
04-26-2021

Improving Energy Efficiency and Quality-of-Control Metrics in Reliable Multiprocessor
Real-Time Systems

A dissertation submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy at George Mason University

By

Abhishek Roy
Master of Science

George Mason University, 2018
Bachelor of Science

Bangladesh University of Engineering and Technology, 2009

Director: Dr. Hakan Aydin, Professor
Department of Computer Science

Spring Semester 2021
George Mason University

Fairfax, VA

Copyright c© 2021 by Abhishek Roy
All Rights Reserved

ii

Dedication

I dedicate this dissertation to my father, Bikash Chandra Roy, and my mother, Anjana Roy,
for motivating me to start this journey, and my advisor, Dr. Hakan Aydin, for leading me
to complete it.

iii

Acknowledgments

I would like to express my deepest appreciation to the following people– the completion
of my dissertation would not have been possible without their continuous ministration and
active support.

First, I cannot begin to express my thanks to my advisor, Prof. Hakan Aydin. He has
been an excellent mentor, guide and professor to me and I am deeply indebted to him. He
always took good care of me, provided me with very helpful guidance when I got stuck in
my research, and inspired me to keep going during the worst of my days. I have appreciated
his outstanding personality over the years and I have learned a lot of technical and non-
technical things from him which I would value for the rest of my life. I was extremely lucky
to have him as my supervisor.

I would also like to express my deepest gratitude to my respected committee members,
Dr. Songqing Chen, Dr. Parth Pathak and Dr. Qi Wei for investing their valuable time
in my dissertation thesis. I have received valuable advice and guidance from them over the
years which was instrumental in shaping my research work. Their constructive criticisms
enriched this dissertation to a great extent. I also want to thank my research collaborator,
Prof. Dakai Zhu, whose guidance was very crucial to bring this dissertation into fruition.

I am also very much grateful to Prof. Elizabeth White for being extremely kind to me
over the years. She has always been very appreciative to my research and teaching abilities
which was a great inspiration for me. She was kind enough to give me GTA appointments
for a series of semesters and I could not have survived without those. I would also like to
thank the CS department Chair, Prof. Rosenblum for scrutinizing my thesis and providing
his invaluable suggestions to improve it. My sincere thanks should also go to the wonderful
office staffs in the CS department: Michèle, Ryan and Cecelia, who have always been
extraordinarily helpful and provided me with genuine support countless times throughout
the entire PhD journey. I am also grateful to the Provost Office and the NSF for providing
financial support.

Finally, I would like to acknowledge the help and support I received from a lot of other
people, and it is impossible to name them all here. I would like to thank my lab-mates and
colleagues in the CS department at Mason for having interesting research discussions with
me from time to time which helped me generate new ideas. I am also much grateful to my
friends and family who were always there for me to pick me up when I stumbled. A very
special thanks goes to my housemates who have been extremely supportive for my PhD
research throughout the years.

iv

Table of Contents

Page

List of Tables . viii

List of Figures . ix

Abstract . xi

1 Introduction . 1

1.1 Problem Statement . 4

1.2 Contributions . 6

1.3 Dissertation Organization . 9

2 Background and Literature Review . 10

2.1 Real-Time Embedded Systems . 10

2.2 Multicore Systems . 13

2.2.1 Heterogeneous Multicore Processors 15

2.3 Energy Management for Real-Time Systems 17

2.3.1 Energy Management for Uniprocessor Real-Time Systems 18

2.3.2 Energy Management for Multiprocessor Real-Time Systems 19

2.4 Reliability Management in Real-Time Systems 21

2.4.1 Reliability Management on Multiprocessor Real-Time Systems . . . 24

2.5 Joint Management of Energy and Reliability 25

2.6 Management of Quality-of-Control . 28

3 System Model and Assumptions . 31

3.1 System Model . 31

3.1.1 Platform and Application model . 31

3.1.2 Power Model . 32

3.1.3 Fault and Recovery Model . 33

4 Energy-aware Fault-Tolerant Real-Time Scheduling of Independent Frame-based

Tasks . 36

4.1 Energy-Aware Standby-Sparing on Heterogeneous Multicore Systems 37

4.1.1 Proposed Schemes . 39

4.1.1.1 Primary/Backup Role Assignment 39

v

4.1.1.2 Frequency Assignment on Primary 41

4.1.2 Experimental Evaluation . 45

4.1.2.1 Impact of utilization . 47

4.1.2.2 Impact of tscale. 48

4.1.2.3 Impact of pscale. 48

4.1.2.4 Impact of Workload Variability. 49

4.2 Energy-Aware Mixed Primary-Backup Scheduling on Heterogeneous Multi-

core Systems . 50

4.2.1 Proposed Schemes . 51

4.2.1.1 Task partitioning . 53

4.2.1.2 Speed assignment . 55

4.2.2 Experimental Evaluation . 59

4.2.2.1 Evaluation of Partitioning Algorithms 60

4.2.2.2 Evaluation of Speed Assignment Algorithms 63

4.2.2.3 Additional Results . 66

4.3 Concluding Remarks . 68

5 Energy-aware Fault-Tolerant Real-time Scheduling of Frame-based Tasks with

Precedence Constraints . 69

5.1 Proposed Framework . 71

5.1.1 Recovery Mode and Contingency Schedule 72

5.1.2 Task partitioning and ordering . 77

5.1.3 Speed assignment . 81

5.1.4 Dynamic Reclamation . 84

5.2 Experimental Evaluation . 86

5.3 Concluding Remarks . 90

6 Energy-aware Fault-Tolerant Real-Time Scheduling of General Periodic Tasks . . 91

6.1 Preliminaries . 94

6.1.1 Work-Conserving Fixed-Priority Periodic Scheduling 94

6.1.2 Non-Work-Conserving Fixed-Priority Periodic Scheduling 95

6.1.3 Preference-Oriented Priority Assignment (PPA) 97

6.2 Mixed Primary/Backup Scheduling of Periodic Tasks 98

6.2.1 Task Partitioning . 101

6.2.2 Priority Assignment . 102

6.2.3 Frequency Assignment . 102

vi

6.2.4 Promotion Time Computation for Backup Tasks 103

6.3 Reverse Preference-Oriented Priority Assignment (RPPA) 105

6.4 Algorithm MPB-PS . 106

6.5 Experimental Evaluation . 109

6.6 Concluding Remarks . 114

7 Quality-of-Control Management via Period Assignment in Real-Time Embedded

Systems . 116

7.1 Task Period Assignment on Multiprocessor Real-Time Control Systems . . 116

7.1.1 Models and Assumptions . 118

7.1.2 Minimizing Control Cost . 120

7.1.2.1 Problem Definition . 120

7.1.2.2 Optimization on a single processor with arbitrary convex

control cost functions . 121

7.1.2.3 Optimization on a multiprocessor platform 123

7.1.3 Proposed Algorithms . 124

7.1.3.1 Local period assignment algorithms 124

7.1.3.2 Reduction to Single Processor (RTSP)

Technique . 126

7.1.4 Evaluations and Discussions . 129

7.1.5 Concluding Remarks . 139

8 Conclusions . 141

8.1 Summary of the Dissertation’s Contributions 141

8.1.1 Energy-Aware Fault-Tolerant Scheduling of Real-Time Tasks 141

8.1.2 Quality-of-Control Management via Period Assignment 143

8.2 Future Work . 144

8.2.1 Energy-Aware Fault-Tolerant Scheduling on Heterogeneous Cluster

Based Multicores . 144

8.2.2 Energy-Aware Fault-Tolerant Scheduling of Dynamic-Priority Peri-

odic Tasks . 145

Bibliography . 146

vii

List of Tables

Table Page

4.1 Example Task Set 1 . 40

4.2 Example Task Set 2 . 42

4.3 Example Task Set 1 . 54

4.4 Example Task Set 2 . 59

6.1 Example Task Set 1 . 95

6.2 Example Task Set 2 . 98

7.1 Task set for Example 1 . 123

viii

List of Figures

Figure Page

2.1 Multicore processor with shared memory . 14

4.1 A standby-sparing system . 38

4.2 Executions under different configurations 41

4.3 Executions under different schemes . 43

4.4 Frequency assignment with MO and OA schemes 43

4.5 Impact of utilization . 47

4.6 Impact of tscale and pscale . 48

4.7 Impact of workload variability . 49

4.8 Concurrent Execution of Primary and Backup Tasks 52

4.9 Canonical Execution Order . 52

4.10 Task partitioning algorithms . 53

4.11 Static Speed Assignment . 56

4.12 Dynamic Policies . 57

4.13 Execution under different schemes . 58

4.14 Performance of partitioning algorithms . 61

4.15 Performance of the speed assignment algorithms 64

4.16 Impact of threshold value in FTH algorithm 66

4.17 Additional Evaluations . 67

5.1 An Example Task Graph (DAG) . 69

5.2 An Example Contingency Schedule . 75

5.3 Task Set for the Running Example . 78

5.4 Task partitioning algorithms . 78

5.5 Contingency Schedules and Speed Assignments under LTF scheme 79

5.6 Contingency Schedules and Speed Assignments under TBLS scheme 80

5.7 Impacts of Utilization, tscale, and pscale. 85

5.8 Impact of the LP core’s maximum speed, number of tasks, and workload

variability . 89

6.1 Primary/Backup Overlap . 93

ix

6.2 Work-conserving and non-work-conserving fixed-priority schedules 95

6.3 Mixed Primary/Backup Scheduling with RMS 99

6.4 Mixed Primary/Backup Scheduling Components for Fixed-Priority Periodic

Tasks . 100

6.5 Schedule for PPA . 102

6.6 Schedules with DVFS . 103

6.7 Schedules with Backup Delaying . 105

6.8 Schedules for RPPA . 107

6.9 Impact of Utilization . 109

6.10 Impact of various system parameters . 113

7.1 Partitioning Options for Example 1 . 124

7.2 Normalized cost for different schemes with varying system utilization; EF = 1.5133

7.3 Impact of the elasticity factor . 135

7.4 Impact of the number of tasks . 136

7.5 Impact of utilization on different types of task sets (30 tasks) on 8 CPUs . . 137

7.6 Impact of Utilization - Comparison to Exhaustive-Search Based Optimal So-

lution . 138

7.7 Impact of number of tasks - Comparison to Exhaustive-Search Based Optimal

Solution; UNtot = 1.2 . 139

x

Abstract

IMPROVING ENERGY EFFICIENCY AND QUALITY-OF-CONTROL METRICS IN
RELIABLE MULTIPROCESSOR REAL-TIME SYSTEMS

Abhishek Roy, PhD

George Mason University, 2021

Dissertation Director: Dr. Hakan Aydin

Energy efficiency and reliability management are two important aspects of real-time

embedded systems, in addition to strict guarantees for timing constraints. The objective of

this research is to optimize performance metrics such as energy consumption and quality-

of-control, by means of appropriately scheduling computational tasks and applying system-

level energy management techniques. Reliability is achieved via run-time fault tolerance,

which must be based on additional hardware and/or software components. These addi-

tional components are often redundant for normal operation and they can cause significant

increase in overall energy consumption. Therefore, simultaneously managing both energy

and reliability, two opposing factors, has been an intriguing research topic for real-time

embedded systems.

In this dissertation, we first address the problem of minimizing energy consumption

for the emerging heterogeneous multi-core systems, which have a wide range of power-

performance characteristics. Reliability is achieved via scheduling two copies (primary and

backup) of each task on different processing cores. Each processing core is equipped with

Dynamic Voltage and Frequency Scaling and Dynamic Power Management features in order

to reduce the energy consumption.

We address the problem for independent real-time tasks on a heterogeneous dual-core

processor, and we propose several algorithms which take advantage of the heterogeneity

to reduce energy consumption while ensuring hard deadlines with reliability guarantees.

We also address the problem for tasks with precedence constraints and develop efficient

solutions. Then, we tackle the problem for the general real-time periodic task model with

arbitrary periods for the same heterogeneous platform. We propose techniques for task

partitioning, priority assignment, and runtime scheduling of periodic tasks to achieve relia-

bility and energy efficiency. Evaluation of the proposed schemes was conducted by extensive

simulation experiments which show their effectiveness within a wide range of system pa-

rameters.

Finally, we tackle the problem of partitioning a set of real-time tasks on a homogeneous

multiprocessor control system, and at the same time, assigning periods to those tasks (within

an allowable range) in order to maximize the quality-of-control for the system. We model

the quality-of-control as a concave function of task invocation rates (periods). We propose

a family of heuristics that are based on effectively converting the multiprocessor problem

to a single but faster uniprocessor system. We conduct extensive simulation experiments

that demonstrate the superior performance of our proposed algorithms.

Chapter 1: Introduction

In real-time embedded systems, guaranteeing timing constraints is of utmost importance.

The real-time operation is, in general, heavily coupled with the environment, and often it

is the case that, a failure in the system may have very serious, even life-threatening con-

sequences. Some examples of such systems include industrial control systems, autonomous

driving systems, flight control systems and high-confidence medical equipments. Due to

their safety-critical nature, these systems are often furnished with fault-tolerant mecha-

nisms, by provisioning redundant hardware/software components. Moreover, in order to

provide timing guarantees with high confidence, these systems are often designed to incor-

porate the worst-case scenarios, which may result in an under-provisioning of the system

and inefficient use of resources during average-case operation. Therefore, the problem of

implementing real-time systems with strict timing and reliability guarantees while using

system resources appropriately is an active research area.

Multiprocessor systems have become the de-facto standard for most modern comput-

ing platforms, and real-time systems have also been designed which can take advantage of

multiple parallel processing cores. A recent development in multicore platforms is the het-

erogeneous multicore processors in which, multiple processing cores, with dissimilar power-

performance characteristics, are combined on to a single silicon chip. These heterogeneous

architectures are often seen as a key to tackle an application with varying energy or perfor-

mance requirements.

Recently, energy-efficient operation has become an important aspect for many computing

systems, regardless of whether it is battery-powered or not, because of the associated energy

cost and the negative impact on the environment. The two most common energy saving

techniques available at the system-level are Dynamic Voltage and Frequency Scaling (DVFS)

and Dynamic Power Management (DPM). DVFS saves energy by reducing the processing

1

(clock) speed of the core, and DPM can put the core in a low-power (sleep) state. In the last

decade, numerous studies explored how to minimize energy consumption using DVFS and

DPM. Another important aspect of any practical real-time system is fault tolerance, which

means resiliency to various runtime faults. If a fault occurs, the system should be able to

detect it, mask it, recover from it and re-execute the faulty task– all within a predetermined

deadline. This is generally achieved by designing the systems with redundant components

as necessary, which again, results in an increase in the energy and infrastructure cost.

Since both energy and fault tolerance are particularly critical factors, and since they

work in opposing directions to each other, it has been a challenging research problem to

address energy and reliability of a system in tandem. Many of the recent research efforts

have investigated this problem in the context of homogeneous multiprocessor systems. Some

solutions were developed that exploit only software redundancy, while some others provision

additional hardware components in an energy-aware manner. One promising direction is

the energy-aware standby sparing systems in which, each processing core is equipped with

a dedicated spare core. Any task executing on the primary core will have a corresponding

backup task on the spare core. Several techniques have been proposed to minimize the

overall energy consumption via the application of DVFS and DPM on the primary and

spare cores. Another approach is the mixed primary backup (MPB) framework in which,

processing cores are not designated as primary or spare; instead, a processing core can

schedule both primary and backup copies of tasks with the only constraint that the two

copies of the same task must be placed on different processing cores. Both of the approaches

can be used to build energy-efficient and resilient systems which can tolerate both transient

and permanent faults, which are the two most common type of faults in real-time embedded

systems [1].

Many real-time tasks are periodic in nature, and they appear in two main types. When

all tasks in the set has a common period, it is called a frame-based system [2–4]. The

other real-time task model is called general periodic tasks, where each task can have an

arbitrary period [5]. A number of real-time applications are made up of tasks with precedence

2

constraints, which means, the various tasks in the system not only has a deadline, but also

there can be data dependencies between one another. Precedence constraints can capture

the relationship when a task can only start after some other tasks have finished execution

and made their results (data) available. The precedence constraints among tasks can be

modeled as a directed acyclic graph (DAG). It is possible to make use of the MPB approach

and allocate the primary and backup copies in such a way that is consistent with the data

dependency, provides reliability, and minimizes the overall energy consumption. The MPB

approach is also useful for general periodic tasks, where, for each task, a job is generated

once in its period, and the job must be completed within a deadline (which is usually

the period boundaries.) To achieve reliability with MPB, each job is provisioned with a

backup copy on the alternate core, and DVFS and DPM can be used to minimize energy

consumption. To further minimize the energy overhead, it is often very useful to cancel

the backup job once the primary job completes without any error. Backup jobs can be

delayed considering the deadline, which can help providing more room and applying DVFS

on the primary jobs. We investigated a few techniques on this general idea using simulation

studies which show very reasonable savings in energy consumptions, at the same time being

tolerant to both transient and permanent faults.

Another major application area of real-time systems is the industrial control systems.

In general, digital control systems are seen as much more capable, flexible and efficient than

their analog counterparts. It is known that the assigned period (invocation frequency) of

a control task directly affects the quality-of-control, and therefore, the period assignment

problem for control task design has been extensively studied in the literature. With the

advent of high-performance homogeneous multiprocessor systems, the period assignment

problem has gained a new dimension because of the multiprocessor task allocation prob-

lem. While the multiprocessor task allocation problem, in general, falls in the class of

NP-complete problems, researchers have been persistently searching for efficient heuristics.

The problem becomes more interesting when both task allocation and period assignment

problems are addressed at the same time.

3

1.1 Problem Statement

In this dissertation, we investigate two problems in real-time systems scheduling. The first

problem has a relatively larger scope: the energy-efficient scheduling of real-time tasks with

fault tolerance requirement. In this setting, we tackle the three interconnected dimensions

of the general problem, namely, i.) strict timing guarantees, ii.) tolerance to runtime faults,

and iii.) energy efficiency. We consider a set of real-time tasks with hard deadlines that are

executed on a dual-core processor with tolerance to both transient and permanent faults

while minimizing the overall energy consumption. To implement fault tolerance, we create

a “backup” copy for each (“primary”) task, and ensure that they are always scheduled on

separate processing cores. The problem is to determine the task-to-processor allocation,

scheduling and runtime speed setting of the tasks satisfying all the constraints and min-

imizing energy consumption. As the platform model, we consider the recently emerged

heterogeneous multicore processors which are known to be energy efficient because one can

exploit their wide range of power-performance characteristics based on the current workload

at hand. The problem gains a new dimension when we use heterogeneous multicores in a

fault-tolerant setting to execute real-time tasks. This dissertation addresses this problem

by focusing on heterogeneous dual-core processors, and considering three different real-time

task models, as stated below:

• Independent frame-based tasks: We consider a set of real-time tasks having a common

period (which is also their common deadline). All tasks become ready to run at

the beginning simultaneously and they must complete before the common deadline

(also called the frame deadline.) This “execution frame” is repeated periodically.

We execute the task set on a heterogeneous dual-core system with DVFS and DPM

features to manage energy consumption. To implement fault tolerance, we took two

separate approaches: i.) the standby-sparing approach, which designates one core as

primary and the other as backup, ii.) the mixed primary/backup approach, where

each core can execute a mix of primary and backup tasks. Under such settings,

4

the problem is to minimize the overall energy consumption by determining: i) the

allocation of tasks such that the primary and backup copies of each task are assigned

to different cores, and, ii) the processing frequency (speed) assignment to individual

tasks.

• Dependent frame-based tasks: In this direction, we consider a set of frame-based

real-time tasks with a common period with additional constraints due to the data

dependencies between them. These dependencies govern the order of task execution

and hence called the precedence constraints. A directed acyclic graph (DAG) can be

used to model such constraints. The task set is executed on a heterogeneous dual-

core system with DVFS and DPM enabled. We consider the mixed primary/backup

approach for fault tolerance. The problem is to minimize the energy consumption

by determining how to schedule the primary and backup tasks in proper order (along

with the execution frequencies) such that all timing and reliability guarantees are met.

• General periodic tasks: We consider general periodic real-time tasks in which, each

task can have an arbitrary period and generates a job instance periodically, with

deadlines equal to the periods. We adopt the mixed primary/backup approach and

schedul a mix of primary and backup copies on each of the two processing cores. The

framework is priority-driven: at any time, on a given core, the ready task instance

with highest priority is executed. Priorities are assigned to tasks offline (fixed-priority

system). To manage the overall energy consumption, we use two mechanisms: i.)

the primary tasks are executed at low voltage/frequency levels using DVFS, and, ii.)

the backup copies are delayed to the extent it is possible to enable their cancellation

in case the primary completes without a fault. In this setting, the problem is to

determine the task allocation, priority assignment, execution frequency assignment

and backup delaying mechanism which results in the minimal energy consumption for

the overall system.

5

For the second part of this dissertation, we consider a control-system platform and in-

vestigate the problem of maximizing the overall quality of control, by means of allocating

tasks to processors and choosing a suitable invocation rate (feasible period) for each of the

real-time control tasks. In this second problem, we specifically consider a homogeneous

multiprocessor system. The quality-of-control of a task is defined by a concave relationship

to the invocation rate (period) of each real-time control task. The objective is to maximize

the overall quality-of-control of the system while guaranteeing a feasible schedule by deter-

mining: i) the task to processor allocation, and, ii) the invocation-rate (or, period) of each

control task.

1.2 Contributions

In the dissertation, in the context of the first problem of energy-aware fault-tolerant real-

time scheduling of independent frame-based tasks, we made the following contributions.

• We first considered the so-called “standby-sparing” system using a heterogeneous

dual-core processor, by designating one core as the primary and the other core as the

backup processor. For each real-time task allocated to the primary core, we created a

backup task with the same timing constraints and assigned it to the backup core. By

means of an acceptance test, we can detect if a primary copy completes without error,

and we cancel the backup copy accordingly, thereby saving energy at run-time. In our

investigation, we elaborate on the factors which are affected based on our choice of

primary and backup core. We develop a mechanism to cancel the backup task copies

as soon as possible, while keeping the reliability guarantees. The simulation results

show that our algorithms can effectively save energy consumption throughout a wide

range of system configurations. Using our simulation results, we also identify that,

there are some cases in which allowing some backup task execution may help reducing

the overall energy consumption of the system.

• We also addressed the same problem on a dual-core system, but using the “mixed

6

primary/backup” approach, in which, each core can execute a mix of primary and

backup task copies. Compared to the standby-sparing configuration, this system has

more flexibility for task allocation among the two available cores. This allows us to

make scheduling decisions with more choices available to us, and we opt to exploit

it to reduce the overall energy consumption of the system. We developed several

techniques for task allocation and execution frequency assignment which can remove

redundant execution and conserve energy. Our simulation results also confirm this

and it shows that our proposed schemes perform very close to the theoretical limit.

To the best of our knowledge, this is the first study which addresses energy minimization

of fault-tolerant scheduling of real-time tasks on heterogeneous dual-core systems. We

conduct extensive simulation studies and our contribution is published in [6, 7].

For the problem of energy-aware fault-tolerant real-time scheduling of dependent frame-

based tasks, we considered the same platform of a heterogeneous dual-core system and the set

of real-time tasks with a common period, however, the tasks now have data-dependencies

among them, which is modeled using a directed acyclic graph (DAG). We developed a

“main” or default schedule assuming no runtime faults will occur, and also a “contingency”

schedule which takes care of fault recovery in case a fault is detected. We used mixed

primary/backup approach and developed algorithms to generate the main and contingency

schedules considering the data dependencies and the common deadline. We developed

techniques for task partitioning and execution speed assignment which can result in a very

low energy consumption while providing timing and reliability guarantees. We also proposed

a reclamation technique which can operate at runtime and reduce the energy consumption

even further. Our simulation experiments demonstrate the effectiveness of the proposed

techniques and the result also show that our schemes perform very close to the theoretical

lower limit for energy consumption. Our findings are published in [8].

For the problem of energy-aware fault-tolerant real-time scheduling of general periodic

tasks, we considered a platform settings similar to the previous problems, however, we

considered general periodic real-time tasks in which each task may have an arbitrary period,

7

which is also equal to their respective deadlines. Each task generates a sequence of jobs

with a periodic interval. We investigated the traditional real-time scheduling theory for

periodic tasks, and adapted it to support fault tolerance with timing guarantees. We used

mixed primary/backup approach and allocated a mix of primary and backup tasks on each

processing core. Each task is given a fixed priority offline and all of its jobs have that

same priority. To save energy consumption, we used DVFS judiciously on each core to slow

down the execution of the primary jobs without missing any deadlines. Furthermore, we

delayed the execution of the backup jobs as much as possible so that they can be canceled

once the primary copy completes successfully in fault-free cases. We developed several

algorithms for task partitioning, priority assignment and execution frequency assignment

which can reduce the overall energy consumption significantly. Our framework works in

both offline and online phases. In particular, we proposed a novel priority assignment

scheme which, when used with a “dual queue based delaying” mechanism, can result in the

cancellation of most of the backup jobs and thereby significantly reduces the overall energy

consumption. We justified our schemes using extensive simulation experiments which show

that our proposed schemes perform considerably better than the traditional techniques in

terms of overall energy consumption. We also show that the energy consumption of the

proposed technique comes very close to the theoretical limit. These results are published

in [9, 10].

For the problem of Quality of Control Management via period assignment in real-time

embedded systems, we considered a homogeneous multicore system and a set of real-time

control tasks, which is a type of general periodic tasks used in digital control systems. We

modeled the quality-of-control as a function of task frequencies (invocation rate) and we

developed a few techniques to maximize it, subject to the available computational capacity

of the multicore processor. Although the problem is fundamentally NP-hard, we propose

heuristic techniques to allocate tasks to processors and assign their invocation frequency.

In essence, we developed a technique which reduces the problem to a (more powerful)

single processor system, and then it computes the optimal frequency assignment for each

8

task. Then, task partitioning is performed using another heuristic considering the optimal

frequencies. In this way, we use all the tasks’ periods in a “global” way to determine our

scheduling decisions. We performed extensive simulation experiments which show that our

proposed technique can yield significant gains in the overall quality-of-control of the system

and it comes very close to the theoretical optimal limit. These results are published in [11].

1.3 Dissertation Organization

The rest of this dissertation is organized as follows. Chapter 2 presents the background infor-

mation and literature review on the relevant topics addressed in this dissertation. Chapter

3 presents the details of our system models and assumptions. The details of energy-aware

scheduling for independent frame-based tasks with fault tolerance and timing constraints

are presented in Chapter 4. Chapter 5 presents the research on energy-aware fault-tolerant

scheduling of real-time frame-based tasks with precedence constraints. In Chapter 6, we

discuss our algorithms and results for the fault-tolerant scheduling of general periodic tasks

with strict timing guarantees and energy efficiency. In Chapter 7, we present our study

and results for the quality-of-control management via period assignment in real-time em-

bedded systems used to implement digital control systems on homogeneous multiprocessor

platforms. Finally, Chapter 8 concludes the dissertation and offers directions for future

work.

9

Chapter 2: Background and Literature Review

2.1 Real-Time Embedded Systems

Real-time systems are characterized by a set of computational activities that need to be

completed within their respective deadlines. The correctness of the system depends not

only on the output of a computation, but also at what time the output is produced [12]. In

general, these systems are heavily coupled with the environment in which it operates. As

the operating environment evolves with time, the system needs to react to it appropriately

in a timely manner, in order to maintain smooth and flawless operation. For example, a

multimedia system playing a video file needs to process each video frame within a predefined

time period, which is determined based on the real-world time scale, such that the video

stream plays at the target rate. A real-time activity failing to complete within the given

time-period (or, deadline) may have serious consequences on the environment. In a soft

real-time system (such as a video player), the consequences could simply be a degraded

service to the users, but in a hard real-time system, failing to meet a deadline may have

severe ramifications for the operating environment, which can potentially put human lives at

risk in cases of safety-critical application-areas (e.g., space missions, autonomous driving,

nuclear power plants, railway switching systems, flight control systems.) Therefore, in

many practical hard real-time systems, additional hardware components are redundantly

provisioned in order to make the deadline guarantees highly reliable.

A real-time task is a computational activity which has a deadline associated with it. A

task can be a single computation, in which case it is called an aperiodic task, or, it can be

a sequence of computational jobs released with a certain periodicity, called periodic tasks.

An instance of a periodic task is called a job, and a task releases such jobs with a given

minimum inter-arrival time, referred to as the period of the task. The maximum execution

10

time required to complete a job is called the worst-case execution time (WCET) of a job.

The absolute deadline of a job is defined as the exact time when the job must complete its

execution, whereas the relative deadline is defined as the time difference between the release

time and the absolute deadline of the job. In many cases, the relative deadline is set to be

equal to the period of the task – such tasks are called implicit-deadline tasks. An important

sub-category of the periodic task model is the frame-based model where all tasks have the

same period and implicit deadline [2–4]. This often models a set of related control tasks

that need to be executed according to a fixed or preferred order on a regular basis.

When a set of real-time tasks are executed on an embedded hardware platform, multiple

job instances may be eligible for execution at any given moment. Therefore, a scheduling

policy is used to determine which ready job will be executed on a given processor next, which

is either driven by a predetermined execution sequence computed offline (clock-driven), or

determined at runtime based on the priority of the jobs (priority-driven). For periodic tasks

with priority-based scheduling, if all jobs of a given task are assigned the same priority, then

the framework is called a fixed-priority scheduling policy. Examples of some fixed-priority

schedulers include rate-monotonic (RM) [13,14] and deadline-monotonic (DM) [15] policies.

On the other hand, dynamic-priority schedulers may assign different priorities to different

instances of the same task. Earliest-deadline-first (EDF) and least-slack-time-first (LST)

are two well-known examples of such scheduling policies [5].

Many real-time applications consists of not only periodic tasks with hard timing con-

straints, but also non real-time tasks [12]. In these cases, the system ensures all the real-time

jobs’ completion before their respective deadlines and it opts to minimize the average re-

sponse times of the non real-time (aperiodic) jobs. This problem has been addressed in

the literature both in the context of fixed priority [16–18] and dynamic priority [19, 20]

schedulers. The earliest deadline late (EDL) is known to be an optimal aperiodic server for

dynamic-priority systems [19,20]. For dynamic-priority systems, another popular technique

which is known to provide better response times for aperiodic tasks is called the constant

bandwidth server (CBS) [21,22].

11

In certain applications, computational activities cannot be executed in arbitrary order

but have to respect some precedence relations defined at the design stage [12]. Many

researchers have described these precedence relations by means of a directed acyclic graph

(DAG) [23–26]. The DAG imposes a partial order on the jobs of the task set, which needs

to be satisfied at runtime. Many such techniques have been proposed in the literature which

can optimize system performance while satisfying precedence relations [27–29].

Some real-time systems have multiple tasks which may compete for a shared resource.

Although synchronization tools such as semaphores [30–32] can be exploited to provide

exclusive use of the resource by some tasks, this might jeopardize the deadline of some

other tasks waiting on those resources. Moreover, due to the priority inversion problem

[33], a high priority task may miss its deadline because of some lower priority job holding a

“lock”. Many researches have been conducted to address mutual exclusion with guarantees

on “blocking time”. Some of such techniques include the stack resource policy [34], priority

inheritance protocol [33] and priority ceiling protocol [35].

In case of a multiprocessor embedded system, the scheduling policy also needs to decide

on which processor should a ready job be executed. The two main approaches proposed in

the literature are partitioned scheduling and global scheduling [36]. Partitioned scheduling

works in two steps. First, the task set is partitioned and each processor is assigned a subset

of tasks. In the second step, an uniprocessor scheduling policy is used to execute them on

each of the processors. Partitioned approach has been very popular because it allows to

readily deploy the results obtained from uniprocessor-research, however, partitioning a set

of tasks on to a set of multiprocessors is known to be NP-complete. Global scheduling, on

the other hand, does not use task partitioning, instead, it maintains a global ready queue,

and the M ready jobs with the highest priorities are executed on M processors in parallel.

There exists global scheduling algorithms (e.g., Pfair [37], LLREF [38]) which can execute

a task set optimally1, however, these algorithms may suffer from migration cost, in which, a

job is preempted on one processor and resumed on another processor later, incurring extra

1Optimal in the sense that if there exist some algorithm which can schedule a given task set feasibly
(without any deadline miss), then the referred algorithm can also schedule it feasibly.

12

runtime overhead and context-localization issues. It has been shown in the literature [39]

that, partitioned and global scheduling policies are incomparable in the sense that there

exists task sets that can be feasibly (without missing any deadlines) scheduled by one but

not the other.

Several heuristics have been proposed and analyzed for partitioning real-time tasks ef-

ficiently in a near optimal way [40–42]. These heuristics order tasks according to some

certain criteria (e.g., decreasing utilization values, which is defined as the ratio of a task’s

worst-case execution time to its period and it often denotes a task’s CPU requirements)

and typically allocate tasks by using one of the well-known rules such as First-Fit, Best-Fit

or Worst-Fit [40]. Lopez et al. [40] derived utilization bounds for partitioned scheduling

on homogeneous multiprocessor systems when each processor uses EDF and variants of

First-Fit, Best-Fit, and Worst-Fit that order tasks according to their utilization values first

(often referred to as Reasonable Allocation Decreasing (RAD) algorithms). Carpenter et

al. [41] classified the scheduling approaches on multiprocessor systems based on the com-

plexity of the priority assignment of the tasks, and the degree of migration allowed. More

recently, Baruah [42] used the metric called speedup factor to compare the performances of

various allocation schemes for partitioned scheduling on multiprocessors. Pointing out the

ineffectiveness of the utilization bound for partitioned scheduling, Baruah suggested that

the speedup factor provides a deeper insight into the behavior of partitioning techniques

and derived the speedup bounds for various RAD algorithms.

2.2 Multicore Systems

Multicore processors integrate multiple processing cores on a single chip along with multiple

levels of caches. A 4-core homogeneous system with a multi-level cache architecture having

both private and shared cache is schematically shown in Figure 2.1. Multicore processors

were first proposed to primarily address the so called “power wall” problem which indicates

that, although transistor count in a given chip-area would rapidly grow following Moore’s

13

Law [43], increasing the CPU clock frequency on a single core CPU cannot be sustained

due to the exponential increase in its power consumption and consequently the increase

in heat-dissipation. Multicore processors handle this problem by increasing the number

of cores in a single silicon die, but operating the cores at a sustainable clock rate, such

that the Thermal Design Power (TDP) of the entire chip is not violated. This has the

benefit of keeping the power-consumption low on each core, and at the same time execute

multiple concurrent execution-threads on the available CPUs. The multiple cores would

exploit thread-level parallelism where application-threads are distributed across the cores

and executed in parallel. Impressive performance improvements can be achieved if the

application code can be parallelized appropriately [44].

P P PP

Private
Cache

Private
Cache

Private
Cache

Private
Cache

Shared cache Shared cache

Memory

Interconnect

Figure 2.1: Multicore processor with shared memory

The earliest multicore processors were homogeneous multicores, in the sense that all the

processing elements were identical in terms of micro-architectural design, functionalities,

and power-performance characteristics. The historical way that the individual processors

in a shared memory multiprocessor communicate has been through a common bus shared

by all processors [45]. To improve memory access time, each processor has its own local

cache memories, usually one or two levels. As a broadcast mechanism, the common bus

14

can facilitate cache coherency as well, however, common bus technologies are problematic

in terms of latency and bandwidth. Some multicore processors use a cross-bar interconnect

between processor modules. Other interconnection techniques include ring buses [46] and

switched on-chip networks [47]. The shared memory itself can be implemented in different

ways with various pros and cons, and all general purpose multicore processors today support

a cache-coherent shared memory system. Various cache organization architectures have

been proposed in the literature which relies on private, shared or mixed cache, and flat or

hierarchical cache structures [48–51].

Multicore systems are heavily used in industrial control applications, personal computers

such as laptops and desktops, mobile and embedded devices, and also in the data centers and

cloud-computing. Many real-time and safety-critical applications have also been developed

on homogeneous multicores [52–54] which opt to take advantage of scheduling workload via

parallel threads. Although multicore processors can exploit application-code parallelism

very efficiently, the increasing core-count hits the thermal power budget very quickly, and

as a consequence, all the available processing cores cannot be used simultaneously– some

of the cores needs to be switched off or significantly under-clocked. This gives rise to the

“dark silicon” problem which is an important research area [55].

2.2.1 Heterogeneous Multicore Processors

A recent development in multicore technology is heterogeneous, or asymmetric multicores,

in which, the multiple cores in a chip can be of very different nature [44, 56–58]. This

difference may come from their Instruction Set Architectures (ISAs), power-performance

characteristics and specializing cores for many compute-intensive but frequently occurring

tasks (such as Discrete Fourier Analysis and cryptographic operations.). In a broad sense,

the heterogeneous architectures can be categorized in two types: performance-asymmetric

and functionality-asymmetric.

Performance asymmetry is achieved by combining processing cores which have difference

in their power and performance characteristics, but all the cores share the same Instruction

15

Set Architecture (ISA). This is the most common type. The difference emerges from their

micro-architectural features, such as in-order or out-of-order execution. The complex cores

can provide very high performance, but at the cost of a high power consumption. The

simpler cores are very power-efficient, but they provide only a modest performance. This

is known as single-ISA heterogeneous architecture in the literature [59, 60]. The main

advantage of this approach is that the same binary executable can be run on any type

of cores, and the main challenge is to identify the appropriate set of cores based on the

type of workload at hand [61–64]. Examples of commercial asymmetric multicores include

ARM big.LITTLE [65] systems, which integrate high performance out-of-order cores with

low-power in-order cores. Another example is nVidia Kal-El (Tegra 3) [66], which combines

four high-performance cores with one low-power core.

The advantages of heterogeneous multicores in terms of power and energy consumption

have been previously studied by Pricopy et al. [56]. It has been shown that power and

performance characteristic can scale differently based on the core-type and the running

application. Energy saving is obtained by switching on appropriate cores and setting a

operating frequency via DVFS based on a given workload. Such task scheduling techniques

have been proposed in the literature [67–71]. In [67], the authors presented a throughput-

aware runtime task allocation approach called Sparta, in which, they predicted task behavior

across heterogeneous cores and performed task-to-core mapping at runtime such that en-

ergy efficiency is maximized. In [68], the authors addressed self-adaptive multithreaded

application in the context of heterogeneous multiprocessing and proposed a runtime system

which can enhance “performance per watt” metric by dynamically adapting system state.

[69] describes a hierarchical power management framework for asymmetric multicores by

making use of control theory. Their scheme can achieve optimal power-performance effi-

ciency while respecting the thermal design budget. The work in [70] coordinates various

energy saving techniques such as dynamic voltage/frequency scaling, load balancing, and

task migration based on the principles of “price theory”, and develops a distributed and

16

scalable power management framework for heterogeneous multicores. A more detailed sur-

vey of the architectural and system-level techniques proposed for heterogeneous multicores

can be found in [71].

Functionality-asymmetric processors represent a large class of heterogeneous architec-

tures [44]. These are abundantly used in Multiprocessor System-on-Chips (MPSoC) which

combine general purpose CPU cores, GPU cores, DSP blocks, and various hardware accel-

erators or IP blocks (e.g., video encoder/decoder, imaging, modem, WiFi, Bluetooth.)

2.3 Energy Management for Real-Time Systems

Energy management has been a very important aspect in designing embedded systems.

Many embedded systems are battery powered, implying that energy-efficient operation

would lead to a higher battery life. Moreover, for many ubiquitous devices (such as embed-

ded sensors, pace-makers), it may not be practical to replace a drained battery, therefore,

these systems need to be extremely low-power or be able to harvest energy from the en-

vironment. On the other hand, for high-performance embedded systems built on top of

large multiprocessors, the energy and cooling cost, as well as the environment protection

objectives contribute to the importance of energy management research.

The two primary energy-management techniques used in embedded systems are called

Dynamic Voltage and Frequency Scaling (DVFS) and Dynamic Power Management (DPM).

DVFS exploits the convex relationship between power consumption and operating frequency

of a processor. By selecting an appropriate supply voltage and operating frequency, DVFS

can effectively reduce the energy consumption for a given workload [72–74]. Most modern

processors are equipped with DVFS for energy management, including ARM Cortex, Intel

(with Speedstep technology) and AMD (with PowerNow! feature). DPM, on the other

hand, aims to conserve energy by putting various system component in to a low-power state,

when they are not in use. This technique has become very popular in research communities

because it allows to minimize the leakage-power consumption, which is an increasing concern

17

in high-density silicon chips [75–78]. Most system components offer one of more low-power

state(s). However, putting a device to a low-power state incurs some transition time and

energy cost. As a result, the concept of break-even time has emerged, which denotes the

minimum time-duration for which the device must remain in the low-power state in order

to compensate for the cost of transition [79].

2.3.1 Energy Management for Uniprocessor Real-Time Systems

The earliest studies on DVFS for uniprocessor systems were themed to slow down the CPU

as much as possible while ensuring that deadlines are met even when every task presents its

worst-case workload. One of such study [72] presents an optimal offline algorithm and an

online approximation algorithm. In practice, real-time jobs often complete earlier than the

worst-case estimate of its execution time. When a task completes early, the system gains

some additional CPU time which may be used by other tasks for further slow-down. This

is known as dynamic slack and various techniques to reclaim it has been proposed in the

literature [80, 81]. Another study [82] presents the idea of aggressive slowdown in order to

take advantage of tasks’ early completions in which, a task is started at a slow speed, but

as it makes progress, the speed is increased. The motivation for this scheme is that the

task is highly likely to complete before the system has to operate at very high frequency to

finish the worst-case workload before deadline.

Although the earliest DVFS algorithms focused on minimizing the CPU energy con-

sumption, later studies confirmed that the frequency-independent power component, which

is contributed by peripheral devices such as memory, disk, I/O, have a substantial impact on

the system-wide overall energy consumption [83]. This gives rise to the term energy-efficient

frequency [83,84] which refers to the speed below which DVFS no longer provides additional

energy savings. Many practical processors only provide a discrete set of speed-settings with

their respective voltage levels. Such systems and the problem of adopting existing DVFS

solutions to those systems have been investigated in [85].

18

DPM based algorithms commonly use the task procrastination technique, which post-

pones the execution of the ready jobs as much as possible by exploiting the system slack at

that time, thereby compacting busy periods and yielding long idle intervals [86]. Moreover,

DPM techniques are also free from some of the negative impacts of DVFS, e.g., reliability

degradation [84,87] and increased number of preemptions [88].

Several solution approaches combine DVFS and DPM techniques together [89–95]. Je-

jurikar et al. [96] combined the two techniques by computing a critical speed for DVFS and

applying DPM whenever the CPU is idle. Later they proposed a version with dynamic slack

reclamation and dynamic procrastination [97]. Quan et al. also proposed several algorithms

for fixed priority tasks [98]. Devadas et al. [95] studied the effect of DVFS and DPM when

multiple peripheral devices are connected to a single CPU.

2.3.2 Energy Management for Multiprocessor Real-Time Systems

Most of the existing work in multiprocessor real-time systems consider homogeneous mul-

tiprocessors [53, 99, 100], although in recent years some efforts have been carried out to

generalize the results to heterogeneous systems with different power-performance charac-

teristics [56, 69, 70, 101]. Most of the early papers focused exclusively on dynamic power

consumption and implicitly ignored the static power while applying the DVFS technique.

Gradually, the research community incorporated the static power into the power manage-

ment frameworks in various ways [86]. Many studies consider a per-CPU DVFS model where

a fixed speed can be set on each CPU, while others consider a per-task DVFS model where

the speed of the CPU can be set at the dispatch of each task. In one of the earliest attempts,

Aydin et al. [102] considered a homogeneous multiprocessor platform and partitioned the

task set with the objective of eventually applying DVFS on to each CPU. They showed that

a balanced partitioning is preferable for applying DVFS maximally (e.g., Worst-Fit), in the

cases where each processor can be fully utilized. Chen et al. [76] proposed an approxima-

tion algorithm on similar settings, additionally considering leakage-current. [103] proposes

a polynomial-time heuristic that partitions a set of periodic tasks over a multicore platform

19

and sets the CPU speed.

Several algorithms set the processor speed on a per-task basis. Zhu et al. [104] proposed

such a family of algorithms which considers a large number of characteristics of the platforms

and the typical applications running on it. They first proposed algorithms addressing only

DVFS method, however, they also indicated when the system can be put to low-power state

using DPM. Lu et al. [105] proposed DVFS algorithms to deal with split tasks, which are

helpful to overcome the performance limitation of partitioned scheduling approaches in the

presence of tasks with high utilization factors. Xu et al. [106] proposed an algorithm to

deal with parallel tasks with frame-based execution (tasks with identical periods). They

considered processors with a set of discrete frequencies with a lookup table to store the

power consumption values related to each speed-setting. They formulated an Integer Linear

Programming problem and presented efficient heuristics. Chen et al. [107] presented an

approach based on mixed integer linear programming (MILP) which can characterize the

idle intervals along with speed-settings, and thus optimizes both DVFS and DPM.

Some studies considered voltage islands, in which, groups of cores share the same volt-

age and frequency settings. Devadas et al. [52] presented an approach to reduce power

consumption on a chip-multiprocessor (CMP) characterized by multiple sleep states and

a single-frequency DVFS common to all cores. They identified the global energy-efficient

frequency and suggested several algorithms based on Worst-Fit Decreasing heuristic to de-

termine the number of active cores and the task-to-core allocation. They also suggested

a technique to handle early completion of tasks. Pagani et al. [108] also considered simi-

lar settings and proposed a single-frequency-approximation algorithm. Gerards et al. [109]

considered frame-based tasks with a common implicit deadline and presented an approach

to determine optimal clock frequencies and the schedule to minimize energy consumption.

Srinivasan et al. [110] also proposed MILP solutions using DVFS and DPM while consid-

ering discreet frequency settings and multiple sleep states with time and energy cost for

state-transition.

Heterogeneous multiprocessors have been studied only recently and only a handful of

20

studies took advantage of power-performance asymmetry in order to minimize energy con-

sumption [111–114]. Liu et al. [115] considered time-sensitive applications on a heteroge-

neous systems and proposed power-efficient algorithms. [116] also considered energy-efficient

scheduling on multiprocessor and shed light on the advantages that heterogeneous architec-

tures provide.

2.4 Reliability Management in Real-Time Systems

Computer systems are subject to different types of faults, which may lead to errors. Reli-

ability management refers to safeguarding a computer system from such errors with some

form of probabilistic guarantee. A fault is defined as a hardware or software defect that may

prevent the system from operating correctly [117]. An error is a manifestation of a fault.

In a broad sense, computer faults can be classified as permanent, transient and intermittent

faults [1].

Permanent faults are typically caused by hardware failures, which can result from man-

ufacturing defects at fabrication time, or the wear and tear due to aging. In a permanent

fault scenario, a system component becomes unavailable, and never recovers. To handle

such faults, additional redundant hardware components must be deployed, and a mecha-

nism must be implemented which can detect a fault and replace the faulty component by

a redundant one within some known latency [1]. The fault rate for a permanent fault can

often be characterized by a bathtub curve [1]. Initially, most of the faults are caused by

manufacturing defects. After that period, there is a long period of stable performance with

low fault rate. Finally, when the components age, the fault rate increases due to regular

wear and tear in its lifetime.

Transient faults lead to short-lived errors, which result in a malfunction of the system

for a short period of time, then the system can go back to normal operation. These faults

are caused by electromagnetic interferences, cosmic rays and some other environmental

disturbances. Transient faults manifest in the form of soft errors or single event upsets

21

(SEUs) [1, 118,119] that appear in the processor core logic or memory subsystems, leading

to incorrect computations. Most of the faults experienced by a computer system are gener-

ally transient faults. To worsen the situation, it has also been suggested that the continued

increase in component density due to advances in CMOS technology is increasing the vulner-

ability of systems to transient faults [120]. Because of the non-persistent nature of transient

faults, software fault tolerance techniques can be applied to mitigate them. Transient faults

which occur in “bursts” have also been addressed in the literature [121, 122]. Intermittent

faults, on the other hand, appear and disappear over a long time-interval, impacting the

system when they are active.

Reliability management in a real-time embedded system is implemented by fault toler-

ance, which refers to the technique of masking error or work around the fault encountered,

e.g., by switching to a different component when a component encounters a fault. The

basic idea of implementing fault tolerance is to exploit the redundancy of various resources.

such as hardware redundancy, software redundancy, time redundancy and information re-

dundancy [1]. A large body of research exists [27, 121, 123–129] that exploit hardware and

software redundancy in order to provide reliability via fault tolerance.

Fault detection is an integral part of fault tolerance. Error detecting codes are often

deployed for fault detection in memory and communication networks [130]. Another fault

detection technique is called acceptance tests [1], which are software techniques that evaluate

the outcome of a computation in order to accept or reject the result. It should be noted

that fault detection techniques are generally not 100% accurate. For a fault detection test,

a coverage factor is defined as the probability of detecting a fault successfully, given that

such a fault has occurred [1]. Implementing fault tolerance in the presence of an imperfect

fault detector has been studied in [131].

A classic hardware redundancy technique is called M-of-N system [1], which requires

proper functioning of M components out of a total of N components in order to tolerate

faults. This technique can provide tolerance to both transient and permanent faults. A

classical example of the M-of-N system is a triple-modular redundancy (TMR) technique

22

which requires 2 out of 3 redundant components working correctly. A duplex system consist

of two components that work in parallel, and their output of both components matche, then

the result is considered to be correct, otherwise, the recovery procedure gets initiated.

Another widely-known hardware redundancy technique is called the standby-sparing sys-

tems [117]. In a standby-sparing system, each processing core (called primary) is associated

with a dedicated backup core (called spare). Each task allocated to the primary core will

have a corresponding backup copy allocated to the spare core, so that if a fault occurs on

any of the core, the output from the other processing core may be used as correct output.

The spare core can be implemented as a hot or as a cold spare. A spare is called hot, if

it is executed in parallel with the primary core. A cold spare is kept idle during normal

operation, and it is activated upon the detection of a fault [1]. Some other researches pro-

posed a primary-backup (PB) model [132–134], which is quite similar to the standby-sparing

technique in the sense that each task has one primary copy and one backup copy. However,

processing cores are not designated as primary or backup, instead, any task copy can be

allocated to any of the available processing cores, with the only constraint that the pri-

mary and backup copy of the same task must be placed to different processing cores. Both

standby-sparing and primary-backup techniques can provide resiliency to both transient

and permanent faults.

Checkpointing has been a popular technique for implementing fault tolerance in cases

where restarting a job from the beginning is very expensive [135–138]. Essentially, a check-

point is a snapshot of the entire state of the process, and it contains all information required

to restart the process from that point [1]. When a fault is detected, the system is reverted

to the last saved checkpoint, and the task is restarted will all the saved information. Im-

portant questions like optimality of checkpointing-interval has been studied in [139, 140].

Optimal number of checkpoints and their interval have also been addressed for low-power

systems in [141].

Recovery techniques are also classified as forward and backward recovery solutions [142–

145]. Backward recovery techniques usually reverts the system to a prior state, hopefully

23

one which precedes the fault. Forward recovery, on the other hand, attempts to recover

the faulty state, e.g., by using error correcting codes. Both forward and backward recovery

techniques are key to achieve different levels of fault tolerance and graceful degradation

[143,146,147].

A software redundancy technique is called N-version programming, in which, N indepen-

dent teams of programmers develop N versions of the same software specification, and these

N copies execute in parallel and their output is voted on [148–150]. Challenges such as con-

sistent comparison, version independence and other issues has been addressed in [151,152].

Another technique which is very similar to N-version programming is called recovery blocks,

in which, there are multiple version of the software, but only one version runs at any one

time [153,154]. When a fault is detected, the system executes one of the available recovery

blocks. Distributed recovery blocks have also been addressed in the literature [155,156].

2.4.1 Reliability Management on Multiprocessor Real-Time Systems

The available multiple processing cores in a shared memory chip multiprocessor system

can be used not only to improve energy efficiency, but also to provide resiliency to failures.

Many researchers addressed the problem of designing a fault-tolerant system built on multi-

processors [157–161]. Guo et al. proposed generalized standby sparing system in which the

multiple cores are grouped into two: primary and spare, and they suggested energy-efficient

scheduling of real-time applications [162]. Huang et al. suggested a binary tree analy-

sis method to measure system-level reliability when task replicas are allocated to different

processing cores [124]. Resilience and energy efficiency in high-performance computing sys-

tems built on multiprocessors has been addressed in [163]. The authors developed analytical

model that capture the reliability degradation due to energy-efficient operation, and they

provided guidelines on applying DVFS on such systems. Preference-oriented scheduling has

been developed for fault-tolerant systems in [164] in which, primary tasks have as soon as

possible, and backup copies have as late as possible execution preference. The authors argued

that their scheduler can reduce the overlap between the primary and backup of the same

24

task, by scheduling the backups as late as possible considering their deadline. In [165], the

researchers exploited the implicit relations among periods and recovery costs among tasks

and develop a novel metric, called “compatibility index”, to quantify how compatible a task

set is when they are allocated on the same core, and thereby achieved an enhanced fault-

tolerant scheduling for fixed priority systems. Task-to-core mapping was addressed in [166]

for reliable systems built on multiprocessors in which, the authors developed integer linear

programming (ILP) methods which generate remapping of tasks in a fault scenario, with a

goal to improve communication and migration overhead. Zhao et al developed fault-tolerant

scheduling for heterogeneous platforms where number of replicas are determined at runtime

[167]. Overloading was also used as an efficient redundancy technique [168–170], in which

overlapped backup copies can be added to the schedule as long as their primary copies have

not been scheduled on the same processor. Al-Omari et al. suggested overloading primary

copies with the backup copies can provide up to 25% better schedulability compared to only

backup-backup overloading [169,170].

2.5 Joint Management of Energy and Reliability

Reliability and energy management are conflicting design goals, in the sense that ensuring

high reliability of a system generally comes with an additional cost in energy consumption.

Reliability is implemented by means of fault tolerance, which exploits some form of redun-

dancy in the system (hardware, software, time, and information). Deploying redundant

components by just duplicating them would also double the energy consumption of the

system. Therefore, researchers have been seeking to find ways to deploy redundancy while

minimizing the overall energy consumption and it has been a very popular research area to

tackle reliability and energy management in tandem [84,141,171,172].

A time redundancy-based technique called reliability-aware power management (RA-

PM) has been proposed in the literature which can provide reliability against transient

faults, and can mitigate the reliability degradation caused by DVFS [173,174]. The idea is

25

to divide the system slack in to two portions, and use one of them to schedule a recovery

(backup) task. The other portion of slack can be used to slow-down the processor. Zhu et

al. [175] proposed an optimistic RA-PM scheme that considers the probabilistic execution

time information. Zhao et al. [176] proposed an enhancement to the RA-PM scheme by

considering a shared recovery block. The same group also proposed reliability oriented power

management (RO-PM), in which, the system can be designed to achieve an arbitrary relia-

bility target, while minimizing energy consumption, both for frame-based applications [177]

and periodic tasks [178]. All these time redundancy techniques are effective and energy

efficient, however they cannot provide tolerance to any permanent fault, as no hardware

redundancy is present.

Several studies addressed the problem of tolerating both transient and permanent faults,

and they use hardware redundancy techniques. Ejlali et al. proposed an energy-efficient

standby-sparing technique [53] in which the primary copy uses DVFS and the backup copy

uses DPM techniques, and backup copies are activated as late as possible considering the

deadline. They attempted to minimize the overlapped execution of the primary and backup

copies of the same task. Such overlap minimizing techniques were also proposed by Unsal

et al. [179]. Later, other researchers investigated some variants of the low-energy standby-

sparing systems and presented comparative results [180, 181]. Haque et al. considered the

standby-sparing mechanism and proposed an energy-aware scheme for periodic real-time

applications, both for dynamic priority systems [54] and for fixed-priority systems [100].

The same group also presented a characterization of the subtle interplay between the pro-

cessing frequency, replication level, reliability, fault coverage, and energy consumption on

DVS-enabled multicore systems [182]. Guo et al. [134] considered primary/backup (PB)

technique and proposed energy-efficient algorithms that can tolerate a single permanent

fault along with maintaining arbitrary system-level reliability with respect to transient

faults. The proposed schemes demonstrated considerable energy savings, however, they are

implemented on homogeneous multiprocessors.

26

In recent years, a handful of research has been done on hardware redundancy for hetero-

geneous computing platforms [183–185]. In [183], the authors developed a fully polynomial

time approximation scheme (FPTAS) for combining partitioning and replication to achieve

high reliability. [184] considered periodic real-time applications on heterogeneous systems

and presented a very flexible approach for handling system schedulability and reliability

at the same time. Zhu et al. [185] considered a fault-tolerant framework on heterogeneous

systems which can provide a predetermined quality-of-service even in the face of a single

node-failure. Xu et al. [186] considered a framework which provides reliability on hetero-

geneous embedded systems and also minimizes energy consumption. They used a method

to transform the application’s reliability goal in to each task’s reliability requirement, then

proposed a method to minimize their energy consumption. They considered DAG-based

embedded system applications; however, they did not consider any real-time constraints.

Devaraj [187] proposed a solution to the problem of scheduling real-time tasks on het-

erogenous systems which guarantees timeliness and feasibility. They used a linear program-

ming algorithm to find feasible schedules for real-time task sets considering heterogeneous

execution platforms. Li et al. [188] proposed a framework to execute real-time applications

on heterogeneous multicore processors, which minimizes temperature and energy consump-

tion. They considered a graph based application model and scheduled the application tasks

on to the processing cores in an energy/thermal-aware manner. Their results on real-world

applications demonstrated the effectiveness of their approach, however, they did not consider

task replication or fault tolerance in their work. Zhou et al. [189] considered heterogeneous

platforms for applications with deadline constraints and reliability. They developed a “ear-

liest finish-time” based algorithm for heterogeneous MPSoCs, which executes graph based

real-time tasks. Their solution strives to maximize reliability to transient and permanent

faults, however, they did not take energy consumption in to account. Liu et al. [190] pro-

posed an adaptive fault-tolerant scheduling mechanism for real-time systems executing on

heterogeneous multiprocessors. They used task replication and computed the number of

required replicas which guarantees reliability and deadline. However, their work also did

27

not address the energy consumption dimension.

A number of recent research studies explored the joint management of timeliness, en-

ergy consumption, and reliability. For instance, Bansal et al. [191] proposed energy aware

fixed priority scheduling for real-time tasks in which they considered execution-preferences

for different tasks (primary or backup). They improved the energy consumption of the

preference-oriented scheduling proposed in [192], by applying DVFS and DPM techniques.

However, their work was based on a single processor system, and cannot be easily gener-

alized to multicore platforms or tolerate permanent faults. Zhao et al. [193] proposed an

energy-efficient standby-sparing technique, which executes a mix of high and low critical-

ity tasks. They scaled the primary processor with DVFS, and also, they extended their

algorithm for cluster/island systems, however, their work did not consider heterogeneous

processors.

Safari et al. [194] also proposed a low-energy standby-sparing scheme for mixed criticality

systems, in which, they considered graph based real-time applications, and executed it on

multicore system with fault tolerance. They used convex optimization to exploit DVFS

along with DPM to save energy under timeliness and reliability constraints. That paper

considered homogeneous multicore systems. Kumar et al. [195] addressed heterogeneous

multicore systems and proposed a framework for energy-efficient scheduling of periodic real-

time tasks with fault tolerance. They modeled the problem as a constraint optimization

problem and also proposed several low-overhead heuristics. However, their setting does not

allow preemption of real-time tasks, which may have a strong and negative impact on the

schedulability of periodic real-time task sets for which preemptive scheduling is the norm [5].

2.6 Management of Quality-of-Control

In industrial control, applications are generally implemented via a set of periodic real-time

tasks. The quality-of-control metric of the application is defined as a quantitative measure

expressing control performance [196,197] . This metric is associated with each control task

28

and usually directly depends on the periods of the control tasks [198, 199]. In general, the

shorter the period, the better the quality of control. However, due to various constraints

in the system, periods of the tasks can only be varied within a given range. In a seminal

paper, Seto et al. [200] presented a model where the periods of real-time control tasks

could be changed up to a limit, in order to optimize some control performance index. They

showed that in some industrial control applications, an exponential decay function can

be used to model the tasks’ performance indices. Seto formulated the problem as a non-

linear programming problem and solved it using the Lagrange multipliers technique. Bini

and Di Natale [201] suggested a generalized framework for maximizing various objective

functions in the context of fixed-priority scheduling. They defined the set of all period

assignments that can produce feasible schedules as the optimization domain and then used

mathematical properties of the objective function to find the optimal assignment. They used

Time-Demand Analysis technique to assess the feasibility in a single processor environment.

Buttazzo et al. [202] proposed a scheduling framework (called elastic scheduling) in which

periodic tasks can change their rates in order to tackle the overload conditions. For each

task, their model has a minimum period, a maximum period and an elasticity coefficient.

When the system is overloaded, the tasks can increase their periods (compressing); and when

the system is underloaded, the task periods can be reduced (decompressing). The authors

developed an efficient algorithm where they modeled each task as a spring with minimum

and maximum length and a rigidity coefficient. This model proved useful for supporting

both multimedia and control applications in which execution rates of some computational

activities have to be dynamically tuned as a function of the current system state. However,

their work does not consider arbitrary control cost functions, and is developed for single-

processor systems. Marinoni et al. [203] incorporated DVS technique to the elastic task

model.

Chantem et al. [204] considered a setting where task periods and deadlines are chosen

in order to improve the schedulability. Later, the same research group explored a setting

where minimum and maximum allowable periods are associated with each task, and a

29

performance index is optimized [205]. Their performance index is a quadratic function of

utilization of each task. They focused on uni-processor system settings. Wu et al. also

used a quadratic cost function as their performance loss index which depends on the period

of the tasks [206]. Fontanelli et al. [207] explored similar problem settings associated with

real-time control tasks and cost functions, but their results were obtained under stochastic

model. Tian et al. [208] leveraged the elasticity of tasks to improve the quality-of-control

in applications using a utilization-based quadratic cost function. Kim et al. [209] proposed

a task model for automotive systems called rhythmic tasks where period and worst-case

execution time of each task can vary continuously based on some external event. They did

not use any performance index, rather, their main goal was to improve schedulability. In

a recent paper, Buttazzo et al. [210] extended the idea and proposed rate-adaptive tasks

where period, worst-case execution time and deadline can vary according to the angular

velocity of the crank-shaft. However, their main objective was to improve schedulability,

not optimizing any performance index. Rajkumar et al. [211] proposed a model called Q-

RAM where each real-time application are assigned resources to maximize overall system

utility along multiple and discrete QoS dimensions, for single-processor systems. After

resources are allocated, each application can choose its own period and execution time.

30

Chapter 3: System Model and Assumptions

In this chapter, we present the system model and assumptions of our research on energy

efficient scheduling of real-time tasks with fault tolerance. Specifically, we present the plat-

form, power and fault models used in this research. We present a generalized system model

which assumes heterogeneous multiprocessors and covers the larger scope of this disserta-

tion. We introduce the notations for specific system models in their relevant chapters. In

Chapter 7, we tackle the different problem of maximizing Quality-of-Control on a multi-

processor system; for the sake of clarity, the definitions and assumptions pertinent to that

research are presented at the beginning of that chapter.

3.1 System Model

3.1.1 Platform and Application model

We consider a shared memory dual-core system that combines two processing cores on the

same silicon chip, and both cores share a common L2 cache. We consider a heterogeneous

platform and one of the cores is a high-performance and power-hungry (“big”) core, and

the other one is a relatively slow but power-efficient (“little”) core, which we refer to as

HP and LP cores, respectively. The cores are assumed to have a single instruction set

architecture (ISA), which has the advantage that an executable of a task can run on either

of the cores. Each of the two processing cores is equipped with the Dynamic Voltage and

Frequency Scaling (DVFS) feature that allows changing the frequency (processing speed)

at run-time to manage energy consumption. Both of the cores also have the Dynamic

Power Management (DPM) feature which allows a core to be put to a very low-power state

(sleep mode.) DVFS and DPM are widely used as an energy management technique at the

operating system level.

31

The target application consists of a set of n real-time periodic tasks Γ = {τ1, . . . , τn},

where each task τi is represented by an 8-tuple (Ti, Di, C
HP
i , CLPi , aHPi , aLPi , αHPi , αLPi).

We assume the general periodic task model in which the task τi generates a job instance

periodically with the period Ti. Each instance of the periodic task τi must complete within

the relative deadline Di, which is equal to its period (implicit deadline). Our research

tackles the joint problem of energy and reliability management on dual-core heterogeneous

systems for different real-time task models on different parts of this dissertation: 1.) Frame-

based independent tasks (Chapter 4), 2.) Frame-based tasks with precedence constraints

(Chapter 5), 3.) General periodic tasks (Chapter 6). Additional notations and assumptions

for each of these sub-models will be introduced at the beginning of the respective chapters.

A task instance of τi that requires Ci number of cycles on a given core may take up

to Wi(f) = Ci/f units of execution time on that core, if executed at the frequency level

f . The worst-case number of cycles required by the instances of the task τi is denoted

by Ci. Due to the architectural differences, a task’s required number of cycles, and hence

execution time, can be different on the HP and LP cores. Therefore, we use superscripts

HP and LP to denote the variables on the HP or the LP core (e.g., CLPi , WLP
i , CHPi ,

WHP
i). The maximum frequency levels supported by the HP and LP cores are denoted

by fHPmax and fLPmax, respectively. We assume fHPmax = 1.0, and normalize all other frequency

values with respect to that value. We define the nominal utilization of a task τi as Ui =

WHP
i (fHPmax)/Ti = WHP

i (1.0)/Ti = CHPi /Ti.

3.1.2 Power Model

In our settings, each processing core is equipped with two well-known operating system-level

energy management techniques, namely, Dynamic Voltage and Frequency Scaling (DVFS)

and Dynamic Power Management (DPM). DVFS can execute the processor at a reduced

operating frequency and thereby achieve a reduction in its dynamic power consumption. We

model the dynamic power consumption of a task τi as Pi(f) = ai f
3 + αi where ai denotes

32

the switching capacitance, αi indicates the frequency-independent power consumption [100,

176], and f is the processing frequency of the task. The processors support any operating

frequency within the continuous range from 0.2 to their respective maximum-frequency.

Due to the asymmetric nature of the dual-core system, the tasks exhibit different power

consumption characteristics on different cores. Again, we use the superscripts HP and LP ,

to distinguish between the values of the task power consumption parameters on high-power

and power-efficient cores, respectively (e.g., αLPi , PHPi).

Each core executes tasks in the active state, dissipating power as determined by the

characteristics of the current task and processing frequency. When a core does not execute

tasks, it remains in low-power (idle) state by virtue of the DPM technique. The low-power

(idle) power consumption of the high-performance and low-power cores are denoted by PHPidle

and PLPidle, respectively. We assume those figures include the static power consumption of

the corresponding core as well. Moreover, we assume the overhead of changing frequency

or power state is negligible. Finally, the energy consumption during a time interval is given

by the aggregate power consumption during the same interval.

The existence of the frequency-independent power component implies the existence of an

energy-efficient frequency (fee) below which DVFS affects the overall energy consumption

negatively [84]. The value of fee can be analytically derived using standard techniques [84].

3.1.3 Fault and Recovery Model

In our fault model, we make provisions to tolerate both transient and permanent faults.

Transient faults are primarily caused by electromagnetic interference and cosmic rays (in-

cluding alpha particles) [1]. They manifest in the form of soft errors (or single event upsets

(SEUs)) that appear in the processor core logic or memory subsystems, leading to incor-

rect computations. Moreover, with increased technology scaling and the use of aggressive

low-power design techniques such as near-threshold voltage operation, the CMOS circuits

become more vulnerable to transient faults [84, 120]. By their nature, the transient faults

are short-lived, and it is often possible to invoke an alternative back-up task after such a

33

fault is detected on a specific task.

The permanent faults, on the other hand, are often the results of manufacturing defects,

aging, or adverse temperature/environmental conditions – they lead to the unavailability

of the affected processing unit until it is replaced. It is often necessary to have redundant

hardware, in the form of extra processing units, in order to tolerate the permanent faults

[117]. Various techniques, such as lockstep configuration, redundant multithreading, built-

in self test, etc., can be used to detect permanent faults [212]. When a permanent fault on

any of the core is detected, all tasks are executed on the remaining operational single core

until a hardware replacement is performed.

The reliability constraints we consider in our fault model states that, given a set of

real-time tasks, it must be ensured that each task will meet its deadline, even when it

experiences a transient fault in one of its copies (primary or backup), or a permanent fault

in one of the cores. Specifically, in our framework, we tolerate the following type of faults:

• A transient fault per each (primary) task instance, and,

• A permanent fault of any of the processing cores.

Each (primary) task τi has an associated backup task Bi with exact same timing pa-

rameters. τi and Bi are allocated to different processing cores. Whenever a task instance

is released, its backup copy is also released on the alternate core. In order to maintain

energy efficiency, the primary copies are executed at a reduced frequency via DVFS, while

the backups are executed at their maximum frequencies. The backup copy instances are

delayed (using DPM) as much as possible while respecting their deadlines.

When a primary copy completes, the acceptance (or, sanity) tests [1] are performed to

check the existence of errors induced by transient faults. If a fault is not detected, the

corresponding backup copy (or, its remaining part) on the other core may be cancelled to

save energy. Otherwise, the backup copy runs to completion. If a permanent fault occurs

on any of the cores, the other core can still execute one copy of each task’s instances.

Therefore, our system can tolerate at most one transient fault per task or at most one

34

permanent fault. When a transient fault is detected and tolerated, the system can go back

to normal operation and tolerate more faults, however, when a permanent fault occurs, the

system can tolerate it, but after that point it is no longer able to tolerate any additional

transient or permanent faults until a hardware replacement is performed.

35

Chapter 4: Energy-aware Fault-Tolerant Real-Time

Scheduling of Independent Frame-based Tasks

In this chapter, we consider the joint management of energy consumption and reliability

requirements on heterogeneous dual-core systems for independent frame-based real-time

tasks. We assume the platform and application model presented in Chapter 3.1, however,

we consider frame-based model in which all tasks have the same period, D, i.e., for each

task τi, Ti = Di = D. All tasks are released and become ready to execute at the beginning

of a frame, and they are required to finish before the common period D. The same pattern

of execution repeats every frame (period), hence the name frame-based systems [2–4]. Our

heterogeneous computing platform is made up of a single-ISA dual-core system that consists

of a high-performance and power-hungry (“big”) core, and a relatively slow but power-

efficient (“little”) core, which are connected via a shared memory on the same silicon chip.

To ensure reliability, each (primary) task has an associated backup task, and these two copies

of the same task are always allocated to different processing cores. Each core is equipped

with DVFS and DPM which can be used to implement energy-efficient operation. Primary

tasks are executed at a reduced speed using DVFS while still guaranteeing the deadline,

and DPM is used to put the core to sleep when it is idle. Backup copies are always executed

at the maximum speed of the respective processing core, and as soon as the primary copy

completes, the backup execution is cancelled (to save energy). We consider both standby

sparing and mixed-primary/backup approach to solve this problem. Our results on this

research are published in [6, 7].

36

4.1 Energy-Aware Standby-Sparing on Heterogeneous Mul-

ticore Systems

Real-time systems are usually safety-critical systems, and therefore, guaranteeing reliabil-

ity requirements is of utmost importance. A well-known approach to reliability is called

Standby-Sparing systems [53, 162, 193, 213], in which, each CPU (primarily) executing the

workload has a corresponding backup CPU. All main (primary) tasks are allocated to the

primary CPU, and all backup tasks are placed on the backup CPU. Any faults on the

primary CPU will result in the activation of the task on the backup CPU. When we have

deadline constraints, the backup CPU may need to be activated even without any fault

on the primary, just to make sure the deadline is not missed. One can easily infer that

the addition of a second processing core as backup significantly increases the overall energy

consumption of the system.

In energy-aware standby-sparing configuration, the primary processor uses DVFS and

DPM to execute the main tasks at reduced processing speeds and put the processor to

low-power state in order to save power. The spare processor uses only DPM; it delays the

back-ups as much as possible in order to cancel them dynamically to save power, if the

corresponding main task(s) complete without errors. Several studies have been performed

to minimize energy consumption with such systems on homogeneous multicores [53, 100,

162]. To the best of our knowledge, ours is the first study which addresses reliability

and energy-management for real-time systems in the context of heterogeneous multicore

processors. In this study, we re-visit the energy-aware standby-sparing problem in the

context of emerging heterogeneous multi-core systems for frame-based real-time embedded

applications. In addition to the problem of determining the frequency assignments on the

primary, the new settings introduce a new dimension, namely, whether to use the power-

efficient core as the primary or spare. We investigate both of these dimensions, propose

solutions, and present a comprehensive experimental evaluation. Our results indicate that,

unlike the homogeneous case, allowing some overlaps between the primary and back-up

37

copies may help to reduce energy, in particular when the high-performance core is used

as the primary. We also show that, in general, designating the power-efficient core as the

primary and high-power core as the spare is preferable, except when the system utilization

is high. Our analysis is performed under the realistic assumption that the execution time

and power consumption figures of different applications may scale by different ratios on the

big and little cores [56].

D

Time

B2

τ1 τ2 τ3

B3B1

Figure 4.1: A standby-sparing system

We deploy the energy-aware standby sparing technique on the dual-processor platform as

shown in Figure 4.1. Throughout this section, we show the primary processor at the top, and

the spare processor at the bottom in the figures. When a task (τi) is allocated to the primary

core, a back-up copy (Bi) is also allocated to the spare core. The main and backup tasks

follow the same execution order on their respective processors. The DPM-enabled spare core

remains in low-power state as much as possible, delaying the execution of the back-up tasks

while still meeting the deadline (Figure 4.1). If there is no fault affecting a primary task,

the (remaining part of the) corresponding back-up task on the spare processor is cancelled

dynamically. For example, in Figure 4.1, B1 and B3 are completely cancelled, because the

corresponding main tasks (τ1 and τ3) complete successfully before the scheduled start times

of B1 and B3. Similarly, a part of B2 is cancelled as soon as τ2 completes successfully (we

are using the dashed lines to indicate cancelled executions in the schedules). In case of a

transient fault, the back-up task executes as specified in the spare schedule. If a permanent

38

fault affects the primary processor, the spare copy executes the back-up tasks after that

point. The back-up tasks are executed at the maximum processing frequency of the spare

core. This energy-aware standby-sparing arrangement can tolerate a single fault of either

processor, while enabling the recovery of transient faults affecting any subset of the main

tasks on the primary processor [53].

Problem Statement. In this section, we address the following problem: Given a set

of frame-based real-time tasks and a heterogeneous dual-core system, minimize the overall

energy consumption while still meeting the deadlines, by determining:

1. which core should be designated as the primary and spare in the standby-sparing

system, and,

2. what processing frequency assignments should be made to tasks on the primary core.

We investigate these two dimensions in Sections 4.1.1.1 and 4.1.1.2, respectively.

4.1.1 Proposed Schemes

4.1.1.1 Primary/Backup Role Assignment

The first design dimension to be addressed is to whether designate as the primary processor

the high-performance core (HP) or low-power (LP) core. The two options are, therefore:

• FasterP: Use HP as primary, LP as spare

• SlowerP: Use LP as primary, HP as spare

It turns out that this decision can have a significant impact on the overall energy con-

sumption of the system, depending on the workload. For instance, if a high-performance

core is used as the primary core, ideally it should be slowed down through DVFS to reduce

its energy consumption. However, that would extend the completion times on the primary,

and the overlapped backup executions could significantly increase the energy consumption

on the slow, power-efficient, spare processor. Conversely, if the low-power core is used as

39

the primary, due to its modest performance, the task completion times would naturally shift

even at high frequencies, increasing the overlaps with the power-hungry spare processor.

Consider two tasks with parameters given in Table 4.1, where the execution times and

energy consumptions on both cores (EHP , ELP) under respective maximum frequencies are

shown. Assume PHPidle = 0.05 and PLPidle = 0.02. For both tasks, aHPi = 1.0, aLPi = 0.3,

αHPi = 0.1 and αLPi = 0.03.

Table 4.1: Example Task Set 1

WHP
i WLP

i EHP ELP

τ1 22 52 24.2 9.55

τ2 10 24 25.8 4.4

When this task set is assigned to a homogeneous system consisting of two high-power

cores where primary core is slowed down as much as possible, the execution of the sys-

tem is shown in Figure 4.2a. The last 22 time units of B1’s execution are dynamically

cancelled when τ1 executes successfully, but B2 is executed fully. This yields an overall

energy consumption of 0.295 Joules (in all the examples, we focus on the energy consumed

in the fault-free execution sequence, because faults are rare events). But once the applica-

tion is moved to a heterogeneous system where the normalized maximum frequencies are

fHPmax = 1.0 and fLPmax = 0.8, respectively, we can take advantage of the power-efficient exe-

cution on the little core, both for FasterP and SlowerP configurations. In the FasterP case

(Figure 4.2b), the overlapped portion is larger than the one in Figure 4.2a, but the overall

energy consumption decreases to 0.265 Joules, giving an improvement of 10.28%. This is

due to the fact that the power-efficient core is used at its maximum frequency to execute

the spare. When a SlowerP configuration is used (Figure 4.2c), we have the same amount

of overlap as in the homogeneous case, but now the primary workload can be executed on

a power-efficient core with maximum slow-down (fi = 0.61). The energy consumption of

the SlowerP system shows a 11.28% improvement compared to the homogeneous system.

40

0 10 20 30 40 50 60 70 80 90 100
Time

B2B1

f1 = 0.32 f2 = 0.32
D

τ2τ1HP:

HP:

(a) Homogeneous System

0 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 100
Time

HP:

0 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 100

f1 = 0.32 f2 = 0.32

0 10 20 30 40 50 60 70 80 90 100

D

τ2τ1

0 10 20 30 40 50 60 70 80 90 100

B2B1

0 10 20 30 40 50 60 70 80 90 100

LP:

0 10 20 30 40 50 60 70 80 90 100

(b) (fHP
max = 1.0, fLP

max = 0.8) with FasterP config-
uration

0 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 100
Time

LP:

0 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 100

f1 = 0.61 f2 = 0.61

0 10 20 30 40 50 60 70 80 90 100

D

τ2τ1

0 10 20 30 40 50 60 70 80 90 100

B2B2B1

0 10 20 30 40 50 60 70 80 90 100

HP:

(c) (fHP
max = 1.0, fLP

max = 0.8) with SlowerP config-
uration

0 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 100
Time

HP:

0 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 100

f1 = 0.35 f2 = 0.35

0 10 20 30 40 50 60 70 80 90 100

D

τ2τ1

0 10 20 30 40 50 60 70 80 90 100

B2B1

0 10 20 30 40 50 60 70 80 90 100

LP:

0 10 20 30 40 50 60 70 80 90 100

(d) (fHP
max = 1.0, fLP

max = 0.8) with modified tasks

(FasterP)

Figure 4.2: Executions under different configurations

Now, if we slightly change the task set parameters and increase the WHP
2 and WLP

2 values

to 13 and 31, respectively, we can compute that the execution on FasterP in Figure 4.2d

yields a 12.25% energy savings compared to the homogeneous system, and SlowerP yields

only a 7.24% improvement (not shown). In this case, the increased workload on a Slow-

erP configuration causes the high-power backup to start early and execute at its maximum

frequency, therefore the FasterP configuration is more advantageous to execute backups on

the low-power spare during the unavoidable overlap. This example shows that the best pri-

mary/spare configuration to minimize the overall energy is dependent on the characteristics

of the workload at hand.

4.1.1.2 Frequency Assignment on Primary

Once all the tasks are allocated to the primary processor and their respective copies to the

spare processor, the next dimension is to determine the processing frequencies for the main

tasks on the primary. Normally, one would want to exploit DVFS to slow down execution on

the primary and save energy. But, slowing down the main copy of the task has the potential

41

of increasing its completion time, and thereby increasing the overlap between the main task

and its backup copy, resulting in a higher overall energy consumption. Moreover, through a

cascading effect, such a decision could also shift the completion times of the following main

tasks and further increase the energy consumption.

We will use a heterogeneous dual-core system with fHPmax = 1.0, fLPmax = 0.8, PHPidle =

0.05 and PLPidle = 0.02, arranged in a FasterP configuration, to demonstrate the execution

scenarios and performance trade-offs of the proposed schemes. Table 4.2 shows two tasks τ1

and τ2, with their worst-case execution times and energy consumptions on both low-power

and high-power cores under respective maximum frequencies. For both of these tasks,

aHPi = 1.0, aLPi = 0.6, αHPi = 0.1 and αLPi = 0.06. In the following discussion, for brevity,

all the C and f values refer to those on the primary (high-performance) core.

Table 4.2: Example Task Set 2

WHP
i WLP

i EHP ELP

τ1 22 49 24.2 18.2

τ2 13 29 14.3 10.6

We propose three schemes for frequency assignment to tasks on the primary core:

1. Static Frequency Assignment (Static)

2. Minimize Overlap for Current Task (MO)

3. Overlap-Aware Energy Minimization (OA)

Static Frequency Assignment (Static). In this scheme, the frequency assignments

to the tasks are done statically, but considering the energy-efficient frequency as well as the

minimum (uniform) frequency that guarantees the deadline. Specifically, task τi is executed

at frequency fi = Max(feei , fU), where, fU =
∑
Cj

D is the minimum frequency that ensures

meeting the frame deadline for all tasks.

42

0 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 100
Time

HP: τ1

B2B1

0 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 100

τ2
f1 = 0.35 f2 = 0.35

0 10 20 30 40 50 60 70 80 90 100

D

0 10 20 30 40 50 60 70 80 90 100

LP:

(a) Static Frequency Assignment

0 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 100
Time

HP: τ1

B2B1

0 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 100

τ2

f1 = 1.0

f2 = 0.29

0 10 20 30 40 50 60 70 80 90 100

D

0 10 20 30 40 50 60 70 80 90 100

LP:

(b) Minimize Overlap (MO) scheme

0 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 100
Time

HP: τ1

B2B1

0 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 100

τ2

f1 = 0.7
f2 = 0.33

0 10 20 30 40 50 60 70 80 90 100

D

0 10 20 30 40 50 60 70 80 90 100

LP:

(c) Overlap-Aware (OA) scheme

Figure 4.3: Executions under different schemes

On the spare core, the backups are executed at maximum frequency, and released as late

as possible. Figure 4.3a shows the execution of the tasks in Table 4.2 under Static scheme.

The tasks on the primary core are slowed down to the maximum level to save energy, which

results in a large overlapped execution with the spare core, and ultimately yields an overall

consumption value of 0.408 Joules.

D

Time

τi

Bi

(a) MO-scheme

D

Time

τi

Bi

(b) OA-scheme

Figure 4.4: Frequency assignment with MO and OA schemes

Minimize Overlap for Current Task (MO). In this scheme, when a main task

43

on the primary (τi) becomes ready to run, we attempt to choose a frequency that would

allow the task to complete before its backup copy gets activated (Figure 4.4a). That is,

fi = Min(fmax, f∗i) where f∗i = Ci
ri−t , ri is the latest time that the backup copy of τi

can be activated without violating any deadlines, t is the current time, and fmax is the

maximum frequency of the primary core. In case fi is less than feei or fU , we update fi as

Max(fi, f
ee
i , fU).

This scheme makes sure that the activation of the current task’s backup copy is avoided

whenever possible. Figure 4.3b shows the execution of the tasks in Table 4.2 under this

scheme. The task τ1 runs at its maximum frequency in order to avoid any overlapped

execution, which gives τ2 enough time to avoid any overlap even when it executes at its

energy efficient frequency (fee2 = 0.29). We have found that the overall energy consumption

under this scheme is about 0.337 Joules—17.6% less than the one under Static.

Overlap-aware Energy Minimization (OA). The MO scheme opts to avoid an

overlapped execution whenever it can (Figure 4.4a). However, we have found that in some

cases, allowing some overlapped execution can yield better overall energy performance (Fig-

ure 4.4b). For instance, in a FasterP configuration, the energy gain due to additional

slowdown on the primary may offset the extra energy consumption due to the overlapped

execution on the power-efficient spare.

In this scheme, for a given task, first the energy consumption EMO obtained with the

frequency suggested by the MO scheme is computed. Then the frequency that minimizes

the energy consumption of the main task and its backup copy, under the assumption that

the overlapped execution will happen, is obtained, and the resulting energy consumption

EOA is evaluated. Finally the solution that yields the lower energy consumption between

these two options is selected.

Specifically, the frequency fi that minimizes the task’s energy consumption in case of

overlap with the backup is obtained by solving the following optimization problem:

44

minimize EPr(fi) + EBk(fi)

subject to: fUi ≤ fi ≤Min{f∗i , fmax}

Above, the frequency fi is restricted between two values, fU which is the lowest frequency

that guarantees the deadline, and f∗i is the frequency that enables the task to complete

at the start time of its backup copy (see the description of the MO scheme). EPr(fi) =

PHPi (fi)∗(CHPi /fi) is the energy consumed on the primary core, and EBk(fi) = PLPi (fLPmax)∗

(
CLP

i
fi
− (ri − t)) + PLPidle ∗ (ri − t) is the energy consumed by the backup1.

When there are multiple tasks, there is a need to assign execution windows to each of

the tasks to determine the frequency suggested by the OA scheme. In fact, the slack time

S (remaining time to finish all the incomplete tasks, which is D−∑
Ci) can be distributed

among the incomplete tasks to determine individual (pseudo-) task deadlines. We found out

that sharing the slack time based on the tasks’ relative workload is a quite useful strategy.

Therefore, each task τi is assigned a portion of the slack time, S ∗ Ci∑
Cj

, and τi must finish

execution within this time. The steps are repeated for each task iteratively.

Figure 4.3c shows the execution of the tasks in Table 4.2 under the OA scheme. τ1

executes at low frequency, which results in some overlap with B1. However, the increase in

energy consumption due to the overlap is much less compared to the energy savings obtained

by reducing frequency on the primary. This scheme yields an overall energy consumption

of 0.263 Joules—35% and 22% improvement over Static and MO schemes, respectively.

4.1.2 Experimental Evaluation

We evaluated the performances of the proposed schemes by simulating the execution of

large number of synthetic task sets in a discrete event simulator. The dual-core systems

we simulated have a high-performance core with normalized frequency fHPmax = 1.0 and a

1These equations assume a FasterP configuration.

45

low-power core with normalized frequency fLPmax varying in the range [0.7, 0.9].

For a given target total utilization (
∑ Ci

D), the number of tasks n, and a deadline D, we

have used the RandFixedSum [214] algorithm to generate uniformly distributed individual

task execution times ({Ci} values) on the low-power core. The constants aHPi and αHPi are

set to 1.0 and 0.1 respectively. Similarly, PHPidle = 0.05 and PLPidle = 0.02.

It is known that the execution time and power consumption on the high-power core for

different tasks scale by different ratios when executed on a low-power core[56]. Therefore,

for each task τi, we define a time-scaling factor tscalei =
CLP

i

CHP
i

, and a power-scaling factor

pscalei =
PLP
i

PHP
i

. The measurements reported in [56] suggest that 1.4 ≤ tscalei ≤ 2.3 and

1.4 ≤ 1/(pscalei ∗ tscalei) ≤ 2.1. We generated tscalei and pscalei values randomly in these

ranges, thereby obtaining execution times and power characteristics of tasks on both types

of cores.

The two core role assignment options (FasterP vs SlowerP), and three frequency as-

signment schemes (Static, Minimize Overlap (MO), and Overlap-Aware (OA)) give six dif-

ferent combinations shortened as FasterP-S, SlowerP-S, FasterP-MO, SlowerP-MO,

FasterP-OA and SlowerP-OA. Each of the generated task sets is executed by all these

six schemes and the results are reported (we compare the energy consumption of fault-free

executions, as faults are very rare occurrences). The common frame period/deadline D is

100ms. For each data point shown in the plots, we computed the average of 3,000 task sets,

each containing n = 10 tasks.

The trends indicate that for SlowerP configuration, practically in almost all cases, the

Overlap-Aware scheme has chosen to minimize the overlap, as suggested by the Minimize

Overlap (MO) scheme. This is to be expected, because creating an overlap with the back-up

running on the high-performance spare core almost invariably hurts the energy savings in the

SlowerP configuration. Therefore, the results we report will not show SlowerP-MO (whose

performance is identical to that of SlowerP-OA). However, as we will see, FasterP-MO and

FasterP-OA may perform quite differently.

46

4.1.2.1 Impact of utilization

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110
 0

.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9 1N

o
rm

a
liz

e
d
 E

n
e
rg

y
 c

o
n
s
u
m

p
ti
o
n
 (

%
)

Utilization

FasterP-S
FasterP-MO
FasterP-OA

SlowerP-S
SlowerP-OA

(a) fLP
max = 0.7

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9 1N

o
rm

a
liz

e
d
 E

n
e
rg

y
 c

o
n
s
u
m

p
ti
o
n
 (

%
)

Utilization

FasterP-S
FasterP-MO
FasterP-OA

SlowerP-S
SlowerP-OA

(b) fLP
max = 0.9

Figure 4.5: Impact of utilization

Figure 4.5a and 4.5b show the impact of system load on two different platforms with fLPmax

set to 0.7 and 0.9, respectively; fHPmax = 1.0 in both cases. The X-axis shows the utilization

with respect to the low-power core. The results are normalized with respect to the energy

consumption of FasterP-S at U = 1.0. As expected, the energy consumption of all the

schemes increases with increasing system load. In these plots, the OA (and MO) schemes in

the SlowerP group perform best for low load settings, but FasterP-OA starts to outperform

when the system load is heavy. For low-load, SlowerP is better because it can use the

energy-efficient low-power core to execute all the primary workload, and the overlaps with

the back-ups on the high-power spare can be mostly avoided. For heavy load, the situation

changes – the spare core generally turns on earlier to meet the deadline requirements of

backups. Since the spare always runs at maximum speed, having a slower, power-efficient

core helps to reduce energy, and FasterP configurations prove more advantageous.

47

 30

 40

 50

 60

 70

 80

 90

 100

 110

 1

 1
.2

 1
.4

 1
.6

 1
.8 2

 2
.2

 2
.4

N
o

rm
a

liz
e

d
 E

n
e

rg
y
 c

o
n

s
u

m
p

ti
o

n
 (

%
)

tscale

FasterP-S
FasterP-MO
FasterP-OA

SlowerP-S
SlowerP-OA

(a) Impact of tscale

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9 1

N
o

rm
a

liz
e

d
 E

n
e

rg
y
 c

o
n

s
u

m
p

ti
o

n
(%

)

pscale

FasterP-S
FasterP-MO
FasterP-OA

SlowerP-S
SlowerP-OA

(b) Impact of pscale

Figure 4.6: Impact of tscale and pscale

4.1.2.2 Impact of tscale.

Figure 4.6a shows the impact of tscale for a moderately-loaded (62.5% on low-power core)

system with fLPmax = 0.8. It can be seen that for the entire region, SlowerP-OA performs

distinctly better than others. This is because for this moderate load, the high-power backup

core can be kept idle most of the time, and the low-power core will execute the workload

avoiding backup activation. We can see that FasterP-S scheme performs worse for low

tscale values, but improves as tscale increases. This is because higher tscale values imply

a low-power core with large task execution times, and other techniques cannot do much to

avoid significant overlapped executions.

4.1.2.3 Impact of pscale.

In general, low pscale values imply increased energy-efficiency of the low-power core. For

these cases, SlowerP-OA perform better for moderate load (62.5% on the low-power core

with fLPmax = 0.8), as can be seen in Figure 4.6b. But as pscale grows, executing the main

tasks on the faster core becomes less problematic from the energy standpoint, and at some

48

point FasterP-MO and FasterP-OA start to outperform the SlowerP group.

4.1.2.4 Impact of Workload Variability.

 60

 65

 70

 75

 80

 85

 90

 95

 100

 105

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9 1

N
o

rm
a

liz
e

d
 e

n
e

rg
y
 c

o
n

s
u

m
p

ti
o

n
 (

%
)

BC/WC

FasterP-S
FasterP-MO
FasterP-OA
SlowerP-S

SlowerP-OA

(a) System load = 62.5%

 40

 50

 60

 70

 80

 90

 100

 110

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9 1

N
o

rm
a

liz
e

d
 e

n
e

rg
y
 c

o
n

s
u

m
p

ti
o

n
 (

%
)

BC/WC

FasterP-S
FasterP-MO
FasterP-OA
SlowerP-S

SlowerP-OA

(b) System load = 87.5%

Figure 4.7: Impact of workload variability

The results reported so far correspond to the scenarios where every task takes its worst-

case execution time. However, in practice, many tasks complete earlier, without presenting

its worst-case workload. To investigate the impact of the workload variability, we define the

ratio BC/WC as the ratio of best-case execution time to worst-case execution time. During

the experiments, the actual execution time of every task is randomly generated between its

worst-case and BC/WC× worst-case execution time, using a uniform distribution.

Figure 4.7a shows the impact of BC/WC ratio on a moderately loaded system (62.5%

on the low-power core). With BC/WC, the energy consumption increases, because the

system generates less and less dynamic slack that can be used to save energy. SlowerP-

OA outperforms other schemes throughout the BC/WC spectrum. FasterP schemes stay

worse than the SlowerP group except when BC/WC is very close to 1.0, at which point

FasterP-MO and OA outperform SlowerP-S. In fact, FasterP schemes do outperform even

49

SlowerP-OA at high BC/WC values for highly loaded systems, as shown in figure 4.7b.

4.2 Energy-Aware Mixed Primary-Backup Scheduling on Het-

erogeneous Multicore Systems

In this section, we consider implementing a fault-tolerant framework using mixed-primary/backup

(MPB) scheduling on heterogeneous dual-core systems while keeping the energy consump-

tion at a minimum level. In contrast to Section 4.1, we do not designate the processing

cores as primary or backup, instead, we employ “mixed-scheduling” in the sense that pri-

mary and backup copies of different tasks can now be allocated to the same processing

core, with the requirement that the primary copy and the backup copy of a given task are

always placed to different cores. Backup tasks are executed at the maximum frequency

of the corresponding core, and they are cancelled as soon as the primary copy completes

without error. This allows the system to tolerate the permanent fault of any single core,

since each processor has exactly one copy of each task (primary or backup) [1]. Moreover,

the transient faults detected in any primary task can be recovered from by the execution of

the respective backup task. Since primary tasks can be placed on any available processing

cores, this MPB approach enjoys much more flexibility in task-partitioning decisions which

can be exploited towards energy-efficient operation. This research differs from the existing

studies [53,54], in that: i.) we allow scheduling a mix of primary and back-up tasks on each

processor, and, ii.) we consider heterogeneous multicore systems.

To keep the energy consumption under control, the backup tasks are delayed as much

as possible on their corresponding processors, because a backup can be canceled as soon as

the corresponding primary completes successfully (i.e., without a fault). This also gives a

chance to apply DVFS with maximum efficiency during the execution of the primary tasks

on each core. We develop and propose schemes, i.) to partition all primary and backup

tasks, and, ii.) assign frequency (speed) to all the primary tasks to minimize the energy

consumption, while meeting timing and fault tolerance constraints.

50

Our experimental results suggest that the list-scheduling based partitioning techniques,

coupled with a speed assignment approach that dynamically avoids the overlaps with the

backups, exhibit superior performance which is close to the theoretical lower bound in

terms of energy consumption. Our framework directly incorporates a salient feature of

heterogeneous cores, namely the fact that the energy consumption and execution time

figures of different tasks scale by different ratios when executed on different cores [56].

Problem Statement. Given a set of real-time tasks and a heterogeneous dual-core sys-

tem, minimize the energy consumption by determining

1. The allocation of tasks such that the primary and backup copy of each task are

assigned to different cores, and,

2. The processing frequency (speed) assignment to individual tasks.

In the rest of this chapter, we investigate these two interconnected dimensions and propose

several efficient schemes.

4.2.1 Proposed Schemes

Before describing the specific algorithms that we propose, we present a number of general

principles that guide our solution framework. To start with, in general, the concurrent

execution of a primary task and its backup, though possible, is not desirable because it

incurs the full energy cost of the back-up execution (Figure 4.8a). However, in case when

the backup’s execution can be delayed, by the time the primary completes successfully, its

remaining part can be cancelled (Figure 4.8b)2.

This further suggests that on a given core, all the primary tasks must execute before the

backup tasks allocated to that core. Moreover, provisions are made to execute all backup

tasks at the maximum frequency on their respective cores, should there be a need – obviously

this choice minimizes their overlap with their respective primary tasks on the other core,

2Throughout the chapter, we show the cancelled part of the backup tasks by dashed patterns in all the
figures.

51

Time

D

τ1

B1

(a) Execution with full
primary-backup overlap

Time

D

τ1

B1

(b) Execution with partial
overlap

Figure 4.8: Concurrent Execution of Primary and Backup Tasks

and in addition, since faults are rare events, the full speed execution of the backups has only

a minimal impact on the average-case energy consumption. Clearly, this choice also leaves

maximum slow-down opportunities for the primary tasks scheduled on that core through

DVFS.

Thus, we define the canonical execution order, in which on a given core all primary tasks

are started as soon as possible, whereas backup tasks are delayed as much as possible subject

to the deadline constraints, and executed at the maximum frequency if needed. Figure 4.9

shows a canonical execution on a single processing core to which three primary tasks (τ1,

τ2, τ3), and two backup tasks (B4 and B5) are assigned. In the rest of the section, we

commit to this canonical execution order to execute primary and backup copies of tasks on

all cores, once the partitioning is done. The schemes we propose consist of task partitioning

Time

D

τ1 τ2 τ3 B4 B5

Figure 4.9: Canonical Execution Order

and speed (frequency) assignment phases which are described next.

52

Time

D

τ1 τ2 τ3 τ4

B1 B2 B3 B4

0 10 20 30 40 50 60 70 80 90 100

(a) Standby-sparing [6]

Time

D

τ4

τ2

τ1 τ3

B4

B2

B1 B3

0 10 20 30 40 50 60 70 80 90 100

(b) List-scheduling with primaries

Time

D

τ3

τ2

τ1 τ4

B4B1 B3

B2

0 10 20 30 40 50 60 70 80 90 100

(c) List-scheduling with backups

Time

D

τ3

τ2τ1

τ4

B3

B2B1

B4

0 10 20 30 40 50 60 70 80 90 100

(d) Fixed-threshold algorithm

Figure 4.10: Task partitioning algorithms

4.2.1.1 Task partitioning

Task partitioning, in general, is an intractable problem; however, a well-known approach is

based on the list-scheduling technique. We first describe two variants based on list scheduling

for our task partitioning phase.

List-scheduling with Primaries (LSP). In this algorithm, we consider the primary

copies of the tasks and employ list-scheduling algorithm to allocate them. First, the tasks

are ordered according to their decreasing nominal utilizations. Then, each primary task is

placed on a processing core that has the maximum free capacity after the placement. Free

capacity on a core is defined by (fmax−
∑

τiεΓp

Ci
D), where Γp is the set of all primary tasks

assigned to that core, augmented by the task under consideration. fmax and {Ci} values are

defined in the context of the core under consideration. Observe that the first few primary

tasks will always go to the HP core, until its free capacity matches that of the LP core.

Once the distribution of the primary tasks is complete, a backup copy for each primary task

53

is allocated to the alternate core. Also, at each stage of the primary task allocation, the

feasibility of both cores, in terms of time constraints, are checked.

Table 4.3: Example Task Set 1

WHP
i WLP

i EHPi ELPi
τ1 13.2 30.4 14.63 5.58

τ2 10.7 19.4 11.77 3.56

τ3 10.6 18.8 11.66 3.45

τ4 10.2 18.9 11.22 3.47

We illustrate the behavior of the algorithm on an example task set given in Table 4.3.

The table gives task execution times (in ms), and energy consumption (EHPi , ELPi) on both

cores (in mJ), under respective maximum frequencies. The 4-task set is scheduled on a dual

core system with fHPmax = 1.0 and fLPmax = 0.8. We also assume PHPidle = 0.05 and PLPidle = 0.02,

and for all tasks, aHPi = 1.0, aLPi = 0.3, αHPi = 0.1 and αLPi = 0.03. For demonstration,

we use a simple runtime policy (called static policy) in which, each primary task is slowed

down as much as possible without violating the frame deadline. The canonical execution

order is adopted on each core.

Figure 4.10b shows the task allocation under this scheme for our example task set in

Table 4.3. The first task, τ1 is allocated to the HP core, because it has the most free

capacity among the two cores. τ2 is allocated to the LP core whose free capacity is higher

at that time. Similarly, tasks τ3 and τ4 are allocated to the HP core. It should be noted

that, in contrast to the standby-sparing configuration shown in Figure 4.10a (which uses

the partitioning method SlowerP, one of the best-performing scheme in [6]), the extent of

primary-backup overlapped executions is much less in the LSP solution.

List-scheduling with Backups (LSB). This algorithm works in the same way as

LSP, but this time, the backup copies of the tasks are considered while partitioning. Once

the backup copies are distributed, their corresponding primary copies are allocated to the

54

respective alternate processing cores. By its very nature, this algorithm tends to allocate a

few initial primary tasks to the LP core, before their backups are allocated to the HP core

thanks to the LSB rule.

Figure 4.10c shows the task allocation under this scheme for our example task set in

Table 4.3. This partitioning is a mirror image of the LSP partitioning. It can be noted

that, all primary-backup overlapped executions are avoided.

Fixed-Threshold Algorithm (FTH). In this algorithm, the primary tasks are at first

ordered according to their decreasing nominal utilizations and processed one by one. Tasks

are assigned to the LP core, as long as its load does not exceed a pre-defined threshold

value. Otherwise the primary task is assigned to the HP core. After each primary task

assignment, its backup copy is allocated to the counterpart core. The threshold value can

assume any value between 0.0 and 1.0.

For our example Task Set 1, this heuristic produces the task-allocation shown in Fig-

ure 4.10d when the threshold value is 0.6. Tasks τ1 and τ2 are allocated to the LP core.

When task τ3 is processed, the total used capacity on the LP core exceeds 60% if it is

assigned to the LP core. Therefore, it is assigned to the HP core. Similarly, τ4 is allocated

to the HP core.

4.2.1.2 Speed assignment

Once the task partitioning phase is complete, the next step is to determine the speed

(frequency) of the primary tasks on each core, while committing to the canonical execution

order. Speed assignment to the primary tasks is critical not only because it determines

directly the primary’s energy consumption, but also indirectly, that of the corresponding

backup whose overlap extent may change as a result of that assignment. Below we propose

three speed assignment policies.

Static Speed Assignment (SSA). Figure 4.11 illustrates the basic principles of the

SSA policy. The scheme reserves capacity for each allocated backup task (which runs at

the maximum frequency of the core), and assigns a latest-start-time to each of them such

55

rLPrHP

LP:

HP:

τ2

τ4τ3

τ1

D

Time

B1 B2

B3 B4

(a) Initial partitioning

B3

Time

D

τ1

τ3 τ4

τ2

B1 B2

B4

HP:

LP:

rHP rLP

(b) After speed assignment

Figure 4.11: Static Speed Assignment

that no deadlines are missed. In Figure 4.11a, rHP and rLP denote the latest start time

for the first backup task on the HP and LP cores, respectively. Primary tasks are slowed

down as much as possible, subject to the energy-efficient frequency bound (fee). Letting r

denote the start time of the first backup task on a specific core, and ΓP denote the set of

all primary tasks on that core, then, the common frequency that finishes all these primary

tasks before time r is given by fU = (
∑

τiεΓP
Ci)/r. Then, each primary task τi is assigned

the frequency fi = Max(feei , fU). Figure 4.11b shows the extended execution times for

primary tasks, derived through this principle.

Dynamic Backup Cancellation (DBC). In this scheme, as in SSA, the processing

capacity is reserved for backup tasks and primary copies are slowed down as much as

possible, subject to the energy-efficient frequency. However, the speed assignment routine

is re-invoked at runtime: each time a primary task completes without fault, the reserved

capacity for its backup copy is deallocated and used to further slow down the next primary

tasks on that core. For example when τ3 finishes without error, the reserved capacity for

B3 on the LP core is reclaimed to further slow-down τ2 (Figure 4.12a). Note that, this

introduces some overlapped execution for B2. In general, when task τi is about to run at

time t, its speed is chosen as fU = (
∑

τiεΓx
Ci)/(r − t), where Γx is the set of unfinished

primary tasks on the same core, and r represents the earliest start time among the unfinished

backup tasks, again on the same core. When a primary task completes without error, the

56

earliest backup activation time on the alternate processing core is updated at runtime. The

chosen speed value is subject to the energy-efficient frequency, therefore, for each task τi,

the speed is set to fi = Max(feei , fU).

Time

D

τ1

τ3 τ4

τ2

B2

B4

HP:

LP:

rHP rLP

B1

(a) Dynamic Backup Cancellation

Time

D

τ1

τ3 τ4

τ2

B1 B2

B4

HP:

LP:

rHP rLP

(b) Dynamic Backup Cancellation with Mini-
mum Overlap

Figure 4.12: Dynamic Policies

Dynamic Backup Cancellation with Minimum Overlap (DMO). This scheme

works as the DBC scheme; but when setting the speed of the primary tasks at run-time, it

attempts to minimize the overlapped-execution with back-ups. As shown in Figure 4.12b,

when DVFS is applied to τ2 at the beginning of its execution, it is not maximally slowed

down; instead, the overlapped execution with B2 is avoided by running somewhat faster

than the DBC policy. Under this policy, the speed of τi is chosen to be fi = Min(fmax, f∗i)

where f∗i = Ci
ri−t , where ri is the latest time the backup copy of τi can be activated (on the

alternative core) without violating any deadlines, and t is the current time. This speed is

subject to the deadline constraint and the energy-efficient speed, therefore, fi is updated

as fi = Max(fi, f
ee
i , fU). In this scheme, fU is re-computed with a dynamically updated r

value as in the DBC scheme.

To contrast the impact of these schemes, we use the 4-task set in Table 4.4 with aHPi =

1.0, aLPi = 0.3, αHPi = 0.1 and αLPi = 0.03 for each task. The task set is executed on a dual

core system with fHPmax = 1.0 and fLPmax = 0.8. We also assume PHPidle = 0.05 and PLPidle = 0.02.

Figure 4.13a shows the execution of the task set under LSB partitioning and static speed

57

Time

D

τ1

τ3 τ4

τ2

B1

B4

B2

0 10 20 30 40 50 60 70 80 90 100

B3

f = 0.29

f = 0.7 f = 0.7

(a) Static speed assignment (SSA)

Time

D

τ1

τ3 τ4

τ2

B1 B2

0 10 20 30 40 50 60 70 80 90 100

f = 0.29

f = 0.7 f = 0.54

(b) Dynamic backup cancellation (DBC)

Time

D

τ1

τ3 τ4

τ2

B1 B2

0 10 20 30 40 50 60 70 80 90 100

f = 0.29

f = 0.7 f = 0.8

(c) Dynamic cancellation with minimum overlap

(DMO)

Figure 4.13: Execution under different schemes

assignment. The HP core (at the top) uses the energy-efficient frequency for tasks τ3 and

τ4, and the LP core (at the bottom) is slowed down maximally (f = 0.7) so that all backup

copies (B3 and B4) can make their deadline. The overall energy consumption is 24.7 mJ.

Figure 4.13b shows the execution of the same task set under LSB partitioning and DBC

policy. The scheme reclaims the reserved capacity for the backup copies B3 and B4 whose

primaries complete without fault, and uses this capacity to further slow down the primary

task τ2 to speed f = 0.54. However, this introduces overlapped execution for B2, and in

this case, hurts the energy savings. The overall energy consumption of this system is 36.7

mJ. Finally, Figure 4.13c shows the execution under LSB partitioning and DMO runtime

policy. Although this scheme could use all the reclaimed capacity from B3 and B4, it runs

τ2 at the maximum speed of the LP core (f = 0.8) to minimize the overlap with B2. This

execution yields an overall energy consumption of 20.2 mJ, which is 18% lower than that

of the static policy.

58

Table 4.4: Example Task Set 2

WHP
i WLP

i EHPi ELPi
τ1 20.3 36.8 22.33 6.76

τ2 19.1 39.4 21.01 7.23

τ3 4.3 10 4.73 1.84

τ4 1.5 3.02 1.65 0.55

4.2.2 Experimental Evaluation

We evaluated the energy consumption performance of the proposed algorithms in a discrete

event simulator. We simulated dual core systems with fHPmax = 1.0 and fLPmax varied from 0.6

to 1.0. For conciseness, we will show the results for fLPmax = 0.8, and analyze the impact of

varying fLPmax separately in Section 4.2.2.3.

It is known that the power parameters and required number of cycles for different tasks

scale differently on heterogeneous systems [56]. Therefore, as in section 4.1, we define

tscalei =
CLP

i

CHP
i

, which models how execution time changes on the LP core for a given task,

τi. Moreover, following section 4.1, we define pscalei to be the ratio of power consumption

of τi on the LP core to that on the HP core. Therefore, pscalei =
PLP
i

PHP
i

, which is also

assumed to be the same as
aLP
i

aHP
i

=
αLP
i

αHP
i

.

For each experiment, the simulator generates a task set containing n tasks, and a given

total utilization, U . The utilization value is calculated with respect to the LP core (which is

more constrained in terms of performance) and normalized considering its maximum speed.

Hence, U = (
∑ CLP

i
D)/fLPmax. Based on the target U , we use the RandFixedSum algorithm

[214] to assign a random utilization (according to uniform distribution) to each task such

that the total utilization equals U . We set the frame deadline D = 100ms. Next, for each

task a tscalei and a pscalei value are chosen randomly within ranges suggested in [56].

Specifically, 1.4 ≤ tscalei ≤ 2.3 and 1.4 ≤ 1/(tscalei ∗ pscalei) ≤ 2.1 hold. We assume for

59

all tasks, aHPi = 1.0 and αHPi = 0.1. In addition, PHPidle = 0.05 and PLPidle = 0.02 for all

experiments.

Each generated task set is partitioned upon the HP and LP cores according to one of

the proposed partitioning algorithm. For every partition obtained in this way, we simulate

the execution according to the speed assignment policies that we suggested, and record the

energy consumption. Every combination of a partitioning scheme and a speed assignment

algorithm gives us a valid overall algorithm, whose name is indicated by the concatenation

of the member schemes (e.g., LSP-SSA, FTH-DMO). We use task sets with n = 10 in all the

results shown, but we discuss the impact of varying the number of tasks in Section 4.2.2.3.

Every reported data point is the average of 3000 runs.

We report the average energy consumption in fault-free executions, since faults are very

rare events. The obtained energy consumption numbers are normalized with respect to

the maximum energy consumption (observed in the considered parameter spectrum) of a

standby-sparing system with static speed assignment and in which all the primary copies

are allocated to the LP core [6].

Due to the multiple dimensions of the problem and large number of scheme combina-

tions, in our evaluation, we will adopt a hierarchical approach. We will first discuss the

performance of the partitioning algorithms by fixing the speed assignment policy. Next, we

will compare the performance of the proposed speed assignment policies, and also investi-

gate the impact of the chosen threshold value on the FTH algorithm. Finally, we show the

effect of the maximum speed of the LP core and the effect of the number of tasks.

4.2.2.1 Evaluation of Partitioning Algorithms

We implemented the following partitioning schemes in our simulator:

• List-scheduling with Primaries (LSP)

• List-scheduling with Backups (LSB)

• Fixed-threshold Algorithm (FTH)

60

 30

 40

 50

 60

 70

 80

 90

 100

 3
0

 4
0

 5
0

 6
0

 7
0

 8
0

 9
0

 1
0

0

N
o

rm
a

liz
e

d
 e

n
e

rg
y
 c

o
n

s
u

m
p

ti
o

n
 (

%
)

Utilization (%)

STS
LSB
FTH
LSP
OPT

(a) Impact of utilization

 50

 60

 70

 80

 90

 100

 1
.4

 1
.5

 1
.6

 1
.7

 1
.8

 1
.9 2

 2
.1

 2
.2

 2
.3

N
o

rm
a

liz
e

d
 e

n
e

rg
y
 c

o
n

s
u

m
p

ti
o

n
 (

%
)

TSCALE

STS
LSP
FTH
LSB
OPT

(b) Impact of tscale

 50

 60

 70

 80

 90

 100

 0
.2

 0
.2

5

 0
.3

 0
.3

5

 0
.4

 0
.4

5

 0
.5

N
o

rm
a

liz
e

d
 e

n
e

rg
y
 c

o
n

s
u

m
p

ti
o

n
 (

%
)

PSCALE

STS
FTH
LSB
LSP
OPT

(c) Impact of pscale

Figure 4.14: Performance of partitioning algorithms

• Standby-sparing (STS)

• Optimal Partitioning (OPT)

The optimal partitioning we show in the plots is obtained by exhaustively enumerating all

possible task allocations, and measuring their runtime energy consumption, then choosing

61

the best. This is implemented by the exhaustive search which becomes impractical when

the number of tasks grows beyond 15. The STS algorithm is adopted from the SlowerP

scheme in [6], because it is shown to be the best-performing one in its respective context.

The threshold value for the FTH algorithm is fixed as 0.6. The energy consumption of the

partitioning algorithms is shown using the static speed assignment algorithm (SSA); we

obtained similar trends with the other (DBC and DMO) algorithms.

Impact of Utilization. In Figure 4.14a, we show the impact of utilization on normalized

energy consumption. When the utilization is low, the FTH algorithm’s performance ap-

proaches the optimal one, suggesting that allocating all primary tasks to the LP core, and

all the (delayed) backups to the HP core is the best strategy. This is because under low

load, LP can finish the primary workload quickly and in a power-efficient way, allowing the

backup tasks to get cancelled on the HP core early. This is evident for the STS scheme too,

because it allocates all the primary workload to one core as well. As the load increases,

FTH drifts from the optimal scheme and LSB becomes a comparable scheme. This is due

to the fact that, as the load grows, a more balanced partitioning is preferable which can

allow a suitable distribution of the reserved space for backup copies such that their activa-

tion is seldom needed. Both FTH and LSB give relatively balanced partitionings, but LSB

generally allocates more primary copies to the LP core, with an energy advantage. LSP

scheme, performing very poorly on the low-load case, starts to outperform both LSB and

FTH when the utilization exceeds 80%, and comes within 5% of the optimal scheme. For

heavy load, executing primary copies on the HP core is preferable because in this case, the

backup copies cannot, in general, get cancelled and executing them at the maximum speed

of the LP core is preferable to executing them at the maximum speed of the HP core. For

the same reasons, STS performs the worst for heavy load cases.

Impact of tscale. Figure 4.14b shows the impact of tscale on the performance of the

partitioning algorithms. tscale is varied within the range of 1.4 to 2.3, which is obtained

from [56]. In general, larger tscale values indicate that tasks take much longer to complete

on the LP core, despite its power-efficiency. In these experiments the utilization is fixed

62

at 70%, and therefore, increasing tscale implies additional unused capacity on the HP

core. We see that LSB performs consistently within 3% of the optimal scheme throughout

the entire range of tscale. This is because executing the primary copies of the workload

on the power-efficient core results in less energy consumption, and LSB tends to allocate

primary workload to the LP core. LSP, on the other hand, has a tendency to assign primary

workloads to the HP core, and in general, it lags behind LSB. FTH comes very close to the

performance of LSB as tscale increases.

Impact of pscale. Figure 4.14c shows the impact of pscale on the performance of the

partitioning algorithms. When the LP core is very power-efficient, i.e., pscale is low, FTH

and LSB come very close to optimal scheme. This is because at the fixed 70% system

load, FTH assigns most of the primary workload on the LP core, and that helps saving

energy. As pscale grows, FTH drifts away from the optimal scheme the most, because it

is no longer efficient to use the LP core for most of the primary workload. However, LSB

can still perform within 5% of the optimal scheme, because it produces a more balanced

partitioning with a bias to allocate the primary tasks to the LP core. LSP, which produces

a balanced partitioning with a bias to assign the primary tasks to the HP core, performs

poorly for low pscale, but starts to outperform LSB for pscale greater than 0.4 and comes

2% of the optimal scheme.

4.2.2.2 Evaluation of Speed Assignment Algorithms

We implemented the following speed assignment policies.

• Static Speed Assignment (SSA)

• Dynamic Backup Cancellation (DBC)

• Dynamic Backup Cancellation with Minimum Overlap (DMO)

• Bound

The Bound algorithm is implemented as a yardstick speed assignment algorithm. After

partitioning the tasks the executions slots are still reserved for backup tasks – those slots

63

 30

 40

 50

 60

 70

 80

 90

 100

 3
0

 4
0

 5
0

 6
0

 7
0

 8
0

 9
0

 1
0

0

N
o

rm
a

liz
e

d
 e

n
e

rg
y
 c

o
n

s
u

m
p

ti
o

n
 (

%
)

Utilization (%)

STS
LSB-SSA
FTH-SSA
LSB-DBC
FTH-DBC
LSB-DMO
FTH-DMO

OPT-Bound

(a) Impact of utilization

 50

 60

 70

 80

 90

 100

 1
.4

 1
.5

 1
.6

 1
.7

 1
.8

 1
.9 2

 2
.1

 2
.2

 2
.3

N
o

rm
a

liz
e

d
 e

n
e

rg
y
 c

o
n

s
u

m
p

ti
o

n
 (

%
)

TSCALE

FTH-DBC
STS

FTH-SSA
LSB-DBC
LSB-SSA

FTH-DMO
LSB-DMO

OPT-Bound

(b) Impact of tscale

 50

 60

 70

 80

 90

 100

 0
.2

 0
.2

5

 0
.3

 0
.3

5

 0
.4

 0
.4

5

 0
.5

N
o

rm
a

liz
e

d
 e

n
e

rg
y
 c

o
n

s
u

m
p

ti
o

n
 (

%
)

PSCALE

FTH-DBC
STS

FTH-SSA
FTH-DMO
LSB-SSA
LSB-DBC
LSB-DMO

OPT-Bound

(c) Impact of pscale

Figure 4.15: Performance of the speed assignment algorithms

are dynamically released (as in DBC), but no extra energy consumption is recorded for

the overlapped execution of the backup tasks at run-time. Since the backup executions

essentially incur zero energy cost, no speed assignment algorithm can outperform Bound.

64

We matched Bound with the exhaustive search based Optimal partitioning algorithm, ob-

taining a combined scheme denoted by OPT-Bound, which gives the lower bound on the

performance of any realistic MPB algorithm. Given the large number of partitioning/speed

assignment scheme combinations, for other schemes, we are showing only the results we

obtained with the best performing partitioning algorithms, namely LSB and FTH. We are

using the Overlap-Aware speed assignment scheme for STS, as it is shown to be the best

performing scheme for standby-sparing in [6].

Impact of Utilization. In Figure 4.15a, we see that both FTH-DMO and LSB-DMO

perform within 2% of Opt-Bound. This is because dynamically reclaiming the capacity for

backup tasks and minimizing overlap while applying DVFS is a very effective strategy, as

done within DMO. This is also true for STS at low-load, because it allows some carefully

calculated overlapped execution. As the load increases, STS drifts away from Opt-Bound

the most, because it has the restriction that it cannot allocate primary and backup copies

on the same processor. FTH-DBC and LSB-DBC perform poorly for moderately loaded

systems due to the large overlapped executions that it creates. However, for heavy load,

backup copies need to run until deadline anyway, therefore the performance of the DBC

scheme improves. Both FTH-SSA and LSB-SSA offer decent performance levels unless the

load is very high.

Impact of tscale. As we change tscale value (when the load is fixed at 70%), LSB-

DMO performs the best and stays within 3% of Opt-Bound (Figure 4.15b). The next best

performing scheme is FTH-DMO. This again suggests the superiority of DMO thanks to

its dynamic but moderately aggressive approach in applying DVFS while avoiding overlaps.

The plot also shows that FTH-DBC performs the worst, and LSB-DBC performs the worst

among all the LSB algorithms. This is because DBC aggressively slows down a task without

regard to the overlapped execution.

Impact of pscale. Varying pscale yields similar trends (Figure 4.15c). LSB-DMO and

FTH-DMO perform the best, within 3% of Opt-Bound, by exploiting the overlap avoidance

strategy of DMO. LSB-DMO’s performance, however, decreases as the LP core becomes less

65

 70

 75

 80

 85

 90

 95

 100

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9 1

N
o
rm

a
liz

e
d
 e

n
e
rg

y
 c

o
n
s
u
m

p
ti
o
n
 (

%
)

Threshold

STS
FTH
LSP
LSB
OPT

(a) Utilization = 70%

 70

 75

 80

 85

 90

 95

 100

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9 1

N
o
rm

a
liz

e
d
 e

n
e
rg

y
 c

o
n
s
u
m

p
ti
o
n
 (

%
)

Threshold

STS
FTH
LSP
LSB
OPT

(b) Utilization = 90%

Figure 4.16: Impact of threshold value in FTH algorithm

power-efficient (pscale increases). This is because, with less power-efficient LP core, it is no

longer favorable to assign primary workload to the LP core up to a threshold. Due to the

aggressive frequency scaling of the DBC scheme, FTH-DBC performs the worst throughout

the entire spectrum. LSB-DBC, performing poorly for low pscale, starts to improve when

pscale is greater than 0.4, and comes within 1% of Bound. This is because when the LP

core is less power-efficient, slowing it down as much as possible proves helpful from the

energy consumption perspective.

4.2.2.3 Additional Results

Impact of the threshold value in the FTH algorithm. The Fixed-Threshold (FTH) algorithm

works by allocating all primary tasks to the LP core until a threshold utilization is reached.

Figure 4.16a shows the impact of the threshold value on a system that is 70% loaded and

with DMO policy. The results indicate that the energy consumption of FTH decreases

as we increase the threshold value, and at about 0.45, it outperforms the otherwise best

performing algorithm, LSB. Its energy consumption is minimized at some threshold value

66

 50

 60

 70

 80

 90

 100

 0
.6

 0
.6

5

 0
.7

 0
.7

5

 0
.8

 0
.8

5

 0
.9

 0
.9

5 1

N
o
rm

a
liz

e
d
 e

n
e
rg

y
 c

o
n
s
u
m

p
ti
o
n
 (

%
)

Max. speed of the LP core

FTH-DBC
FTH-SSA

STS
FTH-DMO
LSB-SSA
LSB-DBC
LSB-DMO

OPT-Bound

(a) Impact of the maximum speed of the LP core

 70

 75

 80

 85

 90

 95

 100

 5

 1
0

 1
5

 2
0

 2
5

N
o
rm

a
liz

e
d
 e

n
e
rg

y
 c

o
n
s
u
m

p
ti
o
n
 (

%
)

Number of tasks

STS
LSP
FTH
LSB
OPT

(b) Impact of the number of tasks

Figure 4.17: Additional Evaluations

around 0.50. The energy consumption goes up as we increase the threshold and becomes

constant at some point – because when the threshold value exceeds the utilization, all of

the workload is assigned to the LP core. The threshold-independent algorithms, naturally

yield a constant energy consumption. Figure 4.16b shows a similar pattern for a system

with 90% load. The results suggest that choosing a threshold value in the range [0.5, 0.6]

is generally a very good choice when using the FTH algorithm.

Impact of the maximum speed of the LP core. In this set of experiments, we varied

the maximum speed of the LP core while fixing the load at 70% for each configuration

(Figure 4.17a). The performance of LSB-DMO remains within 5% of Opt-Bound for the

entire region, suggesting that it is applicable in a wide range of heterogeneous systems.

FTH algorithms, on the other hand, tend to drift away from Opt-Bound as the maximum

speed of the two processing cores become close to each other. We also see that the energy

consumption of all schemes increases with increasing fLPmax. This is because, when the

utilization is kept fixed at 70%, when we increase fLPmax, the effective amount of workload

67

on the system is increased, which is reflected in the results.

Impact of the number of tasks. Figure 4.17b shows the impact of number of tasks for a

system with utilization 70%. We see that for small number of tasks, the performance of all

the schemes is affected. As the number of tasks grows, the average task size decreases and

the performances of various schemes stabilize. We can see that LSB performs within 3%

of the optimal scheme, and FTH is about 3% worse than LSB, for the entire region. LSP

performs worse than the other two, but it also shows stable performance when the number

of tasks grows. For the optimal scheme, we could only calculate energy consumptions for

up to 17 tasks due to its prohibitive computational complexity.

4.3 Concluding Remarks

In this chapter, we presented our studies on the fault-tolerant scheduling of independent

frame-based real-time tasks implemented upon heterogeneous multicore processors with a

goal of minimizing the overall energy consumption of the system. To ensure reliability, we

associated each task with a backup copy, and we always placed the primary and backup

copies of the same task to different processing cores. For energy management, we employed

DVFS and DPM to slow down execution and idling the processing cores respectively, while

providing strict guarantees on the deadline constraints. We implemented standby sparing

technique on heterogeneous multicores and proposed several algorithms to minimize the

overall energy consumption. Furthermore, we employed mixed-primary/backup approach

which allows additional flexibility in allocating tasks to processors, and we proposed a few

algorithms that can exploit this feature to yield energy-minimal operation. We conducted

extensive simulation experiments which show the superior performance of our proposed

schemes.

68

Chapter 5: Energy-aware Fault-Tolerant Real-time

Scheduling of Frame-based Tasks with Precedence

Constraints

In this chapter, we propose a fault-tolerant and energy-efficient framework for frame-based

real-time tasks with precedence constraints executing on heterogeneous dual-core systems.

In many practical real-time applications, there are often dependency relationships among

real-time tasks [29, 215,216], which generally stems from the input/output data dependen-

cies between them. As an example, consider three tasks τx, τy and τz. If τz takes the output

of τx and τy as input, then τz can only start to execute after both τx and τy have finished

execution and made their output data available. We model the dependencies using prece-

dence constraints as directed acyclic graphs (DAGs) [217,218]. An example DAG is shown

τ1 τ2

τ3 τ4

τ0

Figure 5.1: An Example Task Graph (DAG)

in Figure 5.1. An edge τj → τk in the DAG indicates that τk can only start to execute

when τj completes successfully. A common approach to scheduling tasks with precedence

69

constraints is to process a topological ordering of the tasks. A topological ordering is an

order of the tasks which ensures, if τi → τj is in the task graph, then τi will precede τj in

the given order. For the example in Figure 5.1, one possible topological order is τ0, τ1, τ2, τ3

and τ4. As a naive method, we can schedule the tasks in this order using standby sparing or

mixed-primary/backup technique presented in Chapter 4, however, this arrangement fails

to provide proper fault tolerance when multiple tasks are affected by transient faults during

a given frame. Previously, the primary and backup copies could be scheduled independently

in time to each other, but in this case, if a task is affected by a transient fault, then none

of its subsequent tasks can start until its backup has completed successfully. Moreover,

after the first recovery, each of the subsequent tasks is susceptible to subsequent transient

faults, and therefore a backup for each subsequent task must be scheduled as well. Another

approach to scheduling dependent tasks is to allocate each task’s primary and backup copy

in pairs to the available two processing cores, following the topological order. However, this

approach is deficient for two reasons: i.) this limits any parallel execution of two primary

tasks which do not have any precedence relationship, and ii.) this limits the opportunity

for energy saving because the backup tasks cannot be maximally delayed. We designed

algorithms and techniques by exploring how to exploit the parallelism in the heterogeneous

cores as well as its power-performance characteristics using DVFS and DPM such that the

overall energy consumption is minimized.

Our proposed solution has two components: 1.) A main schedule where tasks are exe-

cuted at low processing frequency (speed) levels using DVFS to save energy as long as faults

are not encountered, and, 2.) The contingency schedule according to which recovery tasks

are executed upon the detection of transient and/or permanent faults. Task partitioning

and speed assignment algorithms are designed by respecting the precedence constraints and

allowing the necessary recovery times in the contingency schedule, while minimizing energy

consumption in most common (fault-free) execution scenarios. The fault model we assume

can tolerate a separate transient fault for each real-time task, as well as the permanent fault

of any single core – in fact, the system can recover from the permanent fault of a processing

70

core, even after multiple tasks have incurred transient faults and have been re-executed

thanks to the hardware and time redundancy offered by the contingency schedule. All the

components of the proposed framework guarantee the precedence and timing constraints.

The experimental evaluation suggests that our proposed schemes can offer non-trivial en-

ergy gains over a broad parameter spectrum. To the best of our knowledge, this is the

first study on the energy-aware fault-tolerant operation of real-time tasks with precedence

constraints, executing on heterogeneous multicore systems.

Our proposed framework, as discussed in Section 5.1.1, includes copies of each task τi

to be executed in a potential recovery mode, upon the detection of run-time faults. If

a transient or permanent fault is detected, the system switches to the recovery mode and

executes all the incomplete tasks at the maximum speed according to a contingency schedule,

whose details are provided in Section 5.1.1. In essence, the contingency schedule allows re-

executing faulty tasks and also tolerating additional transient faults that may affect other

tasks. Moreover, it offers the capability to recover from a permanent processing core fault

that may occur after any number of transient faults. Note that, should a permanent fault

occur, the system loses the capability of tolerating any more (transient or permanent) faults

until the faulty core is repaired or replaced. In the rest of this chapter, we present the details

of our proposed framework and experimental results.

5.1 Proposed Framework

Our proposed framework has two complementary phases for task mapping and scheduling.

First, since the faults are rare events, there is a need to determine the default schedule

according to which tasks are executed in each frame as long as faults are not encountered.

We call this default schedule the main schedule. An important objective for the main

schedule is to minimize energy consumption in the most common (i.e., fault-free) frame

execution scenarios. Consequently, computing the main schedule involves:

• Allocating the primary tasks on the HP and LP cores and determining their execution

71

order (task partitioning and ordering), and,

• Determining the voltage/frequency levels for individual primary tasks (speed assign-

ment),

to minimize energy consumption while meeting the precedence and timing constraints.

However, while generating the main schedule, it is necessary to take provisions to toler-

ate transient and permanent faults in a timely manner. In what follows, we first discuss

the recovery mode of execution and the derivation of the contingency schedule according

to which the tasks are (re-)executed in a frame upon the detection of a fault. Then we

elaborate on the two components of the main schedule computation (task partitioning and

speed assignment).

5.1.1 Recovery Mode and Contingency Schedule

When a transient fault is detected at the end of task τi, the task must be re-executed, in

addition to other tasks that are yet to be executed before the end of the frame (deadline),

while satisfying the precedence constraints. In our framework, upon the detection of a fault,

the system switches to the recovery mode and executes the (incomplete) tasks according to

a pre-computed contingency schedule.

It should be noted that, we could not simply schedule a backup copy on the alternative

processing core (as our approach in Chapter 4), because due to the precedence constraints,

this approach fails to provide fault tolerance when multiple transient faults affect multiple

tasks during the same frame. In order to tolerate multiple transient faults, it is imperative

to execute the backup copy of the faulty task along with both copies of all subsequent tasks.

As long as both cores are functional, the system must preserve its capability to recover

from the permanent fault of any of the cores. Since this invariant must hold even during

the recovery mode which may have been triggered by a transient fault, in the contingency

schedule, it is necessary to schedule two distinct copies of tasks allocated on two different

cores; with only one copy of a task τj allocated on a specific core, it would not be possible

72

to re-execute τj , should that core experience a permanent fault.

Consequently, in the contingency schedule, associated with each task τi there are two

contingency tasks1 ρi and ρ′i with the exact same timing parameters as those of τi. We make

sure that ρi and ρ′i are allocated to different cores, as a precaution against a permanent

fault. When a primary task τi starts to execute, the contingency task ρi is cancelled, and if

the primary task τi completes successfully, the contingency task ρ′i is cancelled; hence they

do not incur any time or energy overhead in most common fault-free execution scenarios.

Thus, the contingency schedule consists of a sequence of paired contingency tasks executing

at the maximum speed of their respective cores, if the system enters the recovery mode for

that frame. Moreover, their executions are delayed as much as possible to minimize overlaps

with the tasks in the main schedule (see Fig. 5.2c as an example).

Specifically, once the primary tasks are mapped to the HP and LP cores, the contingency

schedule is determined according to the following rules:

1. A topological order of tasks satisfying the precedence constraints implied by DAG is

obtained. In addition, this task sequence complies with the execution order of tasks

observed on each core in the main schedule.

2. Two contingency copies of each task (ρi and ρ′i) are placed in parallel on the HP and

LP cores, according to the order derived in Step 1. ρi is placed on the same core as

its primary copy in the main schedule, whereas ρ′i is placed on the alternative core.

The contingency tasks are shifted towards the deadline as much as possible such that

each primary copy can get a larger execution-window and run at a slower speed by applying

DVFS in order to save energy (Fig. 5.2c). The activation times of the contingency tasks

are computed such that both copies complete at the same time with their respective worst-

case execution time on the HP and LP cores. These activation times represent the latest

start time of a contingency copy such that any faulty task and all of its subsequent tasks

1Note that, as opposed to our general system model which has a single backup task Bi, in this chapter

we are using two tasks ρi and ρ′i instead as contingency copies.

73

can be executed before the frame deadline if needed. The pseudocode for constructing the

contingency schedule is given in Algorithm 1.

Algorithm 1 Schedule-Contingency

1: Input: Task set (Γ), Allocation Task Graph (G), Deadline (D)
2: Output: Latest activation times {startρi} and {startρ′i}
3: Create a list λ by obtaining a topological order from G, breaking ties by choosing largest

(CHPi) task first
4: λ← Reverse(λ) /* Reverse the list λ */
5: time← D
6: for each task τi in λ do
7: if τi is allocated to HP then
8: Z ← HP , Z ′ ← LP
9: else

10: Z ← LP , Z ′ ← HP
11: end if
12: startρi ← time− CZi
13: startρ′i ← time− CZ′

i

14: time← time−Max{CHPi , CLPi }
15: end for
16: return {startρi} and {startρ′i}

As an example, consider a set of tasks given by the DAG shown in Fig. 5.2a and deadline

D = 100ms. For each task τi, we have CHPi = 8 and CLPi = 12, expressed in millions of

cycles. Assuming fHPmax = 1.0 and fLPmax = 0.75 GHz, therefore, each task takes 16 ms and 8

ms when executed on the LP and HP cores at maximum speed, respectively. Considering

the allocation of the primary tasks shown in Fig. 5.2b, we show an example contingency

schedule in Fig. 5.2c. First the topological order τ0, τ1, τ2, τ3, τ4 is obtained and the

corresponding contingency tasks are maximally pushed towards the deadline.

In summary, the system operates according to the following rules at run-time:

R1. As long as there are no faults, the system continues with the main schedule. When a

primary task τi completes successfully, the contingency schedule is updated to reflect

the cancellation of the contingency tasks ρi and ρ′i.

R2. If a fault is detected at the end of τi, the system immediately transitions to the

recovery mode, and it starts executing the contingency copies of all incomplete tasks

at the maximum speed of both cores according to the contingency schedule, including

74

τ1 τ2

τ3 τ4

τ0

(a) Task graph

Time
0 10 20 30 40 50

D

τ2 τ4

τ0 τ1 τ3

HP:

LP:

100

∫∫

∫∫

(b) Task Partitioning in the Main Schedule

Time
0 10 20 30 40 50 60 70 80 90 100

HP:

LP:

D

ρ0 ρ3

ρ2 ρ4

ρ1

ρ′0 ρ′1 ρ′3

ρ′2 ρ′4

(c) Contingency Schedule

Figure 5.2: An Example Contingency Schedule

ρi and ρ′i. Once the end of the frame is reached, the system resumes the execution

according to the main schedule in the new frame, at low processing speeds to save

energy.

R3. If a permanent fault is detected on HP or LP, the system cancels the execution of

main schedule on the remaining operational core, and immediately starts executing

the incomplete tasks in the contingency schedule at the maximum speed. The system

operates on a single core executing the contingency schedule until the faulty core is

replaced or repaired.

The pseudocode in Algorithm 2 describes the operation of the system at runtime in nor-

mal mode, whereas Algorithm 3 describes the operations in contingency mode. It should

be noted that even though the task start times are computed according to the as late as

75

Algorithm 2 Runtime-Events (Normal mode)

Event: New frame (period) starts

All tasks are released and marked as incomplete

// Let τH and τL be the first incomplete tasks in HP and LP core, respectively

if τH is ready then

Cancel contingency copy ρH
Dispatch τH

end if
if τL is ready then

Cancel contingency copy ρL
Dispatch τL

end if

Event: A task (τi) completes

Run acceptance test for detection of transient fault in τi
if no error is detected then

Cancel contingency copy ρ′i and mark τi as complete

// Let τH and τL be the next incomplete tasks in HP and LP core, respectively

if τH is ready then

Cancel contingency copy ρH
Dispatch τH

end if
if τL is ready then

Cancel contingency copy ρL
Dispatch τL

end if
else

Switch to contingency mode

end if

Event: A permanent fault is detected on a core

Switch to contingency mode immediately

possible principle in the contingency schedule, when the system transitions to the recovery

mode upon the detection of a fault, the required contingency tasks are dispatched immedi-

ately in the specified order, without waiting until the latest possible start times indicated

in the contingency schedule. We conclude this section by the following remarks that justify

fault tolerance capability of the proposed framework:

FT1. As long as both cores are functional, the system is able to recover from transient

faults affecting any number of tasks, even when some of these faults may occur in the

recovery mode, affecting a single copy of each pair of the contingency tasks ρi and ρ′i.

76

Algorithm 3 Runtime-Events (Contingency mode)

Event: New frame (period) starts

if Both HP and LP core are functional then
Switch to Normal mode with Event “frame begins”
return

else
All tasks are released and marked as incomplete

Go to event: “Start Contingency mode”

end if

Event: Start Contingency mode

// Let τX be the first incomplete tasks in the contingency schedule

if ρX is not cancelled then

Dispatch ρX on its respective core

end if
if ρ′X is not cancelled then

Dispatch ρ′X on its respective core

end if

Event: A contingency task (ρi) completes

Run acceptance test for detection of transient fault in ρi
if no error is detected then

Cancel the other contingency copy (ρ′i) if it is executing, and mark τi as complete

// Let τX be the next incomplete task in the contingency schedule

if Both HP and LP cores are functional then
Dispatch ρX and ρ′X on their respective cores

else
Dispatch ρX on the remaining operational core

end if
end if

FT2. The system can tolerate one permanent fault of any of the cores, even when the fault

may occur during the execution of the contingency schedule thanks to the paired

arrangement of the contingency tasks.

5.1.2 Task partitioning and ordering

Now we turn our attention to the problem of allocating the primary tasks on two cores and

ordering them to satisfy the precedence constraints. In general, partitioning a set of real-

time tasks on a multiprocessor system is a well-known NP-Hard problem. For this reason,

our framework generates the task partitions decisions offline, based on the list scheduling

77

τ1 τ2

τ3

τ4

τ0

τ5 τ6
(a) Task graph

WHP
i WLP

i aLP
i αLP

i

τ0 3.0 7.5 0.28 0.028
τ1 10.0 23.1 0.45 0.045
τ2 6.0 13.5 0.30 0.03
τ3 6.5 14.6 0.40 0.04
τ4 5.0 9.4 0.25 0.025
τ5 4.5 7.9 0.20 0.02
τ6 4.0 7.0 0.20 0.02

(b) Task parameters

Figure 5.3: Task Set for the Running Example

Time
0 10 20 30 40 50 60

D

τ2τ4τ6 τ5

τ0 τ1 τ3

HP:

LP:

100

∫∫

∫∫

(a) LTF Partition

Time
0 10 20 30 40 50 60

D

τ2τ4

τ6τ5τ0 τ1 τ3

HP:

LP:

100

∫∫

∫∫

(b) TBLS Partition

Figure 5.4: Task partitioning algorithms

approach which is widely used to schedule tasks with precedence constraints [218,219]. In list

scheduling, tasks are allocated to the available cores one at a time, starting with tasks with

no predecessors (root tasks). A task whose all predecessors have been already allocated

becomes also eligible for allocation. The algorithm keeps track of the tasks allocated to

individual cores, as well as the current length of the schedule (makespan) on every core. If

multiple tasks are eligible for allocation, ties may be broken using various parameters, such

as execution time or power consumption of the tasks. Below we describe two heuristics

78

Time
0 10 20 30 40 50 60 70 80 90 100

HP:

LP:

D

ρ0 ρ3

ρ2 ρ4 ρ′5ρ′6

ρ1

ρ′0 ρ′1 ρ′3

ρ′2 ρ′4 ρ5ρ6

(a) LTF Contingency Schedule

Time
0 10 20 30 40 50 60 70 80 90 100

τ0

HP:

LP:

D

τ1 τ3

τ2 τ4τ6 τ5

f2 = f4 = f6 = f5 = 0.81

f0 = f1 = f3 = 0.65

(b) LTF-US Schedule

Time
0 10 20 30 40 50 60 70 80 90 100

τ0

HP:

LP:

D

τ1 τ3

τ2 τ4 τ6 τ5
f0 = 0.72 f1 = 0.63 f3 = 0.65

f2 = f4 = f6 = f5 = 0.29

(c) LTF-CPSS Schedule

Figure 5.5: Contingency Schedules and Speed Assignments under LTF scheme

based on this list scheduling technique. It should be noted that once the task partitioning

is determined through our heuristics, it is not changed at run-time; i.e., migration of the

tasks is not allowed.

We use a running example to demonstrate the operation of our heuristics. As shown

in Fig. 5.3, we have a task set with 7 tasks along with their dependencies indicated by the

task graph. For each task, aHPi = 1.0 and αHPi = 0.1. The other parameters are shown

in Table 5.2b, where Wi values are computed assuming maximum speed on the respective

core. For the HP and LP cores, we assume fHPmax = 1.0, fLPmax = 0.8, PHPidle = 0.05, and,

PLPidle = 0.02.

Largest Task First (LTF). In this variant of list scheduling, tasks again are allocated

one by one, and in each iteration, the next highest-priority eligible task is allocated to the

earliest available processor. The priority of a task is determined by its size (the CHPi value).

In case both of LP and HP cores are available at a given iteration, then we choose the LP

core (assuming the deadline is still met), to save energy.

This method produces a good mix of tasks on the HP and LP core and generally produces

79

Time
0 10 20 30 40 50 60 70 80 90 100

HP:

LP:

D

ρ0 ρ3

ρ2 ρ4 ρ′5 ρ′6

ρ1

ρ′0 ρ′1 ρ′3

ρ′2 ρ′4 ρ5 ρ6

(a) TBLS Contingency Schedule

Time
0 10 20 30 40 50 60 70 80 90 100

τ0

HP:

LP:

D

τ1 τ3

τ2 τ4

τ6τ5

f2 = f4 = 0.81

f0 = f1 = f3 = f5 = f6 = 0.65

(b) TBLS-US Schedule

Time
0 10 20 30 40 50 60 70 80 90 100

τ0

HP:

LP:

D

τ1 τ3

τ2 τ4

τ6τ5

f0 = 0.72 f1 = 0.63 f3 = 0.65

f2 = f4 = 0.29

f5 = f6 = 0.29

(c) TBLS-CPSS Schedule

Figure 5.6: Contingency Schedules and Speed Assignments under TBLS scheme

a schedule with a short makespan. The overall complexity of the algorithm is O(n2 + nE),

where n is the number of tasks and E is the number of edges (or, dependencies) in the

task graph. The operation of LTF for our running example task is shown in Fig. 5.4a.

All tasks can finish execution by t = 45 (when executed at the maximum speed of their

respective cores.) The corresponding contingency schedule for this task-allocation is shown

in Fig. 5.5a.

Threshold-based List Scheduling (TBLS). This method attempts to exploit the

low-power feature of the LP core. Specifically, we define a threshold value for the utilization

on the LP core. If the total task utilization (on the LP core) is less than this threshold

value, then all tasks are placed on LP. Otherwise, the algorithm allocates some tasks on

the HP core in order to keep the LP core’s total utilization under the predefined threshold

value.

In this method, we use the list scheduling technique to allocate eligible tasks (by consid-

ering the precedence constraints) to the LP core as long as its utilization does not exceed

threshold. If the total utilization of the task set exceeds threshold, then we choose some

80

tasks to be allocated to the HP core, such that LP core’s utilization is kept under threshold.

When there are multiple eligible tasks, the task with the highest CHPi value is chosen. This

method prefers LP core to allocate most of the tasks, but can take advantage of the HP

core when the task set’s utilization is high. The runtime complexity of the algorithms is the

same as LTF: O(n2 + nE). The operation of this algorithm on our example task set with

a threshold value of 65% is shown in Fig. 5.4b. The corresponding contingency schedule is

shown in Fig. 5.6a.

5.1.3 Speed assignment

After an allocation of tasks and their execution order is obtained on each core, we need

to determine the execution speed (frequency) of the tasks, such that the frame deadline

can be met by also considering the slots reserved for the contingency schedule. Assuming

maximum frequency on each core, we first compute the activation and completion time of

each task with worst case number of cycles. We call this the canonical schedule. When

assigning speeds to tasks, we make sure that each primary task can complete its execution

before the activation time of its contingency copy on the alternate core. By doing so, in the

fault-free case, contingency copies are never activated, since we cancel the reservation in the

contingency schedule as soon as the primary copy completes, thereby saving energy. For

each primary task, its contingency copy activation time can be seen as its pseudo-deadline

which is earlier than the frame deadline D. Using this method, we developed the following

two techniques.

Uniform Scaling (US). In this method, we start with the canonical schedule and slow

down all the tasks by a uniform scaling factor S ≤ 1.0, ensuring that all tasks complete by

their contingency activation times. The scaling factor, multiplied by the maximum speed

of the respective core, gives the execution frequency (speed) of that core. This method

determines the task with the tightest timing constraint (the task with the minimum [con-

tingency activation time - primary completion time] difference), and scales the frequencies

accordingly. The algorithm (with O(n) complexity) ensures that no tasks would execute

81

beyond its contingency activation time. Therefore, scaling all tasks by the same (minimum)

amount cannot possibly result in a deadline miss.

The schedules for our running example under LTF and TBLS and Uniform Scaling,

named as LTF-US and TBLS-US, are shown in Fig. 5.5b and 5.6b, respectively. The

uniform scaling is determined by the pseudo-deadline of τ1 (which is the tightest) and gives

a speed of 0.81 on HP and 0.65 on LP, for both LTF and TBLS schemes. The energy

consumption of LTF-US and TBLS-US schemes are 28.49 mJ and 23.34 mJ, respectively.

We can see that by limiting the use of HP core, TBLS consumes 18% less energy than LTF

under US.

Critical Path based Static Speed (CPSS). This method is developed as an ex-

tension to the critical-path based DVFS algorithm originally proposed in [220]. Similar to

Uniform Scaling, this method also assigns a pseudo-deadline for each task, which becomes

the deadline for all paths ending at that task node. As opposed to imposing the same

scaling factor to all the tasks, this method computes different scaling factors on the basis

of each execution path, starting from the most critical one in terms of timing constraints.

However, an assumption of the technique is that all processors are homogeneous and hence

have the same power dissipation characteristics.

The algorithm in [220] starts by augmenting the original task graph based on the alloca-

tion and order of the tasks obtained from the task-partitioning phase, and then it identifies

the source and sink nodes. In our context, each node is a sink node because it has a pseudo-

deadline equal to its contingency copy activation time. Next, for each pair of source and

sink nodes, the original method computes all the possible paths based on the augmented

task graph. Each node can lie on more than one paths, and each path is associated with

a (pseudo-)deadline. The authors identified the most critical path for each given node and

each reachable sink, and claimed that this set of paths capture all the dependency and

deadline constraints in the system. Once a path is scaled, its tasks are marked assigned,

and the algorithm determines the next tightest path. It then scales only the tasks which

are still unassigned in this path. It proceeds in this way until all tasks have been assigned

82

an execution speed.

In our adaptation of the algorithm from [220], we differ in the following way: i) we

consider all possible paths from any source to any sink to be in our set of critical paths,

and ii) when scaling a path, we use the system-level DVFS algorithm ENERGY-LU[83]

to exploit the heterogeneity of the cores to minimize energy consumption, as opposed to

using a common scaling factor for all tasks on a given path as done in [220]. In order to

determine which path should be processed with ENERGY-LU first, we define criticality of

a path by the ratio of ‘time taken by all tasks with their assigned speeds’ to the ‘total time

available until deadline’. A criticality value of 1.0 with a set of assigned speeds implies that

if all tasks are executed at their respective speeds, then the total execution time will be

equal to the deadline. In order for each path to meet the deadline constraints, its criticality

value with assigned speeds should never exceed 1.0. Furthermore, the criticality value also

indicates which path is the tightest among all paths in the set. In our method, we identify

the most critical path in each iteration, and use the ENERGY-LU technique to determine

a final frequency for each task on the path. Our algorithm terminates when all the tasks

have an assigned frequency.

To identify the most critical path, first, we invoke ENERGY-LU on all the paths in

order to get a tentative speed assignment for each task. For each task, its tentative speed

is the maximum of all the speeds suggested for it by ENERGY-LU on all the paths it lies

on. With tentative speed assignment for all tasks, we determine the path with the highest

criticality value. Then we invoke ENERGY-LU again on that path one last time for a final

frequency value for each of the tasks on the path and mark them as assigned. Paths in which

all tasks have an assigned frequency are removed from the set of all paths. We proceed by

processing the next most critical path and we consider only the unassigned tasks in that

path. The time available for the unassigned tasks is computed by subtracting the total time

taken by the assigned tasks with their respective assigned speeds, from the time available

until deadline. We iterate through this loop until all tasks have an assigned frequency.

The schedules produced by CPSS are shown in Fig. 5.5c and 5.6c, for LTF and TBLS

83

partitioning and our running example, respectively. They show that CPSS assigns relatively

low execution-speed for tasks on the HP core, and also for τ5 and τ6 on the LP core. The

energy consumption for LTF-CPSS is 19.30 mJ, which is 32% less than the uniform scaling

in LTF-US scheme. By limiting the use of HP core, TBLS-CPSS consumes even less energy,

17.33 mJ, which is 25% and 10% better than TBLS-US and LTF-CPSS, respectively.

The time complexity of this algorithm depends on the number of all distinct paths from

all source to all sink nodes– we denote it by k. The system-level DVFS technique takes

O(n2 log n) time for a path with n tasks. In each iteration of our algorithm, finding the

most critical path would take O(kn2 log n) time, and then applying ENERGY-LU for a final

set of frequencies would take another O(n2 log n). The iterations would run for at most n

times, therefore, the algorithm’s overall complexity is O(kn3 log n).

5.1.4 Dynamic Reclamation

Real-time systems must be designed to deal with the worst-case workload scenarios. How-

ever, real-time tasks often finish earlier than their worst-case estimates. Thus, to exploit the

early completions and save more energy at run-time by dynamic slow-down, we developed

a dynamic slack reclamation algorithm. In this algorithm first we compute offline speeds

for each task based on any of our speed assignment algorithms. Then, using these speeds

and the worst case number of cycles for each task, we compute a reference activation time,

which corresponds to the time point when a task should start its execution when all tasks

run at their assigned speeds and present their worst-case workload.

At runtime, when a task is about to be dispatched, we check the difference between its

reference activation time and the current time. This difference is denoted as its slack. We

recompute the assigned speed of the ready task by giving all the slack time to it, i.e., slow it

down further such that it completes at its original (offline) reference completion time. Let

fi be the offline assigned speed for τi with Ci worst-case number of cycles, and si be the

dynamically generated slack available at its dispatch time. Then, its dynamically adjusted

speed, f∗i is computed as f∗i = Cifi
Ci+sifi

. The algorithm is invoked at dispatch time for every

84

 30

 40

 50

 60

 70

 80

 3
0

 4
0

 5
0

 6
0

 7
0

 8
0

 9
0

N
o

rm
a

liz
e

d
 e

n
e

rg
y
 c

o
n

s
u

m
p

ti
o

n
 (

%
)

Utilization (%)

LTF-US
LTF-CPSS

TBLS-US
TBLS-CPSS

Bound

(a) Impact of Utilization

 30

 40

 50

 60

 70

 80

 1

 1
.5 2

 2
.5 3

N
o

rm
a

liz
e

d
 e

n
e

rg
y
 c

o
n

s
u

m
p

ti
o

n
 (

%
)

TSCALE

LTF-US
LTF-CPSS

TBLS-US
TBLS-CPSS

Bound

(b) Impact of tscale at load = 75%

 40

 50

 60

 70

 80

 90

 0
.2

 0
.2

5

 0
.3

 0
.3

5

 0
.4

 0
.4

5

 0
.5

N
o

rm
a

liz
e

d
 e

n
e

rg
y
 c

o
n

s
u

m
p

ti
o

n
 (

%
)

PSCALE

LTF-US
LTF-CPSS

TBLS-US
TBLS-CPSS

Bound

(c) Impact of pscale at load = 75%

Figure 5.7: Impacts of Utilization, tscale, and pscale.

task and it has constant time complexity (O(1)).

85

5.2 Experimental Evaluation

We evaluated the energy consumption performance of the proposed algorithms in a discrete

event simulator. In our simulator, we implemented the task partitioning schemes LTF and

TBLS, as well as the speed assignment schemes US and CPSS, giving four combinations

named as LTF-US, LTF-CPSS, TBLS-US, and TBLS-CPSS.

We also implemented a scheme named Bound: This scheme is based on brute-force search

for all possible task partitioning and choosing the one with lowest energy consumption.

Bound does not implement any fault tolerance, and removes all contingency tasks, setting

the deadline of all tasks to D. The tasks are allocated on two cores using the topological

order and the CPSS technique is used for speed assignment. We use this scheme as a lower

bound for energy consumption and compare our proposed schemes that offer fault tolerance.

The obtained energy consumption numbers are normalized with respect to the maximum

energy consumption (observed in the considered parameter spectrum) of LTF-US scheme.

For each experiment, the simulator generates a task set containing n tasks, and a given

total utilization, U . The utilization is calculated with respect to the LP core (which is

more constrained in terms of performance) and normalized considering its maximum speed.

Hence, U = (
∑ CLP

i
D)/fLPmax. Based on the target U , we use the RandFixedSum algorithm

[214] to assign a random utilization (according to uniform distribution) to each task such

that the total utilization equals U . We set the frame deadline D = 100ms. In order to

experiment with arbitrary task-graphs, we use TGFF tool [221] to randomly generate a

DAG with n nodes.

It is known that the power parameters and required number of cycles for different tasks

scale differently on heterogeneous systems [56]. Therefore, as in [6], we define tscalei =
CLP

i

CHP
i

,

which models how execution time changes on the LP core for a given task, τi. Moreover,

following [6], we define pscalei to be the ratio of power consumption of τi on the LP core to

that on the HP core. Therefore, pscalei =
PLP
i

PHP
i

, which is also assumed to be the same as

86

aLP
i

aHP
i

=
αLP
i

αHP
i

. Next, for each task a tscalei and a pscalei value are chosen randomly within

ranges suggested in [56]. Specifically, 1.4 ≤ tscalei ≤ 2.3 and 1.4 ≤ 1/(tscalei ∗ pscalei) ≤

2.1 hold. We assume for all tasks, aHPi = 1.0 and αHPi = 0.1. In addition, PHPidle = 0.05 and

PLPidle = 0.02 for all experiments.

We use task sets with n = 10 tasks, fLPmax = 0.8 and fHPmax = 1.0, unless otherwise stated.

The value of threshold is set to 0.6 for TBLS. Every reported data point is the average of

1000 runs. We report the average energy consumption in fault-free executions, since faults

are very rare events.

Impact of Utilization. Figure 5.7a shows the impact of utilization on normalized

energy consumption. When the utilization is low, the energy consumption is largely depen-

dent on the partitioning method, and not very much on the speed assignment schemes. This

is because at low load, most tasks would typically be able to run at their energy-efficient

frequency fee in both speed assignment techniques. TBLS puts all the tasks in to the LP

core resulting in a better performance, whereas LTF utilizes the HP core for some tasks

and spends somewhat more energy. As the load increases, all the schemes show an increase

in the energy consumption, however, the CPSS schemes can keep the energy consumption

low compared to the US schemes. This is because CPSS can set a suitable speed to each

of the task, whereas US has to commit to a common speed for all tasks. With increase in

the load, the advantage of CPSS becomes very significant (up to 35%). For a given speed

assignment technique, TBLS partitioning performs slightly better than the LTF technique.

Among all schemes, TBLS-CPSS performs the best and stays within 10% of Bound for up

to 75% of system load.

Impact of tscale. Figure 5.7b shows the impact of varying tscale value for all tasks

when the system load is fixed at 75%. As tscale increases, the normalized energy consump-

tion of the system decreases. This is because a low value for tscale indicates a very efficient

LP core. The plot shows that for the entire range of tscale values, TBLS-CPSS is perform-

ing the best, very closely followed by the LTF-CPSS scheme. Compared to Bound, both of

87

the CPSS schemes perform very close (around 6-12%) for the entire spectrum.

Impact of pscale. Varying pscale also has similar effect as shown in Fig. 5.7c. As

pscale increases, the overall energy consumption of the system also increases. Increasing

the value of pscale implies making the LP core more power-hungry, resulting in higher

overall energy consumption. We can see that TBLS-CPSS performs best throughout the

entire pscale spectrum, closely followed by LTF-CPSS.

Impact of maximum speed of LP core. In this set of experiments, we varied the

maximum speed of the LP core while fixing the load at 75%, as shown in Fig. 5.8a. We

see that the energy consumption of all schemes increase with increasing fmaxLP . This is

because, when the utilization is kept fixed at 75% (which is computed relative to fmaxLP) the

effective amount of workload on the system increases with increasing LP core speed, which

is reflected in the results. We observe again that TBLS-CPSS performs the best, closely

followed by LTF-CPSS. In fact, Bound scheme performs only 5% better than TBLS-CPSS

when LP core’s maximum speed is low. However, their difference increases with the LP

core’s maximum speed.

Impact of number of tasks. Fig 5.8b shows the impact of number of tasks for a

system with 75% load. We see that for small number of tasks, the performance of all the

schemes is affected. As the number of tasks grows, the average task size decreases and the

performances of various schemes stabilize. For TBLS partitioning, the advantage of using

CPSS scheme over US can be up to 18% when number of tasks is low, but it stabilizes

at 10% with the increase in number of tasks. The plot also shows that LTF-US starts to

outperform TBLS-US as soon as number of tasks exceeds 25. This is because when the

average task size decreases, this favors the LTF scheme greatly due to the reduced cost of

using the HP core with US. Bound is not shown in these experiments due to its prohibitive

running time with increased number of tasks.

Impact of Workload Variability. To evaluate the gains due to our dynamic recla-

mation scheme in the presence of the workload variability, we first define the ratio WC/BC

as the ratio of the worst-case execution time to the best-case execution time. During the

88

 40

 50

 60

 70

 80

 90

 0
.6

 0
.6

5

 0
.7

 0
.7

5

 0
.8

 0
.8

5

 0
.9

 0
.9

5 1

N
o

rm
a

liz
e

d
 e

n
e

rg
y
 c

o
n

s
u

m
p

ti
o
n

 (
%

)

Max. speed of the LP core

LTF-US
LTF-CPSS

TBLS-US
TBLS-CPSS

Bound

(a) Impact of maximum speed of LP core at load =

75%

 70

 75

 80

 85

 90

 5

 1
0

 1
5

 2
0

 2
5

 3
0

 3
5

N
o

rm
a

liz
e

d
 e

n
e

rg
y
 c

o
n

s
u

m
p

ti
o

n
 (

%
)

Number of tasks

LTF-US
LTF-CPSS

TBLS-US
TBLS-CPSS

(b) Impact of number of tasks at load = 75%

 70

 75

 80

 85

 90

 95

 100

 1

 1
.5 2

 2
.5 3

 3
.5 4

 4
.5 5

N
o

rm
a

liz
e

d
 e

n
e

rg
y
 c

o
n

s
u

m
p

ti
o

n
 (

%
)

WC/BC

LTF-CPSS
LTF-CPSS*

TBLS-CPSS
TBLS-CPSS*

(c) Impact of WC/BC at load = 75%

Figure 5.8: Impact of the LP core’s maximum speed, number of tasks, and workload vari-
ability

experiments, the actual execution time of every task is randomly generated between its

worst-case and best-case execution time, using a uniform probability distribution. A higher

89

value of WC/BC indicates larger amount of runtime slack being generated, providing op-

portunities for further energy savings. In these experiments, we evaluated 1000 execution

frames for each task set. Figure 5.8c shows that our techniques with dynamic reclamation

enabled (indicated by ’*’) are able to save additional energy at runtime. The dynamic

schemes are about 6-8% more efficient than their static counterparts.

5.3 Concluding Remarks

In this chapter, we proposed a fault-tolerant framework for dependent real time tasks ex-

ecuting on a heterogeneous dual core system. We presented task partitioning heuristics

for allocation and ordering of tasks to the available processing cores, and developed speed

assignment techniques which can ensure low-energy consumption while providing reliability

against transient and permanent faults. Simulation results demonstrate that our proposed

techniques are capable of energy efficient operation and perform close to a theoretical lower

bound.

90

Chapter 6: Energy-aware Fault-Tolerant Real-Time

Scheduling of General Periodic Tasks

In this chapter, we investigate energy-efficient and fault-tolerant implementation of periodic

real-time systems upon heterogeneous dual core systems. In previous chapters, we focused

on frame-based systems where all tasks share a common period. However, the actual im-

plementation of a number of real-time systems are based on general periodic tasks which

are invoked at different rates [5]; so we believe this study fills an important gap.

In our framework each periodic real-time task (called the primary) is assigned to one

of the cores: all the instances of that periodic task (”jobs”) are released and executed at

periodic intervals on that core. In addition, for every such primary task, a backup periodic

task is assigned to the alternate core. Since every real-time job has a backup allocated to

the other core, transient faults in all primary jobs can be tolerated. Similarly since there

are two copies of each periodic task assigned to alternate cores, the system can tolerate one

permanent fault of any core by switching to the functional core if necessary.

To manage the energy consumption, we use two mechanisms: i.) the primary tasks

are executed at low voltage/frequency levels using Dynamic Voltage and Frequency Scal-

ing, and, ii.) the backup copies are delayed to the extent it is possible to enable their

cancellation in case the primary completes without a fault. In addition, we use the Mixed

Primary/Backup Scheduling framework in which a given core may be assigned both primary

and backup copies of (distinct) tasks [7]. This is in contrast to the so-called Standby-Sparing

systems in which one core is exclusively dedicated to the primaries and the other one (spare)

executes only the backups [53, 54, 99, 100, 181]. While the mixed primary-backup schedul-

ing framework significantly improves the schedulability and energy saving potential, it also

presents challenges in terms of task allocation and scheduling.

91

A significant challenge in these settings is to find an efficient way to delay the backup

copies: because of periodic and preemptive execution settings, a backup copy can be pre-

empted multiple times by other jobs; but it should still meet its deadline when needed. To

tackle this, we leverage two mechanisms: one is assigning proper priority levels to periodic

primary and backup tasks, and the other one is the actual delaying of the backups using

the dual-queue mechanism [100, 222]. Specifically, the backup tasks are promoted and be-

come eligible for execution after a pre-determined time interval after their release. These

promotion times are shown to be safe, in that they are derived using the well-known critical

instant analysis technique for fixed priority periodic real-time tasks [5]. In particular, we

show that when combined with the dual queue based delaying mechanism, assigning ten-

tatively high-priority levels to the backup tasks gives the maximum delaying and energy

saving opportunities. To the best of our knowledge, this research effort is the first study

that explores fault-tolerant and energy-aware mixed primary backup scheduling of periodic

real-time tasks on heterogeneous dual core systems.

Similar to the previous chapters, we consider a heterogenous dual-core system with a

high-performance (big) core and a low-power (little) core, denoted as HP and LP respec-

tively. The details of the system model is given in Chapter 3.1.

Each (primary) task τi has an associated backup task Bi with exact same timing pa-

rameters. τi and Bi are allocated to different processing cores. Whenever a task instance

is released, its backup copy is also released and is allocated to the alternate core. In order

to maintain energy efficiency, the backup copy instances are delayed as much as possible

while respecting their deadlines. When a primary copy (τi) completes, the acceptance (or,

sanity) tests [1] are performed to check the existence of errors induced by transient faults. If

a fault is not detected, then Bi (or, its remaining part) on the other core may be cancelled

to save energy, as depicted in Figure 6.1, which shows a single periodic task with period 20

ms and execution time 7.5 ms. If a fault is detected, the backup copy runs to completion.

If a permanent fault occurs on any of the cores, the other core can still execute one copy of

each task’s instances.

92

LP:

HP:

Time

τ1

B1

0 5 10 15 20 25 30 35 40 45 50 55 60

τ1 τ1

B1
B1

cancelled cancelled

Figure 6.1: Primary/Backup Overlap

It should be noted that when a backup copy executes in the fault-free case, it is essentially

a redundant execution which increases the energy consumption of the system significantly.

Ideally, we would like to minimize redundant execution in order to conserve energy. As

shown in Figure 6.1, the first instance of τ1 and its backup B1 execute in parallel, wasting

a lot of energy. In the second instance of τ1, we delayed B1 to some extent and were able to

cancel some parts of it. In the third instance, B1 was delayed enough so that its execution

could be entirely omitted.

Problem Statement. Given a set of real-time independent periodic tasks and a hetero-

geneous dual-core system, minimize the energy consumption by determining

1. The allocation of tasks to cores such that the primary and backup copy of each task

are assigned to different cores, and,

2. The priority assignment, scheduling, and processing frequency assignment decisions

for individual periodic task instances.

In the following sections, we first present preliminary (background) material and then we

develop multiple components of our proposed framework.

93

6.1 Preliminaries

6.1.1 Work-Conserving Fixed-Priority Periodic Scheduling

Most of the traditional hard real-time scheduling theory is based on the work-conserving

approach, in which the processor never idles as long as there are ready jobs to execute

[5]. A well-known framework is fixed-priority scheduling (FPS) in which all the jobs

generated by a given periodic task are assigned the same priority level during execution.

The real-time feasibility analysis is concerned with assessing if all the real-time jobs will

meet their deadlines given the characteristics of the workload at hand [5]. In FPS, it is

known that the worst-case response time of a periodic task occurs when it is released at the

same time as all high-priority tasks. Specifically, the worst-case response time Si of a task

τi can be computed using the following iterative formula [223]:

S
(k+1)
i = ci + Στj∈ hp(τi)d(S

(k)
i /Tj)e × cj (6.1)

Above ci is the worst-case execution time of τi and hp(τi) denotes the set of tasks which

are assigned a priority level higher than that of τi. In this iterative approach, initially

S0
i = ci and the iterations continue until S

(k+1)
i = S

(k)
i . If at any point S

(k)
i exceeds

the period (relative deadline) Ti, then the task will not meet its deadline. Otherwise, the

task will meet its deadline and the worst-case response time Si is found as the last value

obtained for S
(k)
i .

An important FPS policy is Rate Monotonic Scheduling (RMS) in which the priorities

are inversely proportional to the periods. RMS is known to be optimal among all periodic

fixed-priority assignments, in the sense that all task sets that can meet their deadline with

any fixed-priority assignment can also do so using RMS [224]. This optimality makes RMS

the most widely known and adopted fixed priority assignment policy for periodic real-time

tasks [224].

As an example consider the task set given in Table 6.1 with three periodic tasks, τ1, τ2

94

Table 6.1: Example Task Set 1

Period Execution Time

τ1 15 ms 3 ms

τ2 20 ms 4 ms

τ3 30 ms 6 ms

Time

τ1 τ2 τ3 τ1 τ2 τ1 τ1τ3 τ2

0 5 10 15 20 25 30 35 40 45 50 55 60

(a) Schedule obtained with RMS priorities

Time

τ1 τ2 τ3 τ1 τ2 τ1 τ1τ3 τ2

0 5 10 15 20 25 30 35 40 45 50 55 60

(b) Non-work-conserving schedule with dual queue

based delaying (RMS priorities)

Time

τ1 τ2τ3 τ1 τ2 τ1 τ1τ3 τ2

0 5 10 15 20 25 30 35 40 45 50 55 60

(c) Schedule obtained with Preference-Oriented Pri-

ority Assignment (PPA)

Time

τ1 τ2τ3 τ1 τ2 τ1 τ1τ3 τ2τ2

0 5 10 15 20 25 30 35 40 45 50 55 60

(d) Non-work-conserving schedule with dual queue

based delaying (PPA priorities)

Figure 6.2: Work-conserving and non-work-conserving fixed-priority schedules

and τ3. For illustration purposes, we assume all tasks execute at maximum frequency. The

corresponding schedule obtained using RMS is shown in Figure 6.2a. The period boundaries

are denoted by vertical dashed lines in the figure. As it can be observed, all periodic task

instances meet their deadlines.

6.1.2 Non-Work-Conserving Fixed-Priority Periodic Scheduling

There are a number of scenarios where it is desirable to delay periodic tasks as long as

they can still complete before their respective deadlines. For instance, when the workload

includes non-real-time aperiodic jobs that arrive at unpredictable times, a common objective

is to execute them as soon as possible to minimize their response time. In this case, periodic

hard real-time tasks may be delayed maximally to enable early execution of the aperiodic

jobs [5].

95

In these cases, work-conserving policies such as conventional RMS are no longer appro-

priate; instead non-work-conserving approaches are considered. For example the dual-queue

based approach [100,222] works as follows: The system is equipped with two (dual) queues,

named upper queue and lower queue, respectively. Upon arrival, each periodic real-time job

is first put to the lower queue, and remains there until a certain promotion time at which it

is moved to the upper queue. Only jobs in the upper queue are eligible for execution; and

they are dispatched according to the underlying fixed (e.g., RMS) priorities.

The crux of the scheme is to choose the promotion time safely and maximally, in order

to delay the execution of the periodic jobs as much as possible. Specifically, the promotion

time of a job of τi after its release time is computed as:

Yi = Ti − Si

where Ti is its period and relative deadline, and Si is its worst-case response time computed

through the iterative formula (6.1) based on the critical instant analysis. It is based on the

observation that the job would still meet its deadline after being moved to the upper queue

Yi time units after its release time, even if it is subject to the maximum possible interference

by higher-priority jobs [222]. The task promotion times (Yi values) may be computed offline

(before execution) for all periodic tasks.

Returning to our example task set, we can compute the task promotion times as: Yi =

Ti − Si. The Si values are obtained by applying the formula (6.1) iteratively, and the

promotion times are found as Y1 = 12, Y2 = 13 and Y3 = 17, for τ1, τ2, and τ3. The resulting

non-work-conserving fixed-priority schedule (where tasks are first delayed in the lower queue

and then eventually dispatched from the upper queue with RMS priorities) is shown in

Figure 6.2b. It should be noted that many real-time jobs are significantly delayed, but

they still meet their deadlines. This dual queue based approach will be instrumental in our

mixed primary/backup energy-aware scheduling approach, as we elaborate in Section 6.2.

96

6.1.3 Preference-Oriented Priority Assignment (PPA)

A more recent study considers the execution preferences of real-time tasks explicitly in

the scheduling phase [192]. Specifically, periodic real-time tasks are classified as ASAP or

ALAP, depending on whether there is a preference to execute them as soon as possible or

as late as possible, respectively, but still before all the hard deadlines.

In [192], the problem of finding a fixed priority assignment to satisfy the periodic real-

time tasks’ execution preferences while meeting the deadlines is considered. The solution

is obtained through the Audsley’s Optimal Priority Assignment Algorithm (AOPA) [225],

which runs in time O(n2) for n periodic tasks. AOPA, which was originally proposed for

tasks with potentially different release times [226], proceeds by first assigning a task to

the lowest priority level, by making sure that that task would meet its deadline even in

the worst-case activation pattern. Then it proceeds in iterative manner for priority levels

n− 1, ..., 1. The preference-oriented priority assignment (PPA) scheme, proposed in [192],

proceeds in the same way, but it assigns low priority levels to the ALAP tasks and high

priority levels to the ASAP tasks as much as possible, while still preserving the timing

constraints.

For our example task set, now assume that τ1 and τ2 are ALAP tasks, while τ3 is an

ASAP task. PPA assigns the lowest priority to τ2, medium priority to τ1, and highest

priority to τ3. The resulting fixed-priority schedule where all the deadlines are met is

presented in Figure 6.2c. It should be noted PPA is, just like RMS, an optimal fixed-

priority assignment; but it incorporates the task execution preferences whenever possible in

the priority assignment phase.

While PPA takes into account task’s execution preferences, it is still by default a work-

conserving approach. It is possible to combine PPA with the dual queue mechanism to

further delay the ALAP tasks (thereby creating a non-work-conserving schedule). When

applied to the schedule in Figure 6.2c, we obtain the solution in Figure 6.2d, where the

ALAP tasks are delayed until their promotion times. This time promotion times for ALAP

tasks τ1 and τ2 are computed as Y1 = 6 and Y2 = 7. We observe that using the dual queue

97

mechanism helps to increase the delay in the execution of the ALAP tasks, and all the

deadlines are still met.

6.2 Mixed Primary/Backup Scheduling of Periodic Tasks

Our dual objective in fault tolerance (Section 3.1.3), in terms of tolerating transient faults

can be achieved by scheduling a separate backup copy of each periodic task instance. More-

over we require that the primary and backup copies of a given task are scheduled on different

cores to provision for the permanent fault of any single core. Note that by scheduling a

separate backup copy which is, if needed, executed at the maximum core speed, we also

guarantee to fully mitigate the task-level reliability loss (with respect to the transient faults)

induced by the application of DVFS [174].

Unlike the standby-sparing systems [6, 53, 100, 181] where one core is allocated only

the primary copies of tasks and another one solely to the backups, in our work we adopt

the mixed primary/backup scheduling approach: a given core can execute primary and

backup copies of various tasks for maximum flexibility with respect to energy awareness

and schedulability.

Table 6.2: Example Task Set 2

Ti WHP
i WLP

i EHPi ELPi aLPi αLPi
τ1 15 1.8 3.8 1.98 0.84 0.36 0.036

τ2 20 2.0 4.0 2.20 0.64 0.26 0.026

τ3 30 3.5 7.9 3.85 1.84 0.38 0.038

For illustration purposes, we consider a running example throughout this section. Con-

sider the task set with parameters given in Table 6.2. It has 3 tasks τ1, τ2 and τ3, with

respective backup copies B1, B2 and B3 for fault tolerance, which are to be executed on

the HP and LP cores. In the table, the period and execution times are expressed in mil-

liseconds, while the energy values are expressed in millijoules. We chose fHPmax = 1.0 and

98

fLPmax = 0.8. We also assume PHPidle = 0.05 and PLPidle = 0.02, and for each task, aHPi = 1.0

and αHPi = 0.1. We assume that the primary copy of τ2 and the backup copies B1 and B3

are allocated to the HP core, while the primary copies τ1 and τ3, along with the backup

copy B2 are allocated to the LP core. This makes sure that the two copies of the same task

are always on different processing cores.

LP:

HP:

Time

τ1 τ1 τ1τ3

B3B1 B1 B1

B2

B1 τ2 τ2B3

B2B2 τ3

τ2

τ1

0 5 10 15 20 25 30 35 40 45 50 55 60

(a) Without backup Cancellation

LP:

HP:

Time

τ1 τ1 τ1 τ1τ3 τ3

B3B1 B1 B1

B2 B2

τ2 B1 τ2 τ2B3

B2

0 5 10 15 20 25 30 35 40 45 50 55 60

(b) With backup Cancellation

Figure 6.3: Mixed Primary/Backup Scheduling with RMS

In Figure 6.3a we present the mixed primary/backup schedules that we obtain if we use

RMS as the scheduling policy on each core where all tasks are executed at the maximum

frequency of their respective cores. Observe that all primary and backup copies meet their

deadlines, and the fault tolerance objectives are achieved.

The energy consumption on each core can be computed as the sum of core energy when

executing tasks (which can be computed by the sum of Ei values of all task instances

allocated to that core) and idle core energy (which can be computed by the product of

idle processor time and idle processor power). The total energy consumption of both cores

obtained in this way is 33.49 mJ. We observe that a significant portion of the total energy

is due to the duplicate execution of the backup tasks.

As mentioned in Section 3.1.3, in case a fault is not detected at the end of execution of

the primary, the remaining part of the corresponding backup copy can be cancelled. This

gives a powerful mechanism to reduce the energy consumption. If we use this dynamic

backup cancellation mechanism, we obtain the schedule in Figure 6.3b. It can be observed

that some portions of the tasks (primary and backup) on the LP core are cancelled due to

99

the completion of the counterpart task, and we obtain a reduced energy consumption of

29.17 mJ.

While it is important to guarantee the timely completion of backup tasks in case faults

are detected, since faults are rare events, the average energy consumption in all execution

scenarios will be dominated by fault-free execution scenarios. Consequently, in all subse-

quent examples we show only fault-free executions and assume that all backups (primaries)

are cancelled when the corresponding primary (backup) completes successfully on the other

core. For clarity, we do not show the cancelled parts of the tasks in the schedules.

While incorporating this fundamental dynamic backup cancellation mechanism, our

framework consists of multiple solution layers aimed at reducing the energy consumption

dynamically. In particular, we use DVFS to lower the execution speed of the primaries,

and use appropriate mechanisms to delay the execution of the backups to maximize the

opportunities for their cancellation.

O
ffl
in
e
P
h
as
e

(Chapter 6.2.1)
Task Partitioning

Assignment
(Chapter 6.2.2)

Task Priority

Computation for

(Chapter 6.2.4)

Promotion Time

to tasks
(Chapter 6.2.3)

Frequency assignment

Algorithm

(Chapter 6.4)
MPB-PS

Backup Tasks

O
n
li
n
e
P
h
as
e

Figure 6.4: Mixed Primary/Backup Scheduling Components for Fixed-Priority Periodic
Tasks

100

Specifically, our solution consists of offline and online phases, as shown in Figure 6.4.

In the offline phase, we use task partitioning, priority assignment, frequency assignment

and backup promotion time computation mechanisms. In the online phase, on each core the

tasks (and backups, if needed) are executed at the pre-determined priority and frequency

levels, and the backups are delayed until their pre-computed promotion times in order to

enable their cancellations dynamically.

6.2.1 Task Partitioning

Our framework generates the task partitioning (allocation) decisions offline, based on the

well-known list scheduling approach. Specifically we propose the following List-Scheduling

with Primary/Backup (LSPB) variant. In this algorithm, we consider the primary copies of

the tasks and employ list-scheduling algorithm to allocate them. First, the tasks are ordered

according to their decreasing nominal utilizations. Then, each primary task is placed on

a processing core on which it is feasible and which has the maximum free capacity after

the placement. Feasibility is checked by using Time Demand Analysis and RMS priority

assignment, which is known to be an optimal fixed priority assignment. Free capacity

on the HP core, ΩHP , is defined by (1.0 −∑
τiεΓp

CHP
i
Ti

/fHPmax), where Γp is the set of all

primary tasks assigned to the HP core, augmented by the task under consideration. Similar

equation is used for computing ΩLP . After all the primary tasks are feasibly placed on

the processing cores, their backup copies are allocated on the respective alternative core.

Finally, feasibility is checked again taking the backup copies into account. The partitioning

shown in Figures 6.3a and 6.3b were in fact obtained using the LSPB technique. It can

be observed that it generates a relatively balanced workload distribution which opens up

opportunities to reduce energy consumption.

101

6.2.2 Priority Assignment

After determining the task partitioning and obtaining a task-set for each core, we turn our

attention to the priority assignment to tasks. In fixed-priority scheduling, the execution or-

der of task instances depends directly on their priorities (Section 6.1.1). The RMS priority

scheme, in which tasks with smaller periods receive higher priorities, is a natural option on

each core. However, in addition to RMS, there have been other fixed priority assignment al-

gorithms proposed in the literature including the Preference-Oriented Priority Assignment

(PPA) policy (Section 6.1.3), which considers execution preferences of different tasks [192].

In our setting, we can invoke the PPA scheme to assign priorities after designating the pri-

mary tasks and backup tasks as “as soon as possible (ASAP)” tasks and “as late as possible

(ALAP)”’ tasks, respectively. We show the execution schedule for PPA in Figure 6.5, using

our example task set. Although we assign low priorities to the backup tasks, the schedule

shows that it is not very effective in cancelling the backup copies– it incurs high energy

consumption figure of 29.3 mJ. We can attribute this to the fact that the presented solution

still generates work-conserving schedules for backup tasks.

In Section 6.3, we will introduce another priority assignment policy, which, when coupled

with other components, gives much more improved energy saving opportunities.

LP:

HP:

Time

τ1 τ1 τ1 τ1τ3 τ3

B3B1 B1 B1

B2

τ2 B1 τ2 τ2B3

B2

0 5 10 15 20 25 30 35 40 45 50 55 60

Figure 6.5: Schedule for PPA

6.2.3 Frequency Assignment

After an allocation of tasks and their priority assignment is obtained on each core, we can

use DVFS to slow down the primary copies and reduce energy consumption. We apply

102

DVFS to primary copies only, and the backup copies are executed at the maximum speed.

Not scaling the backups allows to delay their execution further, and also, it mitigates the

task-level reliability-loss incurred due to DVFS [174]. For the primary tasks, we need to

determine the speed (frequency) of the task-execution, such that the deadlines of all task

instances (primary or backup) can be met.

We use a modified version of the well-known Sys-Clock algorithm proposed in [85], which

assigns a common (minimum) execution-speed to all the tasks on a given core without vi-

olating any deadlines. Sys-Clock has very low computational overhead. In our modified

version of Sys-Clock, only the primary tasks are scaled while the backup tasks are assigned

the maximum speed of their respective cores. We modified the original algorithm by con-

sidering that backup tasks are always executed at maximum frequency levels, and only the

primary tasks are scaled. For our example task set, Figures 6.6a and 6.6b show the execu-

tion schedules for RMS and PPA priorities, respectively when DVFS is applied. It shows

that with DVFS, RMS consumes 22.86 mJ and PPA consumes 23.1 mJ, which is about 20%

improvement in both cases compared to the cases without DVFS.

LP:

HP:

Time

τ1 τ1 τ1τ3

B3B1 B1 B1

B2

B1

τ2
B3

B2B2 τ3

τ2 τ2

τ1

f1 = f3 = 0.56

f2 = 0.29

0 5 10 15 20 25 30 35 40 45 50 55 60

(a) Schedule for RMS with DVFS

LP:

HP:

Time

τ1 τ1 τ1τ3

B1 B1

B2

B1

τ2
B3

B2τ3

0 5 10 15 20 25 30 35 40 45 50 55 60

τ2 τ2

τ1

f1 = f3 = 0.77

f2 = 0.29
B3

(b) Schedule for PPA with DVFS

Figure 6.6: Schedules with DVFS

6.2.4 Promotion Time Computation for Backup Tasks

Once the task allocations, priorities, and frequencies are determined, we aim to delay the

execution of the backup instances as much as possible, given that no instance should miss

103

its deadline. A delayed backup copy has a greater chance of getting cancelled by its pri-

mary copy’s completion, which helps to reduce their energy consumption in fault-free cases.

In order to delay the backup copies, we used the dual queue based non-work-conserving

scheduling algorithm discussed in Section 6.1.2, by adapting to heterogeneous processors

and mixed primary/backup execution with DVFS.

In this delaying technique, when a backup task instance is released, it is first placed on

a lower queue, and it can only be promoted to an upper queue at a precomputed promotion

time. Promotion times are computed as the same way discussed in Section 6.1.2, by first

computing the worst-case response time, using the iterative formula (6.1). Specifically, for

a backup task Bi, its worst-case response time Si can be computed as:

S
(k+1)
i = Wi + Στj∈ hp(Bi)d(S

(k)
i /Tj)e × (Wj(fj)) (6.2)

In this formula, Wi is the worst-case execution time of the backup task Bi on its assigned

processing core under maximum speed. hp(Bi) is the set of all higher priority (primary or

backup) tasks on that specific core. For such a high priority primary task τj , we use its

execution time, Wj , after scaling it with the Sys-Clock speed, fj . If τj is a backup task,

then we consider its execution time at the maximum speed of its processing core. Iterative

computation continues until S
(k+1)
i = S

(k)
i , which gives the worst-case response time Si.

After that, the scheme computes the promotion time Yi for each backup task by subtracting

its worst case response time (Si) from its relative deadline (period) Ti.

A backup task is dispatched on the processor only if the promotion time has elapsed and

it is in the upper queue. Primary task instances, on the other hand, are always placed in the

upper queue directly, and they are dispatched according to their assigned fixed priorities.

Figure 6.7a and Figure 6.7b show the execution schedules with backup-delaying for RMS

and PPA priorities respectively, when applied along with DVFS. It is evident that many of

the backup task executions are cancelled in these schemes, which provide energy efficient

performance (16.36 mJ for RMS, 19.33 mJ for PPA.) RMS with backup-delaying is almost

28% better than RMS without delaying (Figure 6.5).

104

LP:

HP:

Time

τ3

τ2

f1 = f3 = 0.56

f2 = 0.29
B3

τ3τ1

τ2 τ2
B3

τ1 τ1 τ1

0 5 10 15 20 25 30 35 40 45 50 55 60

(a) Schedule for RMS with DVFS and Dual-Queue

Delaying)

LP:

HP:

Time

τ1 τ1

B1 B1B1

B2τ3

τ2 τ2

τ1

f1 = f3 = 0.77

f2 = 0.29
B3

τ2

τ3τ1 B2

0 5 10 15 20 25 30 35 40 45 50 55 60

(b) Schedule for PPA with DVFS and Dual-Queue

Delaying)

Figure 6.7: Schedules with Backup Delaying

6.3 Reverse Preference-Oriented Priority Assignment (RPPA)

We observed that while PPA made an attempt to delay the backup copies by assigning

lower priorities, in the motivational example, it did not translate directly to energy savings,

even with dual queue based delaying, compared to RMS. In fact, our detailed experimental

evaluation (Section 6.5) will confirm the generality of that observation.

We note that this is primarily due to the fact that during the computation of promotion

times (delays) for low-priority backup tasks using Equation (6.2) the execution times of

high-priority tasks act as a negative factors: the lower the scheduling priority of a backup,

the higher will be the interference that need to be taken into account when computing the

promotion times, and the smaller will be the promotion time (delay) we can afford for the

backup.

This suggests an alternative but seemingly counter-intuitive solution: assign high pri-

orities to backup tasks before applying the dual queue based delaying technique,

relying on the fact that this will help to increase their promotion times, and the total amount

we can delay in them in the lower queue. Even though they will indeed execute at high

priority eventually, this will only happen when they are maximally delayed in the lower

queue through the extended promotion times.

The proposed scheme, called the Reverse Preference-Oriented Priority Assignment (RPPA),

is very similar to PPA, but it assigns higher preference to backup tasks, and lower preference

to the primary tasks to the extent it is possible. Like before, the backup tasks are delayed

105

using the dual queue based delaying technique.

RPPA priority assignment is also optimal as PPA and RMS – it never results in a loss in

schedulability as long as there exists a feasible solution. In the extreme case where a given

task set cannot be scheduled by assigning low priority to (most of) backup tasks, it will

generate another priority assignment which may resemble PPA or RMS, even though we

observed that in practice it is able to generate a feasible priority assignment by assigning

backup tasks high priorities in many cases.

For our example task set, the schedules with PPA and RPPA are shown in Figure 6.7b

and 6.8c, respectively (with DVFS and backup-delaying enabled). It shows that for PPA,

promotion times for B1, B2 and B3 are 0.3, 0 and 10, respectively. This means B2 gets

promoted as soon as they arrive, and it could not be delayed at all. B1 and B3 are only

marginally delayed. In contrast, for RPPA, promotion times for B1, B2 and B3 are found

as 13.2, 16 and 24.7, respectively. This big improvement in backup-delaying translates to

more backup cancellation which reduces the overall energy consumption. With DVFS and

backup-delaying enabled, RPPA consumes only 9.42 mJ of energy, which represents about

42% and 51% improvement compared to RMS and PPA, respectively.

We also observe that reversing the priorities in RPPA by itself (without dual-queue

based delaying) does not help in consuming less energy, as it can be seen in Figure 6.8a and

6.8b, which consume 26.52 mJ and 22.23 mJ energy, respectively. However, when RPPA is

combined with the non work-conserving dual priority algorithm, then its big potential for

energy consumption becomes clear (in this case, giving more than 55% improvement.)

6.4 Algorithm MPB-PS

This section describes the algorithm executed in the online phase of our framework, called

the Mixed Primary/Backup Periodic Scheduling (MPB-PS) algorithm. In this algorithm,

the runtime events are processed on the HP and LP core separately. In the offline phase,

the tasks are allocated to the HP and LP cores, priority assignment is made to tasks on

each core, and the execution frequency and promotion times are computed.

106

LP:

HP:

Time

τ1 τ1 τ1τ3

B3B1 B1 B1

B2

B1 τ2 τ2B3

B2B2 τ3

0 5 10 15 20 25 30 35 40 45 50 55 60

(a) Schedule for RPPA (Without DVFS or Dual

Queue)

LP:

HP:

Time

τ1 τ1τ3

B1 B1

B2

B1 B3

B2τ3

τ2 τ2

τ1

f1 = f3 = 0.56

f2 = 0.29
B1

B2

B3

0 5 10 15 20 25 30 35 40 45 50 55 60

(b) Schedule for RPPA (with DVFS but without

Dual-Queue)

LP:

HP:

Time

τ3

τ2

f1 = f3 = 0.56

f2 = 0.29

τ3τ1

τ2 τ2

τ1 τ1 τ1τ3 τ3

0 5 10 15 20 25 30 35 40 45 50 55 60

(c) Schedule for RPPA (with DVFS and Dual Queue)

Figure 6.8: Schedules for RPPA

At runtime, when a primary task is released, its backup copy is also released on the

alternate core (with the same deadline). There are four important events that our runtime

algorithm needs to consider: task release, completion, promotion and cancellation. The

details of this algorithm are given in Algorithm 4.

On each processing core, we have two queues: the upper and the lower queue. Tasks

are eligible for execution only if they are in the upper queue. Backup copies are initially

put to the lower queue, and they get promoted to the upper queue at the precomputed

promotion times. As shown in Algorithm 4, when a task is released, it is checked whether

it is a primary or backup copy, and then it is added to the appropriate queue.

A timer for the “promotion event” is set in case of a backup task. After all events, the

highest priority task in the upper queue (which may be primary or backup) on each core

is dispatched, possibly preempting any running low-priority task. The algorithm sets the

task’s frequency to the precomputed frequency value if it is a primary task, otherwise it is

executed at the maximum speed on the corresponding core.

When a task completes, the corresponding actions are shown in Algorithm 4. An ac-

ceptance test is run to check whether there is an error in the task’s output. If no error is

detected, then its alternate copy is cancelled (on the alternate core.) If an error is detected,

107

Algorithm 4 MPB-PS

Event: A task τi (Bi) is released at time t

if released task is primary then

Add τi to the upper queue at the proper priority level

else
Add Bi to the lower queue

Let Yi be the promotion time computed at offline phase

Set a timer for promotion event at t+ Yi
end if
Dispatch highest priority tasks in the upper queues of both cores at pre-computed
frequencies

Event: A task τi (Bi) completes

Run acceptance test for detection of transient fault in task τi (Bi)

if no error is detected then
Generate a “task cancelled” event for the alternate copy Bi(τi) on the alternate core

end if
Dispatch highest priority tasks in the upper queues of both cores at pre-computed
frequencies

Event: Timer signals the promotion time of the backup task Bi
Move Bi from the lower to the upper queue on its core at the proper priority level

Dispatch Bi on its core if it has the highest priority in the upper queue at the maximum
frequency

Event: A task τi (Bi) is cancelled

if task τi (Bi) is currently executing then

Dispatch the highest priority task in the upper queue of the core where τi (Bi) is
cancelled

end if

the algorithm does not take additional steps: it is expected that the alternate copy on the

other core should produce correct results before the deadline. On the event when a backup

task is promoted, it is moved to the upper queue.

This runtime algorithm ensures that a primary copy of a task is executed at the scaled

speed, while backup tasks are executed at maximum speed of its core. Whenever one of

them completes, the other one gets cancelled to conserve energy. In case of a permanent

fault, the remaining core can execute one copy of each task without missing any deadline.

At each invocation, this algorithm runs in O(n) time, where n is the number of tasks on

each core.

108

 20

 30

 40

 50

 60

 70

 80

 90

 100

 3
0

 4
0

 5
0

 6
0

 7
0

 8
0

 9
0

N
o

rm
a

liz
e

d
 e

n
e

rg
y
 c

o
n

s
u

m
p

ti
o

n
 (

%
)

Utilization (%)

RMS
RMS*

PPA
PPA*

RPPA
RPPA*
Bound

(a) Impact of Utilization (fLP
max = 0.6)

 20

 30

 40

 50

 60

 70

 80

 90

 100

 3
0

 4
0

 5
0

 6
0

 7
0

 8
0

 9
0

N
o

rm
a

liz
e

d
 e

n
e

rg
y
 c

o
n

s
u

m
p

ti
o

n
 (

%
)

Utilization (%)

RMS
RMS*

PPA
PPA*

RPPA
RPPA*
Bound

(b) Impact of Utilization (fLP
max = 0.7)

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 3
0

 4
0

 5
0

 6
0

 7
0

 8
0

 9
0

N
o

rm
a

liz
e

d
 e

n
e

rg
y
 c

o
n

s
u

m
p

ti
o

n
 (

%
)

Utilization (%)

RMS
RMS*

PPA
PPA*

RPPA
RPPA*
Bound

(c) Impact of Utilization (fLP
max = 0.8)

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 3
0

 4
0

 5
0

 6
0

 7
0

 8
0

 9
0

N
o

rm
a

liz
e

d
 e

n
e

rg
y
 c

o
n

s
u

m
p

ti
o

n
 (

%
)

Utilization (%)

RMS
RMS*

PPA
PPA*

RPPA
RPPA*
Bound

(d) Impact of Utilization (fLP
max = 0.9)

Figure 6.9: Impact of Utilization

6.5 Experimental Evaluation

We evaluated the energy consumption performance of the proposed algorithms in a discrete

event simulator. The tasks are partitioned using the LSPB scheme (Section 6.2.1). The

109

priority assignment schemes RMS, PPA and RPPA are evaluated, along with their variants

which enable the dual queue based backup delaying technique (denoted as RMS*, PPA* and

RPPA*, respectively). For all cases, we used DVFS to scale the frequency of the primary

tasks and the Sys-Clock [85] algorithm was used for both cores.

We also implemented a scheme named Bound, where we remove all the backup tasks

and allow the primary copies to scale their speed. This scheme does not offer any fault

tolerance; but it is used as a theoretical lower bound on the energy consumption of all six

schemes with fault tolerance features and backup task overheads.

We simulated dual core systems with fHPmax = 1.0 and fLPmax varied from 0.6 to 1.0. Due

to space limitations, we will show the results for fLPmax = 0.8, and analyze the impact of

varying fLPmax in a separate plot.

For each experiment, the simulator generates a task set containing n tasks, and a given

total utilization, U . The utilization is calculated with respect to the LP core (which is

more constrained in terms of performance) and normalized considering its maximum speed.

Task periods are randomly chosen from a log uniform distribution ranging from 10 to 100.

Hence, U = (
∑ CLP

i
Ti

)/fLPmax. Based on the target U , we use the RandFixedSum algorithm

[214] to assign a random utilization (according to uniform distribution) to each task such

that the total utilization equals U .

It is known that the power parameters and required number of cycles for different

tasks scale differently on heterogeneous systems [56]. Therefore, as in [6, 56], we define

tscalei =
CLP

i

CHP
i

, which models how execution time changes on the LP core for a given task, τi.

Typical values for tscalei are reported to be in the range [1.4, 2.3] [56]. Moreover, following

[6], we define pscalei to be the ratio of power consumption of τi on the LP core to that on the

HP core. Therefore, pscalei =
PLP
i

PHP
i

, which is also assumed to be the same as
aLP
i

aHP
i

=
αLP
i

αHP
i

.

From experimental measurements, it has been found that 1.4 ≤ 1/(tscalei ∗ pscalei) ≤ 2.1

[56]. Next, for each task a tscalei and a pscalei value are chosen randomly within the ranges

110

suggested in [56]. Specifically, 1.4 ≤ tscalei ≤ 2.3 and 1.4 ≤ 1/(tscalei ∗ pscalei) ≤ 2.1

hold. We assume for all tasks, aHPi = 1.0 and αHPi = 0.1. In addition, PHPidle = 0.05 and

PLPidle = 0.02 for all experiments. We use task sets with n = 10 tasks, fLPmax = 0.8 and

fHPmax = 1.0, unless otherwise stated. Every reported data point is the average of 1000 runs.

We report the average energy consumption in fault-free executions, since faults are very

rare events. The results in each plot are normalized with respect to the highest energy

consumption of any scheme in that plot.

Impact of Utilization. Figures 6.9a, b, c, and d show the impact of utilization on

normalized energy consumption for increasingly faster LP core (for fLPmax set to 0.6, 0.7,

0.8 and 0.9, respectively). As expected, the normalized energy consumption of all schemes

increase with the load. However, some schemes can save more energy than others. It also

shows that, in all the cases the work-conserving RMS, PPA and RPPA schemes (without

dual-queue based back-up delaying) perform worst and they perform very close to each

other. This is because, in these schemes, the backup-delaying mechanism is not used, and

therefore, backup copy executions overlapping with primaries are very frequent.

This problem is addressed by enabling the dual-queue based backup-delaying and non-

work-conserving schedules in RMS*, PPA* and RPPA* schemes. As shown in Figure 6.9,

PPA* can save more than 35% energy at average compared to the no-backup-delay schemes,

throughout the entire range of system utilization values. RMS* performs even better than

PPA* and it saves about 13% more energy on low-load and up to 20% for high-load task

sets. Our proposed scheme, RPPA* performs the best and it saves 32% more energy than

PPA*, and about 18% more energy than the RMS* scheme.

The performance level of PPA* warrants some elaboration. If backup copies are assigned

lower priorities than primary copies, then due to the fact that primary copies are being

slowed down through DVFS, we have only little room to delay the low-priority backups at

run-time. This causes the backups to get activated early in the schedules, which results

in increased energy consumption. On the other hand, the RPPA* scheme assigns higher

priorities to the backup copies and the worst-case response time of backup tasks does not

111

include the DVFS-enabled primary tasks, which allows the backups to remain in the lower

queue for much longer time. This allows us to significantly delay, and in many cases,

eventually cancel them. If a backup needs to be activated, it gets a higher priority on the

processor, enabling it to finish still before deadline. This effect is reflected in the results

and the RPPA* scheme performs much better throughout the entire spectrum. It performs

very close to Bound for low utilization and it drifts away only moderately as the load

increases. RMS* yields somewhat better results than PPA* (by virtue of the fact that some

back-up tasks accidentally receive high priority based on their small periods), however, it

is consistently worse than RPPA* in the entire spectrum. These observations hold true for

all the utilization and the maximum speed configurations for the LP core.

Impact of tscale. Figure 6.10a shows the impact of varying tscale for the tasks, while

keeping the system utilization at 65%. A lower tscale means the increase in task cycle

requirements is modest on the LP core, indicating higher energy efficiency. The figure

shows that the overall energy consumption of all schemes decrease as tscale increases. This

is because since the utilization is fixed, a higher tscale value represents a lower number of

cycles for the HP core, and the overall energy consumption decreases. The results show

that the no-backup-delaying schemes. RMS, PPA and RPPA are performing the worst

throughout the entire region. PPA* scheme improves energy consumption by about 35%

compared to PPA. RMS* outperforms PPA* by a moderate amount of 20%. The best

performing scheme is RPPA*, which is about 15% better than RMS* and it performs very

close to Bound in the entire tscale region. This is because the coupling of RPPA priority

assignment and dual-queue based backup-delaying techniques was able to cancel many of

the backup executions and reduce the overall energy consumption close to Bound (which

does not consider the back-ups).

Impact of pscale. The impact of pscale on energy consumption is demonstrated in

Figure 6.10b. As pscale grows, the LP core becomes less power efficient, and the effect is

visible in the results. All the schemes show increased energy consumption with growing

pscale, however, the RPPA* schemes can keep it very low. Throughout the entire spectrum

112

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1

 1
.2

 1
.4

 1
.6

 1
.8 2

 2
.2

 2
.4

N
o

rm
a

liz
e

d
 e

n
e

rg
y
 c

o
n

s
u

m
p

ti
o

n
 (

%
)

TSCALE

RMS
RMS*

PPA
PPA*

RPPA
RPPA*
Bound

(a) Impact of tscale (fLP
max = 0.8, Load = 65%)

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0
.2

 0
.2

5

 0
.3

 0
.3

5

 0
.4

 0
.4

5

 0
.5

N
o

rm
a

liz
e

d
 e

n
e

rg
y
 c

o
n

s
u

m
p

ti
o

n
 (

%
)

PSCALE

RMS
RMS*

PPA
PPA*

RPPA
RPPA*
Bound

(b) Impact of pscale (fLP
max = 0.8, Load = 65%)

 30

 40

 50

 60

 70

 80

 90

 100

 110

 5

 1
0

 1
5

 2
0

 2
5

N
o

rm
a

liz
e

d
 e

n
e

rg
y
 c

o
n

s
u

m
p

ti
o

n
 (

%
)

Number of tasks

RMS
RMS*

PPA
PPA*

RPPA
RPPA*
Bound

(c) Impact of Number of Tasks (fLP
max = 0.8, Load =

65%)

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0
.6

 0
.6

5

 0
.7

 0
.7

5

 0
.8

 0
.8

5

 0
.9

 0
.9

5

N
o

rm
a

liz
e

d
 e

n
e

rg
y
 c

o
n

s
u

m
p

ti
o

n
 (

%
)

Max. speed of the LP core

RMS
RMS*

PPA
PPA*

RPPA
RPPA*
Bound

(d) Impact of Max. speed of LP core (Load = 65%)

Figure 6.10: Impact of various system parameters

of pscale, RPPA* schemes perform about 35% better than PPA* schemes, and about 20%

better than RMS* schemes. Due to the effective cancellation of back-ups, RPPA* was able

to conserve a lot of energy and it performs very close to Bound (within 10%.)

113

Impact of Number of Tasks. Figure 6.10c shows the impact of number of tasks. It

shows that RPPA* scheme performs the best throughout the entire spectrum and stays very

close to Bound. The schemes with no backup-delaying shows very high energy consumption

regardless of the number of tasks. The PPA* and RMS* schemes show higher energy

consumption for small number of tasks, but as the number of tasks grow their energy

consumption decreases. This is because, increasing the number of tasks while keeping the

utilization same increases the granularity of the task set (giving smaller back-up tasks on

the average), and the proposed algorithms are able to cancel back-ups more effectively. The

observation that RPPA* outperforms PPA* and RMS* is still prevalent in these results.

Impact of the maximum speed of the LP core. Figure 6.10d shows the impact

when we change the maximum speed of the LP core relative to the HP core, keeping the

system utilization at 65%. As the LP core’s maximum speed grows, its capacity and the

system’s actual workload also grows. That is reflected in the results by showing increased

energy consumption for higher maximum speed of the LP core. The plot also shows that

throughout our entire range of experiments, RPPA* schemes perform about 15% better

than RMS* schemes, and about 35% better than PPA* schemes. Bound performs very

close (within 2%) to RPPA* for lower values of fLPmax, and it drifts away slowly as both

cores’ speeds become more similar.

6.6 Concluding Remarks

In this chapter, we investigated energy-aware scheduling of preemptive fixed-priority tasks

upon heterogeneous cores. The fault tolerance requirements dictate scheduling a separate

backup copy of each primary real-time job on a separate core. In addition to scaling the

primary jobs through DVFS to save energy, we developed a comprehensive framework to

maximize the cancellation opportunities for back-ups through the use of priority assign-

ment and dual queue based task delaying. We evaluated the performance of the proposed

schemes under different workload conditions. Our proposed Reverse Preference-Oriented

114

Priority Assignment (RPPA) scheme is shown to yield very high energy savings, by virtue

of exploiting the dual-queue based delaying mechanism maximally.

115

Chapter 7: Quality-of-Control Management via Period

Assignment in Real-Time Embedded Systems

In this chapter, we investigate a real-time control application implemented on a homo-

geneous multiprocessor and show how to choose periods for the control tasks in order to

maximize the quality-of-control metric. This research effort is distinct from the previous

chapters in the sense that we consider a homogeneous multiprocessor system and we op-

timize the quality-of-control metric (rather than energy consumption.) We published our

results on this research in [11]. The rest of the chapter presents the details of our proposed

heuristics and experimental evaluations.

7.1 Task Period Assignment on Multiprocessor Real-Time

Control Systems

We study a real-time control-application implemented on a set of homogeneous multipro-

cessors with the objective of maximizing the quality-of-control by means of intelligent task-

allocation and period assignment. A typical real-time control task is activated periodically,

and it has to perform the sense-compute-actuate cycle with timing guarantees. However,

at design time, there is often some flexibility for assigning the activation period (invoca-

tion rate) of a control task. Based on the dynamics of the state variable that the control

task is associated with, the designer can derive bounds that must be satisfied by the sam-

pling period. This flexibility can be exploited towards a better utilization of the system

resources [200]. The controller’s performance (sometimes referred to as performance index)

is maximum when a sampling period is set to an ideal value (i.e., the performance of the

digital controller approaches that of an ideal analog controller) [5]. Decreasing the period

116

below a limit does not further improve the performance; however the performance degrades

as the period value is increased, due to the corresponding decrease in the frequencies of

sampling and control signal. In fact, increasing the period further may cause stability prob-

lems. Hence, from the digital control point of view, there are constraints on the minimum

and maximum periods that should be considered at design time.

In general, the computational capacity of the target system may not be sufficient to

schedule all the tasks at their preferred (minimum) activation periods, or in other words, at

their maximum invocation rates. It may often be necessary to increase the sampling periods

of a number of tasks, thereby decreasing their utilizations. In these systems, the control

cost increases sharply as the sampling period moves further from the lower bound. Most of

the existing research on optimal period assignments in real-time control systems consider

single-processor systems. However, modern control systems are increasingly implemented on

multiprocessor platforms due to the increased performance requirements. Hence, the main

objective of this research is to investigate the period assignment problem for homogeneous

multiprocessor systems. In this work, we focus on partitioned scheduling, and we consider

the problem of assigning periods to individual tasks and allocating them to M processors

in order to minimize the overall control cost.

A solution approach for this problem is to first partition the tasks (using one of the

heuristics based on initially assigning each task its maximum allowable period), and then

on each processor, to make the period assignment to minimize the cost locally. We call

this class of algorithms local period assignment algorithms. A limitation of this approach

is that the algorithm does not have any global view of the task set and it cannot use that

information towards minimizing control cost. In this study, we identify another approach

which allows assigning the periods before the partitioning step, to find the periods that

minimize the overall cost globally. This is achieved by solving the problem on a single-

processor system which is K times faster (K ≤ M), and then attempting partitioning

with the periods obtained in that way. We call this scheme Reduction-to-Single-Processor

(RTSP) technique. We propose two variants of this approach, one which gets the period

117

assignments by setting K = M , and another one which employs a binary search to find the

most appropriate value for K.

Based on the Earliest-Deadline-First (EDF) scheduling on each processor [224], we per-

form an experimental evaluation of the local algorithms and the new RTSP approach. Our

results indicate that RTSP can yield significant gains in minimizing the control cost com-

pared to local algorithms, especially when the system is heavily loaded. We show that

for most of the parameter spectrum, the control cost incurred by RTSP stays close to the

theoretical lower bound. Our technique can be applied to any system with real-time con-

trol tasks where the cost is represented by a continuous and differentiable convex function.

To the best of our knowledge, this is the first research effort that considers the period

assignment problem on a multiprocessor real-time control system.

7.1.1 Models and Assumptions

In line with our general system model presented in Section 3.1, we consider a set of periodic

real-time control tasks Γ = {τ1, . . . , τn}. However, this problem uses a different model than

the rest of this dissertation– the set of real-time tasks are scheduled upon a homogeneous

multiprocessor system that consists of M processors, denoted by the set Π = {Π1, . . . ,ΠM}.

We assume that the tasks are partitioned over the set of available processors, that is,

migration of tasks from one processor to another is not allowed. The tasks allocated to a

given processor are scheduled by the preemptive Earliest-Deadline-First (EDF) policy. It

is known that the preemptive EDF is optimal for scheduling on uniprocessor systems, in

that it can generate a feasible schedule as long as the total utilization of the tasks assigned

to that CPU does not exceed 100% [224].

The worst-case execution time of task τi is denoted by Ci. The periods of the real-time

tasks can be selected within a given range. Specifically, the nominal (minimum) period

of τi is given by Tmini ; however its period Ti can be increased (at the cost of increased

control cost), up to a limit Tmaxi . Tmini represents the minimum task period for which the

118

controller’s performance is best – this is the point where the performance of the discrete-

time optimal controller is identical with the performance of the continuous-time optimal

controller [200]. As the task period increases, the difference between the discrete-time

controller and continuous-time controller increases, and if it is larger than a certain upper

bound (Tmaxi), the stability can no longer be guaranteed. The ratio of the maximum period

to the minimum period for a given control task τi is called the elasticity factor and is denoted

by EFi: EFi ,
Tmax
i

Tmin
i

. We consider implicit-deadline task sets where the relative deadline

of each task is equal to its assigned period Ti.

The invocation frequency Fi of task τi is the inverse of its period, that is, Fi = 1
Ti

. The

minimum and maximum task invocation frequencies are defined, respectively, as Fmini =

1/Tmaxi and Fmaxi = 1/Tmini . The utilization of a task is defined as the ratio of its worst-case

execution time to its assigned period. As the utilization is a function of the assigned period,

we can define the minimum and maximum utilization of a task τi as Umini = Ci/T
max
i =

Ci ∗ Fmini and Umaxi = Ci/T
min
i = Ci ∗ Fmaxi , respectively.

The control cost performance of a task decreases with its invocation frequency. In

literature, it is generally assumed that the control performance is a convex function of

the invocation frequency [200]. The cost function we will use can be any generic convex

function which we denote by J(F), where F is the invocation frequency of the task. This

function is specific to each task, and the task-specific constants can be used to formulate the

function. Therefore, for a task τi, the cost function becomes Ji(Fi). We require that Ji(Fi)

is convex, continuous, differentiable, and monotonically decreasing, as in [200]. The most

common control cost function used in the real-time systems literature is the exponential

decay function of the form Ji(Fi) = ϕi · e−βi·Fi [200], where ϕi (the weight) and βi are task

specific constants. In the literature, other cost functions that incorporate additional factors

(such as jitter) have been proposed (e.g., [227–229]), but in this study we are considering

only the impact of the period assignment on the controller’s performance.

Since the nominal (maximum) invocation frequency is the most preferable setting for

119

every task period, we assume that the cost for a task is 0 if it is running on its maximum

frequency. Hence, Ji(F
max
i) = 0 ∀i. In other words, for the common exponential decay

functions, we are using the form Ji(Fi) = ϕie
−βiFi − ϕie−βiFmax

i .

For a task set, the total (overall) cost will be the sum of the costs associated with each

task.

Jtot =
∑

τiεΓ

Ji(Fi)

7.1.2 Minimizing Control Cost

7.1.2.1 Problem Definition

The problem addressed in this research, denoted by MIN-COST-PARTITION, can be stated as

follows:

Given M homogeneous processors and a set of periodic real-time tasks, how can we

assign the task periods and partition the tasks among the processors such that:

1. the task set assigned to each processor can be scheduled in a feasible manner

using the assigned frequencies, and,

2. the overall control cost across all processors is minimized.

This problem can be easily seen to be NP-Hard: Consider a special case where the

allowable minimum and maximum periods are the same, i.e., Tmini = Tmaxi ∀i. In this

case, the period of each is task is a fixed value, and the problem reduces to the problem

of partitioning tasks with due dates on a multiprocessor platform, which is known to be

NP-Hard in the strong sense [230]. Hence, MIN-COST-PARTITION is also NP-Hard in the

strong sense.

Before discussing efficient heuristic approaches to address this problem, we briefly turn

our attention to the single-processor case.

120

7.1.2.2 Optimization on a single processor with arbitrary convex control cost

functions

The problem of minimizing the overall cost on a single processor has been considered in the

seminal paper by Seto et al. [200]. We re-visit the same problem, and show how a more

general solution can be obtained for arbitrary convex cost functions as long as the function

is continuous and differentiable (the seminal work in [200] considered only exponential decay

functions). We also incorporate lower bounds on the allowed task periods to indicate the

task’s preferred (nominal/minimum) periods. Finally, we show that this problem can be

solved in polynomial-time (in the number of tasks), for arbitrary convex functions.

As stated previously, EDF is used as the scheduling algorithm for each processor. The

schedulability condition for EDF is simple: the total utilization of the task set should not

exceed 1.0. We can now formally define the problem on a single processor (denoted by

UNI-MIN-COST) as follows:

minimize
F1,..,Fn

∑

τi∈Γ

Ji(Fi)

subject to:
∑

τi∈Γ

Ci ∗ Fi ≤ 1.0

Fmini ≤ Fi ≤ Fmaxi

(7.1)

where Ji(Fi) is a continuous, differentiable, and monotonically decreasing convex function.

We now define Ri(Fi) = −Ji(Fi). Note that Ri(Fi) is a concave, continuous, and mono-

tonically increasing function. Then, we define a new variable yi such that Fi = yi + Fmini

and a new function Qi(yi) such that

Qi(yi) = Ri(Fi) = Ri(yi + Fmini)

Observe that Qi() is effectively a concave and non-decreasing reward function indicating

121

the controller’s performance. The transformed problem is defined as:

maximize
y1,..,yn

∑

τi∈Γ

Qi(yi)

subject to:
∑

τi∈Γ

Ci ∗ yi ≤ B

0 ≤ yi ≤ Fmaxi − Fmini

where B = 1.0−
∑

τi∈Γ

Ci ∗ Fmini

(7.2)

Observe that
∑

τi∈T Ci ∗ yi has to be bounded by the constant B. If B is large enough,

then clearly assigning yi = Fmaxi −Fmini ∀i would also maximize the objective function due

to the non-decreasing nature of the reward function. Otherwise, this quantity B should

be used in its entirety since the total reward never decreases by doing so. In this case,

we obtain a constrained concave (non-linear) optimization problem with upper and lower

bounds.

maximize
y1,..,yn

∑

τi∈Γ

Qi(yi)

subject to:
∑

τi∈Γ

Ci ∗ yi = B

0 ≤ yi ≤ Fmaxi − Fmini

where B = 1.0−
∑

τi∈Γ

Ci ∗ Fmini

(7.3)

This problem turns out to be an instance of the general reward maximization problem

considered in [231]. In fact, Aydin et al. [231] developed an iterative solution that considers

the unconstrained optimization problem without the lower and upper bounds, and then

iteratively adjusts the solution in time O(n2 log n) to solve the constrained optimization

122

problem. We refer the reader to [231] for full details. Hence, UNI-MIN-COST can be also

solved in time O(n2 log n) for arbitrary convex functions.

7.1.2.3 Optimization on a multiprocessor platform

As shown in Section 7.1.2.1, overall control cost minimization on a multiprocessor setting

with partitioned approach is, in general, intractable1. The problem has two important

components, assigning periods to minimize the cost, and generating a feasible partitioning.

While there are well-known effective partitioning algorithms (such as First-Fit and Worst-

Fit), as the following example illustrates, using a different approach may significantly reduce

the overall cost.

Table 7.1: Task set for Example 1

Name βi ϕi Fmini [Hz] Fmaxi [Hz] Ci(ms)

τ1 0.3 4.42 1.7 2.5 105

τ2 0.4 9.68 1.3 2.0 45

τ3 0.6 3.56 1.4 2.1 260

τ4 0.7 1.42 0.8 1.2 825

τ5 0.8 9.86 1.2 2.5 220

Example 1. Table 7.1 shows a task set with 5 tasks (τ1− τ5) that are to be scheduled on

a system with two identical processors Π1 and Π2. The given task set can be partitioned

among the processors and then the UNI-MIN-COST algorithm can be used to compute the

periods to minimize the cost on each processor. However, different partitionings will re-

sult in different values of overall cost, as can be seen in Figure 7.1. If we set all the task

utilizations to their minimum possible values (by using the maximum periods), and then

apply a well-known partitioning heuristic, e.g., First-Fit-Decreasing (FFD), we obtain the

1It is worth mentioning that the optimal periods could be obtained for global scheduling by replacing the
overall utilization bound 1.0 by M in Equation (7.1), and then using an optimal global scheduler such as

PFair [37]. However, the focus of this research is the partitioned approaches which are known to have lower
run-time overhead.

123

Π1:

Π2:

ρ2 = 1.69, ρ4 = 0.8, ρ5 = 1.2, cost=3.21

ρ1 = 2.5, ρ3 = 2.1, cost=0

τ2 τ4 τ5

τ1 τ3

(a) Partitioning 1 using FFD/BFD, total
cost = 3.21

Π1:

Π2:

ρ2 = 2.0, ρ4 = 1.1, cost=0.04

ρ1 = 1.86, ρ3 = 1.4, ρ5 = 2.0, cost=1.62

τ2 τ4

τ5τ1 τ3

(b) Partitioning 2 using WFD, total cost =
1.66

Π1:

Π2:

ρ1 = 2.5, ρ4 = 0.89, cost=0.15

ρ2 = 2.0, ρ3 = 1.4, ρ5 = 2.48, cost=0.55

τ2

τ4

τ5

τ1

τ3

(c) Partitioning 3, total cost = 0.70

Figure 7.1: Partitioning Options for Example 1

partitioning in Figure 7.1a. After optimizing the frequencies on each individual proces-

sors with UNI-MIN-COST, we get a total overall cost of 3.21. Note that, if we had used

Best-Fit-Decreasing (BFD), instead of FFD, we would obtain the same partitioning, incur-

ring the same total cost. When Worst-Fit-Decreasing (WFD) is used as the partitioning

heuristic, we found the partitioning in Figure 7.1b, yielding a total cost of 1.66, providing

48% improvement over FFD. However, there is a completely different partitioning, shown

in Figure 7.1c, giving an overall cost of 0.70, and 58% improvement over WFD in terms of

minimizing cost. In fact, this partitioning is produced by the RTSP* algorithm that we will

develop in the next Section.

7.1.3 Proposed Algorithms

7.1.3.1 Local period assignment algorithms

For a given processor and its assigned task set, UNI-MIN-COST provides the optimal invo-

cation frequencies for all tasks within their respective upper and lower bounds. Hence, an

intuitive way to address the control cost minimization on a multiprocessor platform is to

124

perform task partitioning first using some well-known partitioning heuristic, and then call

UNI-MIN-COST in order to assign periods for minimizing the cost locally on each processor.

Some well-known partitioning heuristics are First-Fit, Worst-Fit, and Best-Fit. In order

to make the partitioning problem easier, respective minimum frequencies (maximum peri-

ods) are tentatively assigned to each task before partitioning is performed. It is well-known

that in general, the performance of the partitioning heuristics improves if the tasks are

ordered according to decreasing utilization [40]. This yields heuristics such as First-Fit-

Decreasing (FFD), Worst-Fit-Decreasing (WFD), Best-Fit-Decreasing (BFD). After the

partitioning phase is over, the final period values to minimize the cost for each processor

are obtained separately. This gives us a family of algorithms (that we call local algorithms);

the algorithms differ only in the special partitioning heuristic used in the initial step. De-

pending on the specific partitioning algorithm used, we obtain different local algorithms

called, for example, WFD-Local, FFD-Local, BFD-Local. Hence, a local period assignment

algorithm has the following two steps:

1. Partition the given task set among the processors, by tentatively assigning Ti = Tmaxi

to all tasks, and using a well-known heuristic such as FFD or WFD,

2. Invoke UNI-MIN-COST to assign optimal task period values in order to minimize cost

on each processor, separately.

Note that if we do not have a feasible schedule after Step 1 (with maximum periods),

we can declare that the task set is not schedulable using the local approach and the given

heuristic. Otherwise, we call UNI-MIN-COST on each processor individually to adjust the

periods of all tasks to optimal values locally. As it can be easily seen, the complexity of the

local algorithms is determined primarily by Step 2, which is O(M · n2 · log n).

125

7.1.3.2 Reduction to Single Processor (RTSP)

Technique

Despite their intuitive nature, the local period assignment algorithms suffer from an obvious

deficiency: The partitioning step is performed in a way which is completely incognizant

of the specific cost functions. This is important because at the end of the partitioning,

for example, tasks with very steep cost functions may be allocated to the same processor,

limiting the potential of cost minimization on that specific processor through the invocation

of UNI-MIN-COST algorithm.

An alternative approach that we consider is to reverse the order of steps undertaken

by the local algorithms: If we can make the (near-)optimal period assignments in the first

step by considering the entire task set, that is very likely to reduce the overall cost. This

is, of course, based on the assumption that a feasible partitioning will be found with those

suggested period assignments.

Specifically, in this approach, we first consider a single-processor Π0 which is M times

faster than each of the individual (unit-speed) processors in the original problem. Observe

that Π0 offers an aggregate computational capacity which is the same as the total com-

putational capacity of all (unit-speed) processors in Π. The entire task set Γ is assigned

to the faster processor Π0, and UNI-MIN-COST is applied to get the optimal periods for all

tasks. After that, one of the partitioning heuristics, (e.g., FFD, WFD, or BFD) can be

used to partition the task set upon the original processor set Π. Note that, instead of using

maximum periods for each task, RTSP uses the optimal periods while making partitioning

decisions.

It is possible that, due to the inherent difficulty of partitioning problem, we will not

be able to allocate some tasks with the assigned optimal periods. During the partitioning

phase, the tasks that cannot be assigned to any processor are put in a list of unassigned-

tasks. Next, this list is ordered according to decreasing value of utilization (Ci ∗ Fi). From

this list, tasks are picked one after the other and put to the processor that has the least value

of normalized local cost, which is given by (
∑

τi∈Γj
Ji(Fi)/

∑
τi∈Γj

Ji(F
min
i)), where Γj is the

126

set of tasks already assigned to the jth processor. Finally, UNI-MIN-COST is called on each

processor to adjust the frequency for each task to preserve the feasibility with minimum

cost increase. Algorithm 5 presents the pseudocode for RTSP.

Complexity: It can be seen that the complexity of the RTSP algorithm is dominated by

the for loop in lines 20-24. In that loop, the algorithm UNI-MIN-COST is invoked separately

for each of the M processors. Given that the number of tasks on each processor is bounded

by n and, the complexity of UNI-MIN-COST is O(n2 · log n), the overall complexity of the

algorithm is O(M · n2 · log n), which is the same as that of the local algorithms.

Algorithm 5 RTSP

1: Input: Task set (Γ), Processor Set (Π)

2: Output: Task assignments and frequencies

3: speed up←M

4: for all τi ∈ Γ do

5: Ci ← Ci/speed up

6: Fi ← Fmini

7: end for

8: if
∑ Ci

Fi
> 1 then

9: return failure

10: end if
11: Call UNI-MIN-COST to get optimal frequencies {F ∗i } for all tasks in Γ

12: for all τi ∈ Γ do
13: Ci ← Ci ∗ speed up
14: end for
15: Apply partitioning scheme, (e.g., FFD) to partition Γ upon Π with the {F ∗i } frequencies,

put infeasible tasks to unassigned list

16: Order unassigned list by decreasing value of Ci ∗ Fi
17: for all τi ∈ unassigned list do

18: Assign τi to the processor with the least value of
∑

τiεΓj
Ji(Fi)/

∑
τiεΓj

Ji(F
min
i), where

Γj is the set of tasks already assigned to the jth processor

19: end for
20: for all processors Πi ∈ Π do

21: Call UNI-MIN-COST to get optimal frequencies {F ∗i } for all tasks on processor Πi

22: if UNI-MIN-COST fails to return frequencies then

23: return failure

24: end if
25: end for
26: return task-to-processor assignments {Γ∗i } and frequency assignments {F ∗i }

127

RTSP*: The RTSP scheme has a shortcoming which is immediately noticeable: the total

utilization of the task set after the optimal period assignment on processor Π0 is typically

very close to M , the number of available unit-speed processors in the original problem.

In other words, we attempt to partition a task set with total load equal to the available

multiprocessor computing capacity. This is the hardest any partitioning problem can be-

come. As a result, the list of unassigned-tasks is almost never empty; and those tasks are

allocated to some processors using the minimum normalized-cost heuristic, before invoking

UNI-MIN-COST on those processors and potentially modifying the originally assigned optimal

period values to preserve the feasibility.

To overcome this shortcoming, we propose an improved version of RTSP, called RTSP*.

Similar to RTSP, RTSP* also assumes a hypothetical processor which is x times faster than

a unit-speed processor. But now, x is chosen as the largest value ≤M for which the task set

can be feasibly partitioned among the M processors, with the suggested periods. After the

partitioning has been completed, UNI-MIN-COST is called individually on each processor to

further reduce the cost, in case there is some idle capacity on certain processors. The value

of x is determined using binary search. The search space ranges from L =
∑

τi∈Γ U
min
i

to the total capacity of the system, M . The value of the lower bound L is determined

by considering that even if all the tasks are assigned their maximum periods (minimum

utilizations), they cannot be possibly scheduled on a platform which offers a computational

capacity less than the total utilization
∑

τi∈Γ U
min
i . The binary search algorithm continues

to shrink the search space until the difference between the upper and lower bound comes

within a pre-specified error-value, ε. Algorithm 6 presents the pseudocode. In fact, in

Example 1, the best partitioning shown in Figure 7.1c was obtained using RTSP*.

Complexity: In each of the binary search iterations from line 6 to line 36, first

UNI-MIN-COST is called for the entire task set, which takes time O(n2 log n) for a given

speed up value. To calculate the number of iterations that the binary search takes before

it converges to a value within ε of the actual value (or, fails), we divide the speedup value

range into equal chunks, each of size ε, which is a configurable search parameter. Let the

128

total number of chunks be k, then k = (M −∑
τiεΓ

Umini)/ε, so the binary search would

complete in at most O(log k) iterations. By factoring also the complexity of FFD in line 18,

the overall complexity of RTSP* is found as O(M · n2 log n · log k) which is slightly higher

than that of RTSP.

7.1.4 Evaluations and Discussions

We developed a discrete-event simulator to evaluate the proposed schemes. By varying var-

ious system parameters, the proposed schemes are evaluated through extensive simulations

with synthetic tasks. In the simulator, the following schemes are implemented.

WFD-local: Based on their minimum activation rates, tasks are first partitioned to

CPUs according to the well-known heuristic WFD (Worst-Fit Decreasing). Then, the

UNI-MIN-COST problem is solved to minimize the cost on each CPU. We note that we

also implemented other local algorithms such as FFD and BFD; but they were consistently

outperformed by WFD which tends to distribute tasks more evenly across processors and

thereby providing better opportunities for minimizing the total cost. Hence, in the evalua-

tion section, we consider WFD as the representative of the local algorithms.

RTSP: The proposed Reduction-to-Single-Processor (RTSP) scheme, where a hypothetical

processor with the speed of M is adopted to first optimize the activation rates for tasks.

Then, based on the resulting optimal activation rates, tasks are partitioned upon M unit-

speed CPUs according to the well-known heuristics (such as FFD, BFD and WFD). In what

follows, we show only the results for FFD when used in conjunction with RTSP, because

BFD and WFD perform similar or worse. Again, once tasks are mapped to CPUs, the

activation rates for tasks are further adjusted by solving the UNI-MIN-COST problem on

each CPU (See Algorithm 5).

RTSP*: This is the enhanced RTSP scheme. The speed of the hypothetical processor

that ensures the feasible partitioning of all tasks is determined through binary search. See

Algorithm 6 for details. Again, we use FFD to partition tasks. For binary search error

threshold, we adopted ε = 0.01, which leads to acceptable running time and reasonable

129

Algorithm 6 RTSP*

1: Input: Task set (Γ), Processor Set (Π)

2: Output: Task assignments and frequencies
3: upper ←M

4: lower ←∑
τiεΓ

Umini

5: speed up← lower

6: loop

7: for all τi ∈ Γ do

8: Ci ← Ci/speed up

9: Fi ← Fmini

10: end for

11: if
∑ Ci

Fi
> 1 then

12: return failure

13: end if
14: Call UNI-MIN-COST to get optimal frequencies {F ∗i } for all tasks in Γ

15: for all τi ∈ Γ do
16: Ci ← Ci ∗ speed up
17: end for
18: Apply partitioning scheme, (e.g., FFD) to partition Γ upon Π with the {F ∗i } frequencies

19: if a feasible partitioning is obtained then

20: lower ← speed up

21: if upper − lower ≤ ε then

22: for all processors Πi ∈ Π do

23: Call UNI-MIN-COST to get optimal frequencies {F ∗i } for all tasks on processor
Πi

24: end for
25: return task-to-processor assignments

26: else
27: speed up← (upper + lower)/2

28: end if
29: else
30: if speed up = lower then

31: return failure

32: end if
33: upper ← speed up

34: speed up← (upper + lower)/2

35: end if
36: end loop

accuracy for the results.

Bound: By assuming that all tasks run on a single hypothetical processor with the speed

of M , we obtain the optimal activation rates of tasks by solving the UNI-MIN-COST problem,

130

which lead to the lowest possible total cost for all tasks. Basically, Bound can be considered

as a yardstick algorithm to illustrate how well other schemes perform; because it does not

consider the challenges of partitioning while keeping total computational capacity the same

as the original M -processor system. No feasible partitioning on an M -processor system can

yield an overall cost lower than the one provided by Bound, in other words, it represents

the lower bound on the total cost that any algorithm can have.

Simulation Settings. In the simulations, we vary the following system parameters: the

number of tasks in each task set n, the number of CPUs M , and tasks’ elasticity factors.

As the computational capacity of a multiprocessor system increases with the number of

processors M , we represent the system load as relative to the maximum computational

capacity on a given multiprocessor platform. This quantity representing the system load is

called normalized utilization (UNtot) , and is defined as the ratio of the total utilization to

the number of processors, that is, UNtot =
∑
Umax
i
M .

For a given set of n, M , and UNtot, the synthetic tasks are generated as follows. First,

the total system utilization is found as Utot = UNtot ∗M . Then, the RandFixedSum algorithm

in [214] is adopted to generate the maximum utilization Umaxi for each task τi such that: (1)

the utilization is randomly chosen between 0 and 1 following a uniform distribution; and (2)

the summation of the utilization values for all tasks in the set is exactly equal to the total

utilization Utot. Next, the minimum period Tmini for each task τi is randomly selected within

the range of [10, 100] following a log-uniform distribution. A uniform elasticity factor, EF ,

is chosen for all tasks in a task set, where Tmaxi = EF · Tmini . The inverse of minimum

and maximum periods give maximum and minimum task frequencies (Fmaxi and Fmini),

respectively. Finally, worst-case execution time (WCET) for each task can be calculated

based on its minimum period and maximum utilization as Ci = Umaxi ∗ Tmini .

In our evaluations, we use the exponential decay functions [200] that have the form of

Ji(Fi) = ϕie
−βiFi−ϕie−βiFmax

i . The constant term ϕie
−βiFmax

i guarantees that Ji(F
max
i) = 0.

We distinguish four different cost functions.

131

• Type-0: For all tasks in a task set, ϕi is set to 1, and βi is set to 0.1 statically

(Uniform cost functions).

• Type-1: For any task in a task set, the weight ϕ is chosen randomly from a uniform

distribution between 1 to 10. β is set to a constant value of 0.1 for all tasks (Uniform

weight - different decay parameter cost functions).

• Type-2: For all tasks in a task set, the weight ϕ is statically set to 1, while β

is randomly chosen within the range of (0.0, 0.25] following a uniform distribution

(Different weight - uniform decay parameter cost functions).

• Type-3: For any task in a task set, the weight ϕ is randomly chosen between 1 to

10, and β between 0.0 to 0.25, both following a uniform distribution (heterogeneous

cost functions).

We first report results obtained with Type-1 cost functions in the evaluations. Later we

comment on results with other types of cost functions. The performance of each scheme

is reported as the normalized cost, which is defined as the ratio of the total cost incurred

by the scheme to the total cost of Bound. Recall that Bound represents the scheme that

assigns the periods by fully utilizing the total computational capacity of all M processors by

ignoring the partitioning aspect; hence, it represents the upper bound on the performance

of any partitioning-based algorithm. By definition, the normalized cost can never be smaller

than 1.0. For each data point in the result plots, 25,000 synthetic task sets are generated

and the average result of these task sets is reported.

Impact of System Utilization. Figure 7.2 shows the achieved normalized cost as a

function of the utilization under different schemes for systems with different number of

CPUs. We can see that the performance levels of both RTSP and RTSP* are better than

that of WFD-local. The reason is that, compared to RTSP and RTSP* where tasks are

mapped to processors based on their global optimal activation rates, WFD-local maps tasks

to CPUs based on their minimum activation rates, which limits the opportunities for tasks

132

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 1

 1
.0

5

 1
.1

 1
.1

5

 1
.2

 1
.2

5

 1
.3

 1
.3

5

 1
.4

N
o

rm
a

liz
e

d
 c

o
s
t

Normalized utilization

RTSP
RTSP*

WFD-local

30 tasks (Type-I), 4 CPUs, EF = 1.5

(a) 4 CPUs

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 1

 1
.0

5

 1
.1

 1
.1

5

 1
.2

 1
.2

5

 1
.3

 1
.3

5

 1
.4

N
o

rm
a

liz
e

d
 c

o
s
t

Normalized utilization

RTSP
RTSP*

WFD-local

30 tasks (Type-I), 6 CPUs, EF = 1.5

(b) 6 CPUs

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 1

 1
.0

5

 1
.1

 1
.1

5

 1
.2

 1
.2

5

 1
.3

 1
.3

5

 1
.4

N
o

rm
a

liz
e

d
 c

o
s
t

Normalized utilization

RTSP
RTSP*

WFD-local

30 tasks (Type-I), 8 CPUs, EF = 1.5

(c) 8 CPUs

Figure 7.2: Normalized cost for different schemes with varying system utilization; EF = 1.5

to exploit the entire system computing capacity for optimal activation rates. RTSP, while

doing better than WFD in general, is outperformed by RTSP*. This comes from the fact

that RTSP, in order to schedule the infeasible tasks, allocates them on certain processors

based on a heuristic rule, and the activation rates of all tasks on those processors need to

133

be reduced, increasing the overall cost.

As another observation we can see that as the the system load (i.e., the normalized

utilization) increases, the normalized cost for all schemes gradually approaches to the level

of Bound, even though different schemes converge at different rates. In contrast, with

modest load (e.g., less than 1.1), the normalized cost of the schemes (with respect to Bound)

increases sharply.

This is because, when the normalized utilization exceeds 1.0 only by a small margin,

Bound is able to guarantee the feasibility by increasing the periods only by very small

amounts, yielding a total cost very close to zero. While the absolute cost of other schemes is

also quite low in that region, the normalized cost increases given that Bound’s cost is close

to zero. As the utilization increases the cost incurred by Bound also increases quickly and

the normalized cost of the schemes improves.

With more (e.g., 8) processors in the system, there will be fewer number of tasks per

CPU, and the performance difference of the schemes becomes much more pronounced.

However, the performance of RTSP* is, even at medium loads, is very close to Bound; even

on 8-processor systems, the difference is less than 20% as soon as the load exceeds 1.07, and

becomes less than 5% at the increased load values.

Impact of Elasticity Factor. Next we consider the impact of different elasticity factors,

which indicate the flexibility for assigning tasks’ activation rates (i.e., periods), on the

normalized cost of the system. Figures 7.3a and 7.3b show the results for two different

system loads UNtot = 1.2 and UNtot = 1.4, respectively.

As the elasticity factor increases, we have more flexibility in terms of assigning larger

periods, and the absolute total cost for all schemes tends to decrease. We can see that

RTSP and RTSP* are, in most cases, able to maintain their normalized cost performance

with increased elasticity factor; implying that the cost improvement due to the increased

maximum period values is reflected in those schemes in the same proportion as in Bound.

In fact, the absolute cost of WFD-Local monotonically decreases with increasing elasticity

factor as well; however, the rate of decrase is smaller compared to that of Bound – that is

134

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 1
.4

 1
.6

 1
.8 2

 2
.2

 2
.4

 2
.6

 2
.8 3

N
o

rm
a

liz
e

d
 c

o
s
t

Elasticity factor

RTSP
RTSP*

WFD-local

30 tasks (Type-I), 8 CPUs

(a) UN
tot = 1.2

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 1.45

 1.5

 1.55

 1
.4

 1
.6

 1
.8 2

 2
.2

 2
.4

 2
.6

 2
.8 3

N
o

rm
a

liz
e

d
 c

o
s
t

Elasticity factor

RTSP
RTSP*

WFD-local

30 tasks (Type-I), 8 CPUs

(b) UN
tot = 1.4

Figure 7.3: Impact of the elasticity factor

why we are observing an increase in normalized cost. in the plots.

We note that for small elasticity factor (e.g., EF < 1.5 for the case of UNtot = 1.4),

RTSP can perform slightly worse than WFD-local. The reason is that, for such inflexible

task sets, RTSP cannot take much advantage of the global optimality and the WFD-local

scheme tends to perform well. But, by virtue of using the globally assigned activation rates

and the exact speedup ratio for making partitioning decisions, RTSP* can still outperform

WFD-local. These plots again confirm that RTSP* stays within 5% of Bound for most of

the spectrum. RTSP, performing close to Bound most of the time, drifts away for small EF

values.

Impact of Number of Tasks. Figures 7.4a and 7.4b further show the normalized cost

of tasks under different schemes when the number of tasks varies for systems with 8 CPUs.

Here, we can see that, for a given system load (UNtot = 1.2 or UNtot = 1.4), the normalized

cost for tasks under all schemes decreases as the number of tasks increases. The reason is

that, with more tasks, the size (i.e., utilization) of each task gets smaller. With the smaller

135

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 2
0

 3
0

 4
0

 5
0

 6
0

 7
0

 8
0

N
o

rm
a

liz
e

d
 c

o
s
t

(%
)

Number of tasks

RTSP
RTSP*

WFD-local

8 CPUs, Type-I, EF = 1.5

(a) UN
tot = 1.2

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 2
0

 3
0

 4
0

 5
0

 6
0

 7
0

 8
0

N
o

rm
a

liz
e

d
 c

o
s
t

(%
)

Number of tasks

RTSP
RTSP*

WFD-local

8 CPUs, Type-I, EF = 1.5

(b) UN
tot = 1.4

Figure 7.4: Impact of the number of tasks

granularity of task sizes, partitioning tasks to CPUs becomes relatively easier, even with

small periods. When there are more than 60 tasks on a system with 8 CPUs, each CPU, on

the average, can get more than 7 tasks, which enables RTSP and RTSP* to get very close

to Bound (within 2%).

On the other hand, when there are fewer number of tasks, both RTSP and RTSP* start

to drift away from Bound, but they still perform better than WFD-local when the system

has more than 40 tasks. However, when the system has only 20 tasks, where each CPU has

around 2-3 tasks, RTSP can perform even worse than WFD-local for the case of Utot = 1.2

due to the increased granularity of tasks. For the case of slightly higher system load (Utot

= 1.4), WFD-local can perform as good as RTSP for 30 tasks (Figure 7.4b). Therefore,

we can conclude that, the granularity of tasks affects the performance of RTSP the most,

followed by WFD-local and RTSP*. However, RTSP* is quite close to Bound, except for

the case of small number of tasks (20) when the difference is maximum (around 20%).

Impact of Cost Functions. When tasks have different types of cost functions, Figure 7.5

136

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 1

 1
.0

5

 1
.1

 1
.1

5

 1
.2

 1
.2

5

 1
.3

 1
.3

5

 1
.4

N
o

rm
a

liz
e

d
 c

o
s
t

Normalized utilization

RTSP
RTSP*

WFD-local

30 tasks (Type-0), 8 CPU, EF-1.5

(a) Type-0

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 1

 1
.0

5

 1
.1

 1
.1

5

 1
.2

 1
.2

5

 1
.3

 1
.3

5

 1
.4

N
o

rm
a

liz
e

d
 c

o
s
t

Normalized utilization

RTSP
RTSP*

WFD-local

30 tasks (Type-2), 8 CPU, EF-1.5

(b) Type-2

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 1

 1
.0

5

 1
.1

 1
.1

5

 1
.2

 1
.2

5

 1
.3

 1
.3

5

 1
.4

N
o

rm
a

liz
e

d
 c

o
s
t

Normalized utilization

RTSP
RTSP*

WFD-local

30 tasks (Type-3), 8 CPU, EF-1.5

(c) Type-3

Figure 7.5: Impact of utilization on different types of task sets (30 tasks) on 8 CPUs

shows the normalized cost for tasks under different schemes when EF = 1.5, with varying

system load. For all the types of cost functions considered in the evaluations, RTSP*

performs the best and has performance level close to that of Bound (except when Utot ≤ 1.1).

Moreover, the different types of exponential cost functions have similar impacts on the

137

performance of the proposed schemes regarding the normalized cost of tasks. In particular,

as shown in Figure 7.2 for Type-1 tasks, RTSP is gradually outperformed by WFD with

the increased load, with Type-0, Type-2 and Type-3 cost functions as well.

Comparison with the Optimal Solution. An interesting question is the relative per-

formance of RTSP schemes with respect to the optimal partitioning-based algorithm. Obvi-

ously, since the problem is in general intractable, the optimal solution cannot be obtained

in polynomial time. However, we implemented an exhaustive-search based solution that

computes the optimal solution by enumerating all possible task-to-processor assignments,

computing the best frequency assignments for each possible partitioning, and then picking

up the best solution at the end. Due to the prohibitive computation time, the experiments

were performed only for small number of tasks (6-12) running on relatively small number

of processors (4). Each data points we show represents the average of 500 runs.

 0

 20

 40

 60

 80

 100

 1

 1
.0

5

 1
.1

 1
.1

5

 1
.2

 1
.2

5

 1
.3

 1
.3

5

 1
.4

N
o

rm
a

liz
e

d
 c

o
s
t

Normalized utilization

RTSP
RTSP*

Optimal

10 tasks (Type-I), 4 CPUs, EF = 1.5

Figure 7.6: Impact of Utilization - Comparison to Exhaustive-Search Based Optimal Solu-
tion

In Figures 7.6 and 7.7, we show the impact of the utilization and the impact of the

138

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 6 7 8 9

 1
0

 1
1

 1
2

N
o

rm
a

liz
e

d
 c

o
s
t

Number of tasks

RTSP
RTSP*

Optimal

4 CPUs, Type-I, EF = 1.5

Figure 7.7: Impact of number of tasks - Comparison to Exhaustive-Search Based Optimal

Solution; UNtot = 1.2

number of tasks, respectively, on RTSP, RTSP* and Optimal scheme, with respect to Bound.

It can be observed that RTSP* follows very closely the Optimal scheme even for medium

normalized utilization and small number of tasks. It is also worth observing that even

the performance of Optimal partitioning scheme starts to deviate significantly from that of

Bound at low load or small number of tasks cases.

7.1.5 Concluding Remarks

Period assignment to real-time control tasks can make important difference in terms of

control performance. While several studies considered the problem for uniprocessor set-

tings and scheduling models, in this work, we considered multiprocessor platforms that are

increasingly used in view of the performance requirements. We assumed partitioned EDF

scheduling and arbitrary convex control cost functions.

Finding optimal solution to this problem on a multiprocessor platform is, in general,

computationally intractable. We identified local period assignment algorithms as the ones

139

that first partition the tasks and then optimize the periods on each processor locally. To ad-

dress the limitations of the local approaches, we proposed the Reduction-to-Single-Processor

(RTSP) technique which first assigns tentative optimal periods by considering all the tasks

at once on a hypothetical faster single processor, and then attempts partitioning with those

period values. We developed two variants of the algorithm that differ on the way they

determine the speedup factor for the hypothetical faster single processor. Our experimental

results indicate that the RTSP technique generally outperforms the local algorithms, and

follows the theoretical upper bound on the control performance closely.

140

Chapter 8: Conclusions

In this chapter, we summarize the main contributions of this dissertation and offer a few

future research directions. The main theme of this research was the minimization of en-

ergy consumption for reliable real-time systems implemented upon heterogeneous dual-core

systems. We also studied maximizing quality-of-control for homogeneous multiprocessor

control systems.

8.1 Summary of the Dissertation’s Contributions

The research addressed in this dissertation has two main parts. The first is the energy-

aware fault-tolerant scheduling of real-time tasks, and the second is the quality-of-control

maximization for multiprocessor control systems. For the first part, we addressed the three

interconnected dimensions of the general problem, i.) energy management, ii.) fault toler-

ance, and iii.) strict timing guarantees. We developed several algorithms and techniques

which achieve good performance under a wide range of system configurations and appli-

cation models. We demonstrated the effectiveness of our techniques by using extensive

simulation studies with synthetic task sets. The second part of the dissertation addressed

digital control systems implemented upon homogeneous multiprocessors and opted to max-

imize its quality-of-control by making task partitioning and period assignment decisions.

Extensive simulation experiments were conducted to test the effectiveness of the algorithms

we proposed.

8.1.1 Energy-Aware Fault-Tolerant Scheduling of Real-Time Tasks

We developed energy-aware scheduling algorithms for fault-tolerant real-time systems im-

plemented on single-ISA heterogeneous dual-core systems. We considered three different

141

application task models separately and proposed techniques for energy-efficient and reliable

operation, as described below:

• Independent frame-based tasks. In this problem, we addressed the scheduling of a given

set of independent real-time tasks satisfying their deadline and reliability constraints,

while also minimizing the overall energy consumption of the system. In one sub-

problem, we designated one processing core as the “primary” core and the other core

as the “spare” core (called “standby-sparing” configuration). A spare copy of each

task is created and allocated to the spare core. Moreover, the primary core can use

DVFS to select an operating frequency that can save energy, and the spare core is

equipped with DPM in order to put the core into a low-power state. Under such

settings, we developed algorithms to minimize the overall energy consumption by

determining: i) which core should be designated as the primary and spare, and, ii)

what processing frequency assignments should be made to the tasks on the primary

core. In the second direction, we also addressed minimizing energy consumption in

the context of mixed primary/backup (MPB) scheduling in which, each processing

cores are allocated a “mix” of primary and backup copies of tasks, with the constraint

that the primary and backup copies of the same task must be placed on separate

cores. In order to minimize the overall energy consumption in such a setting, we

developed several algorithms to determine: i) the allocation of tasks under reliability

constraints, and, ii) the processing frequency assignment to individual tasks. We

presented extensive simulation studies which validate our findings.

• Frame-based tasks with precedence constraints. In this problem, we considered real-

time tasks with precedence constraints and fault tolerance requirements, and devel-

oped energy-aware scheduling algorithms on heterogeneous dual-core systems using

the MPB approach. Similar to the previous problem, each task has a backup copy

placed on the alternate core and both cores support DVFS and DPM; however, tasks

142

have additional constraints due to their data-dependencies between them, which gov-

ern the execution order of the tasks. We developed a technique called CPSS along

with other algorithms which can minimize the energy consumption by determining

how to schedule the primary and backup tasks (along with execution frequencies for

primary tasks) such that all timing and reliability guarantees are met. Extensive

simulation studies were performed in order to verify the performance of the proposed

algorithms.

• General periodic tasks. In this problem, we considered general periodic real-time tasks

with fault tolerance requirements. Again, we used the MPB approach and assumed

that both of the processing cores were equipped with DVFS and DPM for energy

savings, however, in this problem we generalized our real-time task model such that

tasks can have arbitrary periods. Each periodic task is provisioned with a backup copy

on the alternate core to satisfy reliability constraints. We considered fixed-priority

systems in which we assign an execution priority to each task offline (before execution).

To manage the overall energy consumption, we used two main mechanisms: i.) the

primary tasks were executed at low voltage/frequency levels using DVFS, and, ii.)

the backup copies were delayed to the extent it is possible to enable their cancellation

in case the primary completes without a fault. In this setting, the problem was to

determine the task allocation, priority assignment, execution frequency assignment

and backup delaying mechanism which yields the minimal energy consumption for

the overall system. We conducted extensive simulation studies which show that our

main proposed algorithm performs very close to the optimal theoretical limit.

8.1.2 Quality-of-Control Management via Period Assignment

Our objective in this problem was to maximize the overall quality-of-control, by means of

allocating tasks to processors and choosing a suitable invocation rate (period) for each of

the control tasks. In this research, we considered a homogeneous multiprocessor system.

The quality-of-control of a task is defined by a concave relationship to the invocation rate

143

(period) of each real-time control task. We proposed a family of heuristics (based on

reduction from a multiprocessor system to a more powerful single-processor system) which

maximize the overall quality-of-control of the system while guaranteeing a feasible schedule

by determining: i) the task to processor allocation, and, ii) the invocation-rate (or, period)

of each control task. We used various types of convex cost functions to mimic various

application models and conducted simulation experiments which demonstrate considerable

improvement in the quality-of-control for a wide range of digital control systems.

8.2 Future Work

Embedded systems have increased presence in almost every aspect of our lives, and some of

them exhibit real-time operation and safety-criticality features. Moreover, energy efficiency

is a quite common design and operation requirement. This dissertation effort explored a

number of open research problems that considered the subtle interplay among reliability

and energy-efficiency requirements of real-time embedded systems implemented upon het-

erogeneous dual-core systems. We can offer the following future directions to extend our

research presented in this dissertation.

8.2.1 Energy-Aware Fault-Tolerant Scheduling on Heterogeneous Cluster

Based Multicores

We addressed energy-aware scheduling of heterogeneous multicores with fault tolerance and

real-time guarantees, and to the best of our knowledge, this has been the first research

of its kind. As the first steps, we developed task partitioning and scheduling algorithms

on a heterogeneous platform consisting of only two processing cores. However, in practice,

many heterogeneous multicore processors are cluster based, where all cores in a given cluster

share the same characteristics and different clusters may have a wide range of varying power-

performance characteristics (e.g., Apple M1 and Samsung Exynos 2100 Big-Little clusters.)

In order to develop practical applications on such cluster based multicores, one needs to

develop energy-efficient scheduling algorithms for systems with for more than two cores.

144

Our algorithms can be used as a starting point of such studies and can be extended to

support heterogeneous cluster based multicores. One straightforward, but not necessarily

optimal, approach would be to use mixed-primary/backup scheduling with Big and Little

clusters, where we allocate each pair of primary and backup copies to different type of

clusters, and exploit DVFS and DPM to save energy, while respecting the hard deadlines of

real-time applications. However, more detailed studies are needed to assess the performance

of this approach and investigate more sophisticated techniques.

8.2.2 Energy-Aware Fault-Tolerant Scheduling of Dynamic-Priority Pe-

riodic Tasks

While we addressed the problem of energy-efficient scheduling of general periodic tasks on

heterogeneous multicores with fault tolerance, our system model assumed a fixed-priority

system, meaning the execution priorities of various periodic tasks are assigned statically,

and they remain fixed throughout runtime. However, it is known that dynamic-priority

systems, where task priorities can vary at run-time, in general, are capable of better using

the processors’ computational capacity. This implies that dynamic-priority systems could

be exploited to produce scheduling algorithms which are even more energy-efficient than

our proposed framework. Further analysis is warranted to assess whether extra complexity

which often accompanies dynamic-priority systems’ design and operation is justifiable with

respect to the additional energy savings it might offer.

145

Bibliography

146

Bibliography

[1] I. Koren and C. M. Krishna, Fault-tolerant systems. Morgan Kaufmann, 2010.

[2] R. Xu, D. Mossé, and R. Melhem, “Minimizing expected energy consumption in real-
time systems through dynamic voltage scaling,” ACM Transactions on Computer
Systems (TOCS), vol. 25, no. 4, p. 9, 2007.

[3] C. Rusu, R. Melhem, and D. Mossé, “Maximizing rewards for real-time applica-
tions with energy constraints,” ACM Transactions on Embedded Computing Systems
(TECS), vol. 2, no. 4, pp. 537–559, 2003.

[4] V. Devadas and H. Aydin, “On the interplay of voltage/frequency scaling and device
power management for frame-based real-time embedded applications,” IEEE Trans-
actions on Computers, vol. 61, no. 1, pp. 31–44, 2010.

[5] J. W. S. Liu, Real-Time Systems. Pearson Education, 2000. [Online]. Available:
https://www.amazon.com/Real-Time-Systems-Jane-W-Liu/dp/8177585754

[6] A. Roy, H. Aydin, and D. Zhu, “Energy-aware standby-sparing on heterogeneous
multicore systems,” in 2017 54th ACM/EDAC/IEEE Design Automation Conference
(DAC). IEEE, 2017, pp. 1–6.

[7] A. Roy, H. Aydin, and D. Zhu, “Energy-efficient primary/backup scheduling tech-
niques for heterogeneous multicore systems,” in 2017 Eighth International Green and
Sustainable Computing Conference (IGSC). IEEE, 2017, pp. 1–8.

[8] A. Roy, H. Aydin, and D. Zhu, “Energy-efficient fault tolerance for real-time tasks
with precedence constraints on heterogeneous multicore systems,” in 2019 Tenth In-
ternational Green and Sustainable Computing Conference (IGSC). IEEE, 2019, pp.
1–8.

[9] A. Roy, H. Aydin, and D. Zhu, “Energy-aware primary/backup scheduling of periodic
real-time tasks on heterogeneous multicore systems,” in 2020 Eleventh International
Green and Sustainable Computing Conference (IGSC). IEEE, 2020, pp. 1–8.

[10] A. Roy, H. Aydin, and D. Zhu, “Energy-aware primary/backup scheduling of peri-
odic real-time tasks on heterogeneous multicore systems,” Sustainable Computing:
Informatics and Systems, vol. 29, p. 100474, 2021.

[11] A. Roy, H. Aydin, and D. Zhu, “On task period assignment in multiprocessor real-time
control systems,” in Proceedings of the 24th International Conference on Real-Time
Networks and Systems. ACM, 2016, pp. 151–160.

147

[12] G. C. Buttazzo, Hard real-time computing systems: predictable scheduling algorithms
and applications. Springer Science & Business Media, 2011, vol. 24.

[13] J. Lehoczky, L. Sha, and Y. Ding, “The rate monotonic scheduling algorithm: Exact
characterization and average case behavior,” in Real Time Systems Symposium, 1989.,
Proceedings. IEEE, 1989, pp. 166–171.

[14] N. Fisher and S. Baruah, “Rate-monotonic scheduling,” in Encyclopedia of Algo-
rithms. Springer, 2008, pp. 1–99.

[15] N. C. Audsley, A. Burns, M. Richardson, and A. Wellings, “Deadline monotonic
scheduling,” 1990.

[16] J. P. Lehoczky, “Enhanced aperiodic responsiveness in hard real-time environment,”
in Proceedings of IEEE Real-Time Systems Symposium’87, 1987, pp. 261–270.

[17] J. K. Strosnider, J. P. Lehoczky, and L. Sha, “The deferrable server algorithm for en-
hanced aperiodic responsiveness in hard real-time environments,” IEEE Transactions
on Computers, vol. 44, no. 1, pp. 73–91, 1995.

[18] B. Sprunt, L. Sha, and J. Lehoczky, “Aperiodic task scheduling for hard-real-time
systems,” Real-Time Systems, vol. 1, no. 1, pp. 27–60, 1989.

[19] M. Spuri and G. C. Buttazzo, “Efficient aperiodic service under earliest deadline
scheduling.” in RTSS, 1994, pp. 2–11.

[20] M. Spuri and G. Buttazzo, “Scheduling aperiodic tasks in dynamic priority systems,”
Real-Time Systems, vol. 10, no. 2, pp. 179–210, 1996.

[21] C. W. Mercer, S. Savage, and H. Tokuda, “Processor capacity reserves for multimedia
operating systems,” Carnegie-Mellon University Pittsburg PA School of Computer
Science, Tech. Rep., 1993.

[22] C. W. Mercer, S. Savage, and H. Tokuda, “Processor capacity reserves: Operating
system support for multimedia applications.” in ICMCS, 1994, pp. 90–99.

[23] X. Qin, H. Jiang, and D. R. Swanson, “An efficient fault-tolerant scheduling algorithm
for real-time tasks with precedence constraints in heterogeneous systems,” in Parallel
Processing, 2002. Proceedings. International Conference on. IEEE, 2002, pp. 360–
368.

[24] X. Qin and H. Jiang, “A novel fault-tolerant scheduling algorithm for precedence
constrained tasks in real-time heterogeneous systems,” Parallel Computing, vol. 32,
no. 5-6, pp. 331–356, 2006.

[25] Q. Zheng and B. Veeravalli, “On the design of communication-aware fault-tolerant
scheduling algorithms for precedence constrained tasks in grid computing systems with
dedicated communication devices,” Journal of Parallel and Distributed Computing,
vol. 69, no. 3, pp. 282–294, 2009.

148

[26] A. Benoit, M. Hakem, and Y. Robert, “Contention awareness and fault-tolerant
scheduling for precedence constrained tasks in heterogeneous systems,” Parallel Com-
puting, vol. 35, no. 2, pp. 83–108, 2009.

[27] B. Zhao, H. Aydin, and D. Zhu, “Shared recovery for energy efficiency and reliability
enhancements in real-time applications with precedence constraints,” ACM Transac-
tions on Design Automation of Electronic Systems (TODAES), vol. 18, no. 2, p. 23,
2013.

[28] L. Wang, G. Von Laszewski, J. Dayal, and F. Wang, “Towards energy aware schedul-
ing for precedence constrained parallel tasks in a cluster with dvfs,” in Proceedings
of the 2010 10th IEEE/ACM International Conference on Cluster, Cloud and Grid
Computing. IEEE Computer Society, 2010, pp. 368–377.

[29] Y. C. Lee and A. Y. Zomaya, “Minimizing energy consumption for precedence-
constrained applications using dynamic voltage scaling,” in Cluster Computing and
the Grid, 2009. CCGRID’09. 9th IEEE/ACM International Symposium on. IEEE,
2009, pp. 92–99.

[30] E. W. Dijkstra, “Cooperating sequential processes,” in The origin of concurrent pro-
gramming. Springer, 1968, pp. 65–138.

[31] A. Silberschatz, P. B. Galvin, and G. Gagne, Operating system concepts essentials.
John Wiley & Sons, Inc., 2014.

[32] P. B. Hansen, Operating system principles. Prentice-Hall, Inc., 1973.

[33] L. Sha, R. Rajkumar, and J. P. Lehoczky, “Priority inheritance protocols: An ap-
proach to real-time synchronization,” IEEE Transactions on computers, vol. 39, no. 9,
pp. 1175–1185, 1990.

[34] T. P. Baker, “A stack-based resource allocation policy for realtime processes,” in
Real-Time Systems Symposium, 1990. Proceedings., 11th. IEEE, 1990, pp. 191–200.

[35] J. B. Goodenough and L. Sha, The priority ceiling protocol: A method for minimizing
the blocking of high priority Ada tasks. ACM, 1988, vol. 8, no. 7.

[36] R. I. Davis and A. Burns, “A survey of hard real-time scheduling for multiprocessor
systems,” ACM computing surveys (CSUR), vol. 43, no. 4, p. 35, 2011.

[37] S. K. Baruah, N. K. Cohen, C. G. Plaxton, and D. A. Varvel, “Proportionate progress:
A notion of fairness in resource allocation,” Algorithmica, vol. 15, no. 6, pp. 600–625,
1996.

[38] H. Cho, B. Ravindran, and E. D. Jensen, “An optimal real-time scheduling algorithm
for multiprocessors,” in Real-Time Systems Symposium, 2006. RTSS’06. 27th IEEE
International. IEEE, 2006, pp. 101–110.

[39] J. Y.-T. Leung and J. Whitehead, “On the complexity of fixed-priority scheduling of
periodic, real-time tasks,” Performance evaluation, vol. 2, no. 4, pp. 237–250, 1982.

149

[40] J. M. López, J. L. Dı́az, and D. F. Garćıa, “Utilization bounds for edf scheduling
on real-time multiprocessor systems,” Real-Time Systems, vol. 28, no. 1, pp. 39–68,
2004.

[41] J. Carpenter, S. Funk, P. Holman, A. Srinivasan, J. Anderson, and S. Baruah, “A cate-
gorization of real-time multiprocessor scheduling problems and algorithms,” Handbook
on scheduling algorithms, methods, and models, pp. 30–1, 2004.

[42] S. Baruah, “Partitioned edf scheduling: a closer look,” Real-Time Systems, vol. 49,
no. 6, pp. 715–729, 2013.

[43] I. Present, “Cramming more components onto integrated circuits,” Readings in com-
puter architecture, vol. 56, 2000.

[44] T. Mitra, “Heterogeneous multi-core architectures,” Information and Media Tech-
nologies, vol. 10, no. 3, pp. 383–394, 2015.

[45] A. Vajda, “Multi-core and many-core processor architectures,” in Programming Many-
Core Chips. Springer, 2011, pp. 9–43.

[46] S. Pasricha and N. Dutt, “Orb: An on-chip optical ring bus communication architec-
ture for multi-processor systems-on-chip,” in Proceedings of the 2008 Asia and South
Pacific Design Automation Conference. IEEE Computer Society Press, 2008, pp.
789–794.

[47] A. Jantsch, H. Tenhunen et al., Networks on chip. Springer, 2003, vol. 396.

[48] R. Balasubramonian, N. P. Jouppi, and N. Muralimanohar, “Multi-core cache hierar-
chies,” Synthesis Lectures on Computer Architecture, vol. 6, no. 3, pp. 1–153, 2011.

[49] S. Devadas, “Toward a coherent multicore memory model,” Computer, vol. 46, no. 10,
pp. 30–31, 2013.

[50] R. Manikantan, K. Rajan, and R. Govindarajan, “Nucache: An efficient multicore
cache organization based on next-use distance,” in 2011 IEEE 17th International
Symposium on High Performance Computer Architecture. IEEE, 2011, pp. 243–253.

[51] R. Mancuso, R. Dudko, E. Betti, M. Cesati, M. Caccamo, and R. Pellizzoni, “Real-
time cache management framework for multi-core architectures,” in 2013 IEEE 19th
Real-Time and Embedded Technology and Applications Symposium (RTAS). IEEE,
2013, pp. 45–54.

[52] V. Devadas and H. Aydin, “Coordinated power management of periodic real-time
tasks on chip multiprocessors,” in Green Computing Conference, 2010 International.
IEEE, 2010, pp. 61–72.

[53] A. Ejlali, B. M. Al-Hashimi, and P. Eles, “Low-energy standby-sparing for hard real-
time systems,” IEEE Trans. on Computer-Aided Design of Integrated Circuits and
Systems, vol. 31, no. 3, pp. 329–342, 2012.

150

[54] M. A. Haque, H. Aydin, and D. Zhu, “Energy-aware standby-sparing technique for
periodic real-time applications,” in 2011 IEEE 29th International Conference on Com-
puter Design (ICCD). IEEE, 2011, pp. 190–197.

[55] M. B. Taylor, “Is dark silicon useful? harnessing the four horsemen of the com-
ing dark silicon apocalypse,” in Design Automation Conference (DAC), 2012 49th
ACM/EDAC/IEEE. IEEE, 2012, pp. 1131–1136.

[56] M. Pricopi, T. S. Muthukaruppan, V. Venkataramani, T. Mitra, and S. Vishin,
“Power-performance modeling on asymmetric multi-cores,” in 2013 International
Conference on Compilers, Architecture and Synthesis for Embedded Systems
(CASES). IEEE, 2013, pp. 1–10.

[57] T. Mitra, T. S. Muthukaruppan, A. Pathania, M. Pricopi, V. Venkataramani, and
S. Vishin, “Power management of asymmetric multi-cores in the dark silicon era,” in
The Dark Side of Silicon. Springer, 2017, pp. 159–189.

[58] J. Spasic, D. Liu, and T. Stefanov, “Energy-efficient mapping of real-time applica-
tions on heterogeneous mpsocs using task replication,” in Proceedings of the Eleventh
IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and Sys-
tem Synthesis. ACM, 2016, p. 28.

[59] R. Kumar, D. M. Tullsen, P. Ranganathan, N. P. Jouppi, and K. I. Farkas, “Single-isa
heterogeneous multi-core architectures for multithreaded workload performance,” in
Computer Architecture, 2004. Proceedings. 31st Annual International Symposium on.
IEEE, 2004, pp. 64–75.

[60] R. Kumar, D. M. Tullsen, N. P. Jouppi, and P. Ranganathan, “Heterogeneous chip
multiprocessors,” Computer, vol. 38, no. 11, pp. 32–38, 2005.

[61] E. L. Padoin, L. L. Pilla, M. Castro, F. Z. Boito, P. O. A. Navaux, and J.-F. Méhaut,
“Performance/energy trade-off in scientific computing: the case of arm big. little and
intel sandy bridge,” IET Computers & Digital Techniques, vol. 9, no. 1, pp. 27–35,
2014.

[62] H. Chung, M. Kang, and H.-D. Cho, “Heterogeneous multi-processing solution of
exynos 5 octa with arm R© big. little technology,” Samsung White Paper, 2012.

[63] K. Yu, D. Han, C. Youn, S. Hwang, and J. Lee, “Power-aware task scheduling for
big. little mobile processor,” in SoC Design Conference (ISOCC), 2013 International.
IEEE, 2013, pp. 208–212.

[64] S. Kamdar and N. Kamdar, “big. little architecture: Heterogeneous multicore pro-
cessing,” International Journal of Computer Applications, vol. 119, no. 1, 2015.

[65] P. Greenhalgh, “Big. little processing with arm cortex-a15 & cortex-a7,” ARM White
paper, vol. 17, 2011.

[66] S. Variable, “A multi-core cpu architecture for low power and high performance,”
Whitepaper-http://www.nvidia.com, 2011.

151

[67] B. Donyanavard, T. Mück, S. Sarma, and N. Dutt, “Sparta: runtime task alloca-
tion for energy efficient heterogeneous many-cores,” in Proceedings of the Eleventh
IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and Sys-
tem Synthesis. ACM, 2016, p. 27.

[68] J. Yun, J. Park, and W. Baek, “Hars: A heterogeneity-aware runtime system for
self-adaptive multithreaded applications,” in Design Automation Conference (DAC),
2015 52nd ACM/EDAC/IEEE. IEEE, 2015, pp. 1–6.

[69] T. S. Muthukaruppan, M. Pricopi, V. Venkataramani, T. Mitra, and S. Vishin, “Hi-
erarchical power management for asymmetric multi-core in dark silicon era,” in 2013
50th ACM/EDAC/IEEE Design Automation Conference (DAC). IEEE, 2013, pp.
1–9.

[70] T. Somu Muthukaruppan, A. Pathania, and T. Mitra, “Price theory based power
management for heterogeneous multi-cores,” ACM SIGARCH Computer Architecture
News, vol. 42, no. 1, pp. 161–176, 2014.

[71] S. Mittal, “A survey of techniques for architecting and managing asymmetric multi-
core processors,” ACM Computing Surveys (CSUR), vol. 48, no. 3, p. 45, 2016.

[72] F. Yao, A. Demers, and S. Shenker, “A scheduling model for reduced cpu energy,” in
Foundations of Computer Science, 1995. Proceedings., 36th Annual Symposium on.
IEEE, 1995, pp. 374–382.

[73] H. Aydin, R. Melhem, D. Mossé, and P. Mej́ıa-Alvarez, “Determining optimal pro-
cessor speeds for periodic real-time tasks with different power characteristics,” in
Real-Time Systems, 13th Euromicro Conference on, 2001. IEEE, 2001, pp. 225–232.

[74] E. Bini, G. Buttazzo, and G. Lipari, “Minimizing cpu energy in real-time systems with
discrete speed management,” ACM Transactions on Embedded Computing Systems
(TECS), vol. 8, no. 4, p. 31, 2009.

[75] M. A. Awan and S. M. Petters, “Enhanced race-to-halt: A leakage-aware energy man-
agement approach for dynamic priority systems,” in Real-Time Systems (ECRTS),
2011 23rd Euromicro Conference on. IEEE, 2011, pp. 92–101.

[76] J.-J. Chen, H.-R. Hsu, and T.-W. Kuo, “Leakage-aware energy-efficient scheduling of
real-time tasks in multiprocessor systems,” in Real-Time and Embedded Technology
and Applications Symposium, 2006. Proceedings of the 12th IEEE. IEEE, 2006, pp.
408–417.

[77] N. S. Kim, T. Austin, D. Baauw, T. Mudge, K. Flautner, J. S. Hu, M. J. Irwin,
M. Kandemir, and V. Narayanan, “Leakage current: Moore’s law meets static power,”
computer, vol. 36, no. 12, pp. 68–75, 2003.

[78] J.-J. Chen and T.-W. Kuo, “Procrastination for leakage-aware rate-monotonic
scheduling on a dynamic voltage scaling processor,” ACM SIGPLAN Notices, vol. 41,
no. 7, pp. 153–162, 2006.

152

[79] L. Benini, A. Bogliolo, and G. De Micheli, “A survey of design techniques for system-
level dynamic power management,” IEEE transactions on very large scale integration
(VLSI) systems, vol. 8, no. 3, pp. 299–316, 2000.

[80] P. Pillai and K. G. Shin, “Real-time dynamic voltage scaling for low-power embedded
operating systems,” in ACM SIGOPS Operating Systems Review, vol. 35, no. 5. ACM,
2001, pp. 89–102.

[81] H. Aydin, R. Melhem, D. Mossé, and P. Mej́ıa-Alvarez, “Power-aware scheduling
for periodic real-time tasks,” IEEE Transactions on Computers, vol. 53, no. 5, pp.
584–600, 2004.

[82] J. R. Lorch and A. J. Smith, “Improving dynamic voltage scaling algorithms with
pace,” in ACM SIGMETRICS Performance Evaluation Review, vol. 29, no. 1. ACM,
2001, pp. 50–61.

[83] H. Aydin, V. Devadas, and D. Zhu, “System-level energy management for periodic
real-time tasks,” in Real-Time Systems Symposium, 2006. RTSS’06. 27th IEEE In-
ternational. IEEE, 2006, pp. 313–322.

[84] D. Zhu, R. Melhem, and D. Mossé, “The effects of energy management on reliability in
real-time embedded systems,” in IEEE/ACM International Conference on Computer
Aided Design, 2004. ICCAD-2004. IEEE, 2004, pp. 35–40.

[85] S. Saewong and R. Rajkumar, “Practical voltage-scaling for fixed-priority rt-systems,”
in Real-Time and Embedded Technology and Applications Symposium, 2003. Proceed-
ings. The 9th IEEE. IEEE, 2003, pp. 106–114.

[86] M. Bambagini, M. Marinoni, H. Aydin, and G. Buttazzo, “Energy-aware scheduling
for real-time systems: a survey,” ACM Transactions on Embedded Computing Systems
(TECS), vol. 15, no. 1, p. 7, 2016.

[87] Y. Zhang and K. Chakrabarty, “Energy-aware adaptive checkpointing in embedded
real-time systems,” in Proceedings of the conference on Design, Automation and Test
in Europe-Volume 1. IEEE Computer Society, 2003, p. 10918.

[88] W. Kim, J. Kim, and S. L. Min, “Preemption-aware dynamic voltage scaling in hard
real-time systems,” in Proceedings of the 2004 international symposium on Low power
electronics and design. ACM, 2004, pp. 393–398.

[89] T. Simunic, L. Benini, A. Acquaviva, P. Glynn, and G. De Micheli, “Dynamic voltage
scaling and power management for portable systems,” in Proceedings of the 38th
annual Design Automation Conference. ACM, 2001, pp. 524–529.

[90] M. Kim and S. Ha, “Hybrid run-time power management technique for real-time
embedded system with voltage scalable processor,” ACM SIGPLAN Notices, vol. 36,
no. 8, pp. 11–19, 2001.

[91] J. Zhuo, C. Chakrabarti, and N. Chang, “Energy management of dvs-dpm enabled
embedded systems powered by fuel cell-battery hybrid source,” in Proceedings of the
2007 international symposium on Low power electronics and design. ACM, 2007, pp.
322–327.

153

[92] H. Cheng and S. Goddard, “Sys-edf: a system-wide energy-efficient scheduling algo-
rithm for hard real-time systems,” International Journal of Embedded Systems, vol. 4,
no. 2, pp. 141–151, 2009.

[93] V. Devadas and H. Aydin, “Real-time dynamic power management through device
forbidden regions,” in Real-Time and Embedded Technology and Applications Sympo-
sium, 2008. RTAS’08. IEEE. IEEE, 2008, pp. 34–44.

[94] V. Devadas and H. Aydin, “Dfr-edf: A unified energy management framework for real-
time systems,” in Real-Time and Embedded Technology and Applications Symposium
(RTAS), 2010 16th IEEE. IEEE, 2010, pp. 121–130.

[95] V. Devadas and H. Aydin, “On the interplay of voltage/frequency scaling and device
power management for frame-based real-time embedded applications,” IEEE Trans-
actions on Computers, vol. 61, no. 1, pp. 31–44, 2012.

[96] R. Jejurikar and R. Gupta, “Procrastination scheduling in fixed priority real-time
systems,” ACM Sigplan Notices, vol. 39, no. 7, pp. 57–66, 2004.

[97] R. Jejurikar and R. Gupta, “Dynamic slack reclamation with procrastination schedul-
ing in real-time embedded systems,” in Proceedings of the 42nd annual Design Au-
tomation Conference. ACM, 2005, pp. 111–116.

[98] G. Quan, L. Niu, X. S. Hu, and B. Mochocki, “Fixed priority scheduling for reducing
overall energy on variable voltage processors,” in Real-Time Systems Symposium,
2004. Proceedings. 25th IEEE International. IEEE, 2004, pp. 309–318.

[99] A. Ejlali, B. M. Al-Hashimi, and P. Eles, “A standby-sparing technique with low
energy-overhead for fault-tolerant hard real-time systems,” in Proceedings of the 7th
IEEE/ACM international conference on Hardware/software codesign and system syn-
thesis, 2009, pp. 193–202.

[100] M. A. Haque, H. Aydin, and D. Zhu, “Energy-aware standby-sparing for fixed-priority
real-time task sets,” Journal of Sustainable Computing, vol. 6, pp. 81–93, 2015.

[101] M. Shafique, S. Garg, J. Henkel, and D. Marculescu, “The eda challenges in the dark
silicon era: Temperature, reliability, and variability perspectives,” in Proceedings of
the 51st Annual Design Automation Conference, 2014, pp. 1–6.

[102] H. Aydin and Q. Yang, “Energy-aware partitioning for multiprocessor real-time sys-
tems,” in Parallel and Distributed Processing Symposium, 2003. Proceedings. Inter-
national. IEEE, 2003, pp. 9–pp.

[103] G. Zeng, T. Yokoyama, H. Tomiyama, and H. Takada, “Practical energy-aware
scheduling for real-time multiprocessor systems,” in Embedded and Real-Time Com-
puting Systems and Applications, 2009. RTCSA’09. 15th IEEE International Confer-
ence on. IEEE, 2009, pp. 383–392.

[104] D. Zhu, R. Melhem, and B. R. Childers, “Scheduling with dynamic voltage/speed ad-
justment using slack reclamation in multiprocessor real-time systems,” IEEE Trans-
actions on Parallel and Distributed Systems, vol. 14, no. 7, pp. 686–700, 2003.

154

[105] J. Lu and Y. Guo, “Energy-aware fixed-priority multi-core scheduling for real-time sys-
tems,” in Embedded and Real-Time Computing Systems and Applications (RTCSA),
2011 IEEE 17th International Conference on, vol. 1. IEEE, 2011, pp. 277–281.

[106] H. Xu, F. Kong, and Q. Deng, “Energy minimizing for parallel real-time tasks based
on level-packing,” in Embedded and Real-Time Computing Systems and Applications
(RTCSA), 2012 IEEE 18th International Conference on. IEEE, 2012, pp. 98–103.

[107] G. Chen, K. Huang, and A. Knoll, “Energy optimization for real-time multiproces-
sor system-on-chip with optimal dvfs and dpm combination,” ACM Transactions on
Embedded Computing Systems (TECS), vol. 13, no. 3s, p. 111, 2014.

[108] S. Pagani and J.-J. Chen, “Energy efficiency analysis for the single frequency approxi-
mation (sfa) scheme,” ACM Transactions on Embedded Computing Systems (TECS),
vol. 13, no. 5s, p. 158, 2014.

[109] M. E. Gerards, J. L. Hurink, and J. Kuper, “On the interplay between global dvfs
and scheduling tasks with precedence constraints,” IEEE Transactions on Computers,
vol. 64, no. 6, pp. 1742–1754, 2015.

[110] K. Srinivasan and K. S. Chatha, “Integer linear programming and heuristic techniques
for system-level low power scheduling on multiprocessor architectures under through-
put constraints,” INTEGRATION, the VLSI journal, vol. 40, no. 3, pp. 326–354,
2007.

[111] R. Kumar, K. I. Farkas, N. P. Jouppi, P. Ranganathan, and D. M. Tullsen, “Single-isa
heterogeneous multi-core architectures: The potential for processor power reduction,”
in Microarchitecture, 2003. MICRO-36. Proceedings. 36th Annual IEEE/ACM Inter-
national Symposium on. IEEE, 2003, pp. 81–92.

[112] K. Kimura, M. Mase, H. Mikami, T. Miyamoto, J. Shirako, and H. Kasahara, “Oscar
api for real-time low-power multicores and its performance on multicores and smp
servers.” in LCPC, vol. 5898. Springer, 2009, pp. 188–202.

[113] D. Koufaty, D. Reddy, and S. Hahn, “Bias scheduling in heterogeneous multi-core
architectures,” in Proceedings of the 5th European conference on Computer systems.
ACM, 2010, pp. 125–138.

[114] A. Hayashi, Y. Wada, T. Watanabe, T. Sekiguchi, M. Mase, J. Shirako, K. Kimura,
and H. Kasahara, “Parallelizing compiler framework and api for power reduction
and software productivity of real-time heterogeneous multicores,” in International
Workshop on Languages and Compilers for Parallel Computing. Springer, 2010, pp.
184–198.

[115] C. Liu, J. Li, W. Huang, J. Rubio, E. Speight, and X. Lin, “Power-efficient time-
sensitive mapping in heterogeneous systems,” in Proceedings of the 21st international
conference on Parallel architectures and compilation techniques. ACM, 2012, pp.
23–32.

155

[116] J. Cong and B. Yuan, “Energy-efficient scheduling on heterogeneous multi-core ar-
chitectures,” in Proceedings of the 2012 ACM/IEEE international symposium on Low
power electronics and design. ACM, 2012, pp. 345–350.

[117] D. K. Pradhan, Fault-tolerant computer system design. Prentice-Hall, Inc., 1996.

[118] X. Castillo, S. R. McConnel, and D. P. Siewiorek, “Derivation and calibration of a
transient error reliability model,” IEEE Transactions on Computers, vol. 31, no. 7,
pp. 658–671, 1982.

[119] R. K. Iyer, D. J. Rossetti, and M.-C. Hsueh, “Measurement and modeling of computer
reliability as affected by system activity,” ACM Transactions on Computer Systems
(TOCS), vol. 4, no. 3, pp. 214–237, 1986.

[120] D. Ernst, S. Das, S. Lee, D. Blaauw, T. Austin, T. Mudge, N. S. Kim, and K. Flaut-
ner, “Razor: circuit-level correction of timing errors for low-power operation,” IEEE
Micro, vol. 24, no. 6, pp. 10–20, 2004.

[121] F. Many and D. Doose, “Scheduling analysis under fault bursts,” in Real-Time and
Embedded Technology and Applications Symposium (RTAS), 2011 17th IEEE. IEEE,
2011, pp. 113–122.

[122] M. A. Haque, H. Aydin, and D. Zhu, “Real-time scheduling under fault bursts with
multiple recovery strategy,” in Real-Time and Embedded Technology and Applications
Symposium (RTAS), 2014 IEEE 20th. IEEE, 2014, pp. 63–74.

[123] J. Henkel, L. Bauer, J. Becker, O. Bringmann, U. Brinkschulte, S. Chakraborty,
M. Engel, R. Ernst, H. Härtig, L. Hedrich et al., “Design and architectures for de-
pendable embedded systems,” in Hardware/Software Codesign and System Synthesis
(CODES+ ISSS), 2011 Proceedings of the 9th International Conference on. IEEE,
2011, pp. 69–78.

[124] J. Huang, J. O. Blech, A. Raabe, C. Buckl, and A. Knoll, “Analysis and optimiza-
tion of fault-tolerant task scheduling on multiprocessor embedded systems,” in Hard-
ware/Software Codesign and System Synthesis (CODES+ ISSS), 2011 Proceedings of
the 9th International Conference on. IEEE, 2011, pp. 247–256.

[125] H. Aydin, “Exact fault-sensitive feasibility analysis of real-time tasks,” IEEE Trans-
actions on Computers, vol. 56, no. 10, 2007.

[126] P. K. Saraswat, P. Pop, and J. Madsen, “Task mapping and bandwidth reservation
for mixed hard/soft fault-tolerant embedded systems,” in Real-Time and Embedded
Technology and Applications Symposium (RTAS), 2010 16th IEEE. IEEE, 2010, pp.
89–98.

[127] M. A. Haque, H. Aydin, and D. Zhu, “On reliability management of energy-aware
real-time systems through task replication,” IEEE Transactions on Parallel and Dis-
tributed Systems, vol. 28, no. 3, pp. 813–825, 2017.

156

[128] P. Pop, V. Izosimov, P. Eles, and Z. Peng, “Design optimization of time-and cost-
constrained fault-tolerant embedded systems with checkpointing and replication,”
IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 17, no. 3,
pp. 389–402, 2009.

[129] H. Aydin, R. Melhem, and D. Mossé, “Tolerating faults while maximizing reward,” in
Proceedings 12th Euromicro Conference on Real-Time Systems. Euromicro RTS 2000.
IEEE, 2000, pp. 219–226.

[130] U. Schiffel, A. Schmitt, M. Süßkraut, and C. Fetzer, “Software-implemented hard-
ware error detection: Costs and gains,” in Dependability (DEPEND), 2010 Third
International Conference on. IEEE, 2010, pp. 51–57.

[131] J. Huang, K. Huang, A. Raabe, C. Buckl, and A. Knoll, “Towards fault-tolerant
embedded systems with imperfect fault detection,” in Proceedings of the 49th Annual
Design Automation Conference. ACM, 2012, pp. 188–196.

[132] S. Ghosh, R. Melhem, and D. Mosse, “Fault-tolerant scheduling on a hard real-time
multiprocessor system,” in Parallel Processing Symposium, 1994. Proceedings., Eighth
International. IEEE, 1994, pp. 775–782.

[133] S. Ghosh, R. Melhem, and D. Mossé, “Fault-tolerance through scheduling of aperiodic
tasks in hard real-time multiprocessor systems,” IEEE Transactions on Parallel and
Distributed Systems, vol. 8, no. 3, pp. 272–284, 1997.

[134] Y. Guo, D. Zhu, H. Aydin, J.-J. Han, and L. T. Yang, “Exploiting primary/backup
mechanism for energy efficiency in dependable real-time systems,” Journal of Systems
Architecture, vol. 78, pp. 68–80, 2017.

[135] A. Acharya and B. Badrinath, “Checkpointing distributed applications on mobile
computers,” in Parallel and Distributed Information Systems, 1994., Proceedings of
the Third International Conference on. IEEE, 1994, pp. 73–80.

[136] R. Koo and S. Toueg, “Checkpointing and rollback-recovery for distributed systems,”
IEEE Transactions on software Engineering, no. 1, pp. 23–31, 1987.

[137] J. S. Plank, K. Li, and M. A. Puening, “Diskless checkpointing,” IEEE Transactions
on Parallel and Distributed Systems, vol. 9, no. 10, pp. 972–986, 1998.

[138] H. Higaki and M. Takizawa, “Checkpoint-recovery protocol for reliable mobile sys-
tems,” in Reliable Distributed Systems, 1998. Proceedings. Seventeenth IEEE Sympo-
sium on. IEEE, 1998, pp. 93–99.

[139] K. G. Shin, T.-H. Lin, and Y.-H. Lee, “Optimal checkpointing of real-time tasks,”
IEEE Transactions on computers, vol. 100, no. 11, pp. 1328–1341, 1987.

[140] E. Gelenbe, “On the optimum checkpoint interval,” Journal of the ACM (JACM),
vol. 26, no. 2, pp. 259–270, 1979.

[141] R. Melhem, D. Mossé, and E. Elnozahy, “The interplay of power management and
fault recovery in real-time systems,” IEEE Transactions on Computers, vol. 53, no. 2,
pp. 217–231, 2004.

157

[142] S. Malik and F. Huet, “Adaptive fault tolerance in real time cloud computing,” in
Services (SERVICES), 2011 IEEE World Congress on. IEEE, 2011, pp. 280–287.

[143] N. LEVESON, “Software fault tolerance-the case for forward recovery,” in 4th Com-
puters in Aerospace Conference, 1983, p. 2327.

[144] S. Jajodia, C. D. McCollum, and P. Ammann, “Trusted recovery,” Communications
of the ACM, vol. 42, no. 7, pp. 71–75, 1999.

[145] J. Long, W. K. Fuchs, and J. A. Abraham, “Forward recovery using checkpointing in
parallel systems.” in ICPP (1), 1990, pp. 272–275.

[146] W. Torres-Pomales, “Software fault tolerance: A tutorial,” 2000.

[147] N. G. Leveson, “Software safety: Why, what, and how,” ACM Computing Surveys
(CSUR), vol. 18, no. 2, pp. 125–163, 1986.

[148] A. Avizienis, “The methodology of n-version programming,” Software fault tolerance,
vol. 3, pp. 23–46, 1995.

[149] A. Avizienis, “The n-version approach to fault-tolerant software,” IEEE Transactions
on software engineering, no. 12, pp. 1491–1501, 1985.

[150] M. R. Lyu and Y.-T. He, “Improving the n-version programming process through the
evolution of a design paradigm,” IEEE Transactions on Reliability, vol. 42, no. 2, pp.
179–189, 1993.

[151] S. S. Brilliant, J. C. Knight, and N. G. Leveson, “Analysis of faults in an n-version
software experiment,” IEEE Transactions on software engineering, vol. 16, no. 2, pp.
238–247, 1990.

[152] J. C. Knight and N. Leveson, “A large scale experiment in n-version programming,”
in NASA. Goddard Space Flight Center Proceedings of the Ninth Annual Software
Engineering Workshop p 86-99(SEE N 86-19967 10-61), 1984.

[153] B. Randell and J. Xu, “The evolution of the recovery block concept,” Software Fault
Tolerance, vol. 3, pp. 1–22, 1995.

[154] M. R. Lyu et al., “Handbook of software reliability engineering,” 1996.

[155] K. Kim and H. O. Welch, “Distributed execution of recovery blocks: An approach for
uniform treatment of hardware and software faults in real-time applications,” IEEE
transactions on Computers, vol. 38, no. 5, pp. 626–636, 1989.

[156] H. D. Patterson and R. Thompson, “Recovery of inter-block information when block
sizes are unequal,” Biometrika, vol. 58, no. 3, pp. 545–554, 1971.

[157] H. Mushtaq, Z. Al-Ars, and K. Bertels, “Survey of fault tolerance techniques for
shared memory multicore/multiprocessor systems,” in Design and Test Workshop
(IDT), 2011 IEEE 6th International. IEEE, 2011, pp. 12–17.

158

[158] O. Derin, D. Kabakci, and L. Fiorin, “Online task remapping strategies for fault-
tolerant network-on-chip multiprocessors,” in Proceedings of the Fifth ACM/IEEE
International Symposium on Networks-on-Chip. ACM, 2011, pp. 129–136.

[159] P. Subramanyan, V. Singh, K. K. Saluja, and E. Larsson, “Energy-efficient fault tol-
erance in chip multiprocessors using critical value forwarding,” in Dependable Systems
and Networks (DSN), 2010 IEEE/IFIP International Conference on. IEEE, 2010,
pp. 121–130.

[160] J. H. Collet, P. Zajac, M. Psarakis, and D. Gizopoulos, “Chip self-organization and
fault tolerance in massively defective multicore arrays,” IEEE Transactions on De-
pendable and Secure Computing, vol. 8, no. 2, pp. 207–217, 2011.

[161] Y. Guo, D. Zhu, and H. Aydin, “Reliability-aware power management for parallel
real-time applications with precedence constraints,” in Green Computing Conference
and Workshops (IGCC), 2011 International. IEEE, 2011, pp. 1–8.

[162] Y. Guo, D. Zhu, and H. Aydin, “Generalized standby-sparing techniques for energy-
efficient fault tolerance in multiprocessor real-time systems,” in 2013 IEEE 19th In-
ternational Conference on Embedded and Real-Time Computing Systems and Appli-
cations. IEEE, 2013, pp. 62–71.

[163] L. Tan, S. L. Song, P. Wu, Z. Chen, R. Ge, and D. J. Kerbyson, “Investigating the
interplay between energy efficiency and resilience in high performance computing,” in
Parallel and Distributed Processing Symposium (IPDPS), 2015 IEEE International.
IEEE, 2015, pp. 786–796.

[164] Y. Guo, H. Su, D. Zhu, and H. Aydin, “Preference-oriented real-time scheduling and
its application in fault-tolerant systems,” Journal of Systems Architecture, vol. 61,
no. 2, pp. 127–139, 2015.

[165] Q. Han, T. Wang, and G. Quan, “Enhanced fault-tolerant fixed-priority scheduling of
hard real-time tasks on multi-core platforms,” in Embedded and Real-Time Computing
Systems and Applications (RTCSA), 2015 IEEE 21st International Conference on.
IEEE, 2015, pp. 21–30.

[166] A. Das, A. Kumar, and B. Veeravalli, “Energy-aware communication and remapping
of tasks for reliable multimedia multiprocessor systems,” in Parallel and Distributed
Systems (ICPADS), 2012 IEEE 18th International Conference on. IEEE, 2012, pp.
564–571.

[167] L. Zhao, Y. Ren, Y. Xiang, and K. Sakurai, “Fault-tolerant scheduling with dynamic
number of replicas in heterogeneous systems,” in High Performance Computing and
Communications (HPCC), 2010 12th IEEE International Conference on. IEEE,
2010, pp. 434–441.

[168] C. Krishna, “Fault-tolerant scheduling in homogeneous real-time systems,” ACM
Computing Surveys (CSUR), vol. 46, no. 4, p. 48, 2014.

159

[169] R. Al-Omari, A. K. Somani, and G. Manimaran, “A new fault-tolerant technique
for improving schedulability in multiprocessor real-time systems,” in Parallel and
Distributed Processing Symposium., Proceedings 15th International. IEEE, 2001, pp.
8–pp.

[170] R. Al-Omari, A. K. Somani, and G. Manimaran, “Efficient overloading techniques for
primary-backup scheduling in real-time systems,” Journal of Parallel and Distributed
Computing, vol. 64, no. 5, pp. 629–648, 2004.

[171] D. Zhu, R. Melhem, D. Mossé, and E. Elnozahy, “Analysis of an energy efficient
optimistic tmr scheme,” in Parallel and Distributed Systems, 2004. ICPADS 2004.
Proceedings. Tenth International Conference on. IEEE, 2004, pp. 559–568.

[172] P. Pop, K. H. Poulsen, V. Izosimov, and P. Eles, “Scheduling and voltage scaling
for energy/reliability trade-offs in fault-tolerant time-triggered embedded systems,”
in Proceedings of the 5th IEEE/ACM international conference on Hardware/software
codesign and system synthesis. ACM, 2007, pp. 233–238.

[173] D. Zhu, X. Qi, and H. Aydin, “Priority-monotonic energy management for real-time
systems with reliability requirements,” in Computer Design, 2007. ICCD 2007. 25th
International Conference on. IEEE, 2007, pp. 629–635.

[174] D. Zhu and H. Aydin, “Reliability-aware energy management for periodic real-time
tasks,” IEEE Transactions on Computers, vol. 58, no. 10, pp. 1382–1397, 2009.

[175] D. Zhu, H. Aydin, and J.-J. Chen, “Optimistic reliability aware energy management
for real-time tasks with probabilistic execution times,” in Real-Time Systems Sympo-
sium, 2008. IEEE, 2008, pp. 313–322.

[176] B. Zhao, H. Aydin, and D. Zhu, “Enhanced reliability-aware power management
through shared recovery technique,” in 2009 IEEE/ACM International Conference
on Computer-Aided Design-Digest of Technical Papers. IEEE, 2009, pp. 63–70.

[177] B. Zhao, H. Aydin, and D. Zhu, “Generalized reliability-oriented energy management
for real-time embedded applications,” in Proceedings of the 48th Design Automation
Conference. ACM, 2011, pp. 381–386.

[178] B. Zhao, H. Aydin, and D. Zhu, “Energy management under general task-level reliabil-
ity constraints,” in Real-Time and Embedded Technology and Applications Symposium
(RTAS), 2012 IEEE 18th. IEEE, 2012, pp. 285–294.

[179] O. S. Unsal, I. Koren, and C. M. Krishna, “Towards energy-aware software-based
fault tolerance in real-time systems,” in Low Power Electronics and Design, 2002.
ISLPED’02. Proceedings of the 2002 International Symposium on. IEEE, 2002, pp.
124–129.

[180] S. Aminzadeh and A. Ejlali, “A comparative study of system-level energy management
methods for fault-tolerant hard real-time systems,” IEEE Transactions on Computers,
vol. 60, no. 9, pp. 1288–1299, 2011.

160

[181] M. K. Tavana, M. Salehi, and A. Ejlali, “Feedback-based energy management in a
standby-sparing scheme for hard real-time systems,” in 2011 IEEE 32nd Real-Time
Systems Symposium. IEEE, 2011, pp. 349–356.

[182] M. A. Haque, H. Aydin, and D. Zhu, “Energy-aware task replication to manage relia-
bility for periodic real-time applications on multicore platforms,” in 2013 International
Green Computing Conference Proceedings. IEEE, 2013, pp. 1–11.

[183] S. Gopalakrishnan and M. Caccamo, “Task partitioning with replication upon hetero-
geneous multiprocessor systems,” in Real-Time and Embedded Technology and Appli-
cations Symposium, 2006. Proceedings of the 12th IEEE. IEEE, 2006, pp. 199–207.

[184] W. Luo, F. Yang, L. Pang, and X. Qin, “Fault-tolerant scheduling based on periodic
tasks for heterogeneous systems,” in International Conference on Autonomic and
Trusted Computing. Springer, 2006, pp. 571–580.

[185] X. Zhu, X. Qin, and M. Qiu, “Qos-aware fault-tolerant scheduling for real-time tasks
on heterogeneous clusters,” IEEE transactions on Computers, vol. 60, no. 6, pp. 800–
812, 2011.

[186] H. Xu, R. Li, C. Pan, and K. Li, “Minimizing energy consumption with reliability goal
on heterogeneous embedded systems,” Journal of Parallel and Distributed Computing,
vol. 127, pp. 44–57, 2019.

[187] R. Devaraj, “A solution to drawbacks in capturing execution requirements on hetero-
geneous platforms,” The Journal of Supercomputing, pp. 1–16, 2020.

[188] T. Li, T. Zhang, G. Yu, J. Song, and J. Fan, “Minimizing temperature and energy of
real-time applications with precedence constraints on heterogeneous mpsoc systems,”
Journal of Systems Architecture, vol. 98, pp. 79–91, 2019.

[189] J. Zhou, M. Zhang, J. Sun, T. Wang, X. Zhou, and S. Hu, “Drheft: Deadline-
constrained reliability-aware heft algorithm for real-time heterogeneous mpsoc sys-
tems,” IEEE Transactions on Reliability, pp. 1–12, 2020.

[190] Y. Liu, J. Liu, Z. Zhu, C. Deng, Z. Ren, and X. Xu, “Adaptive fault-tolerant schedul-
ing in heterogeneous real-time systems,” in 2019 14th IEEE Conference on Industrial
Electronics and Applications (ICIEA). IEEE, 2019, pp. 982–987.

[191] S. Bansal, R. K. Bansal, and K. Arora, “Energy-cognizant scheduling for preference-
oriented fixed-priority real-time tasks,” Journal of Systems Architecture, vol. 108, p.
Article No. 101743, 2020.

[192] R. Begam, Q. Xia, D. Zhu, and H. Aydin, “Preference-oriented fixed-priority schedul-
ing for periodic real-time tasks,” Journal of Systems Architecture, vol. 69, pp. 1–14,
2016.

[193] M. Zhao, D. Liu, X. Jiang, W. Liu, G. Xue, C. Xie, Y. Yang, and Z. Guo, “CASS:
Criticality-aware standby-sparing for real-time systems,” Journal of Systems Archi-
tecture, vol. 100, p. Article No. 101661, 2019.

161

[194] S. Safari, S. Hessabi, and G. Ershadi, “LESS-MICS: A low energy standby-sparing
scheme for mixed-criticality systems,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, pp. 1–10, 2020.

[195] N. Kumar, J. Mayank, and A. Mondal, “Reliability aware energy optimized scheduling
of non-preemptive periodic real-time tasks on heterogeneous multiprocessor system,”
IEEE Transactions on Parallel and Distributed Systems, pp. 871–885, 2019.

[196] P. Mart́ı, J. M. Fuertes, G. Fohler, and K. Ramamritham, “Improving quality-of-
control using flexible timing constraints: metric and scheduling,” in Real-Time Sys-
tems Symposium, 2002. RTSS 2002. 23rd IEEE. IEEE, 2002, pp. 91–100.

[197] P. Mart́ı, J. Yépez, M. Velasco, R. Villà, and J. M. Fuertes, “Managing quality-of-
control in network-based control systems by controller and message scheduling co-
design,” IEEE transactions on Industrial Electronics, vol. 51, no. 6, pp. 1159–1167,
2004.

[198] G. Buttazzo, M. Velasco, and P. Marti, “Quality-of-control management in overloaded
real-time systems,” IEEE Transactions on Computers, vol. 56, no. 2, pp. 253–266,
2007.

[199] G. Buttazzo, M. Velasco, P. Marti, and G. Fohler, “Managing quality-of-control per-
formance under overload conditions,” in Real-Time Systems, 2004. ECRTS 2004.
Proceedings. 16th Euromicro Conference on. IEEE, 2004, pp. 53–60.

[200] D. Seto, J. P. Lehoczky, L. Sha, and K. G. Shin, “On task schedulability in real-time
control systems,” in Real-Time Systems Symposium, 1996., 17th IEEE. IEEE, 1996,
pp. 13–21.

[201] E. Bini and M. D. Natale, “Optimal task rate selection in fixed priority systems,” in
Real-Time Systems Symposium. 26th International. IEEE, 2005.

[202] G. C. Buttazzo, G. Lipari, M. Caccamo, and L. Abeni, “Elastic scheduling for flexible
workload management,” Computers, IEEE Transactions on, vol. 51, no. 3, pp. 289–
302, 2002.

[203] M. Marinoni and G. Buttazzo, “Elastic dvs management in processors with dis-
crete voltage/frequency modes,” Industrial Informatics, IEEE Transactions on, vol. 3,
no. 1, pp. 51–62, 2007.

[204] T. Chantem, X. Wang, M. D. Lemmon, and X. S. Hu, “Period and deadline selection
for schedulability in real-time systems,” in Real-Time Systems, 2008. ECRTS’08.
Euromicro Conference on. IEEE, 2008, pp. 168–177.

[205] T. Chantem, X. S. Hu, and M. D. Lemmon, “Generalized elastic scheduling for real-
time tasks,” Computers, IEEE Transactions on, vol. 58, no. 4, pp. 480–495, 2009.

[206] Y. Wu, G. Buttazzo, E. Bini, and A. Cervin, “Parameter selection for real-time con-
trollers in resource-constrained systems,” Industrial Informatics, IEEE Transactions
on, vol. 6, no. 4, pp. 610–620, 2010.

162

[207] D. Fontantelli, L. Palopoli, and L. Greco, “Optimal cpu allocation to a set of control
tasks with soft real–time execution constraints,” in Proceedings of the 16th interna-
tional conference on Hybrid systems: computation and control. ACM, 2013, pp.
233–242.

[208] Y.-C. Tian and L. Gui, “Qoc elastic scheduling for real-time control systems,” Real-
Time Systems, vol. 47, no. 6, pp. 534–561, 2011.

[209] J. Kim, K. Lakshmanan, and R. R. Rajkumar, “Rhythmic tasks: A new task model
with continually varying periods for cyber-physical systems,” in Proceedings of the
2012 IEEE/ACM Third International Conference on Cyber-Physical Systems. IEEE
Computer Society, 2012.

[210] G. C. Buttazzo, E. Bini, and D. Buttle, “Rate-adaptive tasks: Model, analysis, and
design issues,” in Design, Automation and Test in Europe Conference and Exhibition
(DATE), 2014. IEEE, 2014, pp. 1–6.

[211] R. Rajkumar, C. Lee, J. Lehoczky, and D. Siewiorek, “A resource allocation model for
qos management,” in Real-Time Systems Symposium, 1997. Proceedings., The 18th
IEEE. IEEE, 1997, pp. 298–307.

[212] D. Gizopoulos, M. Psarakis, S. V. Adve, P. Ramachandran, S. K. S. Hari, D. Sorin,
A. Meixner, A. Biswas, and X. Vera, “Architectures for online error detection and
recovery in multicore processors,” in Design, Automation & Test in Europe Conference
& Exhibition (DATE), 2011. IEEE, 2011, pp. 1–6.

[213] B. R. Borgerson and R. F. Freitas, “A reliability model for gracefully degrading and
standby-sparing systems,” IEEE Transactions on Computers, vol. 100, no. 5, pp.
517–525, 1975.

[214] P. Emberson, R. Stafford, and R. I. Davis, “Techniques for the synthesis of multipro-
cessor tasksets,” in Proceedings of the Int. WS on Analysis Tools and Methodologies
for Embedded and Real-time Systems (WATERS), 2010.

[215] S. K. Baruah, “A general model for recurring real-time tasks,” in Proceedings 19th
IEEE Real-Time Systems Symposium (Cat. No. 98CB36279). IEEE, 1998, pp. 114–
122.

[216] G. Buttazzo, E. Bini, and Y. Wu, “Partitioning real-time applications over multicore
reservations,” IEEE Transactions on Industrial Informatics, vol. 7, no. 2, pp. 302–315,
2011.

[217] A. Bhuiyan, Z. Guo, A. Saifullah, N. Guan, and H. Xiong, “Energy-efficient real-
time scheduling of DAG tasks,” ACM Transactions on Embedded Computing Systems
(TECS), vol. 17, no. 5, pp. 1–25, 2018.

[218] K. D. Cooper, P. J. Schielke, and D. Subramanian, “An experimental evaluation of
list scheduling,” TR98, 326, 1998.

[219] M. L. Dertouzos and A. K. Mok, “Multiprocessor online scheduling of hard-real-time
tasks,” IEEE Trans. on software engineering, 15(12), 1989.

163

[220] Y. Liu, B. Veeravalli, and S. Viswanathan, “Novel critical-path based low-energy
scheduling algorithms for heterogeneous multiprocessor real-time embedded systems,”
in 2007 International Conference on Parallel and Distributed Systems. IEEE, 2007,
pp. 1–8.

[221] R. P. Dick, D. L. Rhodes, and W. Wolf, “Tgff: task graphs for free,” in
Proceedings of the Sixth International Workshop on Hardware/Software Code-
sign.(CODES/CASHE’98). IEEE, 1998, pp. 97–101.

[222] R. Davis and A. Wellings, “Dual priority scheduling,” in Proceedings 16th IEEE Real-
Time Systems Symposium. IEEE, 1995, pp. 100–109.

[223] M. Joseph and P. Pandya, “Finding response times in a real-time system,” The Com-
puter Journal, vol. 29, no. 5, pp. 390–395, 1986.

[224] C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogramming in a
hard-real-time environment,” Journal of the ACM (JACM), vol. 20, no. 1, pp. 46–61,
1973.

[225] N. C. Audsley, “On priority assignment in fixed priority scheduling,” Information
Processing Letters, vol. 79, no. 1, pp. 39–44, 2001.

[226] N. C. Audsley, Optimal priority assignment and feasibility of static priority tasks with
arbitrary start times. Citeseer, 1991.

[227] B. Lincoln and A. Cervin, “Jitterbug: A tool for analysis of real-time control per-
formance,” in Proceedings of the 41st Conference on Decision and Control. IEEE,
2002.

[228] S. M. Melzer and B. C. Kuo, “Sampling period sensitivity of the optimal sampled
data linear regulator,” Automatica, vol. 7, no. 3, pp. 367–370, 1971.

[229] E. Bini and A. Cervin, “Delay-aware period assignment in control systems,” in Real-
Time Systems Symposium. IEEE, 2008.

[230] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory
of NP-Completeness. New York, NY, USA: W. H. Freeman & Co., 1979.

[231] H. Aydin, R. Melhem, D. Mosse, and P. Mej́ıa-Alvarez, “Optimal reward-based
scheduling for periodic real-time tasks,” Computers, IEEE Transactions on, vol. 50,
no. 2, pp. 111–130, 2001.

164

Curriculum Vitae

Abhishek Roy received his Bachelor of Science degree in Computer Science and Engineering
from Bangladesh University of Engineering and Technology (BUET), Dhaka, Bangladesh
in 2009. He was employed as a software engineer for several years. He received his Master
degree in Computer Science from George Mason University in 2018. His research interests
focus on low-power computing, fault tolerance and real-time embedded systems.

165

