2
E Re pa i ts INCREMENTAL GENERATION OF
VL1 HYPOTHESES:

f th the underlying methodology

9 . and the description of program AQll

I tellicer by

o
ntelilgent R. S. Michalski and J. B. Larson

seta e Revised by K. Chen
S}S‘Cr’:“ January 1983

Group

File No. UIUCDCS-F-83-905 ISG 83-5

ol e Toioos G e b e T T R P -y

> T g ; Ak = . P

T LA : . Sl

Ly I T omE L i
¥ g ! g, P X
! ¥ - 4 ». et

-
-

.

A
L
l\- o
i

10 -
R
N

e .
R -~
Lo X 2
- w00
Yo R
3
L F

SRR =r Ay T ENLIOF COMP

. I e T g .
: UNIVERSITYSOF-JLUNOIS A

DaVince Tools
This PDF file was created by an unregistered copy of the shareware program DaVince Tools. For more information about DaVince Tools and how to register your software (which will remove this notice), visit http://www.davince.com

DaVince Tools
This PDF file was created by an unregistered copy of the shareware program DaVince Tools. For more information about DaVince Tools and how to register your software (which will remove this notice), visit http://www.davince.com

Date: January 5, 1983)
Subject: A simple description of the AQllp files archived
on a magnetic tape (1600 bpi).

1) Files on the tape

aqll.obj : the object code of AQllp program, version 1/5/83
aqll ¢ a command file to run the AQllp program

filter ¢ the output format of aqll.obj was intended for
printers that take the first character of each
line as control signal, for those printers that
do not work this way, this program can be used to
make the translation.

testf : contalns the testing events for aqllexl

transf : contains the symbolic names of classes, variables
and variable values for aqllexl

aqllexl : the input data for the first AQllp example

manual.tape: this manual
aqll.source: the source code (written in PASCAL) of AQllp

2) How to list the content of the tape
tar t0

3) How to tfansfer the files on the tape to disk
tar xvO

4) How to run AQllp
aqll input-file output-file

5) To coﬁpile aqll.source: eihter

pl aqll.source > error—-listing
or pc aqll.source > error-listing

does the job. The default file names for the object code produced are
“a.out” for “pe”, and “obj” for “pil”. For faster compilation, use
“pi”. For faster execution, use “pc”. :

Incremental Generation
of VL1 Hypotheses:
The Underlying Methodology
and the Description
of Program AQll

R. S. Michalski and J. B. Larson

MLI 83-11
ISG 83-5
UIUCDCS-F-83-90§

§3-/]

INCREMENTAL GENERATION OF
VL1 HYPOTHESES:
the underlying methodology
and the description of program AQll

by

R. S. Michalski and J. B. Larson

Revised by K. Chen
January 1983

Department of Computer Science
University of Illinois at Urbana~Champaign
Urbana, IL 61801

ISG 83-5

File No. UTIUCDCS-F-83-905

This work was supported in part by the National Science Foundation under
Grants MCS 76-22940, MCS 82-05166 and MCS 82-05896, and the Office of Naval
Research under Grant N00014-82-K-0186. ’

1

1. INCREMENTAL GENERATION AND TESTING OF VL1 HYPOTHESES: Program AQll

1.1 Introduction

There are many situations when one starts with certain initial
hypotheses about given data and then, in the process of experimenting with
thesg hypotheses, has to modify them 1n order to preserve consistency with new
acquired facts. Such situations arise, e.g., in rule-based expert systems, where
in the course of a system's performance some rules are discovered to be incorrect
or incomplete, and have to be modified.

A process of generating hypotheses (or descriptions) in steps, where
each step starts with certain working hypotheses and a set of (new) data, and

ends with appropriately modified hypotheses,is called an incremental (or multi-

step) generation of hypotheses.

The purpose of program AQll is to implement such an incremental
generation of hypotheses in the framework of the variable-valuea logic system
VL1 (Michalski 74). Although this framework is too restricted to model many
"real life" hypothesis formation processes, it is still sufficiently rich
to provide a challenging topic and a basis for developing inductive learning
techniques applicable to a variety of practicél problems.

Hypotheses are expressed here as (constant-free) disjunctive

normal VLl expressions (DVL1 expressions*). A DVL1 expression is a disjunction

of complexes,** where a complex is a logical product of selectors. A selector is a

statement in the form:

[# R]
where X 1is a unary descriptor (variable)
denotes any of the relational operators = # 2> <

R is a list of constants which are elements of the domain of x (R 1is called

the reference of the selector)

*In the general case, DVLj expressions involve constants and are mul tiple~valued logic
expressions [Michalski 74]. Here, for simplicity, we will assume initially, that’
they are just binary (i.e., either satisfied or not satisfied), and have no constants.

**The "complex' replaces the name "term'" in [Michalski 74].

When a DVL1 expression is evaluated for a given event, selectors are

interpreted as conditions (or questions). A selector is satisfied if the value of the

variable in the event satisfies the condition, otherwise, it is not satisfied.

Some examples of selectors and their interpretation as conditions follows:

[xi = 1] value of Xy is equal to 1?
[xi = 1v3] value of Xy is equal to 1 or 37
[xi = 1,.3] value of X, is between 1 and 3, inclusively?

An example of a complex:

[xl = 3][x3 = 2,4,5][:(5 = 0]

The above complex is satisfied if Xy equals 2, x, has value 2, 4, or 5 and

3

x_. has value O.

5
An example of DVL1 formula:
T1 \ T2 v '1‘3
where Tl’ T2’ T3 are complexes. The formula is satisfied if complex Tl or T2
or T, 1s satisfied.

3
A DVL, formula is interpreted as a description of a set of

events, namely events which satisfy it.

1.2 Description of Methodology

Suppose there is given a set of hypotheses (DVLl descriptions),

vV = {61}’ i=1,...,m, and a family of event sets ('facts'), F={Fi}, which these
hypotheses are supposed to describe. Suppose that for any i, Vi describes cor-
rectly only a part of the events from Fi' '

The problem is to produce a new set of hypotheses, VL= {Vi}, where
each Vi describes ail events from set Fi’ and does not describe events from
any other event set Fj’ j#i.

The following solution to this problem is based on the multiple

application of a computer program implementing an efficient algorithm [Michalski 71]

for determining a cover, C(EIIEO), of an event set El against the event set Eo.

3

Such a cover can be interpreted as a DVLl expression, which 1is satisfied by every
event in El and not satisfied by any event in Eo (or in Eo\El, if Eo and E1 intersect).
The solution consists of 3 major steps:

Step 1. The first step isolates those facts which are not consistent

with the given hypotheses. For each hypothesis, two sets

are created:

F+ ~ a set of events which should be covered by the hypothesis,

but are not

F - a set of events which are covered by the hypothesis, but
should not be covered.

(An event is said to be covered by a hypothesis if the event

satisfies the VL1 formula which represents the hypothesis.)

Specifically, this step determines, for each i, 1=1,2,...,m, the sets#:

+

Fy = Fi\x“ri | (8)
-— N

Fij =V, N Fj, 3=1,2,...,m; j#i (9)

(see Figure 1),

+
Thus, Fi denotes events which should be covered by V1 but are not, and

Fij denotes 'exception' events, i.e., events in Fi’ j#i, which are
covered by Vi’ but should not be covered.

Step 2. This step determines, for each i, a generalized formula V;

describing all exception events (the union of sets F;j’ i=1,2,...,m,

j#i). This is done by generating, for given 1 and each j» a cover of

N +
F against the events in the sets V.6 U Fi’ i=1,2,...,m:

13 - 1
-~ - +
Vig = CF 1) ViV ED ~(10)

and then taking the logical union of V;j:
— m
V, =YV (11)
Rl 2!

A%
*Vi denotes the set of events covered by formula Vi'

The reason for this step is that it 1is computationally more efficient

to use formulas VI than the union of Eij

Step 3. New 'correct' hypotheses could be obtained now by 'subtracting'

y I=1,2,...,m; j#i.

from each Vi the formula V; and 'adding' to it the set FI. To do this
directly, however, is difficult. Again, an advantage is taken of the
avallable computer program for generating covers C(EllEo).

Namely, the new hypotheses, Vi, i=1,2,...,m, are determined as covers:

1 m
v, = c<Fi£l[(i7k\?/;) v F.1) (12)
k#d

(The point is that directly simplifying a union of complex 1is difficult;

but 'substracting' a complex from a complex or generating a cover of an
event set against a DVL1 formula 1is easier).
Step 4. This step determines the final representation of hypotheses

1

Vi' The Vi are DVL1 expressions which are unions of complexes. Some complexes

. Such "low

in a Vi may represent (cover) only a few events in Fi

weight' complexes are replaced by the events (facts) themselves (since an
event takes less memory than a complex). In program AQll, parameter

PUNY specifies the minimum percent of events which a complex has to cover
to be a 'high weight' complex.

has 100 events, then all com-

_ For example, if puny = 0.02, and a set Fi
plexes which cover 3 or more events (3 > 0.02 x 100) are 'high weight'

complexes., Complexes which cover 1 or 2 events are replaced with those events.

1.3 An alternative way of handling exception events

In the procedure above, the exception events were represented by complexes

in Vi'

events without turning them into expressions Vi

If the number of exception events is small, it can be easier to handle the
The 'substraction' (denoted by)
of an event e from a complex T (in a given formula) is done by logically multiplying

the cemplex by the negation of the event:

TN e=T A € 13
In order to use this way of handling exception events, in program
AQll the parameter STGY should be set to value 2 (stgy=2).
The operation (13) may produce several complexes. Any one of them
is sufficient to be used in the new hypothesis. In program AQll, there is a para-
meter f#ex which specifies how many such complexes a user wants to store for representing
a hypothesis. If the number of generated complexes 1s larger than #ex, the program

selects ffex 'best' complexes according to the criteria list.

1.4 Additional Features

There may exist certain restrictions on the event space which must

hold in the resulting formulas. A restriction may be of the form
[x3=2] ->[xl=NA] (NA = not applicable)

which is read "if Xq has the value 2 then the vartable % i{s not applicable."
The implementation of these restrictions can be viewed as an extra set of

hypotheses vn+l which is included in the set E° of all covers:

/EPUV
C(Fi,E Vn+)

1

Due to the techniques used in the covering algorithm (namely, the use of para-
meter 'maxstar', see p. 14), this may not be the best approach since only 2
few complexes in each intermediate set are retained. Therefore, the program
 imposes these restrictions on all facts in the set F={Fi}. Using the above
restrictions, an event

e= (132)
is replaced with

e = (NA 3 2)

1.5 Testing Procedure

By applying the above described part of AQll program one can determine
DVL1 descriptions (hypotheses) of classes of objects from examples of objects
representing individual classes. An obvious problem arises of testing the validity
of the derived descriptions. This is done by applying the descriptions to new

examples of objects with known class membership. The results of such testing are

usually represented 1in a form of a confusion matrix. This matrix specifies for

each class (a row in the matrix), the numbers of testing objects of this class,
which were assigned by the descriptions to individual classes (corresponding to
columns of the matrix).

Below is an example of a confusion matrix involving 2 classes: a

class of cancer cells, and a class of non-cancer cells:

Class
(Correct Decision) Assigned Decision
Cancer cells Non-cancer cells
Cancer cells 28 2
Non-cancer cells 7 23

Entries on the diagonal indicate the correct decisions, entries outside of the
diagonal - incorrect decisions. For example the number 7 in the recond row

indicates that 7 (testing) non-cancer cells were classified incorrectly as cancer cells.
This form of confusion matrix is adequate if an event (object) either
. satisfies or does not satisfy a formula. In general, however, it is desirable to

consider the &gree to which a given event e satisfies or matches a formula. Such

a degree, called degree of consonance (or degree of match) and denoted DC(e,V),

is computed according to an evaluation scheme. An evaluation scheme consists

of definitions for computing:
(1) DC(S,e) - a degree of consonance between a selector and an event (briefly,

degree of consonance of a selector),

@) DC(T,e) -~ a degree of consonance of a complex (a product of selectors),

(3) DC(V,e) - a degree of consonance of a DVL1 formula (a logical union of complexes), .

DC({Vi}, e) - a degree of consonance of a set of formulas (describing the
same class).
Many different evaluations schemes can be applied for evaluating
DVL, formulas. Methods developed in many-valued logic (e.g., Recher 69) and
fuzzy reasoning (e.g., Zadeh 74, Gaines 76) are applicable here. We will
describe the evaluation scheme currently implemented in program AQll,
and give suggestions for other evaluation schemes.
(1) Definition of degree of consonance of a selector.
Thé basic definition of the degree of consonance, DC(S,e), of a
selector comes from the evaluation rules in VL1 [Michalski 74]. Assuming
that the output domain of the formulas D = {0,1} we have:

1, if the value of appropriate variable in e
satisfies the selector S

DC(S,e) = 0, if it does not satisfy S

* the value is unspecified

For example, suppose event e = (;1’x2’x3) = (3, 1, 1), and selector S is [x2=1,3].
We have D(e,S) = 1, because value of x, in e is a member of the reference of the
selector (i.e., 1 is member of {1,3}). (Fig. 2).

Alternative evaluation schemes can take into consideration the
structure of the domainof the variable in the selector.If a variable is linear,
it seems that the above definition of DC(e,S) is too rigid. For example, if a
linear variable X, =13 and S: [x =14..18], the selector is evaluated to O, while
it seems desirable to evaluate it to some value greater than 0 (since 13 is so
'close' to 14). This means that one could accept a 'bell-shaped' function for

evaluating interval selectors (Fig. 3).

The concept of 'trimming' a complex can be also useful here. In an
untrimmed (extended) complex, references of selectors (sets of values) are as large
as possible without causing a formula to intersect with formulas of different
classes. In a trimmed complex, references are as small as possible, providing that

the complex still covers the same learning events and preserves the type

DCh
1 -
Selector S:[x=1,3]
0 -

0 1 2 3 4 L P

A graphical illustration for evaluation selector [x2=1,3]

Figure 2

A bell-shaped (A) versus step-shaped (B) functiom for
evaluating a linear selector [xi=3..5]

Figure 3

10

of selectors,e.g., if the reference of a linear selector is @..b, then in

the trimmed selector it will be an interval al..bl, asa,, blib.

An evaluation function can assign DC = 1 when a variable has value
within the '"trimmed' reference; assign DC = 0, when the variable has value
outside of the extended reference, and assign DC = B, 0<B<1, otherwise.

(Fig. 4 a and b).

(2) Definition of the degree of consomance of a complex.

In the definition of VLl’ the consonance degree of a complex was defined
as the minimum of values of selectors in the term. In AQll, the consonance degree
of a complex is computed as the ratio of the number of selectors satisfied in the
complex to the total number of selectors in the complex. If all selectors in a
complex are satisfied, then both definitions give the same value. If this is not
the case, the latter definition differentiates between the complexes with
different numbers of selectors satisfied, while the fofmer does not (which is
a desirable feature).

As an alternative, ome could use here also a probabilistic logic
evaluation, which evaluates a complex into the arithmetic product of DC-s of

selectors.

() Definition of the degree of consonance of a formula.

The degree of consonance of a formula V and an event e, DC(V,e),
is defined as the maximum of degrees of comsonance DC(Ti}e), of complexes Ti’
in the formula (i.e., as defined in VLl),i.e.:

DC(V,e) = MAX {DC(Ti,e)}
TiEV

(4) Definition of the degree of consonance of a set of formulas of the same class.

It is usefui sometimes to generate more than one formula describing

a given class . The reason is that having more than one formula per class may

11

DC |
1k
Bl
% Y
o Z Y, -—
0 1 2 3 4q X{
Generalized selector S: [xi¥1:3] Triﬁmed selector S': [x1=2]

a. Evaluation function for an interval
selector using the concept of 'trimming'

oC}
1+
B 7 0%% 7
7 7
0 1 - 2 3 4 5 X{
Generalized selector Trimmed selector
S: [xi=l,2,4,5] S: [xi=2,5]

b. Evaluation function for a nominal
selector using the concept of 'trimming'

Figure 4

12

improve the reliability of decision making- In AQll we have accepted the
convention that the degree of consonance,DC({Vi},e), of a set of formulas,

{Vi}, as the average of the DC-s of the formulas in the set:

DC({Vi},e) = AVG {DC(Vi,e)}

vy

Given a set of formulas of different classes and an event, the DC is
computed between the formula (or a set of formulas) of each class and the event.
The classification decisions are ordered according to the value of DC. All de-.
cisions with value DC within the distance tau (see parameter tau in section 1.5)
from the maximum value of DC, are rank 1 decisions (i.e., each of
these decisions are treated as equally justified).- Then the next 'best'
decision which 1s not of rank 1 1s selected, and all decisions with DC within
tau distance from DC of the selected decision are assigned rank 2. The
process repeats irk times (see input parameter irk in section 1.5).

For each testing event, values of DC of ranked decisions are printed
by the program AQll as rows in a generalizgd confusion matrix (see Fig. 5
for an example). In the matrix, a decision of rank 1 which is correct is
underlined, and the number of rank 1 decisions for the given event is printed
in the #Ties column. If an event has some unspecified values, it may still
be possible to compute DC for certain classes, and for certain classes DC would
depend on the value of unspecified variables, If a decision of ramk 1
is correct and would remain so no matter what values unspecified variables
take, then the decision is treated as a correct decision. In any other case, the
decision is excluded from computing total correctness statistics, and the column
"Unsp' corresponding to the given event has entry * .

The performance statistics for each group of events of one class are
printed in the last 2 rows of the group of rows associated with these events.

The rows contain the number and percentage, respectively, of events classified

13

to each class. The matrix also contains a column #Rankldec/# Events
specifying an 'indecision ratio', which is a ratio of all decisioms of rank 1
to the total number of events in the group (excluding rows with Unsp=%*).
Figure 5 gives an example of such a confusion matrix. The matrix was
computed for 3 classes D1, D2 and D3 described by formﬁlas:

Dl: ([x1=2][x3=1][x4=1]

D2: [x1=2][%x2=0]

D3: [x2=1][x4=1]
and for 3 testing events of class DI1:

el: (1011)

e2: (2111)

e3: (*0l1) (* denotes unspecified value)

The parameters were: tau=0.1 and irk=2:

S Assigned Decision
Correct Decisior #%32§idg¢/ #Ties | Unsp Dl D2 D3
Underscored
e~ ~ indicate rankl
2 (1.00 | .50 |1.00}|" correct decisions.
B * 0.50
4/3 2 0 1
Total 1.33 2 L [Terz | ox | 33

~

An example of an extended confusion matrix -

Figure 5

The value of #Rankldec/event is 1.33 because there were 4 decisions of rank 1
(including new with Unsp=*) and 3 events (4/3=1.33).

Concluding, the program AQll permits a user to determine decision
formulas in an incremental way and then automatically test them on the testing
data. Thus, it is a 'coﬁplete' tool for making experiments in inductive learning

of DVL]-descriptions of data.

14

1.6 ' Program user's guide

The program requires two sets of input parameters: control
parameters and data parameters. All but 3 control parameters have
default values, therefore only (neve, nv, ncl) must be specified. All
data parameters must be specified (although some may be omitted if
certain control parameters are set). The following is a list of
all parameters which the program currently accepts. Default values

(if any) are given in the examples.

1.6.1 Control parameters
® nv (no default value)
Example: av = 30
Possible values:‘ integer in the range 1:30
This parameter specifies the number of variables which are
available to describe each event.
® ncl (no default value)
Example: ncl = 50
Possible values: 1:50
ncl specifies the number of classes of events (or event sets)
which are to be input to the program., The program will then
generate a cover of each event set.
® maxstar
Example: maxstar = 10 (default value)

Possible values: any positive integer

The maxatar 1s the maximum number of complexes which are kept

in any intermediate star (see AQ7 documentation for a further
description [Larson, Michalski 75]). The procedure for selecting
"best terms' is somewhat different in this program than in

AQ7. (When each intermediate star is trimmed, the user-specified
cost function is used rather than only the first two eriteria).

15

® npass
Example: npass = 1 (default value) N
Possible values: integer in the rTange 1:20

If npass = O, the program will only execute the confusion
matrix phase and then terminate (Set test= '1'b),

If npass = 1, the program will form a cover of the facts

using input formulas (if any), then evaluate the formulas
if test = 'l'b.

.éf/f/‘{i-—\,w/ g

If npass > 1, the program will pertition the set of facts into
sets whose size depends on the pct parsmeter (see below) and form
hypotheses based on old hypotheses and the partitioned facts.
Then, new sets of events will be taken in turn and hypotheses
formed based on the entire set of events taken up to the point
and the hypotheses from the last pass.

® test
Example: test = 'Q'b (default value)
Possible values: 'l'b or 'O'®

If test is 'l'b, then a confusion matrix will be computed
after each pass. The testing events must be given to the
program in the file testf.

® restrict
Example: restrict = '0'b (default value)
Possible values: '1'b or 'O'Db

If restrict is '1l'b, then a set of restrictions is accepted
by the program (see parameter rest) and applied to all events.

® rtest
Example: rtest = '0'b (default value)

Possible values: '1l'b or 'O'b

If rtest is 'l'p, the restriction will also be applied
to testing events.

trams
Example: trans = 'O'b (default value)
Possible values: '1l'b or 'O'b
If trans is set to 'l'b, then the variable names and values

are translated into descriptive names in the output. In this
case, a file transf mstbe given to the program (see transf below).

puny
Example: puny = ,020 (default value)
Possible values: real value in interval [0:1]

All terms which cover less than a percent (puny*100) of the
events of the corresponding set will be discarded in the next
pass (i.e., if a term covers 2 events, puny = 1, and there are
23 events in the training set, this term will not be used in the
next pass).

tau
Example : tau = .019 (default value)

Possible values: real values in interval [0:11

The range of the equivalence class of consonance degree in computing
the confusion matrix. Any two values (degrees of consonance) within
tau value from each other are considered to be of the same rank., For
example, if .98 is the highest decision value for a testing event,
any decision with a value between .96 and .98 would be a rank 1
decision, assuming default value of tau (default 0.019).

irk
Example: irk =2 (default value)

Possible values: positive integer less than ncl

This parameter also relates to the computation of the confusion
matrix and controls the number of decisions printed out. All
degrees of consonance of rank not greater than irk are printed,
others are not printed. If irk=1, only rank 1 degrees are
printed. One exception to this is that the degree associlated
with the correct decision is always printed. :

17

nerit

Example: neric = 2 (default value)
Possible values: integer in range [1:L]

nerit specifies the number of cost criteria which should be applied
when computing the cost of a formula (see crit), crit(l) through
crit(nerit) will be used, all others will be ignored.

crit(I)
Exemple: erit(l) = 1 crit(2) = 2 (default value)
Possible velues: each crit(I) may have values 1, 2, 3, 5 and 9

crit(I) = J specifies that the I-th criterion in order will be the
cost function J. There should be crit specifications indi-
cating the cost function which will be used (J) and the order
in which they will be applied (I). Available cost functions
are the following:

1. Maximize the number of events covered by the given complex,
and not covered by previous complexes

2. Minimize number of selectors

3., Minimize cost of all variables in the complex. If
this criterion is specified, costs of variables
mist also be specified (see z parameter)

5, Minimize the number of events of EQ covered

9. Maximize total number of events covered by a complex

fex
Example: flex = 1 (default value)
Possible values: positive integer

During some phase of the program, exception complexes are
formed (description of events which are covered by hypotheses
but should not have been). flex gives the number of redundant
exception complexes (i.e,, the complexes which cover the same
event).

18

tr
Fxample: tr = 0" (default value)
Possible values: 'l' or '0'b

tr gives a trace of the multi-step process giving the exception com-
plexes and the size of the sets F* and F~ described in Section 1.1.

stgy
Example: stgy = 1 (default value)
Possible values: 1l or 2
If stgy has the value 1, then exception complexes are formed
for events in the sets F~, If stgy has the value 2, then the

previous hypotheses are multiplied by the complement of the
exception events of the set F~.

indep
Example: indep = '0'b (default value) -
Possible values: 'O'bor 'l'b

If indep is '1'b, then the mumber of independently covered
events are printed for each complex. Otherwise, only the num-
ber of new events and the total number of events covered are
printed.
title
Example: title = O (default value)
Possible values: non-negative integer

Title specifies the mumber of lines which -are in the title.

The title cards must follow the semi-colen which terminates
the set of control parameters.

opt
Exsmple: opt = 'l'b (default value)
Possible values: 'l'b or '0'b

1f opt is 'l'Db, then after each pass a table is printed indicating the
aumbers of times each cost criterion is evaluated (number of com-
plexes for which the cost function is evaluated).

19

® mode
Example: mode = 'ic' (default value)

Possible values: ‘'ic', 'de', 'vi'

If mode = 'ic', then covers are allowed to intersect over 'DON'T
CARE'areas of the event space. If mode = 'ic', the covers are
constrained to be disjoint. If mode = 'vl' gives order dependent
covers.

® cpxev
Example: cpxev = '1'b (default value)

Possible values: '1'b or 'O'b
If this parameter is 'l'b, then during the testing phase a

table is printed which gives the number of times each complex
was needed to give a correct decision.

® gen
Example: gen = '1'p (default value)
Possible values: '1'b or 'O'b
If this parameter is 'l'b,then only the necessary parts of
the reference of each output complex are printed (i.e., a new com-
plex is created from the generated term which has the following
properties):
a. The new complex covers the same events.

b. The new complex contains the same variables.

c. The references in the new complex are as small as possible.

® echo
Exemple: echo = 'erz' (default value)
Possible values: A string containing any of the characters {z,e,r,f,p,t}

If the letter appears, the corresponding input data is echoed.

: Events

¢ Restrictions

: Variable costs

: Input (initial hypotheses)
: Parameters

: Translation file

ot MmN H®

The default echos events, restrictions and variable costs if they are
-in the input. This parameter should be put before any other parameters,

20

tolerance(J)
Example: tolerance(2) = 0.0 (default value)
Possible values: integer or real 1in [0:1]
tolerance(J) is the tolerance for the J-thcriterion specified.
If it is an integer, then it is assumed to be an absolute tolerance.
Otherwise, it is a relative tolerance calculated by finding

tolerance * (MAX-MIN) when MAX or MIN are the maximum and minimum
elements in the list of costs to be sorted.

ord
Example: ord = '1'b (default value)

Possible values: 'l'bp, '0'b

If ord is '1'b, then the program will reorder events in EO,
in decreasing order, with regard to the distance from €.

ntau
Example: ntau = 0 (default value)

Possible values: 1integer in [0:8]

. This parameter, if not zero, specifies the number of evaluations using a
different value of tau parameter (defining the equivalence class of the
degree of consonance in evaluating the testing events). The so called
"tau estimation table" gives the percentages of correct decisions for each
class in the evaluation procedure using ntau values of tau beginning at 0
with increments of tauinc., If ntau=0, no "tau estimation table" will be
printed.

tauine
Example: tauinc = .02 (default value)
Possible values: Real in [0:1]

This is the increment used in the tau estimation table.

21

neve (no default value)
Example: neve = 2000
Possible values: integer in the range 1:2000

This parameter specifies the number of events in the training set.

nge
Example: nge = 200
Possible values: any possible integer

This parameter specifies the initial storage for complexes.

Semicolon (;): This must be entered to terminate the control parameters.

22

1.6.2 Data parameters

These parameters have the names as used in the program. In the
input to the program only their values are specified, in the order
given here (See fig. B-1 (a) for an example.)

titles

Possible values: The number of lines specified by the title
parameter :

These lines are printed at the top of the output.

L nspec
Possible values: An integer in the range [0:av]

Number of variables for which a type is to be specified.

e vtype
Possible values: 'f', 'i'
The nspec variables will be of this type ('f' - nominal
variable, 'i' -linear variable).
® type

Possible values: A list of nspec integers in the range [1:nv]

The list indicates variables of vtype.
Example of nspec, vtype, type: 3'¢' 1 3.5

There are 3 variables of type 'f' (nominal) namely,
variables 1, 3, and 5. The rest will have type 1.

® nl

Possible values: A list of nv positive integers in the range [1:20]

This parameter gives the number of values which each variable
can assume.

Example: 1 2 4

23

ne
Example: 3 1 4
Possible values: A list of ncl integers in the range P:neve]

The parameter specifies the number of events in each event
set. The sum should add up to neve.

nf
Example: 3 4 1
Possible values: A list of ncl non-negative integers
This parsmeter specifies the number of initial conjunctive
hypotheses (complexes) for each event set.
pct
Example: 2 L1
Possible values: A list of npass real values in range [0:1]
(except if npass = 1, pct is assumed to be 1
in that case, this parameter must be omitted)
In this example, 20% of the events will be described first,
then an extra 20% of the events will be added and a description
formed using previous hypotheses. Finally, the complete set of

events is used (see npass above).

rest

1)-> (x14 = *);
2)=s> (x1 = %) (x4 = 1).

Example: (x12
(x13

Possible values: A list of decision rules separated with semi-
colons and terminated with a period

This restriction will be applied to all events (i.e., added to
current specifications). restrict mst be set to specify restric-
tions. An * in the reference indicates that this varisble is not
applicable. Restrictions are separated by semi-colons and the
list of all restrictions is terminated by a pericd.

24

® specification of event sets
Possible values: neve Llists of events, neve = SUM(@e)

There are two ways in which events can be specified, and the
two types of specifications can be mixed.

1. An event can be specified as a list of values, omne value for
each variable. The values can be:

a) non-negative integer--indicating value of the variable
b) -l--variable does not apply
¢) =-2--do not know the value .

Example: 3 2 0 -1 -2 O
L 1 2 O 0 O

2. An event can also be specified by a VL1l formula which is

preceeded by a line which says formula. Each formula
must be terminated by a semi-colon.

Example: formula
(x1 = 2) (x3 = 0);

formula
(x3 = 1) (x21 =2);

® formula

Possible values:

ncl (# of classes) lists of initial formulas (hypotheses), each
having nf complexes.

Example: z(,2) = 9 z(3,4) = 57;

These are costs of the variables which are accepted if crit(I) = 3
has been specified for the event set I. If z value is not specified
for some variables, it is assumed to be 1. z(I,J) = Y means that
variable xJ has cost Y for event set I.

25

2.6.3 Files

® testf

This file must be included if the paremeter test is set to "1'b.
The first line of this file contains a list of ncl values
indicating the mmber of test events for each event set.

The list of testing events follows. Each event is specified
as a list of variable values with coding of -1 and -2 as
above,

® transf

This file must be included if trans is 'l'b. It contains the
names of all variables and variable values. Each name will be
truncated: varisble nemes to 20 characters, value names to 10
characters. The format is the following: For each variable
one apecifies: .

variable name, variable velue names

Fach name must be in single quotes.

 Example:
' TEMPERATURE'
'COLD'
'MODERATE"'
"WARM'
'"HUMIDITY'
'DAMP' 'DRY'

This completes a description of the input specification to the pro-
gram AQll. For a user's convenience, appendix A gives a summary of the input
specification. Appendix B gives an example of input and output from the

program.

26

1.6.4 Program Qutput

Most of the output is self-explanatory (see appendix B). The input
data is echoed when specified. Then, the formulas for each pass are printed.
To the right of each term is a pair of numbers which specify the number
of new events covered and the total number of events covered by that term.

After all the formulas for one pass are printed, a confusion matrix
is printed for these formulas and given testing data. Information about each
pass 1s printed in turn until all passes are complete.

If two events of different classes are identical, then a message
is printed indicating a non-disjoint representation of ¢lasses. In such a
situation, if a cover C(EL/EQ) is being created, then the eyent of EQ is
ignored.

The output from the evaluation part of the program consists of an
extended confusion matrix, as described in section 1.5.

Two other tables are printed at the user's option. If ecpxeu is
set, then a table listing the number of correct decisions for each complex
is given. If ntau is not zero, then tau estimation table is printed, giving the
indecision ratio and number of correct decisions for each class for ﬁtau

values of tau, beginning with 0 in increments of tauinec.

2. SUMMARY
We have described here the underlying methodology and computer programs

for incrementally generating VL. hypotheses for given event sets and then-

1
automatically testing them on the supplied testing events. This program can
be used for making experiments in induction of descriptions from examples in

various applied fields.

27

ACKNOWLEDGMENT

The research on the revised version of AQll program described here
was supported in part by National Science Foundation Grants MCS 82-05166 and
MCS 82-05896, and the Office of Naval Research Grant N00014-82-K-0186.

The research on the original implementation was supported in part by
the National Science Foundation Grant MCS 76-22940 and in part by a Senior
Visiting Fellowship from the Science Research Council in U.K.

The initial version of this paper was written while one of the authors,
R. S. Michalski, was spending his sabbatical leave at the University of Essex
in England. This author would like to express here his deepest graFitude to
Professor Brian Gaines, the head of Electrical Engineering Department of
the University of Essex, for unusual hospitality and help to organize life
in the new environment, as well as for the numerous and inspiring discussions.

Thanks are also due to Tom Dietterich for the strenuous job of

proofreading this paper.

28

REFERENCES

Cuneo, R. P. Selected Problems of Minimization of Variable-Valued Logic
Formulas. Report No. 726, Department of Computer Science, University
of Illinois, Urbama, Illinois, 1975.

Forsburg, A. S. A user's guide for AQPLUS, on i{nternal report, Department
of Computer Science, University of Illinois, Urbana 1975.

Gaines, B. R. Foundations of Fuzzy Reasoning, International Journal
of Man-Machine Studies, No. 8, 1976.

Jensen, G. M. Determination of Symmetric VL Formulas: Algorithm
and Program SYM4. Report No. 774, Departmenit of Computer Science,
University of Illinois, Urbana, Illinois, 1975.

Larson, J. Inductive Ianference in the Variable Valﬁed Predicated Logic
System VL l: Methodology and Computer Implementation, Report No. 869,
Departmen% of Computer Science, University of Illinois, Urbana, Illinois,
1977.

Larson, J. Induce 1l: An Interactive Inductive Inference Program in
VL 1 Logic System., Report No. 876, Department of Computer Science,
Un%versity of Illinois, Urbana, Illinois, 1977.

Larson, J., Michalski, R. S. Inductive Inference of VL., Rules.
Workshop on Pattern Directed Inference Systems, Honolulu, Hawaii,
May 1977.

Larson, J., Michalski, R. S. AQVAL/1 (AQ7) User's Guide and Program
Description. Report No. 731, Department of Computer Science, University
of 1llinois, Urbana, Illinois, 1975.

Michalski, R. S. TOWARD COMPUTER-AIDED INDUCTION: A Brief Review of
Currently Implemented AQVAL Programs, Report No. 874, Department of
Computer Science, University of Illinois, Urbana, Illinois, May 1977.

Michalski, R. S. On the Selection of Representative Samples from Large
Relational Tables for Inductive Inference, Department of Information
Engineering, University of Illinois at Chicago Circle, July 1975.

Michalski, R. S. VL.: Variable-Valued Logic System. 1974 Internmational
Symposium on Multiplé-Valued Logic, West Virginia University, Morgantown,
West Virginia, May 1974.

Michalski, R. S. A Geometrical Model for the Synthesis of Interval
Covers. Report No. 461, Department of Computer Science, University of
I1linois, Urbana, I1linois, 1971

Rescher, M. Many-Valued Logic. McGraw-Hill, New York, 1969.
Stepp, R. Uniclass Cover Synthesis: Methodology and a Computer Program
Description, Report No. , Department of Computer Science, University

of Illinois, Urbana, Illinois, .

2adeh, L. A. Fuzzy Logic and its Application to Approximate Reasoning,
Proceedings IFIP Congress 1974, Vol. 3, North-Holland, 1974.

29

APFENDLY A

a1l Input Specificatlions

1. To execute AQL1l on UNIX operating system, four flles must
exlst in the working directory:

agll.ob] the obhject code of the AQl1l program.

aqll an executable file which contains the
following shell command:

ecat 51 | aqll.obj > 32

tranaf contalns the nanes of all variables and
variable values.
testf containg a 14st of events to be tested

against the output hypothases of anlLl.
The follewing command can then be {ssued to execute AQIL:
agll inpucfile outputfile

where inputfile i tha input data ftle to the AQLl prograa,
and outputfile g tha result produced by che AQLL program.

Note that glnce the ontput format of the program “agll.obj”
was intended for a traditional line primter which takes the first
character of each line as a control sigmal, far those
printers that do mot work this way, & progran “filter” 1a avallable
to make the proper translaticn. The content of the command filae
“aqll” should® ha change to

eat §1 | aqll.ob) | filrer >$2

and the fila "filter” must reside in the workiog directory.

30
2. Control parameters

Parameter Default Description

nv - Number of variables

neve ——— Total mumber of training events

ncl - Number of classes

mode tic? Mode of operation, one of {'ic','de','vl'}
maxstar " 10 Maximum star size

echo ferz! Echo input, combination of

{'e','v','z','f','p','t'} ‘

nerit 2 Number of criteria
crit(l) 1 Criterion 1
critc(2) 2 Criterion 2
crit(3) 3 Criterion 3
crit(4) 5 Criterion 4
crit(5) 9 Criteriom 5
title 0 Number of lines in title
restrict '0'b Accept restrictions
gen 1 . Trim eomplexes for output and
evaluation
puny .02 The minimum percent of events which have
to be .covered by a term
tr ' '0'b Trace milti-step procedure
npass 1 Number of steps
stgy 1 Way in which events of F~ sets
are handled
#ex 1 Numbers of redundant exception
complexes
opt '1'b Print statistics about number of times
each cost function is evaluated
trans '0'b Translate output using transf file
test '0' Evaluate formulas
rtest '0'b Apply restrictions to test events
tau .019 Equivalent threshold for rank 1
decisions
irk 2 Number of ranked decisions which
are printed
cpxev 1'% Print statistics about satisfied
* complexes during evaluation
nge 200 Initial storage for complexes
indep '0tb Prints independent events if set
tolerance(I) 0 Tolerance for Ith specified test
function
ntau 0 Number of columns in 'tau' estimation
table
tauine .02 . Increment in tau estimation table
ord '1'p Reorder the events in EO, in

decreasing order, with regard
to the distance from e,.
Semi-colon (3) Terminate control parameters

3, Data parameters

Parzmetor Description

title Lines of title (if any)

nspec Number of variables for which type
"tvpe" is specified

type The tvre of these variables.

14" (linear) or 'f' (nominal)

vspec

pect

nl
ne
nf
rest

events

formulas

Files

transf

testf

31

Indices of variables of type
defined by "type"

If npass > 1, the percent of evenis
to use in learning phase for each
pass

Number of values for each variable

Number of events in each set

Number of formulas in each set

If restrict is set, Each pair of
rules must be separated with a
semi-colon; the entire list is
terminated with a periocd.

Lists of events in either of two
forms

Lists of formulas as in either of
two forms

If any criti{I) = 3, costs of variables
terminated with semi-colon

Description

If transf is '1'b, then this file
be created, containing names of
classes, variables and variable
values. Each Name must be in
quotes.

If testf is 'l'b, then this file
must be created; containing
testing events.

32

APPENDIX B
An Example of an Input to
and an Output (rom AQ11

Thig appendix containg an example of the program lnput and output

vhich involves most of the features of the program. Figure B~1 gives the
ioput specification for this example. Figure B=2 gives the putput which was
abtainad. The first page of output repeats the input in a slightly extended
form. The next pages show formulas which were generated [in which variables

Xy aXy Xy X, are substituted by their names, and defined in the input (item T in

Fig. B-1)] and the resulta of the evaluation of formules on testing events.

Explanation of Figure B-1.

The exanple involves four variables nv=i; see item A in Figure B=1{a)),
which can take 2, 3, & and 2 values, respectively (item E). All variables are
nominal, except variable xl,vhicll iz interval (icem C). There are 2 classes
(ncl=2; item &), each represented by 6 learning events (items E, [). The
last event of set (class) 1 Is specified as a D\'Ll formula (In the widdle of
item I). Item G defines the percentage of learning events to be used in each

iteration (pass). Tha restriction on event space 18 given by a VL, decision

1
rule (item H). There are 0 Inltial hypotheses for class 1 and 2 hypotheses for
class 2 (item F). Item J(fig. B-1(h)) listas the hypotheses for clasa 2, The cost of

variable I foraet 1 is scecified as 2 {(itemX): the cost eriteria for the seloctisn of

conplexes (terms) in the synthesis of covers amre in the order 1, 2, 3, 9

(1 and 2 by default; 3 and 9 defined by crit(3)=3, cric{4)=9 {m itemA). (For

the definitlon of cost of variables and cost criteria see [Larson, Michalski 75]).
Evaluation of the fermulas te be genetated is requested

and sets of test events supplled, 4§ events per clags (ivems L, M). A file

containing names of each class (set), each variable and each value of the variable

is also supplied (items N, Q).

33

echo="ezrfpt” npass=2 nv=4 maxstar=30 crit(3)=3 crit(4)=9 .
title=3 neve=12 test="1"b trans="1"b

A\ restrict="1"b ncl=2 indep="1"b nge=100
nerit=4 ntau=4;

hhhkhRhkRhkARRAhhkrhkrkhkhkkhkhkkkikkhhkhkkhhhkkhhkdhhhhhihhhkihhhktrik

test run: pleckup truck
khkhkhkhkkhkkiikhkRkhhkhkkhhhkhkhhikhhhkhkhhhkkrhkkkkhkkkhhhhkkkhhhktdkhs

o]
/

C 1 “1© 3

D 2 34 2 A Control parameters

E 6 6 B Titles

F 0o 2 C nspec, vtype, type. That 1s,

G 0.5 1.0 there is 1 variable, x3, which

H (x1=0) (x2=0)(x3=0) -> (x4=0). is a linear (°1i”) variable.

A0 00 O D Number of levels/variable. There

0 02 O are 2 levels for x1, 3 levels for
0 20 1 x2,, 4 levels for x3, and 2 levels
0 11 0 for x4.
0 22 1 E Number of events/pass. There are
formula 6 events for the first pass, and
(x4=0)(x2=1 2)(x1=0)(x3=1); another 6 events for the second

Iﬁ o 21 1 pass.
0 03 F Number of initial hypotheses/set.
1 20 O There are 2 initial hypotheses for
1 11 0 event set 2, but none for the
102 1 first event set.

Ll 23 0 G Fraction of events/pass. 50% of

formula input events are processed in

J (x1=1)(x2=1 2)(x4=0)(x3=0 1); the first pass, and another 50%
formula for the second pass.

Restriction.

Event list (6 events/event set).
Formulas (2 guesses for set 2).
Cost of variables (variable 1
has cost 2 for set 1).

(x1=1)(x3=2 3);
K z(1,1)=2;

Ao

Figure B-1 (a)

Input file “testf”:

-~
O == 0000 &
O N NN = O S
WK WO MO N

"

e SN Nelell el

r

Input file “transf”:
N < “accept”
“reject”
7 “new”
-
“20”
“color”
“red”
“blue”
“orange”
0 “size”
“small”
“medium”
“large”
‘extra large”
“welght”

“heavy”
“1light”

Figure B-1 (b)

34

Number of test events/set. There
are 4 testing events assumed to be
of event set 1, and another 4 to
be of event set 2.

List of testing events.

Name of each set. The name of
the first event set is “accept”,
and the name of the second event
set 1is “reject”.

Variable names and variable
value names. The four variables
are “new”, “color”, “size” and
‘weight”. The three possible
values for the variable “color”
are “red”, “blue” and “orange”

respectively, etc.

35

Explanation of Figure B-2.

The first part contains an echo of the input (item A). Next (item B)
prints the formulas obtained after the first iteration (pass), which used

50% of the input events (first 3 events in both classes; see item G in

Fig. B-1). The classes, variables and values of variables are specified by
names. Together with each complex (term) a triple of numbers is printed
[newly covered, indep covered, totally covered]

newly covered - denotes the number of events covered by the given complex and not
covered by the previous complexes on the list of complexes generated for this class

indep covered - denotes the number of events covered only by the given complex

totally covered - the total number of events covered by the given complex.

The program also lists the number of times each cost criterion
has been evaluated (item C). Next, an extended confusion matrix is printed
(item D) as the result of evaluating the obtained formulas for the testing
events (item M in Fig. B-1). We can see from the matrix that 25% of testing
events of the first class ("accept') have been misclassified, and all the

events of the second class ("reject') have been correctly classified.

Item E specifies the number of times each complex in the cover of
each élass has been satisfied by testing events in the case of correct decisions
(first complex, CI, of class 1 correctly classified 1 testing events, and the
second one, C2,correctly classified 2 testing event, etc.) .

Item H specifies the percentage of correct decisions and the indecision
ratio for various values of parameter tau (generally, the higher tau, the
greater is the number of correct decisions, but also thie greater 1s the indecision

ratioc).

Item G lists the formulas obtained in the second iteration (which
used all the learning events), and item H - the corresponding confusion matrix.
We can see that this time all of the testing events of class 1, and all of the
class 2 were correctly classified. Items I and J give the same information

as items E and F, respectively, but for the formulas obtained in the second pass.

e

\

36

AQllp - 2.0 (Pascal version): multi-step rule induction and refinement

Initialization time: 0.134 seconds

Echo of non-default parameters:

npass= 2
nv= 4
maxstar= 30
crit(3)= 3
crit(4)= 9
title= 3
neve= 12
test= “1”d
trans= “17b
restrict= “1°b
ncl= 2
indep= “1"b
nge= 100
nerit= 4
ntau= 4

All parameters for this rum:

Number of classes (ncl):

Number of variables (nv):

Number of events (neve):

Maximum star size (maxstar):

Allowable # of exceptions (numex):

Number of passes (npass):

Number of columns in the tau table (atau):
Increment of tau in the tau table (tauine):

Ignored difference in consonance degrees (tau):
Highest rank of consonance degree to be printed (irk):
Ignored event coverage for the next pass (puny):
Initial storage for complexes (nge):

Mode of cover synthesis: Intersecting covers (ic).

L3 =
SFMNO=O NN

-
o

Information to be echoed @

Events? yes
Costs? yes
Restrictions? yes
Formulas? yes

Parameters? yes
Translation? yes

Number of criteria (mcrit): 4
(1) (2) 3))) (6)
Criterion: 1 2 3 9 0 0
Tolerances: 0.00 2.00 0.00 0.00 0.00 0.00

Strategy: 1
Figure B-2 (a)

O ONOO

L Ld

oe]
=
Ve]

(=
[N
o

Test:
Ord:
Cpxev:
Indep:
Tr:
Startr:
Restrict:
Opt:
Gen:
Rtest:
Trans:

**

test complexes?
order complexes?
evaluate complexes?
print independents?
trace formulation?
trace star formatn?
input restrictions?
print # cost funcs?
trim cpxs for outpt?
apply rstrs to test?
translate output?

test run: plckup truck

37

yes
yes
yes
yes
no

no

yes
yes
yes
yes
yes

kkkhkkihkkkhkkkrk

Event specifications
Variable: 1 2 3 4
Type: nom nom 1lin nom
Number of values: 2 3 4 2
Class: 1 2
The number of events in the class: 6 6
The number of formulas in the class: 0 2
Percentage of events to use per pass: 0.50 1.
Echo of restriction: (x l= 0)(x 2= 0)(x 3= 0)
implies
(x 1=)(x 2=)(x 3=)(x 4= 0)
Echo of input events:
1: 0, 0, 0, O,
3 0, 0, 2, 0O,
2 0, 2, 0, 1,
4 0,1, 1, 0,
5: 0, 2, 2, 1,
6: (x 1= O)(x 2= 1 v 2)(x 3= 1)(x 4=
7: 0, 2, 1, 1,
8: o, 0, 3, 0,
9: i, 2, 0, O,
- 10: 1, 1, 1, 0,
11: 1, 0, 2, 1,
12: 1, 2, 3, 0,
Echo of input initial hypothesis:
Class 1: no formula
Class 2: Cpx l:(x 1= 1)(x 2= 1 v 2)(x 3=
Cpx 2:(x 1= 1)(x 3= 2 v 3)

Costs of variables different from 1

z(1, 1) =

-

Figure B-2 (b)

00

0)

0v 1)(x 4= 0)

38

Translation file:
Class 1: accept
Class : reject

Variable x 1: new
Value= 0: yes
Value= 1: no

Variable x 2: color
Value= 0: red
Value= 1: blue
Value= 2: orange

Variable x 3: size

Value= 0: small
Value= 1: medium
Value= 2: large
Value= 3: extralarge

Variable x 4: welght
Value= 0: heavy
Value= 1: 1light

Time of reading input data: 0.916 seconds
Results of pass 1.

% % * Initial hypotheses for each class * * *
Class 1 "accept” : no formula

Class 2 "reject” : Cpx 1: (new=no)(size=1arge..extralarge)
[newly covered= 0, indep covered= 0, totally covered=

Cpx 2: (new=no) (color=blue,orange)
(size=small..medium)(weight=heavy)
[newly covered= 0, indep covered= 0, totally covered=

Number of events in each class:
Class 1 "accept” : 3
Class 2 "reject” : 3

% % * Generated hypothesis for class 1 "accept” from 3 training events * k%

Cpx 1: (new=yes)(size=small) .
[newly covered= 2, indep covered= 2, totally covered=

Cpx 2: (new=yes) (size=large)
[newly covered= 1, indep covered= 1, totally covered=

Figure B-2 (c)

01

0]

2]

1]

39
7

x * * Generated hypothesis for class 2 "reject"” from 3 training events * * *

Cpx 1: (size=medium)
[newly covered= 1, indep covered= 1, totally covered= 1]

ﬂ Cpx 2: (slze=extralarge)
[newly covered= 1, indep covered= 1, totally covered= 1]

Cpx 3¢ (new=no)
L [newly covered= 1, indep covered= 1, totally covered= 1]

Criterion # 1 evaluated 12 times.
Criterion # 2 evaluated 11 times.
Criterion # 3 evaluated 4 times.
Criterion # 9 evaluated 4 times. .
Assigned decision

(/ Correct #Rankl dec/ #Ties Unsp!! D1 D2

Decision #Events v
H
11,50 1.00
D1 1 1.00 --
accept it 1.00 --
1y 1,00 --
4/ 4 i 3 1
< Total 1.00 'Y 5% 257
1
1y .50 1.00
D 2 1t -- 1,00
reject tt .50 1.00
ty .50 1.00
4/ 4 1 0 4
Total 1.00 1t 0% 100Z

\\ Note: a rank 1 decision which is correct i8 underlined.
“~=" i{g equivalent to "0.00".

4 Number of testing events satisfying individual complexes
in the correct class description.

Complexes °
cl1 c2 c3
ﬁ Class 1 "accept” 1 2
Class 2 "reject” 0 2 2

Note: The entries (classx, Ci) in the above table show the number
L of testing events of calssx (as indicated by the file

“testf") that were covered by the ith complex (Ci).

Figure B-2 (d)

Tau estimation table

40

Value of tau

(the percentage of correct decision / indecision ratio)

0.00 0.02 0.04 0.06
Class 1 "accept” 0.75/ 1.00 0.75/ 1.00 0.75/ 1.00 0.75/ 1.00
Class 2 “reject” 1.00/ 1,00 1.00/ 1.00 1.00/ 1.00 1.00/ 1.00
Totals: 0,88/ 1.00 0.88/ 1.00 0.88/ 1.00 0.88/ 1.00
Final statistics:
Indecision ratio: 1.00
Total percent correct: 87.50
Computing time for this pass: 0.434 seconds
Results of pass 2.
% * * Initial hypotheses for each class * * *
Class 1 "accept” Cpx 1: (new=yes)(size=small)
[newly covered= 2, indep covered= 2, totally covered= 2]
Cpx 2: (new=yes)(size=large)
[newly covered= 1, indep covered= 1, totally covered= 1]
Class 2 "reject” : Cpx l: (size=medium)

[newly covered=

Cpx
[newly covered=

Cpx
[newly covered=

1, indep covered=

2: (size=extralarge)
1, Indep covered=

3: (new=no)
1, indep covered=

Number of events in each class:

Class
Class

1 "accept” 6
2 "reject” : 6

* * * Generated hypothesis for class

Cpx 1:
[newly covered=

Cpx 2:
{ newly covered=

Cpx 3:
[newly covered=

Figure

1 "accept”

3, indep covered=

(new=yes)(size=large)

2, indep covered=

(new=yes)(size=small)

1, indep covered=

B-2 (e)

1, totally covered= 1]
covered= 11

1, totally

1, totally covered= 1]

from 6 training events * *

(new=yes)(size=small..medium)(weight=heavy)

2, totally covered= 3]
2, totally covered= 2]

1, totally covered= 2]

41
kxR Generated hypothesis for class 2 “"reject” from 6 training eveats * * *

Cpx l: (size=medium)(weight=1light)
[newly covered= 1, indep covered= 1, totally covered= 1]

Cpx 2: (size=extralarge)
[newly covered= 2, indep covered= 1, totally covered= 2]

Cpx 3: (new=no)
_ [newly covered= 3, indep covered= 3, totally covered= 4]

Criterion # 1 evaluated 8 times.
Criterion # 2 evaluated 7 times.
Criterion # 3 evaluated 4 times.
Criterion # 9 evaluated 3 times.
Assigned decision

Correct #iRankl dec/ #Ties Umsp!! D1 D 2
// Decision #Events ,]

11 1,00 .50

D1 11 17.00 .50

accept 1t 1,00 --

1t 1.00 --

4/ & " 4 0

Total 1.00 11 100% 0%
¥

11 .50 1.00

D 2 11 -- 1.00

reject t1 .50 1.00

't .50 1.00

4/ 4 10 4

Total 1.00 ' 0% 100%

Note: a rank 1 decision which is correct is underlined.
"-=" {8 equivalent to "“0.00".

~ Number of testing events satisfying individual complexes

in the correct class description.

Complexes

cl1 c2 Cc3
Class 1 "accept” 2 2 0
Class 2 "reject" 0 2 2

Note: The entries (classx, Ci) in the above table show the number
of testing events of calssx (as indicated by the file

"testf") that were covered by the ith complex (Ci).
\. Figure B-2 (f) A

42

Tau estimation table (the percentage of correct decision / indecision ratio)

Value of tau

0.00 0.02 0.04 0.06
Class 1 “"accept” 1.00/ 1.00 1.00/ 1.00 1.00/ 1.00 1.00/ 1.00
Class 2 “"reject” 1.00/ 1.00 1.00/ 1.00 1.00/ 1.00 1.00/ 1.00
Totals: 1.00/ 1.00 1.00/ 1.00 1.00/ 1.00 1.00/ 1.00

Final statistics:
Indecision ratio: 1.00
Total percent correct: 100.00

Computing time for this pass: 0.366 seconds

Maximum size of complex storage was: 100

Figure B-2 (g)

43

Explanation of Figure B-3, B-4 and B-5

Figure B-3, B-4 and B-5 are graphical illustrations of how the
output hypotheses of each pass improve as more training events are available.
Figure B-3: shows the learning events and initial hypotheses
Figure B-4: shows the intermediate hypotheses (after pass 1)

Figure B-5: shows the final hypnotheses (after pass 2)

X, Xl
of| | | 2
0 i No initial hypothesis
for class 1
2
| 2 Initial hypothesis
E:E;E; for class 2
o]
BN \§>\ : \\ AN — cpxl: [x =1][x.>1][= <1][x,=0]
! > N 1 =M=
I :>> | N :>\, :\\ ///}/ cpx2: [x1=l][x3zﬁl
e . N N \ \\ N
2|N2 \ N
SN NI NSNS
o ' 0 | 0 | 0 1 Ry
0 I 2 3 X3
Learning events for pass 1 and initial hypotheses
Figure B-3
X, X, Class 1
TR D SRS [e
C\: :\\. ?\%%«\:"/ : e cpx2: [xl=0][x3=2]
0 | N 1+ N AREY S \1,_// Class 2
e D e 1r [xy=1]
: P < S ————— cpXii Xa™
1SRN 2 [3
p— » cpx2: [x,=3]
A e e
e Ve vys VA AT cpxdi o=t
N A H Y %
//// / /,/ X /;7/
/
A A
0 i (9] I (o] ! 0 Xy
9] ! 2 l X3
Hypotheses after pass-l
Figure B-4
X X, - _ Class 1
’ }lr—, A - "-’-_1 . = =
o[EBANIES iﬁﬂz);gf s el
¥4 /7 Al 1 7 | 2L B ZpXit Xi= X, =
O | // ,/" L /t E E;z—f—"’ CPX3: [x}_=0][x:;=0]
' / s =

:ﬁﬁ/’f;] \\N\\\: Class 2
N

L — 3 = =
cpxl: _[x3 l][x& 1]

0 —”"/——ji : ::s::\::f:__,,, cpx2: [x3=3]
NI =
\\\\\\\f\ | _— cpx3: [xl—l]
b
211 2 t_Z SO y
o i o o I (o] 1 Xy

9 2 3 X
inal hypotheses and testing events 3
Figure B-5

