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Abstract

PARCEL LEVEL AGRICULTURAL LAND COVER PREDICTION

Jonathan Lisic, PhD

George Mason University, 2015

Dissertation Director: Dr. James Gentle

The purpose of this research is to develop and study the methodology and the underlying

theory for prediction of agricultural land cover for a set of commercial crops at the parcel

level. The observational unit will be called a land cover unit (LCU). Each LCU will have an

associated land cover sequence. A land cover sequence is an ordered set of known categories

indexed by a set of fixed consecutive years. An LCU is the maximally contiguous section of

land with respect to a single land cover sequence, not transected by public transportation

arteries or permanent hydrographic boundaries.

LCUs are not observed, instead they are estimated through an image segmentation

algorithm known as mean shift, applied to high resolution imagery products. The predictors

of land cover are constructed under the assumption of temporal stationarity; this assumption

limits the length of the land cover sequence that can be used to aid in the prediction. Land

cover sequences of the LCUs are estimated from classified pixel level data. Prediction of

future land cover is performed through a Bayesian hierarchical multinomial probit model

accounting for spatially correlated crop rotation preferences.

Application to major commercial crops in La Porte County, Indiana, is provided using

high resolution imagery and thematic maps from the United States Department of Agricul-

ture. The theory and methods are applicable to prediction of agricultural crops in other



areas with a relatively stable pattern of agricultural land cover.



Chapter 1: Introduction

The purpose of this research is to develop and study the methodology and the underlying

theory for prediction of agricultural land cover for a set of commercial crops at the parcel

level. The term “parcel level” in Geospatial Information Systems (GIS) literature and this

dissertation, is the geographic scale where individual commercial agricultural fields can be

identified. Prediction of land cover at the parcel, or agricultural field level is useful for many

purposes including: agricultural production; natural resource management (see Thenail

et al., 2009); survey development (see Zimmer et al., 2012); predicting and measuring

changes in the local environment (see Castellazzi et al., 2007); residential land conversion;

and land cover response to local market changes such as the establishment of ethanol plants

(see Livingston et al., 2008 and Livingston et al., 2012). In this dissertation, an approach to

predicting future land cover through an areal spatial-temporal autoregressive probit model

is presented. This approach relies on image segmentation to construct parcel-like units from

high-resolution imagery, and an agricultural production process known as crop rotations.

Given a set of parcels the prediction of future land cover can be facilitated by the

agricultural practice of crop rotations. Crop rotations are a repeating sequence of crops used

to promote yield while retaining soil quality and mitigating pests and disease. Common

rotations in the United States include corn-to-soybeans-to-corn which has been studied by

Livingston et al. (2012) and others. In the context of parcel-based models, crop rotations are

especially useful since they are a prevalent locally observable phenomenon. The prevalence

of these rotations was studied by Sahajpal et al. (2014) where it was noted that the U.S.

cropping patterns could be represented with 90% accuracy by just 82 distinct three-year

sequences.

Modeling agriculture via crop rotations is certainly not novel, and has seen employment

in simulations and agricultural econometric models. Simulation models have been used by

1



Schönhart et al. (2011), Castellazzi et al. (2008), and Detlefsen (2004) utilizing stochastic

matrices to model crop rotations. These models are primarily used for simulating land

cover, for long term prediction, based on assumed crop rotations. Estimation of transition

parameters in these papers is lacking or non-existent; due to the simple structure of the

stochastic matrices it is not possible to directly admit covariates.

The framework of agricultural economic models of crop rotations has been explored

at great length by Hennessy (2006). Application to optimal crop rotations of corn and

soybeans has been explored by Livingston et al. (2012), and a more general framework has

been considered by Cai et al. (2013). Simplifications to Hennessy (2006) has been considered

by Ji and Rabotyagov (2015). This framework is based on expected return, which cannot

be practically applied at a parcel level due to return being a function of yield which is

highly volatile even at the county level for many crops. Since economic models cannot be

practically applied at the parcel level, they will not be considered in this dissertation.

The most similar approach to mine in the literature is the graphical model based ap-

proach by Osman et al. (2015). In this approach, however, the spatial units are already

provided through the French Registre Parcellaire Graphique Land Parcel Identification Sys-

tem (RPG LPIS). Since parcels provided by RPG LPIS may include multiple land uses, the

authors chose to restrict the modeling units to the subset of parcels that contain only a single

crop and field, potentially introducing bias. Prediction in this model is through a graphical

modeling approach known as Markov logic network (MLN) (see Richardson and Domingos,

2006). A Markov logic network is similar to other approaches to learning networks such as

a Bayesian network (BN), with the exception that the graphs are not directional. In the

MLN each node is a random variable with the Markov property, conditionally independent

of other nodes in the graph given its neighbors. This model is non-spatial, does not readily

accept continuous exogenous information, and is dependent on the existence of classified

parcels. The model I developed does not have these shortcomings.

The approach in this dissertation resolves the issues found in Osman et al. (2015). First,

parcel-like land cover units (LCUs) are constructed using high-resolution imagery. These

2



units contain a single land cover avoiding the exclusion of units due to multiple land uses

in Osman et al. (2015). A spatial-temporal multinomial probit model is used to model

crop rotations. This model provides a straightforward way to add covariates, incorporate

the spatial dependence of LCUs, and produce statistically meaningful parameter estimates.

This approach breaks the land cover prediction into three tasks:

1. Image Segmentation - to estimate LCU boundaries from high resolution imagery

through the mean shift algorithm.

2. Classification - to classify LCU estimates based on coarse pre-classified pixels and

other exogenous data sources.

3. Prediction - to predict LCU estimates’ land cover contents using crop rotations through

a spatially auto-regressive process.

Through this dissertation each of these three tasks is addressed separately.

Application to the agricultural land in La Porte County, Indiana, is provided in this

dissertation. The methods presented in part or full can be employed anywhere high reso-

lution remotely sensed images and associated land cover classification results are available,

not necessarily sharing the same resolution. These data requirements are less onerous year-

by-year given the prevalence of high resolution images from companies such as Google, and

freely available global Landsat data (see Yan and Roy, 2014), with a variety of methods to

use this data to classify land cover (see Boryan et al., 2011).

1.1 Image Segmentation

Image segmentation is the process of defining a mapping between a set of pixels in a

computer-generated image to a set of indexed partitions. This problem exists in many

fields, particularly in remote sensing and computer vision. The earliest published methods

date back to 1965 (see Zhang et al., 2008). The number of algorithms to perform this

mapping has significantly grown since 1965 with over 3000 published journals articles and

3



books on the subject as of 2010, many being application specific (see Dey et al., 2010). It

is noted by numerous authors that there is no general solution to image segmentation, and

that it is application and data specific.

The specific domain of the problem being addressed in this dissertation is simultaneous

segmentation of multiple images of different resolutions and type (categorical or continuous).

In computer vision literature, the analysis of categorical images is completely absent. This

absence is to be expected, given that computer vision focuses on digital images that are

represented as either binary or continuous data sets. Computer vision literature does cover

multiple images through multi-resolution and multi-view image segmentation, primarily for

modeling 3-D objects using multiple images or to identify objects moving in images (video).

In agricultural and land cover applications, image segmentation often coincides with

classification, where classification is a method of assigning a meaningful class to a pixel (see

Wilkinson, 1999). Pixel classification is outside of the scope of this research; instead, it is

assumed that a set of classified pixels with the desired classes already exist. Classified pixels

for the 48 contiguous states in the United States are available through the United States

Department of Agriculture’s Cropland Data Layer (CDL) (see Boryan et al., 2011). The

CDL is used in application of the methods in this paper. Classification of segments is within

the scope of this research and is covered in the classification section of this dissertation.

In agriculture, photographic and satellite imagery such as NAIP (National Agricultural

Imagery Program) and Landsat provide spectral intensity over multiple bands, gradient and

texture properties. Segmentation of these images has been entertained numerous times in

the literature to form parcel-like units. The most relevant paper to the image segmentation

portion of this dissertation is Yan and Roy (2014). In Yan and Roy (2014), remotely

sensed images are used to perform extraction (segmentation and identification) of crop

fields. Crop fields are regions of land used to grow crops bounded by roads or other land

cover; this spatial unit assumes that crops are reasonably static but further details are not

provided. Other notable work includes Zhang (2009), where wavelet transforms were used

with watershed segmentation to identify agricultural images. Both of these works rely on
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the use of watershed segmentation (see Beucher and Lantuéjoul, 1979), but differ on data

sources. Yan and Roy (2014) use a function of spectral bands over hundreds of daily 30m2

images, and Zhang (2009) uses a single high resolution 2.4m2 image.

There are a number of problems with these approaches. First, is that these approaches

are non-stochastic, and little care is given to the data generating mechanism. In both

papers, no distribution assumptions are made, and there is a heavy reliance on heuristics.

In this dissertation, a similar but more statistically well defined approach is taken through

a kernel density estimation based classification method known as mean shift.

Mean shift has been used before in remote sensing, for example by Huang and Zhang

(2008), Büschenfeld and Ostermann (2012), and Friedman et al. (2013). The application

to large scale areas or high resolution imagery is significantly impacted by the computa-

tional cost of the algorithm. The mean shift algorithm and other clustering algorithms also

have issues with high variance structures such as trees and similar vegetation prevalent in

agriculture. In this dissertation, six contributions are made to improve the quality of the

segmentation and to decrease the computation cost of the mean shift algorithm:

1. A novel well defined spatial-temporal land cover unit;

2. A novel approach to separating edge detection from high variance structures through

local variances;

3. A novel combination of the mean shift fixed point iterator and Newton’s method fixed

point iterator under a Gaussian kernel;

4. A novel implementation of the mean shift algorithm using the observed property

that the mean shift sequences tend to merge into a few distinct paths approaching a

stationary point;

5. A novel image stratification and sampling method for mean shift segmentation of

spatial images;

6. An improvement to the existing local pivotal method used for spatially balanced
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sampling (see Grafström et al., 2012), reducing the computational complexity from

O
(
n2
)

to O (log(n)n).

An application of the accelerated mean shift algorithm for the purposes of image seg-

mentation is provided. I use NAIP imagery of La Porte County, Indiana, in the United

States, and compare the results to hand-drawn land cover units. NAIP (National Agri-

culture Imagery Program) aerial imagery is an orthorectified 1-2 m2 imagery product that

cover the entire lower 48 states every 3-5 years (freely available through the USDA/NRCS

geospatial data gateway).

1.2 Classification

Land cover sequences for the LCUs are estimated through classified pixel level data. Un-

fortunately, land cover sequences cannot be directly applied in most circumstances, due to

differences in resolutions between the classified pixels and the boundaries formed from high

resolution imagery.

The problem of determining LCU estimate classification from pixels is a polygon overlay

problem. The polygon overlay problem is a geographic problem where a set of target units

are desired but the properties of these units are not available. Instead, a set of source

units are available with known properties, but do not share the same areal units. In this

context, classified pixels are considered the source units, and the LCU estimates are the

target units. A set of approaches to this problem can be found in Gotway and Young

(2002). In this dissertation, a simple initial approach within the class of pixel aggregation

and areal weighting is chosen, namely mapping classified pixels that are interior to an

LCU’s boundary to the LCU. Interior pixels are used to reduce the measurement error from

pixel classifications between LCUs and misalignment of the geospatial data sources used for

classification (see Dean and Smith, 2003 and Boryan et al., 2011). LCUs that do not have

sufficient dimensions to have an interior classified pixel, are unlikely to have agricultural

land cover and are removed.
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The boundaries suggested by the mean shift or other segmentation algorithms are not

perfect. LCU estimates may contain portions of other LCUs or may be a proper subset

of another LCU. These errors cause loss of information with respect to the LCU’s land

cover sequence, make interpreting relationships between LCUs more difficult. To reduce

these issues with the LCU estimators, three post-segmentation steps are performed after

the assignment of interior classified pixels to LCU estimates:

1. Identification and remediation of under-segmentation;

2. Identification of agricultural LCUs, and removal of non-agricultural LCUs;

3. Identification and remediation of over-segmentation.

The sequence of these steps is important to avoid the merging of non-agricultural LCUs with

agricultural LCUs. Methods to perform these three steps are presented in this dissertation.

Evaluation is performed using the misclassification rates of classified LCUs and the

adjusted Rand index (see Hubert and Arabie, 1985). The adjusted Rand index is based

on the Rand index (see Rand, 1971), but is adjusted to account for random clustering.

The Rand index, and likewise the adjusted Rand index are statistics, based on the overlap

between two segmentations of the same population. The statistic uses the pairwise counts

of elements, in this dissertation pixels, that are in the same segment in both segmentations

or different segments in both segmentations. For the case of two segmentations, B =

{B1, · · · , BK} and C = {C1, · · · , CJ}, the value of ni,j indicates the number of pixels that

are in segment i from segmentation B, and segment j in segmentation C. A two-way table
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of the pixel counts is provided below,

C1 C2 CJ

B1 n1,1 n1,2 · · · n1,J n1,·

B2 n2,1 n2,2 n2,J n2,·
...

. . .
...

BK nK,1 nK,2 nK,J nK,·

n·,1 n·,2 n·,J n

. (1.1)

This approach is useful since there is no requirement for the indexes to be matched between

the sets of segments being compared. The adjusted Rand index r has the following form

r =

∑K
k=1

∑J
j=1

(
nk,j

2

)
− a

1
2

(∑K
k=1

(
nk,·
2

)
+
∑J

j=1

(
nj,·
2

))
− a

(1.2)

where

a =

(
n
2

)−1
 K∑
k=1

(
nk,·
2

) J∑
j=1

(
nj,·
2

) . (1.3)

Each of the three steps are compared against USDA’s Farm Service Agency (FSA)

common land units (CLUs) from 2011 or hand-drawn LCUs. FSA CLUs are a set of spatial

units (agricultural field boundaries) provided to the Farm Service Agency by farmers that

participate in particular federal programs, details are discussed in Section 2.2. FSA CLUs

are not required to perform any of the methods in this section, but do provide a large

amount of “ground truth” within the area studied.
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1.3 Prediction

A spatial-temporal multinomial probit model is used to predict agricultural land cover

through crop rotations. The choice of this approach was motivated by initial investigations

into the spatial correlation of the number of popular crop rotations that occur at each LCU,

namely corn-to-corn and corn-to-soy rotations in a subset of La Porte County, Indiana,

Figure 1.1. Where each LCU, y, is indexed by ξ ∈ ∆ with ∆ being the index for the LCUs

in a subset of La Porte County, Indiana. Weights between spatial units ξ1 ∈ ∆ and ξ2 ∈ ∆,

w(ξ1, ξ2) are binary valued, where a weight of one implies the existence of adjacent edges,

otherwise zero. A buffer of 50 meters around each LCU was used in determining adjacency,

to allow for neighbors across roads and other boundaries.

In the literature the use of adjacent edges is called a “rook” based approach, while

using adjacent edges and vertices is considered a “queen” based approach, in reference to

the game of chess. The presence of spatial association was assessed through Moran’s I

(1.4), and simple plots of the prevalence of particular rotations, seen in Figure 1.1. Both

the Moran’s I results, Table 1.1, and plots seemed to suggest the presence of some spatial

dependence.

I =
n∑

ξ1∈∆

∑
ξ2∈∆w(ξ1, ξ2)

∑
(ξ1∈∆)

∑
(ξ1∈∆) (y(ξ1)− ȳ) (y(ξ2)− ȳ)∑
ξ1∈∆ (y(ξ1)− ȳ)2 (1.4)

A multinomial probit model (MNP) was chosen due to its ability to link categorical

response, major commercial crops, to a multivariate normal linear model. This multivariate

normal form is easy to extend as a hierarchical model, and has simpler error structure

than multinomial logits and related approaches. In this section, a brief introduction to

multinomial probit models and spatial autoregressive models is presented followed by the

crop rotation model.

Multinomial probit models provide a link function between a categorical response and

a J = C − 1 dimensional linear model with a multivariate normal error structure, where C
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Table 1.1: Measures of spatial association for specific rotation counts at each LCU under a
“rook“ based neighborhood.

Rotation Moran’s I p-value

Corn-to-Corn 0.25 0.005
Corn-to-Soy 0.24 0.005

Figure 1.1: Counts of Corn-to-Corn Rotations 2001-2013 in a subset of La Porte County,
Indiana (Left), initial spatial neighborhood using Rook based association (Right).

is the number of categorical classes. This linking is performed by partitioning the support

of the linear model Figure 1.2,

y(ξ) =

 c = 1 max (zj(ξ)) ≤ 0 ∀j ∈ {1, · · · , J}

c = j + 1 argmaxj∈{1,··· ,J}

{
zj(ξ)I{zj(ξ)>0}

}
)

(1.5)

where the observation of category c ∈ {1, · · · , C} is determined by zj(ξ), the jth element of

the latent vector z(ξ) with j ∈ {1, . . . , J}.

Inference in multinomial probit models is done primarily through the data augmentation

within the Bayesian paradigm, an extension of the univariate approach suggested by Albert

and Chib (1993). Issues of parameter identifiability are handled in McCulloch et al. (2000),
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Figure 1.2: An example of data augmentation in MNP, intercept in red and other points
represent deviates generated from the latent variable.

and advanced in Imai and van Dyk (2005) and Burgette and Nordheim (2012). The multi-

variate extension of the univariate approach of Albert and Chib (1993) was first suggested

by McCulloch and Rossi (1994) with latent variable form

Z∗|Y = U∗β∗ + ε, (1.6)

where
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Z∗|Y = (z1,1, · · · , z1,J , · · · , zn,J), a latent response vector of length nJ conditioned

on the observed state Y ,

β∗ = a vector of coefficients of length mJ ,

ε = is the error distributed as T N (0, In ⊗ Σ, A,B) a truncated normal distribution

where A and B are vectors of lower and upper bounds respectfully

defined by the observed states Y ,

Σ = a J × J covariance matrix, and

U∗ = U ⊗ IJ an nJ ×mJ matrix with

U = an n×m matrix of covariates and

IJ = an J × J identity matrix.

⊗ is the Kronecker product.

There are two common spatial autoregressive Gaussian models, simultaneous autoregres-

sive (SAR) (see Whittle, 1954) and conditional autoregressive (CAR) (see Besag, 1974). Of

these two forms, the SAR model is more popular in MNP models (see LeSage and Pace,

2009 and Wang et al., 2012). The standard SAR model has the following form (called the

spatial error model (SEM) by LeSage and Pace (2009))

Z = BZ + (I −B)Uβ + ε, (1.7)

where

Z = is a vector of length n,

β = is a length m vector of location parameters,

ε = is a random vector composed of length n with distribution

(0,Σ),

Σ = an n× n covariance matrix, and

B = is an n× n matrix of spatial weights.
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Under this approach Z is distributed as

Z ∼ N
(
Uβ, (I −B)−1 Σ

(
I −BT

)−1
)

(1.8)

In practice, the n× n weight matrix B is usually simplified to ρW , where ρ is a scalar and

W is an n×n matrix of fixed spatial weights. The matrix W is sometimes referred to in the

literature as a spatial adjacency matrix. In the simplest of cases, pairwise neighbors in this

matrix are set to one while all other values are set to zero, and to provide a more natural

weighting of observations each row is scaled to sum to one. The scalar ρ is sometimes called

an autocorrelation parameter, but as noted by Wall (2004), the value does not necessarily

indicate any particular amount of autocorrelation. In the case of the row-scaled W , ρ is

necessarily bounded on the interval (1/λmin, 1), where λmin is the minimum eigenvalue from

W .

Spatial autoregressive MNP models or SAR MNP models have been explored by LeSage

and Pace (2009), with spatial-temporal approaches developed by Wang et al. (2012). Al-

though these models are called SAR models they differ from (1.7),

Z∗ = BZ∗ + Uβ + ε, (1.9)

where

B = ρW ⊗ IJ ,

W = n× n matrix of spatial weights (“rook” in this application), and

ρ = scalar parameter for W .

The type of model is sometimes called “mixed regressive and spatial autoregressive model”

or “lagged response model“ in ecology.

The MNP and SAR MNP models described above provide a way to link categorical

response to a linear model with multivariate normal error structure. What remains to be

done is to link these models with the crop rotation phenomena used for prediction. To do
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this, it is assumed that the categorical response is temporally stationary and conditionally

independent given a prior state, sequence of prior crops, on the same LCU. Therefore, by

specifying a set of prior states (rotations) P , it is then possible to create a design matrix to

include the prior state information for each LCU.

This simple MNP model using prior crop rotations states works well, in that it can admit

other exogenous variables when available such as transportation cost, or soil moisture data,

but provides no way to model potential missing variables that may have spatial relationships

such as land ownership or the social relationship between farmers. A novel hierarchical

model is presented in this paper that models spatially correlated crop rotations, e.g. corn-

to-soy rotations are close to corn-to-soy rotations. The autocorrelated crop rotation model

approach has the form

Z∗ = U∗∗β∗∗ +Xγ + ε, (1.10)

β∗∗ = Bβ∗∗ + (I −B)β0 + υ, (1.11)

where

U∗∗ = (T − l)nJ × nPJ design matrix,

T = the number of observed years,

l = the lag, number of prior years,

β∗∗ = nPJ vector of covariates,

X = other covariates,

γ = other covariates coefficients,

β0 = hyper parameter for β0 and

υ = random vector of length n with distribution N (0,Συ).

This model differs from prior SAR MNP models of LeSage and Pace (2009) and Wang

et al. (2012), where the response is considered auto-correlated, e.g. corn grows next to

corn. A problem with this model is the large number of parameters introduced; however,

for larger values of ρ, the number of effective parameters is actually much lower than nPJ
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avoiding excessive over-fitting.

This model exhibits several computational challenges in the traditional gibbs sampling

framework, largely due to the sparse nature of the design matrix U∗∗. Therefore, extensive

use of sparse matrix libraries was needed, this prevented direct use of any pre-existing

software to handle this model. To provide results and to evaluate this model, a software

package for the R language (see R Core Team, 2015) was created (see Lisic, 2015a). This

software package for R was created based on the MNP package (see Imai and Van Dyk,

2005).

In summary the following contributions to crop rotation modeling are provided:

1. A novel spatial-temporal model for crop rotations;

2. Computational methods to handle the sparse structure of the proposed model;

3. An evaluation of the proposed model against a real data set.
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Chapter 2: Literature Review and Relevant Theory

In this dissertation, the topic being studied is the prediction of agriculture at the parcel

level, through the use of well defined spatial-temporal units. In this chapter, the well

defined spatial-temporal unit is introduced, and the three steps to construct and perform

prediction on these well defined units are presented. No existing literature deals with all

four of these issues simultaneously even when relaxing the constraints on algorithms and

models; therefore, the literature review will approach each issue independently.

2.1 Image Segmentation

In Section 2.1, a well defined land cover unit will be defined, and the means shift algorithm

will be applied to estimate these units from high resolution imagery. The mean shift algo-

rithm is used for classification and estimation of local maxima of a kernel density estimate.

The properties of the mean shift sequence will not be explored in this dissertation. Ap-

pendix A provides a review of both the mean shift algorithm and kernel density estimators.

To provide sufficient background on both prior theory and relevant works, an overview of

the following topics is provided; filtered estimators, spatial sampling, topics associated with

increasing the performance of the mean shift iterator, and application of image segmentation

in agriculture.

2.1.1 Land Cover Unit

A parcel could define many possible spatial units such as a city block, a subdivision, or an

agricultural field. In this dissertation, the desired spatial unit for land cover modeling is one

that has a maximal boundary surrounding a single land cover sequence. This spatial unit

is called a land cover unit (LCU). This spatial unit is a result of favoring unique land use
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sequences, over having ideal boundaries for a specific year. The unique land use sequence

requirement creates spatial units that are the collection of intersections of yearly spatial

units. These spatial units are also a function of the length of the land cover sequence,

where a land cover sequence of length one may produce spatial units significantly different

from spatial units formed from longer land cover sequences. The change in spatial units as

a function of sequence length, also affects the relationships between adjacent spatial units.

An alternative approach is to assume that the boundaries are constant over some win-

dow of time. In this case, there is a potential compromise on both relationships between

adjacent spatial units and the land cover sequence under the condition of boundary changes

within the temporal window. The constant boundary approach can be seen in Long et al.

(2014) through a study of changes in field-level cropping sequences in North-East Montana.

Long et al. (2014) use the Montana cadastral framework from the Montana State Library’s

Geographic Clearinghouse for June 2012. These boundaries are assumed constant over a

temporal window from 2001-2012. This set of land cover units were considered to generally

follow agricultural field boundaries, but no measure of the accuracy over that period was

provided in the document. Other authors, such as Yan and Roy (2014), also make the

strong assumption of little change in field boundaries between years in their spatial units

constructed from remotely sensed images.

A third approach is to simply evict units in a data frame that fail to meet a particular

definition. Osman et al. (2015) evicts all units from a set of spatial units that do not have

a distinct land cover sequence, as does Boryan et al. (2011) in the selection of training data

for classification. Such an approach may introduce bias into estimates of parameters, and

may distort true spatial relationships.

2.1.2 Filtered Estimators

Kernels and filters are two words used in different ways by different disciplines describing

similar functions. In image processing, a filter and kernel sometimes refers to the convolution

of a computer image with a spatially weighted function. In statistics and also in image
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processing, kernel may refer to a function with a set of properties defined in Appendix A.

In this dissertation the term kernel, and filter when dictated by convention, will refer to the

latter case. The term filtered estimate will refer to the convolution of an estimate g with

the kernel k, a generalization of the former case.

Kernel density estimates, are therefore filtered estimates where g(x) = 1. Literature for

filtered estimators in general is more limited than that of kernel density estimators, and

tends to follow two general paths in the statistical literature:

• local application of statistical methods;

• robust estimators for noisy surfaces.

The first group of filtered estimates covers topics including local polynomial regression

such as the popular Nadaraya-Watson Estimator, local likelihood estimation for generalized

linear models (see McCullagh and Nelder, 1989), and localized EM for fitting mixture models

(see Kauermann, 2001). The second group may use similar methods, but the focus is on

robust estimators of surfaces (see Lee, 1983 and Chu et al., 1998). Applications of the second

group are common in medical imaging (see Chu et al., 1998 and Godtliebsen and Spjsotvoll,

1991) and remote sensing (see Lee, 1980). This dissertation will focus on methods in the

second group.

Filtered estimates are used in image segmentation to enhance edges and to reduce noise.

In signal processing, this is known as increasing the signal-to-noise ratio (SNR). Filtered

estimates in applications to image segmentation operate on pixels that are addressed by

indexes s in an image D, where s is a Cartesian coordinate of form s = (s1, s2). The most

common approach, is the application of a Gaussian filtered estimate. The Gaussian filtered

estimate is a Nadaraya-Watson estimator,

fNW (y) =

∑n
i=1 xiκ

(yi−y
h

)∑n
i=1 κ

(yi−y
h

) . (2.1)

The Nadaraya-Watson estimator is a conditional filtered estimate, where instead of applying
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the convolution to x, the convolution is applied to x|y, and g(x|y) = x|y. By setting

xi = v(s) and y = s the Nadaraya-Watson becomes the Gaussian filtered estimate,

f(s) =
∑
s∗∈D

v(s∗)w(s∗, s) (2.2)

where

w(s∗, s) ∝ φ
(
||s− s∗||2H

)
, (2.3)

s, s∗ ∈ D, H is a bandwidth parameter, ||·||2H is the Mahalanobis distance, and
∑

s∈D w(s, s∗) =

1.

A secondary filtered estimate can be used to identify regions of an image where the

magnitude of the gradient with respect to s is large (see Canny, 1986). In computer vi-

sion these methods are called edge-detection methods. Edge-detection filtered estimates are

finite distance approximations to the magnitude; the most popular are the Sobel filtered es-

timate that provides directional gradients, and the Lapalacian that provides non-directional

gradients Bradski and Kaehler (2008).

These methods can be combined to form edge-preserving filtered estimates. The most

common edge-preserving filtered estimate is the bilateral filtered estimate. The name bi-

lateral filtered estimate or “bilateral filter” was coined by Tomasi and Manduchi (1998),

although the original work by Lee (1983) and extension by Chu and Marron (1991) used

the term “sigma filter”. The bilateral filtered estimate has a form similar to (2.2) with the

weight w replaced by

w∗(s∗, s) ∝ φ
(
||s− s∗||2H

)
φ
(
||v(s)− v(s∗)||2Hv

)
(2.4)

where Hv is the scalar bandwidth for the kernel involving the pixel value. In this approach,

the weight is a function of the value and spatial distance. This enhances edges by decreas-

ing the weight of neighboring pixels that are spatially close, but have values significantly
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different from the pixel being filtered.

Both using a Gaussian filtered estimate with edge detection and bilateral filtering work

well at reducing variance and preserving edges in images with moderate or constant varia-

tion, but work poorly with high variation or large differences in variation within the same

image. These situations are common in high resolution imagery due to trees and devel-

oped structures such as buildings. If the trees and structures provide regular patterns,

wavelet transforms can be used with other filtered estimates to assist in segmentation (see

Trias-Sanz et al., 2008 and Aksoy et al., 2012).

An alternative to using wavelets is to use the local variance. The local variance as

described by Lee (1980) is the sample variance applied to a spatial neighborhood;

S2
h(s, t) =

∑
s∗∈D

∑
s∗∗∈D

wh(s, s∗)wh(s, s∗∗)
(x(s∗)− x(s∗∗))2

2n(n− 1)
(2.5)

Local variances have been employed in dynamic or adaptive bandwidth for kernel density

estimation and filtering. However, these filtered estimates simply increase the bandwidth of

the kernel in areas of high variance, or decrease the bandwidth areas of low bandwidth, but

do not filter using the local variance. This is the goal of the local variance filter proposed

in this dissertation.

The log variance filter (LVF) can be considered a filtered estimate, or a filter applied

to the log of the local variance (3.3). The log transformation helps easily identify areas of

high and low local variation. An example of this log variance can be seen in Figure 2.1.

The LVF is used in conjunction with an intensity value for estimating LCU boundaries.

In the computer vision and graphics literature little attention is given to the pointwise

and global properties of filter estimates. Instead, more heuristic approaches are taken by

calculating the IMSE over a set of images such as the popular “lena.jpg” or collections

of images categorized by image attributes. This may be understandable, given that the

asymptotic results are not generally useful in direct application of filtered estimates to
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Figure 2.1: Local log-variance (Left), and NAIP imagery (Right).

images where larger bandwidths may be needed.

The LVF is approximately normally distributed and is proportional to Fisher’s Z statis-

tic. This implies that the LVF is a spatial average of pdf values of a local test statistic for

the variance. The theoretical properties of the LVF are related to the work by Panaretos

et al. (2005) on ratios of correlated gamma random variables, and Shoemaker (2003) on

robust alternatives to the F-test.

The LVF is used for two tasks in this dissertation. (1) the LVF is indirectly used

as a component of, the kernel density based, mean shift segmentation algorithm. This

application applies a Gaussian kernel to the output of a filtered estimates and the log of the

local variance. (2) the LVF is used to help with image stratification to accelerate the mean

shift algorithm. To minimize variance between samples and to ensure useful landmarks

are retained, a spatially stratified design is used. The strata in this design are determined

through a threshold applied to large and small values of the LVF, where large LVF values

indicate areas of constant variance, and small values indicate areas of non-constant variance,

such as LCU boundaries.

21



2.1.3 Spatial Sampling

Sampling is often an effective method of data reduction. Sampling as a form of data

reduction in mean shift can be found in Xiao and Liu (2010) and Freedman and Kisilev

(2009) to reduce computational burden. However, the “sampling” in Freedman and Kisilev

(2009) is confusing in its deviation from statistical theory. In Freedman and Kisilev (2009),

error is added to each element of the sample to simulate noise in the image. This is both a

computationally and statistically inefficient way to sample from an image.

An alternative method is to follow the well developed literature in survey sampling.

In survey sampling, sampling is performed to reduce the cost of complete enumeration of

a population. In this dissertation, cost implies computational burden, however in sample

survey methodology cost is usually financial.

If the population can be associated with a spatial index, then a spatial sample can be

drawn. The advantage of sampling through a spatial index depends on the degree of spatial

correlation between elements in the population. If the elements in the population have a

positive spatial correlation, then by sampling one unit, some information on the surrounding

units will also be collected. Therefore, by “balancing” the survey, sampling such that the

units are well distributed in space, a spatial sample can be more efficient with respect to

variance reduction than non-spatial approaches.

The idea of spatial sampling has a long history; early works include Quenouille (1949).

Spatial sampling can be broken down into aligned and unaligned designs (see Quenouille,

1949), where aligned designs follow a systematic pattern such as a grid. In the more general

world of survey sampling the grid method would be akin to systematic sampling. Much like

systematic sampling, a disadvantage of aligned designs is that the sampled units may be

coincident with a reoccurring phenomena such as roads.

Breidt (1995) described a generalization of grid sampling, which allows the user to

control how aligned the vertexes in a grid are allowed to be. In the most restrictive case the

grid is aligned, in the less restrictive case the grid is unaligned. In this generalization each

vertex in the grid is associated with an index (i, j) : i = 1, . . . , I and j = 1, . . . , J . Each
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Table 2.1: Design type given parameter φk in Breidt (1995).

φk Design Description

1 Systematic sample.
0 One point per stratum sample (stratum = grid cells).
-1 Balanced systematic sampling.

vertex location is determined through a Markov chain of the form

x(i, j) = s1 + a(j − 1) + aΦ(v1(i, j)) (2.6)

x(i, j) = s2 + b(j − 1) + bΦ(v2(i, j)) (2.7)

v1(i, j) =

 z1(i, j) j = 1

φ1v1(i, j − 1) + z1(i, j)
√

1− φ2
1 j ∈ {2, · · · , J}

(2.8)

v2(i, j) =

 z2(i, j) j = 1

φ2v2(i− 1, j) + z2(i, j)
√

1− φ2
2 j ∈ {2, · · · , J}

(2.9)

where s1 is a spatial location (East-West), s2 is a separate spatial location (North-South),

and Z ∼ N (0, I) is the vector of all z(i, j). In this design, the parameter φk, k ∈ {1, 2},

determines the structure of the sample Table 2.1. The exact probability that a particular

location will be in the sample, the inclusion probability, is difficult to calculate under this

approach; therefore, Breidt (1995) provides an approximation through simulation.

The local pivotal method (LPM) of Grafström et al. (2012), which is an extension of

the pivotal method of Deville and Tille (1998), departs from the prior generalization of

sampling on a grid. This method creates spatially balanced samples. Stevens and Olsen

(2004) defines the term spatially balanced through a Voronoi tessellation for each sample.
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Under this definition, the statistic

B =
n∑
i=1

1−
∑
s∈Vi

π(s)

2

n−1 (2.10)

is used to determine how spatially balanced a sample of size n is, where Vi is a polygon from

the Voronoi tessellation of the sample, and π(s) is the probability that a sampling unit at

location s is included a sample. Note,
∑

s∈D π(s) = n and π(s) > 0 ∀s ∈ D, where D is a

spatial index with N elements. If s is on the boundary between multiple polygons, then the

sampling weight is divided equally between the polygons. If B is close to zero for a sample,

then the sample is considered spatially balanced. This occurs when each polygon contains

approximately the same total inclusion probability.

Algorithm 1. S ← Random Sequence of {1, . . . , N}

for all s ∈ S do

m← 0

R← ∅

{Get neighbors of equal distance.}

for all r ∈ {q : q ∈ S, q 6= s} do

if d(s, r) < m then

R← {r}

m← d(s, r)

else if d(s, r) = m then

R← R ∪ {r}

end if

end for

{Handle ties.}

r ← SAMPLE(R) {A function that returns a random sample from a set.}

{Check if s is the closest neighbor of r.}
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for all t ∈ {q : q ∈ S, q /∈ {r, s}} do

if d(t, r) < m then

R← {t}

m← d(s, t)

else if d(t, r) = m then

R← R ∪ {t}

end if

end for

if s ∈ R then

(π′(s), π′(r))← g(π(s), π(r))

end if

end for

The LPM algorithm is provided as Algorithm 1 where π(s) + π(r) < 1 and

g(x, y) =

 (0, x+ y) with probability y
x+y

(x+ y, 0) otherwise
(2.11)

otherwise

g(x, y) =

 (1, x+ y − 1) with probability 1−y
2−x−y

(x+ y − 1, 1) otherwise.
(2.12)

This algorithm has since been updated by Grafström et al. (2012) with the LPM2 algorithm,

providing substantial speed up over LPM by removing the second neighbor check. The worse

case running time for LPM in a näıve implementation is O(N3), where N is the population

size, while the LPM2 algorithm has a worse case running time of O(N2). The worst case

running time under LPM2 comes from the N2 distances calculated for each sampling unit.
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The computational burden of LPM2 for large sample sizes is noted in Grafström et al.

(2012). In a later paper, Grafström et al. (2014), LPM2 is approximated through the use

of a restricted spatial neighborhood to decrease the computational burden. An alternative

approach is provided in this dissertation, but without approximating the LPM2 result. This

approach replaces the linear searches with a k-d tree data structure to obtain an average

computational complexity of order O(N log(N)).

2.1.4 Mean Shift and Newton’s Method

Mean shift is a mode searching algorithm similar to the typical Newton’s Method for finding

roots of a smooth function but applied to a kernel density estimator. A short overview of

the algorithm and its properties used in this dissertation are provided in Appendix A. For

the purposes of the literature review the mean shift will be quickly reviewed.

The mean shift algorithm is used to classify a set of query points, identified by the set

Q to a set of local maxima in the kernel density estimate from another set of points R,

known as the reference set. Each point v in R or Q is assumed to be an iid observation

of the random variable x with pdf f and support in the d-dimensional space Rd. Q and R

are assumed to both have the same support, and frequently Q = R. Because this is a root

searching method, there is no dependency on a fixed number of clusters, instead the choice

of both kernel and bandwidth parameters are determine the number of local maxima in the

kernel density estimate (KDE). For convenience, the cardinality of the sets Q and R will

be denoted by NQ and NR respectfully, and the KDE will be rewritten as

f̂NR,H(v) =

NR∑
j=1

|H|−1n−1κ
(
H−1 (v − xj)

)
=

NR∑
j=1

cj,Hk
(
||v − xj ||2H

)
(2.13)

where cj,H is a constant ensuring that k
(
||vi − xj ||2H

)
cj,H = κ

(
||vi − xj ||2H

)
. In the context

of mean shift, the kernel κ is known as the shadow kernel, k is known as the shadow profile,
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and g = −k′. The form of the mean shift iterator is

vi+1 =

∑NR
j=1 xjcj,Hg

(
||vi − xj ||2H

)∑NR
j=1 cj,Hg

(
||vi − xj ||2H

) . (2.14)

The mean shift algorithm is a steepest ascent method used to find critical points of f̂n,

the kernel density estimate calculated using the points in R. Other methods to find critical

points include the application of root finding methods to ∇f̂n, the gradient of the kernel

density estimate f̂n. A popular root finding method is Newton’s method (2.15).

v(i+1)
n = v(i)

n − λ′n
(
v(i)
n

)−1
λn

(
v(i)
n

)
(2.15)

where first and second derivatives of the kernel estimate are

λn =

NR∑
j=1

πjcj,Hg
(
||(v(i) − xj)||2H

)(
v(i) − xj

)
(2.16)

and

λ′n =
∑NR

j=1 πjcj,H
(
g
(
||(v(i) − xj)||2H

)
Id

+ g′
(
||(v(i) − xj)||2H

)
|H|−1/2

(
v(i) − xj

) (
v(i) − xj

)T |H|−1/2
)

.
(2.17)

Under the condition that both Newton’s method and mean shift converge to the same

stationary point, Newton’s method has the distinct advantage of a quadratic convergence

rate, Table 2.2.

The relationship between Newton’s method or improvements to mean shift through

Newton’s method have been explored by numerous authors for example Yang et al. (2003a),

Fashing and Tomasi (2005), and Chiu et al. (2008). Direct comparisons of the method have
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Table 2.2: Comparison of Newton’s method and Mean Shift convergence to a stationary
point at -0.14.

Iteration Mean Shift Newton

1 1.00 1.00
2 0.51 -0.78
3 0.25 -0.12
4 0.09 -0.14
5 -0.00 -0.14
6 -0.06 -0.14
7 -0.09 -0.14
8 -0.11 -0.14
9 -0.13 -0.14

10 -0.13 -0.14
11 -0.14 -0.14

been discussed in Yang et al. (2003a) where the gradients were compared. Further work

done by Fashing and Tomasi (2005) shows that the Newton step (2.15) is equivalent to

mean shift when g is a piecewise constant function. This does not hold for other kernels

such as the Gaussian.

Approximation of mean shift through the use of other iterators or transformations has

been explored by numerous authors. An early approximation of mean shift in the litera-

ture occurs in Yang et al. (2003a), where a quasi-Newton method known as BFGS (Broy-

den, Fletcher, Goldfarb, and Shanno) is used to approximate a mean shift method with a

Gaussian kernel, where a quasi-Newton method is an approximation to Newton’s method

obtained by approximating the Hessian. Similarly, Chiu et al. (2008) used a quasi-Newton’s

method, but delayed employment of this method until a threshold on ||f̂n(y(i+1))−f̂n(y(i))||22

is met. The same authors of Yang et al. (2003a) also proposed another approximation of

mean shift in Yang et al. (2003b) through the use of an efficient expansion of the sum of

Gaussian kernels known as as a “fast Gaussian transform”. This method suffers in higher

dimensions and is considered out of scope for this research.

Convergence of Newton’s method to a unique root under a set of regularity conditions

and a variety of modes has been explored by a number of authors. The most relevant
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Figure 2.2: Comparison of Newton’s method and Mean Shift

article on this topic is Clarke and Futschik (2007), which provides conditions for uniform

convergence of an estimator of the local maxima of a KDE to the true local maxima of the

density the KDE is estimating. Similar to Chen et al. (2014a), the uniform convergence

convergence in Clarke and Futschik (2007) result is based on the strong uniform convergence

of multivariate KDEs in Giné and Guillou (2002).

Clarke and Futschik (2007) provides a proof for the uniform convergence of θ̂n,0 = θ0 as

n goes to zero where θ̂n,0 = θ : ∇f̂n(θ) = 0 and θ0 = θ : ∇f(θ) = 0 under a set of regularity

conditions:
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A1 Both λ and λn are continuously differentiable.

A2 All components and partial derivatives of λn converge uniformly to those of λ.

A3 The Jacobian of λ′ corresponding to the derivative of λ is continuous and |λ| 6= 0.

N1 For x and y in a ball B0 around a unique root θ0 for a sufficiently large n λ′n is

Lipschitz continuous under the L2 norm.

N2 ||(λ′)−1(x)|| ≤ β and ||(λ′)−1(x)λ(x)|| ≤ η for constants β and η satisfying α =

βηγ(e) < 1
2 on some ball Bδ ⊂ B0 satisfying r(βδ) + t∗ < r(B0),

where r(·) is the radius function for a ball argument, A1–A3 provide unique roots, and

N1–N2 provide sufficient conditions for convergence to those unique roots. N1 is a typical

Lipschitz continuity requirement placed on the complete metric space of Bδ as seen in many

fixed-point theorems, and N2 is a condition specified in Giné and Guillou (2002). This is

met for a Gaussian kernel over a sufficiently smooth f with MSE optimal bandwidth.

2.1.5 Mean Shift Implementations

One major issue with mean shift is that in a näıve implementation, each iteration would

require calculating the kernel, including the distance, for all observations in the data set.

This gives the procedure a computational complexity of order NRNQm where m is the

number of iterations. This polynomial running time would make the algorithm unusable for

large data sets. Therefore, binning the observations in the feature space for some reduction

in precision can be performed to gain a massive speed up in computation, a common tech-

nique for kernel density estimators (seee Wand and Jones, 1994). Unfortunately, binning is

not useful in higher dimensions, since the number of bins required to retain a fixed level of

precision increases exponentially as the number of dimensions increase, due to the curse of

dimensionality.

An alternative approach would be to only calculate the kernel for points sufficiently close

to the point being shifted, or a fixed number of close points (k nearest neighbors). Casting
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mean shift as a nearest neighbors problem opens up the implementation to advances in the

well developed nearest neighbors literature. Because not all points are used to calculate the

shift, it should be noted that this approach does sacrifices some precision for a potential

large increase in speed.

Initial work in increasing the speed of the algorithm has been through an associated

problem to kernel density estimation, k nearest neighbor estimation (KNN). For KNN in

high dimensions, the most computationally difficult part of the problem is finding neighbors.

Instead of searching all NR points, for a fixed initial cost, an alternative data structure can

be used to store all NR points, and achieve sub linear search times.

The first published work on implementation of fast nearest neighbor algorithms in mean

shift can be found with Georgescu et al. (2003), who used an approach called locality

sensitive hashes (LSH). LSH has fallen out-of-favor in the current literature to other data

structures such as k-d trees, that are more computationally efficient. k-d trees have an

average search time of O(log(Nr)) and tree construction time of O(NR log(NR)) Wang

et al. (2007) Xiao and Liu (2010). Approximate nearest neighbor algorithms can further

reduce the computational burden by returning the closest neighbors of an observation that

can be found in a fixed time, or fixed search radius.

The dual k-d tree approach to mean shifting by Wang et al. (2007) is interesting in that

it both speeds up the search time for neighbors and computational burden, by operating on

branches of the k-d tree instead of leaves. This acceleration is achieved by forming a static

k-d tree for the reference data and a separate query tree that is rebuilt each iteration. In this

scenario, the reference tree returns an approximate estimate of the mean shift contribution

for each observation within a branch or leaf of the k-d tree with a fixed tolerance level.

2.1.6 Image Segmentation of Remotely Sensed Images

Segmentation of remotely sensed images for the purpose of identifying crop boundaries, or

“crop field extraction” has been explored by numerous authors. The most notable examples

can be found in Zhang (2009) and Yan and Roy (2014). An application of mean shift to
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Table 2.3: WELD Landsat bands, Yan and Roy (2014)

Band Description

1 Blue
2 Green
3 Red
4 Near Infrared
5 Short-wave Infrared
6 Thermal Infrared
7 Short-wave Infrared

remotely sensed images explicitly for crop field extraction, has not been found in the litera-

ture. However, this algorithm has found use in the more general case of image segmentation

of remotely sensed images.

Yan and Roy (2014) recently proposed an automatic method for crop field extraction.

This method is considered the most comparable to the method presented here due to its

ability to produce field extractions over large areas.

The extraction method uses web enabled Landsat data (WELD). WELD tiles are

150km2 in size, and cover five years in increments of one week. Each pixel within these

tiles is 30m2 in size, and include a number of bands, Table 2.3. The bands of greatest

interest are red and near-infrared, these are used to form the NDVI (normalized difference

vegetation index), a common indicator of plant activity.

A function of the NDVI is used to determine areas that are likely to be agricultural fields.

To remove clouds, aircraft and other undesirable features, a time series of the maximum

weekly NDVI measurements over five years is formed for each pixel. Medians are calculated

over a d week moving window of this time series, and are denoted as NDV I(t, s) where t

is an index for the d week window, and s is a pixel index. The value d is determined based

on the growth season for the crop being targeted. The maximum NDVI for each of these

medians is recorded as NDV I∗(s).

The ratio of NDV I∗(s) and the 95% quantile of NDV I(s) for all s in the WELD tile are

used to create a heuristic to determine the likelihood of an agricultural field. If the ratio,
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P ∗(s), is greater than one then the pixel is considered to be part of an agricultural field, and

if the ratio is below a threshold it may be a field. The paper uses the term “probability” for

P ∗(s) but it is unclear what underlying random process is generating this probability, and if

this probability actually reflects the probability that a given pixel belongs to an agricultural

field.

Another function, P (s), is label the probability that the pixel at location s is an edge.

This function provides some degree of edge detection through the function f(x, s0),

f(x, s0) =

∑
s∈B ||x(s0)− x(s)||2||s0 − s||2∑

s∈B ||s0 − s||2
(2.18)

where B is the set of pixels that are adjacent to s0 (including corners). P (s) is the average

over all weeks of

P (s) =
52∑
k=1

NDV I(t, s)f2(ρ(t, s), s)f(NDV I(t, s), s)

52
(2.19)

where ρ(t, s) is calculated in a similar method to NDV I(t, s), but uses bands 2,3,4,5 and 7

of the WELD data.

Segmentation in this method uses variational region based geometric active contour

(VRGAC). VRGAC uses thresholding and an iterative procedure defined in Caselles et al.

(1993). In Yan and Roy (2014), a fixed value threshold of 0.85 is applied to each P ∗(s)

to form initial agricultural fields, where values below the threshold are discarded. It is

stated that the threshold value is fairly insensitive over the range 0.5 to 0.9. VRGAC is

then applied to the binary image obtained through the thresholding, where VRGAC applies

smoothness constraints to the binary edges iteratively.

More post processing is done to handle under-segmentation. The post processing in-

cludes watershed segmentation on the distances obtained through VRGAC. A “skeleton”

is then formed by identifying minima within each watershed segment and ridges between
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these minima, then a heuristic is used to determine if the ridges were likely between two

distinct fields or within the same field.

The most interesting part of this method occurs through the use of thresholds to deter-

mine agricultural fields that use center pivot irrigation (circular fields). The algorithm uses

the fit statistic

fit(i, j, l) =

∑k
r=1 n

0
r +

∑k
r=1 n

c
r∑k

r=1 nr +
∑k

r=1 n
0
r

(2.20)

where

s is a point within the initial field,

l is the length of the rays,

nr is number of pixels along ray r within the field,

n0
r is number of pixels along ray r that are not within the field and

ncr is difference between nr and the maxr∈{1,...,k}nr.

The fit statistic is minimized over a set of lengths and all points sufficiently within the

interior of the initial field. If the fit statistic is below a pre-determined threshold then the

rays are used to form a set of “pie slice” shaped fields. These slices are merged through

another fit statistic

fit =

∑k
r=1 n

c
r∑k

r=1 nr +
∑k

r=1 n
0
r

(2.21)

and another threshold. The final result uses a two pixel dilation and a one pixel erosion to

smooth the final boundaries.

Zhang (2009) used wavelet transforms with watershed segmentation to identify agricul-

tural images. This work differs from Yan and Roy (2014) in that it does not use NDVI,

and instead it uses high resolution imagery (2.4m2). Since high resolution imagery is used

as opposed to NDVI a finite difference approximation of the magnitude of the gradient

of a grayscale converted image is used. This finite difference approximation is used with
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watershed segmentation and a number of post-processing steps to produce a segmentation.

Application of the mean shift algorithm to remotely sensed data include Huang and

Zhang (2008), Büschenfeld and Ostermann (2012) and Friedman et al. (2013). An inter-

esting approach of using image segmentation and classification to jointly minimize over-

segmentation and improve the classification was presented by Büschenfeld and Ostermann

(2012). In this application mean shift was used for an initial segmentation, then pixels

classifications were assigned to pixels within each segment from a separate SVM (support

vector machines) classification process. A majority vote then determined the classification

of the interior pixels. This approach is somewhat similar to the approach taken in the clas-

sification section of this dissertation. However, in this dissertation a test is performed to

determine if disagreement between pixels within each segment are due to miss-classification,

or miss-segmentation. Friedman et al. (2013) performed a short exploration of the mean

shift algorithm from Georgescu et al. (2003), applying it to remotely sensed data in a

distributed environment.

2.2 Classification

Classification methods for parcel-level spatial units associate labels with specific land cover

units. These labels are from GIS sources such as remotely sensed imagery or digitized the-

matic maps, where thematic maps are geographic maps with categorical values. Assuming

that the spatial unit boundaries are reasonably accurate and larger than the pixels used for

classification, the classification of spatial units may improve the classification rate of the

original image (see Gao et al., 2007). This increase in classification rate is due to more in-

formation being available per unit area relative to pixel based classifications. The classified

pixels may also be useful in identifying potential problems with the boundaries, identifying

areas where land cover units should be split or merged.
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2.2.1 Classification of Land Cover Units

Literature on the classification of imagery to known boundaries can be found in the Eu-

ropean Union and in the United States. The European Union’s Land Parcel Identification

System (LPIS), is a geospatial database that retains data on every farm that participates

in crop payments programs (see Taşdemir and Wirnhardt, 2012). The LPIS database is

updated via the farmer, through a web application (see Taşdemir et al., 2012), and each

member state is required to maintain quality standards. Oesterle and Wildmann (2004)

classified this land parcel system via “fuzzy methods”, namely identification through a hi-

erarchical object based system. These fuzzy methods, assign a probability of a given land

use type.

In the United States, mandatory agricultural reporting is done via the Agricultural

Census every seven years, where no geospatial data is obtained; geospatial data with regards

to parcel-level spatial units is collected by the Farm Service Agency (FSA), but participation

is voluntary leading to under-coverage. Despite the incompleteness of the segmentation,

FSA spatial units known as common land units (CLU) have been used in the literature.

One example is in California where FSA CLUs in conjunction with CDL data and other

multi-source products were used to classify agricultural content with up to 84% accuracy

(see Falkowski and Manning, 2010).

Long et al. (2014) and Kipka et al. (2016) also applied CDL data to parcel-level spatial

units. The spatial units used in Long et al. (2014) were from Montana State Library’s

Geographic Clearinghouse from June 2012, and Kipka et al. (2016) used individual farm

with mapped GIS boundaries. For Long et al. (2014) the most dominant crop was used to

determine land cover of the spatial unit. Kipka et al. (2016) determines dominant crop by

multiplying the acres classified within a spatial unit times the classification rate. The crop

with largest value is then selected as the land cover for the parcel.

In the United Kingdom, (Woodwalton Fen, Cambridgeshire) Dean and Smith (2003)

used a multivariate normal likelihood function to classify land-uses against known class
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parameters. An entropy based measure was further used to measure the quality of the esti-

mate. Another land parcel system was commissioned by the States of Jersey in the United

Kingdom for the Institute of Terrestrial Ecology (see Smith and Fuller, 2001). This system

integrated multi-source geospatial imagery with additional data, and used a maximum a

posteriori probability (MAP) estimate of land cover (see Fuller et al., 1994). Details of the

implementation of this method unfortunately are not cited in the literature.

2.2.2 Under-Segmentation

Splitting of under-segmented spatial units is addressed in a small number of papers in

remote sensing. The approaches to identification of under-segmentation in these papers are

varied. Yan and Roy (2014) and Turker and Kok (2013) take the form of deterministic

ad-hoc approaches, while Johnson and Xie (2011) uses a measure of intra- and inter-pixel

homogeneity within each segment to determine under-segmentation.

A method of joint under- and over-segmentation is addressed in Yan and Roy (2014),

where watershed segmentation is assisted through thresholding. Watershed segmentation

works by identifying convex subsets of a smoothed grayscale image. In Yan and Roy (2014),

instead of grayscale images a function of the NDVI is used. The thresholding is based on

the largest value between local minima along the “spine” or trough in the image. Only

adjacent watershed segments with maximum values below this threshold are merged.

Turker and Kok (2013) uses a rule based approach to identification of under-segmentation

through “perceptual grouping.” This method uses an edge detection method known as

“Canny edge detection” (see Canny, 1986) to identify edge pixels, then uses rule matching

to form pixels within a spatial unit into “natural” edges.

Johnson and Xie (2011) used the statistic

H =
nS̃2 − Ĩ
nS̃2 + Ĩ

(2.22)
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where S̃2 and Ĩ are the variance and Moran’s I normalized under each spectral band. This

statistic measures inter-pixel homogeneity through Moran’s I, and intra-pixel homogeneity

through the variance estimate. Values with high variance and high Moran’s I were identified

with segments containing more than one land cover. A formal test was not specified, instead

a set of thresholds on H were set, and re-segmentation was performed on segments above

this threshold.

In statistical literature the problem of under-segmentation, is in the scope of cluster

detection. Waller and Gotway (2004) notes that the existing global indices do not have

sufficient power for determining the existence of a single cluster. Identification of a small

number of clusters, instead falls under visual exploratory analysis through local indicators

of spatial association (LISA). The most popular LISA is the local version of Moran’s I. It

can be found in practice in numerous papers in ecology, health, and population growth.

The properties of this statistic can be found in most standard spatial statistics texts such

as Schabenberger and Gotway (2004), Cressie (1993), and Cressie and Wikle (2011).

The statement in Waller and Gotway (2004) that existing global indices do not have

sufficient power for determining the existence of a single cluster holds in the general case,

but may not hold in specific cases. The specific case of interest is with binary response with

reasonably low error rates, in this case global tests may provide reasonable power. In this

dissertation a global test applied to the pixels within each LCU will be used.

The binary case admits two approaches, the first approach follows from spatial point

patterns, the second from areal models. Spatial point patterns and areal models are both

classes of statistical models defined by Noel Cressie in the seminal text Cressie (1993).

Spatial point patterns are spatial models based on the distribution of points in the spatial

support. Areal models, sometimes called lattice models, are spatial models based on a

partitioning of the spatial support into spatial units.

Popular spatial point tests include quadrat methods, count based approaches to test

for spatial uniformity. The basic approach is to divide the spatial support into a set of

quadrants and compare counts between regions. The usual test statistic for these tests is
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Pearson’s χ2 statistic

χ2 =
n∑
i=1

(xi − E[xi])
2

E[xi]
(2.23)

where under the null hypothesis each xi, the number of points in quadrant i, is an iid

random variable from a uniform distribution.

A similar approach in the class of areal models is the popular global test Moran’s I

(2.24). Moran’s I can be viewed as a moving average approach to the Pearson’s test, and

the relationship between Moran’s I and Pearson’s χ2 has been investigated by Rogerson

(1999).

I =
n∑

s1∈R
∑

s2∈R w(s1, s2)

∑
(s1∈R)

∑
(s1∈R)w(s1, s2) (x(s1)− x̄) (x(s2)− x̄)∑

s1∈R (x(s1)− x̄)2 (2.24)

The key component of Moran’s I is the interior term in the numerator,

∑
(s1∈R)

w(s1, s2) (x(s1)− x̄) (x(s2)− x̄) . (2.25)

This term is large under positive spatial autocorrelation, and small under negative spatial

correlation.

Moran’s I can be used for binary data, where it is quite similar to the Black-Black join

count statistic Cliff and Ord (1981),

JBB =
1

2

∑
(s1∈R)

∑
(s1∈R)

x(s1)x(s2)w(s1, s2). (2.26)

The Black-Black join count statistic, is used under either assumptions of binary error,

or under a fixed number of positive outcomes. Therefore, the statistic is well suited for

testing spatial dispersion. Only the Black-Black joint count statistic is considered in this
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dissertation due to its direct applicability to binary areal data (binary valued pixels).

2.2.3 Identification of Non-Agricultural Land Cover Units

Classification of agriculture is a topic addressed in great depth in a large number of papers

such as Boryan et al. (2011) for the CDL. The approach in these papers is based on re-

flectance of different spectral wavelengths over time. However, the pixels provided by the

CDL and Landsat derived classifications provide pixels of 30m2, too large to identify roads,

creeks, and other small or narrow geographic features.

Identification of roads through remotely sensed imagery is a fairly well established area

of research. Zhang and Couloigner (2006) provides a good overview and classification of

methods used to identify roads from remotely sensed images. The quality of the methods

vary, with the SVM method of Song and Civco (2004) providing fairly reasonable results and

the Canny edge detection based method of Sharma et al. (2013) providing mixed results.

In the United States and most industrial nations, GIS information about roads and

hydrography has been identified and made available through GIS databases. Therefore, the

focus of this dissertation is on handling smaller features such as paths between fields. No

literature has been found explicitly dealing with the identification of small non-agricultural

land uses.

2.2.4 Over-Segmentation

Unlike identification of under-segmentation, identification of over-segmentation is a popular

topic in image segmentation literature. This popularity is strongly associated with the

popularity of the watershed segmentation method. An example of merging in watershed

segmentation can be found in Yan and Roy (2014), as described in Section 2.2.2, and Zhang

(2009).

Merging of U.S. Census tracts or “regionalization” was performed by Spielman et al.

(2014), using optimization techniques to minimize the coefficient of variation (CV). The

CV is a unit-less measure equal to the standard deviation of an estimate divided by the
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estimate. The method employed, although not stated, is an exchange based method where

U.S. Census tracts above a CV threshold are randomly sampled. A sampled tract and

its adjacent tracts are merged “one-by-one” until either the merged units meet the CV

threshold for a particular item of interest, or all the tracts adjacent to the sampled tract

have been merged.

Johnson and Xie (2011) used the H statistic described in 2.2.2 to identify the least

homogeneous regions. From least-to-most homogeneous below a threshold on H, attempts

to maximize H by merging using mean intensity difference over spectral bands.

In this dissertation, merging over-segmented pixels is accomplished through the use of

exogenous pre-classified pixels, such as CDL data. Unfortunately, no paper in the GIS or

image segmentation literature was found on this topic.

2.3 Prediction

In this dissertation, a spatial-temporal multinomial probit model is used to predict agricul-

tural land cover through crop rotations. Estimation of parameters, and prediction of land

use is done under a hierarchical Bayesian framework. In this section, the necessary the-

ory and relevant literature are introduced, including an overview of the multinomial probit

model, the simultaneous autoregressive model, and spatial-temporal simultaneous autore-

gressive model. The focus of this theory will be largely on the problem of unidentified

parameters, and the conditional distributions required for gibbs sampling.

2.3.1 Multinomial Probit Model

As shown in Section 1.3, multinomial probit models provide a link function between a

categorical response and a J = C − 1 dimensional linear model with a multivariate normal

error structure, where C is the number of classes being modeled. This linking is performed
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by partitioning the support of the linear model Figure 1.2,

yi =

 c = 1 max (zi,j) ≤ 0 ∀j ∈ {1, · · · J}

c = j + 1 argmaxj∈{1,··· ,J}

{
zi,jI{zi,j>0}

}
)

(2.27)

where the observation of category c ∈ {1, · · · , C} is determined by zi,j is the jth element of

the latent vector zi with j ∈ {1, . . . , J} (see McCulloch and Rossi, 1994). j = 1 is referred

to as the base class or the default choice; in MNP modeling covariates based on choice are

defined relative to the base class. Inference in multinomial probit models is done primarily

under a Bayesian paradigm using data augmentation through gibbs sampling.

Data augmentation is a method to simulate and model unobserved phenomena through a

latent variable. Tanner and Wong (1987) popularized data augmentation under the Bayesian

paradigm, with its application in calculating posterior distributions. Albert and Chib (1993)

applied this methodology to probit models, in this application the latent variable z is

simulated under a truncated normal distribution, with a truncation point determined by

the observed state of y. Multivariate extensions of this approach can be found in McCulloch

and Rossi (1994), Nobile (1998), and McCulloch et al. (2000).

There are some notable issues with approach in MNP models, namely the linear model

parameters are not identifiable,

Pr (zi,j > a) = Pr (αzi,j > αa) , α ∈ R. (2.28)

An approach to fix this issue is offered in McCulloch et al. (2000), where under gibbs

sampling, draws from Σ are done under an inverse Wishart distribution with the constraint

that the fist element, σ1,1 = 1. This restriction fixes the issue of identifiability, but at the

same time creates two other issues. The first issue is that the generation of deviates is more

computationally difficult due to this restriction, and second this restriction increases the

correlation between subsequent draws under gibbs sampling. The amount of correlation
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Figure 2.3: An example of extreme autocorrelation of a location parameter under McCulloch
et al. (2000) (Left), compared to the autocorrelation for the same parameter under Imai
and van Dyk (2005) (Right).

can be quite extreme (Figure 2.3). Burgette and Nordheim (2012) provides an alternative

trace based restriction to provide identifiability, but uses an alternative data augmentation

approach (see Imai and van Dyk, 2005).

An attempt to fix both issues introduced by McCulloch et al. (2000) is provided in

Imai and van Dyk (2005), under the term marginal data augmentation. Marginal data

augmentation, (see Meng and Van Dyk, 1999 and Van Dyk and Meng, 2001), improves

the convergence speed of the data augmentation algorithm through the use of working

parameters. The working parameters are unidentified parameters that are used to help

generate less correlated draws under gibbs sampling, and can be easily integrated out (2.29).

`(θ|y) ∝
∫
f(y, z|θ)dz =

∫ (∫
g(y, z|θ, α)h(α|θ)dα

)
dz (2.29)

The marginal data augmentation approach creates a random variable α and places a dis-

tribution over it. The random variable α is scalar valued, and is used to scale Σ such that
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σ1,1 = 1 without explicitly generating deviates under the constraint. The term conditional

data augmentation is used to describe the approach of McCulloch et al. (2000), where the

constraint on Σ can be viewed as a conditioning the random variable on α.

Gibbs Sampling

The gibbs sampling approach in Imai and van Dyk (2005) and McCulloch and Rossi (1994)

follows from the normal-inverse-Wishart (NIW) prior, common in Bayesian hierarchical

models. In this section the conditional distributions under McCulloch and Rossi (1994) and

the modifications to these distributions by Imai and van Dyk (2005) are presented.

The gibbs sampling schemes in MNP models are similar to those for Bayesian hierar-

chical models using multivariate normal distributions. The notable exception is that the

response, Z∗ is not-observed. Z∗ is instead a latent variable and conditioned on the observed

categorical response Y , (2.27). Gibbs sampling requires that the conditional distributions

are known, e.g. f(β|Θ−β), where Θ−c is the set of parameters being estimated, excluding

the parameter c. The set of parameters of interest under McCulloch and Rossi (1994) are

Z, β, and Σ.

The NIW prior is a prior on the joint distribution of β and Σ, and can be rewritten as

a prior on β|Σ and Σ,

β|Σ ∼ N (β0,Σ0) (2.30)

and

Σ ∼ W−1(ν, S) (2.31)

where Σ0, ν, and S are all hyper parameters. Under the NIW conjugate prior the likelihood
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follows,

P (Θ,Z∗|Y,A,B) ∝ exp
(

(Z∗ − U∗β)T In ⊗ Σ−1 (Z∗ − U∗β) + (β − β0) Σ0 (β − β0)

+ log |Σ|(ν + J + 1) + tr
(
SΣ−1

))
.

(2.32)

The conditional distributions can then be easily calculated through the terms in the expo-

nent:

(Z∗ − U∗β)T In ⊗ Σ−1 (Z∗ − U∗β) + (β − β0) Σ0 (β − β0)

+ log |Σ|(ν + J + 1) + tr
(
SΣ−1

)
= βT

(
(U∗)T In ⊗ Σ−1U∗ + Σ0

)
β − 2βT

(
In ⊗ Σ−1(U∗)T + Σ0β0

)
+

(
(U∗)T + Σ0β0

)T (
(U∗)T In ⊗ Σ−1U∗ + Σ0

)−1 (
(U∗)T + Σ0β0

)
+ (Z∗)T In ⊗ Σ−1Z∗ + βT0 Σ0β0

−
(
(U∗)T + Σ0β0

)T (
(U∗)T In ⊗ Σ−1U∗ + Σ0

)−1 (
(U∗)T + Σ0β0

)
+ log |Σ|(ν + J + 1) + tr

(
SΣ−1

)

(2.33)

Terms in blue are directly marginalized out through a normal distribution, and terms in red

are marginalized out through the inverse Wishart. The remaining terms form a multivariate

normal distribution,

β|Θ−β, Y, A,B ∼ N
((

(U∗)T In ⊗ Σ−1U∗ + Σ0

)−1 (
(U∗)T + Σ0β0

)
,(

(U∗)T In ⊗ Σ−1U∗ + Σ0

)−1
)

.
(2.34)
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The conditional distribution of Σ−1 is obtained in a similar way, with blue terms marginal-

ized out,

(Z∗ − U∗β)T In ⊗ Σ−1 (Z∗ − U∗β) + (β − β0) Σ0 (β − β0) + log |Σ|(ν + J + 1) + tr
(
SΣ−1

)
(2.35)

with distribution

Σ−1|Θ−Σ−1 , Y, A,B ∼ W−1
(
ν + J + 1, S + (Z∗ − U∗β)T (Z∗ − U∗β)

)
. (2.36)

Z∗|Θ−Z∗ has the conditional distribution equal to a truncated normal distribution,

Z∗|Θ−Z∗ , Y, A,B ∼ T N (β,Σ, A,B) . (2.37)

Deviates for Z∗ are generated under a truncated normal distribution using a scheme detailed

in McCulloch and Rossi (1994).

Under marginal data augmentation (1.6) is rewritten as

αZ∗|Y = U∗αβ∗ + αε; (2.38)

following the notation of Imai and van Dyk (2005), αZ∗|Y = Z̃, α2Σ = Σ̃, and αβ = β̃.

The set of parameters without the tilde, are unidentified, and the parameters with a tilde

are identified. The later is due to α being used to constrain Σ. Prior specifications are

made to the unidentified parameters. β retains the same prior as before in McCulloch and

Rossi (1994).

β|Σ N (β0,Σ0). (2.39)

A joint prior is specified on (α,Σ),

f(α,Σ) ∝ |Σ|−(v+p)/2(α2)−ν(J−1)/2+1exp

(
α2

0

2α2
tr(SΣ−1)

)
(2.40)
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with hyper parameters α2
0,ν, and S. The distribution of (α|Σ)/(σ2

0tr(SΣ−1) follows an

inverse χ2 distribution, with ν(J − 1) degrees of freedom, and

Σ ∼ W−∞(ν − J, S). (2.41)

Imai and van Dyk (2005) provides two different sets of conditional distributions for

gibbs sampling. Each set is used for different sampling schemes; in the first scheme the

working parameter is completely marginalized out at each iteration. In the second their

working parameter is not marginalized out, but instead is updated at each iteration. In

both approaches the conditional distributions for gibbs sampling are given in terms of the

identified parameters.

2.3.2 Spatial Autoregressive Models

Cressie (1993) defines three types of spatial models by domain, geostatistical, lattice, and

point processes. Within this dissertation the domain, the set of ALCUs, is of the second

type, lattice. Lattice is also referred to areal, and the term areal is used in this dissertation.

This domain consists of a finite, and disjoint set of indexed ALCUs. Relationships between

these ALCUs can be modeled via graphs, where ξ indexes an ALCU, and edges between

ALCUs are used to identify relationships for spatial stochastic processes.

The spatial autoregressive Gaussian model used in this dissertation is the, simultaneous

autoregressive (SAR) model. This model was introduced in Section 1.3, and its form will

be repeated here for convenience.

Z = BZ + (I −B)Uβ + ε. (2.42)

Parameter estimation in SAR models can be performed under least squares, maximum

likelihood, or Bayesian-based approaches. There are a number of issues with parameter

estimation under all these approaches, but for the purposes of this dissertation only the

Bayesian approach is reviewed.
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The likelihood of the conditional distribution is

P (β,Σ, ρ|Z) ∝ exp
(

((Z − Uβ)T
(
(I −B)−1Σ−1(I −BT )−1

)−1
((Z − Uβ)

+ (β − β0) Σ0 (β − β0)

+ log |Σ|(ν + n+ 1) + tr
(
SΣ−1

))
· I{ρ∈(a,b)}

(2.43)

using the standard NIW priors with a uniform prior on ρ over the interval (a, b). In practice,

the interval (a, b) is defined such that any ρ in the interval ensures that B = I − ρW

is positive definite. LeSage and Pace (2009) suggests the interval (0, 1) when a positive

autocorrelation is assumed and W is row stochastic. Where row stochastic implies that

each element in W is greater than or equal to zero, and each row sums to one.

The most computationally burdensome part of the Bayesian approach is in the drawing

from the conditional distribution of ρ given β, Σ. Since the distribution of ρ does not follow

any standard form, deviates are generated either by interpolation Metropolis-Hastings, or

through interpolation and inversion of the CDF (see LeSage and Pace, 2009). In either

approach, the calculation of the determinant of I − ρW contributes the most to this com-

putational burden. In SAR models with sparse W this calculation can be accelerated using

sparse matrix handling techniques (see Bivand, 2015).

2.3.3 Spatial Autoregressive Multinomial Probit Models

Spatial autoregressive MNP models or SAR MNP models were introduced in Section 1.3,

and the latent model specification is repeated here for convenience.

Z∗ = BZ∗ + Uβ + ε, (2.44)
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where

B = ρW ⊗ IJ ,

W = n× n matrix of spatial weights (“rook” based in this application), and

ρ = scalar parameter for W .

Spatial-temporal SAR multinomial probit models have been studied by Wang and Kock-

elman (2009) and Wang et al. (2012). These models, abbreviated STAR MNP are less

prominent in the literature, and are largely derivatives of LeSage and Pace (2009). The

general form of Wang et al. (2012) follows from the likelihood,

P (β,Σ, ρ, λ, Z∗∗|Y ∗∗) ∝ exp (

((Z∗∗ − U∗β)T
(
(I −B)−1 (Σ⊗ Ω) (I −BT )−1

)−1
((Z∗∗ − U∗β)

+ (β − β0) Σ0 (β − β0)

+ log |Σ|(ν + J + 1) + tr
(
SΣ−1

))
· I{ρ∈(a1,b1)}

· I{λ∈(−1,1)}

(2.45)

where Z∗∗ is similar to the vector Z∗ except it is stacked for each year in the model, likewise

Y ∗∗ has the observed classes for each year in the model, and Ω is a temporal autoregressive

covariance matrix. The parameter λ is the coefficient for the autoregressive model. Similar

to ρ, λ also has a uniform prior.

The model in Wang and Kockelman (2009) and Wang et al. (2012), follow the identified

MNP specification of Nobile (2000). The MNP specification of Nobile (2000) is very similar

to McCulloch et al. (2000), and both use conditional data augmentation and retain the

same conditional distributions.

Wang et al. (2012) noted a large number of computational and theoretical issues with

their model. The first issue is that with just 100 spatial units on a simulated data set, using

four classes simulated over four years, the run time for a single iteration was 5 seconds on
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a 2.66GHz PC. As noted by the authors, increasing the number of observations, tends to

cause an exponential increase in run time (see LeSage and Pace, 2009), making this model

unsuitable for even moderate population sizes.

The second, and most pressing issue is that the parameters in the gibbs sampling di-

verged. It is unclear in Wang et al. (2012), if the results were due to the model, the nature

of the simulated data set, or an error in programming.
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Chapter 3: Segmentation

This chapter will cover four themes: the first theme is the establishment of a well defined

spatial-temporal land cover unit; the second theme provides details and analysis of the log

variance filter; the third theme is the acceleration of the mean shift algorithm; the fourth

and final theme is the application of the mean shift algorithm to high resolution imagery.

The results of this chapter provide the land cover unit boundaries for the next chapter on

land cover classification.

3.1 Land Cover Unit

The observational unit will be called a land cover unit (LCU). Each LCU is the maximally

contiguous section of land with respect to a single land cover sequence not transected by

public transportation arteries or permanent hydrographic boundaries, where a land cover

sequence is an ordered set of known categories indexed by a set of fixed consecutive years.

Under this description and later formal definition, an LCU is dependent on both the tem-

poral window and the categories specified, consider the land cover in Figure 3.1.

LCUs are identified by two components a spatial index ξ ∈ ∆, where ∆ is the set of

LCU indexes in region R ⊂ R2, and y(ξ) a land cover sequence (vector valued) for the

indexed LCU. Similar to a pixel, each ξ identifies a subset of R2, however the LCUs are not

Table 3.1: Land cover sequence of LCUs over 12 years in Iowa through CDL pixels (Left-
to-Right, Top-to-Bottom, from Figure 3.1). In this sequence C = Corn and S = Soybeans.

LCU Land Cover Sequence

Upper CSC SCS CSC SCS
Lower SCS CSC CSC SCS
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Figure 3.1: An example of two LCUs over 12 years in Iowa through CDL pixels (green
soybeans, yellow corn).

necessarily uniform in shape. The land cover sequences will be identified by c ∈ {1, · · · , C},

a set of land cover categories, and a sequence of years {1, · · · , T}. As an example, an

LCU y(ξ) could rotate between land cover classes for five years producing the sequence

(1, 2, 1, 2, 1) where ξ indexes a subset of the product space R× {1, · · · , C}T .

To ensure that land cover units are well defined the following assumptions are made:

1. Open sets will be defined in R2 by the typical ε-neighborhood definition.

2. The measure space (R2,B2, λ) will be used, where B2 is the sigma algebra of all open

subsets of R2, and λ is the Lebesgue measure.

3. ν(a) where a is an index for an LCU or a pixel will be the function that returns the

subset of R2 for the indexed unit.
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4. λ(a) where a is an index for an LCU or a pixel will be used as shorthand for the

Lebesgue measure on the subset of R2 covered by the indexed unit.

5. Each LCU is assumed to be aligned to a set of n pixels, x indexed by s, each with

a land cover sequence x(s) ∈ C, and can be represented in a binary matrix G of

dimension n×#∆, where #∆ is the cardinality of ∆ and 1 represents the assignment

of a pixel to an LCU. This approach is reasonable given the application and the 1m2

resolution of the imagery.

Given these assumptions any LCU, y(ξ), must also be a member of a maximally geograph-

ically connected subset of R.

Definition 3.1 (Geographically Connected Subset of R). A geographically connected sub-

set of R is any union of finite connected closed sets in R with the same set of land cover

sequences. The set of all geographically connected subsets or R is

G =

{
A : A =

⋃
s∈B

ν(s) B =
{
s : x(s) = x(s′), |s1 − s′1| ≤ 1, |s2 − s′2| ≤ 1

}}
. (3.1)

Definition 3.2 (Maximally Geographically Connected Subset of R). A maximal geograph-

ically connected subset or R, is the finite union of closed sets in R that has the greatest

measure under λ. The set of all maximal geographical connected subsets of R is

Gmax = {A ∈ G : λ(A) ≥ λ(A′) > 0, λ(A ∩A′) > 0 ∀A′ ∈ G}. (3.2)

3.2 Log Variance Filter

Variation in the intensity of the remote sensing image pixels can be problematic for esti-

mating LCU boundaries. In particular, trees and other land cover exhibit pronounced but

potentially irregular texture (see Figure 3.11). In this dissertation, an approach using the

log of the local sample variance is presented as an alternative to more complicated filtering

53



approaches. This approach takes the form

f̂h(s) =
∑
s∗∈D

1

nh∗
κh∗

(
(h∗)−1

(
log
(
S2
h

)
(s)− log

(
S2
h

)
(s∗)

)2)
, s, s∗ ∈ D (3.3)

where S2
h(s, t) is as defined in (2.5), repeated here for convenience,

S2
h(s, t) =

∑
s∗∈D

∑
s∗∗∈D

wh(s, s∗)wh(s, s∗∗)
(x(s∗)− x(s∗∗))2

2n(n− 1)
. (3.4)

κh is a standard kernel, such as a normal density, with bandwidth h, and wh(a, b) is a

spatial weight between two points a and b from a kernel density estimate with bandwidth

h. For isometric kernels, wh(a, b) can be rewritten as wh(δ) where δ = |a− b|. The filtered

estimate will be referred to as the log variance filter (LVF). The two bandwidth values h∗

and h are respectfully associated with the kernel density estimator applied to the log of the

local variance, and the local sample variance. When s and s∗ are in the same LCU, the

LVF should be close to 1/h∗. If s and s∗ are in different LCUs or along the border the LVF

should decrease in value.

3.2.1 Properties of the Log Variance Filter

In this application the LVF is used on regions of constant variance and mean, LCUs, and on

steps between regions, LCU edges. As can be seen in (3.3), the LVF is a kernel applied to

the pairwise difference of the logs of the local variances. Linear functions of the LVF, such

as the expectation, can be examined through the properties of each pairwise difference,

log
(
S2
h

)
(s)− log

(
S2
h

)
(s∗) (3.5)

In this dissertation, only the expected value of the LVF will be examined. It is shown,

that even the expectation does not have an easy to obtain closed form, and under certain
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conditions numerical methods may need to be used.

Each pairwise difference consists of a pair of points, s and s∗. Each point is the center

of a spatial neighborhood. The spatial neighborhood of the local variance at point s is the

set of all spatial locations, s∗ ∈ D, such that wh(s, s∗) > 0. In this dissertation the spatial

neighborhoods will be square in shape, containing h2 pixels centered around s.

Each pair, has local neighborhoods that can occur either within the same LCU, two

different LCUs, or between different LCUs. Each pair can also overlap to some degree,

creating correlation.

The pairwise distance consists of the log of two local variances. The local variance for

the spatial neighborhood centered around s includes a set of h2 pixels. Each pixel, follows

a normal distribution with mean µ(s) and variance σ2(s). It is assumed that each pixel

within an LCU has the same mean and variance. This creates four different cases:

1. Equal correlated local sample variances from iid samples.

2. Unequal uncorrelated local sample variances from iid samples.

3. Unequal correlated local sample variances from independent samples.

4. Unequal uncorrelated local sample variances from independent samples.

The first case includes the case where the correlation may be 0 between samples.

I will now examine these four cases and provide a closed-form expression where possible.

The expectation of these pairwise difference can then be used to determine the expectation

of the LVF for location s.

Case 1: Equal Correlated Local Sample Variances from iid Samples.

Based on the assumption that each of the x(s) are iid with a normal distribution then it

follows that x̄(s) and x̄(s+ δ) have correlation ρ = max
{
h−|δ|
h , 0

}
for R, and for R2 under

a square support the correlation changes to ρ = max
{
h2−δ2
h2

, 0
}

.
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Panaretos et al. (2005) examined the distribution of the ratio of two dependent gamma

distributions formed from random samples of iid standard normal random variables. This

distribution known as the correlated gamma ratio distribution (CGR), has the following

pdf

f(y) =
(1− ρ2)k

β(k, k)
yk−1(1 + y)−2k

(
1−

(
2ρ

y + 1

)2

y

)− 2k+1
2

, (3.6)

mean

mean(y) =

(
1− ρ2

)
+ k − 1

k − 1
, (3.7)

and variance

var(y) =
(5k − 4)

(
1− ρ2

)
+ (k − 1) (k − 2)

(
1− ρ2

)
(k − 1)2 (k − 2)

(3.8)

where k = h2 under a square support. When ρ = 0 this distribution returns to a standard

F distribution.

The log transformed CGR has the distribution

g(z) =

(
1− ρ2

)k
β(k, k)

(
ez

(1 + ez)2

)k (
1− 4ρ2 ez

(1 + ez)2

)− 2k+1
2

. (3.9)

The form of this distribution is unsurprisingly similar to that of Fisher’s Z-distribution,

that is proportional to the log of an F statistic. Plots of this distribution are remark-

ably close to a normal distribution for all sizes of k and ρ. Given the similarity between

the distributions it is trivial to find the centered normal distribution that closest fits this

distribution, Figure 3.2.

Since (3.9) is a bit unwieldy, a normal approximation can be used to simplify this

expression. To do this a relationship between the log-CGR distribution and the normal

distribution is needed. One approach is to use the delta method, and adjust for the number

of independent observations. The delta method can be used to estimate the mean and
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Figure 3.2: Plots of normal densities (lines) and log-CGR density at various bandwidth (h)
and distances between points (δ).

variance of y using the identity

S2 = (2n(n− 1))−1
n∑
i=1

n∑
j=1

(xi − xj)2. (3.10)

It is possible to calculate the mean and covariance of y with a bivariate distribution of

two correlated χ2 distributions, formed by two samples of h iid random variables with

distribution N (0, σ2), and η shared observations between the samples.

E[y] =

 σ2

σ2

 (3.11)

var[y] =

 1 η2(η−1)+(h−η)2η+2η(h−η)(η−1)
h2(h−1)

η2(η−1)+(h−η)2η+2η(h−η)(η−1)
h2(h−1)

1

 2σ4

h− 1
= Σ (3.12)
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Central limit theorem can be used by growing the sample size h for a fixed ω = η/h

√
2h(1− ω)y

d−→ N (0,Σ0) (3.13)

where

Σ0 =

 1 ω

ω 1

 4(1− ω)σ4. (3.14)

The covariance term is a direct result of the relationship

η2(η−1)
h2(h−1)

+ (h−η)2η
h2(h−1)

+ 2η(h−η)(η−1)
h2(h−1)

= ω3 + (1− ω)2ω + 2ω2(1− ω) + o
(

1
h

)
= ω + o

(
1
h

) (3.15)

This provides a remarkably simple approximation via the delta method of

z = log(y1)− log(y2) ∼ N
(

0,
4(1 + ω)

h

)
, (3.16)

or for the square neighborhoods of interest

z = log(y1)− log(y2) ∼ N
(

0,
4(1 + ω∗)

h2

)
, (3.17)

with ω∗ = η/h2. The pairwise expectation of κh(z) can then be used for the expectation of

the LVF.

Case 2: Unequal Uncorrelated Local Sample Variances from iid Samples.

If x(s1) is iid normal with mean µ1 and variance σ2
1 and x(s2) is iid with mean µ2 and

variance σ2
2, and |s1 − s2| > h, then by (3.16) the distribution of the log ratio of the local
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sample variances z is

z = log(y1)− log(y2) ∼ N
(

2 log(σ2)− 2 log(σ1),
4

h

)
. (3.18)

Like case 1, the pairwise expectation of κh(z) can then be used for the expectation of the

LVF.

Case 3 and 4: Unequal Correlated Local Sample Variances from Independent

Samples.

The last two cases do not have closed form solutions provided, and can not be provided

in general due to the expectation and the variance not having closed forms when both

the numerator and denominator follow non-central chi-squared distributions. Instead these

results should be simulated when needed.

3.2.2 Log Variance Filter Simulation

To understand the utility of the LVF, a Monte Carlo experiment was conducted for the

mean shift algorithm. This Monte Carlo experiment was conducted using two separate

LCUs, both consisting of 5,000 pixels, with one shared boundary as seen in Figure 3.3. For

this experiment three factors were used, the first factor with four levels, and the last two

with three. The first factor was the mean of the second LCU µ2 being set at 0, 1, 5, and 10;

the first LCU has a constant location parameter of zero across all factors. The second and

third factors are standard deviations of the first and second LCU respectfully with values

1, 5, and 10. Since both LCUs have the same size, only unique combinations of factors are

retained.

The treatment of interest is the inclusion or exclusion of the LVF in the mean shift.

The local variance in this experiment used a filtered estimated of the mean using a square

uniform kernel centered around each pixel with an edge length of 11. Results are compared

using the means of the adjusted Rand index (ARI) over all replicates for each distinct

59



Figure 3.3: The simulated pixels (Left) and local log variance (Right) of two simulated
LCUs. The left side of each image was simulated from N (0, 5), and the right side of each
image was simulated from N (10, 10)

combination of levels and treatment, indicated as r̂1 without an LVF component and r̂2

with. Each level is tested for 500 iterations, and the standard deviation for each r̂· was

less than 0.001. Optimal bandwidth with respect to the ARI was determined using 100

iterations over a set of 5 possible bandwidth values for each dimension.

The results of this simulation are straightforward. In the presence of a difference in

scale parameters without a substantial difference in location, the means shift with the LVF

did much better than the standard mean shift. Likewise, when there was no difference in

scale there was no benefit to the LVF. When there was a substantial difference in location,

both methods faired equally.

3.3 Sampled Mean Shift

In high resolution images of LCUs, a large amount of the data is largely redundant. Due

to this redundancy, a subset of the image may be sufficient to identify the local maxima

of the density function of the image; this approach has been seen in Freedman and Kisilev

(2009). Although a large amount of this data may be redundant, not all subsets of the

pixels within the image will preserve the KDE’s features equally well. A particular case
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Table 3.2: Results of a Monte Carlo simulation for a variety of location and scale parameters
for two simulated LCUs.

µ1 µ2 σ1 σ2 r̂1 r̂2

0 0 1 1 0.04 0.04
0 0 1 5 0.07 0.88
0 0 1 10 0.06 0.90
0 0 5 5 0.07 0.06
0 0 5 10 0.07 0.83
0 0 10 10 0.06 0.06

0 1 1 1 0.96 0.94
0 1 1 5 0.09 0.88
0 1 1 10 0.06 0.90
0 1 5 5 0.13 0.13
0 1 5 10 0.07 0.77
0 1 10 10 0.06 0.05

0 5 1 1 1.00 1.00
0 5 1 5 0.33 0.80
0 5 1 10 0.36 0.89
0 5 5 5 0.96 0.96
0 5 5 10 0.57 0.50
0 5 10 10 0.44 0.44

0 10 1 1 1.00 1.00
0 10 1 5 0.56 0.61
0 10 1 10 0.30 0.93
0 10 5 5 0.99 0.99
0 10 5 10 0.84 0.86
0 10 10 10 0.90 0.89

would be structures such as roads or paths between fields. These geographic features have

little area, but are of high importance

Stratified sampling and interpolation can be used together to classify the entire image

at much greater speed with little increase in error, relative to classifying all pixels within an

image. Stratified sampling can select representative samples at a constant sampling rate,

while ensuring pixels from roads and paths are sampled. Strata in this application are

obtained by thresholding based on the LVF filter.

In this dissertation two strata are formed, the first includes units with large LVF values,

areas of constant variance and location parameters. The second stratum includes areas with
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low LVF values, associated with areas with non-constant variance or location parameters,

e.g. roads and areas between fields. For simplicity, in the mean shift algorithm, the sampling

rate ,π(s), is constant in both strata.

In the high LVF stratum, samples are selected by choosing a pixel randomly within the

image, then forming a grid of variable width and height about the image, per Breidt (1995).

Variability in width and height is provided to minimize sample inefficiency (with respect to

variance) that can occur when period of the sampling coincides with the period of natural

phenomena. Because of the irregularity of the small LVF stratum, the local pivotal method

was used, see Grafström et al. (2012).

The local pivotal method is a method to create spatially well distributed samples, and

is of particular use when the area of interest is not rectangular. The most computationally

efficient algorithm to perform the local pivotal method in the literature is LPM2. LPM2, as

described in Grafström et al. (2012), has an average computational complexity of O(N2).

The order of the computational complexity does not lend itself to high resolution im-

agery. In this dissertation the average computational complexity of this method was reduced

to O(N log(N)) through a k-d tree.

The current implementation of LPM2 can be found in the BalancedSampling R package

(see Grafström, 2014 ). This method doesn’t employ k-d trees or other more efficient

data structures. Therefore, an update to the algorithm has been provided through the

use of k-d trees, and identified as LPM3, providing considerable performance improvement

(see Table 3.3). Due to lack of a standard library implementation of k-d trees, a custom

implementation with focus on efficient node deletion was created to support LPM3. The

software is immediately available under an open source license, see Lisic (2015b).
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Table 3.3: A comparison of LPM2 verses LPM3 for a one dimensional data set, timings are
in elapsed seconds.

Population Size Sample Size LPM2 (s) LPM3 (s)

100 10 0.001 0.002
1,000 100 0.002 0.002

10,000 1,000 0.163 0.014
100,000 10,000 19.715 0.255

1,000,000 100,000 9,271.350 8.806

3.4 Normal Newton Shift

For Gaussian kernels, there is a simple relationship between Newton’s method (NM) and

mean shift (MS) iterations; namely in the multivariate case for element k,

v
(i+1)
k = v

(i)
k −

∑NR
j=1(v

(i)
k − xk)φ

((
v(i) − xj

)T
H−2

(
v(i) − xj

))
∑NR

j=1

(
1−

(
h−1
k (v

(i)
k − xk)

)2
)
φ
((
v(i) − xj

)T
H−2

(
v(i) − xj

)) (3.19)

can be rewritten as

v
(i+1)
k = v

(i)
k −

∑NR
j=1(v

(i)
k − xk)φ

((
v(i) − xj

)T
H−2

(
v(i) − xj

))
∑NR

j=1

(
1− α(i)

(
h−1
k (v

(i)
k − xk)

)2
)
φ
((
v(i) − xj

)T
H−2

(
v(i) − xj

)) (3.20)

for α(i) = 1. Setting α(i) = 0 will produce the mean shift iterator. This relationship

is missing in previous comparisons of mean shift and Newton’s algorithm in Chiu et al.

(2008), Fashing and Tomasi (2005) and Yang et al. (2003a), and will be referred to as NNS

(Normal Newton Shift).

In application, the choice of α-sequence {αi}∞i should allow for convergence to the local

maxima for all values in the support, while providing for accelerated convergence near the

local maxima. Furthermore, the iterator for choice of α-sequence should be bijective over

the support, this allows for a “memoryless” mapping from X → X independent of the
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iteration index. For simplicity, only constant valued α-sequences, will be considered in this

dissertation. This last requirement significantly simplifies the convergence proof.

A natural course of analysis is to determine the effect of
(
h−1
k (v

(i)
k − xk)

)2
in direction

and step size. This term in the denominator allows for a number of differences between the

mean shift algorithm and Newton’s method. The first is that the denominator in the mean

shift method determines the step size, but not the direction. The step size is a function

of the sparsity of close observations; if observations are far from v(i) then the denominator

is smaller and the step size is larger. For Newton’s method this relationship isn’t as clear,

since 1 −
(
h−1
k (v

(i)
k − xk)

)2
is smaller than the mean shift denominator, with the amount

depending on the scale of xk and the choice of bandwidth. A second observation is that

each step in the Newton’s method is not a linear combination of the observations, therefore

the method is free to exit the support of the kernel density estimator. The third difference

is that the denominator in the mean shift is constant for all elements of the vector being

shifted, unlike the Newton’s method denominator. This allows for considerably different

paths between sequences under these two algorithms. An example of the paths taken for

finding local maxima on a subset of Figure 3.11 is provided in Figure 3.4.

The convergence properties for NNS are a bit more difficult to come by then for either

NM or MS. The major issues are that NNS is not monotonically increasing with respect to

the KDE as in MS; NNS is also not directly related to a Taylor expansion around the local

maxima as in NM; finally, it is not a linear operator as required by Newton-Kantorovich

generalizations. Instead, a simple and somewhat restrictive proof of convergence of the

sequence to a local maxima is provided via the Banach Fixed Point Theorem.

Theorem 3.1 (Normal Newton Shift Sequence Convergence). If f̂ is a KDE with a Gaussian

kernel over NR observations with density f :

• With a negative definite Hessian at v0;

• A is a ball around a unique local maxima v0 of diameter ε such that for any other
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local maxima v1 min{H−1(v1 − v0)} > 2;

•
(
v−xk
hk

)
< 1 for all k ∈ {1, . . . , d} and v ∈ A;

• || (B(x)−B(y)) f̂ ′(v0)v0|| ≤ ||B(z)f̂ ′(z)|| = η for all x, y, z ∈ A;

then for all α ∈ [0, 1] the NNS sequence converges to the local maxima v0 for all points in

A.

Proof. If α = 0 convergence is provided by Chen et al. (2014a). If α = 1 convergence is

provided by Clarke and Futschik (2007).

For the vector valued function f̂ equal to the derivative of the KDE at location v, the

Taylor series around the point follows

ˆ̂
f(v) = f̂(v0) +

(
f̂ ′(v0)

)
(v − v0) + Λ (3.21)

where Λ is a remainder of higher order terms. Due to the bandwidth constraints that H is

diagonal the Hessian from Newton’s method f̂ ′(x)−1f̂(x) is diagonal and so is B(x)f̂(x).

v −B(v)f̂(v) = v −B(v)f̂ ′(v0)(v − v0)−B(v)Λ. (3.22)

Each diagonal element of the matrix B(v)f̂(v0) has the form,

∑NR
j=1

(
1−

(
h−1
k (v0,k − xj,k)

)2)
φ
(

(v0 − xj)T H−2 (v0 − xj)
)

∑NR
j=1

(
1− α

(
h−1
k (vk − xj,k)

)2)
φ
(

(v − xj)T H−2 (v − xj)
) . (3.23)

Therefore, for a sufficiently large bandwidth such that h−1
k (vk − xj) < 1 the numerator

term is smaller then the denominator for all values of α.
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From this

||B(x)f̂(x)−B(y)f̂(y)|| ≤ λ||x− v0 − y − v0|| = λ||x− y|| (3.24)

where λ = max
{

diag
(

1−B(v)f̂ ′(v0)
)
− η : v ∈ A

}
, the maximal diagonal element of 1−

B(v)f̂ ′(v0) plus η.

Therefore, the mapping in the ball about v0 is a contraction, and by Banach fixed point

theorem the fixed point iteration converges to v0.

Performance and accuracy of this method were tested over a Gaussian mixture. The

Gaussian mixture is generated from the convex combination of four bivariate normal distri-

butions with means at (−1, 1), (1, 1), (1,−1), and (−1,−1); each distribution has covariance

0, and variance 0.25. MS and NNS are both performed on the KDE from 40 draws from

each distribution, Figure 3.5.

The accuracy of the NNS is calculated on a per iteration basis by comparing the final

local maxima of MS against each iteration of NNS through mean absolute error (MAE). In

this comparison, the bandwidth is set to 0.75 in each direction for both MS and NNS. α for

NNS was set to 0.1, 0.3, 0.5, and 0.7.

The results of this test are provided in Figure 3.6. Here it can be seen that small values

of α, less than or equal to 0.3, can substantially decrease the number of iterations of the

algorithm to arrive at the same MAE. When α was larger than 0.3, a small number of query

points diverged, Figure 3.7. This caused the MAE to increase as the number of iterations

increase. The sudden drops in MAE seen for all levels of α is due to the non-linear path

taken by the steepest ascent algorithm to the local maxima 3.7.
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Figure 3.4: Paths of randomly selected pixels within the spatial support for various values
of α under Normal Newton Shift (NNS) in a subset of Figure 3.11.
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Figure 3.5: Observations from a Gaussian mixture generated from four bivariate normal
distributions, and associated kernel density estimate.

3.5 Dual Tree Merge-Path Algorithm

In the dual tree mean shift implementation of Wang et al. (2007), based on the more

general Gray and Moore (2000), a reference tree and a query tree are used to perform

high-dimension binning for kernel density estimates. An alternative dual-tree approach,

presented here, develops a mapping between Rd → Rd by exploiting the fact that mean

shift mapping is independent of the sequence index, and the observation that on approach

to the local maxima the mean shift sequences follow similar paths. The approach is rather
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Figure 3.6: Mean Absolute Error as a function of Iterations.

simple, and the algorithm is outlined in Algorithm 2. This approach merges sequences that

are sufficiently close to each other, where the distance between sequences at iteration m is

defined by

d(xm, ym) = min {d(xi, yj) : i ∈ {1, · · · ,m}, j ∈ {1, · · · ,m}} (3.25)

for sequences xm = {xi}mi=1 and ym = {yi}mi=1.

In the algorithm below the query and reference points, Q and R are within an array. If

sampling is used, the final TQ tree may be used to classify the non-sampled units through

nearest neighbor interpolation.
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Figure 3.7: Divergent paths for α = 0.7 (Left), and convergent nonlinear paths for α = 0
(Right).

Algorithm 2. TQ ← tree(Q) {Build k-d tree from Q}

TR ← tree(R) {Build k-d tree from R}

Q(0) ← Q

while i ≤ m do

QKNN ← query(TR, Q
(i−1), k) {Get k-nearest neighbors.}

Q(i) ← f̂(Q(i−1), QKNN) {Perform NNS.}

Q1NN ← query(TQ, Q
(i), 1) {Get one nearest neighbor.}

while j ≤ length(Q1NN) do

q∗ ← Q1NN[j]

if (||q − q∗|| < ε) and
(
f̂(q) < f̂(q∗)

)
then

QMERGE ← QMERGE ∪ {q}

end if

j = j + 1

end while

Q(i) ← Q(i) QMERGE
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TQ ← tree
(
∪ij=1Q

(i)
)

i = i+ 1

end while

The computational burden of the algorithm for building the k-d tree and searching is of

the order

O

(
m∑
i=1

Milog(Mi) +milog(Mi) + kmilog(NR)

)
, (3.26)

where Mi =
∑i−1

j=0mj , k is the number of neighbors to find, and m0 = NQ. While a

typical single k-d tree would have computational cost of O (mkNQlog(NR)). However,

the computational burden for computing the kernel density estimate in the merge tree

algorithm of the order O (kMm) while the single k-d tree has computational burden for

kernel computation of order O (kmNQ). Therefore, the advantage of this method over

a single k-d tree implementation is a function of the cost of computing the kernel. In

application, for k-d tree based implementations the cost of computing the kernel exceeds

the search cost Wang et al. (2007). This gives an advantage for the dual-tree merge path

algorithm over a single k-d tree.

A short performance test between a näıve implementation, a single k-d tree implemen-

tation and the merge path implementations was performed. Testing does not include the

dual-tree Wang et al. (2007) due to difficulty in reproducing the method, and lack of avail-

ability of the original source code. Each point in the data set is an observation from N (0, I6)

where I6 is a six-by-six identity matrix. In this performance test, the bandwidth, number of

observations, and number of neighbors for the k-d and merge path algorithm were factors.

Comparisons were all done using the same data set for 10 iterations.

The most obvious result in Table 3.4 is the non-ignorable overhead to construct and

search k-d trees. This is most apparent when the number of neighbors equal the number of

observations. The overhead disappears in the case of 5,000 observations when using 1,250
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Table 3.4: Elapsed time in seconds of three implementations of the mean shift algorithm
run for 10 iterations on an i7-4790K processor.

Implementation
Bandwidth

0.1 1.0 2.0

1,000 Observations, 1,000 neighbors

Näıve 2.8 2.3 2.4
K-D 6.6 5.4 5.4

K-D Merge 3.7 4.5 1.6

1,000 Observations, 500 neighbors

K-D 2.7 2.1 2.0
K-D Merge 1.3 2.3 1.7

5,000 Observations, 5,000 neighbors

Näıve 62.2 49.6 51.6
K-D 184.4 150.7 151.7

K-D Merge 106.5 106.9 45.8

5,000 Observations, 2,500 neighbors

K-D 73.5 58.3 56.7
K-D Merge 37.2 58.6 38.1

5,000 Observations, 1,250 neighbors

K-D 33.9 26.9 26.6
K-D Merge 16.5 28.1 26.6

neighbors. In most situations, the merge path implementation out-performs the k-d tree,

the exception occurs under cases of sufficiently small neighbors where the advantages of

merging are diminished. When compared to the näıve implementation the advantage goes

to the merge tree algorithm for a sufficiently small number of neighbors. The advantage

also goes to the merge tree when a large number of iterations are required for convergence,

Table 3.5, this is a common occurrence in this application to remote sensing.

Determining the appropriate number of neighbors is not obvious. Choosing insufficient

neighbors may result in excessive number of local maxima, and too many will not provide

any performance benefit. This problem is not directly addressed in this research, instead

target run times are chosen for the mean shift operation. Target run times are specified in

seconds per square mile, and the number of neighbors are chosen a priori to fit this target.

The a priori target is determined by running the mean shift implementation over a set of

test images. Literature on neighbor selection is limited, but relative error for mean shift
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Table 3.5: Elapsed time in seconds of three implementations of the mean shift algorithm run
for 20 iterations with bandwidth set at 3 for each dimension on two Xeon 5335 processors.

Implementation
Cores

1 2 4 8

2,000 Observations, 2,000 neighbors

LPCM - ms 16.57
meanShiftR K-D 27.73 13.83 6.93 3.69

meanShiftR K-D Merge 4.31 2.36 1.36 0.90

2,000 Observations, 1,000 neighbors

meanShiftR K-D 10.02 5.08 2.56 1.34
meanShiftR K-D Merge 4.98 2.63 1.73 1.09

2,000 Observations, 500 neighbors

meanShiftR K-D 4.66 2.44 1.27 0.68
meanShiftR K-D Merge 2.93 1.77 1.23 0.93

approximations for a number of images can be found in Wang et al. (2007).

3.6 Mean Shift R Package

An R package, meanShiftR, has been made available using the Algorithm 2, and a traditional

k-d tree algorithm. This software is available through online sources, Lisic (2015c). The

only other currently supported mean shift algorithm in R, per CRAN (Central R Archive

Network), is the ms function in the LPCM (local principal curve methods) package (see

University and Einbeck, 2011). The primary advantages of the meanShiftR package over

the LPCM package are: the meanShiftR MS implementation is written entirely in C/C++

with Open MP support; the meanShiftR package supports a variety of approximate nearest

neighbor implementations through the FLANN C++ library (see Muja and Lowe, 2009).

A short performance comparison between the methods is provided below using the same

simulation methods in Table 3.4.

There are some odd results in Table 3.5, where the merge tree run time with full neigh-

bors is less than some subset of neighbors. It is unclear why this occurs, and requires further

investigation into the FLANN library. Otherwise there is a fairly notable speed up relative
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to the LPCM package’s mean shift implementation.

It should be noted, at least one other R package does implement the mean shift algo-

rithm, r-opencv (see Zhang, 2014). r-opencv is a wrapper for the OpenCV (Open Computer

Vision) library, and through this library a binning implementation of the mean shift algo-

rithm is provided. Unfortunately, binning is unsuitable for high dimensional data, making

this package unsuitable for this application (see Bradski and Kaehler, 2008). r-opencv is

also not currently supported, and not available on CRAN.

3.7 Image Segmentation of Remotely Sensed Images

The application of the mean shift segmentation algorithm follows a set of three steps, initial

image processing, estimating filtered estimates, and mean shift classification. Initial image

processing includes downloading the images, projecting multiple years of images to the

same projection, and grayscale conversion. Estimating filtered images includes smoothing

the image, calculating the local variance, and stratified sampling using the LVF. Mean shift

classification includes applying the mean shift algorithm to the NAIP imagery, and post

processing by merging segments below a threshold and applying a modal filtered estimate

to smooth edges.

To make use of cheap general purpose computing, the mean shift program is run over

regions of land geographically bounded by known roads. These geographically bounded

regions are called parts, and are described on page 78. The parts are loaded onto a PostGIS

database server. PostGIS is a GIS adapted version of the popular open source database

server PostgreSQL. Computing nodes, other computers, each independently run an R pro-

gram performing the steps in 3.8, with the exception of classification. Classification, is

performed on a single computing node. Most image processing steps are cached to avoid

re-computation. Final results are stored in the PostGIS database.

Total run time excluding prediction is approximately six hours using three compute

nodes with Intel i7 quad core processors and 32GB of RAM each. The database and file

server ran off a single computer using an Intel i5 quad core processor, also with 32GB of
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Figure 3.8: A flowchart of the parcel level agricultural prediction application.

RAM.

The accuracy of the initial mean segmentation results relative to a set of 200 hand-drawn

LCUs had an adjusted Rand index (ARI) of 0.7. A high ARI value indicates a lack of under

or over segmentation, but does not penalize jagged or thin protruding boundaries such as

part of a road. The results of the initial LCUs are certainly not perfect. The edges, in
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Figure 3.9: Mean shift segmented boundaries over NAIP imagery.

particular edges near trees or other tall structures can be erratic when shadows are present,

Figure 3.9.

3.7.1 NAIP Imagery

NAIP pixels are observed at, and indexed by n discrete locations in the continental United

States. The surface of the continental United States, formed by the union of NAIP pixels

76



will be identified simply as R. Each NAIP pixel is projected under an Alber’s equal area

(AEA) projection, with the same datum for the entire United States. The AEA projection

is sufficient for local modeling performed here. Due to the high resolution of NAIP imagery

relative to the size of and shape of the LCU used for agriculture, there will be no distinction

between an LCU formed from NAIP pixels and the true area covered by LCU.

Each NAIP pixel can be identified through a Cartesian coordinate system starting at the

North Western-most part of the United States, with the first coordinate indicating meters

to the East from this point, and the second coordinate indicating the number of pixels South

from this points. Each observed NAIP pixel is identified as x(t, s), where s = (s1, s2) is

the vector of length two containing the first and second coordinates in the first and second

element positions respectively, and t is a year in the temporal window identified by the set

{1, · · · , T}. Each location s is indexed in a set D through row major form.

Each NAIP pixel has an image intensity value (amount of light reflected) this value is

positive and real. This intensity measure is obtained through a grayscale conversion, of

the original RGB (Red, Green, and Blue) channels in a NAIP image. Grayscale conversion

is performed through a linear luminance conversion found in Anderson et al. (1996). The

grayscale conversion produced near identical segmentation results compared to both the

utilization of all RGB channels, or by reprojecting the RGB space into the largest principal

component. The NAIP pixels given LCU membership are assumed to be approximately

normally distributed with mean µ(ξ) and variance Σ(ξ) where ξ is the index of a LCU.

To assist in clustering, each pixel is initially smoothed using a square uniform kernel with

bandwidth (edge length) h=11.

Each NAIP pixel is a member of a unique LCU estimate. The mapping between classified

NAIP pixels and their associated LCU estimates will be through a binary valued matrix G,

where each row is a spatial index for the NAIP pixels, and each column is an LCU estimate

index. Since only LCUs of sufficient size for commercial land use will be considered, LCU

estimates only greater than eight 56 m2 square meter CDL pixels( approximately 4 acres

or 12,544 square meters) are considered. An overlay of NAIP imagery with CDL pixels can
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Figure 3.10: A Translucent CDL layer overlaid over a NAIP Imagery layer; The red edges
indicate boundaries for classification formed via 2010 Tiger Edge Shape files from the U.S.
Census Bureau.

be seen in Figure 3.10.

3.7.2 U.S. Census Bureau GIS Data and Problem Reduction

To reduce the memory requirements of segmenting large areas of land, permanent bound-

aries from the U.S. Census Bureau’s edge data will be used to divide the problem into

smaller areas of land. U.S. Census Bureau’s Edge Data is a collection of polygon bound-

aries of geographic features (e.g. lakes), linear features such as roads and hydrography (e.g.

rivers and streams) (freely available through the US Census FTP site). The edges in this

data are used to partition the continental United States into areas of land similar in size

to U.S. Census blocks, approximately one square mile for agriculturally dense areas. Any

error within the U.S. Census Bureau’s GIS data will be considered insignificant and ignored.

These smaller areas will be called parts, and are simply connected areas of land that are

bounded by roads or permanent hydrographic features (Figure 3.12). For the purposes of
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Figure 3.11: Cross section and digital image of a bounded region (Green for NAIP, Black
for CDL) in Indiana, over several years. The red line indicates the location of the cross
section.

segmentation, parts are identified as R(s) where s ∈ D the index of all parts.

The partitioning of R is largely due to computational constraints. As an example,
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Figure 3.12: An example of U.S. Census Tiger GIS data used to estimate LCU boundaries
plotted on top of NAIP imagery; LCU boundary estimates are in blue, unused edges are in
red.

the Indiana county used to evaluate the approaches in this dissertation, La Porte County,

Indiana, has 13 CDL images and six NAIP images. A CDL layer of 30m2 CDL raster image

has a size of 1296 × 2051 pixels, as a compressed geotiff (Geographic Tagged Image Format)

this is 2.7MB in size. In R due to integers being only 32-bit (regardless of the architecture),

this raster image would use 10MB of memory. The equivalent NAIP image would take 900

times the amount of memory (9GB) regardless of the system being 32-bit or 64-bit since

the NAIP images are stored in double precision format. To predict land cover in La Porte

County, Indiana, for 2011, using all available prior NAIP imagery (6 years worth), would

require 108GB of memory. The compressed NAIP geotiff image of the entire state of Indiana

for a single year is approximately 500GB, making implementation difficult on inexpensive

hardware.
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3.7.3 Filtered Estimates

The filtered estimates include a local mean and variance calculation, and the LVF. The

local mean and variance are calculated over square neighborhoods of 11 by 11 pixels. The

square shape of the neighborhoods was due to computational simplicity, and the size was

determined by visually assessing how smooth the image was, and the preservation of features

such as boundaries.

Both the mean shift and LVF were written in C with an R interface, and make efficient

use of multiple cores. Stratification was performed using LPM3 and the method described

in Breidt (1995). The sampling rate was kept constant at 1/400. Both sampling methods

were written in C with an R interface.

3.7.4 Mean Shift

One large advantage mean shift has over k-means, a popular classification method, is that

it does not require the number of classes to be known a priori. A consequence of this is if

the United States is broken into a set of parts of sufficient size there exists a bandwidth pa-

rameter of h that should work reasonably well for all parts. This can be seen by considering

the rule-of-thumb bandwidth for the derivative of a kernel density estimate for six years of

NAIP data, in this case is proportional to n−1/18 for the Gaussian kernel. Therefore, large

changes in n only slightly affect the optimal bandwidth.

In this implementation of the mean shift algorithm, the properties of the bandwidth

along the boundary between LCUs is of the utmost importance. Since each year, is scaled

the bandwidth selection problem is reduced to a global bandwidth selection problem where

global implies over all NAIP images within a county. In this situation two bandwidth

values will be selected, hµ and hσ, that refer to the NAIP intensity and NAIP log variance

respectfully. The natural way to approach this problem is through cross validation (CV),

this requires the identification from secondary sources or construction of LCUs and an

objective function. To implement cross validation 200 hand-drawn LCUs were used, with

the adjusted Rand index used as an objective function. The final bandwidth selected by
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cross validation was hµ and hσ = 1.

The mean shift algorithm was run using the cross validated bandwidth on a set of sam-

pled data. Each sampled point was an element of a 12 dimensional space including six years

of smoothed NAIP data and local variances. Each pixel in the original image was provided

a classification through nearest neighbor interpolation with the sampled response. The dis-

tances for the nearest neighbor classification were calculated using Euclidean distance in the

12 dimensional space used for shifting. The spatial support was not used for the mean shift

or the interpolation due to the difficulty of finding a suitable bandwidth and the quality of

the output.

A modal filtered estimate was applied to the final classification. The modal filtered

estimate is used over an 11 by 11 square neighborhood, and replaces the center pixel with

the most popular class in the 121 pixel neighborhood. The effect of this filtered estimate

is the removal of single pixel edges, and smoothing of corners. The application of this

filtered estimate substantially reduces issues that can occur when the pixels are turned into

polygons. This filtered estimate provides an alternative to erosion and dilation functions

found in computational morphology, and used in Yan and Roy (2014).
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Chapter 4: Classification

Classification and post-segmentation adjustments are applied through three steps. These

three steps are detection and re-segmentation of under segmented LCUs, identification of

non-agricultural LCUs, and merging over-segmented LCUs. The application of all three

classification steps has been evaluated using the Adjusted Rand Index (ARI) and a set of

geospatial measures of error. USDA’s Cropland Data Layer was used in the development

of all three steps, but the methods employed are sufficiently general to work with other

thematic crop maps.

4.1 CDL and LCU Terminology

The number of CDL pixels in R (3.7.1) is n∗ and each Cartesian pair is identified with a

vector s∗. Similar to NAIP pixels s∗ is indexed by a set D∗. The CDL pixel for a given

year t is identified by x∗(t, s∗). CDL pixels are observed and categorical, represented by an

integer in the set {1, · · · , C} of all possible CDL classifications (up to 256). For prediction,

this set are reduced.

Depending on the modeling need, a CDL pixel may also be represented by a binary

valued vector with length equal to the total number of CDL classes. To distinguish between

the integer and binary vector values, the binary vector values will use the notation x∗(t, s∗).

The binary vector value is zero for all values except the element equal to the integer value

of the class.

CDL pixels are available at 30m2 and 56m2, depending on year and state. For simplicity,

all CDL pixels are resampled to 56m2 this ensures that the index s∗ is constant over all

years studied. This resampling is done via nearest neighbor interpolation using Euclidean
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distance applied to pixel centroids. Ties are handled by randomly selecting a tied nearest

neighbor.

4.2 Segmentation of ALCU Estimates

Detection of under segmentation allows for the inclusion of missing boundaries by allow-

ing a subset of the segments to be re-segmented. The advantage of re-segmentation is

that the segmentation process is applied exclusively to a single segment, allowing for eas-

ier identification of local maxima relative to the initial segmentation. The disadvantage

of re-segmentation is that re-segmentation may admit erroneous edges and has non-zero

computational cost. The cost of re-segmentation is application specific, and the level of

the tests should be set based on both desired quality of the output and the computational

burden.

Spatial dispersion of error is an important characteristic of an LCU estimate, since

multiple homogeneous clusters of pixels within an LCU may imply under segmentation

while well distributed errors imply noisy data (Figure 4.1). In this section a test for under

segmentation, or homogeneity is presented.

The Black-Black join count statistic provides a means to detect two types of dispersion,

clustering and autocorrelation. The former type of dispersion, clustering, is of interest, while

autocorrelation is not of interest. Kulldorff et al. (2003) calls this first type of dispersion first

order clustering, and autocorrelation as second order clustering. In spatial data analysis

the Black-Black join count test is traditionally used as a test of autocorrelation, where the

assumption of second order stationarity is used to avoid the clustering alternative. Second

order stationarity implies that over a spatial domain the mean and variance are constant, in

this application the spatial domain is the interior of an estimated LCU. In the classification

section of this dissertation only the first order clustering is of interest.

The null hypothesis for the Black-Black join count test for binary data is that all the

pixels belong the same class, and discrepancies from this class should have iid error. In this

problem the classification error can be from multiple classes. A conservative approach to
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Figure 4.1: LCU estimate three and nine have roughly the same proportion of soybean
classified pixels (green), however LCU estimate three’s soybean pixels are likely classification
errors due to the spread of the pixels.

this problem is to assume that the most popular class within a set of observations is the

true class, and test the distributions of the discrepancies from this class. This approach is

taken in this dissertation.

The tests for homogeneity considered are applied to single years independently, and

the classes considered are crop types. The choice of majority class based on crop type is

reasonable given both the low error rate for CDL classification for major crops, and the

acreage of major crops relative to minor crops. The presence of under segmentation within

an LCU for a single year implies that the LCU is under segmented.

Rejection of the null hypothesis for any year will imply the presence of under-segmentation

of an LCU. Multiple comparison are based on the Šidák correction (see Šidák, 1967). This

adjustment for the level of a test under multiple comparisons is α = 1− (1− α0), where α

is the overall level of the test and α0 is the level of each test. As an example, if the level of
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the test is 0.05 for each year, then the level of the test for a four year sequence is close to

0.19, and for 10 years the level of the test is 0.40 (assuming independence of errors between

years). Care should be taken in choosing the number of years to test, since the level of the

test for all years is a function of the level of the test for each year. As the number of years

increase the power of the test decreases. Therefore, the number of years used should be

limited to the shortest sequence of years, such that there is a high probability of observing a

change in sequence. This probability is application specific and crop specific, and is outside

the scope of this research. For this particular application, only five years of CDL data are

used, 2007-2011. Years before 2007 were excluded due to the due to the relatively poor

quality of CDL classification before 2007.

Under conditions of high spatial correlation, an alternative to using the Black-Black

join count test is to ignore the spatial distribution of the pixels and just compare the

local error rate verse the global error rate for the majority crop. The rational behind this

approach, is that if under segmentation occurs, then the error rate should be higher than

the global error rate for the majority crop due to the presence of multiple homogeneous

regions within an LCU. A global error rate is available for the CDL through an estimate

of the producer’s accuracy statistic, and similar quality measures should be available for

any set of pre-classified pixels. Producer’s accuracy is the probability that a classified pixel

is in class c given the true class is c. In the CDL the producer’s accuracy is estimated

using the misclassification rate from the decision tree used to classify pixels using ground

truth from FSA CLUs, see Boryan et al. (2011). Since this estimated producer’s accuracy

statistic is calculated over a large number of LCU’s the precision is quite high relative to a

local estimate of error rate from within an LCU. A binomial test with the null hypothesis

that the local error rate is less than or equal to the global error rate for the majority crop

can therefore be a useful test for the presence of clusters.

Both the Black-Black join count test and the binomial test will only be considered under

a one-tail test. In the case of the Black-Black join count test this excludes alternatives with

checkerboard like patterns in favor of clustering. The binomial test is uniformly most
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powerful (UMP) under the one-tail test with binary distributed iid error assumptions. For

major crops, where the global error rate is quite good, and the assumption that the error

rate is constant over all LCUs, the binomial test is appropriate. For cases where the error

rate is not reasonably constant, or the global error rate is poor, such as in minor crops,

the Black-Black join count test statistic is reasonable. A useful test would be conditioned

on the majority crop estimate, where a majority of pixels in a major crop would use the

binomial test, otherwise the Black-Black join count test. The p-value for this test would

be,

p-value =

 1− F0(Ŷ ∗(t, ξ)) c ∈ C0

1− F1(JBB(t, ξ)) c ∈ C1

(4.1)

where

c = the majority crop for year t;

x∗(t, ξ) = the set of interior CDL pixels for LCU estimate indexed by ξ;

Ŷ ∗(t, ξ) = the sum of majority crop pixels from LCU ξ;

JBB(t, ξ) = Black-Black join count statistic (2.26) from LCU ξ;

F0 = the CDF for a binomial distribution with parameter pc(t) from the global

error rate 1− pc(t);

F1 = the CDF of the BB join count test statistic, C0 is the subset of C for

major crops, and C1 for minor crops.

A Monte Carlo test is used to compare the power of the binomial and Black-Black

test statistic under the alternative hypothesis cases of the presence of interior LCUs and

autocorrelation. This test is performed for a crop sequence of length one, and the level

of the test is set at α = 0.05. In the simulations with interior LCUs, square LCUs are

generated at three levels of LCU sizes, three sizes of interior LCUs, and three levels of

classification error, q = 1 − p. For the simulations under autocorrelation, the same levels

of LCU sizes and classification errors are used, with the notable exception that three levels

of autocorrelation are provided instead of sizes of interior LCUs. The autocorrelation is
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generated under a SAR model with autocorrelation parameter equal to ρ, mean zero, and

variance equal to one. Each deviate from the SAR model is broken into binary response,

according to the normal quantile for p, values greater than this quantile are set to zero, and

values less than or equal to this quantile are set to one. Each combination of levels was run

5,000 times for each experiment.

The results are straightforward, the binomial test is much more powerful at detecting

the presence of an LCU except in the largest values of p, where both are equally powerful.

The binomial test is also more robust against spatial autocorrelation, except in the cases of

extreme autocorrelation where the autocorrelation is sufficiently high to affect the observed

number of positive outcomes.

To test observed data, a set of LCUs were compared against Farm Service Agency (FSA)

parcel like units known as common land units (CLUs). Although CLUs are not complete

for a given region, they do provide a means of identifying under segmentation. To perform

this test two groups are formed:

• The first group represented under segmented LCUs. This group was formed by iden-

tifying LCU estimates that overlap multiple FSA CLUs. Overlap is defined as sharing

at least nine pixels with an LCU.

• The second group was formed by LCU estimates that had a high degree of mutual

overlap with a single FSA CLUs. Where a high degree of mutual overlap is defined

as greater than 70% and less than eight overlapping pixels from other CLUs.

Only CLUs from 2011 were available, and CDL data from 2007-2011 was used for test

statistics.

The results of this analysis were interesting. In the density plot of the p-values from the

Black-Black join count statistic, Figure 4.2, it is clear that there is little sensitivity to the

choice of level of the test. This insensitivity is due to two reasons. The first reason is that

there were a large number of LCUs that clearly included multiple crops, or had excessive

misclassification. The second reason reason is due to the large number of LCUs, primarily

88



Table 4.1: Statistical power under the alternative of the presence of an LCU of size m with
constant error rate of p for a square segment of size n.

p n m JBB Binomial

0.60 25 4 0.07 0.47
0.70 25 4 0.15 0.97
0.80 25 4 0.37 1.00
0.90 25 4 0.77 1.00

0.60 49 4 0.07 0.83
0.70 49 4 0.14 1.00
0.80 49 4 0.35 1.00
0.90 49 4 0.79 1.00

0.60 81 4 0.06 0.95
0.70 81 4 0.11 1.00
0.80 81 4 0.28 1.00
0.90 81 4 0.77 1.00

0.60 25 9 0.09 0.29
0.70 25 9 0.26 0.85
0.80 25 9 0.57 1.00
0.90 25 9 0.91 1.00

0.60 49 9 0.10 0.73
0.70 49 9 0.28 1.00
0.80 49 9 0.67 1.00
0.90 49 9 0.97 1.00

0.60 81 9 0.09 0.93
0.70 81 9 0.25 1.00
0.80 81 9 0.64 1.00
0.90 81 9 0.97 1.00

0.60 25 16 0.11 0.13
0.70 25 16 0.24 0.43
0.80 25 16 0.50 0.82
0.90 25 16 0.84 1.00

0.60 49 16 0.12 0.57
0.70 49 16 0.38 0.99
0.80 49 16 0.80 1.00
0.90 49 16 0.99 1.00

0.60 81 16 0.12 0.86
0.70 81 16 0.39 1.00
0.80 81 16 0.86 1.00
0.90 81 16 0.99 1.00

small LCUs, with no error, causing zero valued p-values.
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Table 4.2: Statistical power under the alternative of the presence of three levels of autocor-
relation, for a square segment of size n.

p n ρ JBB Binomial

0.60 25 0.00 0.07 0.03
0.70 25 0.00 0.06 0.04
0.80 25 0.00 0.06 0.05
0.90 25 0.00 0.07 0.03

0.60 49 0.00 0.06 0.04
0.70 49 0.00 0.06 0.04
0.80 49 0.00 0.06 0.02
0.90 49 0.00 0.07 0.02

0.60 81 0.00 0.05 0.03
0.70 81 0.00 0.05 0.05
0.80 81 0.00 0.06 0.04
0.90 81 0.00 0.07 0.03

0.60 25 0.50 0.30 0.14
0.70 25 0.50 0.29 0.17
0.80 25 0.50 0.27 0.18
0.90 25 0.50 0.25 0.19

0.60 49 0.50 0.46 0.16
0.70 49 0.50 0.44 0.17
0.80 49 0.50 0.39 0.15
0.90 49 0.50 0.33 0.15

0.60 81 0.50 0.61 0.15
0.70 81 0.50 0.57 0.19
0.80 81 0.50 0.52 0.21
0.90 81 0.50 0.41 0.18

0.60 25 0.90 0.62 0.48
0.70 25 0.90 0.63 0.57
0.80 25 0.90 0.65 0.63
0.90 25 0.90 0.68 0.75

0.60 49 0.90 0.86 0.46
0.70 49 0.90 0.88 0.52
0.80 49 0.90 0.89 0.58
0.90 49 0.90 0.91 0.65

0.60 81 0.90 0.95 0.46
0.70 81 0.90 0.96 0.52
0.80 81 0.90 0.95 0.57
0.90 81 0.90 0.95 0.66

It should also be noted that there is little difference between the binomial and Black-

Black join count tests in this application. According to Figure 4.2, a test with level, α,
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Figure 4.2: Density plot of the Black-Black statistic over a set of segmented LCUs in La
Porte County, Indiana

slightly less than one would yield good results. Figure 4.3 Shows the result of splitting

applied to LCU estimates for α = 0.40 using CDL data from 2007-2011.
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Figure 4.3: Two sets of LCU estimates are included in this image, the first set (yellow)
simply had classified non-agricultural LCU estimates removed, the second set (purple)
was re-partitioned based on the Black-Black join count statistic at level 0.40, and had
non-agricultural LCU estimates removed. Brown pixels indicate overlap between the LCU
estimates, and orange lines indicate new LCU estimates formed by re-partitioning.

4.3 Identification of Non-Agricultural LCU Estimates

Non-agricultural LCUs tend to follow roads and boundaries between fields. These LCUs are

quite narrow, and often contain no interior CDL pixels or only CDL pixels associated with

neighboring LCUs. Under these circumstances classification via CDL pixels is problematic

at best, since few of these LCUs have interior pixels.

Instead, LCU boundary properties are useful in identifying if an LCU is likely to be used

for agriculture. This can be seen through a logistic regression with L1 regularization (see

Friedman et al., 2001) using 200 hand-drawn LCUs supplemented by 50 LCUs manually

identified as roads, houses, forests, and other non-agricultural land covers. In this model

selection procedure only the intercept and coefficients for the ratio of LCU boundary esti-

mate length to LCU area and the presence of an intersection with permanent GIS features,
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Figure 4.4: Misclassification error for various values of the regularization parameter λ.

were not shrunk to zero (Figure 4.4). The covariates that had their coefficients shrunk to

zero included CDL pixel counts by land cover class, LCU mean intensity, LCU intensity

variance, LCU area, and LCU edge length. The misclassification rate for this procedure

was performed using cross validation in the R package glmnet (see Friedman et al., 2010),

with a value of 5.0%.
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4.4 Merging ALCUs Estimates

To prevent over-segmentation, adjacent ALCU (agricultural LCU) estimates not transected

by a known geographic feature with identical land cover sequences and intensity charac-

teristics (mean and variance) should be merged. This operation is problematic since these

parameters of the ALCU estimates are not known, and both the CDL and the NAIP data

contain measurement error. Due to this uncertainty, merges should be based on the likeli-

hood of adjacent ALCUs sharing the same parameters.

Under a likelihood framework, the problem reduces to identifying neighboring ALCUs,

and determining whether merging them together increases the likelihood relative to an

alternative set of merges. Neighbors in this section follow the “rook” based definition of

neighbors, where neighbors share a non-degenerate edge (length greater than zero). Since

this problem is a combinatorial optimization problem with respect to the likelihood a,

simulated annealing based approach is used.

To perform this simulated annealing approach a likelihood needs to be specified. The

likelihood that an ALCU estimate’s true land cover sequence, intensity, and mean; under the

assumption of known CDL miss-classification error is provided in (4.2). This likelihood was

formed based on the assumption that conditioned on the ALCU boundaries the classification

and NAIP pixel intensity are independent. This is a reasonable assumption, since the NAIP

intensity is independent of crop type, see Figure 4.5. The lack of relationship between the

NAIP intensity and crop type is due to different planting times of individual crops within

LCUs, and is further compounded by varying image acquisition periods of NAIP imagery.

`
(
c, µ(ξ),Σ(ξ)|x∗, x, Ĝ, pc

)
∝

(
n∗ξ !∏

c∈{1,··· ,C}T x
∗
c(ξ)

)
·
∏
c′∈{1,··· ,C}T p

x∗
c′ (ξ)

c|c′
∏
s∈Dξ φ (x(s), µ(ξ),Σ(ξ))

(4.2)

where
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c = a sequence of crops in {1, · · · , C}T the product space of C crop classes

over T years;

Dξ = the set of all interior NAIP pixels within ALCU y(ξ);

x∗c(ξ)c = the count of all interior CDL pixels of ALCU ξ that have

land cover sequence c;

n∗ξ = the number of all interior CDL pixels for ALCU ξ;

φ = the normal density;

µ(ξ) = the mean of the ALCU with index ξ;

Σ(ξ) = the variance of the ALCU with index ξ;

G = is the NAIP pixel LCU assignment, estimated by Ĝ, page 76;

pc|c′ = is the probability that a CDL pixel belonging to class c given that its

observed value was c′.

In this research it is assumed that there exists a true, fixed land cover sequence for

each each ALCU, y(ξ). Since the y(ξ) are not observed, interior CDL pixels are treated as

independent measurements of the land cover sequence of the estimated ALCU. Therefore,

it is possible to classify an estimated ALCU by selecting the most likely crop sequence given

the observed CDL pixel sequences. One problem with this approach is that conditioned on

G, the probability that a CDL pixel has land cover sequence c given that we have observed

sequence c′, pc|c′ , is unknown.

For major crops we do have a good estimate for pc|c t ∈ {1, · · · , t}, the yearly probability

that a classified CLU pixel belongs to the correct class, Pr (x∗(t, s∗) = c|x̂∗(t, s∗) = c). In

GIS parlance this probability is called user’s accuracy. What we do not have a good

estimator for is pcc|c′ where c 6= c′. Under the assumption that the misclassification rate

is invariant to the class being misclassified, then the values of c′ not equal to c can be

considered a single class. Using the producer’s accuracy, Pr (x̂∗(t, s∗) = c|x∗(t, s∗) = c), the

probability that a CDL pixel is classified into class c, and the probability that a pixel belongs
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Figure 4.5: Hexbin plots of the NAIP pixels intensity for the bounded region of Indiana in
Figure 3.11, conditioned on the CDL classification of the pixels; the log of the variance is
calculated over a 15-by-15 pixel neighborhood centered around the target pixel.

to class c, it is possible to calculate

pc|c′ =
Pr (x̂∗(t, s∗) = c|x∗(t, s∗) = c) Pr (x̂∗(t, s∗) = c)

Pr (x∗(t, s∗) = c′)
(4.3)
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where c 6= c′. Pr (x̂∗(t, s∗) = c) is calculated from the CDL response, and Pr (x∗(t, s∗) = c)

is calculated using FSA CLU data, “Ground Truth.”

Assuming that the misclassification rate, one minus user’s accuracy is temporarily in-

dependent, then it is possible to determine merges based on the likelihood in (4.2),

`
(
c, µ(ξ),Σ(ξ)|x∗, x, Ĝ, pc

)
∝

(
n∗ξ !

(n∗ξ−x∗(ξ)c)x∗(ξ)c

)
p
x∗c(ξ)
c|c p

n∗ξ−x
∗
c(ξ)

c|c′

·
∏
s∈Dξ φ (x(s), µ(ξ),Σ(ξ))

(4.4)

where c 6= c′.

Unlike CDL pixels, NAIP pixels are observed through remote sensing, not an estimator

of land cover. A NAIP pixel’s observed intensity is also likely to change over the growing

season, even within a day due to weather and production practices. This change in intensity

is captured by the intensity mean and variance associated with each ALCU. Because mea-

surement error from the NAIP pixels is low relative to the variation of intensity within an

ALCU, the measurement error is ignored and each NAIP pixel within an estimated ALCU

are treated as an independent realization of the ALCU estimate’s intensity. Since NAIP

pixels aren’t necessarily collected every year, and only a small number of yearly observations

are available for each NAIP pixel, the NAIP pixels are assumed to be temporally indepen-

dent. This assumption greatly simplifies the covariance structure of the NAIP pixels (4.2)

and (4.4),

`
(
c, µ(ξ),Σ(ξ)|x∗, x, Ĝ, pc

)
∝

(
n∗ξ !

(n∗ξ−x∗(ξ)c)x∗(ξ)c

)
p
x∗c(ξ)
c|c p

n∗ξ−x
∗
c(ξ)

c|c′

·
∏
s∈Dξ

∏
t∈{1,··· ,T} φ (x(s), µ(t, ξ),Σ(t, ξ)) .

(4.5)

where c 6= c′.

The final class assigned to each ALCU is the maximum likelihood estimator under

(4.4), and evaluated for each year. In practice, there is little difference between applying

97



Table 4.3: USDA, National Agricultural Statistics Service, 2007 Indiana cropland data layer
for major crops.

Cover Correct Producer’s Omission User’s User’s
Type Pixels Accuracy Error Kappa Accuracy Kappa

Corn 1333209 96.17% 3.83% 0.9248 95.63% 0.9147
Sorghum 502 81.63% 18.37% 0.8161 23.44% 0.2342
Soybeans 892534 94.90% 5.10% 0.9235 94.28% 0.9144
Tobacco 0 n/a n/a n/a 0.00% 0

Barley 0 n/a n/a n/a 0.00% 0
Winter Wheat 28044 86.63% 13.37% 0.8647 82.73% 0.8253

Table 4.4: Contingency table of correct and incorrect merges of the merging algorithm

Needed Merging Did Not Need Merging Total

Merged 26 14 40
Not Merged 6 156 160

Total 32 168 200

the likelihood estimator under (4.4) and letting the ALCU assignment be equal to the

most popular class. In application to La Porte County, Indiana, there was no difference in

assignment between using (4.4) and assigning the most popular class from the interior CDL

pixels.

To test the merging method against observed data, the set of hand-drawn ALCUs from

the segmentation portion of this dissertation were used. The FSA CLUs were not used due

to difficulty in identifying FSA CLUs that meet the ALCU definition. Of the 200 hand-

drawn ALCUs, 32 had intersecting estimated ALCUs from the mean shift segmentation

that required merging. After performing the likelihood based method 40 of the hand-drawn

ALCUs had intersecting estimated ALCUs that were merged, including 14 that should not

have been merged.

Many of the incorrect mergers occurred between ALCUs with identical land use se-

quences without prominent boundaries between them. An example of this can be seen in

Figure 4.6 where an LCU was correctly split (red), and then incorrectly merged back to-

gether (blue). Almost all of the estimated ALCUs needing merges, that were not merged,
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Figure 4.6: Incorrectly merged boundaries (blue), from split boundaries (red).

were due to poor boundaries. The ALCUs with poor boundaries tended to overlap multiple

fields, but were not split apart in the re-segmentation step.
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Chapter 5: Prediction

In this chapter, a spatial-temporal autoregressive probit model is introduced for modeling

crop rotations. This model differs from prior spatial-temporal autoregressive probits in the

literature both on application and model specification. This model specification follows

a traditional Bayesian hierarchical approach with a SAR prior placed on the coefficient

parameter in the latent model. The spatially autoregressive prior allows for crop rotations

to be spatially correlated. An application of this method to a subset of La Porte County,

Indiana, is presented. In this application, predictions are made for 2010 to 2013, using data

from 2001 to one year before the predicted year. Computational and theoretical issues are

discussed.

5.1 Model Specification

The MNP and SAR MNP models described in Section 2.3 provide a way to link categorical

response to a linear model with multivariate normal error structure. These models still need

to be linked with the crop rotation phenomena used for prediction. To do this, it is assumed

that the categorical response is temporally stationary and conditionally independent given

a prior state, sequence of prior crops, on the same ALCU. Therefore, by specifying a set of

prior states (rotations) {1, · · · , P}, it is then possible to create a design matrix to include

the prior state information for each ALCU.

In the proposed crop rotation model, it is also assumed that the crop rotations are

spatially correlated, e.g. corn-to-soybean rotations are close to corn-to-soybean rotations.

This model differs from the SAR MNP models of LeSage and Pace (2009) and Wang et al.

(2012), where the response is considered auto-correlated, e.g. corn grows next to corn. The

autocorrelated crop rotation model approach has the form
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Z∗∗ = U∗∗β∗∗ +Xγ + ε, (5.1)

β∗∗ = Bβ∗∗ + (I −B)β0 + υ, (5.2)

where

Z∗∗ = (z1,1,1, · · · , zJ,1,1, · · · , zJ,n,1, · · · , zJ,n,T−l), a latent response vector of

length nJ(T − l),

U∗∗ = nJ(T − l)× nPJ design matrix,

T = the number of observed years,

l = the lag, number of prior years,

β∗∗ = nPJ vector of covariates,

X = other covariates,

B = spatial correlation matrix I − ρW ,

ε = ε|Ω ∼ N (0,Ω),

Ω = 1T−l ⊗ In ⊗Σ,

Σ = the covariance of ε·,i,t,

γ = other covariates coefficients,

β0 = hyper parameter for β0, and

υ = random vector of length nJ with distribution N (0,Σ0).

A problem with this model is the large number of parameters introduced; however, for larger

values of ρ, the number of effective parameters is actually much lower than npJ , avoiding

excessive over-fitting.

Similar to Wang et al. (2012) prior state information is provided through a covariate

matrix U∗∗, unlike Wang et al. (2012) conditional temporal independence is assumed for

each observation given a set of prior states. Prior states are a particular crop rotation

pattern, e.g. an observed corn-to-soybeans rotation. To avoid the need for generalized

inverses to calculate the inverse of (U∗∗)T (U∗∗), it is assumed that all prior states have

been observed at least once. U∗∗ is an nJ(T − l)× nPJ design matrix. The design matrix

101



U∗∗ has the form

U∗∗



P1,1 0 · · · 0

0 P2,1 · · · 0

...
...

. . .
...

0 0 · · · Pn,1

P1,2 0 · · · 0

...
...

. . .
...

0 0 · · · Pn,T−l−1

P1,T−l 0 · · · 0

...
...

. . .
...

0 0 · · · Pn,T−l



(5.3)

where Pi,t is a J×PJ matrix equal to P ξ,t⊗IJ . P ξ,t is a row vector of length P with zeroes

everywhere except, at the index of the observed prior state for observation ξ for year t. For

the purposes of this dissertation, no additional covariate information beyond U∗∗ is used,

therefore, the properties of γ will not be explored.

Parameter estimation as in other SAR MNP approaches is through gibbs sampling,

however unlike LeSage and Pace (2009) and Wang et al. (2012) that use conditional data

augmentation, the more computationally efficient data augmentation method of Imai and

van Dyk (2005) is used. Due to the SAR component of the model only interacting with the

rest of the model through β∗∗, the implementation is fairly straightforward.

The likelihood of the posterior distribution without identified parameters, (β and Σ), is

P (β,Σ, ρ, λ, Z∗∗|Y ∗∗) ∝ exp
(

(Z∗∗ − U∗∗β∗∗)T Ω (Z∗∗ − U∗∗β∗∗)

+ (β − β0)T
(
(I −B)−1Σ0(I −BT )−1

)−1
(β − β0)

+ log|Σ|(ν + J + 1) + tr
(
SΣ−1

))
· I{ρ∈(a1,b1)}

(5.4)
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The hyper parameters for β∗∗ are β0 and Σ0. β0 is a vector of length nJ and Σ0 is a

covariance matrix of dimension nJ × nJ . The hyper parameters for Σ are the degrees of

freedom parameter ν > J , and S, the expectation of Σ.

5.1.1 Properties of Z∗∗

The posterior distribution of Z∗∗ is identical to that found in Imai and van Dyk (2005) and

McCulloch and Rossi (1994). This is the distribution provided in (2.36) with the exception

that deviates are generated for each of the T − l years of data in the model.

5.1.2 Properties of β∗∗

In this model there is a unique β∗∗ for each ALCU, prior state, and crop type; β∗∗ is

arranged such that

β∗∗ =
(
β∗∗1,1, . . . ,β

∗∗
J,1,1, . . . ,β

∗∗
J,P,1, . . . ,β

∗∗
J,P,n

)
. (5.5)

This particular configuration of β∗∗ is a consequence of the spatial autocorrelation imposed

on β∗∗. The spatial correlation of β∗∗ allows for spatially close ALCUs to have similar

regression coefficients for each prior crop sequence.

Using marginal data augmentation, the identified parameter β̃∗∗ under a Bayesian ap-

proach has a conditional distribution for gibbs sampling similar in form to Algorithm 2 in

Imai and van Dyk (2005) when β0 6= 0 and Algorithm 1 when β0 = 0. For Algorithm 2 in

Imai and van Dyk (2005) the posterior distribution of the identified parameter is,

β̃
∗∗|Θ−β∗∗ ∼ N

β̂, (α2)∗

A+
∑

t∈{l,··· ,T−l}

(U∗∗)TΣ−1U∗∗

−1 (5.6)
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where,

β̂ =

A+
∑

t∈{l,··· ,T−l}

(U∗∗)TΣ−1U∗∗

−1Aβ0 +
∑

t∈{1,··· ,T−l}

(U∗∗)TΣ−1Z∗∗

 , (5.7)

A is
(
(I −B)−1Σ0(I −BT )−1

)−1
and, Θ−a is the set of parameters minus parameter a. The

temporal domain is specified over l+ 1 to T , where l is the lag, length of the crop sequence

used for this model. Σ, Z, and (α2)∗ all follow their respective conditional distributions in

Imai and van Dyk (2005).

5.1.3 Properties of Σ

Under marginal data augmentation α2Σ = Σ̃. In the model (5.1) the conditional distribution

for the identified parameter Σ̃ is identical to the specification given in Imai and van Dyk

(2005). This equivalence is due to the spatial correlation being provided through β instead

of Z∗∗ as in LeSage and Pace (2009).

5.1.4 Properties of ρ

The parameter ρ from B = ρW ⊗ Inp follows the same distribution as in LeSage and

Pace (2009), and implemented using the sparse techniques found in Bivand (2015). The

conditional distribution of ρ given the rest of the parameters in the posterior distribution

follows,

ρ|Θ−ρ ∼ f(ρ|Θ−ρ)

∝ exp
(
−1
2 (β − β0)T

(
(I −B)−1Σ0(I −BT )−1

)−1
(β − β0)

)
I{ρ∈(a1,b1)}.

(5.8)

In this dissertation ρ is sampled using a Metropolis-Hastings based approach. This

approach generates deviates based on a stationary Markov chain.
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5.2 Computational Burden

Most of the parameters in (5.4) are quite sparse and special handling must be used for even

a small number of observations, prior states, and crops. The greatest computational burden

comes from two sources, the first source is the computational cost to invert the covariance

of Z∗∗. The second source is from the log determinant used in the Metropolis-Hastings

sampling of ρ.

Sparse matrix handling, with optimized Cholesky decompositions and inversions were

used through the Matrix package in R (see Bates and Maechler, 2015). Further reduction in

computational time was achieved through two implementation decisions. The first decision,

was to assume independence of the prior states in the covariance matrix. This makes the

covariance matrix separable over the prior state, and each prior state can then be handled

separately for calculating inverses.

The second decision was to break the spatial support into a set of overlapping regions.

Estimation and prediction is done independently in each region. Since multiple estimates

are produced for ALCUs where regions overlap, the ALCU estimate at the region with the

closes centroid is used.

5.3 Model Diagnostics

To test the convergence of the gibbs sampling, the process as described in Imai and Van Dyk

(2005) was followed. In this process, three Monte Carlo Markov (MCMC) chains from

the gibbs sampler were generated with different initial parameters, and compared against

each other through the Gelman-Rubin convergence diagnostic statistic (Gelman and Rubin,

1992). The Gelman-Rubin statistic is simply an analysis of variance (ANOVA), with the

null Hypothesis that all the chains for the parameter of interest have the same location

parameter.
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5.4 Prediction of Land Cover

The posterior predictive distribution is estimated through gibbs sampling to predict future

land use. The posterior predictive distribution is

Pr (YT+1 = c|Y∗T ∗, · · · ,YT−l+1) =

∫
Pr
(
Y∗T+1∗ = c|YT , · · · ,YT−l+1,Θ

)
f(Θ|Y )d(Θ)

(5.9)

where Yt is the set of ALCU land uses for year t. For computational simplicity and pre-

sentation, the maximum a posteriori probability (MAP) estimates of YT+1 are used. The

MAP of Y (ξ)T+1 is simply the class with with the highest probability at location ξ given

the prior state of that ALCU, and is generated through gibbs sampling,

5.5 Application

The subset of La Porte County that was initially segmented and explored through spatial

analysis was used to provide some initial results. This county subset consisted of 1486

ALCUs. The set of 1486 ALCUs were split into six overlapping regions. Each overlapping

region had approximately 500 ALCUs. After prediction, the results were merged together,

only retaining a single ALCU estimate for each ALCU. The ALCU estimate retained was

the one from the region with the closest centroid, this was done to minimize edge effects.

The non-spatial MNP model used a small number of two year rotations based on the

most popular rotations, Table 5.1. The same rotations were used for the spatial model. In

this application the number of categories from the CDL were reduced to the three most

popular crops, non-agriculture, and other agriculture. The categories considered for this

model include corn, soybeans, winter wheat, non-agriculture and other agriculture.

Run time for parameter estimation was six hours per chain, with a total of three chains.

Only the first chain was used for predicting the subsequent year via MAP. The prediction

step used 2000 iterations, with a 200 iteration burn-in, and performed gibbs sampling using

a Metropolis Hastings routine for the conditional distribution of ρ. Because of excessive
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Table 5.1: Popular rotations of major commercial crops for a subset of La Porte County,
Indiana, from 2001 to 2011.

Rotations Percent of Rotations

Corn → Corn 14.9%
Corn → Soybeans 23.8%
Soybeans → Corn 24.2%

Non-Agriculture → Non-Agriculture 12.5%
Other 23.6%

Figure 5.1: Trace plots for six parameters, ρ, Σ12, Σ1,2, and the first three β coefficients.

107



Table 5.2: Integrated misclassification rate for ALCU in La Porte County, Indiana, for five
classes (corn, soybeans, winter wheat, non-agriculture and other agriculture) through CDL.

IMR
Year Näıve Bayes∗ Pooled MAP Spatial MAP

2010 0.62 0.25 0.29
2011 0.64 0.59 0.54
2012 0.62 0.68 0.63
2013 0.60 0.47 0.44

correlation between draws from the Metropolis Hastings routine, only one out of every 30

draws was retained, no thinning was needed for other parameters.

Unlike in Wang et al. (2012) the parameters were extremely well behaved, with little

autocorrelation between consecutive draws, Figure 5.1. There was also no sign of divergence

in the β∗∗ estimates, Figure 5.3. The parameter ρ did indicate a degree of positive spatial

correlation, but it was quite low, Figure 5.2. Using a separate ρ for each parameter may

have improved results.

The Gelman-Rubin convergence diagnostic statistic was near one for all parameters

using three independent chains. This indicates lack of divergence of parameters, and an

overall stable convergence of the distribution of the MCMC to the stationary distribution

of this model.

Predicted land use was compared against CDL response for 2010 through 2013. Pre-

dictions were compared, conditional on the ALCU land-use sequences, using an integrated

misclassification rate (IMR),

IMR = 1−
∑

ξ∈D Iŷξ,j=yξ,jaξ∑
ξ∈D aξ

(5.10)

where aξ is the area of ALCU ξ.
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Figure 5.2: A density plot of the marginal posterior distribution of ρ, generated under gibbs
sampling (using a Gaussian Kernel).
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Figure 5.3: Trace plots of the first four regression coefficients β∗∗.
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Chapter 6: Discussion and Future Work

In this dissertation prediction of land cover was performed using three steps:

1. Image Segmentation - to estimate LCU boundaries from high resolution imagery

through the mean shift algorithm.

2. Classification - to classify LCU estimates based on coarse pre-classified pixels and

other exogenous data sources.

3. Prediction - to predict LCU estimates’ land cover contents using crop rotations through

a spatially auto-regressive process.

Each of these steps were approached as three separate problems, each requiring a set of

novel methods and applications to complete the overall task of agricultural prediction. The

application of these tasks should aid in future research in agricultural production, natural

resource management, survey development, and other uses of land cover and land use at

a local scale. Many of the contributions have application outside the scope of land cover

prediction, therefore the contributions and future work will be identified within each of the

three problems. An overview of the contributions has been provided below:

• Segmentation:

1. A novel well defined spatial-temporal land cover unit;

2. A novel approach to separating edge detection from high variance structures

through local variances;

3. A novel combination of the mean shift fixed point iterator and Newton’s method

fixed point iterator under a Gaussian kernel;
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4. A novel implementation of the mean shift algorithm using the observed property

that the mean shift sequences tend to merge into a few distinct paths approaching

a stationary point;

5. A novel image stratification and sampling method for mean shift segmentation

of spatial images;

6. An improvement to the existing local pivotal method used for spatially balanced

sampling (Grafström et al., 2012), reducing the computational complexity from

O
(
n2
)

to O (log(n)n).

• Classification:

1. A test using the Black-Black join count statistic and the binomial distribution;

2. An analysis of useful properties for identifying non-agricultural land cover through

penalized logistic regression;

3. A method to detect and merge of LCU estimates through maximization of the

joint likelihood of adjacent LCU classifications.

• Prediction:

1. A novel spatial-temporal model for crop rotation is presented;

2. Computational methods to handle the sparse structure of the proposed model

are presented;

3. An evaluation of the proposed model against a real data set is provided.

6.1 Segmentation

A key issue with prior GIS work is the lack of well defined spatial-temporal units. In this

dissertation an explicitly well defined spatial-temporal unit was provided based on land

cover sequences. This unit, called an LCU, was defined. The difficulty of creating well

defined temporal spatial units was discussed. This well defined unit is of great use in land

112



cover and land use research, where there is a lack of papers addressing well defined spatial

units, let alone spatial-temporal land cover units.

Future work on creating well defined spatial-temporal units is certainly needed, as the

choice of units is application specific. One potential avenue of research is the development

of dynamic units, in particular the description of spatial-temporal units through stochastic

functions such as random sets, see Cressie (1993).

In this dissertation, a number of novel improvements are provided for the mean shift

classification method. These improvements include generalized and application specific

improvements.

In this dissertation, the log variance filter (LVF) was introduced, and a Monte Carlo

study was performed. The Monte Carlo study showed that the LVF can considerably

improve the performance of mean shift based classification when local variance describes

particular features such as trees and buildings. This filtered estimate also provides edge

detection.

A novel combination of the mean shift fixed point iterator and Newton’s method for

fixed point iterator under a Gaussian kernel was introduced. The combined method known

as Normal Newton Shift (NNS) provided under simulation close to 33% reduction in the

number of iterations required for convergence of the algorithm with little loss in quality.

A novel algorithm for merging mean shift sequences, the “Dual Tree Merge-Path Algo-

rithm”, based on the path of ascent to the local maxima was presented. This algorithm was

shown to improve performance considerably when more than 10 iterations are required for

convergence of the algorithm. An implementation of this algorithm was provided through

an R package, and supports multiple CPU’s for improved performance.

A method to perform stratified sampling on an image was presented. This stratified

sampling was performed to decrease the computational burden of the mean shift algorithm,

and to ensure important features such as roads are included in the sampled image. These

strata were created using a novel technique employing the LVF and thresholding.

113



A balanced sampling method was used for stratified sampling within the low LVF stra-

tum. The current “fast” implementation of this method has an average computational

complexity of order O
(
n2
)

(Grafström et al., 2012). A k-d tree based implementation

was introduced in this dissertation, providing average computational complexity of order

O (log(n)n). The new implementation has been made available as an R package.

The implementation of a method to use U.S. Census Bureau edge data to reduce the

image segmentation problem was presented. This method allows for computationally effi-

cient image segmentation over large areas of land. An evaluation of the entire procedure

was performed using hand segmented data, providing an adjusted Rand index of 0.7.

Future work in this area involves the immediate application to more diverse areas of

agriculture, and evaluation of other filtered estimates, such as wavelets. A method to

smooth out the edges in field boundaries should be considered, and a method to deal with

shadows should be identified.

The theoretical background of NNS still remains fairly weak, and future work should be

performed to relax the conditions of convergence. The “Dual Tree Merge-Path Algorithm”

should be evaluated on other images, and for other kernels.

The local pivotal method sampling algorithm improved in this dissertation can be further

sped up through the use of approximate nearest neighbors. Research on the computational

gains verse the quality of the approximation should be performed, where quality is defined

by the B statistic (2.10).

6.2 Classification

An evaluation of a test to identify under segmentation was performed on simulated and

real data. This test incorporates an adjustment for handling multiple years of data, and

is conditioned on both the majority crop type and the presence of precise classification

rate. This test was shown to be fairly powerful under the presence of an interior LCU in

simulation. Applications to real data identified limitations of the test, namely the test is

limited by the presence of non-identical crop sequences of adjacent fields.
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Logistic regression with an L1 penalty function was explored and tested as a means to

identify non-agricultural LCUs from agricultural LCUs (ALCUs). The L1 penalty provides

model selection, and helped identify a small number of useful parameters. These parameters

were not associated with either the high resolution imagery used, nor the classified pixels.

Instead the parameters identified included LCU properties, namely the ratio of LCU edge

length to area and the presence of a GIS feature intersection.

A method to merge ALCUs was explored. This method used the likelihood that the

NAIP imagery and CDL pixels describe both a single crop type and the same LCU. This

merging used simulated annealing to maximize the likelihood that two neighboring ALCUs

has the same parameters If the likelihood of the merged parcels exceed the less restrictive

joint likelihood of the separate parcels, then the merge was accepted. This likelihood was

applied using NAIP intensity properties and CDL pixel classifications. This method was

evaluated against 200 hand-drawn LCUs.

The tests for under and over segmentation provided here are still quite primitive, and

further work should be performed to improve these tests or find alternatives. More object

based identification methodology (see Yan and Roy, 2014) may aid in ALCU identification

from non-agricultural LCUs.

6.3 Prediction

The temporal spatial multinomial probit model is extremely well behaved and provides a

slight increase in classification rates for the application to La Porte County, Indiana, relative

to non-spatial methods. This model is novel in form and describes the phenomena well, and

should provide an excellent model for use in agricultural economics related to agricultural

land cover and land use change. The model also provides a working SAR MNP approach

that has been difficult to accomplish in prior papers (Wang et al., 2012).

The multiple support method used to retain computational feasibility is currently ad-

hoc, and future research should be performed to identify more optimal ways to share the

support under multiple models. The model itself was only tested on a small number of
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crops and prior states, future work should be done to both try this method on more diverse

crops and expand the number of prior states. Computational feasibility may be improved

through GPU computing to accelerate the calculation of the inverse of the covariance of

Z∗∗. Additional covariates should be identified and applied to improve this model, such as

rainfall or soil data. The addition of trends, and the ability to add constraints on maximum

total acres for each crop may help improve the model.
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Appendix A: Appendix - Methodology Review

A.1 Kernel Density Estimation

The mean shift algorithm is based on the derivative of a kernel density estimate, therefore

some knowledge about kernel density estimation is required to understand the algorithm.

A minimal overview of the methodology is provided here, classical texts Silverman (1986)

and Wand and Jones (1994) provide excellent and more in depth discussions of the subject.

Kernel density estimation is a non-parametric statistical method to estimate the density f

of a random variable x. The kernel density estimator takes the form,

f̂n,H(v) =

NR∑
j=1

|H|−1n−1κ
(
H−1 (v − xj)

)
(A.1)

where {xi}ni=1 is a sequence of iid random variables and the function κ is known as a kernel.

This can be simplified to

f̂n,H(v) =

NR∑
j=1

n−1κH ((v − xj)) (A.2)

where

κH (u) = |H|−1κ
(
H−1u

)
. (A.3)

In this research kernels will be restricted to second order kernels, where the kernel order

corresponds to the first non-zero moment of the kernel function. The pth moment of the

kernel is ∫
upκ(u)du (A.4)

with u = H−1(v−xj), where H is a bandwidth parameter. Furthermore, to ensure that the

asymptotic properties of the kernels hold four conditions are imposed:
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Table A.1: Common kernels used for KDE estimators.
Kernel Equation Derivative Support

Uniform 1
2 0 u ∈ [−1, 1]

Epanechnikov 3
4

(
1− u2

)
−3

2u u ∈ [−1, 1]

Biweight 15
16

(
1− u2

)2 −15u
8

(
1− u2

)
u ∈ [−1, 1]

Gaussian ρ(u) −u
2ρ(u) u ∈ R

K1 κ(u) > u for u ∈ Rd;

K2
∫
κ(u)du = 1;

K3
∫
uκ(u)du = 0;

K4
∫
u2κ(u)du = c <∞.

Common kernels include Uniform, Epanechnikov, biweight and Gaussian kernels, (see Ta-

ble A.1). In this research u will be vector valued with length d, under these conditions the

bandwidth is a matrix. To ensure that the f̂n,H exists and to simplify results, the bandwidth

matrix H will be diagonal with diagonal elements hk for k ∈ {1, · · · , d}, and

K5 the bandwidth matrix H is symmetric and positive definite; for a scalar a > 0 and

diagonal matrix A : aA = H, |A| = 1, as a→ 0, and the sample size n tends to∞ and

an→∞.

In this dissertation only kernels of the form |H|−1g(||H−1(v − xj)||22) will be considered,

and for simplicity ||x− vj ||2H = ||H−1(v − xj)||22.

Since f is a function, properties of estimators are given at single points in the domain of

f or over the entire domain through integration. The pointwise properties include the bias,

variance and MSE, to provide simple workable forms of these properties the function f is

approximated through a Taylor series and hence the properties are prefixed “asymptotic.”

Because these are asymptotic results the utility of these approximations are a function of

the local linearity about v, and in the global sense for the properties integrated over the
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domain. The asymptotic pointwise properties of f̂H under K1–K5 are

bias
(
f̂n,H(v)

)
=
c

2

d∑
k=1

h2
k

∂2f(v)

∂vk
+O

(
tr
(
H2
))

, (A.5)

var
(
f̂n,H(v)

)
= n−1|H|−1R(κ)df(v) + o

(
n−1|H|

)
(A.6)

with R(f) =
∫
f(x)2dx, and

MSE
(
f̂n,H(v)

)
=

(
c

2

d∑
k=1

h2
k

∂2f(v)

∂vk

)2

+ n−1|H|−1R(K)df(v). (A.7)

Of the global characteristics the one of greatest interest is the AMISE, asymptotic integrated

squared error, this has the closed form of

AMISE
(
f̂n,H

)
=
( c

2

)2
R(f ′′)h4 +

R(κ)

nhd
(A.8)

with the restriction h = hk. The derivation of these quantities can be found in Silverman

(1986) and Wand and Jones (1994).

The value of h that minimizes (A.8) is h ∝ n−2/(d+2) and is termed the AMISE optimal

bandwidth. Under these conditions f̂n,H(v) is a consistent estimator of f(v) at point v with

order Op
(
n−4/(d+4)

)
.

It should be noted that as d increases the slower the bias approaches 0, this is one

of several issues with kernel density estimates in high dimensions. Another issue is the

computation of high dimensional kernel density estimators. Binning is one simple way to

increase the computational speed of kernel density estimation, where the bin sizes are set to

guarantee some level of numerical precision. However, as the number of dimensions increase

the number of bins required to retain that level of precision increases exponentially.
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Table A.2: Common kernels and profiles

Name Notation Profile Use

Kernel γ g Mean Shift Iterator
Shadow Kernel κ k KDE used for clustering

A.2 Mean Shift

Mean shift is a mode searching algorithm similar to the typical Newton’s Method for finding

roots of a smooth function but applied to a kernel density estimator. A short overview of

the algorithm and its properties used in this dissertation are provided in this section. For

further study Chen et al. (2014a) provides a detailed overview of the algorithm with an

extensive set of applications.

As a clustering method a set of query points Q are classified by steepest ascent to a

mode from the kernel density estimator of another set of reference points R where each

point v in R or Q is assumed to be an iid observation of the random variable x with pdf f

with support in Rd. Q and R are assumed to both have the same support, and frequently

Q = R. Because this is a root searching method, there is no dependency on a fixed number

of clusters, instead the choice of both kernel and bandwidth parameters are determine the

number of modes in the kernel density estimate (KDE). For convenience, the cardinality of

the sets Q and R will be denoted by NQ and NR respectfully, and the KDE will be rewritten

as

f̂NR,H(v) =

NR∑
j=1

|H|−1n−1κ
(
H−1 (v − xj)

)
=

NR∑
j=1

cj,Hk
(
||v − xj ||2H

)
(A.9)

where cj,H is a constant ensuring that k
(
||vi − xj ||2H

)
cj,H = κ

(
||vi − xj ||2H

)
. In the context

of mean shift, the kernel κ is known as the shadow kernel ; k is known as the shadow profile;

and g = −k′, is the profile of γ, where γ is the kernel used for iterating in (A.10). Table

A.2 provides a brief description of the kernels, profiles and uses.

The mean shift algorithm creates a set of candidate stationary points via fixed point
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iterations of

vi+1 =

∑NR
j=1 xjcj,Hg

(
||vi − xj ||2H

)∑NR
j=1 cj,Hg

(
||vi − xj ||2H

) . (A.10)

This iteration continues until either a fixed number of iterations occur or the difference

between two iterations are below a threshold.

The algorithm was first proposed by Fukunaga and Hostetler (1975) but did not see

wide spread adoption until the publication of Cheng (1995). Cheng used the term “Natural

Clustering” to describe the procedure, as the data points themselves self-organize around

the mode of the density. One advantage of this method over others such as K-means is that

the clustering only relies on the bandwidth parameter which depending on the problem

may be easier to specify. In the case of K-means where choice of initial centroids may have

considerable influence on the clustering, mean shift has the further benefit of being entirely

deterministic.

A.2.1 Algorithm

The mean shift algorithm is an iterative gradient ascent algorithm (see Figure A.2.1). In

the mean shift algorithm a kernel density estimate of a random variable x is searched for a

stationary point, ideally a mode.

The locations of the local maxima in the density of x can be estimated by the set of v

such that ∇f̂v(v) = 0, where the gradient of the kernel density estimator at location v has

the form

∇f̂NR,H(v) =

NR∑
j=1

−2cj,HH
−1 (v − xj) k

(
||v − xj ||2H

)
. (A.11)

.
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In the case of a normal kernel κ(u) = φ(u), ∂k(u)
∂u ∝ uk(u) the roots occur where

v =

∑NR
j=1 xg

(
||v − xj ||2H

)∑NR
j=1 g

(
||v − xj ||2H

) =

∑NR
j=1 xφ

(
||v − xj ||2H

)∑NR
j=1 φ

(
||v − xj ||2H

) . (A.12)

This is form is similar to the Nadaraya-Watson estimator from kernel regression, but differs

in that the x is being “regressed” on neighboring values of x. It should be noted that the

Gaussian kernel is the only kernel where the kernel and the shadow kernel are equivalent

(see Cheng, 1995). Given an initial location v0, a local mode can be found by fixed point

iteration,

v(i) =

∑NR
j=1 xg

(
||v(i−1) − xj ||2H

)∑NR
j=1 g

(
||v(i−1) − xj ||2H

) (A.13)

until ||v(i) − v(i−1)|| < δ where δ is an acceptable tolerance. Each iteration of (A.13)

is a convex combination of the points in the domain of g, therefore all movements of the

algorithm are necessarily bounded for finite samples from x and occur within the convex hull

of the samples. The closer v(i) is to the local maxima for a sufficiently smooth shadow kernel,

the smaller the steps are; this avoids the complication of line searching in the similar Newton

Method. Although the mean shift is considerably more stable than Newton’s method, it

does so with a considerable computational complexity ,O
(
n3
)
.

A.2.2 Convergence of the Mean Shift Algorithm

Convergence of the Mean Shift algorithm to a stationary point in the KDE over R was first

presented in the literature by Cheng (1995). This was done with fairly large restrictions

on the kernel choice and underlying distribution f that the KDE was estimating. Further

work by Comaniciu and Meer (2002) generalized the proof to all convex kernels with strictly

decreasing profiles, corrections to this proof were later provided by Li et al. (2007) introduc-

ing the requirement of finite and separate stationary points. Comaniciu and Meer (2002)
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Figure A.1: Simple mean shift example on a bivariate normal density sample.

also showed that the estimate of the mode from the mean shift is an M-estimator. Clarke

and Futschik (2007) for the more general case of M-estimators and later by Chen et al.

(2014b) for the mean shift algorithm provided the necessary conditions for a.s. convergence

of the mean shift sequence to the mode of f . Both of these results come from Giné and

Guillou (2002), which provides conditions for strong uniform consistency for multivariate

kernel density estimators.

A set of regularity conditions used in Li et al. (2007), Cheng (1995), and Ghassabeh

et al. (2012), for example, provide sufficient conditions for convergence of the mean shift

sequence
{
v(i)
}∞
i=0

to a stationary point within the kernel density estimate on R with kernel

κ.

M1. κ meets the regularity conditions for kernels K1–K5.

M2. κ has a convex, differentiable and strictly decreasing profile k.

M3. The stationary points must be finite and each separated by a non-degenerate ball in

Rd, 0 < d <∞.
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Under these regularity conditions it can be shown that the mean shift sequence converges

to a stationary point of the KDE on R. Ghassabeh et al. (2012) provides a lemma that

ensures regularity condition M3 can be met for Gaussian kernels by checking that Hessian

matrix of the KDE at each stationary point is of full rank. Proofs for can be found in found

in Li et al. (2007), and Wang et al. (2007) follow.

Theorem A.1 (Mean Shift sequence is a Monotone Increasing Sequence). Under the prior

regularity conditions, the sequence of KDEs
{
f̂(vi+1)− f̂(vi)

}∞
i=0

is a monotone increasing

sequence for any initial point v0 in the support of x, R, where {vi}∞i=0 follow from the mean

shift algorithm.

Since the sequence is bounded and monotonically increasing it therefore trivially con-

verges to either a point in the support or the boundary of the support x.

Corollary 1. Under regularity conditions M1–M3, the sequence of KDEs

lim
i→∞

{
f̂(vi+1)− f̂(vi)

}∞
i=0

= 0 (A.14)

Theorem A.2 (Convergence of Adjacent Mean Shift Terms). Under the regularity condi-

tions M1–M3, the sequence ||v(i+1) − v(i)||2H converges to 0 for any initial point v0 in the

support of x, as i→∞.

Theorem A.3 (Convergence of the Mean Shift Sequence to a Critical Point). Under the

regularity conditions M1–M3, the sequence
{
v(i+1) − v(i)

}∞
i=0

converges to a critical point

for any initial point v0 in the support of x, as i→∞.

Chen et al. (2014a) provides a set of necessary conditions and associated proof to show

that the estimate of the mode from the mean shift algorithm is a consistent estimator for

the mode in the density of x. These conditions C1–C2 and the associated theorem are

provided below, this result can be considered an extension of Giné and Guillou (2002).
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C1. The kernel density functions are bounded and continuously differentiable up-to the

third order and ∫
x2κα(x)dx <∞ (A.15)

and ∫
(κα(x))2 dx <∞ (A.16)

for α ∈ {1, 2, 3}.

C2. Let P be be a probability measure on the measurable space (S,S) where S is the

minimal sigma algebra of S, F is a class of uniformly bounded functions including

κ, then for N(T,D, π), the τ -covering number of the metric space (T, d) there exists

some ε > 0 and scalar A > 0 such that N
(
F , L2(P ), τ ||F ||L2(P )

)
≤
(
A
τ

)ε
for every P

on (S,S).

C1 simply allows for the Taylor series to be used to obtain a rate of convergence, while

C2 admittedly is a bit terse, it just ensures that the kernel function is sufficiently smooth.

Per Chen et al. (2014b) the Guassian kernel and other smooth kernels with compact support

satisfy these conditions.

Theorem A.4 (Consistency of Estimating Local Modes). Under the regularity conditions

M1–M3, and C1–C2 the sequence
{
v(i+1) − v(i)

}∞
i=0

converges to a critical point for any

initial point v0 in the support of x, as i→∞.

A.2.3 Bandwidth Selection

Silverman Rule-of-Thumb is a method to choose the optimal bandwidth of a kernel density

estimator based on the assumption that the “roughness” R(k) can be estimated through

a normal density, the net result is the choice of h = σ̂n−1/5 for second order kernels. The

rth derivative on the other hand has Rule-of-thumb bandwidth of h ∝ n−1/(2r+5) for second
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order kernels when using the derivative of the KDE as an estimator. For multivariate kernels,

Chacón et al. (2011) showed that under C1 and f ∈ BC3 that the MISE optimal bandwidth

to estimate the density by the gradient of a kernel density estimator is h = Cn−1/(d+6) for

some constant C.

Shifting from AMISE conditions to an alternative norm as seen in Arias-Castro et al.

(2013), and Chen et al. (2014a),

||∇f̂n −∇||max,∞ = supx||∇f̂n(x)−∇f ||∞ (A.17)

The optimal bandwidth is h ∝
(

log(n)
n

)1/(d+6)
.

The issue with bandwidth selection, from KDE based methods is that the objectives

differ. In mean shift for classification the goal is to minimize the miss-classification rate,

while the KDE based methods attempt to minimize the AMISE. The miss-classification

may admit more bias, as the true location of the mode and density values at any given

point are less important than the path of ascent. In fact, for the purposes of computational

efficiency steeper paths are preferred.

Other empirical works on bandwidth selection for mean shift include University and

Einbeck (2011). University and Einbeck (2011) proposed a method of determining the

bandwidth parameter by first fitting curves to the data, then determining the proportion

of total data points within a fixed distance from the curve.

A.2.4 Kernel Choice

Choice of a shadow kernel under the mean shift is restricted by the conditions K1–K5. In

Clarke and Futschik (2007) the Gaussian kernel was identified as meeting the conditions

for convergence of the Newton’s Method sequence to the mode of the pdf of x, while it is

mentioned that the biweight kernel in simulation does present good results it does not meet

the criteria for convergence. Chen et al. (2014a) states that the conditions for convergence

of the mean shift method to both a mode of the KDE or a mode of the density of the
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sample should holds for all continuous KDE’s with a compact support. The use of the

biweight kernel is of particular interest since is optimal in MSE for a fixed bandwidth for

estimating the derivative of the pdf of x (see Wand and Jones, 1994 and Silverman, 1986).

Empirical results under an Epanechnikov kernel were obtained in Wang et al. (2007) showing

considerable performance increase over the Gaussian case.
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