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Abstract

STRATIFICATION AND ARITHMETIC DYNAMICS ON CHARACTER VARIETIES

Cigole Thomas, PhD

George Mason University, 2022

Dissertation Director: Dr. Sean Lawton

If G is a reductive algebraic group over Z, the G-character variety of a finitely presented

group Γ parameterizes the set of closed conjugation orbits in Hom(Γ, G). The group of

automorphisms, Aut(Γ), acts on the representation variety, Hom(Γ, G), which leads to a

natural action of the group of outer automorphisms, Out(Γ), on the character variety. In

this thesis, we study the dynamics of the action of Out(Γ) on the finite field points of

the character variety XΓ(G). We provide a criterion in terms of subgroups of G for the

action to be non-transitive on the non-trivial points of the representation variety and the

character variety. We define free-type groups to be groups with elementary automorphisms

similar to the Nielsen transformations of a free group. We then proceed to prove that the

Aut(Γ) action is transitive on the set of epimorphisms from Γ to G when Γ is free-type.

Additionally, we provide a characterization of free-type groups. Finally, we introduce the

idea of asymptotic ratio as the ratio of the number of points in a maximal orbit to that in the

variety as the order of the finite field goes to ∞. If the asymptotic ratio equals one, we say

that the action is asymptotically transitive. We provide an upper bound for the asymptotic

ratio in these cases and thus prove that the action is not asymptotically transitive on the

SLn- character varieties of Zr for n = 2, 3.



Along the way, we give a new proof for the E-polynomial of these free abelian character

varieties.



Chapter 1: Introduction

The objective of this thesis is to understand certain properties of the dynamics of outer

automorphism groups acting on character varieties over finite fields. Specifically, properties

of the action such as transitivity and the existence of a large orbit are explored. Additionally,

a new property called asymptotic transitivity is introduced and investigated for specific

groups G and Γ.

If G is a complex affine reductive algebraic group and Γ a finitely presented group, then

the set of G-representations of Γ form an algebraic set Hom(Γ, G). The group G acts on

the set of homomorphisms by conjugation. The G-character variety of Γ is the space of

equivalence classes of group homomorphisms from Γ to G where two homomorphisms are

equivalent if their conjugation orbit closures intersect. The G-character variety of Γ is the

categorical quotient in the category of affine varieties denoted by

XΓ(G) := Hom(Γ, G) // G.

This categorical quotient is constructed using Geometric Invariant Theory (GIT). See the

next section for a detailed description of character variety as a GIT quotient. When G is

an affine algebraic group defined over the integers, Z, the locus of finite field points of the

G-character variety of Γ is well defined. The automorphism group Aut(Γ) acts naturally

on the G-representation variety of Γ. This leads to an action of Out(Γ) on the finite field

points of XΓ(G). In this thesis, the dynamics of this action is explored.

The second chapter explores the property of transitivity and finding a ‘large’ orbit. We be-

gin by detailing the example of the action of Out(Z2) on the character variety XZ2(SL2(F2)).

A complete description of the orbits along with a visual representation is provided. Moti-

vated by the example, we prove a criterion for the Aut(Γ)-action to be non-transitive on

1



the representation variety Hom(Γ, G) for a finitely presented group Γ and any group G.

Additionally, when G is an affine algebraic reductive group we deduce a criterion for the

Out(Γ)-action on the G-character variety of Γ to be non-transitive. We prove that the

existence of proper subgroups of G with at least one homomorphism being mapped into the

subgroup ensures that the action is non-transitive. As a corollary, we provide a necessary

condition for the action to be transitive on the representation variety when Γ is free.

Subsequently, we prove the main result of the thesis. We define free-type groups of n-

generators as groups where the automorphism group is similar to that of the free group, Fn.

We show that free abelian groups, p-groups, and free nilpotent groups are of free-type. Ad-

ditionally, we show that free-type groups arise as quotients of free groups by characteristic

subgroups. We then proceed to prove that if Γ is of free-type of n-generators, then the set

of epimorphisms is a single orbit of the Aut(Γ)-action on Hom(Γ, G) when n ≥ 2k where k

is the minimal size of a generating set of G.

In the final chapter, we explore asymptotic transitivity of the free abelian character variety

in the cases when G = SLn(Fq) for n = 2, 3. To accomplish this, we stratify the character

varieties based on their stabilizer type and count the orbits in each stratum. We then prove

that the action is not asymptotically transitive on these character varieties and provide an

upper bound for asymptotic ratio, the ratio of the size of the maximal orbit over the size of

the variety when the order of the finite field goes to ∞, in each case of n = 2, 3. Along the

way, we give an alternate proof for the E-polynomial of the free SL2- and SL3- character

varieties of Zr.

We now establish some preliminaries required to describe the background and literature on

the above results.
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1.1 Preliminaries

1.1.1 Definitions

Let k be an algebraically closed field and An(k) or An = {(k1, . . . , kn) | k1, . . . , kn ∈ k}

denote affine n-space. If S is any collection of polynomials in k[x1, . . . , xn], then define

V (S) to be the simultaneous zero set of S, i.e.,

V (S) = {p ∈ An | f(p) = 0 for all f ∈ S}.

Definition 1.1.1 (Algebraic Set). A subset X ⊆ An is an algebraic set if X is zero set of

a collection of polynomials, i.e, X = V (S) for some S ⊆ k[x1, . . . , xn].

Definition 1.1.2 ([31]). The Zariski topology on An is defined by taking the open sets to

be the complements of algebraic sets.

Definition 1.1.3 (Affine, Variety, [31]). An affine algebraic variety (or affine variety) is an

irreducible closed subset of An. An open subset of an affine variety is a quasi-affine variety.

Definition 1.1.4 (Regular functions). Let Y be a quasi-affine variety in An. A function

f : Y → k is regular at a point P ∈ Y , if there is an open neighborhood U with P ∈ U ⊆ Y ,

and polynomials g, h ∈ A = k[x1, . . . , xn], such that h is nowhere zero on U , and f = g/h

on U . f is regular on Y if it is regular at every point of Y .

Definition 1.1.5 (Morphisms of affine varieties). If X,Y are two affine varieties, a mor-

phism, φ : X → Y , is a continuous map such that for every open set V ⊆ Y , and for every

regular function f : V → k, the function f ◦ φ : φ−1(V )→ k is regular.

Definition 1.1.6 (Algebraic Group). An (affine) algebraic group G over a field k is an

(affine) algebraic variety over k with the structure of a group on its set of points such that

multiplication µ : G → G and inversion i : G → G are morphisms of (affine) algebraic

varieties.
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Remark 1. (Affine) algebraic groups over k form a category. Its morphisms are morphisms

of (affine) algebraic varieties which induce homomorphisms of the corresponding group

structures.

Definition 1.1.7 (Solvable group). A group G is called solvable if there exists a sequence

of subgroups 1 = H0 E · · ·EHk of G such that for each i, 0 ≤ i ≤ k − 1,

• Hi is a normal subgroup of Hi+1 and

• the quotient group Hi+1/Hi is abelian.

Definition 1.1.8 (Reductive groups). An affine algebraic group T is an algebraic torus if it

is isomorphic to Gm(k)×n where Gm(k) = GL1(k) is the one dimensional torus. The radical

of an algebraic group is a maximal closed connected solvable normal subgroup. An affine

algebraic group G is reductive if its radical is an algebraic torus.

Definition 1.1.9 (Mapping Class Group, Chapter 2, [18]). A surface S is a two dimen-

sional manifold. Let S be the connected sum of g ≥ 0 tori (genus g) with b ≥ 0 disjoint

open disks removed (b boundary components) and n ≥ 0 points removed from the interior

(n punctures). Suppose Homeo+(S, ∂S) denote the group of orientation-preserving homeo-

morphisms of S that restrict to the identity on ∂S endowed with compact-open topology.

Then the mapping class group, denoted by Mod(S) is the group

Mod(S) = π0(Homeo+(S, ∂S))

where π0(X) is the zeroth homotopy group of X.

Remark 2. For a surface of genus one with one puncture, S(1, 1),

Out(F2) ≈ GL(2,Z) ≈ Mod±(S1,1)

where Mod±(S1,1) denote the extended mapping class group of S(1,1) (the group of isotopy

classes of all homeomorphisms of S(1,1)) and F2 is the free group of rank two, [Theorem 8.1,
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[18]]. Therefore, the mapping class group of the one-holed torus is the outer automorphism

group Out(F2).

Definition 1.1.10. For q = pk where p is a prime we define the following groups:

Mn(Fq) := {A | A = [aij ]1≤i,j≤n where aij ∈ Fq}

GLn(Fq) := {A ∈Mn(Fq) | det(A) 6= 0 in Fq}

SLn(Fq) := {A ∈Mn(Fq) | det(A) = 1}.

Group Action

Let G be a group acting on a set S. For g ∈ G and s ∈ S, we use the notation g · s to

denote the image of s under the action of g. Let W denote a subset of S.

Definition 1.1.11 (Orbit). For s ∈ S, the orbit of s, Orb(s), is defined as the set G · s :=

{g · s | g ∈ G}.

Definition 1.1.12 (Stabilizer). The stabilizer of s is the set Gs := {g ∈ G | g · s = s}, the

set of elements in G that leave s invariant under the action.

Definition 1.1.13 (Transitive Group Action). The action ofG onW ⊆ S is called transitive

if G · w = W for all w ∈ W , i.e, for any v, w ∈ W , there exists g ∈ G such that g · v = w.

Equivalently, W contains a single orbit under the action.

Let G be a group acting on a vector space V .

Definition 1.1.14 (Semistable). An orbit G ·v ⊂ V −{0} is called semistable if its closure

does not contain 0.

Definition 1.1.15 (Polystable). An orbit is called polystable if it is closed.

5



1.1.2 Character Variety

Let G be a reductive affine algebraic group over C, and Γ a finitely presented group. Then

the G-character variety of Γ is a quotient space of the set of G-conjugation orbits of ho-

momorphisms ρ : Γ → G where two orbits are equivalent if their closures intersect. To

construct the character variety explicitly, let 〈γ1, ..., γr | Ri(γ1, ..., γr) = 1, i = 1, ..., s〉 be a

presentation for Γ where Ri are words in γ±1. Then the set of homomorphisms, Hom(Γ, G),

can be injectively mapped into Gr by the evaluation map defined as:

φ : Hom(Γ, G) −→ Gr

ρ 7−→ (ρ(γ1), ..., ρ(γr)).

Injectivity of the map follows from the fact that the ρ’s are homomorphisms. The evalu-

ation map is a bijection when Γ has no relations [see Corollary 2.0.3 for the proof]. Since

G is an affine algebraic group over the complex numbers, it is a smooth algebraic variety.

The Ri(ρ(γi))’s are polynomial expressions in G, and Gr is a variety as the product of va-

rieties. Therefore, Hom(Γ, G) inherits a subvariety structure from Gr. Note that G acts on

Hom(Γ, G) by conjugation, which extends to an action on the coordinate ring C[Hom(Γ, G)].

We consider the invariant subring under this action denoted by C[Hom(Γ, G)]G. This sub-

ring is finitely generated by Nagata’s theorem [47] and the fact that G is reductive. Then

the G-character variety of Γ is defined as the Geometric Invariant Theory(GIT) quotient

[16] given by

XΓ(G) := Spec(C[Hom(Γ, G)]G).

We are considering the C-points of the scheme with the subspace topology inherited from

the Euclidean topology CN for some N . This is not the same as the Zariski topology defined

on the variety.

Since the GIT quotient identifies the orbits whose closure has a non-empty intersection, the

quotient can be parameterized by the unique closed point in each equivalence class, called

6



the polystable representation as defined in Definition 1.1.15. When G acts on Hom(Γ, G)

by conjugation, ρ ∈ Hom(Γ, G) is polystable if the orbit G · ρ = {gρg−1 | g ∈ G} is Zariski

closed in Hom(Γ, G).

If Γ is the fundamental group of a surface Σ, then XΓ(G) is called the G-character variety

of Σ.

When k is a subfield of C, we can consider the k-points in XΓ(G). This gives some under-

standing of the topology of XΓ(G) as shown in [32].

1.1.3 E-polynomials

We now define the E-polynomials. The following discussion is taken from [11] and [42] .

For an affine variety X, we consider the singular cohomology H∗(X; k) where k is a field of

characteristic 0. See [14] and [15] for details. A pure Hodge structure of weight k consists

of a finite dimensional complex vector space H with a real structure, and a decomposition

H =
⊕
k=p+q

Hp,q

such that Hq,p = Hp,q, where Hp,q denotes the complex conjugate on H. A Hodge structure

of weight k gives rise to a descending Hodge filtration ,

F p =
⊕
s≥p

Hs,k−s.

A complex variety X admits a mixed mixed Hodge structure, which consists of an increasing

weight filtration,

0 = W−1 ⊂W0 ⊂ · · · ⊂W2j = Hj(X; Q)

and a decreasing Hodge filtration

Hj(X; C) = F 0 ⊃ · · · ⊃ Fm+1 = 0 such that for all 0 ≤ p ≤ l,

7



GrW⊗C
l := Wl ⊗ C/Wl−1 ⊗ C = F p(GrW⊗C

l )⊕ F l−p+1(GrW⊗C
l )

where

F p(GrW⊗C
l ) = (Fp ∩Wl ⊗ C +Wl−1 ⊗ C)/Wl−1 ⊗ C.

Then we define the mixed Hodge number for Hj(X; C) as follows:

hp,q;j(X) := dimC GrFp (GrW⊗C
p+q Hj(X))

= dimC F
p(GrW⊗C

p+q /F p+1(GrW⊗C
p+q )

= dimC F
p ∩ (Wp+q ⊗ C))/(F p+1 ∩Wp+q ⊗ C +Wp+q−1 ⊗ C ∩ F p),

using which we define the mixed Hodge polynomial

H(X;x, y, t) :=
∑

hp,q;j(X)xpyqtj .

Similarly, the same structure can be obtained by considering cohomology with compact

support. This is denoted by Hc(X; k), hp,q;jc and Hc(X;x, y; t). Then the E-polynomial is

defined to be

E(X;x, y) := Hc(X;x, y,−1).

1.1.4 Outer Automorphism Group Action on Character Varieties

There is a natural action of Out(Γ), the outer automorphism group of Γ, on XΓ(G). Recall

that Out(Γ) := Aut(Γ)/Inn(Γ) where Inn(Γ) is the group of inner automorphisms. To

define the action, first note that the automorphism group of Γ, Aut(Γ), acts on Hom(Γ, G)

as follows:

Aut(Γ) 	 Hom(Γ, G)

τ · ρ = ρ ◦ τ−1 (1.1)
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where τ ∈ Aut(Γ) and ρ ∈ Hom(Γ, G). Since C[Hom(Γ, G)] is a finitely generated C-algebra,

the coordinate ring admits a presentation C[x1, ..., xn]/I where I ⊂ C[x1, ..., xn] is an ideal.

Owing to this presentation, the above defined action extends to an action on the coordinate

ring as follows:

σ · (f + I) = f(σ−1 · ρ) + I

where σ ∈ Aut(Γ) and f + I ∈ C[Hom(Γ, G)]. Note that Aut(Γ) sends I to I. Then Inn(Γ)

acts trivially on the invariant ring. This leads to an action of Out(Γ) on the invariant

subring. Finally, each automorphism of the coordinate ring induces a permutation on the

set of maximal ideals. Consequently, the action on the coordinate ring extends to an action

on the character variety, XΓ(G). See Lemma A.0.2 in Appendix for the proof.

1.1.5 Relative Character Variety

Let Σ be a surface with k boundary components say b1, ..., bk. Then the fundamental group,

F , is free. We can stratify the character variety of Σ into relative character varieties by

fixing the values of the boundary components. Recall that for defining a character variety

we use representations of F to a complex affine algebraic group G. To fix the value of the

boundary, we consider conjugacy classes of G and impose that the value of the boundary

component lies inside a fixed conjugacy class. In other words, if Gi’s are conjugacy classes

of G, we are interested in the relative representation variety

Homb(F,G) := {ρ ∈ Hom(F,G) | ρ(bi) ∈ Gi where 1 ≤ i ≤ k}. (1.2)

Then the relative character variety is the GIT quotient

Homb(F,G) // G.

In the one-holed torus case with π = F2, the free group on two generators, and G = SL(2,C),

the character variety is isomorphic to the affine 3-space, as a consequence of Fricke-Vogt
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theorem through the following map, [26]:

τ : [ρ] 7−→ (x, y, z) := (tr(ρ(X)), tr(ρ(Y )), tr(ρ(XY ))).

Then the relative λ - character variety is obtained by fixing the boundary component which

is the trace of the commutator,

tr(XYX−1Y −1) = x2 + y2 + z2 − xyz − 2 = λ.

See Appendix A for a proof.

1.2 Background

The measure-theoretic dynamics of this action has been explored in specific cases for partic-

ular groups and varieties. If G is compact and connected, Goldman [25] and Pickerell-Xia

[51] showed that when π is a closed surface group of genus, g ≥ 2, there is a natural mea-

sure class such that the action is ergodic. For complex groups, there have been studies that

showed that this action is not ergodic. For a free group of rank 3 or greater, the action of

Out(Fr) on the G-character variety of Fr is ergodic with respect to an invariant measure [27]

and [23]. When considering Γ to be the fundamental group of a non-orientable surface and

G = SU(2), there exists a measure class with respect to which the action is ergodic [50]. In

[10], Burelle and Lawton proved that for a compact connected Lie group G, Out(Γ)-action

is ergodic on the connected component of identity of the character variety if Γ is nilpotent

and Aut(Γ) has a hyperbolic element.

We are interested in studying the analog of these dynamical systems in an arithmetic set-

ting. When G happens to be a complex reductive group defined over Z , we can look at the

Z/pZ points. Then we retain the action as defined above, but there is no natural geometric

invariant measure necessarily defined on the variety anymore. However, it is still interesting

to look at how close the action is to being transitive. In this setting, a comparable problem
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has been explored by Bourgain, Gamburd and Sarnak in [7], where they studied the Z/pZ

points of the Markoff equation given by

x2
1 + x2

2 + x2
3 − 3x1x2x3 = 0

denoted as X(Z/pZ), which is related to the SL2-character variety of the one holed torus.

They were interested in the action of the group Γ of affine integral morphisms of the affine 3-

space generated by the permutations of the coordinates and Vieta involutions. Their results

yield strong approximation property for the Markoff equation for most primes, comparable

to asymptotic transitivity.

In [13], Chen shows that for all but finitely many primes p, the group of Markoff auto-

morphisms acts transitively on the nonzero Fp-points of the Markoff equation. This result

proves that the action is asymptotically transitive on this variety. Goldman’s ergodicity

theorem for the compact case extends to relative character varieties when the genus, g ≥ 2.

The results from [13] give reasons to believe that the action on the relative character variety

for a one-holed torus when G is SL2(Fq) is also asymptotically transitive.

Cerbu, Gunther, Magee, and Peilen considered a related problem in [12]. A similar problem

has also been the subject of a project at Mason Experimental Geometry Lab (MEGL) at

GMU and have made some progress in collecting experimental data for smaller values of

primes [2].

If we consider the case where the character variety is not relative (that is, without fixing the

boundary values) and where G is a compact Lie group, then for a free group of rank r ≥ 3,

the action is ergodic [23]. However, if G is not compact, then the free group action on the

character variety is not ergodic [46]. In [28] and [52], the action is shown to be ergodic for

certain relative character varieties.

In [24], Gilman shows that the set of epimorphisms forms a transitive orbit under the action

of Out(Γ) on Hom(Γ, G) when Γ is free [Theorem 2] and G is a finite group with sufficiently

large number of generators. In the second chapter, we generalize this result to groups of
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free-type. We say that a group is of free-type if its automorphism group includes elementary

operations such as permutations, inversion of letters and left multiplication.

In the third chapter, we explore the asymptotic transitivity of the outer automorphism group

action of Zr on SLn(Fq)-character varieties of Zr for n = 2, 3. Along the way, we compute

the E-polynomial, also known as the Hodge-Deligne polynomial or Serre polynomial, of

these character varieties. Hausel and Rodriguez-Villegas introduced arithmetic methods in-

spired by the Weil conjectures to compute the E-polynomials of G-character varieties when

G = GLn(C),SLn(C) and PGLn(C). In [32], they use a theorem of N. Katz [Appendix,

[32]] that allows the calculation of E-polynomials by counting the finite field points of these

varieties and obtain the E-polynomials for G = GLn(C) as a generating function. In [45],

Mereb use similar methods to calculate the E-polynomial when G = SL2(C) and a gener-

ating function for the SLn(C) case. The Hodge polynomials of SL2(C) character varieties

for curves of small genus were computed in [42] by stratifying the space of representations

and using fibrations. The E-polynomial of XZr (SL2(C)) has been calculated in [11] using

arithmetic methods. We provide a shorter version of the proof. In [40], the E-polynomials

of XZr (SLn(C)) are calculated for n = 2, 3 using complex geometry methods. We give an

arithmetic proof for the case when n = 3 using a method that counts the number of possible

characteristic polynomials for matrices over finite fields. Additionally, this method gives a

count of orbits in each stratum when n = 2, 3. In [20], Florentino, Nozad and Zamora gave

explicit expressions for the E-polynomial of the GLn-character varieties combining combi-

natorics of partitions with arithmetic methods. The authors extend the stratification by

polystable type to SLn-character varieties in [21] and compute the E-polynomial of each

stratum for the free abelian case.
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Chapter 2: Transitivity

We first prove an introductory result that concerns the set of representations from a finitely

presented group Γ to any group G, which will be useful in the subsequent discussion. We

show that the set is in bijective correspondence with the set of tuples that satisfy the

relations of the group, Γ. First, we state the following well known fact from group theory.

Theorem 2.0.1. Let G = 〈gi | Ri〉 and H be finitely generated groups. If f is a function

that maps gi to an element of H, then f extends to a homomorphism F : G → H if and

only if f(Ri) = eH , the identity element in H, for all i.

This theorem ensures that any map from a generating set of Γ to G that satisfies the

relations of Γ can be uniquely extended to a homomorphism from Γ to G.

Lemma 2.0.2. Let Γ be a finitely presented group with r generators and G be a group.

Suppose 〈γ1, . . . , γr | Ri, 1 ≤ i ≤ s〉 is a given presentation of Γ. Then Hom(Γ, G) is in

bijective correspondence with the set of r-tuples in G that satisfies the relations of Γ,

SΓ(G, r) := {(A1, . . . , Ar) ∈ Gr | Ri((A1, . . . , Ar)) = 1}.

Proof. We define a map

Ψ : Hom(Γ, G) −→ SΓ(G, r)

Ψ(ρ) = (ρ(γ1), . . . , ρ(γr)).

Since ρ is a homomorphism, by definition, Ri((ρ(γ1), . . . , ρ(γr))) = 1. Therefore, the map is

well defined. Suppose Ψ(ρ1) = Ψ(ρ2) for ρ1, ρ2 ∈ Hom(Γ, G). Then (ρ1(γ1), . . . , ρ1(γr)) =
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(ρ2(γ1), . . . , ρ2(γr)). Since homomorphisms are uniquely determined by the images of gen-

erators, it follows that the map is injective. Let A = (A1, . . . , Ar) ∈ Gr such that

Ri(A1, . . . , Ar) = 1. Then, define a map φA : Γ → Γ such that φ(γi) = Ai. Since

Ri(A1, . . . , Ar) = 1, this mapping can be uniquely extended to a homomorphism from

Γ to G. Thus, Ψ is surjective and this concludes the proof.

Corollary 2.0.3. If Γ is free, Hom(Γ, G) is in bijection with the set Gr.

2.1 Dynamics of Out(Zr)-action on SL2(Fq)-character varieties

of Zr

Let Γ be the free abelian group generated by the set 〈γ1, . . . , γr〉. Then Γ is isomorphic to

the Cartesian product, Zr. Throughout this section, without loss of generality we assume

that Γ = Zr. In this section, we look at the dynamics of the action of Out(Γ) on the

abelian SL2(Fq)-character variety of Γ. We first consider the action of Out(Zr) on the set

of representations Hom(Zr,SL2(Fq)).

Corollary 2.1.1. The set Hom(Zr,SL2(Fq)) is in bijective correspondence with the pairwise

commuting r-tuples, {(A1, . . . , Ar) ∈ SL2(Fq)r | AiAj = AjAi 1 ≤ i, j ≤ r}.

Proof. Observe that Zr = {(x1, . . . , xr) | xixj = xjxi, 1 ≤ i, j ≤ r}. Then the result follows

by Lemma 2.0.2.

2.1.1 Outer Automorphism Group of Zr

Since Zr is abelian, the group of inner automorphisms is trivial. Therefore, the outer

automorphism group, Out(Zr) ∼= Aut(Zr). We first compute Out(Zr), a known result.

Lemma 2.1.2. The outer automorphism group of Zr, Out(Zr), is GLr(Z).

Proof. Let x = (x1, x2, . . . , xr) ∈ Zr. Define zi to be the column vector with 1 as the single

non-zero entry in the ith row. Then any x ∈ Zr can be written as a linear combination of
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the zi’s as follows.



x1

x2
...

xr


= x1 ·



1

0
...

0


+ x2 ·



0

1
...

0


+ · · ·+ xr ·



0

0
...

1


.

Therefore, any endomorphism φ : Zr 7−→ Zr is completely determined by the image of zi’s,

φ(zi) for i = 1, . . . , r. Let φ(zi) =



a1i

a2i
...

ari


. Then, φ can be regarded as multiplication by

the matrix, Aφ :=


a11 · · · a1r
... · · ·

...

ar1 · · · arr

. If φ is an automorphism, then there exists an inverse

automorphism φ−1 of Zr. Now consider the matrix Aφ−1 that corresponds to φ−1. Since

φ◦φ−1 = φ−1 ◦φ = 1, it follows that AφAφ−1 = AφA
−1
φ = I, the identity matrix. Therefore,

Aφ is invertible i.e., Aφ ∈ GLr(Z).

Now define the following map:

Ψ : Aut(Zr) −→ GLr(Z)

Ψ(φ) = Aφ.

The map Ψ is well defined by the above argument. By definition, φ(zi) uniquely determines

φ. Therefore, if Ψ(φ1) = Ψ(φ2) then Aφ1 = Aφ2 . Consequently, φ1 = φ2, by the construction

of Aφi
. Thus, Ψ is injective.

To prove surjectivity, suppose A ∈ GLr(Z). Define a map φA : Zr 7→ Zr such that φ(zi) = ai,
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the ith column of A. This map can be uniquely extended to an endomorphism of Zr. Since

A is invertible, φA ◦φA−1 = φA−1 ◦φA is the identity map. Therefore φ is an automorphism

and Ψ is surjective. This concludes the proof.

Remark 3. If A ∈ GLr(Z), then det(A) is invertible in Z. Therefore, det(A) = ±1.

2.1.2 Action of Out(Zr) on the Character Variety

The automorphism group of Zr acts on the set of homomorphisms Hom(Zr, SL2(Fq)).

Let γ ∈ Aut(Zr) and A =


a11 · · · a1r
... . . . ...

ar1 · · · arr

 ∈ GLr(Z) corresponds to the automor-

phism, γ−1 of Zr (as defined in the proof of Lemma 2.1.2). For (x1, . . . , xr) ∈ Zr and

ρ ∈ Hom(Zr,SL2(Fq)), let ρ(xi) = Yi ∈ SL2(Fq). Then the action of Γ on ρ is defined as

follows:

γ · ρ = ρ(γ−1(x1, . . . , xr))

= ρ




a11 · · · a1r
... . . . ...

ar1 · · · arr

 ·


x1

x2
...

xr





= ρ




a11x1 + · · ·+ a1rxr

...

ar1x1 + · · ·+ arrxr




(2.1)
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=


a11ρ(x1) + · · ·+ a1rρ(xr)

...

ar1ρ(x1) + · · ·+ arrρ(xr)



=


Y a11

1 · · ·Y a1r
r

...

Y ar1
1 · · ·Y arr

r

 .

Example 2.1.1 (q = 2). In this example, we explore in detail and exhaustively compute

the orbits of the action. The goal is to understand the action in detail for a small prime

before proceeding to the general case. The calculations in this example, including the visu-

alization, are done using Mathematica, [34].

The first step is to compute the group, SL2(F2). It is a straightforward calculation to show

that the set SL2(F2) = {I,X1, X2, X3, X4, X5} where the matrices Xi’s are defined as fol-

lows:

X1 :=

0 1

1 0

 , X2 :=

0 1

1 1

 , X3 :=

1 1

1 0

 , X4 :=

1 0

1 1

 , X5 :=

1 1

0 1



and I denotes the identity matrix of rank 2. We now compute the group structure. Simple

calculations give the Cayley Table of SL2(F2).
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Table 2.1: Cayley table of SL2(F2)

× I X1 X2 X3 X4 X5
I I X1 X2 X3 X4 X5
X1 X1 I X5 X4 X3 X2
X2 X2 X4 X3 I X5 X1
X3 X3 X5 I X2 X1 X4
X4 X4 X2 X1 X5 I X3
X5 X5 X3 X4 X1 X2 I

By comparing the Cayley tables, it is clear that SL2(F2) is isomorphic to the symmetric

group on three letters, S3. In particular, SL2(F2) satisfies the following relations.

X2
1 = X2

4 = X2
5 = I = X3

2 = X3
3

X2X1X
−2
2 X1 = X2X1X2X1 = I

Remark 4. Using the above relations, we can deduce the following presentation for SL2(F2):

SL2(F2) = 〈X1, X2 | X2
1 = X3

2 = I,X2X1X
−2
2 X1 = I〉.

Lemma 2.1.3. Let (Xi1 , . . . , Xir ) ∈ Hom(Zr, SL2(F2)). Then (Xi1 , . . . , Xir ) are of the

following three types:

1. (Xi1 , . . . , Xir ) where Xij ∈ {Xi, I} for all 1 ≤ j ≤ r and for a fixed i such that

1 ≤ i ≤ 5 .

2. (Xi1 , . . . , Xir ) such that Xik = Xj for a fixed j with 1 ≤ j ≤ 5.

3. (Xi1 , . . . , Xir ) where Xij ∈ {I,X2, X3} for all 1 ≤ j ≤ r.

Proof. Let ρ ∈ Hom(Zr,SL2(Fq)). Then, by Corollary 2.1.1, ρ can be represented by

a commuting r-tuple in SL2(F2). Therefore, it suffices to classify the types of pairwise
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commuting tuples in SL2(F2). By the relations from Table 2.1, the only pairs of matrices

that commute are the following:

1. {(Xi, Xi) | 1 ≤ i ≤ 5} ∪ {(I, I)}

2. {(I,Xi) | 1 ≤ i ≤ 5} and {(Xi, I) | 1 ≤ i ≤ 5}

3. {(X2, X3), (X3, X2)}

Let (Y1, . . . , Yr) ∈ Hom(Zr,SL2(F2)) and suppose Yj = Xi for 1 ≤ j ≤ 5. Then (Yj , Yk)

has to be one of the pairs of tuples above. This proves the result.

Visualization of the orbits

We use the following set of generators of GL2(Z) ∼= Aut(Z2) to look at the action of Aut(Z2)

on Hom(Z2,SL2(F2)) and Hom(Z2,SL2(F3)) as defined in Section 1.1.4.

S =


1 0

0 −1

 ,
0 1

1 0

 ,
1 1

0 1


 .

A visual representation of the orbits for the case when r = 2 is given in Figure 2.1. All the

visualizations in this section are generated using the Mathematica software.

We now prove that these are all the orbits under the action of the full group of Aut(Z2) on

Hom(Z2,SL2(F2)).
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Figure 2.1: Orbits under the action of generators of Aut(Z2) on Hom(Z2,SL2(F2))

Lemma 2.1.4. There are exactly five orbits under the action of Aut(Z2) on Hom(Z2, SL2(F2)).

1. {(I, I)}

2. {(X1, X1), (X1, I), (I,X1)}

3. {(X4, X4), (X4, I), (I,X4)}

4. {(X5, X5), (X5, I), (I,X5)}

5. {(Xi, Xj) | Xi, Xj ∈ {I,X2, X3}} \ {(I, I)}
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Proof. By Figure 2.1, it is clear that there are at most five orbits. We will show that it is

not possible to go from one orbit to another through the action of an element in Aut(Z2).

Recall that, when r = 2, by Corollary 2.1.1, Hom(Z2, SL2(Fq)) is in bijective correspondence

with the set

SZ2(SL2(Fq)) := {(A,B) ∈ SL2(Fq) | AB = BA}.

Suppose γ−1 =

a b

c d

 so that γ = ±

 d −b

−c a

. Then γ−1(x, y) = (ax+ by, cx+ dy).

Let ρ(x) = A and ρ(y) = B. Then the action of γ on ρ as defined in Equation 2.1 reduces

to the following:

ρ(γ−1(x, y)) = ρ


a b

c d


x
y


 = (AaBb, AcBd). (2.2)

Therefore, if (ρ(x), ρ(y)) is denoted by (A,B), then:

Orb(A,B) =

(AaBb, AcBd)
∣∣∣∣∣
a b

c d

 ∈ GL2(Z)


=

{
(AaBb, AcBd) | ad− bc = ±1

}
.

Clearly, Orb((I, I)) = {(I, I)} since Ik = I for all values of k. For i ∈ {1, 4, 5}, consider

the element (Xi, Xi). Then (Xa
i X

b
i , X

c
iX

d
i ) = (Xa+b

i , Xc+d
i ). Since X2

i = I, it follows that

Orb((Xi, Xi)) can only have tuples with entries Xi or I. This proves the first four parts of

the lemma.

The visual representation shows that the rest of the elements form an orbit. Another way

to prove this is as follows. We fix (X2, I) ∈ SZ2(SL2(F2)) which is not an element in any of

the other orbits, as a reference point. Let (Xi, Xj) be such that Xi, Xj ∈ {I,X2, X3} and
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not equal to (I, I). By Equation (2.2), (Xi, Xj) ∈ Orb((X2, I)) iff there exists

a b

c d

 ∈
GL2(Z2) such that (Xa

2 , X
c
2) = (Xi, Xj). Since X3 = X2

2 = X−1 and I = X3
2 = X0, let

a, c ∈ {−1, 0, 1, 2, 3}. For fixed values of a and c, we want to check if there exists an integer

solution to the equation

ad− bc = 1.

To compute this, we use the following well-known result from number theory, the proof of

which uses Bézout’s identity. See [1] for a proof.

Lemma 2.1.5. Let ax + by = c be a linear Diophantine equation in two variables, x and

y. Then the equation has a solution in Z2 if and only if gcd(a, b) divides c.

Using this result, to get a desired pair of elements (Xi, Xj), it suffices to find a pair a, c that

are co-prime such that Xa
2 = Xi and Xc

2 = Xj . Notice that for any combination of pairs,

a, c ∈ {1, 2, 3}, gcd(a, c) = 1 except when a, c = 2 and a, c = 3. Since a = 2 and c = 2 is

the same as choosing a = 2 and c = −1 which are coprime integers, it follows that this pair

is admissible.

When a = c = 3, the equation 3d− 3b = 1 has no integer solution. Therefore the pair (3, 3)

is not admissible and hence (X3, X3) = (I, I) is not in the orbit.

Additionally, we looked at the action of generators of Aut(Z2) on Hom(Zr, SL2(F3)). The

orbits thus obtained are shown in Figure 2.2. The figure indicates that the action might not

be transitive. In the next section, we prove that this is indeed the case for a more general

class of groups Γ and G.
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Figure 2.2: Orbits under the action of generators of Aut(Z2) on Hom(Z2,SL2(F3))
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2.2 Non-Transitivity Theorem

2.2.1 Action of Aut(Γ) on Hom(Γ, G)

Observations from the previous section motivated us to generalize these results to outer

automorphism group actions on Hom(Γ, G) for G an affine algebraic group. We first define

the action for the general case of Γ and G.

Lemma 2.2.1. Let Γ = 〈γ1, ..., γr | Ri, i = 1, . . . , s〉 be a finitely presented group and G a

group. Then Aut(Γ) acts on Hom(Γ, G) as follows:

α · ρ = ρ ◦ α−1, for α ∈ Aut(Γ) and ρ ∈ Hom(Γ, G).

Proof. Suppose ρ ∈ Hom(Γ, G). Let α ∈ Aut(Γ). Then, α · ρ = ρ(σ−1(γ1, . . . , γr)). The

action is well defined since α−1 ∈ Aut(Γ) and ρ◦α−1 ∈ Hom(Γ, G). Clearly, e ·ρ = ρ◦e−1 =

ρ ◦ e = ρ where e is the identity element of Aut(Γ). Finally, note that

(σ1 ◦ σ2) · ρ = ρ ◦ (σ1 ◦ σ2)−1 = ρ ◦ (σ−1
2 ◦ σ

−1
1 )

= (ρ ◦ σ−1
2 ) ◦ σ−1

1 = σ1 · (ρ ◦ σ−1
2 )

= σ1 · (σ2 · ρ).

This completes the proof.

Lemma 2.2.2 (Subgroup Lemma). Let Γ = 〈γ1, ..., γr | Ri, i = 1, . . . , s〉 be a finitely

presented group and G a group. If H is a subgroup of G and ρ ∈ Hom(Γ, G) is such that

(ρ(γ1), . . . , ρ(γr)) ∈ Hr, then Orb(ρ) ⊆ Hr.

Proof. Let (ρ(γ1), . . . , ρ(γr) = (H1, . . . ,Hr) ∈ Hr and α ∈ Aut(Γ). Suppose

α−1(γi) = wi ∈ Γ and wi = γ
ai1
i1
· · · γais

is
. Using this expression of wi, we compute the
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following:

ρ(wi) = ρ(γai1
i1
· · · γais

is
)

= ρ(γai1
i1

) · · · ρ(γais
is

)

= ρ(γi1)ai1 · · · ρ(γis)ais

= H
ai1
i1
· · ·Hais

is
.

Therefore,

α · ρ = ρ(α−1(γ1, . . . , γr)) = (Ha11
11 · · ·H

a1s
1s
, . . . ,H

ai1
i1
· · ·Hais

is
, . . . ,H

ar1
r1 · · ·Hars

rs
).

Since Hij ∈ H and H is a subgroup,
s∏
j=1

H
aij

ij
is also in H. Consequently, α · ρ ∈ Hr.

Corollary 2.2.3. Let Γ and G be defined as in the lemma. Let ρI ∈ Hom(Γ, G) denote the

trivial homomorphism defined by ρ(γi) = I for all i, where I is the identity element of G.

Then Orb(ρI) = {ρI} under the Aut(Γ) action.

Proof. Clearly, {I} is the trivial subgroup of G. Then the result follows from the above

lemma.

Therefore, the action is never transitive on the set Hom(Γ, G) if G 6= {I}. We are interested

in checking if the action is transitive on the non-trivial points in the set of homomorphisms,

Hom(Γ, G)∗ := Hom(Γ, G) \ {ρI}.

Similarly, we use XΓ(G)∗ to denote the non-trivial points in the character variety.

Theorem 2.2.4 (Non-Transitivity Theorem). Let Γ = 〈γ1, ..., γr | Ri, i = 1, . . . , s〉 be

a finitely presented group and G a group. Suppose there exists a subgroup, H ⊂ G and

homomorphisms, ρ, µ ∈ Hom(Γ, G) such that ρ(γi) ∈ H for all i and µ(γj) ∈ G \ H for
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some j. Then the action of Aut(Γ) on Hom(Γ, G)∗ is not transitive. Moreover if ρ and µ

are polystable, then the action of Out(Γ) on the character variety, XΓ(G)∗ is not transitive

whenever the character variety is defined.

Proof. Suppose there exists H ⊂ G and ρ, µ ∈ Hom(Γ, G) as mentioned in the statement

of the theorem. Then, ρ(γi) ∈ H for all i ∈ {1, . . . , r}. Therefore, by Lemma 2.2.2,

Orb(ρ) ⊆ Hr. This implies that µ /∈ Orb(ρ). Hence, the action is not transitive on

Hom(Γ, G).

Additionally, suppose ρ and µ are polystable. By definition of polystability, the orbits of ρ

and µ are closed. Consequently, ρ and µ correspond to distinct elements in the character

variety, XΓ(G). Since Orb(ρ) 6= Orb(µ), it follows that the action is not transitive on

XΓ(G).

2.2.2 An Application: Γ = Fr

Now, we look at two applications of the above theorem for the special case when Γ is free.

Necessary condition for transitivity on representation variety of free groups

Corollary 2.2.5. Let Γ be a free group of rank r ≥ 1 and G be a non-trivial group. If the

Aut(Γ)-action on the representation variety Hom(Γ, G)∗ is transitive if G is a cyclic group

of prime order. The converse is true only if r > 1.

Proof. When Γ is free, Hom(Γ, G) ∼= Gr by Corollary 2.0.3. First, we show that G has no

proper non-trivial subgroup if and only if G ∼= Zp or G = {0}. Clearly, Zp has no proper

non-trivial subgroups. Conversely, if G has no proper subgroup, then for all a ∈ G that is

not equal to identity, 〈a〉 = G. This implies G is cyclic. If G is infinite, then G ∼= Z, but Z

has non-trivial proper subgroups, nZ. Therefore, Z is finite. Let G 6= {e}. Now suppose |G|

has two prime divisors, say p and q. If p 6= q, then by Cauchy’s theorem, G has two proper

subgroups, Hp and Hq of order p and q respectively, which is a contradiction. Similarly, if

q = p, then G has a proper subgroup of order of order p. Therefore, |G| has a single prime
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divisor, p. Hence, |G| = p.

Suppose G is not cyclic of prime order. Then there exists a proper non-trivial subgroup, H ⊂

G. Since H is non-trivial, there exists a non-trivial element (H1, . . . ,Hr) in Hr. Similarly,

Gr \Hr is non-empty because H 6= G. Therefore, there exists ρ, µ ∈ Hom(Γ, G) ∼= Gr such

that ρ corresponds to (H1, . . . ,Hr) and µ to (X1, . . . , Xr) ∈ Gr \ Hr. Then the action is

not transitive by Theorem 2.2.4.

Conversely, suppose G = Zp and r ≥ 2. Since G is cyclic, the minimal number of generators

of G, say k, is 1. Let ρ ∈ Hom(Fr,Zp) be a non-trivial homomorphism. Then ρ(Fr) is a

subgroup of G. This implies ρ(Fr) = Zp. Hence ρ is surjective. By Theorem 2.3.8 in the

next section, the Aut(Γ)-action is transitive on the set of epimorphisms when Γ is free and

r ≥ 2k. Thus, the action is transitive on Hom(Fr, G) when r ≥ 2.

We now look at the case when Γ = F1 ∼= Z and G = Zp. Recall that Aut(Z) = {I,−I}

where I represents the trivial homomorphism that sends everything to identity. Let 1 denote

the generator of Z. Since Z is free, the image of ρ can be any element of G. Therefore

|Hom(Z,Zp)| = p. If ρ ∈ Hom(Z,Zp), then Orb(ρ) = {ρ,−ρ}. Since |Orb(ρ)| ≤ 2, Aut(Z)

action cannot be transitive. This concludes the proof.

Non-transitivity on G-character varieties of free groups

Definition 2.2.1 ([30]). A maximal connected solvable subgroup of G is called a Borel

subgroup. A Zariski closed subgroup P is parabolic if P contains a Borel subgroup.

A Levi subgroup of a Zariski closed subgroup H ⊂ G is a Zariski closed, connected subgroup

L such that H is a semidirect product of L and the unipotent radical of H.

Definition 2.2.2. Let G be a complex reductive algebraic group and Γ a finitely gener-

ated group. A representation ρ : Γ → G is irreducible if ρ(Γ) is not contained in any

proper parabolic subgroup of G. The homomorphism, ρ is completely reducible, if for every

parabolic subgroup, P ⊂ G containing ρ(Γ), there is a Levi subgroup containing ρ(Γ).
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See [30], [55] for a detailed description of the complex reductive case and [5], [4] for a general

linear reductive group over fields of positive characteristic, G-action on an affine G-variety.

By Theorem 5, [54] an orbit of ρ ∈ Hom(Γ, G) is polystable if and only if it is ρ is completely

reducible. Also see [55] and [4].

Corollary 2.2.6. Let Γ be a free group of rank r ≥ 2 and G a non-abelian complex reductive

algebraic group. Then the Out(Γ) action is not transitive on the Fq points of G-character

varieties of Γ.

Proof. Recall that Hom(Γ, G) has a bijection to Gr. Let T denotes the maximal torus

subgroup of G. The T -valued representations maps into the abelian locus of Hom(Γ, G).

Therefore, if ρ ∈ Hom(Γ, G) ⊆ T , then ρ is abelian. In particular, there exist a polystable

point ρ ∈ Hom(Γ, G) such that ρ(Γ) ⊆ T r. Since T is closed, connected and solvable, it

is contained in a Borel subgroup of G, say B. Note that B is parabolic. An irreducible

representation µ is vacuously completely reducible. Therefore, the orbit of µ is closed.

Additionally, by definition, µ is not contained in any parabolic subgroups. So, µ is not

contained in the closure of ρ if ρ(Γ) ⊆ T r. By Proposition 29 in [55], the set of irreducible

representations form a dense subset of Hom(Fr, G) when r ≥ 2. In particular this implies

that the set of irreducible representations is non-empty. Since there exists polystable ho-

momorphisms, µ and ρ such that ρ(Γ) ⊆ B and µ(Γ) ⊆ G \ B, the result follows from the

Non-Transitivity Theorem, Theorem 2.2.4.

Remark 5. In the next chapter, Proposition 3.3.1, we give an explicit proof to show that

the action is not transitive on the free abelian SLn-character variety of Zr.

Definition 2.2.3 (Exponent Canceling Groups, [41]). Given a set S, let FS denote the free

group on S. We say that a word R ∈ FS is exponent-canceling if R maps to the identity

in the free Abelian group on S (in other words, R lies in the commutator subgroup of FS).

Let Γ be a finitely generated discrete group. If Γ admits a presentation 〈γ1, . . . , γr | {Ri}i〉

in which each word Ri is exponent-canceling, then we say that Γ is exponent-canceling. We

will refer to a generating set in an exponent-canceling group Γ as standard if there is a
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presentation of Γ with these generators in which all relations are exponent-canceling. The

number r of generators in a standard presentation will be called the rank of Γ; note the

Abelianization of Γ is always of the form Zr.

Lawton and Ramras introduce the concept of exponent canceling groups in [41]. Examples

of exponent-canceling groups include free groups, free Abelian groups, right-angled Artin

groups, and fundamental groups of closed Riemann surfaces, as well as the universal central

extensions of surface groups considered in [8]. The class of exponent-canceling groups is

closed under free and direct products.

Corollary 2.2.7. Let Γ be an exponent canceling group with rank r ≥ 1 and G a non-abelian

complex reductive algebraic group. If there exists a non-abelian polystable homomorphism

in Hom(Γ, G), then Out(Γ)-action on XΓ(G) is not transitive.

Proof. Since Γ is exponent-canceling, the abelianization is of the form Zr. Therefore, as

in the proof of the previous corollary, there exists an element µ ∈ Hom(Γ, G) such that

ρ(Γ) ∈ Zr and has a polystable orbit. If there exists non-abelian polystable µ ∈ Hom(Γ, G),

the result follows by Theorem 2.2.4.

2.3 Large Orbit Theorem

2.3.1 Free-Type Groups

We first define free-type groups. The motivation is to classify groups with automorphism

groups that exhibits properties similar to that of free groups.

Definition 2.3.1. Let Γ admits a presentation 〈γ1, . . . , γr | {Si}i〉 such that Aut(Γ) includes
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the following elementary automorphisms.

P (i, j) : γi 7→ γj , γj 7→ γi, γk 7→ γk ; k 6= i, j ( permutation of coordinates)

I(i) : γi 7→ γ−1
i , γk 7→ γk ; k 6= i (inverting the coordinate)

L(i, j) : γi 7→ γjγi, γk 7→ γk ; k 6= i (Left multiplication by jth coordinate)

R(i, j) : γi 7→ γiγj , γk 7→ γk ; k 6= i (Right multiplication by jth coordinate)

Then we call Γ to be a group of free-type of n generators.

It is well-known that the set of Nielsen transformations generate Aut(Fn). See [43], Section

3.5 for a detailed discussion. Let {x1, . . . , xn} be an ordered generating set of Fn. Then we

consider the following Nielsen transformations that generate Aut(Fn).

N1 : Permute x1 and x2.

N2 : Cyclically permute x1 7→ x2, x2 7→ x3, . . . , xn 7→ x1

N3 : Replace x1 with x−1
1 .

N4 : Replace x1 with x1 · x2.

The following lemma shows that the elementary transformations generate Aut(Fn).

Lemma 2.3.1. The set of elementary operations, {P (i, j), I(i), L(i, j), R(i, j)} and the set

of Nielsen transformations {N1, . . . , N4} are equivalent generating sets of Aut(Fn).

Proof. We first prove that the set of Nielsen transformations, {N1, . . . , N4}, can be ex-

pressed in terms of the elementary automorphisms from the definition of free-type groups.

The first, third and fourth Nielsen transformations are clearly, P (1, 2), I(1) and R(1, 2),

respectively. The second Nielsen transformation can be written as a combination of P (i, j)

since the permutation group on n elements can be generated by transpositions (permuta-

tions of cycle length two).
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Conversely, we show that we can generate each of the elementary automorphisms using

Nielsen transformations. Since a transposition and cyclic permutation generates the whole

group of permutations, P (i, j) can be generated using N1 and N2. Once any permutation

of the generators is allowed, it can be combined with N3 and N4 to obtain I(i) and R(i, j),

respectively. Finally, L(1, 2) = N4 ◦ N1 and combining it with permutations generates

L(i, j).

Corollary 2.3.2. A free group of rank n is of free-type of n.

Remark 6. The property that Γ is of free type is dependent on the presentation. The

following example show that this property is not necessarily invariant under presentation.

Example 2.3.1. By Corollary 2.3.2, F2 = 〈a, b〉 is of free-type. Now consider the group,

Γ = 〈a, b, c | c〉. Then clearly, Γ is isomorphic to F2. Now, consider the permutation

automorphism, P (2, 3) defined by a 7→ c, c 7→ a. Then relation of the group, c is not

preserved by P (2, 3). Therefore, Γ is not free-type of rank 3 with respect to this presentation.

But Γ is free-type of 2 generators using the presentation of F2. Theorem 2.3.6 provides an

alternate explanation for the same. By Theorem 2.3.6, Γ is a group of free-type of 3

generators if and only Γ = F3/N where N ⊆ F3 is a characteristic subgroup. As in the

proof of Theorem 2.3.6, N is the smallest normal subgroup containing the relations of Γ.

However, the smallest normal subgroup containing c is not characteristic in F3 since c cannot

be conjugate to a and b, therefore cannot include any automorphism that sends c to other

generators.

Definition 2.3.2 (Nielsen Equivalence, [36]). Let G be a group. Any two tuples T =

(g1, . . . , gk) and T ′ = (g′1, . . . , g′k) ∈ Gk are called elementary equivalent if one of the follow-

ing holds.

1. There exists some σ ∈ Sn such that g′i = gσ(i) for 1 ≤ i ≤ k.

2. There is some 1 ≤ i ≤ k such that g′i = g−1
i and g′j = gj for j 6= i.
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3. There exists 1 ≤ i, j ≤ k such that g′i = gig
ε
j and ε ∈ {1,−1}. Furthermore, g′k = gk

for k 6= i.

The tuples T and T ′ are Nielsen equivalent if there exists a sequence of n-tuples, T0, T1, . . . , Tn

such that T = T0 ∼ T1 ∼ · · · ∼ Tn = T ′ such that Ti−1 and Ti are elementary equivalent.

In [48] (see [49] for a translation), Nielsen introduced the idea of Nielsen equivalence and

proved that any two generating k-tuples are Nielsen equivalent in free groups. Gruschko

later generalized this result to free products of finitely generated discrete groups[29]. In

general, understanding Nielsen equivalence of generating k-tuples is particularly difficult,

and the problem becomes even more complex if k > rank(G) where rank(G) is the minimal

size of a generating set of G. See [36] for an exposition of the topic and a study of Nielsen

equivalence in small cancellation groups. In this context, a conjecture of Wiegold is of

particular relevance, which states that if G is a finite simple group and k ≥ 3, then any two

generating k-tuples of G are Nielsen equivalent. In other words, this is equivalent to saying

that the action of Aut(Fn) on the set of epimorphisms from Fn to G, denoted Epi(Fn, G),

is transitive in this case. Our work proves a similar result for the case of free-type groups

instead of free, and G is a finite group. However, we work with a weaker condition on the

bounds of generators, n ≥ 2 · rank(G), compared to the Wiegold conjecture.

Examples of free-type groups

First, we explicitly prove that free abelian groups, a type of p-groups and free nilpotent

groups are free-type groups. We then show that all free-type groups arise as quotients of

free groups by characteristic subgroups.

Lemma 2.3.3. Let Γ be a free abelian group. Then Γ is of free-type.

Proof. Let Γ = 〈γ1, . . . , γr | γiγjγ−1
i γ−1

j = 1 for 1 ≤ i, j ≤ r〉. It suffices to show that the

elementary automorphisms specified while defining free-type group preserves the relations

of the group.
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1. Applying P (i, j) permutes γi and γj : γi 7→ γj and γj 7→ γi. Then the relation

1 = γiγjγ
−1
i γ−1

j 7→ γjγiγ
−1
j γ−1

i = 1 is preserved. Similarly, the relations 1 =

γiγkγ
−1
i γ−1

k 7→ γjγkγ
−1
j γ−1

k = 1 are also preserved. Therefore, P (i, j) preserves all

the relations of Γ.

2. By inverting the coordinate, we get:

γiγjγ
−1
i γ−1

j 7−→ γ−1
i γj(γ−1

i )−1γ−1
j = γ−1

i γjγiγ
−1
j

Since γi and γj commutes, γ−1
i γjγiγ

−1
j = 1.

3. Left multiplication by γj , the following relations are modified. The relation γiγj = γjγi

becomes γjγiγj = γjγjγi. Since γi and γj commutes, the new relation is also satisfied.

By the same argument, the relations γiγk = γkγi are satisfied for all 1 ≤ k ≤ r.

4. By symmetry of the relations, the same argument as above shows that right multipli-

cation preserves the relations.

Therefore, Γ is of free-type.

Lemma 2.3.4. Let Γ be a group such that order of every element in Γ is a fixed power of

p that is, for all g ∈ Γ, |g| = pn for a fixed n ≥ 1 . Then Γ is of free-type.

Proof. As in the previous proof, it suffices to show that the elementary transformations

preserve the relations of Γ. Clearly, permuting γi with γj and inverting the coordinates

preserves the relations since γp
n

j = 1 and (γ−1)pn = 1. Similarly left multiplication sends γi

to γiγj and (γiγj)p
n = 1. Therefore Γ is of free-type.

Remark 7. If |Γ| = pn, then Γ is a p-group.

Definition 2.3.3 (See [3]). Let Fn be a free group of rank n and let Fn,r be the quotient

group Fn/γr+1(Fn) where γr+1(Fn) is the (r + 1)th term of the lower central series of Fn.

Then Fn,r is the free nilpotent group of class r and rank n.
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Lemma 2.3.5. Let Γ be a free nilpotent group. Then Γ is of free-type.

Proof. By the Theorem in [3], the generators for automorphism group of Fn,r, the free

nilpotent group of rank n and class r includes the Nielsen automorphisms of the following

type.

1. O : x1 7→ x−1
1 xi 7→ xi, i 6= 1

2. U : x1 7→ x1x
−1
2 xi 7→ xi, i 6= 1

3. P : x1 7→ x2, x2 7→ x1 xi 7→ xi, i 6= 1, 2

4. Q : x1 7→ x2, x2 7→ x2 . . . xn−1 7→ xn, xn 7→ x1

These are precisely the generators of the automorphism group of free group of rank n, Fn.

Therefore, by the definition of group of free-type, the result follows.

Remark 8. As a corollary, we obtain Lemma 2.3.3.

Definition 2.3.4 (Characteristic subgroup). Let G be a group and N be a subgroup of G.

Then N is called a characteristic subgroup of G if φ(N) ⊆ N for all φ ∈ Aut(G).

Remark 9. The condition φ(N) ⊆ N for all φ ∈ Aut(G) is equivalent to the stronger

condition φ(N) = N . This is true because φ−1 ∈ Aut(G) and φ−1(N) ⊆ N implies N ⊆

φ(N).

Theorem 2.3.6. Let G be a group. Then G is of free-type of n-generators if and only if

G ∼= Fn/N where Fn is the free group of rank n and N is a characteristic subgroup of Fn.

Proof. In this proof, for w,w1, w2 ∈ Fn, we use wN to denote the coset of w in Fn/N

and w1w2 to denote the product of w1 and w2 in Fn. Since every conjugation map is an

inner automorphism, N is a normal subgroup of Fn. Therefore, the group Fn/N is well-

defined. First, we prove that Fn/N is a group of free-type if N ⊆ Fn is characteristic.

By definition, φ(N) = N for all φ ∈ Aut(Fn). Let {γ1, . . . , γn} be a generating set of Fn.
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Any automorphism φ of Fn is completely defined by φ(γi). Consider the induced map of

automorphisms,

Ψ : Aut(Fn) −→ Aut(Fn/N)

Ψ(φ) = Ψφ

where φ ∈ Aut(Fn) and the map Ψφ is defined as follows:

Ψφ : Fn/N → Fn/N

γiN 7→ φ(γi)N.

First we show that Ψφ is well defined. Suppose w1N = w2N for w1, w2 ∈ Fn. This implies

w−1
1 w2N = N . Therefore

Ψφ(w1N) = Ψφ(w1(w−1
1 w2N) = Ψφ(w2N).

Clearly, Ψφ is surjective since φ ∈ Aut(Fn) is surjective. For w ∈ Fn, suppose Ψφ(wN) =

φ(w)N = N . Then, φ(w) ∈ N . Since φ is bijective, φ−1(N) = N . Therefore, φ(w) ∈

N implies w ∈ N . Thus, wN = N and hence Ψφ is injective. To show that Ψφ is a

homomorphism, suppose w1N,w2N ∈ Fn/N . Then,

Ψφ(w1N · w2N) = Ψφ(w1w2N) = φ(w1w2)N

= φ(w1)φ(w2)N = φ(w1)N · φ(w2)N

= Ψφ(w1N) ◦Ψφ(w2N)

since φ is a homomorphism and φ(N) = N . Thus Ψφ ∈ Aut(Fn/N). Now we prove that Ψ
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is well defined. Suppose φ1 = φ2 for φ1, φ2 ∈ Aut(Fn). Then,

Ψφ1(wN) = φ1(w)N for w ∈ Fn

= φ2(w)N = Ψφ2(wN)

=⇒ Ψ(φ1) = Ψ(φ2)

To prove that Ψ is a homomorphism, let φ1, φ2 ∈ Aut(Fn),

Ψ(φ1 ◦ φ2) = Ψφ1◦φ2

Ψφ1◦φ2 : γiN 7→ φ1(φ2(γi))N

φ1(φ2(γi))N = Ψφ1(φ2N) = Ψφ1 ◦Ψφ2 .

Thus, Ψφ1◦φ2 = Ψφ1 ◦ Ψφ2 . Therefore, Ψ is a homomorphism. Thus φ ∈ Aut(Fn) induces

an automorphism of Aut(Fn/N). Conversely, suppose H = {γ1, . . . , γn | Si} is a group of

free-type. We use following result by Von Dyck that demonstrates the relation between a

presentation of Fn, a subgroup H of Fn and the quotient group Fn/H.

Proposition 2.3.7 (Proposition 2, [35]). If G = 〈X | R〉 and H = 〈X | S〉, where R ⊆

S ⊆ F (X), then there is an epimorphism φ : G → H fixing every x ∈ X and such that

ker(φ) = S \R. Conversely, every factor group of G = 〈X | R〉 has a presentation 〈X | S〉

with S ⊇ R.

Specifically, if G = Fn and H = 〈X | S〉 with respect to which H is free-type where S = {Sk}

is the set of defining relations of H, then by the proposition H = Fn/S. Here, S denotes the

smallest normal subgroup that contains S in Fn. Let φ be any elementary automorphism

from the definition of free-type groups. Note that φ ∈ Aut(H) implies Sk(φ(γ1, . . . , γn)) = 1

for all k. Since the elementary automorphisms are equivalent to Nielsen transformations

(Lemma 2.3.1), which generate Aut(Fn), it follows that Sk is invariant under Aut(Fn) for

all k, that is, Aut(Fn) · S = S. Thus S is a characteristic subgroup of Fn such that
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H = Fn/S.

2.3.2 Large Orbit of Free-Type Group Action

Let G be a finite group and Γ, a group of free-type with n generators.

Definition 2.3.5. A generating G-vector of length n is an n-tuple a = (a1, . . . , an) where

ai ∈ G such that 〈a1, . . . , an〉 = G. Note that n need not be the length of a minimal

generating set. We use the notation V (G,n) to denote the set of generating G-vectors of

length n.

The group Aut(Γ) acts on Hom(Γ, G) through σ ·ρ = ρ◦σ−1. In [24], Gilman shows that the

set of epimorphisms form an Aut(Γ)-orbit when Γ is free [Theorem 2]. Below, we generalize

the result to free-type groups and prove the main theorem of the thesis.

Theorem 2.3.8. Let G be a non-trivial finite group and Γ a group of free-type with n ≥ 2k

generators where k denotes the minimal number of generators for G. Then Aut(Γ) acts on

Hom(Γ, G) through σ · ρ = ρ ◦ σ−1 and the action is transitive on the set of epimorphisms

from Γ to G.

Proof. Let G be a finite group with k minimum number of generators, and

Γ = {γ1, . . . , γn | Ri for 1 ≤ i ≤ s} be a group of free-type. Let E(Γ, G) denote the set of

all epimorphisms from Γ to G. Consider the action of Aut(Γ) on Hom(Γ, G) defined as, for

ρ ∈ E and σ ∈ Aut(Γ),

σ · ρ = ρ ◦ σ−1.

Define

SΓ,G := {(a1, . . . , an) ∈ Gn | Ri((a1, . . . , an)) = 0 for 1 ≤ i ≤ s}

be the set of all points in G that satisfies the relations of Γ. Let ∆n
Γ,G = V (G,n) ∩ SΓ,G be

the set of all generating vectors of length n that satisfies the relations of Γ. For simplicity,

we use the notation ∆ for ∆n
Γ,G throughout this proof. We claim that there is a bijection
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between E(Γ, G) and ∆. To prove this, consider the evaluation map

e : E(Γ, G) → ∆

e(ρ) = (ρ(γ1), . . . , ρ(γn)), ρ ∈ E(Γ, G).

Since ρ is surjective, (ρ(γ1), . . . , ρ(γn)) is a generating vector of G. This implies e(ρ) ∈

V (G,n). The tuple (ρ(γ1), . . . , ρ(γn)) clearly satisfies the relations of Γ as ρ is a homo-

morphism. Therefore, e(ρ) ∈ SΓ,G . Thus e is well defined. Suppose e(ρ1) = e(ρ2). Then

ρ1(γi) = ρ2(γi) for all i, 1 ≤ i ≤ n. Then implies ρ1 = ρ2 since {γ1, . . . , γn} is a generating

set. Thus e is injective. To show that e is surjective, suppose (a1, . . . , an) ∈ ∆. Define ρ

such that ρ(γi) = ai. Since Ri((a1, . . . , an)) = 0, ρ is a homomorphism by Theorem 2.0.1.

Since {a1, . . . , an} is a generating set of G, w =
n∏
i=1

aki
i for any w ∈ G. Then

ρ

(
n∏
i=1

γki
i

)
=

n∏
i=1

ρ(γki
i ) =

n∏
i=1

ρ(γi)ki =
n∏
i=1

aki
i = w.

Since
n∏
i=1
∈ Γ, ρ is an epimorphism. This shows that e is a bijection.

Now, we proceed to show that the action is transitive on the set of generating n vectors

using the above correspondence. Let {g1, . . . , gk} be a minimal generating set of G. Fix

the generating tuple, (g1, . . . , gk) ∈ Gk. We will show that any x = (x1, . . . , xn) ∈ ∆ can

be transformed to an element w = (g1, . . . gk, 1 . . . , 1) ∈ ∆ through the action of Aut(G).

Since x = (x1, . . . , xn) is a generating vector and k is the minimal number of generators of

G, there exists {xi1 , . . . , xik} where is ∈ {1, . . . , n} such that 〈xi1 , . . . , xik〉 = G. We apply

the following transformations on x:

1. Permutation automorphism, P (i, j): First we rearrange the coordinates of x such

that the k generating elements occupy the last k entries of x i.e., we obtain the tuple,

(xj1 , . . . , xjn−k
, xi1 , . . . , xik).
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2. Left/Right Multiplication, L(i, j) or R(i, j): Multiply the first k entries of the tuple

above with its last k entries to convert the first k entries to {g1, . . . , gk}. For exam-

ple, take the above tuple (xj1 , . . . , xjn−k
, xi1 , . . . , xik). Since (xj1 , xi1 , xi2 , . . . , xik) is a

generating set, there exists integers, {a1, . . . , aik} ⊂ Z such that

g1 = xa2
i1
· xa3

i2
· · ·xa1

j1
· · · · · ·xak+1

ik
.

Thus, by repeatedly multiplying with the last k coordinates it is possible to convert

(xj1 , . . . , xjn−k
, xi1 , . . . , xik)) to (g1, xj2 . . . , xjn−k

, xi1 , . . . , xik). Similarly, since n ≥ 2r,

we can obtain (g1, . . . , gk, . . . , xi1 , . . . , xik) through the action of these automorphisms.

3. Left/Right Multiplication, L(i, j) or R(i, j). Finally, we apply the multiplication trans-

formations again to convert the last n − k entries to 1. Since the first k entries at

this stage form a generating set of G, {g1, . . . , gk}, we use the same strategy from the

previous step to convert the (ik+1)th coordinate to one. Similarly, we can continue to

obtain (g1, . . . , gk, 1, 1 . . . , 1).

This concludes the proof. We end by noting that since Hom(Γ, G) is closed under the action

of Aut(Γ), it follows that (g1, . . . , gk, 1, . . . , 1) ∈ Hom(Γ, G). Additionally, since

(g1, . . . , gk, 1, . . . , 1) is a generating n-vector, (g1, . . . , gk, 1, . . . , 1) ∈ ∆.

Corollary 2.3.9. If G ∼= Zp, the cyclic group on n-generators, then the Aut(Γ) action is

transitive on Hom(Γ, G)∗.

Proof. We use the same argument as in the proof of Corollary 2.2.5. Let G ∼= Zp and

ρ ∈ Hom(Γ, G) be a non-trivial homomorphism. Then ρ(Γ) is a non-trivial subgroup of Zp.

Therefore, ρ(Γ) = G and hence ρ is surjective. Therefore, all the non-trivial homomorphisms

from Γ to G are epimorphisms. Therefore the result follows by the theorem.

We end this section by introducing the concept of epi-transitive groups.

39



Definition 2.3.6 (Epi-transitive groups). Let Γ be a finitely generated group. We say

that Γ is epi-transitive if the action of Aut(Γ) is transitive on the set of epimorphisms

Epi(Γ, G) ⊆ Hom(Γ, G) for every non-abelian group, G.

Corollary 2.3.10. If Γ is free-type, then Γ is epi-transitive.

Proof. The result follows directly from Theorem 2.3.8.

Conjecture 2.3.11. The group G is epi-transitive does not imply that G is a free-type

group. We suspect that hyperbolic surface groups are examples of groups that are epi-

transitive but not free-type.

40



Chapter 3: Asymptotic Transitivity

3.1 Asymptotic Transitivity

Character varieties of surface groups over fields of characteristic zero have a well-defined

geometric invariant measure. In this scenario, the concept of ergodicity determines how

well a group action mixes the points in the variety. The action of a group G on a variety X

is ergodic if A ⊂ X is G-invariant implies A has measure zero or X − A has measure zero.

Since there is no well-defined notion of such a ‘nice’ invariant measure on the space of finite

field points of the character varieties we work with, we introduce the concept of asymptotic

transitivity to understand the extent of “mixing” under a group action.

Let Fq be the field of order q = pn where p is a prime and Fq denote the algebraic closure

of Fq.

Definition 3.1.1. Let G be an group and X a variety defined over Z. Suppose G acts

rationally on X. Now consider the action of the group on the Fq-points of the variety

denoted by X(Fq). We say that the action is asymptotically transitive if

lim
q→∞

max
v∈X(Fq)

∣∣∣Orb(v)
∣∣∣

|X(Fq)|
= 1.

Additionally, we define the asymptotic ratio as

lim
q→∞

max
v∈X(Fq)

∣∣∣Orb(v)
∣∣∣

|X(Fq)|

whenever the limit exists.
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Using this terminology, the action is asymptotically transitive if the asymptotic ratio of the

maximal orbit is one.

Remark 10. 1. Note that since q = pn, q → ∞ in multiple ways, p → ∞ or n → ∞ or

pn →∞. We require that the limit exists regardless of how q →∞.

2. In some instances, we write p→∞ and only consider Fp ∼= Zp.

3. The ideal situation is when |Orb(v)| and |X(Fq)| are polynomials or quasi-polynomials

in q.

4. It is worthwhile to note that we only need the formulas for |Orb(v)| and |X(Fq)| to

be defined for all but finitely many values of p.

3.1.1 Examples and Non-Examples

We first discuss some non-examples.

Definition 3.1.2. An integer r is called a quadratic residue modulo p if it is congruent to

a perfect square modulo p.

Example 3.1.1. Consider the polynomial f = x2 + y2 − b where b ∈ Fq and I, the ideal

generated by f in k[x, y]. Let X denote the variety of I. Since f has integer coefficients, we

can look at the finite field points of the variety denoted by X(Fq) ⊆ Fq × Fq where q = pm.

By Theorem 2.1 in [44], we calculate the number of points in the variety as follows:

|X(Fq)| =


q − 1 if b 6= 0 and − 4 is a nonzero quadratic residue

q + 1 if b 6= 0 and − 4 is a quadratic nonresidue

Define the action of Z/2Z = {0, 1} on X(Fq) as

0 · (x, y) = (x, y)

1 · (x, y) = (y, x).

42



Note that the action is well defined since the polynomial f is symmetric with respect to

the coordinates. It can be easily verified that the above map is a group action. Then

|Orb(v)| = 2 for all v ∈ X(Fq). Therefore, max
v∈X(Fq)

∣∣∣Orb(v)
∣∣∣ = 2 . Since the number of the

points increase in the order of q, we have that

lim
q→∞

∣∣∣ max
v∈X(Fq)

Orb(v)
∣∣∣

|X(Fq)|
= lim

q→∞
2

q ± 1 = 0.

This is an example of an action that is not asymptotically transitive.

Remark 11. Note that if the maximum orbit size is a constant and |X(Fq)| → ∞, then the

action cannot be asymptotically transitive.

Example 3.1.2. Let p(x) = x be the polynomial and let X be the variety given by the

ideal J = 〈p〉 ⊆ k[x, y] where k is a field. Denote by X(Fq) the finite field points of the

variety as in the last example. Then note that X(Fq) = {(0, k) | k ∈ Fq}. Consequently,

|X(Fq)| = q.

Define an action α on X(Fq) as follows:

α(x, y) = (x, y + 1) for (x, y) ∈ X(Fq) ⊆ Fq × Fq.

Note that the action is well defined as the action leaves the x coordinate invariant. Then

αn(x, y) = (x, y + n).

For any y ∈ Fq observe that {y+ n | 1 ≤ n ≤ q} = Fq since the additive group is generated

by 1. Therefore Orb((x, y)) = X(Fq) for all (x, y) ∈ X(Fq).
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Therefore, the action is transitive. Here, we have that

max
v∈X(Fq)

∣∣∣Orb(v)
∣∣∣

|X(Fq)|
= 1

and hence the limit is also one.

Remark 12. Transitivity implies asymptotic transitivity. But the converse is not necessarily

true. We are interested in the cases where the converse doesn’t hold, that is, when the action

is asymptotically transitive but not transitive.

Example 3.1.3. We now give a class of examples where the action is asymptotically tran-

sitive.

Lemma 3.1.1. Let G acts rationally on a variety X defined over Z. Suppose W (Fq) is a

subset of X(Fq) such that the action is transitive on W (Fq) for all q and for every q let

{Vi(Fq)}mi=1 be a finite non-empty collection of disjoint subsets such that Vi(Fq) 6⊆ W (Fq)

for 1 ≤ i ≤ m. Additionally, suppose the action is stable on Y (Fq) := W (Fq)
⋃(⋃

i∈I
Vi(Fq))

for all q. If, W (Fq) and Vi(Fq) have polynomial (monic) growth as q increases such that

the order of growth of Vi(Fq) is less than that of W (Fq) as q →∞ for 1 ≤ i ≤ m, then the

action is asymptotically transitive on Y (Fq).

Proof. By assumption, the action is stable on Y (Fq). Clearly W (Fq) ∩ V (Fq) = ∅ since

the action is transitive on W (Fq) and Vi(Fq) 6⊆ W (Fq). Therefore, |Y (Fq)| = |W (Fq)| +

m∑
i=1
|V (Fq)|. Suppose the order of growth of points in W (Fq) is s and that of Vi(Fq) is ti.

By assumption, s > t1, . . . , tm. Let w ∈ W (Fq) ⊂ Y (Fq). Then the asymptotic ratio of the

orbit of w is given by

lim
q→∞

|Orb(w)|
|Y (Fq)|

= lim
q→∞

|W (Fq)|
|Y (Fq)|

= lim
q→∞

qs + a1q
s−1 + · · ·+ as

qs + qt1 + · · ·+ qtm + lower terms = 1
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since qs is the leading term of both numerator and denominator.

Corollary 3.1.2. Let X(Fq) and W (Fq) be as defined in the theorem. If the number of

points in Vi is constant for all 1 ≤ i ≤ m and the order of growth of size of W (Fq) is at

least one, then the action is asymptotically transitive on Y (Fq) := W (Fq)
⋃
i∈I

Vi(Fq).

We now give an example where this corollary applies.

Example 3.1.4. Let Γ be a finitely presented group and G(Fq) be any group obtained as

finite field points of an algebraic group G defined over Z. For example, SLn(Fq) denote

the finite field points of SLn. Consider the action of Out(Γ) on Hom(Γ, G) as defined in

Lemma 2.2.1. Let ρ ∈ Hom(Γ, G) such that |Orb(ρ)| ≥ q for all q ≥ 2. From Corol-

lary 2.2.3, we know that |Orb(I)| = 1 where I denotes the identity homomorphism. By

letting W (Fq) = Orb(ρ) and V (Fq) = Orb(I), the action is asymptotically transitive on

Y (Fq) = W (Fq) ∪ V (Fq).

Remark 13. In general, we can choose Vi(Fq) to be the orbit of a fixed point of bounded

over q. Additionally, if the action is transitive on X(Fq), except for a finite set of points,

not depending on q for all values of q, then the action is asymptotically transitive on X(Fq).

Example 3.1.5. We recall the discussion from Section 1.2 about the example where Bour-

gain, Gamburd and Sarnak, [7], studied the Z/pZ points of the Markoff equation given

by

x2
1 + x2

2 + x2
3 − 3x1x2x3 = 0. (3.1)

They were interested in the action of the group Γ of affine integral morphisms of the affine

3-space generated by the permutations of the coordinates and Vieta involutions. Their

results yield strong approximation property for the Markoff equation for most primes which

implies asymptotic transitivity. In [13], Chen shows that for all but finitely many primes

p, the group of Markoff automorphisms acts transitively on the nonzero Fp-points of the

Markoff equation. This result proves that the action is asymptotically transitive on this
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variety.

This example is closely related to the relative character variety of one-holed torus. As

explained in Section 1.1.5, in the one-holed torus case where the fundamental group is F2,

the free group on two generators, and G = SL(2,C), the the relative λ-character variety is

obtained by fixing the boundary component which is the trace of the commutator,

tr(XYX−1Y −1) = x2 + y2 + z2 − xyz − 2 = λ.

[See Appendix A.0.1 for a derivation of this identity.] When λ = −2, this equation reduces

to x2 + y2 + z2 − xyz = 0 which is similar to Equation (3.1). One natural question to

ask is whether the action is asymptotically transitive on the relative character variety of

XF2(SL2(Fq)) for all values of λ. In the following sections, we look at the case when the

commutator equals identity, that is, λ = 2.

3.2 Stratification and E-polynomials of SLn(Fq) - Character

Varieties of Zr

We now explore the asymptotic transitivity of the outer automorphism group action of

Zr on SLn(Fq)-character varieties of Zr for n = 2, 3. Along the way, we compute the E-

polynomial, also known as the Hodge-Deligne polynomial or Serre polynomial of these free

abelian SL2- and SL3-character varieties.

The strategy is to stratify the space, Hom(Zr, SLn(Fq)) based on the stabilizer type under

the conjugation action. We then count the orbits in each stratum and use this information

to calculate the E-polynomial. See Section 1.1.3 for a discussion of E-polynomials.

Elementary results on Fq

We first prove some well-known results about properties of finite fields that will be used in

subsequent sections.
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Definition 3.2.1. Let k be a field. Then r ∈ k is an nth root of unity if rn = 1 and a

primitive nth root of unity if, in addition, n is the smallest integer of k = 1, . . . , n for which

rk = 1. A primitive nth root of unity generates a cyclic group of order n.

The following lemma classifies the finite fields with a primitive cube root of unity.

Lemma 3.2.1. Let Fq denotes the finite field with q = pk elements. Then Fq has a cube

root of unity λ 6= 1 if only if

1. p ≡ 1 mod 3 or

2. p ≡ −1 mod 3 and k is even.

Proof. Note that q = pk where p is a prime. The multiplicative group, F∗q = Fq \ {0} is

cyclic. Since |F∗q | = q − 1, Fq has a primitive cube root of unity if and only if three divides

q−1. Then p is congruent to 0, 1 or −1 mod 3. We will address the three cases separately.

• If p ≡ 0 mod 3, then q ≡ 0 mod 3. Therefore, 3 - q − 1.

• If p ≡ 1 mod 3, then q ≡ 1 mod 3. Consequently, 3 | q − 1.

• When p ≡ −1 mod 3, then q ≡ (−1)k mod 3. Hence, 3 | q − 1 if and only if k is

even.

This proves the result.

Remark 14. In general Fq has a primitive nth root of unity if and only if n divides q − 1.

Lemma 3.2.2. Let Fq be a finite field with q = pk elements. Then Fq has gcd(n, q− 1) nth

roots of unity.

Proof. The multiplicative group, F∗ is cyclic of order q − 1. Let a be a generator of the

group. Now the problem reduces to finding the number of elements x ∈ F∗q such that xn = 1.

If x = am, then (am)n = amn = 1. This implies mn is divisible by q−1. If d = gcd(n, q−1),

(q − 1)|mn if and only if q−1
d divides mn

d . Therefore, q−1
d divides m. Consequently, the
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roots of unity forms a subgroup generated by a
q−1

d with d elements. This concludes the

proof.

Corollary 3.2.3. Let Fq be a finite field with q = pk elements. Then the number of primitive

cube roots of unity in Fq, if it exists, is 2.

Proof. From the above lemma, the number of cube roots of unity is gcd(3, q − 1) = 1 or 3.

Since one is a cube root of unity for all q, this implies that the number of primitive roots of

unity is at most two. Since only the identity element has order one, the result follows.

Corollary 3.2.4. If q = pk, the number of square roots of unity in Fq is one if p = 2 and

two if p is odd.

Proof. If p is even, then so is q = pk. Then q − 1 is odd and gcd(2, q − 1) = 1. Similarly, if

p is odd, gcd(2, q − 1) is 2.

Properties of SLn(Fq) and GLn(Fq).

We look at some properties of the matrix groups which will be repeatedly used in the

subsequent sections. These are well-known results found in different references. For matrix

groups, G, e.g., GLn(Fq),SLn(Fq) etc. , we use D(G) to denote the set of diagonal matrices

in G. Let Fr be the free group of rank r.

Lemma 3.2.5. The following are true.

1. |GLn(Fq)| = (qn − 1)(qn − q) · · · (qn − qn−1) =
n−1∏
i=0

(qn − qi).

2. |SLn(Fq)| = 1
(q−1)(qn − 1)(qn − q) · · · (qn − qn−1) = 1

(q−1)
n−1∏
i=0

(qn − qi).

3. |D(GLn(Fq))| = (q − 1)n

4. |D(SLn(Fq))| = (q − 1)n−1.
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5. |Hom(Fr,GLn(Fq)| =
n−1∏
i=0

(qn − qi)

6. |Hom(Fr,SLn(Fq)| = 1
(q−1)

n−1∏
i=0

(qn − qi)

Proof. We count the number for possibilities of each row of a matrix in GLn(Fq).

1. Let A = [aij ]ni,j=1 ∈ GLn(Fq). Then there are q possibilities for a1i for 1 ≤ i ≤ n.

Therefore, after subtracting the zero row, there are total qn − 1 possibilities for the

first row. Similarly, the second row has qn − q possibilities, after discarding q linear

multiples of the first row.

The third row is linearly independent of the first and second row. There are q2 distinct

linear combinations of first and second rows and hence we have qn − q2 combinations

for the third row. Continuing in a similar fashion, we obtain the total number of

matrices possible to be
n−1∏
i=0

(qn − qi).

2. The key idea in the proof is the fact that SLn(Fq) is the kernel of the determinant

map from GLn(Fq). Consider the determinant map on GLn(Fq),

det : GLn(Fq) −→ F∗q

A 7−→ det(A)

Note that this is surjective since, for every λ ∈ F∗q ,

Iλ =



λ 0 · · · 0

0 1 · · · 0
...

... . . . ...

0 0 · · · 1


∈ GLn(Fq)

such that det(Iλ) = λ.
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This is a group homomorphism since det(AB) = det(A) · det(B). Then

ker(det) = {A ∈ GLn(Fq) | det(A) = 1} = SLn(Fq).

Therefore, by First Isomorphism Theorem,

|GLn(Fq)|
|SLn(Fq)|

= |F∗q | = q − 1

|SLn(Fq)| = |GLn(Fq)|
q − 1

=

n−1∏
i=0

(qn − qi)

q − 1 .

3. Suppose A is an n × n diagonal matrix. To count the number of possible entries for

A, it suffices to compute the number of n-tuples whose product is non-zero. This is

the same as counting the number of n tuples with entries from F∗q . Since there are

q − 1 choices for each entry, it follows that we have (q − 1)n combinations.

4. Let D = [di]ni=1 be in D(SLn(Fq)) such that di denote the entry at the ith diagonal

entry. We have (q − 1) possibilities for each the entries, d1, d2, . . . , d(n−1). Then

dn = 1
d1···d(n−1)

. Therefore there are (q − 1)n−1 choices for D.

5. To prove 4 and 5, recall that by Corollary 2.0.3, Hom(Fr, G) is in bijective correspon-

dence with Gr. Then the results follow from part 1 and 2 of this lemma.

This concludes the proof.

Lemma 3.2.6. The set of homomorphisms, Hom(Zr,SLn(Fq)) is in bijective correspon-

dence with the set of pairwise commuting r tuples of SLn(Fq),

{(A1, . . . , Ar) | AiAj = AjAi for 1 ≤ i, j,≤ r}.
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Proof. Recall that Zr has the presentation, {(γ1, . . . , γr) |γiγjγ−1
i γ−1

j for 1 ≤ i, j ≤ r}.

Then the result follows by Lemma 2.0.2.

This motivates us to consider properties of commuting tuples and simultaneously diagonal-

izable tuples.

Lemma 3.2.7. Let (A1, . . . , Ar) ∈ SLn(Fq)r. Then there exists P ∈ SLn(Fq) such that

(PA1P
−1, . . . , PArP

−1) is diagonal if and only if there exist a Q ∈ GLn(Fq) with the same

property, i.e, (QA1Q
−1, . . . , QArQ

−1) is diagonal.

Proof. If there exists P ∈ SLn(Fq) such that (PA1P
−1, . . . , PArP

−1) is an r-tuple of diag-

onal matrices, then let Q = P since SLn(Fq) ⊆ GLn(Fq). Conversely, suppose there exists

Q ∈ GLn(Fq) such that the tuple (QA1Q
−1, . . . , QArQ

−1) is diagonal. Now let P = 1
detQ ·Q

so that P has determinant 1. Additionally, since multiplying a matrix is scaling of the en-

tries, it follows that (PA1P
−1, . . . , PArP

−1) is diagonal.

Lemma 3.2.8. Let (A1, ..., Ar) ∈ SLn(Fq)r be simultaneously diagonalizable by a matrix

P ∈ SLn(Fq). Then AiAj = AjAi for 1 ≤ i, j ≤ r.

Proof. Suppose (A1, ..., Ar) is simultaneously diagonalizable. Then, there exists P ∈ SLn(Fq)

such that PAiP−1 = Di where Di ∈ SLn(Fq) is a diagonal matrix for 1 ≤ i ≤ m. Since

DiDj = DjDi for all 1 ≤ i, j ≤ m,

AiAj = P−1DiPP
−1DjP

= P−1DiDjP

= P−1DjDiP

= P−1DjPP
−1DiP

= AjAi.
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Conjugation Action and Stabilizer

First, we want to count the conjugation orbits in Hom(Zr, SLn(Fq)) for n = 2, 3 i.e., the

number of homomorphisms equivalent up to conjugation. To this end, we define the conju-

gation action of SLn(Fq) on Hom(Zr, SLn(Fq)),

A · ρ = AρA−1.

Let Hom(Zr, SLn(Fq))/SLn(Fq) denote the set of orbits under the above action. We first

identify the elements in Hom(Zr, SLn(Fq))) that corresponds to a closed conjugation orbits

which parameterizes the character variety, XZr (SLn(Fq)). In [19], Florentino and Lawton

prove that there is a homeomorphism between the space of polystable orbits and the GIT

quotient. By Proposition 3.1 in [19], for a finitely generated group abelian group Γ and a

complex reductive algebraic group G, the set of polystable points, Hom(Γ, G)ps is equivalent

to Hom(Γ, Gss) = {ρ ∈ Hom(Γ, G) | ρ(γi) ∈ Gss, i = 1, . . . , r} where Gss denote the

semisimple points in G. Therefore, the polystable points are homomorphisms, ρ such that

ρ(γi) is simultaneously diagonalizable for all i, 1 ≤ i ≤ r.

Stabilizer

Definition 3.2.2. Two tuples (A1, . . . , Ar) and (B1, . . . , Br) in SLn(Fq)r are said to have

the same stabilizer type if |Stab(A1, . . . Ar)| = |Stab(B1, . . . Br)|.

The following lemma characterizes the stabilizer of a single matrix under conjugation action.

Lemma 3.2.9. Let D = [dii]ni=1 ∈ GLn(k) be a diagonal matrix with entries from a field,

k. Suppose GD ⊆ GLn(k) is the set of all matrices that commute with D. Then

GD =
{

[aij ]ni,j=1 | aij = 0 if dii 6= djj and aij ∈ k if dii = djj
}
.
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Proof. Let A = [aij ] and D = [dij ] be such that AD = DA. We compare the ij-th entry of

AD and DA.

[AD]ij =
n∑
k=1

aikdkj = aijdjj

[DA]ij =
n∑
k=1

dikakj = diiaij

Note that AD = DA if and only if aijdj = diaij which is true only if aij(dj − di) = 0.

Since aij , di, dj ∈ k are not zero divisors, di 6= dj implies aij = 0. Suppose di = dj . Then

aij(dj − di) = 0 for any value of aij ∈ k. Therefore, the result follows.

Corollary 3.2.10. Suppose D ∈ SLn(Fq) is a diagonal matrix such that all the diagonal

entries are distinct. If A ∈ SLn(Fq) such that AD = DA, then A is diagonal.

Proof. The proof follows directly from Lemma 3.2.9.

Definition 3.2.3. For A ∈ SLn(Fq), define the centralizer of A,

GA := {P ∈ GLn(Fq) | PA = AP}.

We can now compute the stabilizer of a tuple (A1, . . . , Ar) ∈ SLn(Fq) in terms of the

centralizers of Ai.

Lemma 3.2.11. Let (A1, . . . , Ar) ∈ SLn(Fq)×r. Consider the conjugation action of GLn(Fq)

defined by P · (A1, ...., Ar) = (PA1P
−1, ...., PArP

−1). Then

StabSLn(Fq)((A1, ...., Ar)) = GA1 ∩GA2 ∩ . . . ∩GAr .
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Proof.

Stab((A1, .., Ar)) = {P ∈ GLn(Fq) | P · (A1, .., Ar) = (A1, .., Ar)}

= {P | (PA1P
−1, .., PArP

−1) = (A1, .., Ar)}

= {P | PA1P
−1 = A1, PA2P

−1 = A2, . . . , PArP
−1 = Ar}

= {P1 | P1A1 = A1P1} ∩ {P2 | P2A2 = A2P2} ∩ · · · ∩ {Pr | PrAr = ArPr}

= GA1 ∩GA2 ∩ · · · ∩GAr .

Classifying pairwise commuting tuples

In this section, we look at pairs of matrices over finite field that commutes pairwise.

Lemma 3.2.12. Let A,B be commuting matrices. If λ is an eigenvalue of A, then B

preserves the λ-eigenspace of A.

Proof. By hypothesis, AB = BA. We show that if u is a λ-eigenvector of A, Bu is also a

λ-eigenvector of A. Since u is a λ-eigenvector of A, Au = λu. Then,

A(Bu) = ABu = BAu = B(Au) = Bλu = λBu.

Therefore, Bu ∈ Eigλ(A).

Lemma 3.2.13. Let V be a finite dimensional vector space over a field k and T ∈ End(V )

be a linear operator on V . Then each distinct monic divisor of the minimal polynomial, pT ,

of T over k corresponds to a distinct T -invariant subspace of V .

Proof. Let f(x) be the minimal polynomial of T ∈ End(V ). Suppose f1(x, ) . . . , fs(x) are

the distinct factors of f(x). Now, consider the map from distinct monic factors of T to
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distinct T -invariant subspaces, defined as:

fi 7→ ker(fi(T )).

To prove that this map is well defined, we first show that all kernels of S that commute

with T are T -invariant. Suppose v ∈ ker(T ). Then Tv = 0.

TSv = STv = S0 = 0.

Thus, S(ker(T )) ⊆ ker(S). Since polynomials in T commute with T , ker(fi(T )) is a T -

invariant subspace of V . Therefore the map is well defined. We now prove that the map is

injective.

Suppose Wi = ker(fi(T )) = ker(fj(T )) = Wj . Then, fi is the minimal polynomial of

T |Wi and fj is the minimal polynomial of Wj . Since Wi = Wj , this implies that fi = fj .

Therefore, the map is injective.

Lemma 3.2.14. Let k be a field and let V be a k-vector space. Let T : V → V be a linear

transformation. Then the characteristic polynomial of T is irreducible over k if and only if

T has no non-trivial invariant subspaces.

Proof. We prove the contrapositive. Let pT denote the characteristic polynomial over k.

If pT = is reducible then pT has a proper monic divisor, q(x). As in the above proof of

Lemma 3.2.13, ker(q(T )) is a non-trivial invariant subspace of T .

Conversely, suppose W is a T -invariant subspace. Then T can be expressed in a block

triangular form

U1 S

0 U2

 by expressing T on a basis that extends a basis of W . Thus,

pT = pU1 · pU2 where U1 corresponds to T |W and U2 corresponds to T |V \W . Therefore pT

is reducible.

For a matrix A, let char(A) denote the characteristic polynomial of A.
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Lemma 3.2.15. Let A,B ∈ SLn(Fq) such that AB = BA and char(A) is irreducible over

Fq for n = 2, 3. Then B is either central or has an irreducible characteristic polynomial.

Proof. Clearly if B is central, AB = BA. Suppose B is not scalar. If B is reducible, then

char(B) has a non-trivial divisor f(x). As in the proof of Lemma 3.2.13, ker(f(B)) is an

invariant subspace of A. If char(B) is reducible, then ker(f(B)) is a non-trivial A invariant

subspace of A and hence gives a contradiction. Therefore, the characteristic polynomial

char(B) is irreducible.

Remark 15. Note that here the characteristic polynomial and minimal polynomial of A are

the same.

We use the following well-known result without proof.

Lemma 3.2.16. For n ≤ 3, two matrices A and B are similar if and only if they have the

same characteristic and minimal polynomial.

Our goal is to count the number of distinct diagonal matrices, D, over Fq such that D is

conjugate to a matrix over Fq. We first count the stabilizer of such a matrix under the

conjugation action when the characteristic polynomial is irreducible.

Lemma 3.2.17. Let SLn(Fq) act on the set of diagonal matrices in SLn(Fq) by conjugation.

If A is such that its characteristic polynomial, char(A), is irreducible over Fq, then the size

of the stabilizer of A, GA, is qn−1
q−1 .

Proof. Let A ∈ SLn(Fq) where n = 2, 3. Let SLn(Fq) acts on SLn(Fq) as follows:

P ·D = PDP−1.

By Lemma 3.2.16, the set of matrices conjugate to A has the same characteristic and

minimal polynomial. Since char(A) is irreducible over Fq, char(A) is the same as the min-

imal polynomial of A. Consequently, B ∈ SLn(Fq) is in the orbit of A if and only if
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char(B) = char(A). To calculate |GA|, we begin by computing the order of the orbit and

then apply the Orbit-Stabilizer theorem. We use the following result from [53] to compute

the size of Orb(A). Let Mn denote the set of all matrices with entries in Fq.

Theorem 1 , [53]. Let f(x) ∈ Fq(x) be an irreducible polynomial of degree n. Then, the

number of matrices in Mn with characteristic polynomial f is
n−1∏
i=1

(qn − qi).

Therefore, |Orb(A)| =
n−1∏
i=1

(qn−qi). From Lemma 3.2.5, |SLn(Fq)| = 1
q−1

n−1∏
i=0

(qn−qi). Then,

by the Orbit-Stabilizer Theorem, for n = 2, 3

GA = Stab(A) = |SLn(Fq)|
|Orb(A)| =

n−1∏
i=1

(qn − qi)
n−1∏
i=0

(qn−qi)

q−1

= qn − 1
q − 1.

Therefore, the result follows.

Corollary 3.2.18. Let A ∈ SLn(Fq) be such that char(A) is an irreducible polynomial over

Fq for n = 2, 3. If GA is the number of matrices that commute with A, then

|GA| =


q + 1 when n = 2

q2 + q + 1 when n = 3.

Proof. By definition, [see 3.2.3], GA = {P |PAP−1 = A} = {P | PA = AP}. Therefore,

GA ⊆ SLn(Fq) is the set of all matrices that commute with A. The size of GA can be

calculated from the previous lemma.

Definition 3.2.4 (Splitting field of a polynomial, [17]). Let F be a field and f(x) ∈ F .

An extension field K of F is called a splitting field for the polynomial f(x) ∈ F [x] if f(x)
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factors completely into linear factors ( or split completely) in K[x] and f(x) does not factor

completely into linear factors over any proper subfield of K containing F .

We will use the following proposition from [17], Section 13.5, Proposition 37, page 549

repeatedly in this chapter.

Proposition 3.2.19 ([17], Proposition 37). Every irreducible polynomial over a finite field

F is separable. A polynomial in F[x] is separable if and only if it is the product of distinct

irreducible polynomials in F[x].

Lemma 3.2.20. Let A ∈ SL3(Fq) and char(A) = (x−a)(x2+sx− 1
a) be such that (x2+sx+

1
a) is irreducible over Fq. Then if B ∈ SL2(Fq) is such that AB = BA, then char(B) = (x−

b)(x2 +tx− 1
b ) such that (x2 +tx− 1

b ) is irreducible over Fq or char(B) = (x−d)(x−c)(x−c)

where c, d ∈ Fq.

Proof. Let A ∈ SL3(Fq) be such that char(A) = (x− a)(x2 + sx− 1
a) where x2 + sx+ 1

a is

irreducible over Fq. By Proposition 3.2.19, (x2 + sx+ 1
a) has distinct roots over a splitting

field. Therefore, (x2 +sx+ 1
a) = (x−a)(x−a1)(x−a2) over a splitting field of (x2 + tx− 1

b ),

such that a ∈ Fq, a1 6= a2 and a1, a2 ∈ Fq \ Fq. Let Wa, Wa1 and Wa2 denote the

corresponding eigenspaces one-dimensional eigenspaces. If AB = BA, B preserves Wa ,

Wa1 and Wa2 by Lemma 3.2.12. Therefore, char(B) cannot be irreducible over Fq. Clearly,

if B is central, B commutes with A. By Lemma 3.2.12, B preserves the eigenspaces of A.

Therefore, B shares common eigenvectors with A. Since A ∈ SL3(Fq) and a ∈ Fq, note that

Wa ∈ F3
q . Similarly, since a1, a2 ∈ Fq, and A ∈ SL3(Fq), eigenvector of ai /∈ F3

q for i = 1, 2.

Therefore, char(B) 6= (x − c1)(x − c2)(x − c3) where c1 6= c2 6= c3 since this would imply

that A preserve the eigenspaces Wc1 , Wc2 and Wc3 which is a contradiction.

3.2.1 SL2(Fq) - character varieties of Zr

First, we recall the following corollary of Lemma 3.2.5.
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Corollary 3.2.21. The following are true:

1. |GL2(Fq)| = (q2 − 1)(q2 − q)

2. |SL2(Fq)| = 1
(q−1)(q2 − 1)(q2 − q) = q3 − q

3. |D(GL2(Fq))| = (q − 1)2

4. |D(SL2(Fq))| = (q − 1).

Our first goal is to count the number of simultaneously diagonalizable r tuples of matrices

in SL2(Fq)r. Before counting, we make few observations.

1. There are two ways by which a tuple is simultaneously diagonalizable. The tuple can

be diagonalized by a matrix in SL2(Fq) or it could be diagonalizable over an extension

field, say SL2(Fq).

2. The characteristic polynomial defines a matrix in SL2(Fq) upto conjugation.

3. For A ∈ SL2(Fq), since det(A) = 1, the characteristic polynomial of A, char(A), is of

the form x2 + ax+ 1 where a = tr(A).

Keeping these in mind, we begin by counting polynomials with constant term one over Fq.

Counting Characteristic polynomials

Lemma 3.2.22. Let Fq be a finite field with q = pk elements where p is odd. Suppose p(x)

is a monic degree two polynomial over Fq with constant term one. Then the following are

true:

1. The number of polynomials with repeated roots is 2.

2. The number of polynomials with distinct roots is q−3
2 .

3. The number of polynomials that are irreducible over Fq is q−1
2 .
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Proof. Let p(x) be an irreducible degree two monic polynomials with constant term one

i.e., p(x) = x2 + ax+ 1 for a ∈ Fq. Note that p(x) is completely determined by a and there

are exactly q choices for a.

Case 1: p(x) = (x− λ)(x− λ)

Note that λ2 = 1. Therefore, by Lemma 3.2.2, number of choices for λ is:


2 : if p is odd

1 : if p is even.

Case 2: p(x) = (x− λ)(x− 1
λ) where λ 6= 1

λ .

Since λ is invertible, λ 6= 0. Therefore, there are (q − 1) choices for λ. To get the

count when λ 6= 1
λ we discount the previous case where λ = 1

λ . Since this results in

choosing λ and 1/λ twice, we divide by two to get the number of distinct polynomials.


q−3

2 : p is odd

q−2
2 : p is even.

Case 3: p(x) is irreducible (λ ∈ Fq).

Recall that there are q degree two monic polynomials with constant term one. So,

we subtract the number of reducible polynomials to obtain the number of irreducible

degree three polynomials.

When p is odd : q −
(
q − 3

2 − 2
)

= q − 1
2

When p is even : q −
(
q − 2

2 − 2
)

= q

2 .
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Stratification

Now we classify the set of diagonal matrices, D(SL2(Fq))r.

Reducible tuples: Dr
1(SL2(Fq)) := {(D1, . . . , Dr) | there exists i such that

Di is not scalar, for 1 ≤ i ≤ r}.

Central tuples: Dr
2(SL2(Fq)) := {(D1, . . . , Dr) | Di is scalar

for all i ∈ {1, . . . , r}}.

Irreducible tuples: D
r
2(SL2(Fq)) := {(D1, . . . , Dr) | there exists i ∈ {1, . . . , r}

such that char(Di) is irreducible over Fq}.

For simplicity, we are dropping the symbol SL2(Fq) throughout this subsection when it is

clear from the context. We use the above to define the strata as follows:

Reducible Stratum: TrD1 := {(A1, ..., Ar) ∈ SL2(Fq)r | there exists P ∈ GL2(Fq)

such that (PA1P
−1, ..., PArP

−1) ∈ Dr
1}.

Central Stratum: TrD2 := {(A1, ..., Ar) ∈ SL2(Fq)r | there exists P ∈ GL2(Fq)

such that (PA1P
−1, ..., PArP

−1) ∈ Dr
2}.

Irreducible Stratum: Tr
D2

:= {(A1, ..., Ar) ∈ SL2(Fq)r | there exists P ∈ GL2(Fq)

such that (PA1P
−1, ..., PArP

−1) ∈ D
r
2}.

Remark 16. Upto simultaneous permutation of diagonal entries, each diagonal tuple,

(D1, . . . , Dr) ∈ D(SL2(Fq))r represents a unique equivalence class of simultaneously di-

agonalizable r-tuple of matrices. Therefore, to count the number of polystable orbits in
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Hom(Zr,SL2(Fq)), it suffices to count |D(SL2(Fq))r|.

Counting Orbits

Theorem 3.2.23. Let Dr
1,D

r
2 and D

r
2 be as defined above. Then the size of each set is

given by the following.

1. |Dr
1| =


2r when p is odd

1r when p is even

2. |Dr
2| =


(q−1)r−2r

2 when p is odd

(q−1)r−1r

2 when p is even

3. |Dr
2| =


(q+1)r−2r

2 when p is odd

(q+1)r−1r

2 when p is even .

Proof. 1. Central stratum

Let A ∈ SL2(Fq) be central i.e., AP = PA for all P ∈ SL2(Fq). Therefore, PAP−1 =

A for all P . Consequently, GA = SL2(Fq) and the orbit of A under conjugation

consists of the single element, A . From Lemma 3.2.2, we have the following count of

the central elements and hence that of the central stratum.

|Dr
2| =


2r when p is odd

1r when p is even .

2. Reducible Stratum

Let (A1, . . . , Ar) ∈ TD2 . Then there exists k such that Ak is not diagonalizable to a

central element. By Corollary 3.2.10, GDk
= D(SL2(Fq)), the set of diagonal matrices
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in SL2(Fq). By Lemma 3.2.11, Stab((A1, . . . , Ar)) = GA1∩. . .∩GAr the set of diagonal

matrices. Note that each element in Dr
2 contributes to one orbit and exactly one orbit

in TD2 since any element in Dr
2 has no non-trivial permutations possible. To compute

the size of Dr
2, it suffices to count all the diagonal tuples in SL2(Fq) and then subtract

the number of central elements. From Lemma 3.2.5, the number of diagonal elements

in SL2(Fq) is q−1. Consequently, the number of tuples of diagonal elements in SL2(Fq)

is Dr
1 ∪Dr

2 = (q − 1)r. Since Dr
1 and Dr

2 are disjoint by definition, it follows that

|Dr
2| = (q − 1)r − |Dr

1| = (q − 1)r − 2r.

To obtain the number of distinct orbits we divide by the number of simultaneous

permutations. Note that at least for some entry Ak of (A1, . . . , Ar), there are two

permutations possible that provides a distinct element in Dr
1. So dividing by two, we

get that the number of distinct orbits as follows:

|Dr
1| =


(q−1)r−2r

2 when p is odd

(q−1)r−1r

2 when p is even .

3. Irreducible Stratum

Suppose (D1, . . . , Dr) ∈ D
r
1. Then there exists k ∈ {1, . . . , r} such that Dk has

eigenvalues in Fq \ Fq. Then by Lemma 3.2.15, Di has an irreducible characteristic

polynomial or is scalar. First we calculate the number of matrices with irreducible

degree two polynomials. By Lemma 3.2.22, we know that the number of irreducible

degree two polynomials is 
q−1

2 when p is odd

q
2 when p is even.
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Since for each such polynomial, we have two distinct diagonal matrices possible by

permuting the diagonal entries, it follows that there are (q−1) such matrices possible.

By adding the number of central elements in each case, we obtain that there are q+ 1

and q+2 choices possible respectively when p is odd and p is even. Finally, we subtract

the central elements to obtain the desired count:

|Dr
1| =


(q+1)r−2r

2 when p is odd

(q+1)r−1r

2 when p is even .

Corollary 3.2.24. The E-polynomial of the SL2(Fq) character variety of free abelian group

of rank r, Zr is (q+1)r

2 + (q−1)r

2 .

Proof. We can obtain the E-polynomial of the SL2(Fq) character variety by computing the

cardinality of polystable orbit space. Since we calculated the number of polystable orbits

in each stratum, the total number of orbits is obtained as follows

(q + 1)r − 2r
2 + (q − 1)r − 2r

2 + 2r = (q + 1)r
2 + (q − 1)r

2 when p is odd

(q + 1)r − 1r
2 + (q − 1)r − 1r

2 + 1r = (q + 1)r
2 + (q − 1)r

2 when p is even .

Therefore, the E-polynomial is (q+1)r

2 + (q−1)r

2 .

Remark 17. This agrees with the result in [11] by Cavazos and Lawton.

3.2.2 SL3(Fq) - character varieties of Zr

As in the case when n = 2, the following result follows from Lemma 3.2.5.

Corollary 3.2.25. The following are true:
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1. |GL3(Fq)| = (q3 − 1)(q3 − q)(q3 − q2)

2. |SL3(Fq)| = 1
(q−1)(q3 − 1)(q3 − q)(q3 − q2)

3. |D(GL3(Fq))| = (q − 1)3

4. |D(SL3(Fq))| = (q − 1)2.

Counting Characteristic Polynomials

Before counting degree three monic polynomials with constant term one over Fq, we make

a few useful observations. Let p(x) be a degree three monic polynomial over Fq. Note that

there are three major types of polynomials over finite fields:

1. Completely reducible over the base field (all roots are in Fq)

If p(x) is completely reducible over Fq, then there are three different cases possible

for its roots:

(a) three repeated roots

(b) exactly two repeated roots

(c) three distinct roots.

Throughout this section, we use the term completely reducible to indicate matrices

with p(x) as characteristic polynomial.

2. Irreducible over the base field (no roots in Fq)

Recall that all irreducible polynomials over finite fields are separable [ refer Proposi-

tion 3.2.19] . Therefore, if p(x) is irreducible, then all the roots are distinct.

3. Partially reducible over the base field (only some roots are in the base field)

If p(x) is partially reducible, then all the roots are distinct and exactly one of them

will be in Fq. Note that it is not possible to have exactly two roots in the base field
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since it would imply that the third root calculated as the inverse of the product of

other two roots is also in the base field.

Remark: We can further classify these polynomials based on the multiplicities of the roots

which we will do later.

We prove the following known result before proceeding to count each of the above mentioned

types.

Lemma 3.2.26. The number of irreducible monic polynomials of degree two over Fq is

q2−q
2 .

Proof. Let p(x) = x2 + bx+ c be a degree two monic polynomial over Fq, that is b, c ∈ Fq.

Then there are q2 such polynomials since there are q choices for both b and c. Then p(x)

is either reducible or irreducible over Fq. If p(x) is reducible, then p(x) = (x− µ1)(x− µ2)

where µ1, µ2 ∈ Fq. Then we have two different cases, µ1 6= µ2 and µ1 = µ2.

µ1 6= µ2: This is exactly the same as choosing two elements µ1, µ2 from Fq out of the q elements.

Therefore, the number of such possibilities is
(q
2
)

= q2−q
2 .

µ1 = µ2: For each a ∈ Fq, we have the polynomial (x− a)(x− a) and these are exactly all the

reducible polynomials over Fq. Hence, there are q such polynomials.

Therefore, the total number of reducible polynomials is the sum of the above two cases

which can be calculated as

q2 − q
2 + q = q2 + q

2 . (3.2)

Thus, there are q2+q
2 reducible polynomials. Subtracting this from the total number of

degree two monic polynomials gives us the desired number

q2 − q2 + q

2 = q2 − q
2 . (3.3)

66



Theorem 3.2.27. We have the following count for monic polynomials of degree three with

constant term one over Fq where q = pk :

1. Number of reducible ones with three repeated roots is


3 if p ≡ 1 mod 3 or p ≡ −1 mod 3 and k is even

1 if p ≡ 0 mod 3 or p ≡ −1 mod 3 and k is odd.

2. Number of reducible ones with exactly two repeated roots is


(q − 4) if p ≡ 1 mod 3 or p ≡ −1 mod 3 and k is even

(q − 2) if p ≡ 0 mod 3 or p ≡ −1 mod 3 and k is odd.

3. Number of reducible ones with three distinct roots is


q2−5q+10

6 if p ≡ 1 mod 3 or p ≡ −1 mod 3 and k is even

(q−3)(q−2)
6 if p ≡ 0 mod 3 or p ≡ −1 mod 3 and k is odd .

4. Number of polynomials with exactly one root in the base field is q2−q
2 .

5. Number of irreducible degree three polynomials with constant term one is:


q2+q−2

3 if p ≡ 1 mod 3 or p ≡ −1 mod 3 and k is even

q2+q
3 if p ≡ 0 mod 3 or p ≡ −1 mod 3 and k is odd.

Proof. Let p(x) = x3 + ax2 + bx − 1. Since there are q choices each for a and b, there are
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q2 polynomials of degree three with constant term one. We classify and count them below

based on the multiplicity of roots.

1. If p(x) = (x − a)(x − a)(x − a), then a3 = 1 which implies a is a cube root of unity.

Conversely for any cubic root of unity, λ, (x− λ)3 is such a polynomial. So it suffices

to count the cube roots of unity. From Lemma 3.2.2, we get that the number of cube

roots of unity is gcd(3, q− 1). Note that 3|(q− 1) iff (q− 1) ≡ 0 mod 3 which is true

if and only if q ≡ 1 mod 3. Since q = pk,

p ≡ 0 mod 3 implies q ≡ 0 mod 3 for k ≥ 1

p ≡ 1 mod 3 implies q ≡ 1 mod 3 for k ≥ 1

p ≡ −1 mod 3 implies q ≡ (−1)k mod 3 for k ≥ 1.

Therefore, gcd(3, (q−1)) = 3 iff q ≡ 1 mod 3 or q ≡ −1 mod 3 and k is even. Hence

the result follows.

2. If p(x) has exactly two roots, then p(x) = (x − a)(x − a)(x − 1/a) where 1/a 6= a.

Therefore, p(x) is completely determined by the choice of a. Note that a 6= 0. Out

of the (q − 1) choices for a we only need to discount the case when a = 1/a. But

a = 1/a if and only if a3 = 1. Hence, after subtracting the number of cubic roots of

unity from part one, we get the result,


(q − 1)− 3 = (q − 4) if p ≡ 1 mod 3 or p ≡ −1 mod 3 and k is even

(q − 1)− 1 = (q − 2) if p ≡ 0 mod 3 or p ≡ −1 mod 3 and k is odd.

3. Suppose p(x) has three distinct roots. Then p(x) = (x− a)(x− b)(x− 1/(ab)) where

a 6= b 6= 1/(ab). There are (q − 1) choices for a and (q − 2) choices for b. But this

includes the cases where a = 1/ab and b = 1/ab. Note that this is exactly twice the
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count from part two. In addition, since any permutation of a, b and 1/abresults in the

same polynomial p(x), we divide by 3! to get the final count. Therefore, the number

of irreducible polynomials is



((q − 1)(q − 2)− 2(q − 4))1
6 = q2−5q+10

6 if p ≡ 1 mod 3

or p ≡ −1 mod 3 and k is even

((q − 1)(q − 2)− 2(q − 2))1
6 = q2−5q+6

6 if p ≡ 0 mod 3

or p ≡ −1 mod 3 and k is odd .

4. Suppose p(x) has exactly one root in Fq. Then p(x) = (x2 + ax + b)(x − 1/b) where

x2 + ax + b is an irreducible degree two polynomial. By Lemma 3.2.26, there are

exactly q2−q
2 such polynomials. Thus, the result follows.

5. Since the total number of polynomials possible is q2, to get the number of irreducible

polynomials, we subtract the sum of the rest of the cases from q2. When p ≡ 1 mod 3

or p ≡ −1 mod 3 and k is even, we have

q2 −
(
q2 − 5q + 10

6

)
− (q − 4)− 3−

(
q2 − q

2

)
= q2 + q − 2

3 .

If p ≡ 0 mod 3 or p ≡ −1 mod 3 and k is odd, then

q2 −
(
q2 − 5q + 6

6

)
− (q − 2)− 1−

(
q2 − q

2

)
= q2 + q

3 .

This concludes the proof.
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Stratification

Recall the action of SL3(Fq) on SL3(Fq)r by simultaneous conjugation. We look at the

stabilizer of this action in SL3(Fq). We use the notation Stab((A1, . . . , Ar))SL3(Fq) to denote

Stab((A1, . . . , Ar)) ∩ SL3(Fq). The following lemma characterizes the types of stabilizer

subgroups of SL3(Fq) under its action on SL3(Fq)r.

Lemma 3.2.28. Let (A1, . . . , Ar) be a tuple in SL3(Fq)r that is simultaneously diagonaliz-

able to (D1, . . . , Dr) ∈ D(SL3(Fq))r, the set of all r-tuples of diagonal matrices in SL3(Fq)r.

Then there are three different stabilizer types under the simultaneous conjugation action.

They are as follows:

1. If Di is scalar for all 1 ≤ i ≤ r, then Stab((A1, . . . , Ar))SL3(Fq) = SL3(Fq), the whole

group .

2. If there exists at least one Di such that all the entries of Di are distinct, then

Stab((A1, . . . , Ar)) = D(SL3(Fq)), the set of diagonal matrices.

3. Let dik denote the kth row entry of the matrix Di. If there exists exactly one pair

s, t ∈ {1, 2, 3} such that dis = dit for all 1 ≤ i ≤ r, that is, same two rows have

repeated entries for all coordinates Di and not all Di is scalar, then

|Stab((A1, . . . , Ar))SL3(Fq)| = |{B = [bxy] | bxx, bisit , bitis ∈ Fq

and bxy = 0 for all other entries}|.

4. Suppose Dk doesn’t have any distinct entries for all k, 1 ≤ k ≤ r. Now, if there exists

distinct i, j such that Di and Di both has two repeated entries but at different rows, i.e.,

dis = dit and djx = djy but {is, it} 6= {jx, jy}, then Stab((A1, . . . , Ar)) = D(SL3(Fq)),

the set of diagonal matrices.

Proof. We use Lemma 3.2.9 and Lemma 3.2.11 repeatedly to prove this result.
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1. Since the central elements, Di commute with all the elements of the group for all

1 ≤ i ≤ r, the result follows from Lemma 3.2.11.

2. Suppose there exists i such that Di has distinct diagonal entries. Then, by Corol-

lary 3.2.10, GDi = D(SL3(Fq)). Then for j 6= i, there are two possibilities:

1. If the entries of Dj are distinct, then GDj = D(SL3(Fq)).

2. If Dj has repeated entries in which case GDj ⊇ GDi by Corollary 3.2.10.

Hence, Stab((D1, . . . , Dr)) = GD1 ∩ . . .∩GDr = GDi = D(SL3(Fq)) by Lemma 3.2.11.

Therefore, Stab((D1, . . . , Dr)) = D(SL3(Fq)).

Note that here Stab((A1, . . . , Ar)) = Stab((D1, . . . , Dr)) since D(SL3(Fq)) is a normal

subgroup of SL3(Fq).

3. Suppose there exists at least one i such that Ai has exactly two repeated eigenvalues.

We fix this i throughout this proof. Then Ai is diagonalizable to Di with exactly two

repeated diagonal entries, say dis = dit for all i, where 1 ≤ i ≤ r. By Lemma 3.2.9,

BDi = DiB implies B = [bxy] where bxx, bitis , bisit ∈ Fq and bxy = 0 otherwise. Let

Aj be such that 1 ≤ j ≤ r and j 6= i, then there are two possibilities for Aj . In

the first case, Aj has two exactly two repeated eigenvalues and will be diagonalizable

to Dj with exactly two repeated entries, djs = djt . Then GDj = GDi by the same

explanation above. This implies GDi ∩GDj = GDi . The second possibility is that Dj

is scalar. Then GDj = SL3(Fq). Consequently, GDi ∩GDj = GDi . Thus in both cases,

Stab((D1, . . . , Dr))SL3(Fq) = GD1 ∩ · · · ∩GDr = GDi

= {B = [bxy] | bxx, bitis , bisit ∈ Fq and bxy = 0 otherwise}.

Since |Stab((D1, . . . , Dr))SL3(Fq)| = |Stab((A1, . . . , Ar))SL3(Fq)|, the result follows.

4. Suppose Ai has exactly two repeated eigenvalues such that Di has two repeated entries

dis = dit . Let Aj be such that Dj has repeated entries, Djk = Djl where {is, it} 6=
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{jk, jl}. Then as in the proof of part 3, by Lemma 3.2.9, we have the following

GDi =




a11 a12 a13

a21 a22 a23

a31 a32 a33



∣∣∣∣∣∣∣∣∣∣∣
axx, aisit , aitis ∈ k and axy = 0 for all other entries



GDj =




a11 a12 a13

a21 a22 a23

a31 a32 a33



∣∣∣∣∣∣∣∣∣∣∣
axx, ajkjl , ajljk ∈ k and axy = 0 for all other entries



Since {is, it} 6= {jk, jl},

GDi ∩GDj =




a11 a12 a13

a21 a22 a23

a31 a32 a33



∣∣∣∣∣∣∣∣∣∣∣
axx ∈ k and axy = 0 for all other entries



is the set of all diagonal matrices in SL3(Fq). Since D(SL3(Fq)) ⊆ GDh
for all h,

1 ≤ h ≤ r, it follows that GD1 ∩GD2 · · ·GDr = D(SL3(Fq)).

Now we stratify the space, Hom∗(Zr,SL3(Fq)) =

{ρ ∈ Hom(Zr,SL3(Fq)) | Orb(ρ)SL3(Fq) is Zariski closed in Hom(Zr,SL3(Fq))} based on sta-

bilizer type under the conjugation action and the field where the eigenvalues exist. Let

Di ∈ D(SL3(Fq)) i.e., a diagonal matrix in SL3(Fq).

1. Reducible tuples: Dr
1(SL3(Fq)) := {(D1, . . . , Dr) | there exists i such that

Di has distinct diagonal entries where i ∈ {1, . . . r}}

2. Repeating tuples: Dr
2(SL3(Fq)) := {(D1, . . . , Dr) | there exists i such that
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Di has exactly two distinct diagonal entries where i ∈ {1, . . . r}}

3. Central tuples: Dr
3(SL3(Fq)) := {(D1, . . . , Dr) | Di is central for all i ∈ {1, . . . r}}

4. Irreducible tuples: D
r
3(SL3(Fq)) := {(D1, . . . , Dr) | there exists i ∈ {1, . . . , r}

such that all entries of Di ∈ Fq \ Fq}

5. Partially Reducible tuples: D
r
3(SL3(Fq)) := {(D1, . . . , Dr) | there exists i ∈ {1, . . . , r}

such that exactly two entries of Di ∈ Fq \ Fq}

Since it is clear from the context, we drop the SL3(Fq) from the notation for tuples through-

out the discussion in this section. Let (A1, ..., Ar) ∈ Hom(Zr,SL3(Fq)). We then use define

the following strata:

1. Reducible Stratum: TrD1 := {(A1, ..., Ar) | there exists P ∈ GL3(Fq)

such that (PA1P
−1, ..., PArP

−1) ∈ Dr
1}.

2. Repeating Stratum: TrD2 := {(A1, ..., Ar) | there exists P ∈ GL3(Fq)

such that (PA1P
−1, ..., PArP

−1) ∈ Dr
2}.

3. Central Stratum: TrD3 := {(A1, ..., Ar) | there exists P ∈ GL3(Fq)

such that (PA1P
−1, ..., PArP

−1) ∈ Dr
3}

4. Irreducible Stratum: Tr
D3

:= {(A1, ..., Ar) | there exists P ∈ GL3(Fq)

such that (PA1P
−1, ..., PArP

−1) ∈ D
r
3}

5. Partially Reducible Stratum: Tr
D22

:= {(A1, ..., Ar) | there exists P ∈ GL3(Fq)

such that (PA1P
−1, ..., PArP

−1) ∈ D
r
2}.
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Weyl Group Action

Let (D1, . . . , Dr) be a tuple of diagonal matrices in SL3(Fq) and suppose there exists P ∈

GL3(Fq) such that (PD1P
−1, . . . , PDrP

−1) = (A1, . . . , Ar). Let D =


d11 0

0 d22 0

0 0 d33

 be

in SL3(Fq). The number of possible permutations of D is given by the conjugation action

of the Weyl group on the maximal torus

W =




1 0 0

0 1 0

0 0 1

 ,


0 1 0

1 0 0

0 0 1

 ,


0 0 1

0 1 0

1 0 0

 ,


1 0 0

0 0 1

0 1 0

 ,


0 0 1

1 0 0

0 1 0

 ,


0 1 0

0 0 1

1 0 0




.

Note that for Wi ∈ W, WiDW
−1
i is just permutation of its entries. We classify below the

elements of Dr
3 based on number of distinct permutations possible under the action of W.

Lemma 3.2.29. Let (A1, . . . , Ar) ∈ SL3(Fq)r be diagonalizable to the tuple (D1, . . . , Dr) ∈

SL3(Fq)r. Then the following are true.

1. If there exists i such that Di has distinct entries, then all the six permutations of Di

and consequently that of (D1, . . . , Dr) ∈ SL3(Fq) are distinct.

2. Suppose there exists i, j such that Di and Di both has two repeated entries but at

different rows, i.e., dis = dit and djx = djy but {is, it} 6= {jx, jy}. Then, (D1, . . . , Dr)

has six distinct permutations.

3. If Di has two repeated entries at the same position, say dis = dit, and Di is not scalar

for all 1 ≤ i ≤ r, then there are exactly three distinct permutations of (D1, . . . , Dr) ∈

SL3(Fq).
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4. If for all i, Di is a scalar matrix, then (D1, . . . , Dr) ∈ SL3(Fq) has no distinct permu-

tations.

Proof. 1. Suppose Di =


d1 0 0

0 d2 0

0 0 d3

 where d1 6= d2 6= d3 6= d1. Then for W ∈ W,

WDiW
−1 = Di if and only if W is identity since any other W permutes the rows of

D. Consequently, (WD1W
−1, . . . ,WDrW

−1) = (D1, . . . , Dr) if and only if W is the

identity matrix.

2. Let Di and Dj be such that {is, it} denotes the rows of Di with repeated entries

and {jx, jy} that of Dj and {is, it} 6= {jx, jy}. Since {is, it}, {jx, jy} ⊆ {1, 2, 3}, it

follows that {is, it} ∪ {jx, jy} = {1, 2, 3}. Let W 6= I. Then W permutes at least

two rows, say u, v. If u, v ∈ {is, it} , i.e., W does not permute any elements in Di,

then since {is, it} 6= {jx, jy}, either u /∈ {jx, jy} or v /∈ {jx, jy}. Since two distinct

entries of Dj are permuted by W , it follows that WDjW
−1 6= Dj . Consequently,

(WD1W
−1, . . . ,WDrW

−1) 6= (D1, . . . , Dr). Therefore, D has six distinct permuta-

tions.

3. WLOG, assume all the Di has the following form. Di =


di 0 0

0 di 0

0 0 1
d2

i

 such that

di 6= 1
d2

i
. Note that the position of 1

d2
i

is determined by that of the repeated entries.

Therefore, it suffices to count number of distinct ways of choosing two rows to place

the dis. This is given exactly by
(3
2
)
. Therefore, there are exactly 3 matrices in W

such that WDiW
−1 6= Di. Since all the Di has the same form, it follows that D has

exactly three distinct simultaneous permutations by W.
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Lemma 3.2.30. Let A ∈ SL3(Fq) be such that char(A) is not completely reducible over Fq.

If A is diagonalizable to D ∈ SL3(Fq), then all the entries of D are distinct. Furthermore,

let (A1, . . . , Ar) be an element of the irreducible stratum such that Ai = A for some i. Then

(A1, . . . , Ar) has exactly three distinct permutations if char(A) is irreducible.

Proof. Suppose D ∈ SL3(Fq)\SL3(Fq). Then there are two possibilities for the characteristic

polynomial, char(D) = p(x) : (x− a)(x2 + bx+ 1/a) or x3 + ax2 + bx+ 1.

• p(x) = x3 + ax2 + bx + 1: By Proposition 3.2.19, p(x) is separable. Therefore, if

char(D) = x3 + ax2 + bx+ 1, then D has distinct entries.

• If char(D) = (x − a)(x2 + bx + 1/a) such that a ∈ Fq, then (x2 + bx + 1/a) has two

distinct roots say d1, d2. Since irreducible polynomials are separable over finite fields,

d1 6= d2. Clearly, d1, d2 6= a since a ∈ Fq. Therefore, D has six distinct entries.

Now suppose char(A) is irreducible. We proceed to show that a tuple containing A has

exactly three distinct permutations. From Lemma 3.2.17, the size of the set of matrices

that commute with A, |GA| is q2 + q + 1. Therefore, if (A1, . . . , Ar) is such that Ai = A

for some A, then Aj ∈ GA for 1 ≤ j ≤ r. By Lemma 3.2.15, any matrix Aj that commutes

with A is either a central element or has irreducible characteristic polynomial. We know the

number of central elements. Let m3 denotes the number of permutations of A in SL3(Fq)

and k denote the number of irreducible degree three polynomials. If d3 denotes the number

of central elements in SL3(Fq), then using Theorem 3.2.27,

m3 = |GA − d3|
k

=


q2+q+1−3

q2+q−2
3

= 3 if p ≡ 1 mod 3 or p ≡ −1 mod 3 and k is even

q2+q+1−1
q2+q

3

= 3; if p ≡ 0 mod 3 or p ≡ −1 mod 3 and k is odd.

We denote the center of a group G by Z(G). In particular, Z(GL2(Fq)) denotes the center
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of GL2(Fq), the set of scalar matrices with entries from Fq. We use D(GL2(Fq \ Fq)) to

denote the set of all two by two diagonal matrices such that the entries are strictly in the

extension field Fq but not in Fq.

Lemma 3.2.31. Let A ∈ SL3(Fq) and char(A) = p(x)(x−b) be such that p(x) = (x2−ax+1
b )

is irreducible over Fq. Then there is a bijective correspondence between the orbits in Tr
D22

and the set of commuting tuples in (D(GL2(Fq \ Fq) ∪ Z(GL2(Fq)))×r \ Z(GL2(Fq))r.

Proof. Let Ai ∈ SL3(Fq) and char(Ai) = p(x)(x − λi) be such that p(x) = (x2 − ax + 1
λi

)

is irreducible over Fq. Consider the tuple A = (A1, . . . , Ar) such that AiAj = AjAi for

1 ≤ j ≤ r. By Lemma 3.2.20, (A1, . . . , Ar) is simultaneously diagonalizable to a tuple

D = (D1, . . . , Dr) ∈ SL3(Fq)r of the following form up to simultaneous permutation.




λ11 0 0

0 λ12 0

0 0 λ1

 , . . . ,

λi1 0 0

0 λi2 0

0 0 λi

 , . . . ,

λr1 0 0

0 λr2 0

0 0 λr





where λj ∈ Fq and λj1 , λj2 ∈ SL2(Fq) \ Fq for 1 ≤ j ≤ r or λj1 = λj2 ∈ Fq for i 6= 2. We

choose the element D = (D1, . . . , Dr) with the basefield entry in the third row to denote

the orbit of (A1, . . . , Ar). Note that for each Dj , the upper block D′j =

λj1 0

0 λj2

 ∈
GL2(Fq \ Fq) ∪ Z(GL2(Fq)). The D′j is unique up to permutation of entries for a fixed Dj .

For the orbit of [(A1, . . . , Ar)] denoted by [D1, . . . , Dr] we define a map as explained below.

Let C := (D(GL2(Fq) \ Fq) ∪ Z(GL2(Fq))) and

W2 :=


1 0

0 1

 ,
−1 0

0 −1

 ,
0 −1

1 0

 ,
 0 1

−1 0


 .
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Recall that Cr/W2 denote the orbits in Cr under the Weyl group action and TrD22
/G denote

the set of conjugation orbits in the partially reducible stratum of SL3(Fq)r. Define the

following map:

Φ : TD22/G −→ Cr \ Z(GL2(Fq)r)

(D1, . . . , Dr) 7−→ (D′1, . . . , D′r)

The map is clearly well defined. Suppose (D′1, . . . , D′r) = (C ′1, . . . , C ′r). Then, by definition

D′j and C ′j are permutations of each other which implies these are in the same Weyl group

orbit of TD2
. To show surjectivity, let (D′1, . . . , D′r) denote an element of Cr \Z(GL2(Fq))r.

Then, there exists a matrix P ′ ∈ SL2(Fq) such that (P ′D′1P
′−1, . . . , P ′D′rP

′−1) = (A′1, · · · , A′r) ∈

GL2(Fq)r. Consider the block matrices

(D1, . . . , Dr) =


D′1 0

0 1
det(D′1)

 , . . . ,
D′r 0

0 1
det(D′r)




Clearly each Di ∈ SL3(Fq) by construction. Furthermore, define P =

P ′ 0

0 1

 and

A =

A′ 0

0 1
det(D′r)

. Then P ∈ GL3(Fq) and det(A) = 1 since det(A′) = det(D′). It

is easy to verify by block multiplication that PDiP
−1 = Ai. Therefore, φ([(A1, . . . , Ar)]) =

(D′1, . . . , D′r). Therefore, the map is surjective.

Counting the Orbits

Theorem 3.2.32. Let the strata D1,D2,D3,D2,D3 be defined previously. Then the number

of distinct orbits in each stratum is as follows.
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1. Central Stratum


3r if p ≡ 1 mod 3 or p ≡ −1 mod 3 and k is even

1r if p ≡ 0 mod 3 or p ≡ −1 mod 3 and k is odd .

2. Repeating Stratum


(q − 1)r − 3r if p ≡ 1 mod 3 or p ≡ −1 mod 3 and k is even

(q − 1)r − 1r if p ≡ 0 mod 3 or p ≡ −1 mod 3 and k is odd .

3. Reducible Stratum


(q−1)2r

6 − (q−1)r

2 + 3r−1 if p ≡ 1 mod 3 or p ≡ −1 mod 3 and k is even

(q−1)2r

6 − (q−1)r

2 + 1
3 if p ≡ 0 mod 3 or p ≡ −1 mod 3 and k is odd .

4. Irreducible Stratum


(q2+q+1)r

3 − 3r−1 if p ≡ 1 mod 3 or p ≡ −1 mod 3 and k is even

(q2+q+1)r

3 − 1
3 if p ≡ 0 mod 3 or p ≡ −1 mod 3 and k is odd .

5. Partially Reducible Stratum


(q2−1)r

2 − (q−1)r

2 if p ≡ 1 mod 3 or p ≡ −1 mod 3 and k is even

(q2−1)r

2 − (q−1)r

2 if p ≡ 0 mod 3 or p ≡ −1 mod 3 and k is odd .
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Proof. Below, we give the proof for the case when p ≡ 1 mod 3 or p ≡ −1 mod 3 and k is

even. We give the corresponding count for the case p ≡ 0 mod 3 or p ≡ −1 mod 3 and k

is odd in brackets whenever applicable.

1. Central Stratum: By Theorem 3.2.27, number of central elements is 3 (or 1). There-

fore, the result follows.

2. Repeating Stratum: Let (D1, . . . , Dr) represent a diagonal tuple in this stratum. Then,

Di has exactly two repeated eigenvalues at fixed positions for all 1 ≤ i ≤ r or Di is

central. From Theorem 3.2.27, there are (q − 4) (or (q − 2)) elements with exactly

two repeated eigenvalues. Counting these with the central elements gives (q − 1)

possibilities for each Di and (q−)r for the total number of such tuples. Finally, we

subtract the central elements which gives the desired count. Note that this is the

number of such tuples up to Weyl group action. Since each such tuple can have 3

such permutations by Lemma 3.2.29, the total number of tuples is 3((q− 1)r− 3r) (or

3((q − 1)r − 1r)).

3. Reducible Stratum: We count the number of diagonal tuples, (D1, . . . , Dr) with entries

from Fq such that there exists i for which Di has distinct entries. It suffices to subtract

the counts of the previous two strata from all the diagonal matrices in SL3(Fq). By

Corollary 3.2.25, D(SL3(Fq)) = (q − 1)2. Therefore, there are a total of (q − 1)2r

diagonal tuples in SL3(Fq)r. Subtracting the repeating and central strata and dividing

by 6 to account for the Weyl group action [Lemma 3.2.29], we get the following

(q − 1)2r − 3((q − 1)r − 3r)− 3r
6 = (q − 1)2r

6 − (q − 1)r
2 − 3r−1

(q − 1)2r − 3((q − 1)r − 1r)− 1r
6 = (q − 1)2r

6 − (q − 1)r
2 − 1

3 .

Now we add the counts from previous two parts to obtain total count for the basefield
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stratum, that is the number of orbits that are completely in the base field.

3r + (q − 1)r − 3r + (q − 1)2r

6 − (q − 1)r
2 − 3r−1 = (q − 1)2r

6 + (q − 1)r
2 − 3r−1

1r + (q − 1)r − 1r + (q − 1)2r

6 − (q − 1)r
2 − 1

3 = (q − 1)2r

6 + (q − 1)r
2 − 1

3 .

4. Irreducible stratum: Let (A1, . . . , Ar) be a tuple in the irreducible stratum. Recall

that for any Ai, a commuting element Aj is an element of the stabilizer, GAi under

the conjugation action as explained in the proof of Lemma 3.2.30. By Lemma 3.2.17,

|GAi | = q2 + q+ 1. Therefore, there are (q2 + q+ 1) choices for each Ai. Additionally,

from Lemma 3.2.30, we know that the number of distinct permutations possible for

such a tuple is 3. Since |GA| includes the elements from the central stratum, we can

obtain the orbits in the irreducible stratum by discounting the central stratum:

(q2 + q + 1)r − 3r
3 = (q2 + q + 1)r

3 − 3r−1

(q2 + q + 1)r − 1r
3 = (q2 + q + 1)r

3 − 1
3

5. Partially reducible stratum : From Lemma 3.2.31, it suffices to compute

|(D(GL2(Fq \ Fq) ∪ Z(GL2(Fq)))r \ Z(GL2(Fq))r| up to the action of Weyl group as

in the proof of Lemma 3.2.31. Suppose Di ∈ D(GL2(Fq \ Fq). Then char(Di) is an

irreducible degree two polynomial. By Lemma 3.2.26, there are q2−q
2 such polynomials

and |Z(GL2(Fq))| = q − 1. Therefore,

|D(GL2(Fq \ Fq)) ∪ Z(GL2(Fq))| =
2(q2 − q + q − 1)

2 = q2 − 1.

Therefore, we obtain the number of distinct orbits in
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(D(GL2(Fq \ Fq)) ∪ Z(GL2(Fq)))r \ Z(GL2(Fq))r as

(q2 − 1)r
2 − (q − 1)r

2 .

Corollary 3.2.33. The E-polynomial of the SL3(C)-character variety of Zr is

(q − 1)2r

6 +
(
q2 − 1

)r
2 +

(
q2 + q + 1

)r
3 .

Proof. We obtain the E-polynomial by adding the number of all the closed orbits over Fq.

When p ≡ 1 mod 3 or p ≡ −1 mod 3 and k is even , we get

3r +(q − 1)r−3r + (q − 1)2r

6 − (q − 1)r

2 +3r−1 +
(
q2 − 1

)r
2 − (q − 1)r

2 +
(
q2 + q + 1

)r
3 −3r−1

= (q − 1)2r

6 +
(
q2 − 1

)r
2 +

(
q2 + q + 1

)r
3

Similarly, if p ≡ 0 mod 3 or p ≡ −1 mod 3 and k is odd , we have

1 + (q − 1)r − 1 + (q − 1)2r

6 − (q − 1)r

2 + 1
3 +

(
q2 − 1

)r
2 − (q − 1)r

2 +
(
q2 + q + 1

)r
3 − 1

3

= (q − 1)2r

6 +
(
q2 − 1

)r
2 +

(
q2 + q + 1

)r
3 .

This agrees with the formulae by Lawton-Muñoz in [40] and Florentino-Silva in [22]. This

is a new proof of this result.
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3.3 Asymptotic Transitivity on SLn- character varieties of Zr

In this section, we first show that the action of Out(Zr) = GLr(Z) is not transitive on the

SLn-character varieties of free abelian groups. We then provide an upper bound for the

asymptotic ratio in these cases and prove that the action is not asymptotically transitive on

the character variety either. This is in contrast to the Markoff case as shown by Bourgain,

Gamburd, and Sarnak in [7]. More details can be found in Section 1.2.

Non-transitive on SLn - character varieties of free abelian groups

Proposition 3.3.1. Let Γ be the free abelian group on r generators. Then the Out(Γ)

action is not transitive on the Fq points of SLn-character varieties of Zr.

Proof. Let Zr be the free abelian group on r ≥ 1 generators. Consider the set of all

diagonal matrices, D(SLn(Fq)) ⊂ SLn(Fq). Note that |D(SLn(Fq))| = (q − 1)n−1. For any

D = [dii]ni=1 ∈ D(SLn(Fq)), there are (q−1) choices for each di when 1 ≤ i ≤ n−1 and dnn =

1
d11···d(n−1)(n−1)

. Observe that the set of diagonal matrices, D(SLn(Fq)), forms a subgroup

of SLn(Fq). Any tuple (D1, . . . , Dr ) ∈ D(SLn(Fq))r is simultaneously diagonalizable and

corresponds to a closed orbit and consequently to an element in the character variety,

XZr (SLn(Fq)). Now, consider a matrix A ∈ SLn(Fq) such that char(A) is irreducible.

Then A is similar to a diagonal matrix D ∈ SLn(Fq) \ SLn(Fq). If In denotes the identity

matrix of rank n, then (A, In, . . . , In) ∈ SLn(Fq)r \D(SLn(Fq)r corresponds to an element

in XZr (SLn(Fq). Therefore, by Theorem 2.2.4, the action is not transitive.

We state a corollary of the Subgroup Lemma[Lemma 2.2.2] which will be useful for the

following discussion.

Corollary 3.3.2. Let Γ = 〈γ1, . . . , γr〉 be a finitely generated group and G a reductive affine

algebraic group over Z. Let ρ ∈ Hom(Γ, G) be such that (ρ(γ1), . . . , ρ(γr)) = (H1, . . . ,Hr) ∈

Gr. If 〈H1, . . . ,Hr〉 denote the subgroup generated by {H1, . . . ,Hr} in G, then with respect

to the Aut(Γ)-action, Orb((ρ(γ1), . . . , ρ(γr))) ⊆ 〈H1, . . . ,Hr〉r.
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Proof. Since (H1, . . . ,Hr) ∈ 〈(H1, . . . ,Hr)〉, the result follows from the subgroup lemma.

3.3.1 Asymptotic Transitivity on SL2 - character variety of Zr

Theorem 3.3.3. The action of Out(Zr) on SL2-character variety of Zr is not asymptoti-

cally transitive. Furthermore, the asymptotic ratio of the orbits of elements in the character

variety is bounded above by 1
2 .

Proof. We consider each stratum and look at the subgroups within the stratum. Refer to

3.2.1 for the stratification and the size of each stratum as well as a count for the number of

orbits in each stratum. Recall that each element in the character variety corresponds to a

tuple of diagonal elements (up to conjugation in SL2(Fq)).

1. The set of central elements, Z(SL2(Fq)), in SL2(Fq) forms a subgroup of SL2(Fq).

2. The set of diagonal elements, D(SL2(Fq)), also is a subgroup of SL2(Fq).

3. The set of irreducible diagonal tuples, Dirr(SL2(Fq)) along with the central elements

form the stabilizer subgroup by Lemma 3.2.17.

Let [(D1, D2, . . . , Dr)] ∈ XZr (SL2(Fq)) where Di ∈ SL2(Fq). Then, Di is the element of one

of the three subgroups mentioned above say, H. Then, Dj ∈ H for every 1 ≤ j ≤ r by

Lemma 3.2.15. Consequently, the size of the orbits are bounded above by |Hr|. Since, in

this case, Hr is the same as that of the strata, we look at the counts from Theorem 3.2.23.

Now we calculate an upper bound for the asymptotic ratio of orbits of elements in each of

the three subgroups. Let D = (D1, . . . , Dr) ∈ Z(SL2(Fq))r. Then the asymptotic ratio of

Orb((D1, . . . , Dr)) is

lim
q→∞

|Orb((D1, . . . , Dr))|
|XZr (SL2(Fq))|

.
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The size of the character variety is given by the E-polynomial in Corollary 3.2.24 as

(q + 1)r
2 + (q − 1)r

2 .

1. Central Orbit: If (D1, . . . , Dr) ∈ Z(SL2(Fq))r, then the asymptotic ratio is bounded

above by

lim
q→∞

2r
(q+1)r

2 + (q−1)r

2
= 0, when p is odd

lim
q→∞

1r
(q+1)r

2 + (q−1)r

2
= 0, when p is even .

2. Reducible Orbit: If (D1, . . . , Dr) ∈ D(SL2(Fq))r, then the ratio is bounded by

lim
q→∞

(q−1)r−2r

2
(q+1)r

2 + (q−1)r

2
= lim

q→∞
(q − 1)r − 2r

(q + 1)r + (q − 1)r = 1
2 when p is odd

lim
q→∞

(q−1)r−1r

2
(q+1)r

2 + (q−1)r

2
= lim

q→∞
(q − 1)r − 1r

(q + 1)r + (q − 1)r = 1
2 when p is even

3. Irreducible Orbit: Similarly, when (D1, . . . , Dr) ∈ (Dirr(SL2(Fq)) ∪ Z(SL2(Fq)))r \

Z(SL2(Fq))r, then the ratio is bounded by

lim
q→∞

(q+1)r−2r

2
(q+1)r

2 + (q−1)r

2
= 1

2 when p is odd

lim
q→∞

(q+1)r−1r

2
(q+1)r

2 + (q−1)r

2
= 1

2 when p is even .

Note that we are assuming the transitivity within each stratum for these calculations. But
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it is not clear that this is true even though there are reasons to believe it could be true

as seen in the SL2(F2) case. Therefore the above count gives only the upper bound for

the asymptotic ratio and not the actual value of the ratio for each orbit. Hence, the only

possible asymptotic ratios for orbits are 0 and 1
2 . This concludes the proof.

3.3.2 Asymptotic Transitivity on SL3 - character variety of Zr

Corollary 3.3.4. The E-polynomial of the SL3(C)-character variety of Z2 is q4 + q2 + 1.

Proof. By Corollary 3.2.33 , the E-polynomial of SL3(C)-character variety of Zr is

(q − 1)2r

6 +
(
q2 − 1

)r
2 +

(
q2 + q + 1

)r
3 .

Substituting r = 2 and simplifying obtains q4 + q2 + 1.

Proposition 3.3.5. The action of Out(Zr) on SL3-character variety of Zr is not asymptot-

ically transitive. Furthermore, the asymptotic ratio of the orbits of elements in the character

variety is bounded above by 1
2 .

Proof. We use the same strategy as in the proof of SL2(Fq) character variety of Zr. We

consider each stratum and find the subgroups within each stratum. Recall that the diagonal

tuples represents the polystable points and hence consists of the elements of the character

variety, XZr (SL3(Fq)). Let (A1, . . . , Ar) be an element of a stratum T. Then (A1, . . . , Ar)

is simultaneously diagonalizable to a tuple (D1, . . . , Dr), unique up to Weyl group action.

We use the equivalence class of [(D1, . . . , Dr)] to represent the element in XZr (SL3(Fq)).

Now we look at possible orbits of [(D1, . . . , Dr)] in each stratum and calculate a bound

for the asymptotic ratio of the orbits. Recall the definition of each stratum from previous

section.
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1. Basefield Subgroup Tuples: This includes the set of all tuples with coordinate en-

tries from the set of diagonal elements in SL3(Fq). We have that (D1, . . . , Dr) ∈

D(SL3(Fq))r. This form a subgroup of SL3(Fq). Note that this subgroup is the union

of reducible, repeatable and central tuples as defined in previous section.

2. Central Tuples: The central elements form a subgroup.

3. Partially Reducible Subgroup Tuples: Up to permutation, this set is isomorphic to

GL2(Fq) and hence form a subgroup.

4. Irreducible Subgroup Tuples: See the proof of Proposition 3.2.19 to recall that this

set along with the central elements form a subgroup.

Now, we compute the asymptotic ratio for the orbits in each of these stratum.

1. Basefield Orbit

lim
q→∞

(q−1)2r

6 + (q−1)r

2 + 3r−1

(q−1)2r

6 + (q2−1)r

2 + (q2+q+1)r

3

= 1
6 if p ≡ 1 mod 3 or p ≡ −1 mod 3 and k even

lim
q→∞

(q−1)2r

6 + (q−1)r

2 + 1
3

(q−1)2r

6 + (q2−1)r

2 + (q2+q+1)r

3

= 1
6 if p ≡ 0 mod 3 or p ≡ −1 mod 3 and k odd.

2. Partially Reducible Orbit

lim
q→∞

(q2−1)r−(q−1)r

2
(q−1)2r

6 + (q2−1)r

2 + (q2+q+1)r

3

= 1
2 for all p.
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3. Irreducible Orbit

lim
q→∞

(q2+q+1)r−3r

3
(q−1)2r

6 + (q2−1)r

2 + (q2+q+1)r

3

= 1
3 if p ≡ 1 mod 3 or p ≡ −1 mod 3 and k even

lim
q→∞

(q2+q+1)r− 1
3

3
(q−1)2r

6 + (q2−1)r

2 + (q2+q+1)r

3

= 1
3 if p ≡ 0 mod 3 or p ≡ −1 mod 3 and k odd.

This concludes the proof.

Relative character variety

We end this thesis by looking at a relative character variety in SL3(Fq)-character variety

of F2 by fixing the commutator to be a non-trivial central element. We prove that there

is exactly one point in such a character variety when it is non-empty. See Section 1.1.5 to

recall the discussion of relative character variety.

Proposition 3.3.6. Suppose A1, B1, A2, B2 ∈ SL3(Fq) such that AiBiA−1
i B−1

i = λI where

λ 6= 0, 1 and i = 1, 2. Then there exists g ∈ SL3(Fq) such that gA1g
−1 = A2 and gB1g

−1 =

B2.

Proof. First, we prove the following claim.

Claim: If AB = λBA, then A3 = B3 = I.

Proof of Claim: Note that A = λBAB−1.

1 = det(ABA−1B−1) = det(λI) = λ3 =⇒ λ = 3√1 where λ 6= 1.

Since ABA−1B−1 = λI, A = λBAB−1. This implies the following

tr(A) = tr(λBAB−1) = λ · tr(BAB−1).
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Similarly, A−1 = B−1A−1λB = λB−1AB, tr(A−1) = tr(λB−1A−1B) = λ · tr(B−1A−1B)).

Since tr(A = tr(BAB−1) and λ 6= 1, this gives tr(A) = 0. Similarly, tr(A−1) = 0. Therefore,

using Cayley Hamilton Theorem,

A3 − tr(A)A2 + tr(A−1)A− det(A)I = 0 =⇒ A3 − I = 0.

Thus, A3 = I which proves the claim.

Now choose A0 :=


1 0 0

0 λ 0

0 0 λ2

 and B0 :=


0 0 1

1 0 0

0 1 0

. Suppose ω is an eigenvalue of A

with eigenvector v. Then Av = ωv. This implies A2v = ω2v and A3v = ω3v = v since

A3 = I. Therefore, ω3 = 1 which implies ω = 3√1. So all eigenvalues of A are cube roots

of unity. Note that it is not possible that 1 is the only eigenvalue as A 6= I. Therefore,

the eigenvalues of A includes at least 1 and λ which implies that λ2 is also an eigenvalue.

Consequently, A is similar to a matrix of the type A0 that is A = PAP−1 for P ∈ GL(Fq).

Now we claim that B = PB0P
−1. To prove the claim, let Eω(A1) be the eigenspace of A.

Claim: B(Eλ(A) = Eωλ(A).

Proof of Claim: If v ∈ Eλ(A), then Av = λv. Then, A(Bv) = ωBAv = ωλ(Bv). Therefore,

Bv ∈ Eωλ(A).

Conversely, suppose v′ ∈ Eωλ(A). Then, Av′ = ωλv′. We want to show that v′ = Bv where

v ∈ Eλ(A).

B−1Av′ = ωλB−1v′

ωA(B−1v′) = ωλ(B−1v′)

This implies that v := B−1v′ ∈ Eλ(A) . Therefore, Bv = v′. This completes the proof of

the claim.
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Since A is the diagonal matrix A0, the eigenspaces of 1, ω, ω2 are orthogonal and hence

linearly independent. By the previous claim, B permutes the eigenvectors of A as follows:

E1(A) 7−→ EωA

Eω(A) 7−→ E2
ωA

E2
ω(A) 7−→ E1A

which corresponds to multiplication by the permutation matrix B0. So B = B0. But note

that A0 = P−1AP . Then B0 = P−1BP . This implies that PA0P
−1 = A and PB0P

−1 = B.

Now by letting A = A1 and B = B1, we get that there exists P ∈ GL3(Fq) such that

PA0P
−1 = A1 and PB0P

−1 = B1 =⇒ P−1A1P = A0 and P−1B1P = B0. (3.4)

Similarly, there exists Q ∈ GL3(Fq) such that

QA0Q
−1 = A2 and QB0Q

−1 = B2. (3.5)

Then from 3.4 and 3.5, we get that

A2 = QP−1A1PQ
−1 = (QP−1)A1(QP−1)−1

B2 = QP−1B1PQ
−1 = (QP−1)B1(QP−1)−1

thereby proving the proposition.

Corollary 3.3.7. The Out(Γ)-action on the relative character variety of XF2(SL3(Fq))

obtained by fixing the value of the boundary component to be a non-trivial central element

is vacuously transitive when p ≡ 1 mod 3 or p ≡ −1 mod 3 and k is even.

Proof. By Lemma 3.2.1, Fq has a nontrivial cubic root of unity when p ≡ 1 mod 3 or
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p ≡ −1 mod 3 and k is even. By the previous proposition, there is a single point in the

relative character variety. Thus the result follows.
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Appendix A: Appendix

A.0.1 Deriving the Boundary Condition for the Relative Character Va-

riety of the One-holed Torus

In the one-holed torus case with π = F2, the free group on two generators, and G = SL(2,C),

the character variety is isomorphic to the affine 3-space, as a consequence of Fricke-Vogt

theorem. An exposition of this result can be found in [26]. The isomorphism is given by:

τ : [ρ] 7−→ (x, y, z) := (tr(ρ(X)), tr(ρ(Y )), tr(ρ(XY )))

where X,Y ∈ SL(2,C) are images of the generators under ρ. From (1.2), the relative

character variety is obtained from the relative representation variety given by

Homb(π,SL(2,C)) := {ρ ∈ Hom(π,SL(2,C)) | tr(ρ(b1)) = λ for λ ∈ C}.

Since the boundary component corresponds to the commutator, the problem reduces to

fixing the trace of the commutator. In other words, for λ ∈ C, the λ-relative character

variety XλF2
(SL(2,C)) is the set of equivalence classes [ρ] such that

tr (ρ(XYX−1Y −1)) = λ

for any pair of generators, X,Y of F2.

Lemma A.0.1. If tr(X) = x, tr(Y ) = y and tr(XY ) = z, then

tr(XYX−1Y −1) = x2 + y2 + z2 − xyz − 2.

Proof. First we establish some basic identities of the traces. Since every 2 × 2 matrix, A
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satisfies its characteristic equation, we get

A2 − tr(A)A+ det(A)In = 0.

If A ∈ SL(2,C), this equation reduces to

A2 − tr(A)A = −I2.

Post multiplying by A−1, we obtain,

A− tr(A)I2 = −A−1

Thus, we obtain the following trace identities

A+A−1 = tr(A)I2 (A.1)

tr(A) + tr(A−1) = 2tr(A) [By taking trace of both sides of (3)]

tr(A) = tr(A−1) [By simplifying (4)] (A.2)

Multiplying Equation (A.1) by B and then taking the trace, we get

tr(BA) + tr(BA−1) = tr(B)tr(A)

tr(BA) = tr(B)tr(A)− tr(BA−1) (A.3)

Now that we have established some basic identities that allows us to simplify the trace of

products of matrices, we can compute the trace of the commutator.

Applying (A.3), we get

tr(XYX−1Y −1) = tr(XYX−1)tr(Y −1)− tr(XYX−1Y ).
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We know from (A.1) that tr(Y −1) = tr(Y ) = y. Also tr(XYX−1) = tr(Y ) = y as conjugate

matrices have same trace. It only remains to compute tr(XYX−1Y ) which can be done by

using (A.3) again.

tr(XYX−1Y ) = tr(XY )tr(X−1Y )− tr(X2)

= z(xy − z)− (x2 − 2)

= xyz − z2 − x2 + 2

where

tr(X−1Y ) = tr(X−1)tr(Y )− tr(X−1Y −1)

= xy − tr((Y X)−1)

= xy − tr(Y X) [tr(A) = tr(A−1)]

= xy − tr(XY ) [tr(AB) = tr(BA)]

= xy − z.

Therefore,

tr(XYX−1Y −1) = tr(XYX−1)tr(Y −1)− tr(XYX−1Y )

= y2 − (xyz − z2 − z2 + 2)

= x2 + y2 + z2 − xyz − 2.

Then the polynomial κ parameterized by λ, defined as follows, gives the relative character

varieties

κλ(x, y, z) = x2 + y2 + z2 − xyz − 2− λ.
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A.0.2 Out(Γ) action on character variety

Lemma A.0.2. Let Γ be a finitely presented group and G a complex affine algebraic re-

ductive group. Then the outer automorphisms of Γ, denoted by Out(Γ), acts on the GIT

quotient Hom(Γ, G) // G.

Proof. The automorphism Aut(Γ) acts on Hom(Γ, G) as follows:

τ · ρ = ρ ◦ τ−1.

1. First we prove that this is an action.

Since composition of homomorphisms is a homomorphism, ρ ◦ τ−1 ∈ Hom(Γ, G) and

hence the action is well defined. Note that e · ρ = ρ ◦ e−1 = ρ ◦ e = ρ where e is the

identity element of Aut(Γ). Finally,

(τ ◦ σ) · ρ = ρ ◦ (τ ◦ σ)−1

= ρ ◦ (σ−1 ◦ τ−1)

= (ρ ◦ σ−1) ◦ τ−1

= τ · (ρ ◦ σ−1)

= τ · (σ · ρ).

Therefore this is indeed a group action.

2. The action extends to a coaction on the coordinate ring.

By Lemma 2.0.2, Hom(Γ, G) maps injectively to Gr by evaluation map and hence

inherits the structure of a subvariety Gr. Let I be the ideal defining Hom(Γ, G) in

C[Gr]. Then the coordinate ring of the variety is given by

C[Hom(Γ, G)] ∼= C[x1, ..., xN ]/I.
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Suppose f + I ∈ C[Hom(Γ, G)] and σ ∈ Aut(Γ). Then we prove that the action of

Aut(Γ) extends to the coordinate ring as follows:

σ · (f + I) = f(σ−1 · ρ) + I

= f(ρ(σ−1)−1) + I

= f(ρ ◦ σ) + I.

First, we show that the action is well defined on the representatives of the cosets. For

h ∈ I, σ ∈ Aut(Γ) and ρ ∈ Hom(Γ, G),

σ · (h(ρ)) = h(ρ ◦ σ)).

Since ρ ◦ σ ∈ Hom(Γ, G) and I is the ideal of the variety Hom(Γ, G), h(ρ ◦ σ) = 0 for

all ρ ∈ Hom(Γ, G) and σ ∈ Aut(Γ). Thus, Aut(Γ) action is trivial on I.

Clearly,

e · (f + I) = f(ρ ◦ e) + I = f(ρ) + I = f + I.

Finally,

(στ) · (f + I) = f((σ ◦ τ)−1 · ρ) + I

= f((τ−1 ◦ σ−1) · ρ) + I

= f(τ−1 · (σ−1 · ρ)) + I

= τ · f(σ−1 · ρ) + I

= σ · (τ · f(ρ)) + I

Therefore, this is a well-defined action on the coordinate ring.

3. Aut(Γ) acts on the invariant subring C[Hom(Γ, G)]G.
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There is an injection from Hom(Γ, G) ↪−→ Gr given by

φ : ρ 7−→ (ρ(γ1), ρ(γ2), ..., ρ(γr)).

See Lemma 2.0.2. Therefore, G acts on Hom(Γ, G) by simultaneous conjugation,

g · ρ = gρg−1 = (gρ(γ1)g−1, ..., gρ(γr)g−1) ∈ Gr.

This extends to a coaction on the ring of polynomials C[Hom(Γ, G)] given by

g · f(ρ) = f(gρg−1).

Then the ring of invariants is defined as

C[Hom(Γ, G)]G := {f ∈ C[Hom(Γ, G)] | g · f = f}.

It suffices to prove that the invariant subring C[Hom(Γ, G)]G is invariant under the

action of Aut(Γ) defined earlier.

Let f + I ∈ C[Hom(Γ, G)]G. Then f(gρg−1) + I = f(ρ) + I for all g ∈ G and all

ρ ∈ Hom(Γ, G). We need to prove that σ ·(f+I) ∈ C[Hom(Γ, G)]G for all σ ∈ Aut(Γ).

Since ρ ◦ σ ∈ Hom(Γ, G),

g · (σ · f(ρ) + I) = f(g−1(ρ ◦ σ−1)g) + I = f(ρ ◦ σ−1) + I = σ · f(ρ) + I

because f + I ∈ C[Hom(Γ, G)]G. Therefore,

σ · (f + I) = f(ρ ◦ σ) + I ∈ C[Hom(Γ, G)]G.
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4. Out(Γ) acts on C[Hom(Γ, G)]G.

Let Inn(Γ) denote the set of all inner automorphisms of Γ. It is enough to show that

for α ∈ Inn(Γ) and f ∈ C[Hom(Γ, G)]G, α · (f + I) = f + I. Since α ∈ Inn(Γ),

the map α : Γ −→ Γ is given by α(w) = vwv−1 for v, w ∈ Inn(Γ). By definition,

α · (f + I) = f(ρ ◦ α−1) + I. Let γi be one of the generators of Γ. Then,

f(ρ ◦ α(γi)) + I = f(ρ(vγiv−1)) + I.

Since ρ is a homomorphism,

f(ρ(vγiv−1)) + I = f(ρ(v)ρ(γi)ρ(v−1)) + I.

Let g = ρ(v) for g ∈ G. Then g−1 = ρ(v)−1 = ρ(v−1). So,

f(ρ(v)ρ(γi)ρ(v−1)) + I = f(gρ(γi)g−1) + I.

Since f ∈ C[Hom(Γ, G)]G, f(gρ(γig−1)) = f(ρ) for all g ∈ G. Hence,

f(gρ(γi)g−1) + I = f(ρ(γi)) + I

for 1 ≤ i ≤ r. Consequently,

α · (f + I) = f(ρ ◦ α) + I = f + I

for all f ∈ C[Hom(Γ, G)]G and α ∈ Inn(Γ).

5. Out(Γ) acts on the character variety

Let A := C[Hom(Γ, G)]G. Then Hom(Γ, G) // G := Specmax(A). We will show that
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action of G on A induces an action on the character variety, XΓ(G) := Hom(Γ, G)//G.

Note that the action of the group G on A is a homomorphism from G→ Aut(A) given

by g 7−→ αg. We prove that each automorphism of A induces an action on the set of

maximal ideals.

Claim: Let A be a commutative ring with unity and αg : A→ A be an automorphism

of A. Then αg induces a bijection on the set of maximal ideals of A denoted by

Specmax(A).

Proof. Let M be a maximal ideal of A. Then M 6= A. We will show that αg(M)

is a maximal ideal of A. Note that αg(M) ⊂ N for some maximal ideal N of A.

Since αg is surjective, α−1
g (N) is a maximal ideal of A. But M ⊆ α−1

g (N). By

maximality of M and surjectivity of αg, it follows that α−1
g (N) = M . Therefore,

N = αg(α−1
g (N)) = αg(M) is maximal in A.

Thus, each automorphism αg of the ring A permutes the set of maximal ideals of A.

Clearly, e ·M = αe(M) = M . Now suppose g, h ∈ G. Then

(gh)(M) = (αg ◦ αh)(M)

= αg · (αh ·M)

since α defines an action on A. Therefore, Out(Γ) acts on Hom(Γ, G) // G.
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