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Abstract  
 
 
 

THE RELATIONSHIP BETWEEN MATHEMATICS ACHIEVEMENT AND 
WORKING MEMORY ACROSS EDUCATION LEVEL 
 
Naomi Elise Perlman Iguchi, PhD 
 
George Mason University, 2008 
 
Dissertation Director: Ellen Rowe 
 
 
 
The current study examined the relationship between mathematics achievement and 

working memory and whether this relationship changes across levels of math education. 

In addition to the effect of working memory on overall math achievement, its effect on 

three specific areas of math achievement were investigated, including knowledge of basic 

math facts, calculation skills and application of math concepts. Participants included 136 

children and adolescents (age 6-16) who had undergone a comprehensive psychological 

evaluation. Results indicate that greater auditory working memory capacity predicts a 

higher level of math achievement in all areas. Auditory working memory explained 

unique variance, above and beyond the contributions of verbal and nonverbal reasoning 

and processing speed, in overall math achievement, fact fluency and applied problems, 

but not calculation skills. The variance in achievement in overall math, fact fluency and 

calculation skills explained by variance in working memory remained stable across two 

age groups representing elementary and secondary levels of education. The relationship 



 

between these two constructs increased across age for applied problem solving skills. 

These results provide evidence for the theory that both elementary and secondary level 

math achievement rely on auditory working memory. Theoretical and practical 

implications of these results, as well as directions for future research, are discussed. 
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Introduction 

  

The level of mathematics and problem solving ability necessary in the workplace 

and in day-to-day living has increased dramatically (National Council of Teachers of 

Mathematics, 2000). Mathematics is a symbolic language that helps us to think about, 

record and communicate information and ideas. Mathematics is also a universal 

language, as it has meaning for all cultures. Given the importance of math skills, it is 

troubling to find that approximately 6% of students in general education classes show 

evidence of a serious mathematical difficulty, and about one quarter of students with 

diagnosed learning disabilities exhibit problems in mathematics (Cass et al., 2003). 

There are many reasons children may fail to acquire math skills and develop 

understanding of math concepts, including math anxiety, lack of experience, poor 

motivation, reading difficulties and neuropsychological damage. A growing body of 

evidence indicates that math difficulties can be associated with various cognitive deficits. 

In fact, Geary (2004, 2005) has noted that between 5% and 8% of elementary school 

children have some form of specific memory or cognitive deficit that interferes with their 

ability to learn and understand numerical and arithmetical concepts or procedures 

involved in math domains. 

Important progress has been made over the past several decades in the 

understanding of the cognitive deficits that contribute to difficulties in reading. Research 
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in the area of math achievement has also advanced over the past couple decades, but 

more slowly than the study of reading (Cass et al., 2003). The complexity of the field of 

mathematics contributes to this delay. Difficulties in math can arise from deficient skills 

in one or more of the domains of mathematics, including arithmetic, algebra or geometry. 

These domains are also very complex, in and of themselves. All have many subdomains, 

and difficulties in any could cause problems with math achievement. Most research on 

math achievement has focused on basic math skills, and little is known about the 

cognitive processes that underlie more complex math skills, such as algebra and 

geometry.  

Cognitive Processes 

Researchers studying the difficulties experienced by children with math problems 

have investigated a number of cognitive mechanisms that may underlie these difficulties. 

Working memory is thought to play a central role in the acquisition and use of basic 

educational skills (Hitch & McAuley, 1991), and its role in the development of math 

abilities and disabilities has begun to be investigated (Geary, Hoard & Hamson, 1999; 

Hitch & McAuley, 1991; Floyd, Evans & McGrew, 2003; Jordan, Levine & 

Huttenlocher, 1995; Logie, Gilhooly & Wynn, 1994; McLean & Hitch, 1999; 

Passolunghi & Siegel, 2004; Swanson & Beebe-Frankenberger, 2004). Much of the 

research in this area has been inspired by ideas related to cognitive models of working 

memory and is related to general definitions of learning disabilities. 

Learning disability refers to a neurobiological disorder in one or more of the basic 

processes involved in understanding spoken or written language (Lerner & Kline, 2006). 
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This variance in the brain may influence an individual’s ability to speak, listen, spell, 

read, write, organize information, reason or do mathematical calculations (Lerner & 

Kline, 2006). The most widely used definition of learning disabilities is provided in the 

Individuals with Disabilities Education Improvement Act (IDEA-2004) (Public Law 108-

446). This federal law provides the basis for most state definitions and is therefore used 

by many schools. The definition of learning disabilities provided by IDEA-2004 is: 

The term “specific learning disability” means a disorder in one or more of the 

basic psychological processes involved in understanding or in using language, 

spoken or written, which disorder may manifest itself in imperfect ability to 

listen, think, speak, read, write, spell or do mathematical calculations. Such term 

includes such conditions as perceptual disabilities, brain injury, minimal brain 

dysfunction, dyslexia, and developmental aphasia. Such term does not include a 

learning problem that is primarily the result of visual, hearing, or motor 

disabilities; of mental retardation; of emotional disturbance; or of environmental, 

cultural or economic disadvantage.  

 Among the elements the IDEA-2004 definition has in common with other 

significant definitions of learning disabilities (National Joint Committee on Learning 

Disabilties, NJCLD, and the Interagency Committee on Learning Disabilities, ICLD) are 

the implicit and explicit views that they are related to neurological factors and they 

involve disorder in one or more of the basic psychological processes. Because all learning 

originates within the brain, it follows that disorders in learning are caused by a 

dysfunction in the central nervous system. Mental ability is not a single entity, but is 

instead made up of many underlying abilities, including but not limited to memory, 
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auditory, visual and tactile-kinesthetic perception, linguistic ability and thinking (Lerner 

& Kline, 2006). For a person with a learning disability, these component abilities do not 

develop in an even fashion (Lerner & Kline, 2006). While some may develop in the 

anticipated sequence or rate, others may lag in their development. One implication of this 

aspect of the definition is that each person with a learning disability will manifest 

strengths and weaknesses in different mental processes. Research supports the fact that 

learning disabilities in mathematics are not due to a general cognitive deficit or 

incapacity, and instead different patterns of cognitive functioning relate to different 

problems in math calculation (Jordan, Levine & Huttenlocher, 1995; Geary, Hoard & 

Hamson, 1999). In fact, Russell & Ginsburg (1984) found that children with math 

disabilities can possess many cognitive strengths. 

Cognitive psychology, which focuses on the human processes of learning, 

thinking and knowing, and its theory of learning is most closely tied to the disorders of 

psychological processes definition of learning disabilities. The information processing 

model of learning traces the flow of information during the process of learning, from 

initial reception of information, through a processing function, and then to an action. 

Inputs are auditory, visual or tactile stimuli and can be either external or internal. 

Processing functions are cognitive processes such as associations, thinking, memory, and 

decision making. These processes involve storing and locating the information (memory 

systems), organizing the information and facilitating operations and decisions (executive 

functions). Outputs are actions or behaviors in response to the original stimuli (Mayer, 

1996). 
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 Important to the information-processing model is the multi-store memory system, 

which conceptualizes the flow of information through three types of memory. When the 

mind attends to selected stimuli, that information flows into the first memory system, the 

sensory register. This system holds the information long enough for it to be perceived, 

and perception gives meaning to stimuli.  

 In working memory, the pertinent information or current problem is receiving the 

person’s conscious attention, and the individual can act on it. When a new problem 

begins receiving the person’s conscious attention, and therefore replaces the old 

information in working memory, the old information either decays and is lost or is placed 

into long-term storage (Swanson, 1996). Students with learning disabilities often have 

problems with different types of working memory. Strategies that can extend the time 

information remains in working memory and facilitate moving it to long-term memory 

include rehearsal, chunking or organizing the information, and the use of key words 

(Mastropieri & Scruggs, 1998). 

 The difference between working memory and short-term memory must be made 

clear. While these terms were once used interchangeably, the distinction between the two 

concepts is important, as it has been shown that they relate differently to math 

achievement. The process of short-term memory relies on a passive storage system and 

involves the recall of information without changing it in any way. Working memory 

requires more active processes and involves temporarily held information being 

manipulated or transformed. Studies that compared the contributions of short-term 

memory and working memory to math achievement found that children with difficulties 
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in math problem solving or arithmetic had impairments in working memory but not short-

term memory (Passolunghi & Siegel, 2001; Passolunghi & Siegel, 2004; Geary, Hoard 

and Hamson, 1999). Further, studies that used short-term memory, or immediate rote 

recall, measures rather than working memory tasks found that short-term memory did not 

contribute unique variance to the prediction of math ability (Bull & Johnston, 1997; 

Butterworth, Cipolotti & Warrington, 1996).  

 Long-term memory is permanent memory storage. It is believed that once 

information is placed into long-term storage it remains there permanently. The difficulty 

people encounter in long-term memory is with retrieval, or how to recall or remember 

information stored in long-term memory. Before a person can think about a problem, the 

stored information must be retrieved from long-term memory and placed into working 

memory. The way information is stored in long-term memory helps with the process of 

retrieval (Masteropieri & Scruggs, 1998).  

 Executive control is the component of the information-processing model that 

refers to the ability to control and direct one’s own learning, thinking and mental activity. 

Executive control directs the flow of thinking, manages the cognitive processes during 

learning, and keeps track of what information is being processed. It determines which 

mental activities occur and which processing components receive system attention 

resources. It involves planning, evaluating and regulating (Swanson, 1996). It seems clear 

from the research and theories in cognitive psychology that there are many cognitive 

processes involved in learning, and that the dysfunction or alternative functioning of any 

of these processes would lead to difficulties in learning. 
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Working Memory System 

 The structure and processes involved in working memory have been studied 

extensively.  The working memory system is often thought of as a mental workbench, 

where conscious mental effort is applied (Baddeley, 1992; Baddeley & Hitch, 1974). 

When information is retrieved from long-term memory, for example, a basic math fact 

and arithmetic algorithm, and put together to solve a problem, working memory is where 

this combination occurs. Baddeley expanded on this definition by stating that major roles 

of working memory include retrieval of stored long-term knowledge relevant to tasks, the 

manipulation and recombination of material allowing for the interpretation of novel 

stimuli and the discovery of novel information or solutions to problems. Baddeley’s 

theory of a working memory system provides a useful context for understanding recent 

studies on working memory and mathematics. 

 The working memory system Baddeley and Hitch (1974) hypothesized has three 

major components. This model distinguishes a central executive system from two “slave 

systems,” the articulatory or phonological loop and the visuo-spatial sketchpad. The 

central executive is in charge of planning future actions, initiating retrieval and decision 

processes as necessary, and integrating information coming into the system. Consider the 

arithmetic problem [(5+3) x 2]/(4+2). The central executive triggers the retrieval of facts 

(5+3=8, 8x2=16) and invokes the problem-solving rules such as “how to add and 

multiply.” It also decides that the intermediate value 16 must be held momentarily while 

further processing occurs. It activates the phonological loop and sends it the value 16 to 

rehearse until that value is needed again by the central executive. 
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Central Executive 

 In 1996, Baddeley proposed that the central executive is made up of separate but 

overlapping functions involving coordinating concurrent activities, switching retrieval 

plans, attending to inputs, and holding and manipulating information in long-term 

memory. The first executive function identified by Baddeley (1996), coordinating 

performance on two or more separate tasks, was described by the arithmetic example 

above. Switching retrieval strategies is the second executive function and is clearly 

necessary for problems such as multi-digit multiplication, which involves multiplying 

and adding. The third executive function involves attending selectively to different 

inputs, which is clearly a feature of multi-digit problems. The fourth executive function is 

activating and manipulating information stored in long-term memory, also illustrated in 

the example above. All of Baddeley’s components of the central executive seem likely to 

be involved in arithmetical calculation. 

Another cognitive activity that has been assigned to the central executive 

component of working memory is the suppression or inhibition of irrelevant information. 

Recent studies have suggested that activities related to the inhibition of irrelevant 

information are deficient in children with math disabilities (Passolunghi, Cordnoldi & De 

Liberto, 1999; Passolunghi & Siegel, 2004; Passolunghi & Siegel, 2001; Russell & 

Ginsburg, 1984). Passolunghi, Cordnoldi and De Liberto (1999) found that children who 

were poor mathematical problem solvers had low scores on working memory tasks that 

required the inhibition of irrelevant information. In a study conducted by Passolunghi and 

Siegel (2001) children who were poor in arithmetic problem solvers made a significantly 
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higher number of intrusion errors on working memory tasks than did good problem 

solvers. These authors concluded that the poor problem solvers maintained information in 

memory that initially had to be processed, even when it was advantageous to suppress the 

information. Passolunghi and Siegel’s (2004) study extended this body of research to 

include both computation and arithmetic word problem ability. Their intrusion error 

results provide further evidence that math achievement and math disabilities are related to 

the ability to inhibit the memory of irrelevant information.  

Swanson, Cooney and Brock (1993), on the other hand, found significant 

correlations between working memory and recall of extraneous information but the 

correlations were not in the predicted direction; they found that the greater a child’s 

working memory the more likely they will recall irrelevant information in a word 

problem. Finally, Swanson and Beebe-Frankenberger (2004) found a significant 

relationship between working memory and math problem solving even after the influence 

of inhibition (and other central executive processes) was partialed out of the analysis. 

This suggests that, while inhibition of irrelevant information may be related to math 

achievement, other aspects of working memory are also important and contribute unique 

variance in predicting solution accuracy. These aspects may be found in the other 

components of Baddeley’s model of working memory, the slave systems.  

Phonological Loop and Visuo-spatial Sketchpad 

 The slave systems each have a domain-specific task or set of responsibilities. 

They assist the central executive by being responsible for low-level processing involved 

in a task (Baddeley and Hitch, 1974, Baddeley, 1992). The phonological loop is the 
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speech- and sound-related component responsible for rehearsal of verbal information and 

phonological processing. The visual spatial sketchpad specializes in visual and spatial 

information, holding or manipulating that information in a short-duration buffer. Most 

research supporting the relationship between working memory and mathematics 

achievement or disability has included only auditory working memory tasks (Passolunghi 

& Siegel, 2004; Swanson, Cooney and Brock, 1993; Floyd, Evans and McGrew, 2003; 

Fuchs, et al, 2005; Passolunghi & Siegel, 2001; Geary, Hoard and Hamson, 1999) or a 

combination of auditory and visual working memory tasks that are not separated during 

analysis (Swanson & Beebe-Frankenberger, 2004).  

 Several studies have attempted to determine the unique contributions of the 

phonological loop and visual spatial sketchpad to math achievement, with mixed results. 

Both verbal and visual-spatial working memory were found to be related to math 

achievement in some studies (Dark & Benbow, 1990; Swanson & Lee, 2001). Dark and 

Benbow (1990) studied mathematically talented middle school students. Mathematical 

talent was operationalized by high solution accuracy on word problems. When compared 

with peers of average math ability and college students, the mathematically talented 

middle school students performed significantly better on auditory working memory tasks. 

The talented youth also performed better than the other youth, but not college students, 

on tasks requiring the manipulation of spatial information. In a more recent study, 

Swanson and Lee (2001) investigated working memory abilities in children with and 

without math learning disabilities and found that both verbal and visual-spatial working 

memory contributed significant variance to children’s math problem solving ability. They 
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contend that no one process is more important than the other in predicting solution 

accuracy, indicating that both slave systems are necessary for math problem solving. 

 Other studies provide evidence that only one slave system is involved in the 

demonstration of math learning. McLean and Hitch (1999) have found evidence for the 

importance of visual-spatial sketchpad but not the phonological loop in children’s 

arithmetical difficulties. However, the tasks used to measure the contribution of the 

phonological loop were indices of phonological short-term memory, specifically forward 

digit span and nonword repetition. These tasks do not involve the manipulation but rather 

the immediate recall of information. As noted earlier, previous studies have shown that 

working memory, and not short-term memory, is related to math achievement. McLean 

and Hitch (1999) did not include a true measure of auditory working memory, and 

therefore could not have ruled out the contribution of the phonological loop. 

 Further studies have found that auditory working memory, and not visual-spatial 

memory, contributes significantly to mathematics achievement and disability. Hitch and 

McAuley (1991) found that children with specific arithmetic difficulties (and without 

comorbid reading difficulties) were impaired on digit and counting span tasks but not on 

other complex span tasks. Wilson and Swanson’s (2001) results indicated that 

mathematical computation was better predicted by verbal than by visual-spatial working 

memory. Logie, Gilhooly and Wynn (1994) found that when subjects were required to 

add two two-digit numbers under different types of dual-task conditions, performance 

was significantly disrupted by a concurrent oral task whether the addends were presented 

visually or auditorily. When the concurrent task was visual spatial, performance was only 
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disrupted when the addends were presented visually. These results indicate that subvocal 

rehearsal seems to be implicated in mental calculation regardless of the modality of the 

stimuli, whereas the visuo-spatial sketchpad only plays a role when stimuli are presented 

visually. Logie, Gilhooly and Wynn (1994) suggested that the involvement of the visuo-

spatial sketchpad may be restricted to the precalculation stage, when the visual problem is 

encoded. Noel, et al (2001) found that the speed and accuracy of complex mental 

calculation were significantly impacted when the problems presented were 

phonologically similar. When visual similarity was manipulated, a significant effect was 

not found. They concluded that the phonological loop is used for storing addends during 

mathematical calculation, rather than the visual-spatial sketchpad. 

 It is important to note a significant difference between the studies finding both 

verbal and visual-spatial working memory to be related to math achievement (Dark & 

Benbow, 1990; Swanson & Lee, 2001) and those finding a domain-specific working 

memory deficit, specifically verbal (Hitch & McAuley, 1991; Logie, Gilhooly and Wynn, 

1994; Noel, et al, 2001). The first set of studies measured achievement in word problem 

solving, and the second set measured complex calculation and arithmetic skills. It is 

possible, therefore, that verbal working memory (or the phonological loop) is involved in 

the manipulation of numbers and the utilization of algorithms involved in calculation, and 

that visual-spatial working memory (or the sketchpad) is involved in the reading 

component of word problems. Further evidence for this is found in the research 

comparing those with learning disabilities in math and those with disabilities in both 

math and reading; children with only arithmetic disability show domain-specific working 
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memory deficits, while children with comorbid reading and math disabilities have a 

general working memory impairment (Siegel & Ryan, 1989; Hitch & McAuley, 1991).  

Specific Numerical Deficit 

 In addition to the involvement of the various components of Baddeley’s working 

memory system, a specific numerical working memory deficit in children with math 

difficulties has been proposed. Studies involving only working memory tasks involving 

numbers have found significant relationships between working memory and math 

calculation difficulties and disabilities (Noel, et al, 2001; Geary, Hoard and Hamson, 

1999). Siegel and Ryan (1989) found that children with a math learning disability 

performed similarly to children with normal achievement on a working memory task 

involving sentence processing, but their performance was impaired on a working memory 

task requiring the processing of numerical information. Hitch and McAuley (1991) also 

found that children with specific math disabilities were significantly impaired on 

counting and digit span tasks but not other working memory tasks. Passolunghi and 

Siegel (2001, 2004) found that poor problem solvers’ working memory impairments were 

not specific to processing numerical information. It should be noted that all tasks in both 

Passolunghi and Siegel’s studies (2001, 2004) were conducted in Italian. The theory has 

been suggested that digit spans differ in different languages due to the fact that digits in 

some languages are longer than digits in others (Geary, Bow-Thomas, Fan & Siegler, 

1993). It is possible that a difference in digit length contributed to the difference between 

the outcomes of Passolunghi and Siegel’s studies and others mentioned above. 

Regardless, in all studies including working memory tasks involving numbers, subjects 
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with math difficulties showed significant deficits in numerical working memory. The 

theory of a specific numerical deficit is also consistent with the general finding that 

assessments that include numbers are most predictive of math outcomes and most useful 

for early screening of math disabilities (Fletcher, 2005; Gersten, Jordan and Flojo, 2005). 

 In summary, a review of the literature on working memory and math difficulties 

suggests that many components and processes that are encompassed by working memory 

are involved in math learning and achievement. Manipulation of information, including 

the use of algorithms to solve problems, retrieval of information from long term memory 

and inhibitory processes are all important activities conducted by the central executive. 

Although the visual-spatial sketchpad appears to be important when reading is involved, 

such as in word problems, or when the calculation problems are presented visually and 

must be encoded, the phonological loop and auditory working memory seem to be more 

closely related to most areas of math achievement. Finally, there is evidence to suggest 

that performance on working memory tasks involving numbers is related to math ability. 

The research on working memory components and modalities seems to indicate that the 

best measure of working memory for the present study would involve tasks that require 

the subject to manipulate numerical information presented in an auditory format. 

Numerical and Arithmetical Cognition 

 One obstacle to the study of math achievement and disabilities is the large number 

and complexity of math domains, as noted by Geary, Hoard & Hamson (1999). 

Difficulties in math can be the result of deficits in the ability to process information in 

one or all of these domains (Russell & Ginsburg, 1984). In particular, the development of 
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numerical and arithmetical cognition is important in understanding math achievement, 

and therefore disabilities in math (Geary, 1993; Geary, Hoard & Hamson, 1999; Geary, 

2004; Geary, 2005). 

Basic Numerical Competencies 

 Basic numerical competencies include number production and comprehension. 

These competencies require the ability to identify and process verbal and Arabic 

representations of numbers, to transcode numbers from one representation to another, and 

to compare the magnitudes of numbers. While there have been few studies conducted on 

the basic numerical competencies of children with math difficulties, the results suggest 

that the number production and comprehension of children with specific math disabilities, 

although often delayed, are largely intact for the processing of simple numbers (Geary, 

1993; Geary, Hoard & Hamson, 1999; Geary, 2004). 

Counting Knowledge 

  Children’s counting is thought to be governed by five implicit principles (Gallistel 

& Gelman, 1992): one-to-one correspondence (one and only one word tag is assigned to 

each counted object), stable order (the order of the word tags must be the same across 

counted sets), cardinality (the value of the final word tag represents the quantity of items 

in the counted set), abstraction (objects of any type can be brought together and counted), 

and order irrelevance (items can be counted in any sequence). Briars and Seigler (1984) 

proposed essential features, similar to Gallistel & Gelman’s principles, and unessential 

features of counting. The unessential features include start at an end, adjacency, pointing, 

and standard direction. As children’s counting knowledge matures, they believe the 
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essential features and principles and understand that the unessential features are not 

necessary for counting. 

 Research on the counting knowledge of children with math disabilities shows that 

children with comorbid math and reading disabilities understand most of the inherent 

counting principles, such as stable order and cardinality, but believe that order and 

adjacency are essential features of counting (Geary, 1993; Geary, 2004). However, 

Geary, Hoard and Hamson (1999) suggest that their results indicate that children with 

comorbid math and reading disabilities understand counting as a rote and mechanical 

activity, whereas children with only math disabilities show age-appropriate counting 

knowledge. One exception was noted: Math disabled children failed to detect a 

significant number of double-counting errors (when the first item in a set is counted 

twice). The children who performed poorly on these trials also demonstrated significantly 

lower performance on a working memory task than children who successfully detected 

the counting errors. Bull and Johnston (1997) also found that children with low math 

achievement were comparable to children with high math achievement on speed of 

counting. However, the low achievers made significantly more counting errors. The 

counting errors of children with math difficulties suggest another mechanism by which 

working memory could affect math achievement. 

Arithmetic 

 Arithmetical competency is improved when there is a change in the distribution of 

strategies children use in problem solving. When first learning addition, children 

typically count both addends. Counting procedures can be done with the use of fingers 
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(finger counting strategy) or without them (verbal counting strategy). In either case, the 

two most commonly used procedures are labeled counting-on and counting-all. Counting-

all involves counting both addends, starting from 1, while counting-on involves stating 

the value of the larger addend and then counting up the value of the smaller addend. 

Children with math disabilities make more procedural errors and employ more 

developmentally immature procedures than average achieving peers (Geary, 1990; Geary, 

Hoard & Hamson, 1999; Geary, 2004; Gerston, 1999).  

The frequent use of counting procedures eventually results in the development of 

long-term memory associations between problems and the answers generated by way of 

counting. The formation of these associations, in turn, leads to the use of memory-based 

procedures in problem solving. With each implementation of a computational strategy, 

the likelihood of direct retrieval increases for later solutions of the problem (Geary, 

1993). Many children with math disabilities do not demonstrate the shift from 

procedural-based problem solving to direct retrieval (or memory-based) problem solving. 

Geary, Hoard and Hamson (1999) found that children with low math achievement made 

more memory-retrieval errors than normal achieving peers. This finding again points to 

the role of working memory in math achievement; in order for the use of a strategy to 

result in the development of a long-term representation between a problem and its 

answer, both the first number and second number, as well as the answer, must be active 

simultaneously in working memory.  
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Math Achievement 

 Math achievement can be, and has been, defined in many different ways. 

Definitions include fact fluency, calculation skills, and applications of math concepts 

such as in problem solving and word problems. These different aspects of math 

achievement have been found to rely on numerous underlying processes. In particular, 

performance on various measures of math knowledge and problem solving seem to be 

differentially related to working memory. 

Fact Fluency 

 Fact fluency refers to how quickly and accurately a person can solve simple math 

problems. As noted above, much research has found that children with math difficulties 

or disabilities have particular problems in representation and retrieval of basic math facts 

(Jordan & Hanich, 2000; Jordan, Hanich & Kaplan, 2003; Joradan & Montani, 1997; 

Geary, 1993; Geary, Hoard, & Hamson, 1999; Gersten, Jordan & Flojo, 2005; Russell & 

Ginsburg, 1984; Bull & Johnston, 1997). In line with the research presented above, 

Russell & Ginsburg (1984) found that, while math disabled children had adequate 

knowledge of principles, they had significant difficulty with even simple addition facts. 

As noted above, poor working memory resources, together with immature counting 

strategies, have been implicated in the poor representation of arithmetic facts in long-

term memory (Keeler & Swanson, 2001). Also, Swanson and Sachse-Lee (2001) found 

that working memory resources are used in the activation of relevant knowledge in long-

term memory. 
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An alternative explanation for the relationship between working memory and the 

retrieval of math facts is suggested by Noel, et al (2001); that arithmetic facts have been 

taught as verbal routines and are stored in a verbal format. They posit that any 

calculations presented in an Arabic format have to be translated into the verbal format in 

order to retrieve the solution. This translation would occur within working memory. 

Bull and Johnston (1997) and others suggested that an important factor that limits 

the retrieval of facts in children with low math achievement is slow speed of number 

identification, where representations of numbers are accessed from long-term memory. In 

this case, the difficulty falls with retrieving numerals, even before the retrieval of an 

entire math fact. Here working memory plays a role in fact fluency because resources are 

not available for storage when capacity is taken up by number identification, rather than 

due to a deficit in the ability to manipulate information. However, Geary, Hoard and 

Hamson (1999) also tested this hypothesis and found that children with math disabilities 

showed adequate number identification abilities. 

Calculation Skills 

  Although fact retrieval and fluency is frequently weak in children with math 

difficulties, it is important to investigate weaknesses in other areas of mathematics, 

including calculation skills. In a large scale study, Bryant, Bryant and Hamilton (2000) 

found that the most common problem that differentiated children with math difficulties 

from children with other academic difficulties was in carrying out multi-step arithmetic. 

Logie, Gilhooly, and Wynn (1994) and Noel, et al (2001) found that verbal working 

memory is significantly related to complex mental calculation performance, whether the 
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addends are presented visually or auditorily. This relationship between calculation skills 

and working memory may be associated with long-term memory of algorithms. Swanson 

and Sachse-Lee (2001) showed that, when compared to same-age peers, children with 

learning disabilities are deficient in retrieving knowledge related to algorithms. More 

research is needed to clarify the role of working memory systems in completing complex 

calculations. 

Applications: Problem solving and word problems 

 Word problems are important means through which children learn to select and 

apply strategies needed for coping with problems in everyday life. Given the amount of 

incoming information that must be tracked in applied math and word problems, it seems 

intuitive that the maintenance and manipulation of information in working memory 

would be involved. In fact, the involvement of working memory may be even more 

complex than with fact fluency and calculation alone; not only is working memory used 

to access information from long-term memory (for example, algorithms to solve the 

problem or math facts) but a word problem also introduces a substantial amount of new 

information into working memory. The majority of research in this area supports the 

theory that word problem solution accuracy is related to working memory capacity 

(Passolunghi & Siegel, 2001; Swanson & Beebe-Frankenberger, 2004; Swanson & 

Sachse-Lee, 2001; Russell & Ginsburg, 1984).  

Research also indicates that children with disabilities in learning have difficulty 

solving word and story problems. Swanson and Sachse-Lee (2001) noted the growing 

body of research finding that children with learning disabilities have significant difficulty 
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constructing an adequate problem representation. Russell and Ginsburg (1984) found that 

children with math disabilities performed poorly on complex word problems, particularly 

those with irrelevant information.  

Children’s troubles in solving mathematical word problems have also been shown 

to be related to their deficient language and comprehension strategies. Swanson, Cooney 

and Brock (1993) found that working memory was not a major contributor to accuracy of 

word problem solutions above and beyond the contribution of reading comprehension. 

However, phonological processes are important in reading, and Swanson and Sachse-Lee 

(2001) results show that phonological processes do not mediate the contribution of 

working memory to word problem solution. Processes involved in verbal working 

memory play just as important a role as the phonological processes that are implicated in 

reading. 

Secondary Level Math 

 Consistent with the natural progression and development of research in general, 

most math education research has been conducted around the earlier grades. Outside the 

areas of numbers, counting and simple arithmetic, theoretical models and research for 

mathematics abilities are not well developed. In most domains of mathematics, including 

geometry and algebra, very little is known about the normal development of related 

competencies to provide an organized framework for the study of math achievement and 

difficulties (Geary, 2005).  

Given that very little formal research has been conducted on math at the 

secondary level, it is not surprising to find that only a handful of studies have investigated 
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the relationship between working memory and math achievement in secondary students. 

Even fewer studies attempt to examine the effect of age on this relationship. Swanson and 

Beebe-Frankenberger’s (2004) analysis found that the significant relationship between 

working memory and mathematical problem solving was stable across the age of their 

subjects. However, their subjects were elementary school students, and therefore, their 

results may not generalize to secondary level math domains. Wilson and Swanson (2001), 

on the other hand, found that mathematics calculation and working memory continued to 

be related across a broad age span. Dark and Benbow (1990) studied 12- and 13-year-

olds, and their results suggest that working memory is related to algebra problem solving 

ability.  

Evidence can also be found for a decline in the strength of the relationship 

between working memory and math achievement. Little & Widaman (1995) compared 

elementary and junior high school students with college students, and results indicated 

that a deficit in working memory resources places greater limits on the mathematical 

performance of children than on that of adults. While these results provide a useful 

addition to the sparse literature in this area, there are several limitations to the 

generalization of these findings. First, elementary and junior high school students were 

grouped together, but a review of mathematics curriculum suggests that the math 

knowledge and concepts required at these levels may differ significantly. Second, high 

school students were not included in the study at all. Moreover, the addition performance 

of subjects was the only math achievement measurement taken for all ages. Again, the 

knowledge and concepts required to perform successfully in math courses at different 



23 

levels of education vary significantly. In order to determine whether or not the 

relationship between working memory and math achievement (as it would be helpful in 

their schoolwork) remains stable across age, measures of math achievement must test 

students’ abilities to do math at all levels. 

The Present Study 

The present study was designed to extend and fill in a few of the gaps found in the 

literature on working memory and math achievement. In order to do so, answers to the 

three sets of questions below are explored. Rather than looking only at math disorders, 

the full range of math achievement was studied. Evidence has been found to suggest that 

reading disorders might represent the lower end of the distribution of reading ability 

(Shaywitz, Escobar, Shaywitz, Fletcher & Makuch, 1992). Along the same line, these 

findings indicate that the same may be true for math; that is, that disorders in math simply 

represent the low end of math achievement (Geary, 1993).  

The first question investigated is: Is working memory related to math 

achievement? This question is intended to add to the research already conducted in this 

area and expand our knowledge of the relationship to include math achievement in 

elementary school through secondary school students. This study also explores whether 

or not there is a differential relationship between working memory and three areas of 

math achievement: fact fluency, calculation skills and applied math. It was expected that 

all three areas of math achievement would be related to working memory. 

The second question investigated is: Is the relationship between working memory 

and math achievement stable across age? Based on what little is known about math 
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achievement through the secondary level, working memory was expected to continue to 

be related to math achievement through the later grades; however, given the increased 

importance of abstract thinking and reasoning and the increased use of pencil and paper 

to solve complex problems in late elementary and secondary school math (Lerner & 

Kline, 2006), the relationship between these two constructs was expected to decline 

across age. The three areas of math achievement are explored separately. Similar results 

were expected for calculation and applied math as noted for overall math achievement, a 

continued but smaller relationship as age increases. Given the stable nature of student’s 

difficulties in fact fluency, the relationship between working memory and achievement in 

this area was expected to remain stable across age. 

Finally, the third question to be investigated is: Does working memory relate to 

math achievement above and beyond the effect of verbal and nonverbal reasoning and 

processing speed? Most studies of the relationship between working memory and math 

achievement or disability have not included the potential contributions of reasoning 

abilities or processing speed in their design. Studies that have included such measures 

have found that nonverbal reasoning (Swanson & Beebe-Frankenberger, 2004; Fuchs, et 

al, 2005) and processing speed (Swanson & Beebe-Frankenberger, 2004) are related to 

math ability. These studies also found that working memory contributes unique variance 

to math achievement or the prediction of math disabilities even after the effects of overall 

IQ (Geary, Hoard & Hamson, 1999; Russell & Ginsburg, 1984) or processing speed 

(Swanson & Beebe-Frankenberger, 2004) have been partialed out. It was predicted that 

similar results would be found in the present study for all areas of math achievement. 
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Method  

 

Participants 

 The 136 participants in this study include children and adolescents who 

completed comprehensive psychological assessments at the Psychological Clinic of 

George Mason University in Fairfax, Virginia between 2003 and 2007. Seventy-one 

participants were between the ages of 6 and 10 years old (M = 8.42, SD = 1.16), and 65 

participants were between the ages of 11 and 16 years old (M = 13.92, SD = 1.89). They 

included 84 males and 52 females. The race of 103 participants was not documented in 

their files and therefore was not able to be identified. Of those whose race was 

identifiable from their file, 26 were Caucasian, three were African-American, three were 

Asian, and one was Hispanic.  

Procedure 

Prior to data collection each student was given a standard battery of tests, 

including the Wechsler Intelligence Scale for Children – Fourth Edition (WISC-IV) and 

the Woodcock-Johnson Tests of Achievement – Third Edition (WJ Ach III). These tests 

are administered individually, with each participant working with the same examiner 

throughout testing. Each student’s parent signed a form giving their consent to have their 

child’s scores used for research purposes. The consent form clearly stated that no 

identifiable information would be used or connected to the research data. The standard 
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scores of each index of the WISC-IV and each math cluster and subtest of the WJ Ach III 

were collected for each participant from archival data. Each index and subtest that was 

used in the analysis is described below. 

Mathematics Measures 

 Three math measures were administered to each participant prior to data 

collection. These three measures compose the Broad Math cluster of the WJ Ach III. This 

cluster score provides a broad, comprehensive view of the child’s math achievement 

level. The Broad Math cluster standard score is used in this study to represent the 

participant’s overall math achievement in the analysis. The standard scores of each of the 

individual subtests making up this cluster represent the participant’s achievement in each 

area of math: math fluency, calculation and applications. 

 Math fluency. WJ Ach III Math Fluency (Woodcock, et al., 2001) measures how 

quickly the participant can solve basic addition, subtraction, and multiplication facts. 

Items are presented in a visual format, and testing is discontinued after exactly three 

minutes. The score is based on the number of correct items and the normative data for 

age. As reported by McGrew and Woodcock (2001), one-year test-retest reliability was 

.87; the ratio of true score variance to observed variance was .87-.93. Coefficient alpha 

on their sample was .92. 

 Calculation. WJ Ach III Calculation (Woodcock, et al., 2001) is a paper-and-

pencil task that requires the participant to perform a variety of math calculations, 

including basic addition, subtraction, multiplication and division, advanced calculations 

of each operation with regrouping and with negative numbers, fractions, percentages, 
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algebra, trigonometry, logarithms, and calculus. All items are presented to the participant 

at once in a visual format. As reported by McGrew and Woodcock (2001), one-year test-

retest reliability is .89; the ratio of true score variance to observed variance was .87-.96. 

Coefficient alpha on their sample was .93. 

 Applications. WJ Ach III Applied Problems (Woodcock, et al., 2001) measures 

the participant’s skill in analyzing and solving practical math problems. Items are 

presented both orally and visually. Participants may choose to read along as word 

problems are presented orally by the tester, but no reading is required. As reported by 

McGrew and Woodcock (2001), one-year test-retest reliability is .85; the ratio of true 

score variance to observed variance was .88-.91. Coefficient alpha on their sample was 

.91. 

Cognitive Measures 

 The Verbal Comprehension Index, Perceptual Reasoning Index, Working 

Memory Index, and Processing Speed Index scale scores of the Wechsler Intelligence 

Scale for Children – Fourth Edition (WISC-IV; The Psychological Corporation, 2003a) 

were used to measure aspects of participants’ cognitive functioning. 

 Verbal Reasoning. The WISC-IV Verbal Comprehension Index (VCI) includes 

three subtests (Similarities, Vocabulary and Comprehension) and measures a participant’s 

knowledge base, understanding and expression of verbal ideas, and verbal problem-

solving ability. As reported by The Psychological Corporation (2003b), the average test-

retest coefficient for the VCI is .93, and the average internal consistency coefficient is 

.94. 
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 Nonverbal Reasoning. The WISC-IV Perceptual Reasoning Index (PRI) includes 

three subtests (Block Design, Matrix Reasoning and Picture Concepts) and measures a 

participant’s nonverbal perception, visual-spatial analysis, and pictorial reasoning ability. 

As reported by The Psychological Corporation (2003b), the average test-retest coefficient 

for the PRI is .89, and the average internal consistency coefficient is .92. 

 Auditory Working Memory. The WISC-IV Working Memory Index (WMI) 

includes two subtests (Digit Span and Letter-Number Sequencing) and measures the 

participant’s auditory working memory capacity, or the ability to temporarily keep 

spoken information in mind while performing some active transformation or 

manipulation of it. Items on both subtests are presented auditorily, cannot be repeated by 

the examiner, include numerical information and have no visual supplement. As reported 

by The Psychological Corporation (2003b), the average test-retest coefficient for the 

WMI is .89, and the average internal consistency coefficient is .92. 

 Processing Speed. The WISC-IV Processing Speed Index (PSI) includes two 

subtests (Coding and Symbol Search) and measures the rapidity with which a person can 

solve low difficulty problems over the span of a few minutes. As reported by The 

Psychological Corporation (2003b), the average test-retest coefficient for the PSI is .86, 

and the average internal consistency coefficient is .88. 
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Results  

 

Working Memory and Math Achievement 

 In order to test the first hypothesis, that greater auditory working memory 

capacity predicts a higher level of math achievement, a simple regression was conducted 

of math achievement (dependent variable) on working memory (independent variable), 

using scores from all participants, regardless of age. Four separate simple regressions 

were run, each with a different measure of math achievement as the dependent variable 

and the participant’s WISC-IV WMI standard score as the independent variable.  

 Overall Math Achievement. In order to test the hypothesis that greater auditory 

working memory will predict a higher level of overall math achievement, a simple 

regression was conducted of overall math achievement (WJ Ach Broad Math score) on 

auditory working memory capacity (WISC-IV WMI score). Analysis of the correlation 

between the two variables showed that 37.5% of the variance in the Broad Math scores is 

explained by variance in the WMI scores (r = .61, p < .001). The regression line crosses 

the Y-axis (B0) at .75 (p < .001), and therefore when WMI = 0 the estimated mean of 

Broad Math is .75. Also, the slope of the regression line (B1) is .61 (p < .001), and 

therefore for every 1 unit change in WMI, Broad Math is predicted to increase .61. The t-

scores for B0 (t = 3.57, p < .01) and B1 (t = 8.98, p < .001) indicate that the intercept and 

slope fall within the critical region and are, therefore, significantly different from that of 
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the general population. There was a reasonable amount of explained variance relative to 

unexplained variance, r2 = .38, F(1, 134) = 80.55, p < .001. Therefore, the regression 

model explains a significant amount of variance in Broad Math scores. 

 Fact Fluency. In order to test the hypothesis that greater auditory working 

memory will predict a higher level of knowledge and fluency of basic math facts, a 

simple regression was conducted of knowledge and fluency of basic math facts (WJ Ach 

Fact Fluency standard score) on auditory working memory capacity (WISC-IV WMI 

score). Analysis of the correlation between the two variables showed that 24.7 % of the 

variance in the Fact Fluency scores is explained by variance in the WMI scores (r = .50, p 

< .001). The regression line crosses the Y-axis (B0) at .65 (p < .001), and therefore when 

WMI = 0 the estimated mean of Fact Fluency is .65. Also, the slope of the regression line 

(B1) is .50 (p < .001), and therefore for every 1 unit change in WMI, Fact Fluency is 

predicted to increase .50. The t-scores for B0 (t = 2.96, p < .01) and B1 (t = 6.64, p < .001) 

indicate that the intercept and slope fall within the critical region and are, therefore, 

significantly different from that of the general population. There was a reasonable 

amount of explained variance relative to unexplained variance, r2 = .25, F(1, 134) = 

44.07, p < .001. Therefore, the regression model explains a significant amount of 

variance in Fact Fluency scores. 

 Calculation Skills. In order to test the hypothesis that greater auditory working 

memory will predict a higher level of math calculation skill, a simple regression was 

conducted of math calculation skill (WJ Ach Calculation score) on auditory working 

memory capacity (WISC-IV WMI score). Analysis of the correlation between the two 
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variables showed that 14.6% of the variance in the Calculation scores is explained by 

variance in the WMI scores (r = .38, p < .001). The regression line crosses the Y-axis 

(B0) at .49 (p < .001), and therefore when WMI = 0 the estimated mean of Calculation is 

.49. Also, the slope of the regression line (B1) is .38 (p < .001), and therefore for every 1 

unit change in WMI, Calculation is predicted to increase .38. The t-scores for B0 (t = 

5.42, p < .001) and B1 (t = 4.79, p < .001) indicate that the intercept and slope fall within 

the critical region and are, therefore, significantly different from that of the general 

population. There was a reasonable amount of explained variance relative to unexplained 

variance, r2 = .15, F(1, 134) = 22.98, p < .001. Therefore, the regression model explains a 

significant amount of variance in Calculation scores. 

 Applied Problems. In order to test the hypothesis that greater auditory working 

memory will predict a higher level of skill in analyzing and solving practical math 

problems, a simple regression was conducted of skill in analyzing and solving practical 

math problems (WJ Ach Applied Problems score) on auditory working memory capacity 

(WISC-IV WMI score). Analysis of the correlation between the two variables showed 

that 27.9% of the variance in the Applied Problems scores is explained by variance in the 

WMI scores (r = .53, p < .001). The regression line crosses the Y-axis (B0) at .65 (p < 

.001), and therefore when WMI = 0 the estimated mean of Applied Problems is .65. Also, 

the slope of the regression line (B1) is .53 (p < .001), and therefore for every 1 unit 

change in WMI, Applied Problems is predicted to increase .53. The t-scores for B0 (t = 

4.54, p < .001) and B1 (t = 7.20, p < .001) indicate that the intercept and slope fall within 

the critical region and are, therefore, significantly different from that of the general 
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population. There was a reasonable amount of explained variance relative to unexplained 

variance, r2 = .28, F(1, 134) = 51.89, p < .001. Therefore, the regression model explains a 

significant amount of variance in Applied Problems scores. 

 Gender Differences. When the first hypothesis was tested separately with male 

participants and with female participants, auditory working memory was found to predict 

overall math achievement, fact fluency, calculation skill and skill in solving practical 

problems in both groups. Among male participants, 39.7% of the variance in the Broad 

Math scores is explained by variance in the WMI scores (r2 = .40, F(1, 82) = 54.05, p < 

.001), 25.7% of the variance in the Fact Fluency scores is explained by variance in the 

WMI scores (r2 = .26, F(1, 82) = 28.39, p < .001), 11.0% of the variance in the 

Calculation scores is explained by variance in the WMI scores (r2 = .11, F(1, 82) = 10.18, 

p < .01), and 23.7% of the variance in the Applied Problems scores is explained by 

variance in the WMI scores (r2 = .24, F(1, 82) = 25.41, p < .001). Among the female 

participants, 35.7% of the variance in the Broad Math scores is explained by variance in 

the WMI scores (r2 = .36, F(1, 50) = 27.82, p < .001), 23.6% of the variance in the Fact 

Fluency scores is explained by variance in the WMI scores (r2 = .24, F(1, 50) = 15.43, p 

< .001), 20.5% of the variance in the Calculation scores is explained by variance in the 

WMI scores (r2 = .21, F(1, 50) = 12.91, p < .01), and 35.0% of the variance in the 

Applied Problems scores is explained by variance in the WMI scores (r2 = .35, F(1, 50) = 

26.88, p < .001). 

Math Achievement and Working Memory: Effect of Age 
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 In order to test the second hypothesis, that the variance in math achievement 

explained by variance in working memory declines as age increases, the participants and 

their scores were first divided into two age groups (ages 6 - 10:11, and 11 - 16:11). These 

age groups are meant to represent approximate times in math education when changes 

may occur in the type or level of concepts students are expected to learn (elementary vs. 

secondary education). Descriptive statistics for the WISC-IV WMI scores and WJ Ach 

math scores of each age group are presented in Table 1 (ages 6 – 10:11) and Table 2 

(ages 11 – 16:11). Each of the four regressions run above were conducted for each age 

group. For each measure of math achievement comparisons of the slopes of the 

regression lines across the two age groups were made using an analysis of covariance 

with indicator or “dummy” variables and an interaction term (WISC-IV WMI score x 

AgeGroup dummy variable). The primary hypothesis tested here was the hypothesis of 

coincidence. The secondary hypothesis tested was the hypothesis of parallelism. 

 Overall Math Achievement. In order to test the hypothesis that the variance in 

overall math achievement explained by variance in working memory declines as age 

increases, the regression lines of the two age groups (simple regression of the WJ Ach 

Broad Math score on the WISC-IV WMI score) were compared using an analysis of 

covariance with dummy variables. The t-scores for both the dummy variable (AgeGroup; 

t = -6.11, p < .001) and the interaction term (WMI x AgeGroup; t = 5.63, p < .001) were 

significant. Therefore the hypothesis of coincidence was not accepted (See Table 3). 

These results suggest that the relationship between math achievement and working 

memory is not the same for the two age groups.  
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In order to further test the hypothesis that the variance in overall math 

achievement explained by variance in working memory declines as age increases, the 

slopes of the regression lines of the two age groups were compared using an analysis of 

variance. The t-score for the interaction term (WMI x AgeGroup; t = -1.93, p = .06) was 

not significant. Therefore the slopes of the regression lines were not statistically different, 

and the hypothesis of parallelism was accepted (See Table 4). These results do not 

support the hypothesis that the variance in overall math achievement explained by 

variance in working memory changes with age. 

Fact Fluency. In order to test the hypothesis that the variance in fluency of basic 

math facts explained by variance in working memory declines as age increases, the 

regression lines of the two age groups (simple regression of the WJ Ach Fact Fluency 

score on the WISC-IV WMI score) were compared using an analysis of covariance with 

dummy variables. The t-scores for both the dummy variable (AgeGroup; t = -5.44, p < 

.001) and the interaction term (WMI x AgeGroup; t = 5.04, p < .001) were significant. 

Therefore the hypothesis of coincidence was not accepted (See Table 5). These results 

support the hypothesis that the variance in fluency of basic math facts explained by 

variance in working memory changes with age. 

In order to further test the hypothesis that the variance in fact fluency explained 

by variance in working memory declines as age increases, the slopes of the regression 

lines of the two age groups were compared using an analysis of variance. The t-score for 

the interaction term (WMI x AgeGroup; t = -1.61, p = .11) was not significant. Therefore 

the slopes of the regression lines were not statistically different, and the hypothesis of 



35 

parallelism was accepted (See Table 6). These results do not support the hypothesis that 

the variance in fact fluency explained by variance in working memory changes with age. 

Calculation Skills. In order to test the hypothesis that the variance in math 

calculation skill explained by variance in working memory declines as age increases, the 

regression lines of the two age groups (simple regression of the WJ Ach Calculation 

score on the WISC-IV WMI score) were compared using an analysis of covariance with 

dummy variables. The t-scores for both the dummy variable (AgeGroup; t = -3.11, p < 

.01) and the interaction term (WMI x AgeGroup; t = 3.00, p < .01) were significant. 

Therefore the hypothesis of coincidence was not accepted (See Table 7). These results 

support the hypothesis that the variance in math calculation skill explained by variance in 

working memory changes with age. 

In order to further test the hypothesis that the variance in calculation skills 

explained by variance in working memory declines as age increases, the slopes of the 

regression lines of the two age groups were compared using an analysis of variance. The 

t-score for the interaction term (WMI x AgeGroup; t = -.31, p = .75) was not significant. 

Therefore the slopes of the regression lines were not statistically different, and the 

hypothesis of parallelism was accepted (See Table 8). These results do not support the 

hypothesis that the variance in overall math achievement explained by variance in 

working memory changes with age. 

Applied Problems. In order to test the hypothesis that the variance in solving 

practical math problems explained by variance in working memory declines as age 

increases, the regression lines of the two age groups (simple regression of the WJ Ach 
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Applied Problems score on the WISC-IV WMI score) were compared using an analysis 

of covariance with dummy variables. The t-scores for both the dummy variable 

(AgeGroup; t = -5.00, p < .001) and the interaction term (WMI x AgeGroup; t = 4.35, p < 

.001) were significant. Therefore the hypothesis of coincidence was not accepted (See 

Table 9). These results support the hypothesis that the variance in skill in solving 

practical math problems explained by variance in working memory changes with age. 

In order to further test the hypothesis that the variance in solving practical math 

problems explained by variance in working memory declines as age increases, the slopes 

of the regression lines of the two age groups were compared using an analysis of 

variance. The t-score for the interaction term (WMI x AgeGroup; t = -2.96, p < .05) was 

significant. Therefore the slopes of the regression lines were statistically different, and 

the hypothesis of parallelism was not accepted (See Table 10). These results support the 

hypothesis that the variance in applied problem solving skill explained by variance in 

working memory changes with age. 

Among participants aged six to ten years old, 22.6% of the variance in the 

Applied Problems scores is explained by variance in the WMI scores (r2 = .23, F(1, 69) = 

20.17, p < .001). Among participants aged eleven to sixteen years old, 27.9% of the 

variance in the Applied Problems scores is explained by variance in the WMI scores (r2 = 

.28, F(1, 63) = 24.42, p < .001). These results indicate that the variance in applied 

problem solving skill explained by variance in working memory increases with age. 

Unique Contribution of Working Memory on Math Achievement 
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 In order to test the third hypothesis, that auditory working memory explains 

variance in math achievement above and beyond the contributions of verbal and 

nonverbal reasoning and processing speed, a sequential regression was conducted of math 

achievement (dependent variable) on verbal and nonverbal reasoning, processing speed 

and working memory (independent variables). Four separate sequential regressions were 

run, each with a different measure of math achievement as the dependent variable and the 

participant’s WISC-IV VCI, PRI, PSI and WMI standard scores as the independent 

variables. For each regression, the VCI, PRI and PSI standard scores were entered into 

the equation first, followed by the WMI standard score. 

 Overall Math Achievement. It was hypothesized that auditory working memory 

would predict overall math achievement beyond verbal and nonverbal reasoning and 

processing speed. Sequential regression supports this hypothesis; an additional 9.0% of 

the variance in overall math achievement is explained by working memory beyond the 

variance explained by the other factors, ΔR2 = .09, Fchange(1,131) = 25.54, p  < .001 

(See Table 11). Based on the data presented here, auditory working memory explains 

unique variance in overall math achievement above and beyond the contributions of 

reasoning ability and processing speed. 

Fact Fluency. It was hypothesized that auditory working memory would predict 

fluency of basic math facts beyond verbal and nonverbal reasoning and processing speed. 

Sequential regression supports this hypothesis; an additional 9.3% of the variance in 

basic fact fluency is explained by working memory beyond the variance explained by the 

other factors, ΔR2 = .09, Fchange(1,131) = 18.56, p  < .001 (See Table 12). Based on the 
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data presented here, auditory working memory explains unique variance in fluency of 

basic math facts above and beyond the contributions of reasoning ability and processing 

speed. 

Calculation Skills. It was hypothesized that auditory working memory would 

predict math calculation skill beyond verbal and nonverbal reasoning and processing 

speed. Sequential regression does not support this hypothesis, ΔR2 = .02, Fchange(1,131) 

= 3.57, p = .06 (See Table 13). Based on the data presented here, auditory working 

memory does not explain unique variance in math calculation skill above and beyond the 

contributions of reasoning ability and processing speed. 

Applied Problems. It was hypothesized that auditory working memory would 

predict skill in solving practical math problems beyond verbal and nonverbal reasoning 

and processing speed. Sequential regression supports this hypothesis; an additional 6.2% 

of the variance in solving practical math problems is explained by working memory 

beyond the variance explained by the other factors, ΔR2 = .06, Fchange(1,131) = 16.35, p  

< .001 (See Table 14). Based on the data presented here, auditory working memory 

explains unique variance in skill in analyzing and solving practical math problems above 

and beyond the contributions of reasoning ability and processing speed. 
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Discussion 

 

The results of this study replicate and extend findings from the cognitive abilities-

organized mathematics achievement research. When integrated with prior research, the 

current study contributes to an emerging body of knowledge regarding the relationship 

between working memory and math achievement. While limitations to this study exist, 

the results have potentially important implications for research and theory examining 

math achievement as well as related education practices. 

 The results demonstrate that children’s auditory working memory abilities are 

related to their overall mathematics achievement, calculation skills, fact fluency and 

applied math skills throughout both elementary and secondary math education. Prior 

research has shown the importance of other cognitive variables in math achievement, 

including verbal reasoning (Floyd, Evans & McGrew, 2003), fluid reasoning (Floyd, 

Evans & McGrew, 2003; Swanson & Beebe-Frankenberger, 2004; Fuchs, et al, 2005) and 

processing speed (Bull & Johnston, 1997; Floyd, Evans & McGrew, 2003; Swanson & 

Beebe-Frankenberger, 2004). The results presented here extend this body of research by 

showing that auditory working memory also makes its own unique contribution to a 

student’s math achievement in the areas of fact fluency and applied math, but not in the 

area of calculation skills. 

Fact Fluency and Working Memory 
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 The speed and accuracy with which a person can solve simple math problems is 

clearly affected by a student’s auditory working memory capacity. This finding is 

consistent with previous research implicating the dysfunction or alternative functioning 

of working memory processes in poor fluency of basic math facts (Keeler & Swanson, 

2001; Swanson & Sachse-Lee, 2001).  

These results are not surprising given the strong link between math difficulties 

and problems in representing and retrieving math facts from long-term memory (Jordan 

& Hanich, 2000; Jordan, Hanich & Kaplan, 2003; Joradan & Montani, 1997; Geary, 

1993; Geary, Hoard, & Hamson, 1999; Gersten, Jordan & Flojo, 2005; Russell & 

Ginsburg, 1984; Bull & Johnston, 1997). Long before the math facts can be retrieved 

from long-term store the associations must be created, a process that is dependent on 

working memory resources. Before a student has stored a basic math fact, he relies on 

counting strategies. Each time he counts and adds two numbers together, an association is 

made between the two addends and the result (one math fact). However, in order for this 

association to be made, both addends and the result must all be present in working 

memory simultaneously. If the first and/or second addend fade from working memory as 

the student is counting, and therefore before the result is known, the association cannot be 

made or strengthened in long-term memory. This proposed mechanism for the 

relationship between fact fluency and working memory is consistent with the research 

showing that the more information is manipulated and organized before storage in long-

term memory the easier the information is to retrieve (Mastropieri & Scruggs, 1998). 
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At first glance, the mechanism described above may seem sufficient in explaining 

the importance of working memory on fact fluency. However, given that working 

memory has been shown to be related to both the acquisition and use of basic educational 

skills (Hitch & McAuley, 1991), it is possible that working memory is also important 

during the demonstration of fact fluency and the use of basic facts while solving 

problems. Simply demonstrating knowledge of basic facts may not seem to require 

substantial manipulation of information retrieved from long-term store, and short-term 

memory or rote recall has not been found to be related to math achievement. However, 

arithmetic facts are often presented in an Arabic format but are stored in a verbal format 

(Noel, et al., 2001). The translation from Arabic to verbal representation, and back again, 

occurs in working memory. Other functions of working memory may also be important in 

utilizing math facts. For example, working memory resources are used to activate 

relevant knowledge in long-term memory, including basic facts (Swanson & Sachse-Lee, 

2001).  

Most previous studies of math achievement have assessed only one or two 

cognitive variables, making it difficult to estimate the unique contribution of working 

memory. However, in order to utilize our findings to generate interventions for poor math 

achievement and to accurately inform future theory and research, it is necessary to 

discover which cognitive variables are important enough that a deficit or strengthening in 

that area will significantly impact achievement independent of other factors. Given the 

possible explanations for the role of working memory in the development and use of 

basic math facts described above, it is not surprising that the current study supports the 
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hypothesis that auditory working memory contributes a unique 9.3% of the variance in 

fact fluency even after the effects of verbal and nonverbal reasoning and processing 

speed are partialed out. This means that, regardless of a student’s reasoning ability or 

processing speed, the speed and accuracy with which she can solve basic math facts 

could be improved by either increasing her auditory working memory capacity or making 

accommodations specific to her working memory difficulty. 

 Calculation Skills and Working Memory 

 Given the relationship described above between working memory and fact 

fluency and that fluent knowledge of basic math facts is essential to reaching a correct 

solution during complex math calculations, it would be expected that working memory 

would also be important in the development of calculation skills. In line with previous 

research (Logie, Gilhooly, and Wynn, 1994; Noel, et al., 2001), the current study found 

that auditory working memory does explain 14.6% of the variance in math calculation 

performance. However, when previous research was expanded to determine the unique 

contribution of working memory, the current results indicate that auditory working 

memory is not important to math calculation above and beyond the contributions of 

reasoning abilities and processing speed. 

 One explanation for these results could be that visual-spatial working memory is 

more involved in calculation skills. The WISC-IV Working Memory Index very clearly 

measures auditory working memory; the results of this study can only point to the 

contributions of auditory or verbal working memory to math achievement. Therefore, 

while auditory working memory may not be uniquely important, visual working memory 
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or the visuo-spatial sketchpad of Baddeley and Hitch’s (1974) model of working memory 

could be necessary in the development of calculation skills. Studies investigating the 

contribution of visual working memory to math achievement have been mixed; several 

studies provide evidence for the importance of the visual spatial sketchpad in children’s 

arithmetical computations (Dark & Benlow, 1990; Swanson & Lee, 2001; McLean & 

Hitch, 1999), while others suggest that visual working memory does not contribute to 

calculation skills above verbal working memory (Hitch & McAuley, 1991; Logie, 

Gilhooly, and Wynn, 1994; Noel, et al., 2001; Wilson & Swanson, 2001). None of the 

previous research, however, has investigated the unique contribution of visual-spatial 

working memory on math calculation skills above and beyond reasoning ability and 

processing speed. Clearly further investigation is needed in this area.  

 Discovering the cognitive variables underlying calculation skills is especially 

important because the most common problem that differentiates children with math 

difficulties from children with other academic difficulties is their ability to solve multi-

step problems. The results of the current study seem to suggest that higher reasoning 

ability or faster processing speed can, in essence, make up for poor auditory working 

memory when it comes to performing complex calculations. Along the same line, poor 

reasoning ability or slow speed of processing may overtax adequate working memory 

resources.  

The results of Bull and Johnston (1997) suggest an explanation; they found that 

math achievement is limited by slow speed of number identification or retrieval of 

number representations from long-term memory. Given that number retrieval is slow, the 
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same could be true for symbol identification and retrieval of learned procedures needed 

for completing calculations. In fact, Swanson & Sachse-Lee (2001) showed that children 

with learning disabilities are deficient in retrieving knowledge related to algorithms. If 

during a novel calculation an inappropriately large amount of cognitive resources are 

spent accessing representations of numbers, symbols and procedures from long-term 

store or determining which procedure is needed, fewer resources are available for storage 

of new information. Therefore, during novel calculations designed to reinforce a new 

concept being taught, the new procedure is not learned or strengthened in long-term 

memory. This explanation suggests that difficulties with calculation skills are not due to a 

deficit in the ability to manipulate information in working memory, but rather to 

difficulties encountered while trying to encode the procedure. 

Applied Problems and Working Memory 

 Results of the current study are consistent with previous research indicating that 

working memory is important in the solution of word problems (Passolunghi & Siegel, 

2001; Swanson & Beebe-Frankenberger, 2004; Swanson & Sachse-Lee, 2001; Russell & 

Ginsburg, 1984). The current results extend the relationship between working memory 

and applied problem solving to include utilizing graphs, making measurements, and time 

and money concepts. Also, auditory working memory was found to make a unique 

contribution to the solution of everyday math problems; working memory explained a 

unique 6.2% of the variance in applied problem solving above the contributions of 

reasoning abilities and processing speed. 
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 The involvement of verbal or auditory working memory in the solution of applied 

math problems may be complex, involving many of the theorized functions of working 

memory. As mentioned above, working memory facilitates the access of needed 

information from long-term memory. In addition, the problem itself introduces a 

substantial amount of new information that must be held, interpreted and manipulated in 

working memory. The relationship between reading and working memory has been well-

established (Lerner & Kline, 2006), and therefore problems that require reading, such as 

word problems and, to a lesser extent, problems involving the interpretation of graphs, 

will rely on the working memory system.  

 Applied problems often contain extraneous information and the correct algorithm 

or procedure is not always readily apparent. One function of working memory is the 

suppression of irrelevant information, which has been found to be related to math 

achievement and disabilities (Passolunghi, Cordnoldi & De Liberto, 1999; Passolunghi & 

Siegel, 2004; Passolunghi & Siegel, 2001; Russell & Ginsburg, 1984). Children with high 

math achievement have also been found to utilize more diverse strategies when problem-

solving. However, in order to actively choose from multiple strategies, weighing the pros 

and cons of each, and select the most appropriate procedure, working memory resources 

are needed. Given all the functions of working memory and the multiple facets of applied 

problems it is not surprising that working memory would play such an important role. 

Math Achievement and Working Memory: Effect of Age 

 The variance in overall math achievement, fact fluency, and calculation skills was 

not significantly different between the two age groups studied here. These results are 
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consistent with and expand on studies that have also found a stable relationship between 

working memory and math achievement across age but have either limited their age 

range to elementary (Swanson & Beebe-Frankenberger, 2004) or secondary school 

children (Dark & Benbow, 1990), or to a specific area of math achievement, such as 

calculation (Wilson & Swanson, 2001). The current study provides evidence for the 

theory that both elementary and secondary level math achievement rely on auditory 

working memory to the same degree. 

 An alternative explanation for these results could be that the tasks used to 

represent math achievement did not adequately test the range from elementary to 

secondary level math. For example, the nature of basic math facts and fluency do not 

change as students progress through grade levels; rather, students are simply expected to 

complete a greater number of problems accurately in a given time period. While the 

calculation tasks tapped into secondary level math concepts, such as algebra and 

geometry, performance on these tasks continued to be dependent on early math skills.   

Students’ achievement at a secondary level is affected by prior achievement 

(Jones, 1997). Therefore, a student’s working memory impairment could relate to 

secondary math achievement through the earlier relationship between working memory 

and basic math achievement. That is, given the results of the current study, a student with 

low working memory abilities would be expected to demonstrate low math achievement 

in the early grades; this low achievement in the early grades would then impact math 

achievement in later grades, regardless of working memory capacity at that time. 
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One final explanation for these results must be posited: that visual-spatial working 

memory becomes more important in completing and understanding higher level, and 

more complex, math problems. Some aspects of secondary math, such as algebraic word 

problems, are more reading intensive than elementary level math problems. Others are 

more visually complex and may require the manipulation of spatial features, such as 

understanding fractions and geometry. Therefore, while auditory working memory seems 

to be equally important in most areas of elementary and secondary level math, the 

contribution of visual-spatial working memory remains unknown.  

The results of the current study indicate that working memory also continues to be 

related to applied problem solving skills through the later grades; however, the 

relationship between these two constructs increased across age.  Therefore, auditory 

working memory may play a greater role in a student’s ability to solve applied problems 

in the later grades. This finding is consistent with the increased complexity of problems 

in late elementary and secondary level math. For example, as noted above, word 

problems may become more reading intensive in secondary level math.  

Also, secondary applied math problems may require the simultaneous use of a 

larger number of skills than would be needed for elementary level problems. Elementary 

level applied problems may involve choosing the correct operation out of four (addition, 

subtraction, multiplication and division), knowledge of basic math facts and completing 

multi-digit calculations. Secondary applied math problems often involve more numbers, 

terms and irrelevant information, and require the student to sort through a greater number 

of possible algorithms (including algebraic equations and geometry postulates) in 
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addition to retrieving basic math facts and completing the complex calculations. 

Therefore, secondary level applied problems may require the student to hold and 

manipulate a significantly greater amount of information in working memory than 

elementary level problems. 

Additional Theoretical Implications 

 The results of this study have clearly shown the importance of auditory working 

memory as an underlying process involved in the learning and/or demonstration and use 

of math skills. However, the results further support previous research and theory in 

cognitive psychology indicating that there are many cognitive processes involved in 

learning, and that the dysfunction or alternative functioning of any of these processes 

would lead to difficulties in learning. Many diagnosticians have focused on students’ 

performance patterns on cognitive tests in order to diagnose learning disabilities 

(Bannatyne, 1974; Kaufman & Lichtenberger, 2002; Kamphaus, 2001). These models 

assume that particular learning disabilities (i.e., reading, mathematics or written 

language) are the result of a specific pattern of neuropsychological deficits. However, 

research has repeatedly shown that these patterns do not consistently identify children 

with specific learning disabilities. D’Angiulli and Siegel (2003) showed that some 

children with learning disabilities demonstrated the predicted patterns, but at least 65% of 

the diagnosed children did not. Watkins, Kush and Schaefer (2002) showed that the 

WISC-III Learning Disability Index (LDI) exhibited low diagnostic accuracy, resulting in 

a correct diagnostic decision only 55 to 64% of the time. In addition, the ACID profile 

and SCAD profile have also been shown to have little or no diagnostic utility (Watkins, 
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Kush, and Glutting, 1997a; Watkins, Kush and Glutting, 1997b). This research indicates 

that, while children with learning disabilities do have cognitive deficits, no one pattern is 

enough to account for all learning difficulties, even when separated into disorders of 

reading, written expression and arithmetic.  

Results of the current study have shown that not all math difficulties are created 

equal. Calculation skills, and fact fluency and applied problem solving are differentially 

affected by auditory working memory abilities. This supports the theory that different 

underlying cognitive processes are at work in developing different math skills. The 

results add to the evidence that learning disabilities in general, and math disabilities 

specifically, are heterogeneous; one child with a math disorder may have a different 

pattern of cognitive strengths and weaknesses than another child with a math disorder. 

Therefore, while math learning disabilities may represent an extreme end of the 

continuum of math achievement (Geary, 1993), current results suggest, instead, that 

disorders in math represent the extreme ends of several continuums of math achievement, 

one for each math skill or domain.  

Furthermore, while differences in auditory working memory uniquely explained 

some of the variance in fact fluency and applied problem-solving, working memory did 

not come close to explaining all of the variance in these skills. Therefore, even in the 

areas of fluency and applied problems, other cognitive processes likely contribute to math 

achievement. Given that there were decreases in the variance explained by working 

memory when verbal and nonverbal reasoning and processing speed were included in the 

regression equations, some combination of these cognitive variables are likely important 
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in the three areas of math achievement studied here. This is consistent with prior research 

(Bull & Johnston, 1997; Floyd, Evans & McGrew, 2003; Swanson & Beebe-

Frankenberger, 2004; Fuchs, et al, 2005). Many other elements of information processing 

are also linked to mathematics, including attention, visual-spatial perception and 

processing, auditory processing, memory and retrieval, and motor skills (Wilson & 

Swanson, 2001; Gersten, Jordan, and Flojo, 2005; Dowker, 2005; Kroesbergen, Van Luit, 

and Naglieri, 2003). Poor understanding of language and low reading abilities can also 

negatively influence math learning (Fletcher, 2005; Lerner & Kline, 2006). 

Practical Implications 

Results of the current study have several implications for practices in math 

education and in diagnosis of math learning disabilities. Given the vast number of 

cognitive processes and other variables that are important in learning math, it seems clear 

that one or two general interventions are not adequate to help overcome or compensate 

for all math difficulties. In order to better alleviate a student’s unique difficulties in 

learning, interventions must be tailored to his/her combination of cognitive strengths and 

weaknesses.  

However, the current research suggests that strategies that boost or facilitate the 

use of auditory working memory resources would be helpful in improving math 

achievement for some students, particularly in the areas of basic fact fluency and applied 

problems. It may be helpful to explicitly teach the student specific memory strategies and 

how to recognize the most useful strategy to use in a variety of situations. Examples 

include using verbal rehearsal, chunking, making ridiculous visual images composed of 
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items that one has to remember, and creating first-letter mnemonic strategies. 

Understanding also facilitates memory, and ensuring that a student has a strong 

understanding of underlying concepts before learning new math skills is important. The 

stronger understanding a student has of these related concepts, the more working memory 

resources he will have available to make associations, thereby facilitating the encoding of 

new information in long-term memory. 

Other strategies can be used to accommodate for weaknesses in auditory working 

memory. When learning basic math facts to automaticity, for example, encoding can be 

facilitated by providing both visual and verbal representations of the problem as the 

student is counting. In this way, early in the learning process the student would not have 

to utilize working memory resources translating the problem from Arabic to verbal 

representation. Providing visual and verbal representations of applied or word problems 

would also be beneficial. This may include verbal descriptions of graphs and charts or 

pictures that depict word problems. When learning new math procedures and solving 

novel problems, students with weaknesses in auditory working memory may also benefit 

from having a visual or written description of the necessary steps (examples, lists or flow 

charts) available in front of them. 

Results of the current study indicate that strategies for facilitating weaknesses in 

auditory working memory would also be beneficial for students learning math at the 

secondary level. In order to reduce the amount of working memory resources needed, the 

use of a calculator or fact chart would be helpful when the focus of instruction is on 

learning higher level procedures and operations. When a student has difficulty organizing 
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applied problems that are complex or involve many variables, she may reduce working 

memory demands by constructing a similar problem with fewer variables or substituting 

lower values and solving it. She may then solve the more complex problem by adapting 

the solution or procedure she used for the simpler problem.  

These strategies may be helpful for improving students’ calculation skills. 

However, given that the results of the current study show that auditory working memory 

explains negligible variance in calculation skills above and beyond other cognitive 

variables, time and effort would most likely be better spent employing strategies that 

improve or accommodate for relative weaknesses in verbal or nonverbal reasoning, 

processing speed, or other variables found to be related to these skills. 

Finally, a relative weakness in auditory working memory may be one example of 

a cognitive process deficit that might be used to identify a student as having a math 

learning disability. However, given that working memory does not explain all variance in 

math achievement and other cognitive processes are necessary, adequate or above 

average working memory abilities should not be used to rule out a math learning 

disability diagnosis. 

Limitations 

 The research based on archival data presented here has several limitations, most 

related to the lack of information collected and recorded in client files or the power 

restrictions of a small sample size. Participants were not a random sample of the 

population. Instead, all participants were originally referred for cognitive and academic 

testing by their parents. An assumption can be made that, according to their parents, the 
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children included in this study were all struggling, either academically or emotionally. 

These difficulties could have included math achievement, but may have also involved 

reading or writing difficulties, attention or impulsivity, or emotional issues. The inability 

to control for these individual differences that were unrelated to the purpose of the 

current study may have confounded the results in several ways. 

 Math difficulties and learning disabilities in general have been found to be 

significantly comorbid with Attention-Deficit Hyperactivity Disorder (ADHD) (Semrud-

Clikeman, Biederman & Sprich-Buckminster, 1992; Lerner & Kline, 2006). Significant 

memory differences have been found between students with ADHD and comorbid 

ADHD and LD; specifically, there is evidence that memory deficits in children with both 

ADHD and learning difficulties are significantly greater than those found in children with 

only ADHD (Jakobson & Kikas, 2007). Math difficulties are also often correlated with 

reading difficulties (Lerner & Kline, 2006; Mazzocco & Myers, 2003). Swanson & 

Jerman (2006) found that children with only a math disability demonstrated greater 

verbal working memory than children with both math and reading disabilities.  

 A full scale or overall IQ of participants was not included in the current analysis, 

and therefore it is possible that the clinic sample used in this study may have also 

included children with a mild impairment in overall intellectual functioning. Several 

studies have provided evidence that children with general intellectual impairments 

demonstrate relative weaknesses in verbal working memory (Rosenquist, Conners & 

Roskos-Ewoldsen, 2003; Lanfranchi, Cornoldi & Vianello, 2004; Purser & Jarrold, 2005; 

Silverman, 2007). In addition, math anxiety also has a significant impact on math 



54 

achievement for some children (Miller & Bichsel, 2004; Lerner & Kline, 2006). Given 

that the tasks used to measure working memory in this study involved memory for 

numbers, these participants could have performed more poorly on the WISC-IV WMI 

due to their anxiety, rather than a true cognitive deficit. These math anxious participants 

would then have low performance on both achievement and working memory measures, 

possibly inflating the relationship between the two constructs. Therefore, the possible 

inclusion of children with various attention, learning and anxiety problems or mild 

intellectual impairments may have influenced the results of the current study. 

 While results of the current study provide preliminary evidence that the 

relationship between working memory and math achievement may be similar between 

males and females, too few female participants were included to reach a power level 

necessary to make a clinically significant statement about gender. Results of prior 

research investigating the difference between males’ and females’ performances on 

working memory tasks have been mixed. Robert and Savoie (2006) and Rucklidge and 

Tannock (2002) found no significant gender differences in verbal or visual-spatial 

working memory. In contrast, Sutcliffe, Marshall & Neill (2007) showed that female rats 

and rats with higher levels of female hormones performed better on a measure of general 

working memory ability. Still others have found that males perform better on separate 

visual and spatial working memory tasks (Geiger & Litwiller, 2005; Cattaneo, Postma & 

Vecchi, 2006; Sutcliffe, Marshall & Neill, 2007) or verbal working memory tasks 

(Geiger & Litwiller, 2005).  
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 Due to the inability to identify the race of 103 out of 136 participants, analysis of 

ethnic differences in working memory, math achievement and the relationship between 

the two constructs was not possible. Also, the inability to make statements regarding 

whether or not the participants adequately mirrored the ethnic distribution of the general 

population compromised the generalizability of the results of this study. This is 

particularly important in light of research that suggests that ethnicity significantly 

predicts variance in performance on some working memory tasks (Diehr, Heaton & 

Miller, 1998). 

 Another confounding variable in the current study may have been the use of 

medications by the participants. This aspect may have been influenced by the examiners 

at the time of testing based on the referral question but was not able to be controlled by 

the current experimenters. For example, if the assessment was being conducted to test for 

ADHD a client may have been asked to refrain from taking any medication prescribed for 

inattention or hyperactivity but if the referral question involved a possible learning 

disability the client may have been asked to remain on medication in order to control for 

symptoms related to ADHD or other medical disorders. Research has found that when 

children with ADHD are taking stimulant medication they show improvement in spatial 

(Kempton, Vance & Maruff, 1999; Barnett, Maruff & Vance, 2001) and general working 

memory abilities (Frank, Santamaria & O’Reilly). Arnsten (2006) found that the 

relationship is more complicated; she found that working memory in children with 

ADHD is improved with low doses of a stimulant but is impaired with high doses of the 

same medication. To complicate the possible effects of medication even more, 



56 

medications used to treat other medical conditions may have differential effects; for 

example, Lee, Jung and Suh (2006) found that the working memory of epilepsy patients 

was impaired with the use of seizure medication.   

One final confounding variable in the current study may be in the tasks used to 

measure working memory. The tasks making up the WISC-IV WMI involve the 

manipulation of digits (Digit Span) or digits and letters (Letter Number Sequencing). It 

may be that some other cognitive factor involved in processing numerals or numeric 

information is affecting performance on both the working memory tasks and the math 

tasks. A deficit in this other area of processing would result in lower scores on both the 

WMI and the math achievement tasks, thereby inflating the variances in math 

achievement explained by working memory found in the current study. Future studies 

could explore this possibility by including measures of auditory working memory that 

involve words rather than numbers. The results of the current study should be thought of 

as describing the relationship between math achievement and numerical auditory working 

memory. 

Future Directions 

 While the possibly confounding variables presented above limit the 

generalizability of the current findings, given the emerging nature of research in this area, 

they do not reduce the importance and utility of the results in guiding future research in 

the area of math achievement and working memory. The current results, together with 

previous research, indicate the importance of continuing to study the relationship between 

working memory and math achievement, specifically basic fact fluency and applications. 
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In particular, it will be important to identify the contribution that auditory working 

memory makes to the learning of math concepts compared with the contribution it makes 

to the demonstration or use of these skills. Making this distinction and clarifying the role 

of working memory will help to determine which strategies are most useful and efficient 

in math education, further narrowing the search for interventions before students find 

success. 

 As noted above, the involvement of verbal or auditory working memory in the 

solution of applied problems may be complex and involve many of the theorized 

functions of working memory, including the manipulation of information, activation of 

information in long-term store, inhibition of irrelevant information and maintenance of 

new information. This, together with the fact that there are many different types of 

applied problems, including word problems and problems involving charts, graphs, and 

time and money concepts, suggests that further study is needed in this area. Investigation 

into which functions of auditory working memory are most important for which types of 

applied problems would again help to further refine the search for interventions. 

 The fact that auditory working memory does not seem to underlie achievement in 

math calculation indicates the need for additional research. What underlying cognitive 

processes are important in the development of calculation skills? In the current study the 

use of verbal and nonverbal reasoning abilities and processing speed to determine that 

verbal working memory does not contribute unique variance suggests a few starting 

points. Given the inconsistent results of previous research, the role of visual and spatial 

working memory in math calculation should continue to be investigated. Evidence of a 
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relationship between general math achievement and other factors, including attention, 

visual-spatial perception and processing, auditory processing, retrieval from long-term 

memory, and motor skills, implicates these areas as additional possibilities for underlying 

processes in the development of math calculation skills. 

 The investigation into the relationship between working memory and secondary 

level math education is still new. While the results of the current study suggest that the 

contribution of auditory working memory to math achievement continues from 

elementary to secondary level math, this relationship requires further dissection. First, 

prior achievement affects achievement at a secondary level. Therefore, further research is 

needed to determine whether the continued relationship between auditory working 

memory and secondary level math found in the current study is moderated by the earlier 

relationship between working memory and basic math achievement. This could be 

examined by controlling for the impact of early math achievement while studying the 

relationship between working memory and math in a longitudinal study. Second, visual-

spatial working memory may become more important as math concepts become more 

complex. Therefore, while there is preliminary evidence that visual-spatial working 

memory does not contribute to math achievement at an elementary level, the contribution 

to secondary math achievement should be explored. 

 Finally, the limitations of the current study mentioned above suggest directions 

for future research in this area. First, to improve the generalizability of the current results, 

comparisons of the relationship between working memory and math achievement in 

different ethnic groups and genders should be investigated. Second, in future studies, the 
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effects of medications on this relationship should not only be controlled for but also 

examined. 

Final Thoughts 

 Mathematics and problem-solving ability is becoming more important in our 

society. Yet many of our students struggle with these concepts from elementary through 

secondary school because of some form of specific memory or cognitive deficit. Math 

achievement, and in particular its relationship to cognitive processing, has only just 

begun to be examined. The results of this study shed light on one area of processing by 

providing evidence for the differential effects auditory working memory has on basic fact 

fluency, applied math, and calculation skills. The relationship found between auditory 

working memory and math achievement continued from the elementary to the secondary 

level, further highlighting the need for additional research into the processes underlying 

the development of more complex math skills. Continued research in this area will 

benefit not only the individual children struggling to learn and utilize math skills but 

society, as more people will be able to use this symbolic language that helps us to record 

and communicate information and ideas. 
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Appendix 
 
 
 
Table 1:  Descriptive Statistics of WMI and WJ Ach measures (ages 6 – 10:11) 
Variable Minimum Maximum Mean (SD) 

WMI 71 129 102.39 (12.06) 

Broad Math 65 148 109.06 (14.91) 

Calculation 55 148 104.83 (16.84) 

Fact Fluency 49 129 97.10 (16.12) 

Applied Problems 70 148 111.41 (15.31) 

 
 
 
Table 2:  Descriptive Statistics of WMI and WJ Ach measures (ages 11 – 16:11) 
Variable Minimum Maximum Mean (SD) 

WMI 62 123 97.29 (12.76) 

Broad Math 72 138 101.52 (15.31) 

Calculation 69 146 102.51 (15.06) 

Fact Fluency 57 134 90.22 (16.11) 

Applied Problems 62 136 101.71 (14.39) 

 
 
 
Table 3:  Significance Testing of the Test of Coincidence (Broad Math) 
Source SS Df MS F 

Regression 7799.40 1 3899.70 21.01* 

Error 24682.33 133 185.58  

Total 32481.74 135   

*p < .001 
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Table 4:  Significance Testing of the Test of Parallelism (Broad Math) 
Source SS Df MS F 

Regression 876.05 1 876.05 3.71 

Error 31605.68 134 235.86  

Total 32481.74 135   

 
 
 
Table 5:  Significance Testing of the Test of Coincidence (Fact Fluency) 
Source SS Df MS F 

Regression 7181.87 2 3590.93 16.35* 

Error 29215.16 133 219.66  

Total 36397.03 135   

*p < .001 

 

Table 6:  Significance Testing of the Test of Parallelism (Fact Fluency) 
Source SS Df MS F 

Regression 687.62 1 687.62 2.58 

Error 35709.41 134 266.49  

Total 36397.03 135   

 
 
 
Table 7:  Significance Testing of the Test of Coincidence (Calculation) 
Source SS Df MS F 

Regression 2360.02 2 1180.01 4.88* 

Error 32185.36 133 242.00  

Total 34545.38 135   

*p < .01 
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Table 8:  Significance Testing of the Test of Parallelism (Calculation) 
Source SS Df MS F 

Regression 25.46 1 25.46 0.10 

Error 34519.92 134 257.61  

Total 34545.38 135   

 
 
 
Table 9:  Significance Testing of the Test of Coincidence (Applied Problems) 
Source SS Df MS F 

Regression 6892.32 2 3446.16 17.65* 

Error 25961.62 133 195.20  

Total 32853.93 135   

*p < .001 

 

Table 10:  Significance Testing of the Test of Parallelism (Applied Problems) 
Source SS Df MS F 

Regression 2009.70 1 2009.70 8.73* 

Error 30844.24 134 230.18  

Total 32853.93 135   

* p < 0.05 
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Table 11: Significance Testing of the Overall Model (Broad Math) 

Variable β sR2 
Step 1   
     VCI .54*** .29 

R2 
.29 

F(1,134) 54.17*** 
Step 2   
     VCI .26** .04 
     PRI .41*** .09 

R2 
.38 

F(2,133) 40.93*** 

ΔR2 
.09 

Fchange(1,133) 20.01*** 
Step 3  
     VCI  .25** .03 
     PRI .33*** .06 
     PSI .27*** .07 

R2 
.45 

F(3,132) 35.46*** 

ΔR2 
.07 

Fchange(1,132) 15.56*** 
Step 4   
     VCI .17* .02 
     PRI .26** .03 
     PSI .16* .02 
     WMI .36*** .09 

R2 
.54 

F(4,131) 37.93*** 

ΔR2 
.09 

Fchange(1,131) 25.54*** 
* p < .05, ** p < .01, *** p < .001 
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Table 12: Significance Testing of the Overall Model (Fact Fluency) 

Variable β sR2 
Step 1   
     VCI .21* .04 

R2 
.04 

F(1,134) 5.96* 
Step 2   
     VCI .08 .003 
     PRI .19 .02 

R2 
.06 

F(2,133) 4.51* 

ΔR2 
.02 

Fchange(1,133) 2.98 
Step 3  
     VCI  .05 .001 
     PRI .06 .002 
     PSI .46*** .19 

R2 
.25 

F(3,132) 14.62*** 

ΔR2 
.19 

Fchange(1,132) 32.69*** 
Step 4   
     VCI -.03 .0005 
     PRI -.01 .00006 
     PSI .35*** .09 
     WMI .37*** .09 

R2 
.34 

F(4,131) 17.07*** 

ΔR2 
.09 

Fchange(1,131) 18.56*** 
* p < .05, ** p < .01, *** p < .001 
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Table 13: Significance Testing of the Overall Model (Calculation) 

Variable β sR2 
Step 1   
     VCI .45*** .20 

R2 
.21 

F(1,134) 34.49*** 
Step 2   
     VCI .23* .03 
     PRI .33** .06 

R2 
.27 

F(2,133) 23.93*** 

ΔR2 
.06 

Fchange(1,133) 10.85** 
Step 3  
     VCI  .23* .03 
     PRI .30** .05 
     PSI .10 .01 

R2 
.27 

F(3,132) 16.56*** 

ΔR2 
.01 

Fchange(1,132) 1.60 
Step 4   
     VCI .19 .02 
     PRI .27* .04 
     PSI .05 .002 
     WMI .17 .02 

R2 
.29 

F(4,131) 13.55*** 

ΔR2 
.02 

Fchange(1,131) 3.57 
* p < .05, ** p < .01, *** p < .001 
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Table 14: Significance Testing of the Overall Model (Applied Problems) 

Variable β sR2 
Step 1   
     VCI .48*** .23 

R2 
.23 

F(1,134) 39.03*** 
Step 2   
     VCI .07 .003 
     PRI .61*** .20 

R2 
.43 

F(2,133) 50.09*** 

ΔR2 
.20 

Fchange(1,133) 47.59*** 
Step 3  
     VCI  .07 .002 
     PRI .57*** .17 
     PSI .10 .01 

R2 
.44 

F(3,132) 34.46*** 

ΔR2 
.01 

Fchange(1,132) 2.26 
Step 4   
     VCI .001 .000001 
     PRI .52*** .14 
     PSI .01 .0001 
     WMI .30*** .06 

R2 
.50 

F(4,131) 32.94*** 

ΔR2 
.06 

Fchange(1,131) 16.35*** 
* p < .05, ** p < .01, *** p < .001 
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