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ABSTRACT 

DEVELOPMENT AND EVALUATION OF NORTH AMERICA ENSEMBLE 
FORECASTS OF WILDFIRES AND DUST STORMS 

Peewara Makkaroon, M.S. 

George Mason University, 2022 

Thesis Director: Dr. Daniel Tong 

 

Wildfires and dust storms are two major emission sources of aerosols in the atmosphere, 

exerting myriad effects on air quality, climate, and human health. Predicting wildfires 

and dust storms is challenging due to large uncertainties in the inputs and representation 

of chemical and physical processes in the atmospheric models. Ensemble forecasting has 

been proposed to improve the predictability of wildfire and dust aerosols. This work 

presents the development and evaluation of a multi-model ensemble forecast system of 

wildfire and dust air pollution over North America, leveraging research and operational 

forecasts operated by George Mason University (GMU) and three U.S. federal agencies: 

National Oceanic and Atmospheric Administration (NOAA), National Aerospace and 

Space Agency (NASA), and Naval Research Laboratory (NRL). The ensemble members 

include three regional models (GMU CMAQ, NOAA NACC-CMAQ, and NOAA 

HYSPLIT), three global models (NOAA GEFS-Aerosols, NASA GEOS-5, and NRL 
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NAAPS), and one global ensemble (ICAP-MME). Performance of the ensemble forecast 

was evaluated with aerosol optical depth (AOD) products from MODIS MAIAC, VIIRS-

SNPP enhanced Dark Target (DT) and Deep Blue (DB), and surface PM2.5 (fine particle) 

from the AirNow ground network during the 2020 Gigafire events (August-September 

2020) in the western United States and the 2021 Spring Dust Season in the Chihuahuan 

Desert.  

For the wildfire ensemble, the results showed that, compared to the individual 

models, the ensemble mean significantly reduced the biases in the wildfire air pollution 

forecasts and produced more persistently reliable forecasts during extreme fire events. 

For AOD forecasts, the ensemble mean was able to improve model performance, such as 

increasing the correlation to 0.57 (0.62) from a range of 0.30-0.53 (0.35-0.56) by 

individual models when compared to the VIIRS (MAIAC). The ensemble mean also 

yields the best (second best) overall RANK, a composite indicator representing four 

statistical metrics (correlation, fractional bias, area hit rate, and false alarm ratio) 

compared to VIIRS (MAIAC). For the forecast of surface PM2.5 concentration, the 

ensemble mean demonstrated better performance than any single model with the 

strongest correlation (0.60 vs 0.43-0.54 by individual models), lowest fractional bias 

(0.54 vs 0.55-1.32), highest hit rate (87% vs 40%-82%), and highest RANK (2.83 vs 2.40-

2.81), when compared to the AirNow observations. Finally, the ensemble shows the 

potential to provide a suitable exceedance probability forecast during wildfires with the 

lowest area false alarm ratio (1.52%) achieved by the ensemble probability of 100%.  
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For the dust ensemble, the ensemble mean moderately reduced biases in the dust 

air pollution forecasts and provided fairly reliable AOD and PM2.5 forecasts during 

extreme dust storms compared to the individual models. For AOD forecasts, the 

ensemble mean improved forecasting performance less successfully than expected, as 

demonstrated by slightly decreasing mean bias to 0.01 (0.07) based on VIIRS DT (VIIRS 

DB), increasing correlation to 0.32 at the low level highest from a range of 0.09-0.31 

(VIIRS DB), and yielding the third best overall RANK compared to VIIRS DT and DB. 

For surface PM2.5 forecasts, the ensemble mean underperformed with a slightly reduced 

mean bias (3.14), moderately improved low-level correlation (0.40), low area hit rates 

(15%), and the third best RANK. The ensemble was able to provide only low-medium 

(20-60%) exceedance probability forecasts during dust events. In addition, the low 

correlations and large biases of the dust ensemble forecasts during the extreme dust 

episodes indicate worse performance compared to that of wildfire ensemble forecasts due 

to larger uncertainties in predicting dust emission, dispersion, and removal. 

The thesis findings highlight that using the ensemble approach can reduce biases 

in air pollution forecasts and reasonably improve the model predictability during extreme 

events such as wildfires and dust storms. The proposed ensemble exceedance probability 

forecast can be further applied to early warnings of severe air pollution episodes during 

wildfires and dust storms. However, the reliability of the ensemble forecast is still subject 

to types of extreme events due to different emission sources as well as initial and 

boundary meteorological conditions. 
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CHAPTER 1: INTRODUCTION 

1.1 Wildfires in the United States 

Wildfires are important emission sources that contribute large amounts of aerosols 

and trace gases to the atmosphere, leading to hazardous air quality. Wildfire air pollution 

causes adverse respiratory health effects, visibility degradation, and premature mortality, 

which in turn lead to economic burdens (Fann et al., 2018; Ford et al., 2018; Neumann et 

al., 2021). Over the past several decades, the frequency and intensity of both small and 

large wildfire events in the United States (U.S.) have been rapidly increasing in wildfire-

prone areas in the Western U.S., such as the Southwest, the Rocky Mountains, the 

northern Great Plains, and the Pacific Coast (Liu et al., 2013) as a result of climate 

change from anthropogenic activities causing rising temperatures (Liu et al., 2013; Pierce 

et al., 2013; Schoennagel et al., 2017). In addition, a sharp increase in the number of 

small wildfires in the Western U.S. is mainly due to human activities, such as changing 

land cover by expanding cities into wildlands and increasing human ignitions from 

campfires, powerlines, and vehicles. (Li and Banerjee, 2021; McClure and Jaffe, 2018; 

Salguero et al., 2020; Stevens-Rumann et al., 2018). The National Interagency Fire 

Center (NIFC) reported that in 2020, there were 58,950 fires across the U.S., more than 

10 million acres burned (NICC, 2020), and that most fires took place in the Western 

United States. Northern California in particular was affected and has experienced the 
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largest recorded wildfires during Summer-Fall 2020 fire season (California Department 

of Forestry and Fire Protection [CAL FIRE], 2020).  

 

1.2 Dust Storms in the United States 

Dust particles are known as a major component of particulate matter less than 2.5 

µm in aerodynamic diameter (PM2.5) in the western U.S. during spring (Hand et al., 2011, 

2016, 2017) as a result of powerful, sustained winds and relatively low precipitation 

(Flagg et al., 2014). Dust events during spring and summer have been on the rise in the 

western U.S. over the past several decades (Tong et al., 2017), and it will be worsening 

significantly in the upcoming years over the southern Great Plains due to severe drought, 

soil moisture deficits, warming temperatures, and variations in sea surface temperature 

from climate change (Achakulwisut et al., 2018; Hand et al., 2016; Pu and Ginoux, 2017, 

2018; Tong et al., 2017). This projected trend has drawn many concerns about its 

detrimental impacts on the atmospheric environment (Balkanski et al., 2007; Benedetti et 

al., 2014; Forster et al., 2007; Wu et al., 2016), ecosystem (Barkley et al., 2019; Mills, 

2004; Prospero et al., 2020; Swap et al., 1994), and human health (World Health 

Organization [WHO], 2021). Dust storms can lift large amounts of soil-derived dust 

particles into the air. As a result, the concentrations of small particulate matter within 

active dust regions are elevated beyond the safety air quality standard level and can 

induce adverse health effects, such as severe respiratory diseases (Tobias et al., 2019), 

cardiovascular health issues (Crooks et al., 2016), as well as raising Valley Fever 

incidence rate (CDC, 2013; Tong et al., 2017). Apart from the direct health impacts, dust 
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particles contribute to increasing transportation accidents due to degraded visibility, 

especially on highways during intense dust storms (Ashley et al., 2015; Lader et al., 

2016; Van Pelt et al., 2020b). 

Dust in the western U.S. is primarily generated by wind erosion of exposed soil 

surfaces in arid or semi-arid regions and can be transported across the Contiguous United 

States (CONUS). Natural sources of dust in the western U.S. are the North American 

Deserts (namely the Chihuahuan, Great Basin, Mojave, and Sonoran deserts) (Ginoux et 

al., 2012; Jewell & Nicoll, 2011; Reynolds et al., 2007; Rivera et al., 2010; Tanaka & 

Chiba, 2006). In contrast, anthropogenic sources of dust are primarily associated with 

agricultural activities in the southern Great Plains and the Colorado Plateau (Carmona et 

al., 2015; Ginoux et al., 2012; Neff et al., 2008; Saxton et al., 2000; Skiles et al., 2015; 

Reynolds et al., 2016). In addition to local dust sources in the U.S., long-range dust 

transports from Asia and Africa across the Atlantic and Pacific Oceans in spring and 

summer (March-August) subsequently contribute to total dust in the United States. 

Generally, the trans-Pacific dust, transported from Asia by strong tropical cyclones and 

westerly winds during spring (February to June), frequently affects the Pacific coastal 

regions of the western U.S. (Creamean et al., 2014; Fairlie et al., 2007; Fischer et al., 

2009; Kavouras et al., 2009; VanCuren & Cahill, 2002; Zhao et al., 2008), while the 

trans-Atlantic dust transported from Africa by powerful easterly winds commonly 

impacts the Caribbean Islands, the Gulf of Mexico, and the southeastern U.S. (Prospero, 

1981; Prospero and MayolBracero, 2013; Prospero and colleagues, 2021). These long-

range transported dusts contribute to high background particulate matter (PM) 
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concentrations not in both the western U.S. (Fischer et al., 2009; Jaffe et al., 2003) and 

eastern (DeBell et al., 2004) during spring and summer. 

 

1.3 Multi-Model Ensemble Forecasts 

Regarding the concerns about human health affected by degraded air quality 

during wildfires and dust storms, many operational forecasting systems have been 

developed to forecast the dispersion of aerosols with the main goal of protecting the 

public from harmful air quality during hazardous air quality events (Basart et al., 2012; 

Campbell et al., 2021; Colarco et al., 2010; Hamill et al., 2011a, b; Johnson et al., 2011; 

Liu et al. 2007; Lu et al. 2010, 2013; Liu and Westphal 2001; Marticorena and 

Bergametti, 1995; Marticorena et al., 1997; Nickovic et al. 2001; Pérez et al. 2011; 

Rienecker et al. 2008; Stein et al., 2015; Terradellas et al. 2011; Wang et al., 2000; 

Walker et al., 2009; Xian et al., 2019; Li et al., 2021). However, the accuracy of 

deterministic forecasts from a single model is predominantly deteriorated by uncertainties 

in emission and meteorological input data, model simulations, physical and chemical 

processes (Cakmur et al., 2004; Darmenova et al., 2009; Delle Monache and Stull, 2003; 

Di Tomaso et al., 2017; Ginoux et al., 2012; Gong and Zhang, 2008; Grini et al., 2005; 

Kang et al., 2011; Kumar et al., 2020; Marticorena and Bergametti, 1995; Li et al., 2020; 

Shao et al., 1996; Textor et al., 2006; Uno et al., 2006), and surface properties (e.g., soil 

roughness, soil moisture, and vegetation types) (Grini et al., 2005). 

Alternatively, one effective way to improve predicting performance is using a 

mean of the ensemble approach, which can provide probabilistic forecasts by calculating 
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the mean from either multiple models or input data (Delle Monache and Stull, 2003; 

Delle Monache et al. 2006a, b, 2008; Delle Monache et al., 2020; Li et al., 2020; Petersen 

et al., 2019; Solazzo et al., 2012; Xian et al., 2019). The major advantage of the ensemble 

mean forecast over a single model forecast is that it can reduce the biases in forecasts of 

ensemble members by averaging them out and the uncertainties in ensemble forecasts can 

also be determined from the spreads of ensemble members.  

 

1.4 Objectives 

This thesis aims to develop multi-model ensemble forecasts of wildfire and dust 

air pollution based on the mean of participating models (ensemble mean) for the 

Contiguous United States (CONUS). The ensemble members include three regional 

models, three global models, and one global ensemble. The regional systems include the 

George Mason University-Community Multiscale Air Quality (GMU-CMAQ), National 

Oceanic and Atmospheric Administration-U.S. Environmental Protection Agency 

(NOAA-EPA) Atmosphere-Chemistry Coupler-Community Multiscale Air Quality 

(NACC-CMAQ), and NOAA Hybrid Single-Particle Lagrangian Integrated Trajectory 

(HYSPLIT) models. GMU-CMAQ is a research forecasting system run by the air quality 

group of George Mason University (GMU) (Li et al., 2021) to provide daily air quality 

forecasts across the U.S. for the general public. NACC-CMAQ, a model currently being 

used in NOAA's operational National Air Quality Forecasting Capability (NAQFC) 

(Campbell et al., 2022), and HYSPLIT, a common atmospheric transport and dispersion 

model that is developed at NOAA/Air Resources Laboratory (ARL) and used widely in 
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the atmospheric sciences community (Stein et al., 2015). The four global models are: 

Global Ensemble Forecast System Aerosols (GEFS-Aerosols), NASA Goddard Earth 

Observing System (GEOS, version 5), International Cooperative for Aerosol Prediction 

Multi-Model aerosol forecasting Ensemble (ICAP-MME), and Navy Aerosol Analysis 

and Prediction System (NAAPS). GEFS-Aerosols, a global atmospheric composition 

model, is developed by at the National Centers for Environmental Prediction (NCEP) in 

collaboration with the NOAA Global Systems Laboratory (GSL), NOAA Chemical 

Sciences Laboratory (CSL), and NOAA/ARL (Hamill et al., 2011a, b). GEOS is a 

weather and climate capable model and is a significant part of the GEOS atmospheric 

data assimilation system (DAS) and Earth system model developed at NASA’s Global 

Modeling and Assimilation Office (GMAO) (Rienecker et al., 2008). NAAPS, the U.S. 

Navy’s operational global aerosol transport model with consideration of processes 

associated with aerosol lifecycles, and AOD data assimilation, is developed at the Naval 

Research Laboratory (NRL) (Lynch et al., 2016). Finally, the ICAP-MME is a global 

ensemble mean produced from nine comprehensive global speciated aerosol and/or dust 

models (Xian et al., 2019). 

The performance of the ensemble mean in forecasting Aerosol Optical Depth 

(AOD) were intercompared with ensemble members and verified by evaluating AOD 

simulations against the Multi-Angle Implementation of Atmospheric Correction 

(MAIAC; Lyapustin et al., 2011a,b; 2012; 2018) and Visible Infrared Imaging 

Radiometer Suite onboard the Suomi National Polar-orbiting Partnership (SNPP) 

(VIIRS-SNPP; Cao et al., 2013a, 2013b; Uprety et al., 2013) satellite-retrieved AOD 
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products based on enhanced Dark Target (DT) algorithm over dark and bright surfaces 

(Zhang et al., 2016) for the application to the wildfires, while the AOD simulations were 

evaluated against the VIIRS enhanced DT and VIIRS Deep Blue (DB; Hsu et al., 2013; 

Hsu et al., 2019) products for the application to the dust storms. The PM2.5 concentrations 

simulated by the ensemble mean were also intercompared with ensemble members and 

verified with the AirNow PM2.5 ground observations for both applications to wildfires 

and dust storms. The evaluation results were derived by analyzing a suite of statistical 

metrics during the 2020 Gigafire event (August-September 2020), caused by the August 

Complex Fire burning more than 1 million acres in Northern California, and during the 

2021 Spring Dust Season (January-March 2021), a period when the dust storms driven by 

a strong low-pressure system occurred predominantly in the Chihuahuan Desert in 

western Texas and southern New Mexico. 

As the air quality models are used to provide air pollution warnings to the public, 

the ability of the ensemble to produce a reliable forecast of health-based PM2.5 

exceedances of NAAQS (24-hr PM2.5 concentration above 35 µg/m3; U.S. EPA, 2020a) 

during extreme wildfires is crucial. Therefore, we created the ensemble probability 

forecasts of PM2.5 exceedances influenced by wildfires and dust storms and evaluated 

them with the observed exceedances by AirNow ground monitoring network. 
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CHAPTER 2: CASE STUDIES OF WILDFIRES AND DUST STORMS 

2.1 The 2020 Gigafire in the Western United States 

In 2020, California experienced 9,917 incidents of multiple complex wildfires, 

leading to over 4 million acres burned, and 10,488 structures destroyed (CAL FIRE, 

2020). On August 16th, the largest and the most complex recorded wildfire ever known as 

the “August Complex fire” occurred in Northern California. The fire initially started 

burning in the Mendocino National Forest from lightning strikes coupled with a heatwave 

and severe drought driven by climate change. The August Complex fire was a 

combination of the Doe, Tatham, Glade, and Hull fires. On September 9th, the Doe fire 

(main fire) became the single largest complex wildfire, even larger than the 2018 

Mendocino Complex fire. Later on, the Doe fire merged with other following fires and 

continued burning until November 12th. The fire was the first “Gigafire”, active for 86 

days, burned more than 1 million acres, and destroyed 935 structures across the Coast 

Range counties (Colusa, Glenn, Humboldt, Lake, Mendocino, Tehama, and Trinity). The 

spanning of fires is dominated by the Diablo winds (offshore winds) over these areas. 

Figure 1a displays extremely high observed PM2.5 concentrations from AQI sites mainly 

in the western U.S. on September 12th, 2021, when the fires were very intense. Extremely 

high daily PM2.5 concentrations above the daily National Ambient Air Quality Standards 

(NAAQS) for PM2.5 (>35 μg/m3) were recorded at many AirNow monitoring sites across 
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the U.S. between September 10th-17th, 2020 primarily over California, Oregon, and 

Washington as shown in Figure 1b. Consequently, our study will focus on AOD and 

PM2.5 simulations during the 2021 wildfire season, from August to September 2020. 

 

 

Figure 1. VIIRS-SNPP true color imagery overlaid by PM2.5 observations measured by AQS sites (circles) on 
September 12th, 2020, from NOAA AerosolWatch1 (above). The time series plot of daily maximum PM2.5 
concentrations measured by all AirNow sites across the Contiguous United States during the Gigafire events 
from August to September 2020 (bottom). 

 

 
1 https://www.star.nesdis.noaa.gov/smcd/spb/aq/AerosolWatch/ 
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2.2 The 2021 Spring Dust Season in the Chihuahuan Desert 

The spring dust season in the western and southwestern United States commonly 

occurs from January to March. According to the NOAA’s National Weather Service 

(NWS/NOAA), during Spring 2021, many dust storms occurred primarily over the 

Chihuahuan Desert from Mexico to across the border in western Texas and southern New 

Mexico. In the middle of March, from March 13th to 18th, a powerful low-pressure system 

coupled with drought and the La Niña effect generated gusty winds of 35 to 45 mph 

across the Mexico-United States border and scattered dust from the Chihuahuan Desert in 

Mexico to western Texas and southern New Mexico. Consequently, daily average PM2.5 

concentrations over the active dust regions were substantially increased to 50-60 µg/m3, 

as shown in Figure 2b. On March 16th, a dust storm occurred for nearly eight hours in El 

Paso, Texas2 (Figure 2a), which was the most unusual long-lasting dust storm in the city's 

history and led to worsened air quality and a decreased visibility of less than a half-mile 

over El Paso and Juãrez, Texas. 

 
2 https://earthobservatory.nasa.gov/images/148057/long-lasting-dust-storm-from-chihuahua 
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Figure 2. VIIRS/SNPP true color imagery overlaid by PM2.5 observations measured by AQS sites (circles) in 
western Texas and southern New Mexico on March 16th, 2021, from NOAA AerosolWatch (above). The time 
series plot of daily maximum PM2.5 concentrations measured by AirNow sites in the southwestern United States 
during the 2021 Spring Dust Season (bottom). 
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CHAPTER 3: DESCRIPTION OF OBSERVATIONS 

3.1 Ground-Based Observation 

3.1.1 AirNow PM2.5 

Hourly PM2.5 observations were obtained from the U.S. EPA AirNow network3. 

The AirNow data sets are acquired from a variety of monitoring data collected by 

AirNow and its partners, such as the EPA, NOAA, National Park Service, NASA, 

Centers for Disease Control, and tribal, state, and local air quality agencies, using a 

federal reference or equivalent monitoring methods approved by EPA. In this study, 

hourly PM2.5 concentrations derived from each of AirNow sites, starting from 12:00 UTC 

of the current day to 11:00 UTC the next day, were averaged into a daily value grid by 

grid. 

 

3.2 Satellite-Based Observations 

3.2.1 MAIAC AOD 

MAIAC algorithm is designed to work with the time series and spatial analyses of 

the MODIS L1B data, which are gridded to a fixed 1 km grid resolution to observe the 

same grid cell over time, resulting in an improvement in the accuracy of aerosol 

retrievals, atmospheric correction, and cloud detection (Lyapustin et al., 2011a, b; 2012; 

 
3 https://www.AirNow.gov 
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2018). In addition to standard MODIS calibration, in Collection 6 and beyond MAIAC 

applies a residual de-trending of both MODIS Terra and Aqua sensors, along with 

polarization correction of MODIS Terra and cross-calibration of Terra to Aqua 

(Lyapustin et al., 2014). This allows MAIAC to process MODIS Terra and Aqua jointly 

as a single sensor. This study used daily global 1 km MAIAC AOD at 550 nm from all 

orbits available for the CONUS, later averaged at each grid location. MAIAC data were 

provided by NASA GSFC. 

3.2.2 VIIRS-SNPP AOD 

VIIRS-SNPP AOD product was acquired from the VIIRS instrument carried 

onboard the Suomi National Polar-orbiting Partnership (SNPP), which is a part of the 

Joint Polar Satellite System (JPSS) (Cao et al., 2013a, 2013b; Uprety et al., 2013). The 

VIIRS instrument was initially developed based on the previous series of measurements 

on NOAA satellites and MODIS on the Terra and Aqua satellites (Levy et al., 2013, 

2015) through the cooperation of NASA and NOAA. The VIIRS instrument provides 

improved operational environmental monitoring and sensor data records for aerosol 

products through a short-wave infrared spanning from 0.412 to 2.25 microns in order to 

support NASA's Earth Observing System (EOS) and NOAA’s polar-orbiting operational 

environmental satellite system (POES). VIIRS-SNPP observes the entire Earth’s surface 

twice each day. It passes the equator at approximately 13:30 local time (LST). In this 

study, we used VIIRS-SNPP Level 3 enhanced Dark Target (DT) over dark and bright 

surfaces (Zhang et al., 2016) daily AOD product at 550 nm with a fixed grid resolution of 

0.1°× 0.1° as provided by NOAA, and VIIRS-SNPP Level 2 Deep Blue (DB; Hsu et al., 
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2013; Hsu et al., 2019; Sayer et al., 2018) 6-minute AOD product at 550 nm with an at-

nadir resolution of 6 km x 6 km as provided by NASA GSFC. 
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 CHAPTER 4: MULTI-MODEL ENSEMBLE CREATION 

4.1 Description of Ensemble Members 

In this section, each of seven participating numerical air quality models included 

in the ensemble will be described. Model configurations are shown in Table A1 in the 

Appendix. 

4.1.1 GMU-CMAQ 

GMU-CMAQ (Li et al., 2021) uses meteorological fields derived from the 

Weather Research and Forecasting model version 4.2 (WRFv4.2) (Skamarock et al., 

2019) to drive the offline CMAQ model version 5.3.1 (CMAQv5.3.1) (US EPA, 2020b), 

and uses biomass burning (BB) emission data from the Global Biomass Burning 

Emissions Product (GBBEPx; Zhang et al., 2012, 2014, 2019) blended between Moderate 

Resolution Imaging Spectroradiometer (MODIS) on the NASA Terra and Aqua satellites 

and VIIRS-SNPP. The anthropogenic emission data is taken from the U.S. EPA 2016 

National Emissions Inventory Collaborative version 1 (2016v1) Emission Modeling 

Platform, which is generated by the Sparse Matrix Operator Kennel Emissions (SMOKE) 

model version 4.7 (Houyoux et al., 2000) using the base year of the emission inventory 

taken from the 2016v1 Emission Modeling Platform (Eyth et al., 2020). The wildfire 

smoke plumes, and dust plumes are calculated using the Sofiev et al. (2012) and the 

FENGCHA dust scheme developed by NOAA/ARL (Dong et al., 2016), respectively. 
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GMU-CMAQ provides hourly experimental AOD and PM2.5 concentration forecasts on a 

horizontal resolution of 12 km ×12 km over the CONUS with each day’s forecast 

initialized at 18:00 UTC on the previous day. 

4.1.2 NACC-CMAQ 

NACC-CMAQ meteorological preprocessor was adapted from the EPA’s 

Meteorology Interface Processor (MCIP) version 5 (e.g., NACC version 1.3.2; 

https://zenodo.org/record/5507489#.YmvzsejMKUk, last access 29 Apr 2022), and uses 

meteorological fields from NOAA’s latest operational Finite Volume Cubed-Sphere 

(FV3) Global Forecast System version 16 (GFSv16) to drive the offline CMAQv5.3.1 

(Campbell et al., 2022). Emission input data sets are very similar to GMU-CMAQ and 

include GBBEPx for BB emissions, NEI 2016v1 for anthropogenic emissions, and 

Biogenic Emission Inventory System version 3.6.1 (BEISv3.6.1; Vukovich and Pierce, 

2002; Schwede, 2005) with the Biogenic Emission Landuse Dataset version 5 (BELD5) 

for biogenic volatile organic carbon (BVOC) emissions. The wildfire smoke plumes are 

computed using the Briggs (1969) plume rise algorithm. The dust plumes are computed 

using dust algorithms including, the FENGCHA dust scheme, SoilGrids soil fractions 

(Hengl et al., 2017), surface roughness from merged satellite microwave backscattering 

(ASCAT), and visible/near-infrared reflectances (PARASOL) (Prigent et al., 2012). 

NACC-CMAQ uses meteorology and emission inputs together with aerosol boundary 

conditions from NOAA’s operational GEFS-Aerosols model for dust and smoke to 

provide hourly AOD and PM2.5 forecasts at a horizontal resolution of 12 km ×12 km 
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(same as GMU-CMAQ) with each day’s forecast initialized at 12:00 UTC on of the 

previous day over CONUS. 

4.1.3 HYSPLIT 

HYSPLIT (Stein et al., 2015) uses a plume-following coordinate system and back 

trajectory analysis, and is typically used to determine the emission sources, atmospheric 

transport, dispersion, deposition, and chemical transformation of aerosols over the 

CONUS (Draxler & Hess, 1998). Since 2007, it has been employed in NOAA’s Smoke 

Forecasting System using fire locations from satellite data and BB data based on 

vegetation cover from the bottom-up, fuel-based Blue Sky modeling system developed by 

the U.S. Forest Service (Rolph et al., 2009; Stein et al., 2009). HYSPLIT has been 

recently updated to version 5.1.0 (HYSPLITv5.1.0) and combines WRF-ARW 

(Advanced Research WRF) meteorology inputs, fire emission products from United 

States Forest Service (USFS) BlueSky, and Briggs (1969) plume rise scheme to simulate 

hourly AOD and PM2.5 concentration forecasts at a horizontal resolution of 0.15° × 0.15° 

with each day’s forecast initialized at 00:00 UTC on of the previous day over CONUS. 

4.1.4 GEFS-Aerosols 

NOAA’s GEFS-Aerosols version 1 model used here provides aerosol and 

atmospheric composition forecasts using FV3-based GFSv15 meteorology coupled to 

NASA GOCART aerosol model component using the National Unified Operational 

Prediction Capability (NUOPC) Layer (Theurich et al., 2016), which is the current and 

future foundation of NOAA’s Unified Forecast System (UFS) modeling framework 

(Hamill et al., 2011a, b; L. Zhang et al., 2021). The operational GEFS-Aerosols model 
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currently uses BB emission data from GBBEPx, and global anthropogenic emission data 

from the Community Emission Data System (CEDS) in 2014 for gaseous emissions and 

Hemisphere Transport of Air Pollution (HTAP) version 2 for primary aerosol emissions. 

Wildfire smoke plumes are calculated using a one-dimension (1-D) time-dependent cloud 

module from High-Resolution Rapid Refresh (HRRR)-Smoke model (Freitas et al., 

2007). The dust plumes are computed using the FENGCHA dust scheme, SoilGrids soil 

fractions, surface roughness from merged satellite microwave backscattering (ASCAT), 

and visible/near-infrared reflectances (Prigent et al., 2012). This study employed GEFS-

Aerosols global AOD and PM2.5 forecasts at a horizontal resolution of 0.25° × 0.25° and 

initialized each day at 00:00 UTC. 

4.1.5 GEOS-5 

GEOS is a global data assimilation and forecasting system that combines the 

GMAO modified gridpoint statistical interpolation (GSI) analysis algorithm, which was 

originally developed by the National Centers for Environment Prediction (NCEP) 

Environmental Modeling Center, with the NASA atmospheric global forecast model 

(Rienecker et al., 2008). The GEOS version 5.27.1 (GEOSv5.27.1) is integrated using the 

Earth System Modeling Framework (ESMF), and its configuration includes 

meteorological data acquired by the GEOS Data Assimilation System (DAS) in near real 

time, fire detection information from MODIS, emissions of aerosols, BB, and, smoke 

data from the Quick Fire Emissions Dataset (QFED), anthropogenic emissions from  the 

Emissions Database for Global Atmospheric Research (EDGAR)-HTAP inventories, and 

Model of Emissions of Gases and Aerosols from Nature (MEGAN) for BVOC emissions. 
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The dust plumes were computed using the Goddard Global Ozone Chemistry Aerosol 

Radiation and Transport (GOCART; Colarco et al., 2010) model. This study used GEOS-

5 global forecast of hourly AOD values and PM2.5 concentrations on a horizontal 

resolution of 0.25° × 0.3125° and initialized each day at 00:00 UTC. 

4.1.6 ICAP-MME 

Established in 2010, ICAP aims to promote community development of global 

aerosol observations, data assimilation, and prediction technologies to support 

operational aerosol forecasting (Benedetti et al., 2011; Colarco et al., 2014a; Reid et al., 

2011). The ICAP-MME (Sessions et al., 2015; Xian et al., 2019) is a global multi-model 

aerosol forecasting ensemble consensus (currently only AOD product is available), which 

provides a testbed of probabilistic aerosol forecasts. ICAP-MME is generated by 

combining nine global aerosol models: the European Centre for Medium-range Weather 

Forecasts-Monitoring Atmospheric Composition and Climate model (ECMWF) under 

Copernicus Atmosphere Monitoring Service (CAMS, former MACC), GEOS, NAAPS, 

Japan Meteorological Agency (JMA) Model of Aerosol Species in the Global 

Atmosphere (MASINGAR), NOAA Environmental Modeling System (NEMS) Global 

Forecast System (GFS) Aerosol Component (NGAC), Mĕtĕo-France Modĕlĕ de Chimie 

Atmospherique ã Grande Echelle (MOCAGE), and Finnish Meteorological Institute 

(FMI) System for Integrated modeLling of Atmospheric coMposition (SILAM), the 

Barcelona Supercomputing Center (BSC) Chemical Transport Model (CTM), embedded 

in the Multiscale Online Nonhydrostatic AtmospheRe CHemistry (MONARCH) and the 

UK Met Office (UKMO) models. These models have different underlying meteorological 
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fields, emissions, microphysics, and chemistry, as well as a variety of horizontal and 

vertical resolutions ranging from 0.25°×0.31° and 72 vertical layers to 1.4°×1° and 24 

layers. As a result, ICAP-MME is driven by the independent operation/quasi-operational 

meteorology inputs and aerosol variables generated by each of the member organizations. 

This study utilized ICAP-MME global 6-hour AOD at 550 nm on a horizontal resolution 

of 1° × 1° and initialized each day at 00:00 UTC. 

4.1.7 NAAPS 

NAAPS is developed at the Marine Meteorology Division of the NRL and 

provides an operational forecast of 3D atmospheric anthropogenic fine and biogenic fine 

aerosols, biomass burning smoke, dust, and sea salt concentrations (Lynch et al., 2016). 

The current NAAPS is driven by global meteorological fields from the NAVy Global 

Environmental Model (NAVGEM), which is an operational global weather prediction 

system developed by the United States Navy (Hogan et al., 2014). NAAPS uses BB 

smoke source from the Fire Locating and Modeling of Burning Emissions (FLAMBE) 

inventory, which is based on near-real time MODIS fire hotspot data (Reid et al., 2009). 

Dust emissions for the NAAPS model were generated with the methods documented in 

Westphal et al. (1988), while the dust scheme algorithms were based on Westphal et al. 

(2009). This study employed the NAAPS global 3-hourly AOD and surface PM2.5 

concentrations at a horizontal resolution of 0.333° × 0.333° and initialized each day at 

00:00 UTC. 
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4.2 Multi-Model Ensemble Forecasts 

The ensemble forecasts were created using the mean AOD and PM2.5 generated 

by the individual models. All data were interpolated to a unified horizontal grid of 12 km 

× 12 km before calculating the ensemble mean values. It should be noted that the 

individual model and the ensemble simulations were evaluated with the observations grid 

by grid, and any grids containing missing data were ignored from the calculation. 

4.2.1 Ensemble AOD Forecasts 

For the 2020 Gigafire events, the ensemble forecasts were reproduced from 

August to September 2020 using the mean values of AOD generated by seven models: 

GMU-CMAQ, NACC-CMAQ, HYSPLIT, ICAP-MME, GEFS-Aerosols, GEOS-5, and 

NAAPS models. The ensemble AOD forecasts were simulated near VIIRS equatorial 

crossing time (13:30 LST) and mean value of the average of AOD near equatorial 

crossing times of MODIS Terra (10:30 LST) and Aqua (13:30 LST) as MAIAC 

processes MODIS Terra and Aqua jointly as a single sensor. The performance of the 

ensemble AOD mean near VIIRS passing time was evaluated against the VIIRS AOD. 

While the performance of the ensemble mean of average AOD near MODIS Terra and 

Aqua passing time was evaluated against MAIAC AOD retrievals. 

For the 2021 Spring Dust Season, the ensemble forecasts of AOD were 

reproduced from January to March 2021 using the mean values of AOD from six models: 

GMU-CMAQ, NACC-CMAQ, ICAP-MME, GEFS-Aerosols, GEOS-5, and NAAPS 

models. The ensemble AOD was simulated using the mean value of AOD near VIIRS-
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SNPP equatorial crossing time (13:30 LST). The performance of the ensemble AOD 

mean near VIIRS-SNPP passing time was evaluated against the VIIRS enhanced DT 

AOD and VIIRS DB AOD. 

4.2.2 Ensemble PM2.5 Forecasts 

The ensemble PM2.5 forecasts during the 2020 Gigafire events and the 2021 

Spring Dust Season were simulated using the mean values of PM2.5 concentrations 

generated by six models (for wildfire case), and five models (for dust storm case): GMU-

CMAQ, NACC-CMAQ, HYSPLIT (only wildfire), GEFS-Aerosols, GEOS-5, and 

NAAPS models. The performance of ensemble mean in forecasting PM2.5 concentrations 

for both cases was verified by comparing model simulations against daily average PM2.5 

observations from AirNow with the evaluation time starting from 12:00 UTC to 11:00 

UTC of the next day. 

 

4.3 Ensemble Probability of PM2.5 Exceedance Forecast 

The GMU-CMAQ, NACC-CMAQ, HYSPLIT (only wildfire), GEFS-Aerosol, 

GEOS-5, and NAAPS were used to create the ensemble probability of the PM2.5 

exceedance forecast. The probability was calculated using equation (1) based on the 

numbers of models that forecast PM2.5 exceedances (concentrations >35 µg/m3) during 

the 2020 Gigafire events and the 2021 Spring Dust Season. The probability result ranges 

from 0% (none of the models forecast the exceedances; very unlikely to occur) to 100% 

(all models forecast the exceedances; very likely to occur): 
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Equation 1 Ensemble Probability of Exceedance Forecast 
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 CHAPTER 5: EVALUATION METHODOLOGY 

5.1 Statistical Metrics 

The AOD and surface PM2.5 concentrations simulated by the ensemble mean and 

individual models were evaluated with AOD retrievals from VIIRS enhanced DT, VIIRS 

DB (for the 2021 Spring Dust Season) and MAIAC (for the 2020 Gigafire events) and 

observed surface PM2.5 from the AirNow ground monitoring network. A suite of 

statistical metrics, including root mean square error (RMSE), correlation (CORR), 

absolute fractional bias (FB), mean bias (MB), mean error (ME), normalized mean bias 

(NMB), and normalized mean error (NME) were calculated using the following formulas: 

 

Equation 2 Root Mean Square Error 
 

=>?@ = 	A
1
'
B(>! − D!)"
#

!$%
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Equation 4 Absolute Fractional Bias 
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Equation 5 Mean Bias 
 

>I =	
1
'
B(>! − D!)
#

!$%
 

 
Equation 6 Mean Error 
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Equation 7 Normalized Mean Bias 
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Equation 8 Normalized Mean Error 
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Where Mi represents the ith model forecast, Oi is the ith observation, and N is the total 

number of observations and time-space matched prediction during the study periods. 

 

5.2 Categorical Metrics 

In addition to a traditional suite of statistical metrics, we employed two 

categorical metrics: the area hit rate (aH), and the area false alarm ratio (aFAR) (Kang et 

al., 2007) to supplementarily measure the performance of individual models, ensemble 

mean, and ensemble probability in forecasting PM2.5 exceedances (24-hr PM2.5 

concentrations greater than 35 µg/m3 based on NAAQS). These two metrics were 

calculated based on pairs of observed and predicted PM2.5 exceedances by considering 

four possible scenarios: (a) a forecasted exceedance that is not observed; (b) a forecasted 
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exceedance that is observed; (c) an exceedance that is neither forecasted nor observed; 

(d) an observed exceedance that is not forecasted (Figure 3). The aH and aFAR values are 

determined by matching observed and forecasted exceedances within a designated area 

surrounding the center of the observation location. In the present study, we used an area 

of 0.5° × 0.5° centered at each AirNow site’ location. The area hit rate aH refers to the 

number of hits if a forecasted exceedance is observed within the designated area (Eq.9). 

The aFAR (Eq.10) refers to the false-alarm ratio if a forecasted exceedance is not 

observed within the designated area: 

 

Equation 9 area Hit rate 
 

4M = 	N
#*

#* + #/
O × 100% 

 
Equation 10 area False Alarm Ratio 
 

4M = 	N
#4

#4 + #*
O × 100% 

 
 

Where Aa is the number of forecasted exceedances that are not observed, Ab is the 

number of forecasted exceedances that are observed, and Ad is the number of observed 

exceedances that were not forecasted. 
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Figure 3. Example of scatter plot for definition of categorical metrics 
 

5.3 Overall Rating  

The overall rating (RANK) was used to determine the comprehensive forecasting 

performances of individual models and ensemble mean during the study periods. In the 

case of PM2.5 evaluation, the RANK was derived from the sum of the normalized CORR, 

FB, aH, and aFAR (Eq.11). In the case of AOD evaluation, the RANK was calculated 

using the sum of the normalized CORR and FB (Eq.12). PM2.5 RANK ranges from 0 to 4 

(from worst to best), while AOD RANK ranges from 0 to 2: 
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Equation 11 Overall Rating for PM2.5 
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Equation 12 Overall Rating for AOD 
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CHAPTER 6: EVALUATION OF ENSEMBLE FORECAST OF WILDFIRES 

In this chapter, an ensemble mean based on the unweighted arithmetic mean of 

individual models, including GMU-CMAQ, NACC-CMAQ, GEFS-Aerosols, GEOS-5, 

HYSPLIT, ICAP-MME, and NAAPS, was created and evaluated with satellite and 

ground observations during the 2020 Gigafire events (August-September 2020). The 

forecasting performance of the ensemble mean was also compared with ensemble 

members to assess whether the ensemble mean can outperform the top performers among 

these members. Evaluation results of AOD simulations validated against VIIRS enhanced 

DT AOD and MAIAC AOD retrievals, and the evaluation results of PM2.5 simulations 

compared against AirNow PM2.5 observations were analyzed by calculating average 

statistical metrics and the overall rating (RANK) for AOD and PM2.5 simulations over the 

study period.  

 

6.1 Ensemble Performance in Forecasting AOD 

The ensemble mean shows fairly good performance in simulating AOD. For 

instance, contour maps of AOD forecasts, VIIRS AOD and MAIAC AOD retrievals on 

August 22nd, 2020, in Figures 4a-4g and 4a-4g indicates that the AOD simulations from 

all the Model-1 to 7 underestimated AOD values over the western U.S. while Model-5 

overestimated AOD values primarily in California (Figures 4c, 4e, and Figures 5c, 5e). In 
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comparison, the ensemble mean AOD simulations slightly overestimated AOD values for 

the most parts of Northern California and underestimated AOD values predominantly 

over Montana, Wyoming, Colorado, Nebraska, and Kansas where complex geographic 

formations, such as the Colorado Plateau-Central Rockies areas, are located (Figures 4h 

and 5h). However, the majority of areas showing high AOD values in the ensemble 

forecast match fairly well with the observations.  

As shown in Figures 7c and 8c in the time series plots of mean bias (MB), the 

ensemble mean and most individual models slightly underestimated AOD values almost 

the entire period, especially during the extreme fires in the middle of September 2020 

leading to relatively high negative MB values during this time. Similar to previous 

results, Model-5 overestimated the AOD values with relatively high positive MB values 

during the same period. From Table 1, the average MB values of the ensemble mean for 

AOD over the whole period was reduced to -0.104 for the VIIRS AOD case and was 

greatly reduced to -0.068 for the MAIAC AOD case. Both values are closer to zero 

relative to most individual models, meaning that the ensemble mean significantly reduces 

bias and uncertainties in AOD forecasting. In addition, the time series plots of correlation 

(CORR) (Figures 7a and 8a) display less fluctuated correlation lines of the ensemble 

mean in relation to most individual models, resulting in being the best in correlation for 

the entire period in the VIIRS and MAIAC AOD cases shown in Table 1.  

Considering the overall rating (RANK) (Table 1), the ensemble mean scores 

second in RANK with the RANK values being only 4.8% and 4.0% lower than the top 

rank model based on VIIRS AOD and MAIAC AOD retrievals, respectively. Although 
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the averages of RMSE, NMB, NME, ME, and FB of the ensemble mean did not 

outperform the first rank individual model, they still rank either second or third place. All 

the results point to the ensemble mean having a beneficial effect in reducing the bias in 

AOD forecasting, especially when the wildfires are extremely intense. Furthermore, the 

ensemble mean successfully produces more statistically consistent and reliable forecasts 

of AOD during the wildfires relative to the forecasts provided by individual models, 

which are particularly degraded by errors in emission inventory and smoke plume 

algorithms implemented to each model. 

 

6.2 Ensemble Performance in Forecasting Surface PM2.5 Concentration 

The ensemble mean show fairly well forecasting performance of surface PM2.5 

during extreme wildfires, such as the PM2.5 forecasts on August 22nd, 2020 (Figure 6). 

Figures 6a, 6c, 6d, 6e, and 6f show that Model-1, 3, 4, 5, and 7 overestimated PM2.5 

concentrations largely in the western U.S. and partially in the Central and southern 

United States. In contrast, the ensemble mean predominantly shows overestimated PM2.5 

simulations in Northern California (Figure 6g). However, the extremely high PM2.5 

concentrations simulated by the ensemble mean are located over the areas that are in 

fairly good agreement with the AirNow ground observations (Figure 6h).  

The positive mean bias (MB) values of the ensemble mean and the individual 

models in Figure 9c indicate the overestimation of PM2.5 simulations for most of the time 

during the wildfire period, except for Model-2 and Model-3, which show negative MB 

values (underestimation of PM2.5 concentrations). The discrepancies in PM2.5 simulations 
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during the wildfires were also indicated by varying values of root mean square (RMSE), 

mean error (ME), normalized mean bias (NMB), normalized mean error (NME), and 

absolute fractional bias (FB), as shown in Figures 9b, 9d, 9e, 9f, and 9g. Overall, the 

ensemble mean reduced the positive average mean bias (MB) to 7.4 and lowered the 

absolute fractional bias (FB) to 0.54, which is the top rank in FB. It also yields the 

highest average correlation (CORR) value of 0.603 (Table 1) due to consistent correlation 

values for the entire period compared to that of individual models (Figure 9a). The 

RMSE, NMB, and NME values of the ensemble mean are on average lower than those 

values of most individual models, as shown in Table 1. 

Analysis of the forecasting performance of daily PM2.5 exceedances 

(concentrations >35 μg/m3) showed the ensemble mean substantially increased the area 

hit rate (aH), particularly in the middle of September when the extremely intense 

wildfires occurred (Figure 9g). As a result, the ensemble mean achieves the highest 

average aH value of 86.845% (Table 1). This suggests that the ensemble mean can 

predict more than 86% of the observed PM2.5 exceedances during extreme wildfires. Due 

to relatively high correlation, high aH, low aFAR, and low FB values, the ensemble mean 

performs highly in RANK (2.825). These results suggest that the ensemble forecast has a 

practical advantage in reducing bias in individual forecasts of PM2.5 and allowing 

effective probabilistic forecasts of PM2.5. Furthermore, the evaluation results revealed 

that although a single model can be excellent at predicting AOD, it is not necessarily 

translated into good performance in surface PM2.5 prediction. The model that performs 

highly in RANK for the AOD prediction is different from that of the PM2.5 prediction. 
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6.3 Overall Performance of Ensemble Wildfire Forecast 

Figures 10a-10c show the time series of the overall rating (RANK) for AOD and 

PM2.5 predicted by the ensemble mean and individual models compared against three 

observation datasets: VIIRS and MAIAC AOD, and AirNow surface PM2.5 

concentrations, respectively. The ensemble mean shows persistently high RANK values 

throughout the study period, suggesting that the ensemble forecast overall is more 

reliable and performs better than most of the members. In addition, it can partially reduce 

the bias as shown in Table 1 due to the fact that the ensemble mean is calculated by 

averaging each of the individual model simulation results. Therefore, if most individual 

models underestimated (negative bias) or overestimated (positive bias) the AOD values 

and PM2.5 concentrations for almost the entire period, the bias values of the ensemble 

mean become more negative or positive than the top-ranked model with the lowest bias. 

As a result, the ensemble forecast will show significant and effective improvements in 

forecasting if there are complementary underestimation and overestimation by individual 

models. 

Underestimation of AOD values and overestimation of PM2.5 concentrations in 

the model simulations may have occurred since the August 2020 complex wildfires that 

became much more intense during the middle of September 2020, generating very thick 

smoke cover. The smoke could in turn make the biomass burning emissions applied to 

each model inaccurate and may generate a large error in smoke inventories. Furthermore, 

as the fire becomes stronger, the plume injection height gets deeper and creates 

misrepresented vertical emissions within the planetary boundary layer (PBL) generated 
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by each individual model. These two factors are considered important sources of 

uncertainties in air quality forecasts during wildfire events (Carter et al., 2020; Pan et al., 

2020b; and Ye et al., 2021). The impact of thick wildfire smoke also challenges the use 

of satellite AOD retrievals for evaluating ensemble forecasts since retrievals over heavy 

smoke plumes may be masked as clouds and vertical distributions of smoke are difficult 

to measure, which affects the accuracy of retrieval AOD products. In addition, a variety 

of input data sets, such as meteorological fields and chemical transports (F. Li et al., 

2019; Y. Li et al., 2020) and plume rise schemes (Briggs, 1969; Freitas et al., 2007; 

Paugam et al., 2016; Sofiev et al., 2012; Stein et al., 2009; Vernon et al., 2018; Zhu et al., 

2018), implemented differently in each model and can also impact the AOD and PM2.5 

forecasting performance (Delle Monache and Stull, 2003; Kumar et al., 2020). 
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Figure 4. AOD predicted by seven individual models (a-g) and the ensemble mean (h), compared with VIIRS 
enhanced Dark Target (DT) AOD retrievals (i) on August 22, 2020 (during the 2020 Gigafire events). 
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Figure 5. AOD predicted by seven individual models (a-g) and the ensemble mean (h), compared with MAIAC 
AOD retrievals (i) on August 22, 2020 (during the 2020 Gigafire events). 
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Figure 6. Surface PM2.5 concentrations predicted by six individual models (a-f) and the ensemble mean (g), 
compared with AirNow PM2.5 observations (h) on August 22, 2020 (during the 2020 Gigafire events). 
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Figure 7. Time series of RMSE (a), CORR (b), MB (c), ME (d), NMB (e), NME (f), and FB (g) of AOD for the 
2020 Gigafire events during August-September 2020. The AOD simulations by the ensemble mean (solid black 
line) and individual models (dash lines): Model-1 (blue), Model-2 (light blue), Model-3 (pink), Model-4 (green), 
Model-5 (purple), Model-6 (orange), and Model-7 (yellow) were compared against VIIRS AOD retrievals. 
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Figure 8. Time series of RMSE (a), CORR (b), MB (c), ME (d), NMB (e), NME (f), and FB (g) of AOD for the 
2020 Gigafire events during August-September 2020. The AOD simulations by the ensemble mean (solid black 
line) and individual models (dash lines): Model-1 (blue), Model-2 (light blue), Model-3 (pink), Model-4 (green), 
Model-5 (purple), Model-6 (orange), and Model-7 (yellow) were compared against the MAIAC AOD retrievals. 
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Figure 9. Time series of RMSE (a), CORR (b), MB (c), ME (d), NMB (e), NME (f), aH (g), aFAR (h), and FB (i) of 
PM2.5 for the 2020 Gigafire events during August-September 2020. The PM2.5 simulations by the ensemble mean 
(black solid line) and individual Model-1 (blue), Model-2 (light blue), Model-3 (pink), Model-4 (green), Model-5 
(purple), and Model-7 (yellow) were compared against AirNow PM2.5 observations. 
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Figure 10. Time series of the overall rating (RANK) for AOD and PM2.5 simulated by the ensemble mean and 
individual models. The RANK is calculated with four statistical metrics by comparing model predictions against 
AOD retrievals from VIIRS (a) and MAIAC (b), and surface PM2.5 observations from AirNow (c) during the 
2020 Gigafire events (August-September 2020). 
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Table 1. Overall ensemble mean and individual model performances in forecasting AOD values and PM2.5 
concentrations during the 2020 Gigafire events (August-September 2020) based on the evaluation of the values 
of RMSE, CORR, NMB, NME, MB, ME, FB aH and aFAR, and overall rating (RANK). The best results of each 
statistical metric and RANK are highlighted in bold. 
 

 

 

6.4 Ensemble Probability Forecast of PM2.5 Exceedances 

In general, the ensemble probability shows fairly good performance in forecasting 

PM2.5 exceedances during the 2020 Gigafire events. Figure 11 depicts a contour map of 
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ensemble probability forecast values overlaid by the actual exceedance (binary) over the 

AirNow sites across the CONUS. The probability ranges from 16.67% (exceedances 

predicted by only one model; very unlikely to occur) to 100% (exceedances predicted by 

all six models; very likely to occur). The more models that forecast the exceedance for 

each grid, the higher probability that the exceedances will occur in that grid. As shown in 

Figure 11, the contours of high ensemble probability values of 83.33% (five models; 

orange) and 100% (all six models; red) were displayed mainly in California, which 

collocated well with the AirNow exceedance measurements (marked as filled red circles). 

However, the AirNow observed exceedances in the downwind region (Idaho and 

Montana) were only captured by four of six models, giving a probability forecast of 

66.67% (four of six models; yellow). The degradation of exceedance probability in the 

downwind areas highlights the challenges in predicting transported smoke plumes and 

their effects on surface air quality.  

We also validated their performance in forecasting PM2.5 exceedances during 

extreme fire events by comparing the predicted ensemble exceedance probability against 

the AirNow observed PM2.5 exceedances. The results are shown as time series plots of 

aH and aFAR in Figures 12a and 12b. The average aH and aFAR values are listed in 

Table 2. High aH value and low aFAR values suggest good agreement between model 

simulations and observations. As displayed in the time series plots of aH and aFAR 

(Figure 12a and 12b) and the average aH and aFAR values (Table 2), the lowest 

ensemble probability of 16.67% shows constantly high aH and high aFAR throughout the 

study period, resulting in being the greatest aH value of 93.985 (top-ranked) and also the 
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highest aFAR value of 78.003 (lowest-ranked) on average, while the highest ensemble 

probability of 100% show persistently and relatively low aH and low aFAR all the time, 

resulting in holding the lowest average aH value of 14.725 (lowest-ranked) and the 

lowest aFAR value of 1.537 (top-ranked).  

The evaluation results imply that including a small number of models in the 

ensemble or the low ensemble probability shows better performance in forecasting 

observed exceedances across the CONUS because some exceedances predicted by any 

individual model or the lowest ensemble probability were true exceedances associated 

with wildfires, especially in the wildfire active regions, which frequently matched the 

AirNow observations, resulting in high aH. However, the remaining exceedances 

predicted elsewhere were false alarms influenced by overestimation that could not be 

removed from the forecast due to a lack of calibration and validation with other models. 

As a result, the lowest probability values generally yield high aFAR. Conversely, the 

ensemble forecast with a larger number of models, or the higher ensemble probability 

performs more accurately and reliably in forecasting PM2.5 exceedances on a smaller or 

local scale due to the fact that their predicted exceedances have been calibrated and 

verified with the co-existed exceedances predicted by the other participant models 

included in the ensemble. As a consequence, the areas showing the false exceedances 

have been reduced or removed, resulting in lower aH and aFAR values. 
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Figure 11. Ensemble probability forecast of PM2.5 exceedances on August 22nd, 2020 (during the 2020 Gigafire 
events). Foreground colors indicate the probability values ranging from 16.67% (one out of six models forecasts 
the PM2.5 exceedance; unlikely to occur) (light blue) to 100% (all six models forecast the PM2.5 exceedances; very 
likely to occur) (red). The PM2.5 exceedances observed by the AirNow sites are displayed in the red/green circles 
(red means an exceedance recorded by the monitor, and green means no exceedance recorded). 
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Figure 12. Time series plots of aH (a) and aFAR (b) values during the 2020 Gigafire events (August-September 
2020) for the ensemble probability of PM2.5 exceedance forecast. Ensemble probability values range from 
16.67% (one out of six models) to 100% (all six models). 
 
 
Table 2. Averaged aH and aFAR values of ensemble probability of PM2.5 exceedance forecast during the 2020 
Gigafire events (August-September 2020), comparing between simulated PM2.5 exceedances and observed PM2.5 
exceedances obtained from AirNow. 
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CHAPTER 7: EVALUATION OF ENSEMBLE FORECAST OF DUST STORMS 

In this chapter, an ensemble AOD and PM2.5 forecasts based on the unweighted 

arithmetic mean of six individual models, including GMU-CMAQ, NACC-CMAQ, 

GEFS-Aerosols, GEOS-5, ICAP-MME, and NAAPS, were created and evaluated with 

VIIRS enhanced DT AOD and VIIRS DB AOD, and AirNow surface PM2.5 observations, 

respectively, during the 2021 Spring Dust Season (January-March 2021). The forecasting 

performance of the ensemble mean was also intercompared with the ensemble members 

to assess whether the ensemble mean can outperform the top performers among these 

members. The evaluation results were analyzed by calculating average statistical metrics 

and the overall rating (RANK) over the study period. 

 

7.1 Ensemble AOD Forecasting Performance on March 16th, 2021 

The AOD simulations were initially evaluated against VIIRS enhanced Dark 

Target (DT) over dark and bright surfaces AOD on March 16th, 2021. As a consequence 

of limitations in the AOD detectability of the enhanced DT algorithm, whose maximum 

retrieved AOD did not pass the data quality test at initial data processes, we validated the 

AOD simulations with the VIIRS Deep Blue (DB) AOD retrievals. 

In general, the ensemble mean shows slightly improved performance in predicting 

observed dust AOD as demonstrated in contour maps of AOD forecasts, VIIRS enhanced 
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DT AOD observations, and VIIRS DB AOD observations on March 16th, 2021 (Figures 

13a-13i). As illustrated in the contour map of VIIRS DB AOD (Figure 13i), the observed 

high AOD associated with the dust storm almost blanketed entire areas of the 

Chihuahuan Desert, especially in El Paso, and partially covered the downwind areas in 

southern New Mexico. Unfortunately, due to poor quality control, the high AOD 

retrieved by VIIRS enhanced DT over the Chihuahuan Desert was missing, as shown in 

Figure 13h. Model-1, Model-2, and Model-4 were able to simulate dust storms primarily 

in west Texas and incompletely over the downwind areas in southern New Mexico. 

However, compared to VIIRS DB AOD, these models still underestimated AOD over the 

active dust areas (Figures 13a, 13b, 13d). Meanwhile, Model-3, Model-5, and Model-6 

were not able to simulate dust storms over the Chihuahuan Desert in parts of southern 

New Mexico, western Texas, and along the Mexico-United States border, where the 

powerful dust storm originated from and blew through (Figures 13c, 13e, 13f). 

Considering background AOD across the CONUS, all individual models were likely to 

simulate fairly higher background AOD compared to the satellite observations. In 

addition, all models except Model-5 predicted relatively high AOD elsewhere, primarily 

in the southeastern coast of the United States and partially in the northeastern United 

States. However, we were unable to compare this predicted high AOD with the VIIRS 

enhanced DT and DB AOD observations due to missing retrieved AOD data therein. 

These predicted high AOD may be model overestimations due to other emissions like 

prescribed fires or anthropogenic emissions, while underpredicted AOD may be a 

consequence of large uncertainties in dust emissions, transports, and depositions, as well 
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as variability in dust parameterizations in each model. The individual models 

underestimated AOD near the dust source regions in western Texas and southern New 

Mexico and overestimated AOD in the Southeast Coast of the U.S., causing the ensemble 

mean to demonstrate these same patterns, as shown in Figure 13g. 

The performance of the ensemble mean in AOD forecasting on March 16th, 2021 

was analyzed through the statistical metrics, as shown in Table 4. Based on VIIRS 

enhanced DT, the ensemble mean shows the absolute fractional bias (FB) reduced to 

0.625 at the lowest value from a range of 0.643 to 1.440, lowered mean bias (MB; 0.046), 

improved correlation (CORR; 0.188), and had the second highest overall rating (RANK; 

1.281). In comparison with the VIIRS DB, the ensemble mean demonstrated declining 

MB (0.094), the second highest correlation (0.397), and the second highest RANK (1.174) 

among six members. This result also points to the fact that the underestimations of AOD 

in the Chihuahuan Desert (in western Texas and southern New Mexico) did not always 

translate significantly to the total biases in AOD forecasting across the CONUS due to 

small-scaled dust affected areas. In this case, the positive biases may be due to the effects 

of high background AOD simulations. In addition, the inconsistency in model biases 

between the evaluations with VIIRS enhanced DT and VIIRS DB is a result of AOD 

being retrieved differently by DT and DB algorithms. 

Due to the uncertainties in the AOD simulations over the CONUS, we also 

generated the ensemble AOD forecast for the local active dust region domain covering 

the Chihuahuan Desert in Mexico across western Texas and southern New Mexico (25°N 

to 40°N, -110°W to -95°W) (Figure 14g). The performance of the ensemble mean in 
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predicting AOD over this constrained domain was compared with the individual models 

and then verified with the VIIRS DB AOD by calculating the correlation between 

predicted AOD and observed AOD on March 16th, 2021. Table 3 shows the comparison 

of the correlation between observed AOD and predicted AOD over the CONUS domain 

and the active dust region domain on March 16th, 2021. For the CONUS domain, Model-

1 yields the highest correlation (0.451), followed by the ensemble mean scoring the 

second highest in correlation (0.397). In the case of the active dust regions domain, the 

correlation of Model-1, whose predicted dust related AOD matched VIIRS DB AOD the 

most (Figure 14a), improved and became the top rank in correlation (0.454). Whereas the 

correlations of Model-3 and Model-6, which failed to simulate dust storms in the 

Chihuahuan Desert (Figures 14c and 14f), were reduced to negative values. Consistent 

with the large underestimations of dust related AOD by most individual models, the 

correlation of the ensemble mean was also reduced, but by only 1% (0.392). This 

suggests an effective capability of the ensemble approach to reduce the biases in model 

forecasts over the active dust regions. Overall, these results revealed the actual 

forecasting performance of individual models and the ensemble mean in local dust source 

areas and also emphasized the great impact of the uncertainties in the model simulations 

on the accuracy of dust AOD forecasts over the CONUS. 
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Figure 13. AOD predicted by six individual models (a-f) and the ensemble mean (g), compared with VIIRS 
enhanced Dark Target (DT) AOD retrievals (h) and VIIRS Deep Blue (DB) AOD retrievals (i) on March 16th, 
2021 (during the 2021 Spring Dust Season). 
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Figure 14. AOD predicted by six individual models (a-f) and the ensemble mean (g), compared with VIIRS Deep 
Blue (DB) AOD retrievals (h) near the active dust regions in western Texas and southern New Mexico on March 
16th, 2021 (during the 2021 Spring Dust Season). 
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Table 3. Correlation between AOD simulations and VIIRS Deep Blue (DB) AOD observations over the 
Contiguous United States (CONUS) and Active Dust Regions in western Texas and southern New Mexico on 
March 16th, 2021. The highest correlation is highlighted in bold. 
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Table 4. Overall ensemble mean and individual model performances in forecasting AOD values and PM2.5 
concentrations on March 16th, 2021, based on the evaluation of the values of RMSE, CORR, NMB, NME, MB, 
ME, FB, aH, and aFAR, and overall rating (RANK). The best results of each statistical metric and RANK are 
highlighted in bold. 

 
 
 

7.2 Ensemble PM2.5 Forecasting Performance on March 16th, 2021 

Next, the PM2.5 simulations were evaluated against AirNow ground observations 

on March 16th, 2021. Overall, the ensemble mean underperformed in predicting dust 

storms (high PM2.5 concentrations) in the Chihuahuan Desert. As shown in a map of 

AirNow PM2.5 observations (Figure 15g), PM2.5 concentrations above the National 



55 
 

Ambient Air Quality Standard (NAAQS) (>35 µg/m3) were only observed by three 

AirNow monitoring sites in western Texas, in El Paso (56 and 55 µg/m3) and Socorro (54 

µg/m3), and two sites in southern New Mexico, in Hobbs (40 µg/m3) and Santa Teresa 

(57 µg/m3) (marked as red filled circles). Figures 15a, 15c, and 15d show that Model-1, 

Model-3, and Model-4 were able to predict elevated PM2.5 concentrations affected by dust 

storms originating in the Chihuahuan Desert across western Texas and southern New 

Mexico. However, Model-1 overestimated PM2.5 over the dust affected regions, primarily 

in western Texas and across southwestern New Mexico (>80 µg/m3) (Figure 15a). 

Model-3 greatly overestimated PM2.5 in northwestern Texas (>70 µg/m3), eastern New 

Mexico (>100 µg/m3), and along the southern Colorado-Kansas border (>100 µg/m3) 

(Figure 15c), while Model-4 overestimated PM2.5 predominantly in southeastern New 

Mexico-Texas border (>90 µg/m3) (Figure 15d). Model-2 and Model-6 were unable to 

predict the dust storms in the Chihuahuan Desert, resulting in low simulated PM2.5 over 

western Texas and southern New Mexico (Figures 15b and 15f). Furthermore, elevated 

PM2.5 concentrations were predicted specifically over the southeastern coast of the U.S. 

by Model-3 (35-75 µg/m3) and Model-4 (35-100 µg/m3), were slightly overestimated in 

the northeastern U.S. by Model-1 and Model-6 (35-50 µg/m3), but there were no PM2.5 

concentrations above 35 µg/m3 observed by AirNow sites in these two regions. Despite 

the underestimation of PM2.5 over local active dust regions and significant overestimation 

of PM2.5 in the southeastern coast of the U.S. and the northeastern U.S. from participating 

models, the ensemble PM2.5 forecast underpredicted PM2.5 over the Chihuahuan Desert in 

western Texas and southern New Mexico (10-40 µg/m3) and overpredicted PM2.5 in more 
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constrained areas in western New Mexico (>90 µg/m3) and along the southern Colorado-

Kansas border (>100 µg/m3), and slightly overpredicted PM2.5 in the southeastern coast 

of the U.S. (35-55 µg/m3) (Figure 15f). Similar to the AOD forecasts, the predicted 

elevated PM2.5 in the U.S. Southeast and Northeast may be a consequence of prescribed 

fire and anthropogenic emissions, and the underestimations of PM2.5 may arise from 

errors in the model simulations that are influenced by large uncertainties in dust 

emissions, variability in dust physical and chemical processes and different dust schemes 

implemented in each model. 

In general, the statistical results in Table 4 indicated the ability of the ensemble 

mean to moderately reduce biases in model forecasting and improve the accuracy of 

surface PM2.5 forecasts during dust storm events. For instance, the ensemble shows the 

best RMSE (6.921 from a range of 6.972-11.832) and FB (0.452 from a range of 0.471-

0.631), decreased MB (6.921), slightly increased correlation (0.284), and the third highest 

RANK (1.416) among five members. However, the area hit rate (aH) value of 0 and area 

false alarm ratio (aFAR) value of 100 achieved by the ensemble mean suggest that there 

is no PM2.5 exceedance (>35 µg/m3) being observed by any AirNow sites on March 16th, 

2021 was predicted by the ensemble mean. Therefore, all ensemble predicted PM2.5 

exceedances were false exceedances. Furthermore, this evaluation result also implied that 

the underpredictions of PM2.5 in the small-scaled local dust associated areas did not 

significantly contribute to overall biases in PM2.5 forecasts on March 16th, 2021, whereas 

the major contribution causing overall positive biases in forecasts was the PM2.5 

overpredictions over larger areas in the U.S. Northeast and the Southeast. 
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Figure 15. Surface PM2.5 concentrations predicted by five individual models (a-e) and the ensemble mean (f), 
compared with AirNow PM2.5 observations (g) on March 16th, 2021 (during the 2021 Spring Dust Season). 
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7.3 Ensemble Forecasting Performance during the 2021 Spring Dust Season 

 To assess the overall performance of the ensemble mean in forecasting AOD and 

PM2.5 during dust storm events, we also conducted an evaluation for the 2021 Spring Dust 

Season from January to March 2021.  

For AOD forecasts, overall, all individual models and the ensemble mean show 

high positive mean bias (MB) during the intense dust storm in the middle of March 

(Figures 16-17c). The errors in model simulations of AOD throughout the study period 

were also demonstrated by high varying values of root mean square (RMSE), mean error 

(ME), normalized mean bias (NMB), normalized mean error (NME), and absolute 

fractional bias (FB), as shown in Figures 16-17b, d, e, f, and 16-17g. From Table 5, the 

average MB of the ensemble mean over the study period was lowered to 0.013 and 0.068 

when compared to VIIRS enhanced DT AOD and VIIRS DB AOD, respectively. 

According to the time series of correlation shown in Figures 16-17a, the ensemble mean 

correlation was fairly low and fluctuated throughout the study period, indicating a fairly 

high level of inconsistency in the forecasts. However, compared to the individual models, 

the correlation of the ensemble mean was slightly stronger, resulting in increased values 

of 0.093 and 0.323 (the best correlation) based on VIIRS enhanced DT and VIIRS DB, 

respectively. Regarding the average overall rating (RANK) in Table 5, the ensemble mean 

yields the third best RANK at 1.077 and 1.286, which is 9% and 5% lower than the top 

rank model, based on VIIRS enhanced DT AOD and VIIRS DB AOD, respectively. 

In the forecasts of surface PM2.5 concentration, most individual models and the 

ensemble mean demonstrate the high positive MB values during the intense dust storm 
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period (the middle of March) (Figure 18c). The errors in model simulations during the 

dust storms were indicated by high RMSE, ME, NMB, NME, and FB in the middle of 

March, as shown in Figures 18b, d, e, f, and 18g. Table 5 shows that the average MB of 

the ensemble mean during January-March 2021 was slightly reduced to 3.139. As shown 

in the time series of correlation (Figure 18a), the correlation of the ensemble mean 

fluctuated during the intense dust storm period (mid-March), implying a fairly high level 

of discrepancies between the ensemble forecasts and the observations. However, the 

correlation of the ensemble mean was slightly more consistent and closer to 1 compared 

to most of the participating models, resulting in the second best average correlation at 

0.395 (Table 5). In addition, the ensemble performance in forecasting the NAAQS PM2.5 

exceedance (concentrations >35 µg/m3) was determined by calculating area hit rate (aH) 

and area false alarm ratio (aFAR). The time series of aH and aFAR (Figures 18g and 18h) 

shows that the ensemble mean slightly increased areas hit rate (aH) and reduced area 

false alarm ratio (aFAR), specifically in the middle of March when some individual 

models failed greatly to predict the exceedances, characterized by relatively low aH and 

high aFAR. It should be noted that the concurrent disappearance of any aH and aFAR 

lines in the time series (Figure 18g) indicates no exceedances observed by any AirNow 

sites at that time. Overall, the ensemble mean slightly increased the average aH to 

14.822%, meaning that merely 14% of the predicted exceedances were truly observed. It 

also slightly reduced the fairly high average aFAR to 62.425%, meaning that about 62% 

of the predicted exceedances were not observed (false exceedances) (Table 5). These 

results suggested the capability of the ensemble mean to slightly improve the accuracy of 
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PM2.5 exceedance forecasts during dust storms. With fairly weak correlation, low aH, and 

moderately high aFAR and FB, the ensemble mean achieves the third highest RANK 

(2.239), which is 11% lower than the first ranked individual model. 

Ultimately, all the results point to the fact that the ensemble mean has the 

potential to reduce biases in individual PM2.5 forecasts and provide an improved 

probabilistic forecast of AOD and PM2.5 during dust storm events. However, its 

performance is less effective than the wildfire ensemble forecasts. 

 

7.4 Overall Performance of Ensemble Dust Storm Forecasts 

Figures 19a-19c show the time series of the overall rating (RANK) for AOD and 

PM2.5 predicted by the ensemble mean and participating models during the 2021 Spring 

Dust Season compared with VIIRS enhanced Dark Target (DT) over dark and bright 

surfaces AOD, VIIRS Deep Blue (DB) AOD retrievals, and AirNow surface PM2.5 

observations. 

For AOD, the ensemble mean consistently fluctuated at a poor RANK during the 

intense dust storms in the middle of March for both comparisons with VIIRS enhanced 

DT and DB (Figures 19a and 19b). This suggests that the ensemble mean can produce 

moderately reliable forecasts of AOD during the dust storm events. The inconsistent 

RANK may result from individual model simulation errors caused predominantly by 

uncertainties in the inputs and model representations of chemical and physical processes. 

In addition to the systematic errors in the models, the insufficient satellite-retrieved AOD 

data from limited aerosol detectability over high surface reflectivity areas like deserts and 
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cloud contamination areas can cause discrepancies in evaluations affecting the overall 

RANK because the poor maximum AOD retrievals from these areas are occasionally 

removed by data quality assurance processes (shown as gaps in Figures 13h and 13i) 

(Hsu et al., 2019; Levy et al., 2015; Sawyer et al., 2020; Zhang et al., 2018). 

For surface PM2.5, the ensemble mean also fluctuates in RANK over the period 

(Figure 19c). This fluctuation may be a consequence of model simulation errors and 

inconsistencies in evaluations due to the scarcity of ground observations in active dust 

areas near the Chihuahuan Desert in western Texas and southern New Mexico (Figure 

15g). Therefore, the ensemble mean overall underperformed in PM2.5 forecasting and 

reproduced moderately reliable PM2.5 forecasts during the dust storm events in the 

Chihuahuan Desert. 

In essence, the ensemble forecast improved the predictability of dust related AOD 

and PM2.5 during the 2021 Spring Dust Season in the Chihuahuan Desert, but less 

successfully than expected due to significant biases in participating model simulations. 

These biases in the dust air pollution forecasts are frequently a result of the model 

simulations being affected by large uncertainties in dust and other prescribed emissions 

(wildfire and anthropogenic emissions), dust circulation and deposition processes, 

heterogeneity of soil surface properties, and different applications of dust 

parameterizations, as well as meteorological fields controlling the synoptic scale to 

mesoscale wind speed and direction. In addition, local dust events in the western U.S. 

tend to be limited in duration, caused by small-scale wind circulation, and restricted to a 

particular region, which can all create dust modeling issues.  



62 
 

Furthermore, all statistical analyses suggested that the predictability of ensemble 

forecasts during the dust storms will be significantly improved if participating models 

have complementary underestimation and overestimation. Different models have their 

individual strengths and weaknesses. Although a single model can be excellent at 

predicting dust AOD, it is not necessarily translated into good surface PM2.5 prediction. 

Our results also demonstrate that the model that performs the best in RANK for AOD 

prediction is different from the model that is best at PM2.5 prediction. 
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Figure 16. Time series of RMSE (a), CORR (b), MB (c), ME (d), NMB (e), NME (f), and FB (g) of AOD during 
the 2021 Spring Dust Season from January to March 2021. The AOD simulations by the ensemble mean (solid 
black line) and individual models (dash lines): Model-1 (blue), Model-2 (light blue), Model-3 (green), Model-4 
(pink), Model-5 (orange), and Model-6 (yellow) were compared against VIIRS enhanced Dark Target (DT) AOD 
retrievals. 
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Figure 17. Time series of RMSE (a), CORR (b), MB (c), ME (d), NMB (e), NME (f), and FB (g) of AOD during 
the 2021 Spring Dust Season from January to March 2021. The AOD simulations by the ensemble mean (solid 
black line) and individual models (dash lines): Model-1 (blue), Model-2 (light blue), Model-3 (green), Model-4 
(pink), Model-5 (orange), and Model-6 (yellow) were compared against VIIRS Deep Blue (DB) AOD retrievals 
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Figure 18. Time series of RMSE (a), CORR (b), MB (c), ME (d), NMB (e), NME (f), aH (g), aFAR (h), and FB (i) 
of PM2.5 for the 2021 Spring Dust Season during January-March 2021. The PM2.5 simulations by the ensemble 
mean (black solid line) and individual Model-1 (blue), Model-2 (light blue), Model-3 (green), Model-4 (pink), 
and Model-6 (yellow) were compared against AirNow PM2.5 observations. 
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Figure 19. Time series of the overall rating (RANK) for AOD and PM2.5 simulated by the ensemble mean and 
individual models. The RANK is calculated with four statistical metrics by comparing model predictions against 
VIIRS enhanced Dark Target (DT) AOD (a) VIIRS Deep Blue (DB) AOD (b) retrievals, and surface PM2.5 
observations from AirNow (c) during the 2021 Spring Dust Season. 
 
 



67 
 

Table 5. Overall ensemble mean and individual model performances in forecasting AOD values and PM2.5 
concentrations during the 2021 Spring Dust Season (January-March 2021) based on the evaluation of the values 
of RMSE, CORR, NMB, NME, MB, ME, FB aH, and aFAR, and overall rating (RANK). The best results of each 
statistical metric and RANK are highlighted in bold. 

 

 

7.5 Ensemble Probability Forecast of PM2.5 Exceedances 

In this section, the ensemble exceedance probability forecasts (or binary 

prediction) were evaluated with the AirNow observed PM2.5 exceedances. Overall, the 

ensemble exceedance forecast performed moderately in providing probability forecasts of 

dust-related PM2.5 exceedances (concentration above 35 µg/m3) during the 2021 Spring 
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Dust Season (January-March 2021). Figure 20 shows a contour map of the ensemble 

probability forecast values overlaid by the actual exceedances over the AirNow sites 

across the CONUS. The probability ranges from 20% (exceedances predicted by only one 

model) to 100% (exceedances predicted by all five models).  

On March 16th, 2021, exceedances were observed at three AirNow monitoring 

sites in western Texas, in El Paso (56 and 55 µg/m3) and Socorro (54 µg/m3), and two 

sites in southern New Mexico, in Hobbs (40 µg/m3) and Santa Teresa (57 µg/m3) 

(marked as red filled circles). The ensemble exceedance probability was 20% (one 

model; light blue) and located in western Texas, partially over the downwind areas in 

eastern New Mexico, and along the southern Colorado-Kansas border. The ensemble 

exceedance probability reached 40% (two models; cyan) over relatively constrained areas 

in northwestern Texas to eastern New Mexico. The ensemble exceedance probability of 

20% and 40% were predicted over the Southeast U.S. Coast, predominantly in Georgia. 

However, there were no exceedances observed by the AirNow sites in these areas. These 

false exceedances were consistent with the aforementioned overestimations of PM2.5 by 

most participating models. 

The ensemble exceedance forecast performance is shown as a time series plots of 

aH and aFAR in Figures 21a-21b. The average aH and aFAR over the study period are 

listed in Table 6. High aH value and low aFAR values suggest good agreement between 

model predictions and observations. The lowest ensemble probability of 20% shows the 

best aH of 28.965 and the worst aFAR of 94.936 on average, while the higher ensemble 

probability values show worse aH and better aFAR. Since the low ensemble exceedance 
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probability forecast (20%) used only one member to predict exceedances, these simulated 

exceedances were not calibrated with other members. As a result, a few predicted 

exceedances were actually observed and the majority were false exceedances, leading the 

worst aFAR. In contrast, higher ensemble probabilities used more models to predict the 

exceedances performed more accurately and reliably in forecasting PM2.5 exceedances on 

a smaller or local scale because their predicted exceedances have been calibrated with the 

co-existed exceedances predicted by the other models included in the ensemble. 

Therefore, the false exceedances were greatly reduced, and the predicted dust-related 

exceedances were constrained only in dust-active regions, resulting in better aFAR. In 

this case, the aH of the high ensemble exceedance probability (80%-100%) forecasts 

equal to 0, referring to the failures of most members to predict the exceedances during 

dust storms. In addition, aH of 0 may describe different scenarios depending on the 

aFAR. For instance, an ensemble probability of 100% showing average aH and aFAR 

values of 0 suggests no mutual exceedances predicted by all five individual models 

during the study period (Figure 21a), meaning no false alarms were counted (Figure 21b). 

On the other hand, the ensemble probability of 80% showed an average aH value of 0 

and average aFAR value of 3.409, indicating that there were mutual exceedances 

predicted by four individual models that were false alarms as none of them were observed 

by AirNow sites. All results indicate that the ensemble underperformed in providing high 

exceedance probability (80-100%) forecasts over areas affected by high concentrations of 

dust PM2.5 above the NAAQS health standard.  
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In practice, the accuracy of the exceedance probability forecast depends on the 

original spatial resolutions of each ensemble member. The exceedances simulated by the 

global models generally cover larger areas compared to the regional models, even after 

being interpolated to a higher spatial resolution. Using the multi-model ensemble 

approach generally reduces the discrepancies between the spatial resolutions of the 

ensemble members. Although the ensemble was able to generate only low-medium (20%-

60%) exceedance probability forecasts during dust storms, it can probably be used to 

provide hazardous areas during dust storms in addition to the ground observations, as 

shown in Figure 20. 

The major challenge in dust associated PM2.5 exceedance forecasting is the 

occurrence of dust storms in active dust regions, which are relatively small areas 

compared to other air pollution sources and are limited in duration, generally ranging 

from a few minutes to several hours. Therefore, dust-related exceedances in the active 

dust regions are frequently underpredicted and the remaining predicted exceedances 

elsewhere could be false.  
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Figure 20. Ensemble probability forecast of PM2.5 exceedances on March 16th, 2021 (during the 2021 Spring 
Dust Season). Foreground colors indicate the probability values ranging from 20% (one out of five models 
forecasts the PM2.5 exceedance) (light blue) to 100% (all five models forecast the PM2.5 exceedances) (red). The 
PM2.5 exceedances observed by the AirNow sites are displayed in the red/green circles (red means an exceedance 
recorded by the monitor, and green means no exceedance recorded). 
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Figure 21. Time series plots of aH (a) and aFAR (b) values during the 2021 Spring Dust Season (January-March 
2021) for the ensemble probability of PM2.5 exceedance forecast. Ensemble probability values range from 20% 
(one out of five models) to 100% (all five models). 
 
 
 
Table 6. Averaged aH and aFAR values of ensemble probability of PM2.5 exceedance forecast during the 2021 
Spring Dust Season (January-March 2021), comparing between simulated PM2.5 exceedances and observed 
PM2.5 exceedances obtained from the AirNow ground monitoring network. 
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CHAPTER 8: CONCLUSIONS 

8.1 Conclusion and Recommendation for Future Work 

Wildfires and dust storms are important emission sources that contribute a large 

amount of aerosols to the atmosphere, leading to hazardous air quality, which exerts 

detrimental impacts on society such as adverse health effects, life and property losses, 

and disruption of economic activities. In this study, we developed and evaluated the 

North America ensemble wildfire and dust air pollution forecasts of AOD and PM2.5 in 

order to predict wildfire and dust storm effects on AOD and surface PM2.5. The multi-

model ensemble forecasts were built using three (for wildfire) and two (for dust storm) 

regional models, one global ensemble model, and three global models operated by 

NASA, NOAA, NRL, and George Mason University (GMU). These models include the 

GMU-CMAQ, NACC-CMAQ, HYSPLIT, ICAP-MME, GEFS-Aerosols, GEOS-5, and 

NAAPS. Our ensemble forecast reproduces daily forecasts of AOD and PM2.5 as well as 

the ensemble probability forecast for wildfire and dust related PM2.5 exceedances (24-hr 

average concentrations >35 μg/m3) on a horizontal grid resolution of 12 km×12 km over 

the CONUS during the 2020 Gigafire events (August-September 2020) in the western 

U.S. and during the Spring Dust Season (January-March 2021) in the Chihuahuan 

Desert.  
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The performance of the ensemble forecasting for AOD and PM2.5 during wildfire 

and dust storm events was evaluated with VIIRS enhanced Dark Target (DT) over dark 

and bright surfaces, VIIRS Deep Blue (DB), and MAIAC AOD products, and AirNow 

surface PM2.5 observations by calculating a suite of statistical metrics (RMSE, CORR, 

MB, ME, NMB, NME, and FB) and an overall rating (RANK). In addition, two discrete 

categorical metrics (area hit rate; aH and area flase alarm ratio; aFAR) were employed to 

measure the performance of ensemble mean and ensemble probability in predicting the 

exceedances of the National Ambient Air Quality Standards (NAAQS) for PM2.5 

(concentrations >35 μg/m3) during the wildfires and dust storms.  

For the wildfire case, overall, the statistics results suggested the ensemble mean 

significantly reduces the biases and uncertainties in the wildfire air pollution forecast and 

produces more persistently reliable forecasts during the study period compared to the 

individual forecasts. For AOD forecasts, the ensemble mean was able to improve model 

performance, as indicated by the mean bias values greatly reduced to -0.08 and -0.04 

based on the comparisons with VIIRS DT and MAIAC, the strongest correlations at 0.57 

from a range of 0.30-0.53 (VIIRS DT) and 0.62 from a range of 0.35-0.56 (MAIAC). The 

ensemble mean also achieved the best (1.45 from a range of 0.95-1.44) and second best 

overall RANK among seven members compared to VIIRS DT and MAIAC. For the 

forecasts of surface PM2.5, the ensemble mean outperformed all individual models, with 

the mean bias reduced to 7.40, strongest correlation at 0.60 from a range of 0.43-0.54, the 

lowest fractional bias 0.54 from a range of 0.55-1.32, the highest area hit rate at 87% 

from a range of 40%-82%, and the best overall RANK (2.83 from a range of 2.40-2.81) 
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among six members. In terms of the exceedance probability forecasting (binary 

prediction) performance, the ensemble practically generated a well-suited exceedance 

probability forecast that matched the observed AirNow exceedances fairly well, as 

demonstrated by the lowest area false alarm ratio at 1.52% achieved by the ensemble 

probability of 100%. This result suggested a great potential of the ensemble exceedance 

probability forecast to provide air pollution warning alerts when the PM2.5 concentrations 

exceed the NAAQS health standard level (concentrations >35 μg/m3) during wildfires. 

Although the evaluation result suggested that the ensemble is capable of reducing bias 

and uncertainties in the model forecasts, predicted AOD and surface PM2.5 are frequently 

subject to be decoupled due to the vertical distribution of the smoke particles. 

Nevertheless, the relatively high negative biases and positive biases values of the 

ensemble forecast in the middle of September 2020 demonstrate the underestimations of 

AOD and overestimations of PM2.5 during intense wildfires, which may have been 

influenced by the unusually thick smoke that in turn caused large errors in emission 

estimation and plume injection height calculation (Carter et al., 2020; Pan et al. 2020b; 

and Ye et al. 2021). Furthermore, the variety of model simulations as well as 

meteorology and emissions inputs (both initial and boundary conditions) data sets can 

take into account the uncertainty in the ensemble forecasting. 

For the dust storm case, overall, the statistical results suggested that the ensemble 

mean shows the ability to moderately reduce biases in the AOD and PM2.5 predictions 

over the active dust and downwind areas and provide fairly reliable forecasts during the 

dust events. For AOD forecasts, the ensemble mean improved model forecasts less 



76 
 

successfully than expected, as demonstrated by the mean bias being minimized to 0.01 

and 0.07 (based on the comparisons with VIIRS DT and VIIRS DB, respectively), the 

strongest correlation at only 0.32 (based on VIIRS DB), and having the third highest 

RANK among six members (for both VIIRS DT and DB). For surface PM2.5, the 

ensemble forecasts underperformed, as indicated by mean bias slightly decreasing to 

3.32, a fairly weak correlation (0.40), low area hit rate (14.82%), and the third highest 

RANK among five members. In terms of dust associated PM2.5 exceedance probability 

forecasts (binary prediction), the ensemble unsuccessfully generated high probability 

forecasts of PM2.5 exceedance during dust storm events. Instead, it frequently predicted 

exceedances with low-medium probabilities (20-60%) during the dust events. However, 

the ensemble probability still has the useful capability to estimate the hazardous areas 

affected by the dust PM2.5 exceedances, especially over areas which are generally 

difficult to establish air quality monitoring sites. The predominant obstacles for the dust 

storm ensemble forecasts are the excessive overestimations and underestimations from 

the ensemble members, primarily in the middle of March when extreme dust storms 

occurred in the Chihuahuan Desert. These biases arise from the model simulation errors 

caused by large uncertainties in dust emissions and other emissions like prescribed fire 

and anthropogenic emissions, dust transport and deposition processes, different 

applications of dust parameterizations in dust scheme algorithms, and meteorological 

fields adopted differently in each individual model. In addition, the natural behavior of 

the local dust events in the western U.S. causes issues in dust forecasting because they 
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are generally limited in duration, small-scale wind circulations, and restricted to a 

particular region. 

In essence, using the ensemble approach can reduce biases in air pollution 

forecasts and reasonably improve the model predictability during extreme events such as 

wildfires and dust storms. However, the reliability of the ensemble forecast is still subject 

to types of extreme events due to different emission sources as well as initial and 

boundary meteorological conditions. 

The development and evaluation of the multi-model ensemble wildfire and dust 

storm air pollution forecast for the 2020 Gigafire events and the 2021 Spring Dust Season 

presented here are still at the early stage of deploying the North America ensemble 

wildfire and dust storm forecast. Comparisons between the ensemble and the individual 

models represented in this study will be used to investigate differences between models 

as an attempt to identify the uncertainties in emission and meteorology inputs, as well as 

in chemical transport/dispersion model simulations. Findings from this pilot study will be 

used to improve forecasting performance of the ensemble mean and each individual 

model. Our next step is to extend the multi-model ensemble forecast approach to other 

periods, including the 2021 fire and dust storm seasons. Finally, the qualified ensemble 

forecast will be used to improve real-time wildfire forecasting systems over North 

America to support key decision-making on air quality at local, national, and 

international levels. 
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APPENDIX: THE CONFIGURATION OF PARTICIPATING MODEL 

Table A1. The configuration of participating models included in the ensemble forecasting. 
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