑎𝑥 values in order to find the smallest 𝐶𝑚𝑎𝑥 value 

that solved optimally in six or eight vertices respectively. Determining the length of the 

solution path obtained from implementing a specific model in Gurobi was achieved by 

inputting the decision variables from the solution into a custom Excel model built for 

each dataset. The results of this iterative process for each 10 and 15-vertex set can be 

found in Appendix D.  
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5. RESULTS 

Results were generated first using the initial rooted OP formulation applied to the 

full set of 66 vote locations on the city of Fairfax, VA road network. These initial results 

can provide some idea of how the heuristics might perform on a medium to large set of 

points; although without optimal results to compare against the value of these initial 

results were somewhat limited. After the optimal solution procedures were developed, 

more results were generated using the unrooted OP formulation applied to smaller subsets 

of the complete set of 66 vote locations on the same road network. The unrooted OP 

heuristic results were then generated and evaluated relative to the optimal solutions for 

each dataset. 

5.1. Initial Rooted OP Heuristics 

The first results generated for the study came from the initial effort to develop 

potential solution heuristics for the rooted OP. The NNH and HAH were developed first 

and applied to the complete set of 66 vote locations geocoded to the city of Fairfax, 

Virginia road network. Soon after, an initialization step was developed and subsequently 

tested with the NNH and HAH. The exact definitions for the rooted OP heuristics can be 

found in Appendix A. Optimal solutions were not obtained for these initial heuristic 

results to be compared against. 

5.1.1. Initial Heuristic Results 

The NNH succeeded in providing solutions for the rooted OP as presented above 

using the data from Fairfax city, Virginia. For set 1, the heuristic found a solution trip 
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that would accumulate 1,390 votes, which was 41.1% of the 3,386 total possible votes. 

The trip had 28 stops and a total length of 14,359 m, less than the 15,000 m total cost 

constraint, but with 641 m of allowed distance unused. The data of the steps taken using 

this heuristic on set 1 can be seen in Table B1 in Appendix B, and the path across the 

road network can be seen in Figure 5. For set 2 the NNH was less successful, 

accumulating 1,229 votes and therefore 38.3% of the 3,207 possible votes for the dataset. 

The total trip for set 2 had 25 stops and was 12,944 m, leaving 2,056 m of the cost 

constraint unused in that case. 

 

 
Figure 5: Solution path found by the Nearest Neighbor Heuristic for rooted OP set 1. 

 

The HAH also provided a solution for the rooted OP as described above. For set 1 

the heuristic provided a trip with 8 destination stops and 8 additional locations on the way 
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to those destinations that accumulated 1,020 votes, which was 30.1% of the 3,386 total 

possible votes. This trip had a total length of 14,914 m, which is just under the total cost 

constraint of 15,000 m. The results of the steps taken using this heuristic on this set of 

data can be seen in Table B2 in Appendix B, and the solution path across the road 

network can be seen in Figure 6. For dataset 2 the HAH found a trip of 9 destination 

stops and 9 additional locations on the way to those destinations that gathered 1,079 

votes, which is 33.6% of the 3,207 possible votes. The trip had a total length of 14,678 m. 

 

 
Figure 6: Solution path found by the Highest Available Heuristic for rooted OP set 1. 
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5.1.2. Initial Heuristics with Initialization Results 

After implementing the NNH and HAH on 2 66-vertex sets of the Fairfax data, 

the two heuristics were also applied to the same Fairfax datasets with the centralizing 

initialization step included. The initialization step improved the results found with the 

NNH. For set 1, the NNH with initialization found a solution trip that accumulated 1,975 

votes, which was 58.3% of the 3,386 possible votes. This trip had 33 stops and 1 

additional location visited on the way to the set’s 1-median, with a total length of 14,943 

m. The NNH with initialization gathered 585 more votes for set 1 than the NNH alone, 

which was a 42.1% increase in votes. For set 2, the NNH with initialization generated a 

trip that gathered 1,611 votes, which was 50.2% of the 3,207 possible votes. The solution 

trip for set 2 also had 33 stops and 1 additional location on the way to the set median and 

was 14,906 m long. The NNH with initialization accumulated 382 more votes for set 2 

than the NNH alone, which was a 31.1% increase in votes.  

The results for the HAH with initialization were mixed. For set 1, the solution trip 

that was found accumulated 1,209 votes, which was 35.7% of the possible votes. This trip 

had 10 stops and 7 additional locations and a total distance of 14,982 m. The HAH with 

initialization accumulated 189 more votes than the HAH alone for set 1, which was an 

18.5% increase in votes. For set 2, the HAH with initialization generated a solution trip 

that obtained 1,006 votes, which was 31.4% of the total votes possible for this set. The 

trip had 9 destination stops and 7 additional locations and was 14,856 m long. The HAH 

with initialization accumulated 73 fewer votes for set 2 than the HAH alone, which was a 

6.8% decrease in votes. 
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5.1.3. Initial Heuristic Results Summarized 

The NNH was the stronger performing of the two heuristics developed when 

applied to the two 66-vertex datasets with the rooted OP by accumulating 41.1% and 

38.3% of the total votes possible. These NNH solution paths traveled 49.2% and 44.4% 

respectively of the mean minimum path to visit all locations. While the HAH is a greedy 

heuristic—a concept employed in other studies in the OP literature—the HAH 

accumulated 30.1% and 33.6% of the total votes possible for both datasets on paths that 

traveled 51.2% and 50.3% of the mean minimum path to visit all locations. 

For the address locations and underlying Fairfax city network dataset used with 

the rooted OP, in three of four cases the heuristic procedures achieved double-digit 

percentage improvements in votes accumulated when employing the centralizing 

initialization step. The initialization step was more successful on the NNH, which is a 

logical result since the solution path is built by adding iteratively the next-closest location 

to the path. More results would be needed to confirm these preliminary results. All results 

of the initial heuristic implementations to the rooted OP are displayed in Table 1. 
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Table 1: Heuristic Results on the Rooted OP Using Sets of All 66 Vote Locations and Cmax of 15,000 m 

Heuristic Votes 
Percent 

of total 

∆ Votes 

wIa 

∆ Percent 

votes wIa 
Stops 

No. of add’l 

locations 

Path dist. 

(m) 

Dataset 1        

NNH 1,390 41.1% - - 28 - 14,359 

NNHwIa 1,975 58.3% +585 +42.1% 33 1 14,943 

HAH 1,020 30.1% - - 8 8 14,914 

HAHwIa 1,209 35.7% +189 +18.5% 10 7 14,982 

        

Dataset 2        

NNH 1,229 38.3% - - 25 - 12,944 

NNHwIa 1,611 50.2% +382 +31.1% 33 1 14,906 

HAH 1,079 33.6% - - 9 9 14,678 

HAHwIa 1,006 31.4% -73 -6.8% 9 7 14,856 
a with Initialization 

 

5.2. Unrooted OP Optimal Solutions 

Three 5-vertex problem instances were evaluated for optimal solutions by 

implementing the Gurobi procedure using several different total cost constraint 𝐶𝑚𝑎𝑥 

values. After considering that two of the five vertices in each set were predefined with 

scores of 0, leaving only three vertices at most to be part of a solution, it was decided that 

5-vertex problem instances were likely too small to provide a worthwhile testing scenario 

on which to evaluate the heuristics. The particular details of the dataset (distance values 

and vertex scores) were likely to play a strong role in the result, possibly more so than the 

heuristic used in a given circumstance. No data were gathered to validate this hypothesis. 

Five sets of 10-vertex problems were then evaluated for optimal solutions using 

the Gurobi procedure. As described in the Data section, each set was repeatedly solved 

using iteratively smaller 𝐶𝑚𝑎𝑥 values with an eye towards identifying the largest and 

smallest 𝐶𝑚𝑎𝑥 values that could be solved optimally with six vertices. For each 10-vertex 
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set, these 𝐶𝑚𝑎𝑥 values were selected as the values at which to evaluate the heuristics. This 

progression of results for one dataset can be seen in Table 2, where the first row 

represents a TSP result for the problem instance since the 𝐶𝑚𝑎𝑥 was set large enough to 

allow the solution path to include all vertices. For each 15-vertex set, 𝐶𝑚𝑎𝑥 values were 

sought for the largest and smallest eight vertex optimal solutions in order to search for 

solutions using just over half the points in the dataset. Tables for the progression of 

results for all 10 and 15-vertex datasets are included in Appendix D.  

 

Table 2: Optimal Results for Dataset 10n_set2 with Progressively Smaller Cmax Values 

Dataset & Cmax Total votes 
Total solution 

distance cost (m) 

No. of vertices in 

solution 

10n_set2 10000 372 9,608 10 

10n_set2 9607 365 9,557 9 

10n_set2 9556 365 9,484 9 

10n_set2 9483 352 9,260 9 

10n_set2 9259 345 9,137 8 

10n_set2 9136 306 9,119 8 

10n_set2 9118 305 9,102 8 

10n_set2 9101 299 8,372 7 

10n_set2 8371 299 8,350 7 

10n_set2 8349 299 8,349 7 

10n_set2 8348 279 8,002 6 

10n_set2 8001 239 7,967 6 

10n_set2 7966 234 6,751 8 

10n_set2 6750 234 5,754 8 

10n_set2 5753 234 5,202 8 

10n_set2 5201 227 5,150 7 

10n_set2 5149 227 5,078 7 

10n_set2 5077 214 4,854 7 

10n_set2 4853 207 4,731 6 

10n_set2 4730 168 4,713 6 

10n_set2 4712 167 4,696 6 

10n_set2 4695 161 3,966 5 

Note. The yellow cell is the smallest Cmax to include all 10 vertices in the solution. The green cell is the largest 

Cmax to use 6 vertices in the solution. The blue cell is the smallest Cmax to use 6 vertices in the solution. 
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5.3. Example Implementation of Unrooted OP Heuristics 

The modified heuristics using the unrooted OP formulation were first tested on a 

10-vertex set of points (10n_set2) that were selected at random from the original 66-point 

Fairfax City dataset. This set of 10 vertices was used with a total cost constraint of 4,696 

m, as chosen by the iterative process highlighted in the previous section and shown in 

Table 2. The NNH found a solution trip that would accumulate 148 votes, which was 

39.8% of the 372 total votes that would be gathered from visiting all 10 locations. The 

trip had 3 stops that accumulated votes (in addition to the start and end vertices) and a 

total length of 4,473 m, and thus only 223 m of allowed distance unused. The data for the 

steps taken using this heuristic on 10n_set2 can be seen in Table 3 and the solution path 

is displayed in map format in Figure 7.  

 

Table 3: Results of Implementation of NNH on Dataset 10n_set2 with Cmax of 4,696 m. 

Step 
Origin 

vertex 

Dest. 

vertex 
Votes 

Trip 

dist. 

Path 

subtotal 

Dist. to 

end 

Path 

dist. 

Total 

votes 

1 54 25 81 351 351 2,650 3,001 81 

2 25 7 60 269 620 2,998 3,618 141 

3_1 7 58 43 951 1,571 3,232 4,803  

3_2 7 56 23 1,191 1,811 2,992 4,803  

3_3 7 20 7 1,203 1,823 2,650 4,473 148 

4_1 20 56 23 465 2,288 2,992 5,280  

4_2 20 58 43 705 2,528 3,232 5,760  

4_3 20 13 20 2,664 4,487 334 4,821  

4_4 20 49 65 3,318 5,141  5,141  

4_5 20 52 73 3,320 5,143  5,143  

Final 20 18 0 2,650 4,473   148 
Note. Distances are in meters. Distance subtotals in green were less than the Cmax value and the corresponding 

destination vertices thus were added to the solution path. Subtotals in red violated the Cmax constraint and the 

corresponding destination vertices were discarded for that step. 
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Figure 7: Solution path found by the Nearest Neighbor Heuristic for unrooted OP dataset 10n_set2 with Cmax of 

4,696m. 

 

The HAH also provided a solution for the unrooted OP. For dataset 10n_set2 the 

heuristic provided a solution path with 3 stops that accumulated 161 votes (with no 

additional locations on the way to those stops), which was 43.3% of the 372 total votes 

that would be gathered from visiting all 10 locations. This trip had a total length of 3,966 

m, which left 730 m unused under the total cost constraint of 4,696 m. The data of the 

steps taken using this heuristic on this set of data can be seen in Table 4 and the solution 

path is displayed in map format in Figure 8. 
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Table 4: Results of Implementation of HAH on Dataset 10n_set2 with Cmax of 4,696 m. 

Step 
Origin 

vertex 

Dest. 

vertex 
Votes 

Trip 

dist. 

Path 

subtotal 

Dist. to 

end 

Path 

dist. 

Total 

votes 

1 54 25 81 351 351 2,863 3,214 81 

2_1 25 52 73 3,533 3,884 3,523 7,407  

2_2 25 49 65 3,530 3,881 3,520 7,401  

2_3 25 7 60 269 620 2,998 3,618 141 

3_1 7 52 73 3,669 4,289 3,523 7,812  

3_2 7 49 65 3,666 4,286 3,520 7,806  

3_3 7 58 43 951 1,571 3,232 4,803  

3_4 7 56 23 1,191 1,811 2,992 4,803  

3_5 7 13 20 3,012 3,632 334 3,966 161 

4_1 13 52 73 3,536 7,168    

4_2 13 49 65 3,534 7,166    

4_3 13 58 43 3,246 6,878    

4_4 13 56 23 3,005 6,637    

4_5 13 20 7 2,664 6,296    

         

Final 13 18 0 334 3,966   161 

Note. Distances are in meters. Distance subtotals in green were less than the Cmax value and the corresponding 

destination vertices thus were added to the solution path. Subtotals in red violated the Cmax constraint and the 

corresponding destination vertices were discarded for that step. 

 

 
Figure 8: Solution path found by the Highest Available Heuristic for unrooted OP dataset 10n_set2 with Cmax of 

4,696m. 
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5.4. Unrooted OP Results: Heuristics Versus Optimal 

The NNH and HAH results for each dataset evaluated for the unrooted OP can be 

compared against the optimal solution found using the Gurobi approach. For the first 

dataset itemized in the previous section, the solver found that with a total cost constraint 

𝐶𝑚𝑎𝑥 of 4,696 m, the optimal solution for an unrooted OP applied to 10n_set2 travelled 

to 4 stops that accumulated 167 votes, which was 44.9% of the 372 total possible votes. 

Therefore, the NNH gathered 88.6% of the optimal solution, and the HAH gathered 

96.4% of the optimal solution in that case. After completing the first set of 10 vertices, 

four additional sets of 10 vertices were evaluated with the heuristics. These sets were 

evaluated at two different 𝐶𝑚𝑎𝑥 values—both the largest and the smallest value that 

resulted in an optimal result that used six vertices (just over half the vertices). After 

evaluating five sets of 10 vertices at two different 𝐶𝑚𝑎𝑥 values, five sets of 15 vertices 

were evaluated in the same manner. The heuristic performance results compared to the 

optimal solution for each dataset and 𝐶𝑚𝑎𝑥 value are summarized in Table 5. 

The combination of five sets each of 10 and 15 vertices with two 𝐶𝑚𝑎𝑥 values 

evaluated for each set provided 19 results for the NNH and HAH (one dataset only had 

one 𝐶𝑚𝑎𝑥 value that solved in the desired number of vertices). Due to three of the ten 

datasets having the start vertex coincide with the 1-median of the dataset, only 13 of the 

dataset and 𝐶𝑚𝑎𝑥 combinations made it possible to evaluate heuristics with the 

initialization step. Across the 19 dataset and 𝐶𝑚𝑎𝑥 combinations, the NNH provided 

results that averaged to 79.7% of the optimal solution for each set. For the 13 sets where 

the start vertex was not already the 1-median of the set, the NNHwI performed worse 
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than the NNH alone by averaging 70.7% of the optimal solution. The HAH achieved an 

average result slightly better than the NNH with 81.6% of the optimal solution. The 

HAHwI yielded an average 80.7% of the optimal solution for the applicable sets.  

 

Table 5: Heuristic Performance Relative to Optimal Results for the Unrooted OP 

Dataset & 

Cmax (m) 

Optimal 

votes 

NNH 

votes 

Percent 

optimal 

HAH 

votes 

Percent 

optimal 

NNHwIa 

votes 

Percent 

optimal 

HAHwIa 

votes 

Percent 

optimal 

10n_1 4,961 169 169 100% 169 100% 162 95.9% 162 95.9% 

10n_1 6,822 271 169 62.4% 271 100% 169 62.4% 271 100% 

10n_2 4,696 167 148 88.6% 161 96.4% c c c c 

10n_2 7,616 269 234 87.0% 154 57.2% c c c c 

10n_3 5,031b 219 156 71.2% 188 85.8% 120 54.8% 120 54.8% 

10n_4 3,843 246 246 100% 197 80.1% 197 80.1% 197 80.1% 

10n_4 7,487 288 246 85.4% 288 100% 246 85.4% 288 100% 

10n_5 2,339 151 151 100% 139 92.1% c c c c 

10n_5 7,502 237 183 77.2% 205 86.5% c c c c 

15n_1 8,426 352 224 63.6% 278 79.0% 222 63.1% 278 79.0% 

15n_1 10,373 423 277 65.5% 341 80.6% 366 86.5% 315 74.5% 

15n_2 7,898 386 347 89.9% 291 75.4% c c c c 

15n_2 8,825 481 431 89.6% 299 62.2% c c c c 

15n_3 6,984 224 224 100% 185 82.6% 174 77.7% 185 82.6% 

15n_3 8,761 393 205 52.2% 322 81.9% 224 57.0% 326 83.0% 

15n_4 8353 341 255 74.8% 193 56.6% 140 41.1% 193 56.6% 

15n_4 9122 341 255 74.8% 208 61.0% 193 56.6% 208 61.0% 

15n_5 5029 301 186 61.8% 268 89.0% 269 89.4% 271 90.0% 

15n_5 8754 431 301 69.8% 361 83.8% 301 69.8% 397 92.1% 
a with Initialization 
b 10n_set3 only had one optimal solution that used 6 vertices across all Cmax values 
c Initialization not applied because start vertex was already the 1-median of the dataset 

 

Descriptive statistics for the percent optimal results were calculated for each 

heuristic and heuristic with initialization evaluated in the study. Since the best fitting 

distribution for the particular phenomena observed in this study was not known, the 

student’s t-test distribution was selected to generate statistics because it has fatter tails 

than the normal distribution. Therefore the student’s t-test can accommodate some of the 

variance that comes from sampling and that the complete population of datasets on which 
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the heuristics could be tested is not known. These results are presented in Table 6. It is 

important to remember that these descriptive statistics just apply to the implementation of 

these heuristics in the conditions described in the study, including the number of vertices 

in the datasets and the underlying network. These summary statistics might change 

substantially if the heuristics were to be systematically applied to datasets of more points 

on the same underlying network or if other characteristics were to be changed, including 

the problem formulation or range of scores (votes) applied to vertices in the set.  

 

Table 6: Means, Standard Deviations, and 95% Confidence Intervals for Percentage of Optimal Measurements 

for Each Heuristic 

    95% CI 

Heuristic n M SD LL UL 

NNH 19 79.7% 15.1% 72.4% 86.9% 

NNHwI 13 70.7% 16.4% 60.8% 80.7% 

HAH 19 81.6% 14.0% 74.9% 88.3% 

HAHwI 13 80.7% 15.5% 71.4% 90.1% 

 

 

Separating out the results for each heuristic by the number of vertices in the test 

datasets provided a clear distinction in performance for all heuristics. All four heuristics 

and heuristics with initialization performed better on average on the smaller 10-vertex 

sets than on the 15-vertex sets. Summary descriptive statistics for this breakdown can be 

seen in Table 7.  
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Table 7: Means, Standard Deviations, and 95% Confidence Intervals for Percentage of Optimal Measurements 

for Each Heuristic, by Dataset Size 

     95% CI 

Heuristic No. of 

vertices 

n M SD LL UL 

NNH 10 9 85.6% 13.5% 75.4% 96.1% 

NNH 15 10 74.2% 14.9% 63.5% 84.9% 

NNHwI 10 5 75.7% 16.8% 54.8% 96.6% 

NNHwI 15 7 67.6% 16.5% 53.9% 81.4% 

HAH 10 9 88.9% 13.8% 78.1% 99.3% 

HAH 15 10 75.2% 11.2% 67.2% 83.2% 

HAHwI 10 5 86.1% 19.3% 62.1% 110.1% 

HAHwI 15 7 77.3% 12.8% 66.6% 88.0% 

 

 

No absolute measurements of the effectiveness of the heuristics were determined 

for this study. However, relative measurements of the heuristics can provide information 

on performance beyond the summary descriptive statistics already presented. Paired t-

tests were performed for each heuristic and heuristic with initialization combination to 

determine if there was a statistically significant difference between the percent optimal 

measurements for each heuristic and all other heuristics. These results, using α = 0.05, 

can be found in Table 8. Examining the one-tail p-values resulting from this analysis 

indicated that it was not possible to reject the null hypothesis that there was no difference 

in the percent optimal performance of the heuristics in four of six pairings. However, two 

pairings did show a significant difference: HAHwI – NNHwI with a one-tail p = 0.0103 

and HAH – NNHwI with a one-tail p = 0.0024. Drilling down further, the HAHwI – 

NNHwI pairing showed that the HAHwI had a significantly larger mean percent optimal 

measurement with a two-tail p = 0.0205. In addition, the HAH – NNHwI pairing showed 

that the HAH had a significantly larger mean percent optimal measurement with a two-
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tail p = 0.0048. The statistical summary for the two pairings where a statistically 

significant difference was found can be found in Table 9. 

 

 
Table 8: Statistical Summary of Difference in Percentage Optimal Measurements between Heuristics 

      95% CI 

Heuristics compared n M SD tobs  p (one-tail) LL UL 

HAH - NNH 19 1.9% 20.2% 0.4133 0.3421 -7.8% 11.6% 

NNH - NNHwI 13 4.8% 17.3% 0.9927 0.1702 -5.7% 15.2% 

HAH - HAHwI 13 2.4% 9.2% 0.9331 0.1846 -3.2% 7.9% 

HAHwI - NNHwI 13 10.0% 13.5% 2.6673 0.0103 1.8% 18.1% 

HAHwI - NNH 13 5.2% 21.1% 0.8938 0.1945 -7.5% 18.0% 

HAH - NNHwI 13 12.4% 12.9% 3.4452 0.0024 4.5% 20.2% 

 

 

Table 9: Statistical Summary of Difference in Percentage Optimal Measurements for Heuristics Found 

Significantly Different 

      95% CI 

Heuristics compared n M SD tobs  p (two-tail) LL UL 

HAHwI - NNHwI 13 10.0% 13.5% 2.6673 0.0205 1.8% 18.1% 

HAH - NNHwI 13 12.4% 12.9% 3.4452 0.0048 4.5% 20.2% 
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6. CONCLUSIONS 

Two heuristics and an initialization step were developed that provide solutions to 

the OP using just a GIS software program and a spreadsheet. Given that there are 

numerous real-world applications to the OP in generalized form as well as various 

specialized forms, making OP solution approaches more widely accessible through 

heuristics that can be implemented with just GIS software and a spreadsheet is a 

worthwhile goal that was accomplished in this research. 

These heuristics can be applied by GIS professionals or others with a limited 

training in GIS software and without knowledge of linear programming, Python, or other 

computer programming languages. After completing the initial setup of building the OD 

Cost Matrix for the problem set, the remaining work in implementing the heuristics was 

technically trivial and should be accessible with a basic understanding of ArcGIS. A 

consideration for users employing these heuristics with just a GIS software package and a 

spreadsheet may be that complete application of the heuristics can be time and labor-

intensive with large data sets. However, the heuristics in the study are fairly simple 

concepts and could serve as the basis for more complex or customized models for a 

variety of problem scenarios. 

The Nearest Neighbor Heuristic is of a basic design and the performance of the 

heuristic is very dependent on the data inherent to the particular problem. The distribution 

of vertices across the network, the scores affiliated with the vertices, and the layout of the 

network itself could change dramatically the effectiveness of the heuristic and the results 
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found relative to the optimal solution. Initializing the heuristic with a first step to the 1-

median location of the network dataset did not prove to be an effective supplement to the 

heuristic with the datasets tested in this study—in fact for the 13 sets where the 

initialization step was implemented the heuristic result averaged a lower percentage of 

the optimal result than the NNH did itself. More testing is suggested before eliminating 

the initialization step from consideration completely, especially since the initialization 

step improved results in both cases when applied to the larger 66-point datasets. The 

initialization step could be appropriate for problem scenarios with a remote root location 

or vertex set with a mix of clustered and dispersed vertices. The heuristic could present 

strong appeal for approaching OP scenarios where the simplest or fastest available 

answer was needed and optimality was a secondary consideration. In addition, the 

concepts of the heuristic may itself be appropriate as a subset of a more complex 

heuristic, such as an initialization phase to find an initial feasible solution that could be 

improved through some other iterative process.  

The greedy Highest Available Heuristic performed slightly better than the NNH 

in this series of tests on average, though not to a statistically significant degree. This 

heuristic could prove to be the most effective option given certain data parameters, such 

as on a set of vertices with a very wide range of scores or a more clustered network, or 

potentially on a problem scenario with a restrictive total cost constraint. Employing the 

centralizing initialization step with the heuristic may improve the result found or may 

prove to be more inefficient, depending on the dataset of the problem. Instances of the 
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initialization step in some cases improving and other times curtailing performance of the 

HAH were observed in the study. 

In terms of statistically significant conclusions achieved, it can be stated with 

95% confidence that for the particular parameters evaluated in this study (unrooted OP, 

Fairfax City road network, vertex scores ranging from 1 to 100, 10 or 15 vertices per 

dataset, total cost constraints set to achieve optimal solutions using just more than half 

the total vertices per dataset), the NNHwI average percent optimal measurement was 

found to be lower than the HAH and HAHwI percent optimal measurements. Additional 

evaluation is suggested before concluding that the HAH and HAHwI would perform 

markedly better than the NNHwI in other situations outside the specific problem 

parameters of this study. 

While the results from testing the heuristics using the rooted OP formulation on 

the full set of 66 points can only be seen as anecdotal, the initialization step did provide 

improvement over the original heuristic in three of four cases—substantial improvements 

of 18.5%, 31.1%, and 42.1%. Again, this is not a statistically significant result or large 

enough sampling upon which to draw any conclusions, but these particular results may 

indicate that an initialization step is more beneficial on larger datasets when compared 

against the 10 and 15-vertex datasets where the initialization step led to reduced 

performance. Such reduced performance from using initialization was observed relative 

to the original heuristic both for 10 and 15-vertex sets together and for the subsets of just 

10-vertex sets and 15-vertex sets separately. 
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Objective evaluation of whether any heuristic performed sufficiently well to 

recommend implementation was not achieved in the study. What standard is sufficient for 

a user to determine that using one or more of the proposed heuristics would be more 

beneficial than simply eyeballing a given dataset? Would a user want a heuristic to 

regularly achieve 90% optimality? 80% optimality? Of course the particular application 

and user needs play a role here as well. If a user requires a consistently high solution 

performance—near optimal—then the proposed heuristics may not be sufficient and 

investing in OR expertise or optimization software or both would be called for. However, 

for circumstances where access to those resources is limited or nonexistent, the heuristics 

developed here can provide at the very least a starting point for tackling a real-world OP 

application. 

Testing the heuristics with and without the initialization step on more datasets is 

needed to get a better sense of the likely performance of each heuristic procedure. It is 

not difficult to imagine that the nature of test data could dramatically alter the results 

found in this study. It also may be possible to identify acceptable performance limits for 

one or more heuristic with further evaluation. Evaluation dataset parameters that should 

be varied beyond what was done in this study for additional testing include: varied range 

of scores (votes) applied to vertices; number of vertices in test datasets; amount of 

capacitation set by the cost constraint, i.e. relatively smaller and larger 𝐶𝑚𝑎𝑥 values than 

those chosen for this study; nature of the underlying network—Manhattan/rectilinear, 

radio-concentric, sprawling suburban, etc.; and other types of networks such as American 

vs. European cities, bicycle paths, or utility networks. For example, if the scores assigned 
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to the locations varied more than was done here—if the events the politician attended on 

the tour had from 1 to 1,000 attendees—then the greedy heuristic might perform 

relatively better and the results could vary significantly.  

All of the heuristic procedures presented in this study can be modified for 

application to rooted variations of the OP, and this should be fairly straightforward in 

most cases. Examples of such modifications are included in Appendix A. Modification of 

these heuristics for application for other variations and subclasses of the OP should be 

possible but may be significantly more involved. 

With the development of these first heuristics designed specifically for finding 

solutions to the OP using just GIS software and a spreadsheet, GIS users now have 

options available to find solution paths for this subclass of problems. While ArcGIS has a 

built-in function that finds a solution path for the basic TSP, which may or may not be 

optimal, real world situations are often more closely simulated through the model of the 

OP. No complex computer programming or specialized software is required to use these 

heuristics; however, users should be aware that the heuristics do not guarantee optimal 

results, and in some cases results may be significantly suboptimal. 
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7. FUTURE RESEARCH OPPORTUNITIES 

Several areas of research are suggested by the results of the study. The heuristic 

approaches presented here should be further tested against different data sets and 

networks of varying sizes, as well as cost constraints ranging from minimal to nearly the 

full length of the network. The heuristics should also be evaluated fully against optimal 

solution procedures using the rooted OP. Any underlying network can be used multiple 

times by varying the values applied to each vertex (both in larger and smaller ranges than 

the 1-100 range employed here), adding and removing vertices, and varying the total cost 

constraint applied to multiple test problems. As for the underlying network, the heuristics 

should be tested on larger networks such as larger American and European cities to see if 

they are still viable—not only in terms of being able to find an optimal or near-optimal 

solution, but also with respect to the feasibility of processing time given that application 

of the heuristics without programming may become extremely time intensive for the user. 

The heuristics should also be tested on different types of underlying networks, from 

rectilinear or Manhattan networks to more varied and disparate suburban or rural 

networks. Testing the heuristics on classic datasets from the TSP and OP literature should 

also be pursued where possible. More testing of the heuristics on a wider range of 

problems will provide more credibility to the conclusions reached about the relative value 

of each heuristic approach. 

Additional heuristic concepts should be tested and compared against those 

proposed here, such as a heuristic that might be considered a “maximum location” 
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heuristic, which would be designed to generate solutions that include as many destination 

points as possible. Heuristics employing a combination of concepts may also be 

successful, such as a heuristic that starts with a greedy approach like the HAH and then 

switches over to a nearest neighbor concept partway through. Such an approach may 

offer solid performance towards the objective function goal with the benefit of improved 

implementation times. Additional techniques might be tested including other initialization 

steps, backwards-looking approaches as suggested by research into experienced 

orienteering competitors, and the utilization of cluster analyses to identify potential 

locations to add to the solution path. Tools like network point cluster analysis available 

through the SANET program—which works as an extension to ArcGIS—may provide 

for the development of more complex heuristics that can still be implemented in a GIS 

setting without complex LP programming (Okabe & Okunuki, 2013). Research presented 

by Mei (2015) could also suggest methods to identify clusters of points or areas of 

interest in network space that could be used in future heuristics. Work should also be 

conducted to better understand the data conditions under which the initialization step 

presented here would be beneficial or harmful to implementation with a heuristic. 

Additionally, the heuristics presented here may be improved upon through further 

refinements such as additional steps or post-processing methods that could be added. 

And, just as heuristics are needed for the OP as a subclass of the TSP with additional 

constraints, so too are heuristics needed for other variations and subclasses of the OP 

such as the OPTW, OP with compulsory vertices, and TD-OP. Modified versions of the 
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heuristics in this study may be appropriate for some subclass problems of the OP, and 

new heuristic approaches may prove best for other problem types.  

A primary area of further research should be examining methods and techniques 

to improve the time and effort required to implement these and future heuristics 

implemented only with GIS software and a spreadsheet. While these heuristics that can 

be applied without complex programming approaches present the desirable qualities of 

being easier to implement and not requiring additional expensive software packages, they 

can be time and labor intensive. Opportunities to capitalize on additional capabilities built 

in to ArcGIS might include utilizing ModelBuilder or Python scripting within the 

software to automate and speed up some aspects of heuristic implementation. In addition, 

with some knowledge of traditional programming techniques and widely available 

languages like Python, it may be possible to implement the heuristics presented here in 

steps taking place both inside and outside the GIS platform. An added benefit to 

increased automation in heuristic implementation should be a reduced likelihood of error 

due to the manual data entry involved in the current processes. 

Improving the processing time for existing heuristics could also involve designing 

more efficient methods to achieve the same results, from more quickly eliminating poor 

solution options to better initiation steps at the beginning of the heuristic. For example, as 

the greedy HAH approaches the cumulative cost constraint, at some point (perhaps within 

some percent of the cost constraint or when half the remaining possible locations are still 

within the distance constraint) it may be more efficient to search for the nearest still-

available locations first and then employ the greedy concept to identify the next point to 
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add to the solution rather than continuing to iterate through locations that are no longer 

feasible. One or more of the steps outlined above could dramatically reduce the 

implementation times experienced and shift tractability concerns strictly to problem size 

and away from heuristic implementation times. 

As improved processing power becomes necessary to find solutions to larger and 

more complex problem sets, a combination solution approach utilizing LP or ILP to solve 

the problem with a GIS user interface to make the process accessible to lay users may be 

the only viable approach available. Alternately, a user interface (UI) might be constructed 

that would allow the user to solve a given OP using one of the developed heuristics 

within a software suite such as ArcGIS without requiring knowledge of linear 

programming. Such an interface may increase the size of the problem that can be solved 

by one of the developed heuristics by dramatically lowering the time requirements for 

implementation on the user. An additional factor that may lead to improved processing 

times might be found in the OP formulations themselves. Research by Palomo-Martínez, 

Salazar-Aguilar, and Albornoz (2017) suggested that it may be possible to implement 

subtour elimination constraints that perform better than the standard Miller-Tucker-

Zemlin TSP formulation constraints frequently cited and used here.  

In order to better understand the performance of the heuristics, additional research 

efforts should pursue comparing the application of these heuristics using just a GIS 

program and spreadsheet to other approaches using complex programming. The results 

achieved and processing time required are both important results that should be 

quantified and compared along with the costs and expertise needed to apply any 
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particular approach so that potential users can make an informed decision as to what 

approach is best for a given application. Furthermore, additional research of the literature 

may provide a recommended percentage of optimal that a heuristic should be expected to 

achieve in similar circumstances to the research parameters. Alternately, individual user 

best-guess solutions could be gathered and compared against heuristic performance for 

additional context. 
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APPENDIX A – ROOTED OP HEURISTICS DEFINITIONS 

Nearest Neighbor Heuristic 

A relatively simple heuristic to implement is the Nearest Neighbor Heuristic 

(NNH). This path construction heuristic starts at the root location, finds the nearest 

location on the network that is not already in the solution path, and continues to add 

locations while checking to make sure the path includes room under the total cost 

function for the trip back to the root to complete the circuit. 

Nearest Neighbor Heuristic: 

Step 1: Start at the root location 𝑣1. 

Step 2: Find the nearest available vote location. 

a. Using the OD Cost Matrix, find the trip length to the nearest available 

undiscarded vote location 𝑣𝑗  that is not already on the solution path 

and check to see if the point is within the total cost constraint 𝐶𝑚𝑎𝑥. 

b. If there are no unselected and undiscarded destinations available 

within the total cost constraint 𝐶𝑚𝑎𝑥, proceed to Step 3. 

c. Ensure that there is sufficient distance remaining in the total cost 

constraint 𝐶𝑚𝑎𝑥to return to the root location 𝑣1 from the proposed 

destination. If there is not sufficient distance remaining, the destination 

cannot be selected and is discarded for this iteration. Return to Step 

2(a). 

d. Compute the distance traveled on the trip. 
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e. Add the distance traveled on the trip to the total distance traveled, and 

the votes obtained on the trip to the total votes. 

f. Proceed from the selected destination to Step 2(a). 

Step 3: Once it is shown that no more locations can be added to the trip without 

violating the total cost constraint, including the distance needed to return to the root 

location, check the trip from the last destination on the path to the root location for any 

additional destinations that have not been added to the total trip thus far. Add the vote 

totals from any locations on the final trip to the root location to the overall total votes 

accumulated. 

Each tested destination was catalogued in a spreadsheet to track all visited and 

rejected destinations, total votes accrued, and the total distance traveled. To find any 

additional destinations located on the final path back to the root in Step 3, the Find Route 

function was used to draw the shortest path between the last point on the path and the 

root location.  

Highest Available Heuristic 

The Highest Available Heuristic (HAH) uses many of the basic mechanics of the 

Nearest Neighbor Heuristic, but is built as a greedy heuristic by searching iteratively for 

the highest scoring location available. 

Highest Available Heuristic: 

Step 1: Start at the root location 𝑣1. 

Step 2: Find the highest available vote location. 

a. Select the highest available undiscarded vote location 𝑣𝑗 . 
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b. Using the OD Cost Matrix, find the trip length to the highest available 

undiscarded vote location 𝑣𝑗  and check to see if the point is within the 

total cost constraint 𝐶𝑚𝑎𝑥. 

c. If there are no unselected and undiscarded destinations available 

within the total cost constraint 𝐶𝑚𝑎𝑥, proceed to Step 3. 

d. Ensure that there is sufficient distance remaining in the total cost 

constraint 𝐶𝑚𝑎𝑥 to return to the root location 𝑣1 from the proposed 

destination. If there is not sufficient distance remaining, the destination 

cannot be selected and is discarded for this iteration. Return to Step 

2(a). 

e. Select and note all additional destinations that are located on the trip. 

f. Compute the distance traveled on the trip and total votes obtained at all 

destinations. 

g. Add the distance traveled on the trip to the total distance traveled, and 

the votes obtained on the trip to the total votes. 

h. Proceed from the selected destination to Step 2(a). 

Step 3: Once it is shown that no more locations can be added to the trip without 

violating the total cost constraint, including the distance needed to return to the root 

location, check the trip from the last destination on the path to the root location for any 

additional destinations that have not been added to the total trip thus far. Add the vote 

totals from any locations on the final trip to the root location to the overall total votes 

accumulated. 
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Again, each tested destination was catalogued in a spreadsheet to track all visited 

and rejected destinations, total votes accrued, and the total distance traveled. To find all 

additional destinations located on a tested trip, the Find Route function was used to draw 

the shortest path between the tested origin and destination points.  
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APPENDIX B – ROOTED OP HEURISTICS IMPLEMENTATION OUTPUT 

Table B1: Steps taken to apply the Nearest Neighbor Heuristic to set 1 using the rooted OP. 

 
Note. Omitted for brevity are 37 steps attempted to find a 29th point to add to the solution path. Distances are in 

meters. Distance subtotals in green were less than the Cmax value and the corresponding destination vertices thus 

were added to the solution path. 
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Table B2: Steps taken to apply the Highest Available Heuristic to set 1 using the rooted OP. 

 
Note. Distances are in meters. Distance subtotals in green were less than the Cmax value and the corresponding destination vertices thus were added to the 

solution path. Subtotals in red violated the Cmax constraint and the corresponding destination vertices were discarded for that step. 
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APPENDIX C – SAMPLE OPTIMAL MODEL GUROBI CODE 

The following code will find the optimal solution for a specific 5-vertex unrooted 

OP dataset with a cost constraint 𝐶𝑚𝑎𝑥 set at 10,000 meters. This model was written in 

WordPad and saved with the file extension .LP. The model was then executed in the 

Gurobi Interactive Shell with a command at the command prompt such that the values for 

the objective function and each decision variable were written to a new text file or 

displayed on screen. 

 

Maximize 

  22 x22 + 22 x23 + 22 x24 + 22 x25 + 77 x32 + 77 x33 + 77 x34 + 

77 x35 + 94 x42 + 94 x43 + 94 x44 + 94 x45 

 

Subject to 

\ Constraint 1 

  c1A: x12 + x13 + x14 + x15 = 1 

  c1B: x15 + x25 + x35 + x45 = 1 

 

\ Constraint 2 

  c2A1: x12 + x22 + x32 + x42 <= 1 

  c2A2: x13 + x23 + x33 + x43 <= 1 

  c2A3: x14 + x24 + x34 + x44 <= 1 

  c2B1: x22 + x23 + x24 + x25 <= 1 

  c2B2: x32 + x33 + x34 + x35 <= 1 

  c2B3: x42 + x43 + x44 + x45 <= 1 

  c2AB1: x12 + x32 + x42 - x23 - x24 - x25 = 0 

  c2AB2: x13 + x23 + x43 - x32 - x34 - x35 = 0 

  c2AB3: x14 + x24 + x34 - x42 - x43 - x45 = 0 

 

\ Constraint 3 

  c3: 1846 x12 + 3616 x13 + 2811 x14 + 3524 x15 + 3434 x23 +  

2629 x24 + 2200 x25 + 3434 x32 + 1160 x34 + 5299 x35 + 2629 x42 + 

1160 x43 + 4495 x45 + 2200 x52 + 5299 x53 + 4495 x54 <= 10000 
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\ Constraint 4 handled through Bounds and Generals 

 

\ Constraint 5 

  c5ui2uj2: 4 x22 <= 3 

  c5ui2uj3: u2 - u3 + 4 x23 <= 3 

  c5ui2uj4: u2 - u4 + 4 x24 <= 3 

  c5ui2uj5: u2 - u5 + 4 x25 <= 3 

  c5ui3uj2: u3 - u2 + 4 x32 <= 3 

  c5ui3uj3: 4 x33 <= 3 

  c5ui3uj4: u3 - u4 + 4 x34 <= 3 

  c5ui3uj5: u3 - u5 + 4 x35 <= 3 

  c5ui4uj2: u4 - u2 + 4 x42 <= 3 

  c5ui4uj3: u4 - u3 + 4 x43 <= 3 

  c5ui4uj4: 4 x44 <= 3 

  c5ui4uj5: u4 - u5 + 4 x45 <= 3 

  c5ui5uj2: u5 - u2 + 4 x52 <= 3 

  c5ui5uj3: u5 - u3 + 4 x53 <= 3 

  c5ui5uj4: u5 - u4 + 4 x54 <= 3 

  c5ui5uj5: 4 x55 <= 3 

 

Bounds 

  2 <= u2 <= 5 

  2 <= u3 <= 5 

  2 <= u4 <= 5 

  2 <= u5 <= 5 

  x12 <= 1 

  x13 <= 1 

  x14 <= 1 

  x15 <= 1 

  x22 <= 1 

  x23 <= 1 

  x24 <= 1 

  x25 <= 1 

  x32 <= 1 

  x33 <= 1 

  x34 <= 1 

  x35 <= 1 

  x42 <= 1 

  x43 <= 1 

  x44 <= 1 

  x45 <= 1 

  x52 <= 1 

  x53 <= 1 

  x54 <= 1 

  x55 <= 1 

 

Binary 

   x12 x13 x14 x15 

   x22 x23 x24 x25 
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   x32 x33 x34 x35 

   x42 x43 x44 x45 

   x52 x53 x54 x55 

 

Generals 

   u2 u3 u4 u5 

 

End 
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APPENDIX D – ITERATIVE PROCESS IDENTIFYING TOTAL COST 

CONSTRAINTS 

The following tables catalogue the results of the iterative process to identify the 

desired total cost constraint values 𝐶𝑚𝑎𝑥 for each 10 and 15-vertex test dataset used in the 

study. Once a model was built to optimally solve a dataset, the model was run repeatedly 

by reducing by one meter the total cost constraint from the previous solution path 

distance. The number of iterations run ranged from 12 to 33 for the 10-vertex sets, and 

from 22 to 56 for the 15-vertex sets. Generally a few iterations were completed beyond 

the observed lowest total cost constraint providing the desired number of vertices in the 

solution to ensure the lowest total cost constraint had been identified. The results of this 

iterative process for each dataset can be seen on the following pages. 

 

 

 

 

 

 

Table D1: Results of Iterative Process to Identify Target Total Cost Constraint Values for Dataset 10n_set1 

Dataset & Cmax 

Objective 

Value 

Solution 

Distance (m) 

Max 

vertices? 

No. of  

vertices 
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10n set1 12000 404 11,690 Y 10 

10n set1 10000 404 9,974 Y 10 

10n set1 9973 397 9,911  9 

10n set1 9910 397 9,579  9 

10n set1 9578 397 9,578  9 

10n set1 9577 393 8,579  9 

10n set1 8579 393 8,490  9 

10n set1 8489 393 8,212  9 

10n set1 8211 386 8,094  8 

10n set1 8093 386 7,817  8 

10n set1 7816 386 7,816  8 

10n set1 7815 350 7,516  8 

10n set1 7515 343 7,120  7 

10n set1 7119 271 6,822  6 

10n set1 6821 187 6,543  5 

10n set1 6542 169 4,961  6 

10n set1 4960 162 4,492  5 

10n set1 4491 138 4,088  4 
Note. The yellow cell is the smallest Cmax to include all 10 vertices in the solution. The green cell is the largest 

Cmax to use 6 vertices in the solution. The blue cell is the smallest Cmax to use 6 vertices in the solution. 

 

Table D2: Results of Iterative Process to Identify Target Total Cost Constraint Values for Dataset 10n_set2 

Dataset & Cmax 

Objective 

Value 

Solution 

Distance (m)  

Max 

vertices? 

No. of  

Vertices 

10n_set2 10000 372 9,608 Y 10 

10n_set2 9607 365 9,557  9 

10n_set2 9556 365 9,484  9 

10n_set2 9483 352 9,260  9 

10n_set2 9259 345 9,137  8 

10n_set2 9136 306 9,119  8 

10n_set2 9118 305 9,102  8 

10n_set2 9101 299 8,372  7 

10n_set2 8371 299 8,350  7 

10n_set2 8349 299 8,349  7 

10n_set2 8348 279 8,002   6 

10n_set2 8001 239 7,967  6 

10n_set2 7966 234 6,751  8 

10n_set2 6750 234 5,754  8 

Dataset & Cmax 

Objective 

Value 

Solution 

Distance (m)  

Max 

vertices? 

No. of  

Vertices 

10n_set2 5753 234 5,202  8 
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10n_set2 5201 227 5,150  7 

10n_set2 5149 227 5,078  7 

10n_set2 5077 214 4,854  7 

10n_set2 4853 207 4,731  6 

10n_set2 4730 168 4,713  6 

10n_set2 4712 167 4,696   6 

10n_set2 4695 161 3,966  5 

10n_set2 3965 161 3,943  5 

10n_set2 3942 141 3,618  4 
Note. The yellow cell is the smallest Cmax to include all 10 vertices in the solution. The green cell is the largest 

Cmax to use 6 vertices in the solution. The blue cell is the smallest Cmax to use 6 vertices in the solution. 

 

Table D3: Results of Iterative Process to Identify Target Total Cost Constraint Values for Dataset 10n_set3 

Dataset & Cmax 

Objective 

Value 

Solution 

Distance (m) 

Max 

vertices? 

No. of  

vertices 

10n set3 12000 326 11,589 Y 10 

10n set3 11588 321 11,146  9 

10n set3 11000 321 10,507  9 

10n set3 10000 285 9,830  8 

10n set3 9829 278 9,667  8 

10n set3 9666 267 9,421  7 

10n set3 9420 260 9,258  7 

10n set3 9257 242 8,990  7 

10n set3 8989 237 8,582  7 

10n set3 8581 224 6,037  7 

10n set3 6036 219 5,031  6 

10n set3 5030 183 4,354  5 

10n set3 4353 151 4,339  5 

10n set3 4338 120 4,111  5 

10n set3 4110 117 3,998  5 

10n set3 3997 115 3,662  4 

Note. The yellow cell is the smallest Cmax to include all 10 vertices in the solution. The green cell is the only Cmax 

to use 6 vertices in the solution. 

 

 

Table D4: Results of Iterative Process to Identify Target Total Cost Constraint Values for Dataset 10n_set4 

Dataset & Cmax 

Objective 

Value 

Solution 

Distance (m) 

Max 

vertices? 

No. of  

vertices 
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10n set4 14000 501 13,936 Y 10 

10n set4 13000 462 12,993  9 

10n set4 12000 435 10,598  9 

10n set4 11000 435 10,024  9 

10n set4 10000 435 9,579  9 

10n set4 9578 435 9,558  9 

10n set4 9557 435 9,299  9 

10n set4 9298 396 9,089  8 

10n set4 9088 396 9,055  8 

10n set4 9054 386 8,901  8 

10n set4 8900 386 8,854  8 

10n set4 8853 386 8,768  8 

10n set4 8767 386 8,595  8 

10n set4 8594 386 8,315  8 

10n set4 8314 347 8,105  7 

10n set4 8104 327 7,956  7 

10n set4 7955 327 7,697  7 

10n set4 7696 304 7,568  7 

10n set4 7567 288 7,487  6 

10n set4 7486 276 7,237  6 

10n set4 7236 265 7,078  6 

10n set4 7077 246 3,843  6 

10n set4 3842 197 2,859  5 

Note. The yellow cell is the smallest Cmax to include all 10 vertices in the solution. The green cell is the largest 

Cmax to use 6 vertices in the solution. The blue cell is the smallest Cmax to use 6 vertices in the solution. 

 

Table D5: Results of Iterative Process to Identify Target Total Cost Constraint Values for Dataset 10n_set5 

Dataset & Cmax 

Objective 

Value 

Solution 

Distance (m) 

Max 

vertices? 

No. of  

vertices 

10n set5 15000 327 14,139 Y 10 

10n set5 14138 327 13,909 Y 10 

10n set5 13908 327 13,819 Y 10 

10n set5 13818 327 13,453 Y 10 

10n set5 13452 327 12,858 Y 10 

10n set5 12857 327 12,012 Y 10 

10n set5 12011 327 11,936 Y 10 

10n set5 11935 327 11,537 Y 10 

10n set5 11536 320 10,161  9 

Dataset & Cmax 

Objective 

Value 

Solution 

Distance (m) 

Max 

vertices? 

No. of  

vertices 

10n set5 11000 320 10,450  9 
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10n set5 10160 320 9,762  9 

10n set5 10000 320 9,762  9 

10n set5 9761 308 9,062  8 

10n set5 9061 308 8,821  8 

10n set5 8820 308 8,820  8 

10n set5 8819 285 8,683  7 

10n set5 8682 276 8,533  7 

10n set5 8532 260 7,640  7 

10n set5 7639 260 7,639  7 

10n set5 7638 237 7,502  6 

10n set5 7501 228 7,352  6 

10n set5 7351 219 7,297  7 

10n set5 7296 219 7,093  7 

10n set5 7092 219 6,851  7 

10n set5 6850 196 6,714  6 

10n set5 6713 187 6,564  6 

10n set5 6563 183 5,105  7 

10n set5 5104 183 3,821  7 

10n set5 3820 171 2,879  6 

10n set5 2878 151 2,738  6 

10n set5 2737 151 2,581  6 

10n set5 2580 151 2,339  6 

10n set5 2338 139 1,397  5 
Note. The yellow cell is the smallest Cmax to include all 10 vertices in the solution. The green cell is the largest 

Cmax to use 6 vertices in the solution. The blue cell is the smallest Cmax to use 6 vertices in the solution. 

 

Table D6: Results of Iterative Process to Identify Target Total Cost Constraint Values for Dataset 15n_set1 

Dataset & Cmax 

Objective 

Value 

Solution 

Distance (m) 

Max 

vertices? 

No. of  

vertices 

15n set1 80000 530 27,050 Y 15 

15n set1 30000 530 26,401 Y 15 

15n set1 20000 530 18,076 Y 15 

15n set1 18075 530 17,748 Y 15 

15n set1 17747 530 17,650 Y 15 

15n set1 17000 530 16,497  15 

15n set1 16496 530 16,484  15 

15n set1 16483 530 16,479  15 

15n set1 16100 530 16,095  15 

Dataset & Cmax 

Objective 

Value 

Solution 

Distance (m) 

Max 

vertices? 

No. of  

vertices 

15n set1 15000 529 14,703  14 
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15n set1 14000 510 13,997  11 

15n set1 13500 504 13,461  11 

15n set1 13000 495 12,901  12 

15n set1 12500 476 12,359  10 

15n set1 12358 472 12,215  11 

15n set1 12214 472 12,101  11 

15n set1 12100 472 12,039  11 

15n set1 12038 470 11,894  10 

15n set1 11893 470 11,823  10 

15n set1 11821 470 11,761  10 

15n set1 11760 460 11,755  11 

15n set1 11754 458 11,477  10 

15n set1 11476 453 11,378  9 

15n set1 11377 442 11,245  10 

15n set1 11244 442 11,034  10 

15n set1 11033 440 10,967  9 

15n set1 11000 440 10,967  9 

15n set1 10966 440 10,756  9 

15n set1 10755 435 10,687  9 

15n set1 10686 435 10,615  9 

15n set1 10614 423 10,373  8 

15n set1 10000 407 9,888  9 

15n set1 9887 405 9,610  8 

15n set1 9609 390 9,505  8 

15n set1 9504 388 9,227  7 

15n set1 9226 380 9,215  8 

15n set1 9214 380 9,163  8 

15n set1 9162 380 9,153  8 

15n set1 9152 368 9,122  7 

15n set1 9121 368 8,911  7 

15n set1 9000 368 8,911  7 

15n set1 8910 363 8,780  7 

15n set1 8779 363 8,770  7 

15n set1 8769 352 8,426  8 

15n set1 8425 350 8,359  7 

15n set1 8358 350 8,148  7 

15n set1 8147 335 8,043  7 
Note. The green cell is the largest Cmax to use 8 vertices in the solution. The blue cell is the smallest Cmax to use 8 

vertices in the solution. 
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Table D7: Results of Iterative Process to Identify Target Total Cost Constraint Values for Dataset 15n_set2 

Dataset & Cmax 

Objective 

Value 

Solution 

Distance (m) 

Max 

vertices? 

No. of  

vertices 

15n_set2 30000 699 29,616 Y 15 

15n_set2 18000 699 17,953 Y 15 

15n_set2 16000 699 15,280 Y 15 

15n_set2 14000 684 13,919  13 

15n_set2 13156 649 13,022  10 

15n_set2 12000 605 11,565  12 

15n_set2 11000 605 10,835  12 

15n_set2 10000 590 9,886  10 

15n_set2 9500 520 9,258  9 

15n_set2 9257 501 9,255  9 

15n_set2 9254 501 9,125  9 

15n_set2 9124 501 8,962  9 

15n_set2 8961 481 8,836  8 

15n_set2 8835 481 8,825  8 

15n_set2 7898 386 7,898  8 

15n_set2 7897 379 7,630   7 

15n_set2 7629 379 7,443   7 

15n_set2 7442 379 7,442   7 

15n_set2 7441 359 7,317   6 

15n_set2 7316 359 7,305   6 

15n_set2 7304 304 7,109   6 

15n_set2 7108 304 7,108   6 

15n_set2 7107 290 6,518   6 

15n_set2 6517 270 6,382   5 

Note. The green cell is the largest Cmax to use 8 vertices in the solution. The blue cell is the smallest Cmax to use 8 

vertices in the solution. 

 

Table D8: Results of Iterative Process to Identify Target Total Cost Constraint Values for Dataset 15n_set3 

Dataset & Cmax 

Objective 

Value 

Solution 

Distance (m) 

Max 

vertices? 

No. of  

vertices 

15n_set3 30000 668 27,851 Y 15 

15n_set3 14000 641 13,968  14 

15n_set3 12000 571 11,866  13 

15n_set3 11000 521 10,737  12 

15n_set3 10000 498 9,957  11 

15n_set3 9956 491 9,884  10 

15n_set3 9883 467 9,824  10 

Dataset & Cmax 

Objective 

Value 

Solution 

Distance (m)  

Max 

vertices? 

No. of  

Vertices 



79 

 

15n_set3 9823 466 9,820  10 

15n_set3 9819 460 9,751  9 

15n_set3 9750 459 9,747  9 

15n_set3 9746 454 9,686  11 

15n_set3 9685 449 9,671  10 

15n_set3 9670 447 9,613  10 

15n_set3 9612 442 9,598  9 

15n_set3 9597 431 9,569  10 

15n_set3 9568 431 9,275  10 

15n_set3 9274 431 9,028  10 

15n_set3 9000 431 8,967  10 

15n_set3 9027 431 8,967  10 

15n_set3 8966 424 8,894  9 

15n_set3 8893 400 8,834  9 

15n_set3 8833 399 8,830  9 

15n_set3 8829 393 8,761  8 

15n_set3 8760 392 8,757  8 

15n_set3 8756 375 8,734  8 

15n_set3 8733 375 8,733  8 

15n_set3 8732 368 8,697  8 

15n_set3 8696 361 8,624  7 

15n_set3 8623 346 8,503  9 

15n_set3 8502 340 8,353  9 

15n_set3 8352 340 8,292  9 

15n_set3 8291 339 8,252  8 

15n_set3 8251 339 8,241  8 

15n_set3 8240 339 8,006  8 

15n_set3 8005 308 7,743  7 

15n_set3 7742 276 7,664  6 

15n_set3 7663 276 7,607  6 

15n_set3 7606 276 7,606  6 

15n_set3 7000 224 6,984  8 

15n_set3 6983 201 6,667  7 

15n_set3 6666 197 6,290  7 

15n_set3 6289 174 5,571  6 
Note. The green cell is the largest Cmax to use 8 vertices in the solution. The blue cell is the smallest Cmax to use 8 

vertices in the solution. 

 

 



80 

 

Table D9: Results of Iterative Process to Identify Target Total Cost Constraint Values for Dataset 15n_set4 

Dataset & Cmax 

Objective 

Value 

Solution 

Distance (m) 

Max 

vertices? 

No. of  

vertices 

15n_set4 30000 668 27,362 Y 15 

15n_set4 20000 668 18,798 Y 15 

15n_set4 18000 668 17,364 Y 15 

15n_set4 16000 640 15,875  12 

15n_set4 14000 546 13,955  11 

15n_set4 12000 397 11,921  11 

15n_set4 11000 397 10,800  11 

15n_set4 10799 397 10,763  11 

15n_set4 10762 385 10,463  10 

15n_set4 10462 385 10,271  10 

15n_set4 10270 385 9,879  10 

15n_set4 9878 370 9,617  9 

15n_set4 9616 353 9,237  9 

15n_set4 9236 341 9,122  8 

15n_set4 9121 341 9,083  8 

15n_set4 9082 341 8,805  8 

15n_set4 8804 341 8,353  8 

15n_set4 8352 326 8,091  7 

15n_set4 8090 287 8,019  7 

15n_set4 8018 286 7,937  6 

15n_set4 7936 272 7,757  6 

15n_set4 7756 271 7,675  5 

Note. The green cell is the largest Cmax to use 8 vertices in the solution. The blue cell is the smallest Cmax to use 8 

vertices in the solution. 

 

Table D10: Results of Iterative Process to Identify Target Total Cost Constraint Values for Dataset 15n_set5 

Dataset & Cmax 

Objective 

Value 

Solution 

Distance (m) 

Max 

vertices? 

No. of  

vertices 

15n_set5 20000 634 19,026 Y 15 

15n_set5 16000 623 15,728  13 

15n_set5 14000 594 13,949  12 

15n_set5 12000 559 11,869  11 

15n_set5 11868 536 11,528  11 

15n_set5 11527 531 11,375  11 

15n_set5 11374 527 11,289  10 

15n_set5 11288 527 11,242  10 

15n_set5 11241 512 11,094  10 

15n_set5 11093 505 10,482  11 
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Dataset & Cmax 

Objective 

Value 

Solution 

Distance (m) 

Max 

vertices? 

No. of  

vertices 

15n_set5 10481 505 10,228  11 

15n_set5 10227 496 10,001  10 

15n_set5 10000 496 9,648  10 

15n_set5 9647 473 9,601  10 

15n_set5 9600 473 9,369  10 

15n_set5 9368 464 9,081  9 

15n_set5 9080 464 9,068  9 

15n_set5 9067 464 9,021  9 

15n_set5 9020 449 8,873  9 

15n_set5 8872 440 8,857  9 

15n_set5 8856 431 8,754  8 

15n_set5 8753 431 8,510  8 

15n_set5 8509 417 8,306  8 

15n_set5 8305 403 7,984  9 

15n_set5 7983 385 7,658  8 

15n_set5 7657 380 7,399  9 

15n_set5 7398 371 7,051  8 

15n_set5 7050 356 6,856  8 

15n_set5 6855 353 6,748  7 

15n_set5 6747 338 6,665  7 

15n_set5 6664 338 6,595  7 

15n_set5 6594 338 6,493  7 

15n_set5 6492 324 6,289  7 

15n_set5 6288 301 5,497  8 

15n_set5 5496 301 5,261  8 

15n_set5 5260 301 5,247  8 

15n_set5 5246 301 5,029  8 

15n_set5 5028 292 4,899  7 

15n_set5 4898 292 4,856  7 

Note. The green cell is the largest Cmax to use 8 vertices in the solution. The blue cell is the smallest Cmax to use 8 

vertices in the solution. 
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