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ABSTRACT 

METHODOLOGICAL AND EMPIRICAL INVESTIGATIONS IN 
QUANTIFICATION OF MODERN OPERATIONAL RISK MANAGEMENT 

Sabyasachi Guharay, Ph.D. 

George Mason University, 2016 

Dissertation Director & Co-Director: Professors KC Chang and Professor J Xu 

 

Establishing robust quantitative metrics which allow decision makers to determine the 

amount of risk in a system with extreme loss events is a problem of interest in many 

scientific fields. One of the fundamental metrics which is universally accepted in all 

fields of risk management is the quantity known as Value-at-Risk (VaR). Both academic 

researchers and industry practitioners are currently looking at ways to make this estimate 

more statistically robust and accurate with minimal assumption requirements. In 

particular, modern Operational Risk Management (ORM), a subfield of risk management, 

closely investigates methodologies to robustly estimate VaR. With this brief background 

in mind, this dissertation investigates two fundamental components of modern ORM: (1) 

Statistically modeling severity (magnitude) of losses and estimating corresponding 

Aggregate Loss distribution; (2) Robust Estimation of Value-at-Risk. One of the key 
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problems in the modeling of loss severity is that there is no currently known flexible 

severity loss distribution which can generalize to fit any type of severity data.  

This dissertation finds two three-parameter statistical distributions, Type XII Burr 

distribution (Burr) and Lognormal-Gamma distribution (LNG), as flexible to fit both 

heavy and thin-tailed loss magnitude data. Also, in reference to the second fundamental 

component of modern ORM, this work examines the fundamental current assumption in 

Monte-Carlo Simulation (MCS) based estimation of VaR: the independence of loss 

severity and loss frequency (count). A theoretical argument is shown along with 

simulation evidence contrary to this fundamental assumption which provides the impetus 

for this work - this dissertation develops two new quantitative approaches for estimating 

VaR which do not rely on the assumption of independence between frequency and 

severity. These methods are known as the following: (1) Data Partition of Frequency and 

Severity (DPFS) through distribution-free method; (2) Distribution based partitioning 

(DBP) of frequency and severity using copulas. The DPFS involves using clustering 

analysis, specifically K-means algorithm, to partition the frequency and severity 

components of the loss data. The DBP approach using copulas is a parametric approach 

where a specific frequency and severity distribution along with a particular copula 

function is specified a priori and then is fit to the data. Verification and Validation 

(V&V) of the two new methodologies for computing VaR through both analytical 

argument and MCS are conducted. In both cases, this dissertation shows the new 

methodologies primarily perform superior to, and in the worst cases at least as well as, 

the current VaR best practices, or “classical” method. In addition, it is shown through a 
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mathematical justification how in two extreme instances, the classical methodology has a 

systematic bias in estimating the VaR. Finally, this thesis contributes to the field by 

implementing these new methodologies on five distinct publicly available datasets from 

four different and diverse domains: (1) Financial Indices data of Standard & Poor's (S&P) 

500 and Dow Jones Industrial Average (DJIA); (2) Chemical Loss spills as tracked by the 

US National Coast Guard; (3) Australian automobile accidents; (4) US hurricane data. It 

is observed that the classical approach inaccurately estimates VaR for 80% of the 

simulated data cases studied and 60% of the real-world data cases studied. The new 

methodologies developed attain accurate VaR estimates which are within the 99% 

bootstrap confidence interval bounds for both simulated and real-world data. In summary, 

this thesis contributes to the overall field of risk management in providing new 

methodologies which better estimate VaR and does not require any critical and 

unnecessary assumptions. Academic researchers can use these methodologies and 

findings from the loss severity analysis to further improve upon more efficient 

methodologies in risk metric evaluations. Industry practitioners can directly apply these 

methodologies to other real-world data (both public and proprietary) as part of their 

toolkit when handling operational risk.   
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CHAPTER 1: INTRODUCTION  

The science of studying rare events is a well-known problem of interest in various 

academic fields ranging from the purely theoretical, such as mathematics and 

mathematical statistics, to diverse real world disciplines like climatology, insurance, 

hydrology and financial systems engineering. Typically, most of these fields have 

focused on the study of events that are frequently occurring - those which occur in the 

body of a probability distribution - leaving a considerable gap in the accurate modeling 

and quantification of rarely occurring events. In most cases, events which occur rarely are 

classified as "outliers" and ignored (or sometimes even incorrectly discarded). It is in fact 

an innate/fundamental part of human nature as argued by Daniel Kahneman in Prospect 

Theory [1] (winner of the Sveriges Riksbank Prize in Economic Sciences in Memory of 

Alfred Nobel) to disregard rare events. In his work, Kahneman shows from psychological 

experiments that humans view near-zero probabilities (rarely occurring events) as 

identical to zero probability (events that simply cannot occur). This perspective from 

psychology drives home the significant importance of developing non-human based, 

accurate modeling of rare events. This is precisely what the field of modern quantitative 

risk management seeks to achieve. The framework for this field is narrated next. 
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1.1 Fundamentals of Quantitative Risk Management Framework 
The overall purpose of the risk management framework is to develop a scientific 

basis for modeling both rarely occurring and common risks. Historically, the focus of this 

framework has been on modeling the more commonly occurring risks. However, more 

recent events such as the 2008 Financial Crisis, 2010 Liquidity Squeeze, 2013 US 

Government potential default on Treasury bonds etc. showed that the so-called Black 

Swan [2-8] events can occur in a short time span (i.e. high frequency) and potentially 

devastate the world economy. These events have been a natural catalyst for many 

academic researchers and industry practitioners to shift the focus of their work to 

analyzing rare events. This has been one of the new focus areas of modern quantitative 

risk management. Thus, while it may be human nature to ignore or neglect most low-

probability outlier events, in the modern risk management context, it is crucial that these 

events are properly modeled and examined. While the mathematics behind low-

probability events has been  rigorously studied since the 1940's [9], applying it in 

rigorous and consistent manner in a modern quantitative risk management framework is 

still missing. Overall this process is considered somewhat of an art rather than a formal 

science. This is partially due to the difficulties borne from data coming from various 

correlated sources in some cases, and in others various independent sources. Properly 

combining all of these data sources is a fully challenging quest in the field of Information 

Fusion [10]. In the modern risk management practice, many simplifications and 

assumptions are made to the mathematics of this process which makes the risk 

management decision-making process incomplete or biased. The primary reason these 
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simplifications have been necessary is that there are multiple sources of data and the 

science of integrating them properly is not well understood and practiced [10].  

Unlike in other academic disciplines, the modern quantitative risk management 

framework has largely been developed in the past decade by for-profit financial 

institutions and government institutions like the Federal Reserve and the Basel 

Committee on Banking Supervision (BCBS) [11] instead of traditional academia. This 

framework’s principal goal is to analyze and quantify the risks associated with various 

events. In this dissertation, the focus is on the risks which are typically faced by any risk 

management institutions (such as insurance companies, federal agencies, banks, etc.). 

Broadly speaking, a financial institution (such as bank, insurance company, hedge fund, 

etc.) is exposed to three important types of risk: (1) Market risk; (2) Credit risk, and (3) 

Operational risk. Market risk can be broadly thought of as macro-economic changes to 

the overall financial landscape (e.g. stock prices, interest rates) which can adversely 

affect the portfolio value of a financial institution [10]. Credit risk can be broadly thought 

of the risk from a failing counterparty in a transaction [10]. These two risks have been 

extensively studied and there is a good confluence between theory and practice along 

with academics and industry practitioners [10]. However, the third risk, an equally 

important branch of risk management, Operational Risk Management (ORM) is a newer 

type of risk and is a much more active area of recent research.  

Market and credit risk can be exploited to minimize loss or maximize profit; 

however, operational risk is unique in that it cannot be used to generate profit, but rather 

the sole goal is to minimize losses. In more precise terms, the goal is to manage the 
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operational risks so that losses are maintained within the financial institution's risk 

tolerance [12]. In the next section, a further detailed description of this risk is narrated.  

1.2 Operational Risk Management 
In 2001, the BCBS formally gave a definition of operational risk known in the 

BASEL I framework. There have been multiple iterations of the exact definition of 

operational risk. Currently however, BASEL III (2010) has defined operational risk as the 

following: "The risk of loss resulting from inadequate or failed internal processes, people 

and systems or from external events" [12]. A few relevant examples of this can include a 

rogue trader who performs unauthorized or illegal financial transactions, losses from 

naturally occurring events such as hurricane Sandy/Katrina, credit card fraud, identity 

theft of federal tax returns, rogue trader activity etc. The loss resulting from operational 

risk comes from multiple data sources and types. To manage the risk, the international 

regulatory agency of BCBS regulates and stipulates conditions for financial institutions. 

One of these is that financial institutions are required to mitigate themselves from all 

types of risk (including operational risk) by holding Economic Capital (EC) of an 

appropriate amount to absorb these losses. In other words, financial institutions are 

required to hold a "rainy day" fund (also known as a capital buffer) to absorb shocks 

which result from operational risk [10]. The key question that arises is how much should 

they hold to absorb what level (percentage) of loss and for how long? If they hold too 

little, a large shock can result in the institution getting wiped out. But if they hold too 

much capital, then they are losing out on opportunity costs of other business activities 

[10]. 
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 The aforementioned concept is one of the key practical questions that arise from 

operational risk. From a mathematical point of view, this concept can be described as the 

Value-at-Risk [13]. Conceptually speaking, a VaR figure of V dollars represents that one 

is X% sure of not losing more than V dollars in time T. So the practitioner sets the time T 

and probability X a priori¸ and computes V accordingly. Formally speaking, one sets an a 

priori confidence level of α ∈ (0, 1) and a time horizon T. The VaRα,T is given by the 

smallest number l such that the probability that the loss of L exceeds l is at most (1- α) in 

time horizon T [10]. Thus, mathematically the VaRα,T is defined as the following: 

  VaRα,T(L) = inf {l ∈ ℝ ∶ P(L > l) ≤ 1 −  α} or 
  VaRα,T(L) = inf {l ∈ ℝ ∶ FL(l) ≥  α}                         (1) 

 

where FL(l) is a continuous and strictly increasing loss cumulative distribution function 

(CDF) [10]. In addition to VaRα,T, there are other quantities that financial institutions 

measure which is similar to Value-at-Risk, namely the conditional VaR, also known as 

Expected Shortfall. This is also given for a confidence level α and time horizon T, but it 

measures the average loss given the fact that the loss exceeds a VaR.  

 Now that the major conceptual framework is given, the next important feature in 

modern operational risk is organizing the loss data. The loss data are organized according 

to seven official Basel III defined event types and eight defined business lines [11]. This 

is usually given in a matrix format as shown below in table (1). Each block in the matrix 

for table (1) below shows that there are different numbers of losses in each cell.  

 Next, the BCBS has described the fundamental of the modeling of the operational 

risk which is known as the Loss Data Approach (LDA) [11]. When modeling operational 
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risk, there are two basic components: (1) Frequency of losses; (2) Severity of losses. The 

simplest explanation is that one is interested in how often losses will occur (frequency), 

and also how large will the losses be given that they have occurred (severity). Banks and 

other financial institutions obviously dread the instances where large losses (severity) 

 
 
 
                       Table 1 Matrix for Typical ORM Loss Data 
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occur in a large number of instances (i.e. frequency). This is known as a high probability, 

high impact event. Contrary to the fears of many chief financial officers, these types of 

events almost never take place. The reason is that any reasonable financial institution will 

have proper risk management practices which would identify key risk indicators (KRIs) 

[12] that can prevent/mitigate frequent occurrences of large losses. In otherwords, any 

good financial institution will have checks in place to ensure that their employees cannot 

regularly steal billions of dollars. So if there is a rogue employee committing theft, it 

should be a rare event, and not a frequent event. However, there is an economic trade-off. 

To achieve close to zero losses, a financial institution can employ the strictest of KRI's. 

For example, they can mandate employees change their computer access passwords every 

minute. This practice for example, can ensure with near certainty that the company will 

not face any economic losses due to a hacked password. However, the trade-off for this 

procedure will be that most employees will face enormous frustration and will most 

likely be unable to be productive and thus lead the financial institution to loss in 

economic productivity. Thus, there comes the issue of trade-off. How high does the 

financial institution want the KRI's to be placed versus how much EC does the financial 

institution wish to hold as back-up reserves? This is a key unresolved question still. 

Overall, the modern ORM framework primarily is focused on low probability, high 

impact events, i.e. rare occurrences of large losses. 

 According to the guidelines from the BCBS, the aggregated operational loss 

process can be modeled as a random sum model [10]. The compound loss process (also 
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known as the Aggregate Loss) is assumed to follow a random sum {S} expressed as the 

following: 

                                                          S =  ∑ Lk  , Lk ~⏞
iid

 Fγ               N
k=0                           (2) 

Here the loss magnitudes (severity) are described by the random independent and 

identically distributed (i.i.d.) sequence of {Lk}. This is assumed to follow the CDF Fγ 

which belongs to a parametric family of continuous probability functions and the 

counting process N is assumed to follow a discrete counting process. The key point here 

is that in equation (2) there is an inherent assumption of independence between severity 

and frequency distributions. Is this a reasonable assumption? This fundamental 

assumption will be investigated in this dissertation- the modern framework assumes 

complete independence. 

In figure (1) below, it is graphically illustrated how the frequency and the severity 

process are traditionally thought as "independent" (silo) processes which come together 

to calculate the annualized aggregate loss [10]. The aggregate loss is used to find the final 

VaR estimate. In the modern ORM framework, the frequency of losses is estimated along 

with the severity of the losses using two different statistical distributions. The reason is 

the frequency comes from a discrete probability mass function (PMF), while the severity 

is assumed to be continuous and comes from a probability density function (pdf). The 

LDA approach then advocates combining the severity and frequency via MCS, to 

compute the annualized (or any other specified time unit) aggregate loss. Once the 

aggregate loss distribution has been determined, one can estimate the Expected Loss (EL) 

and also upper quantiles to obtain an estimate of the operational risk VaR. Most financial 
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institutions tend to estimate the VaR using a confidence level of at least 99.9% (if not 

99.99%, which would hold for a 1 in 10,000 year event).  

Throughout this dissertation, the term modern is used in front of operational risk. 

The reason is that there is a more qualitative branch of operational risk which looks at 

risk events based on the framework of likelihood and impact. The likelihood approach is 

based on subjectivity and thus is now classified as traditional operational risk 

management. The fundamental differences in the approach are shown in figure (2) below 

(taken directly from reference [14]).  

Now that the overall processes of frequency and severity have been described, the 

next stage involves explaining in detail how to measure the frequency and the severity. In 

practice, most financial institutions have an internal loss data collection exercise which 

they conduct every year. They break down the loss severity and frequency for each cell in 

the matrix in table (1) above. As such, an operational risk modeler can fit the losses that 

were collected for event type a and business line b - say (L1
a,b, L2

a,b, ..., LN
a,b) - to 

estimate the severity distribution. Likewise, a similar approach can be used to statistically 

estimate how often the losses are happening to get the frequency distribution. These are 

thought of as two distinct data sources. The idea is to combine these two approaches and 

derive one distinct estimate. An overview of the frequency and severity process is 

narrated next.  
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Figure 1 Frequency & Severity Process for VaR Estimation 

 

   
Figure 2 Traditional versus Modern ORM Framework (taken from reference [14]) 

 

Three types of discrete distributions, i.e. probability mass functions, are primarily 

used to model the frequency of losses: (1) Poisson; (2) Binomial; and (3) Negative 

Binomial distribution (NBD). The Poisson distribution has an interesting characteristic 

where μ (mean) is equal to the σ (standard deviation) and is characterized by a single 

parameter, λ. This distribution is the easiest one to model since it involves only 

statistically estimating a single parameter. The binomial distribution has two parameters, 
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n (sample size) and p (probability). Likewise, the negative binomial distribution also has 

two parameters, r (# failures till success) and p (probability). In terms of mean and 

variance, the binomial distribution is appropriate when μ > σ, while the negative binomial 

distribution is appropriate when μ < σ.  

In most instances it is possible to determine the frequency distribution used by 

simply computing the relationship between sample mean and sample variance. Overall, 

there is not much difference when using different frequency distributions. In figure (3)  

[10], an overlap analysis of the similarity in the frequency distributions behavior is 

shown. It is clear to see the overlap when distinguishing between Poisson, Binomial and 

Negative Binomial distributions. It shows that in most cases there is not a great benefit in 

spending laborious effort to determine the ideal frequency distribution. A notable 

exception would be if historical loss data collection exercise of a financial institution 

clearly exhibits cases when say μ > σ in all cases (empirically). In this case, a binomial 

distribution should be chosen as a fit for the frequency. Likewise the same would be true 

if the reverse was observed and then the NBD could be used.  
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Figure 3 Comparison of different frequency PMFs 
 

Thus the choice and usage of frequency distribution is not of utmost importance 

in the LDA modeling approach. The choices for the severity distribution types are 

narrated next. 

 Unlike in the case of the frequency, there are a plethora of valid statistical 

distributions that can be used to model the loss severity data. Listed below is a non-

exhaustive list (for illustrative purposes only) of sample statistical distributions that are 

typically used to fit loss data severity: (1) Lognormal -- since losses are always strictly 

non-negative; (2) Type XII Burr (Burr) distribution; (3) Generalized Pareto distribution 

(GPD); (4) Weibull; (5) Pareto; (6) Lognormal-Gamma [14]. The current LDA approach 

suggests that users fit a variety of severity distributions and then use statistical goodness-

of-fit (GoF) tests to determine the "optimal" severity distribution. This approach is highly 

time consuming and can lead to false positive instances.  
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In figure (4) [14], a typical operational loss data set for the severity of losses is 

shown. This figure shows that there exists in almost all cases a loss data collection 

threshold, say T. The reason is that financial institutions may regularly lose small 

amounts from pennies to even 100 dollars due to rounding or clerical mistakes (teller 

hands out an extra hundred-dollar bill for example, and this is discovered after customer 

picks up the deposit). Most institutions will not keep an inventory of these losses in the 

Loss Data Collection exercise that they undertake. The economic reason that is most 

often provided is that institutions are interested in larger losses and the ones that tend to 

occur more frequently. For their internal exercise, financial institutions keep track of the 

largest losses. That is why in figure (4), the loss severity histogram is shown starting 

from a finite positive loss and moving forward.  

 
Figure 4 Typical Characteristics of Loss Severity Data 

 

Now the exact approach to the LDA can be visualized accurately as shown below in 

figure (5) [14]: 
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Figure 5 Visual Overview of modern ORM process 
 

Thus so far, the overall modern ORM framework has been described. As 

mentioned in this section, one key component is the presence/absence of correlation. Are 

the cells in the matrix in table (1) correlated? How about severity and frequency of loss? 

These are important questions and thus the dependence structure is narrated next. 

1.3 Dependence Structure 
The simplest assumption for LDA would be to assume independence. However, 

from real-life studies [14-19], there is ample evidence that a dependence structure exists 

between the cells in the matrix in table (1). Thus, it is important to use measures of 

dependence. The classical measure of dependence is that of the Pearson's correlation 

coefficient [20].  

This measure is a good quantity if it is known that there is a linear relationship 

between the two variables of interest. However, in most cases of modern ORM, it is well 
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known that the relationship is highly non-linear in nature. Thus, the classical Pearson's 

correlation coefficient is inadequate. To model the highly nonlinear dependence structure, 

one idea is to utilize the mathematical technique of copulas.  

In the broad sense, a copula is a mathematical method for modeling the joint 

distribution (i.e. full dependence structure which includes linear & nonlinear 

dependencies) of multiple loss events. There are various types of copulas based on the 

statistical relationship between the joint distributions. Further details of the dependency 

structure and proposed research in this area are narrated in section 3.3. With this, the 

overall background for modern ORM has been narrated. Next, the goal is to proceed to 

describe the research objectives and the unique contributions that come out of this 

dissertation. 

1.4 Overall Research Objectives and Unique Contributions 
The research in this dissertation is two-fold: (1) Identify the potential flaws in the 

fundamental metrics for risk assessment, especially in instances of extreme loss types. 

Further, in addition to identification, the goal is to develop methodologies for improved 

risk assessment; (2) Investigate the performance of these methodologies across diverse 

scenarios (with sufficient uniqueness among them to capture the real-world possibilities) 

and perform V&V to demonstrate the merit of the newly developed methodologies on 

both simulated data and real-world datasets relevant to important national problems. For 

the methodological research, there are two major components: (1) Modeling the Severity 

and Aggregate Loss distribution; (2) Robust estimation of VaR through distribution-free 

and parametric based methodologies. For the first question, the current best practices 
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involve a trial-and-error based methodology of trying n number of severity and frequency 

distributions and then using statistical goodness-of-fit tests and choosing one. This is a 

time consuming procedure and usually does not yield optimal results. Instead of focusing 

on this approach, in this dissertation, the goal is to find flexible severity distributions 

which can fit the loss data and accurately estimate quantiles in the Aggregate Loss 

(AggLoss) distribution. The contribution of finding this approach is to give practitioners 

a quick way to estimate the quantiles of the Aggregate Loss distribution without having 

to rely on GoF tests.  

Second, one of the primary questions that this dissertation addresses is the validity 

of the independence assumption between frequency and severity. This is one of the 

fundamental premises in modern ORM. My goal in this dissertation is to advance the 

risk-metric VaR calculation in such a manner where this assumption of independence 

between severity and frequency is not required. For example, suppose the loss data 

generation process has clear dependence or correlation between severity and frequency. 

A natural financial case is where the process exhibits that the higher the loss severity, the 

less frequent the loss occurs. In that case can a better method (which does not assume 

independence of frequency and severity) than the classical VaR estimation methodology 

via MCS be developed and be useful? One of the first goals here is to show through a 

mathematically rigorous argument that the current approach (known forward as the 

"classical" approach) has a bias in the estimation of VaR (under specific conditions). This 

argument is also demonstrated via large scale MCS. After showing the theoretical 

limitations in the classical methodology, the goal is to develop two types of quantitative 
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methods which account for cases where there is clear dependency between severity and 

frequency. The two types should be independent of each other, and one is non-parametric 

(distribution-free) while the second is a parametric approach.  Both of these approaches 

are verified and validated using large scale MCS. For the empirical portion, the goal of 

this dissertation is to analyze publicly available data from different sectors which 

involves risk: (1) Financial Sector Losses; (2) Chemical Spills handled by US Coast 

Guard; (3) Automobile Accidents from Insurance domain; (4) US Hurricane losses based 

on natural calamities. One of the primary objectives in this dissertation is to use publicly 

available data so that the work can be easily peer-reviewed. One of the apparent flaws in 

most empirical analysis papers in modern ORM is that the data used is highly proprietary 

and not shared with the general public. This dissertation will only use publicly available 

data across different and diverse domains. The goal is to show how the new 

methodologies developed can be useful not just in the financial risk domain, but to 

demonstrate also in other diverse domains such as insurance, climatology, government 

loss, to name a few. This discovery process will be useful in exploring potential risks and 

anomalies of modern ORM which may have been ignored in traditional analysis and open 

new avenues for practitioners.  
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CHAPTER 2: LITERATURE REVIEW 

While modern ORM is a relatively new academic discipline (compared to market 

and credit risk which has been extensively studied since the mid-20th century), there is 

already a plethora of academic and industry based literature in this field. In this 

dissertation, the literature review will be broken down into three distinct categories: (1) 

work on modern ORM estimation; (2) work on accurately modeling the dependency 

structure; (3) empirical applications of modern ORM and their results; and finally (4) the 

gaps in the current literature. There are several subsections for each of these topics which 

are narrated next. Overall, this chapter adds to the basic background provided in Chapter 

1. This addition shows the current state of research in areas which have direct pertinence 

to the planned contribution of this dissertation.  

2.1 Modern Operational Risk Management 
In section 1.2 of the dissertation, there is detailed introductory background 

information regarding modern ORM based on the LDA approach. This approach is now 

considered “standard textbook approach” which is used by operational risk practitioners 

in any respected risk management institution. However, there has been considerable 

academic and industry based research on improving the LDA approach for modeling 

quantitative operational risk. For this portion there are three components where there is 

active research: (1) Modeling severity of losses; (2) Modeling frequency of losses; (3) 



 

19 
 

Modeling aggregate loss to estimate VaR. The next section begins by narrating the 

seminal papers in this subfield from which most of the academic research is based upon. 

2.1.1 Modeling Severity of Losses 
One of the first papers in this area is by de Fontnouvelle et al. (2003) [21] in a 

technical report where loss data is first used to quantify operational risk. In this paper 

three types of severity distributions are studied: (1) Generalized Pareto distribution 

(GPD); (2) Exponential; and (3) Log-logistic distributions. They estimate VaR using each 

of these distributions and determine that regardless of choice of severity distribution, the 

operational risk VaR figure is an important consideration for risk management 

practitioners in addition to market and credit risk VaR.  

Later on, Rachev et al. (2006) [22] focus on Peak-over-Threshold (POT) 

distributions, namely Pareto class family for modeling operational risk. They study the 

general mathematical properties of these distribution classes and specifically investigate 

the power tail decay property. They apply their study to a loss data collection exercise 

from the 2002 BCBS and find estimates for the VaR and ES. 

Shortly afterwards, one of the primary research contributions in severity modeling 

is done by Dutta and Perry (2007) [23] in their technical report. In this technical report, 

the authors study various severity statistical distributions and advocate the use of the four 

parameter g&h distribution (this is later described in section 3.1.1). They study the 

following other severity distributions: (1) Exponential; (2) Weibull; (3) Gamma; (4) 

Truncated Lognormal; (5) Log-logistic; and (6) GPD. They find in a small dataset that it 
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is difficult to determine any universal severity distribution which can work for all type of 

data (heavy, thin, and normal tailed).  

Later on in 2008, Ergashev [24] discusses the benefits of using the Lognormal-

Gamma (LNG) distribution for modeling operational risk. This paper focuses on methods 

to estimate the LNG distribution using Markov Chain Monte Carlo (MCMC) methods. In 

addition to their paper, a research report by Samad-Khan et al. [14] in the Society of 

Actuaries provided a first glimpse of using LNG for modeling risk.  

More recently, there has not been a major push in severity modeling per say. 

However, Guillen et al. (2011) [25] did add on to the research presented in [22] by 

modeling the small, moderate and large losses with Pareto Positive Stable (PPS) 

distribution. The advantage of this distribution is that it can be quickly fit using the 

Method-of-Moments (MoM) as opposed to the classical Maximum Likelihood 

Estimation (MLE) based methods. They test their data on a synthetic operational risk data 

and find faster convergence of results as opposed to MLE. 

  Overall, the fundamental paper in [23] is primarily used for choosing severity 

distributions. A clear conclusion is not given by the above authors, but rather "ad-hoc" 

rules of when one can choose a particular one is described below. Practitioners in general 

tend to use lognormal distribution to model their financial institutions' severity losses 

(due to easy of convenience in computation). Even currently, there is no consensus on 

whether a "universal" severity can be found to fit general operational risk data.  
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2.1.2 Modeling Frequency of Losses 
As shown in the previous section, the general consensus is that the choice of 

frequency distribution is not as crucial as the choice of severity when computing the final 

VaR estimate. As expected, this subfield of modeling the frequency has not received as 

much attention in academic and industry literature. However, there are some important 

papers for understanding this sub-field which is narrated next. 

 One of the first papers is by de Fontnouvelle et al. (2007) [26]. In this paper, 

different PMF's, namely Poisson, Negative Binomial and Binomial, are studied for a 

specific operational risk loss database from the BCBS. They conclude that the Poisson 

distribution is a reasonably robust model for their limited real dataset.  

Later on, Dahen and Dionne (2010) [27] use external data from a non-standard 

operational risk consortium (called Algo OpData) and developed a geometric distribution 

regression model. This technique is commonly used in marketing research data when 

modeling count related data. They found that the geometric model proved to be working 

well (in terms of estimation) comparing to the regular PMFs that are used (such as 

binomial, NBD, Poisson).  

Most recently, a couple of important papers on frequency modeling have been 

well received in the community. Gomes and Gzyl (2014) [28] argue for new statistical 

techniques to estimate the standard frequency PMFs. Using synthetic data, they have 

found that the K-Means algorithm and the Expectation Maximization (EM) algorithm do 

better at estimates for frequency than classical MLE or MoM.  

In addition, Badescu et al. (2014) [29] expand on the work in [28]. The authors 

use an Erlang-based multivariate mixed Poisson distribution to model the frequency. 
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They assume the loss severities follow the mixture of Erlang distributions and thus are 

able to successfully develop a closed-form formula for the aggregate loss distribution. 

They test the computational efficiency and accuracy of this approach using a modified 

loss data set and claim promising results.  

Overall, the specific analysis of types of frequency distributions for modeling 

losses has not been a great academic focus in this field. The above limited work shows 

the relatively low interest in pursuing this avenue much further due to the primary fact 

that Poisson distribution acts as a good benchmark for modeling real-world frequency.  

2.1.3 Modeling Distribution of Aggregate Losses and VaR 
For this type of methodology, a series of mathematically rigorous papers have 

been developed. The goal of this subfield is to find optimal ways of computing the 

aggregate loss and then the VaR. One of the first significant researches conducted in this 

area is done by Panjer (1981) [30]. The paper (which arose out of interest in insurance 

applications) provides a recursive algorithm to compute the probability distribution of a 

compound random variable. The limitation of this approach is that it only works for (a, b, 

0) class of distributions. A further detail of this is explained in the section 3.1.1.    

After the landmark paper of Panjer [30], the next authoritative work comes from 

Böcker and Klüppelberg (2005) [31]. In the paper, the authors propose a simple closed 

form approximation for operational VaR. The key caveat here is that the severity 

distribution must be that of a heavy-tail type. They argue that mathematically this 

approximation is valid for large datasets. In order to do this, they compute error bounds 

for this approximation.  
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Böcker and Sprittulla (2006) [32] extended the above paper [31] with a minor 

extension. They assume that the operational loss severity has a finite mean (but no 

condition on higher moments), and they significantly reduce the approximation error 

from the paper [31]. In both of these papers [31-32], there are major assumptions made to 

the loss severity. The advantage of this methodology is that they find a closed-form 

approximation which can significantly reduce computational time. However, this formula 

is known to have errors for small-samples. 

The work of Jin and Ren (2010) [33] use a different methodology rather than 

MCS to compute the aggregate loss. Like Panjer's method, they do not rely on Monte 

Carlo to compute the VaR. Instead they use the Fast Fourier Transform (FFT) and extend 

the concept of exponential tilting for univariate FFT as previously shown. They describe 

how to attack several numerical issues such as aliasing, and floating-point representation 

error. They argue that the FFT method is as reliable as using Panjer's method. However, 

they only show that it works for certain cases of severity distributions. 

Opdyke et al. (2012) [34] describe the limitations of using MLE as an approach 

for severity estimation and the VaR estimation. This paper argues that if there is even a 

modest violation of the i.i.d. assumption in the data, the MLE estimates are highly non-

robust. They provide rigorous simulation studies to show their argument. 

Extending the above paper, Opdyke (2013) [35] mathematically argues that the 

current MC method of estimating VaR overestimates the VaR due to Jensen's Inequality. 

Specifically, they show that when using LDA approaches for any of the heavy-tailed or 

skewed severity distributions, all unbiased estimators of the severity distribution 
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parameters generate biased capital estimates due to Jensen's Inequality. In this paper it is 

argued that VaR always appears to be a convex function of these severities' parameter 

estimates because the severity quantile being estimated is usually large and heavy-tailed. 

They show for a class of severity functions, the reduced-Bias Capital Estimator can 

correct for this. They show its applicability for several severity functions such as 

lognormal, Burr, and Gamma. 

2.2 Dependency Structure Analysis 
In all of the aforementioned papers, there is an implied assumption of 

independence between the severity and the frequency component. However, when 

modeling real life operational risk losses, in almost all cases there is some correlation or 

dependency structure. There have been many papers which have modeled this structure. 

In this literature review, the most promising and relevant papers are described below. 

These fall under two classes: (1) Copula analysis; (2) Global Correlation structure. This is 

narrated next. 

2.2.1 Distribution Dependent Analysis via Copula 
As previously described in section 1.3, there are several standard methods of 

measuring correlation or dependency structure. One of the most popular methods in 

industry since the 1990's is the copula approach [36]. It has been widely used in market 

and credit risk modeling. However, it isn't until the early 2000's that this methodology is 

first introduced for modern ORM.  

Frachot et al. (2004) [37] provide a first glimpse in the academic literature on 

addressing both the frequency and severity of losses individual correlations across the 
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matrix cell (as shown in table (1)). They calculate an upper bound of the aggregate loss 

correlation for both high frequency low severity data, and low frequency high severity 

data in a limited operational risk dataset. They showed that the correlation between two 

aggregate losses is typically below 5%, and thus open a wide score for large 

diversification effects. This is much larger than anticipated by the BCBS.  

Di Clemente and Romano (2004) [38] did some of the primary work on Extreme 

Value Theory (EVT) along with copula analysis for insurance loss data. They utilize a 

MCS in order to determine the loss distribution and calculate both VaR and ES. They 

assume a severity distribution of lognormal in the center and left tail, and then model the 

right tail using POT type distributions. They use both a t-Copula and Gaussian copula to 

model across three business lines. They find that the Gaussian copula is more stable for 

the VaR estimates. 

The use of non-standard copulae (i.e. Gaussian or Student's t distribution based) is 

first introduced by Böcker and Klüppelberg (2008) [39]. The authors here invoke the 

concept of Lévy copula to model the dependence structure of operational risk loss events. 

They derive first order approximations for the correlations with this copula assuming a 

heavy-tailed GPD severity distribution. They conclude from simulations that it is not 

worthwhile to estimate precise frequency correlations between different cells (i.e. in table 

(1)), but all effort should be made for accurate modeling of the severity. This was based 

on large MCS based studies of their methodology. 

Fantazzini et al. (2008) [40] study observed correlations in operational losses in 

the Operational Risk Exchange database. They implement a Gaussian and t-Copula to 
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model the correlations across three business lines testing several severity distributions 

along with several different PMFs for the frequency. They observe that the most stable 

estimates for VaR came from using the Gamma distribution for severity and Poisson 

distribution for frequency. They also reported some computational efficiency issues in 

using MLE based methods.  

Abate et al. (2009) [41] have extended the work in [34] to generalize how using 

EVT for severity and standard copulas can be used to model operational risk across 

several business lines. They assume that the severity data can be modeled using POT 

distribution (such as the GPD). Then they show that using VaR as a risk measure may 

lead to an inaccurate estimation (based on MCS study). They show that there are stability 

issues (in terms of computation) when using the GPD based distribution. They find that 

the t-Copula is useful in modeling their synthetic dataset which they obtained. 

The aforementioned works all use a frequentist approach to finding and 

estimating the optimal copula, but the work of Valle (2009) [42] first introduces in the 

operational risk context the usage of the Bayesian copulae. They develop a MCMC 

model to estimate both the Bayesian Gaussian and Bayesian t-Copula. They use 

uninformative priors and then use MCMC method of Gibbs sampler to compute the 

posterior distribution for each case. They apply this methodology to a sample financial 

institutions' loss data across five business lines. They find evidence of good MCMC 

convergence and argue that the Bayesian approach can be superior due to pitfalls in 

frequentist MLE procedures. 
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Böcker and Klüppelberg (2010) [43] extend their work from [31] to derive 

approximations for a closed form VaR for a multivariate operational risk context. They 

add the use of Lévy copula to model the dependence structure. They work out a first 

order approximation to this VaR estimate and compute error bounds. They try several 

different types of severity distributions for a fixed Poisson frequency and compute the 

error approximations in each case. Overall they argue that the Lévy copula is useful 

(theoretically speaking) for multivariate VaR analytical approximations. 

Finally, Brechmann et al. (2013) [44] introduces the idea of pair copula 

constructions for modeling both the frequency and severity components together. Using 

this approach, the authors are able to model the dependence of the seven-dimensional 

distribution of the losses per event type (i.e. in table (1)), in terms of pairwise dependence 

and tail dependence. They analyze a specific financial institution's operational loss data. 

Their results show that there is a significant decrease in the required economic capital 

comparing to the standard BCBS approach of summing up the VaRs across each cell in 

the matrix. The bivariate copulas used involve the Gaussian and Clayton based copulas. 

Overall, there is a rich literature in using copulas in modern ORM framework. In 

most cases, there has been the use of standard Gaussian and or t-Copula with some 

exceptions to using Lévy copula. In almost all cases this has been conducted from a 

frequentist rather than a Bayesian approach. Besides the copula, there has been some 

work on developing a non-linear global correlation coefficient. This is narrated next. 
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2.2.2 Global Correlation Coefficient 
One of the strengths of using a correlation coefficient is that one can give a simple 

metric to describe the dependency structure. For copulas, one is given a full distribution. 

However, there has been work since the late 1990's on developing a global correlation 

coefficient. This measure has some technical issues when computing from a real-life 

dataset.  

The work of Darbelley (1998) [45] in a technical report explains the concept of 

global correlation coefficient which can be defined from the mutual information between 

two random variables. The global correlation coefficient, λ, is a function of two random 

variables X and Y is defined as λ(X, Y) = (1- exp(-2I(X, Y)))1/2 where I(X, Y) is the 

mutual information between two random variables X and Y. Some interesting 

mathematical derivations from mutual information are shown in the paper.  

Next, the question is how to measure the mutual information from numerical data. 

Moddemeijer (1999) [46] wrote an interesting paper for this application. Specifically, in 

the case of two signals with dependent observations, he derives a statistic to estimate the 

variance of the histogram based mutual information estimator. There are several 

statistical flaws in this methodology such as high bias and variance. To alleviate this, he 

proposes some corrections based on histogram modeling. 

Dionisio et al. (2004) [47] describe how mutual information can be used to 

measure dependency in nonlinear time series. This paper has some theoretical first order 

approximation estimates for the estimator in question. They study two different nonlinear 

time series for an empirical application and find good convergence property. 
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The same authors extend the above paper in 2006 [48] to develop an entropy 

based independence test. They develop a non-parametric approach by conducting a new 

test of independence among distributions based on Shannon's entropy. They compute the 

critical values of their new test through simulation. In addition, they apply their new 

metric to two time series data from market risk, and find good convergence properties. 

Kaskov et al. (2004) [49] extend the work in [47-48]. The authors here develop 

two classes of improved estimators for mutual information from samples of random 

points with a bivariate joint distribution function. They argue that the histogram binning 

method has computational weakness, and instead advocates the use of entropy estimates 

from K-nearest neighbor distances. They prove that this measure is data efficient adaptive 

and have minimal bias. They perform a test on two times series market risk data sets, and 

find good convergence with known results. 

These methodologies were first introduced to operational risk very recently by Li 

et al. (2014) [50]. They apply the global correlation coefficient using the variance-

covariance matrix approach for computing VaR. They apply this approach to operational 

risk losses from three major Chinese banks and compute the VaR of each bank. They find 

that the VaR estimates for the overall sector for the Chinese regulators are lower than 

required based on the global correlation coefficient. The dataset is proprietary and not 

shared to the public. 

Overall, significant work has been developed for the global correlation 

coefficient. However, there are still some unresolved questions on how to accurately 
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compute it for estimating VaR. The variance-covariance approach has a few assumptions 

which may not be true for many datasets.  

2.3 Application of Modern ORM to Real-World data: Empirical Research 
The focus of most of the previous papers has been on extending theory of modern 

ORM and then potentially applying them to a relevant dataset in the proprietary loss 

exchange database. However, there have been several papers which focus on simply the 

empirical applications of modern ORM. The vast majority have been in financial 

application although there is an interesting application to chemical spills which is 

narrated at the end.  

One of the first relevant papers which simply focus on the applications for 

financial institutions modern ORM is that of Aue and Kalkbrener (2006) [51]. This paper 

presents the LDA model for the Deutsche Bank for their internal data. They specifically 

work on scenario analysis along with the traditional VaR estimation using a lognormal 

severity and Poisson frequency. The interesting aspect of this paper is that they perform 

sensitivity analysis on how the LDA approach estimates can be different from scenario 

analysis.  

Next, Chapelle et al. (2008) [52] analyze the implication of the LDA approach 

through a study of four categories of two business lines and two event types from real-life 

data from a large financial institution (name is withheld). They analyze the data using a 

mixed model by calibrating one distribution for describing "normal" losses (namely 

under $100 million) and another POT distribution for larger losses. They use a NBD for 

modeling the frequency of these losses across all matrix cells. They also uniquely 
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perform some sensitivity analysis to see how the impact of modern ORM on bank 

profitability. 

Cope and Antonini (2008) [53] perform extensive empirical research on the 

observed correlations among operational losses in the loss exchange database. They use 

Spearman's rho and Pearson's correlation coefficient, ρ, to estimate these correlations. 

They do not employ any copula based approach. They find important implications for 

diversification benefits when aggregating losses across different operational risk 

categories. 

Cope et al. (2009) [54] extend the previous work but study the property of data 

sufficiency in internal and external operational risk data. Here they investigate what 

minimum thresholds are necessary for collected internal operational risk data and their 

consequences in severity and frequency modeling. They find that a minimum threshold of 

500 data points is necessary for good MLE convergence. 

Colombo and Desando (2008) [55] use a purely scenario based approach for 

computing VaR for the Italian bank Intesa Sanpaolo. This is based on finding a loss 

distribution from expert opinions of five institutional managers. They compare their 

findings from a scenario based approach to that of the standard LDA approach assuming 

lognormal severity and Poisson frequency. They find that for this particular bank, the 

scenario approach is more efficient (in time) in estimating their economic capital 

requirements. 

Finally, a recent paper in 2014 by Liu and Cortes [56] shows an interesting 

application of modern ORM for the five top banks in Taiwan. This paper specifically 
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demonstrates that by applying risk managerial strategies, banks can improve their 

performance based on a risk-adjusted return on capital (RAROC). They apply a 

stochastic frontier approach and perform shock absorption to these systems and observe 

the potential operational risk loss fallout. This approach is very different from LDA but it 

uses concepts form market risk to analyze operational risk fallout in Taiwanese banks. 

The previous papers all focus on empirical applications to financial institutions. 

There is one notable exception in that there have been applications to chemical spills. The 

idea here is how much economic capital should an industry hold to mitigate itself from 

the worst type of spills? A 2007 paper by Meel et al. [57] extensively analyze the 

accident database up till 2006 from the National Response Center (NRC) of the US Coast 

Guard. This paper is the first to perform an operational risk assessment using frequency 

and severity to compute an ES. Instead of using MC approach, they use the FFT to 

estimate the VaR and ES figures. 

Overall, there have been a plethora of application based papers in modern ORM. 

The vast majority consist of applications to banking and financial losses. However, a 

notable exception is found in modeling losses from chemical spills along with looking at 

aviation data, and market risk from a loss perspective. 

2.4 Gaps in the Literature & Primary Motivation for Dissertation 
There are several areas in the literature where contributions can be made. The 

fundamental over-arching question that is not answered in the literature is the following: 

Is it fair to assume the independence of severity and frequency? In the financial world, it 

is well-known that in any capitalist system, severe losses should not happen with high 
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frequency. The reason is that any competent institution will develop KRIs to ensure that 

large losses do not occur frequently which would wipe them out. This similar logic 

should exist for government based loss models. The current best practices assume the 

independence of severity and frequency, and then moves forward in the research. Can 

methodologies be developed which are agnostic to the relationship between severity and 

frequency and robustly estimate the VaR? This dissertation challenges the 

aforementioned fundamental premise by developing two new quantitative methodologies 

to address this issue. Two additional specific areas where there is a potential gap in the 

literature which this dissertation addresses are narrated next. 

For the severity modeling portion there are still the following outstanding 

questions: 

 (1) Can a "flexible" severity distribution be used to model severity losses? 

 (2) How well does the flexible severity distribution play in accurately estimating 

the VaR?  

With regards to the dependency structure (between frequency and severity) there 

are several unresolved questions: 

(1) There is still no agreement on whether some copula functions are more 

powerful than others in modeling dependence between frequency and severity? Can a 

mixture distribution be used? 

(2) Can distribution-free approaches be used to model this correlation? 

(3) Do these new approaches with dependency structure perform at least as well 

(if not hopefully better) as the classical approach to estimating VaR? 
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Finally for the empirical application of modern ORM methodology section, 

almost all current applications have been either to financial institutions' individual losses 

or data from a proprietary exchange. The problem with this approach is that the data is 

always proprietary and cannot be validated through peer-review. What is missing in the 

literature is the usage of publicly available loss datasets across different domains. To 

address this gap, one of the fundamental components in the empirical analysis of this 

dissertation is using publicly available data from different domains such as financial 

losses, spills monitored by government agency, insurance losses and natural calamities. 

This way the work can be peer-reviewed by anyone with internet access. In addition, 

there is potential for showing the pertinence of the new methodologies across different 

disciplines.  
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CHAPTER 3: METHODOLOGY 

This chapter describes the methodology used in the study of quantification of 

modern ORM. In this chapter and each subsection, the current state-of-the-art 

methodology is narrated at first. Afterwards, the contribution that this dissertation makes 

is described. This way there is a delineation of what the contribution of this dissertation is 

in direct tandem to what is currently used as the state-of-the-art.   

3.1 Modeling Frequency & Severity Component 

3.1.1 Current State-of-the-Art 
 

This section expands on the introductory materials described in chapter 1. To 

begin, the fundamental definition of frequency refers to the number of events that occur 

within a given time period (this is defined from physics). In the modern ORM context, 

frequency is a stochastic parameter and thus is expressed through a probability mass 

function. Therefore, the domain for the frequency distribution is a subset of all non-

negative integers, i.e. ℤ. Therefore, in theory, any discrete statistical distribution on non-

negative integers can be potentially used to model frequency. The details of the three 

most commonly used distributions are given next. 

The most commonly used PMF is that of the Poisson. The Poisson probability 

distribution is given by the following list of probabilities on non-negative integers: 

P(N = k | λ) = λ
k

k!
e−λ, k = 0, 1, 2, … 
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where (λ > 0) is a parameter of the distribution. Thus the Poisson distribution is a 

single parameter distribution. It is straightforward to show that the mean and the variance 

of the Poisson distribution are both equal to λ. The estimation of the parameter λ is taken 

in the form of either method of moments or using maximum likelihood estimation, both 

of which yield the same estimator.  

The next popular one is the negative binomial distribution. The negative binomial 

distribution is given by the following probabilities on the set of ℤ: 

P(N = k | r, p) = Γ(r+k)
k!Γ(r)

pr(1-p)k, k = 0, 1, 2, …, r > 0, 0<p<1 
 

where Γ(r) = (r - 1)! and r (# of successes till failure) and p (probability) are two 

parameters of the distribution.  

The NBD is more flexible than the Poisson distribution, since it has two 

parameters. Hence, it is possible to compute the mean and the variance of this distribution 

as the following: 

  E(N) = r(1-p)/p, Var(N) = r(1-p)/p2 
 

Therefore, the variance is greater than the mean, a distinctive feature that 

differentiates it from the Poisson distribution. Thus, if empirical evidence suggests that 

there is excessive variability in the frequency, then the natural conclusion is using the 

negative binomial distribution rather than the Poisson distribution should be more 

fruitful. 

An interesting fact about the NBD is that it can be modeled as the Poisson 

distribution mixed with a prior distribution on its mean parameter, i.e. λ. Thus, if one 
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introduces volatility to the mean parameter (λ) of the Poisson distribution, one can 

statistically obtain the negative binomial distribution [14]. This can be done using a 

Gibbs sampler methodology [20]. Suppose there is a prior distribution of a gamma pdf 

with Gamma(mean=1, variance=β). Then suppose one draws a random value, say g, from 

the aforementioned gamma probability distribution. Then, conditional on the given g 

(which was just drawn), draw an integer N from the Poisson distribution with mean of 

λg. The resultant integer value, will follow the NBD with mean of λ and variance of 

λ(1+β) [14]. 

This way of analyzing the NBD has a clear implication for MCS. In other words, 

the NBD data can be simulated by first drawing a number g from the Gamma distribution 

and then drawing a random number from the Poisson distribution with mean of λg, where 

λ is the mean frequency. In this case, it is more convenient (for interpretability) to re-

parameterize the NBD in terms of mean (λ) and the variance of the frequency and to 

determine the parameter β of the gamma distribution accordingly. The mean and the 

variance of the frequency can be estimated by calculating the sample mean and sample 

variance from internal data [14]. 

Next, the binomial distribution is of importance for modeling frequency. The 

binomial probability distribution is given by the following equation: 

P(N = k |p, n) = n!
k!(n−k)!

pk(1−p)n−k, k = 0, 1, 2, …, n, and 0≤p≤1, 
 

where n (sample size) and p (probability) are the two parameters of this 

distribution. 
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The mean and variance for the binomial distribution is the following: 

  E(N) = np, Var(N) = np(1−p) 

Thus, the binomial distribution is applicable when frequency has a variance 

smaller than the mean. Next, the details of the severity component of the losses are 

discussed. 

Operational loss data is almost always collected above a certain dollar (loss 

amount) threshold. This makes it difficult to model loss severity, because, except for a 

very few well-defined distributions that are developed to model truncated data sets (such 

as the Pareto distribution), most loss severity distributions are developed to model data 

sets where there was no threshold (where the data was collected from the ground up). 

These distributions cannot be used in their original form to fit truncated data. A 

discussion on fitting truncated data is presented next. 

The primary method of estimation is maximum likelihood estimation for fitting 

empirical data. This is primarily because of the statistical property of consistency, 

asymptotic normality and efficiency [20].   MLE is a process used to fit empirical data to 

a theoretical distribution which is selected a priori. If one is given a pre-specified 

theoretical distribution, MLE is used to find the set of parameters that have the maximum 

probability (i.e. likelihood) of describing the empirical data set. Generally, the likelihood 

function is the PDF, but where loss data are censored or truncated at a threshold, say T, 

an adjustment is required to incorporate the missing mass of data. In order to 

accommodate truncated data, the likelihood function must be modified to describe the 

conditional likelihood (conditioned on the threshold T). For left truncated data, one can 
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define a normalized PDF by taking the original PDF, and dividing it by the probability of 

the data being drawn from above the threshold, T, as shown likelihood (LH) below [14]: 

  LH(θ | T, x1, x2, … , xn) =  f(x1, x2, … , xn | T, θ)  =  ∏ PDF(xi|θ)n
i=1

[1−CDF(T|θ)]n 

θ�MLE = argmaxθ∈Θ LH(θ | T, data)                     (3) 

where θ is the parameter vector, the xi refers to the actual empirical data (usually 

transformed into a log scale, i.e. in logarithmic values), and T is the threshold value 

above which the data is collected. The goal is to use numerical constrained optimization 

techniques (since the parameter space is almost always bounded) to estimate the value of 

θ�MLE from the entire theoretically possible parameter space. 

In general, the values of a probability density function are typically small (less 

than 1), and the product of many such terms will quickly render the joint LH value to a 

level that is computationally indistinguishable from 0. Thus a better objective function to 

be maximized is the log-likelihood function (LLH) for data set (x1,..., xn), which 

transforms the above LH into the following equation (4): 

LLH =  log(LH)  = −n × log[1− CDF(T| θ)]  + ∑ log[PDF(xi| θ)] i                (4) 

Next, the details of fitting the severity distribution are provided. There is a 

plethora of statistical distribution functions which can fit the severity. Ideally one 

requires that the distribution contain positive support. The following non-exhaustive list, 

which is presented next, provides some commonly used distributions and their PDFs. The 

work in [23] includes four parameter distributions which are not used by industry due to 

lack of consistency in MLE fits. Either the PDF or CDF (based on mathematical 

simplicity) for each of these distributions are mathematically described below. 



 

40 
 

 Lognormal (LN) 

The PDF is the following: 

f(x| µ,σ)  = 1
xσ√2π

exp �− 𝑧2

2
� = ϕ(z)

σx
 , where z = log(x)−µ

σ
 

 

for all x ≥ 0, where (μ ∈  ℝ, σ > 0) are the domain of the parameters of the 

distribution and φ(•) is the density function for the normal distribution with mean µ and 

variance σ2. 

 Lognormal-Gamma (LNG) 

The PDF is the following: 

f(x | µ,σ, k)  = � γ(y|
∞

0

k)ϕ(x|μ, σ2 × y)dy 

 

where γ(•) is the density function for the Gamma distribution. Similar to 

lognormal, the data consists of x ≥ 0, and where (μ, k ∈ ℝ, σ > 0) is constant parameter of 

the distribution. The value of k is the kurtosis of the distribution (where normal has a 

value of 3).  

A more intuitive way to write the LNG distribution is that X is distributed as LNG 

given the following: 

    Y ≡ log(X) =  μ +  σ�γZ          
 

where μ, σ are the mean and standard deviation, and Z is a standard normal 

distribution and γ is a random variable from a Gamma(1/k, k) distribution. 
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 Weibull  

The PDF is the following: 

f(x | a, b)  =
b
a

�
x
a

�
b−1

exp �− �
x
a

�
b

� 

for all x ≥ 0, where (a > 0 is scale parameter and b > 0 is shape parameter). 

 Three parameter type XII Burr distribution (Burr) 

The PDF is the following: 

 f(x | ϕ, τ, α)  =  �
ατ
ϕ � �

x
ϕ�

τ−1
�1 + �

x
ϕ�

τ
�

−(α+1)
 

 
for all x ≥ 0, where (ϕ, τ, α > 0). It is a very stable distribution family that can 

express a wide range of distribution shapes. The Burr distribution subsumes cases of 

many commonly known distributions such as gamma, lognormal, beta distributions 

(excluding U-shaped instances). Also, there are some instances where several compound 

distributions can be algebraically shown to match a Burr distribution. An example of the 

compounding process is compounding a Weibull distribution with a gamma distribution 

for its scale parameter which will result in algebraic equivalence to a Burr distribution 

[20]. An alternate example of this is compounding an exponential distribution with a 

gamma distribution for its rate parameter, 1/μ, can be shown to have the same 

characteristics as a Burr distribution [59]. Taking two asymptotic limiting cases of the 

first two parameters of the Burr distribution yields a Pareto and a Weibull distribution 

[20].  
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The aforementioned Burr distribution is well-known to fit a wide range of 

empirical data from diverse areas such as hydrology, failure modeling, climate change, to 

financial risk loss modeling [59]. The power of this distribution is that it can capture a 

broad range of data (heavy to thin tails) across its parameter set.  

 Generalized Pareto distribution  

The CDF is the following: 

F(x |a, b) =  �
1 − exp �−

x
a

� , if b = 0

1 − �1 +
bx
a �

−1/b

, otherwise
� 

where a > 0 (also known as scale), and b (sometimes called shape) is a real 

number.  

 Pareto 

The CDF is the following: 

F(x | a, T)  = � 1 − �
T
x�

a

, if x > 𝑇

0,                   otherwise
� 

where a > 0 is a constant parameter of the distribution and T is the threshold.  

 Gamma 

The PDF is the following: 

   f(x | a, b)  = 1
baΓ(a)

xa−1exp �−x
b

� 
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where (Γ is the usual gamma function, i.e., Γ(r) = (r-1)!, b > 0 is the scale 

parameter, and a > 0 is the shape parameter). Now with this knowledge in mind, there are 

several research questions. This is narrated next. 

3.1.2 Research Contribution in this Area 
There is a consensus in that Poisson is a reasonable choice for frequency. 

However, there is absolutely no consensus on whether there is a flexible severity 

distribution which can be applied to reliably model severity. Obviously it is not possible 

to find a single distribution which can best fit a universal severity data set. However, it is 

well-known statistically that higher parameterized distributions are more "flexible" in 

being able to fit more complex data types. However that does not imply that using 

distributions with the highest number of input parameters will be better, because then 

there is the issue of the “curse of dimensionality” and possibility of over-fitting. The 

higher the number of parameters to estimate, the higher the amount of data is needed for 

accuracy. Thus a practical question is the following: Can a "flexible" severity distribution 

be found which can fit various types of loss severity data? 

As mentioned in the literature review section 2.1.1, the only paper (technical non-

peer reviewed work) is in [23] where a serious investigation on what severity distribution 

should be used is discussed. The aforementioned paper introduces the four-parameter 

statistical distribution, g&h distribution, to the modern ORM framework. However, this 

paper does emphasis the weakness of using this distribution for limited size datasets. This 

distribution is defined as the following for the four non-negative parameters (a, b, g, h): 

f(Z | a, b, g, h) = a+ b*(exp(gZ)-1)*(exp(hZ2/2)/g 
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The goal for this part of the research will be to test the robustness of high 

parameter distributions along with extreme-value type distributions of GPD, Pareto (for 

example) for their robustness when modeling different types of losses. Thus the research 

goal will be to use robust large-scale MCS studies and test the sensitivity of the final 

VaR, EL figures (given a known frequency distribution). Can a single distribution model 

data reasonably well for different types of loss severity? This dissertation successfully 

answers this question in chapter 4.   

3.2 Modeling Aggregate Loss distribution  

3.2.1 Current State-of-the-Art 
One of the main concepts that is crucial in modern ORM is computing not only 

the VaR, but also the Expected Loss (EL) and Unexpected Loss (UL) from the aggregate 

loss distribution (i.e. combining frequency and severity). The plot in figure (6) [14] 

illustrates this pictorially.   

The VaR here can be computed and then subtracting the EL gives the important 

concept of UL. The UL is one of the crucial practical points for any operational risk 

manager. A natural question that arises next is the following: Is it possible to easily 

compute these properties for the Aggregate Loss distribution? In general, it is very 

difficult if not impossible to exactly describe the aggregate loss distribution, in closed 

form (e.g., in terms of the distribution function), even when the frequency and severity 

distributions are both well known. In general, numerical methods such as MCS, Panjer 

and FFT are used to calculate the aggregate distribution and its relevant statistics (such as 

the EL, UL and VaR).  
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Figure 6 Pictorial Representation of EL and UL from Aggregate Loss 

 

There is a relatively simple relation between the mean of Aggregate Loss (S from 

equation (1)) and the frequency (N) and severity (L), as mathematically shown below. 

  E(S) = E(N)×E(L), where E(•) represents the Expectation operator.  
 

This is due to the fact that one can apply the law of iterated expectations [20] as 

follows: E(S) = E[E(S|N)] .  However, for each N fixed, one can adjust the previous to 

the following:  

 E(S|N) = ∑E(L) = NE(L).  

→  E(S) = E[NE(L)] = E(L)×E(N) 

 
Similarly, it is possible to show that Variance (Var) of the Aggregate Loss can be 

expressed as the following: 

Var(S) = Var(N)*E(L)2 + E(N)*Var(L), where Var(•) represents Variance. 
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Now the above can be shown to be true from the following argument invoking at first the 

fundamental definition of variance, i.e.  Var(S) = E(S2) – E2(S).  

On the other-hand, E(S2) = E[E(S2|N)] from the law of iterated expectations. 

Now, E(S2|N) = Var(S|N) + E2(S|N) = N*Var(L) + N2*E2(L).  

Hence, E(S2) = E[N*Var(L) + N2*E2(L)]  

          = E(N)*Var(L) + E(N2)*E2(L)  

          = E(N)*Var(L) + [Var(N) + E2(N)] *E2(L)  

          = E(N)*Var(L) + Var(N)*E2(L) + E2(N) *E2(L).  

Therefore,  

Var(S) = E(N)*Var(L) + Var(N) *E2(L) + E2(N) *E2(L) - E2(S)  

            = E(N) *Var(L) + Var(N)*E2(L)  

 
The last statement is true since E2(S) = E2(N) *E2(L) (this is just squaring the 

mean). Note one of the key assumptions here is the independence between frequency (N) 

and severity (L).  

The next portion shows to compute the curve in figure (6). There are several ways 

to perform this calculation: (1) Monte Carlo; (2) Panjer's Algorithm; (3) Fourier 

Transform (FT).  

Monte-Carlo Simulation 

 In almost all cases, an exact analytical solution is impossible to obtain for the 

Aggregate Loss distribution. Therefore, the conceptually best way to move forward is to 

use simulation. This is done by applying the calculation of the aggregate loss distribution 
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modeled within the modern ORM framework via two steps: (1) event frequency, and (2) 

individual loss severity. The algorithm is presented below next [10]: 

 1.  Determine the severity distribution and optimal parameters from MLE fits. 

 2.  Determine optimal frequency distribution parameters. 

    2.1 Set a high simulation threshold value N (minimum of 10,000). 

 3.  Set the iteration counter t = 1. 

 4.  Draw a random number of losses from the Frequency distribution, n. 

 5.  Given the number n, draw n losses, L1, L2,...,Ln from the severity distribution. 

 6.  Sum all n of the severity losses and call that value St (Aggregate Loss for time t). 

 7.  Increment iteration counter t = t+1, and go to step 4.  

 8.  Iterate till t hits the maximum iteration threshold, N. 

 9.  {S1, S2, ...,SN} is the Aggregate Loss distribution. Next, empirically compute the  

  mean, and 99.9 percentiles to get EL and VaR.  

  Simulation is also flexible to incorporate new logical steps in loss generation that 

could easily change the resultant distribution. For example, one may want to know what 

impact the purchase of new insurance contracts (i.e. insuring for extreme losses) would 

have on the aggregate loss distribution and subsequently the VaR estimate. Instead of 

having to refit the after-insurance severity distribution (likely to cause model 

inconsistency and inaccuracy compared to the severity without insurance), the simulation 

process can incorporate an additional step for insurance coverage after each event loss is 

generated (i.e. using a logical check if insurance is applied or not). The resultant 

aggregate loss distribution would automatically have the insurance component built-in, 
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and the result can be compared to the case where insurance is not purchased. Also in this 

case the difference due to model inconsistency caused by severity distribution fitting is 

minimized since the insurance component is checked as a logical step during the 

simulation [14]. 

Panjer's Algorithm 

Panjer's recursion is currently widely used in the insurance industry but not much in 

the modern ORM and risk management community. Panjer's algorithm [30] has the 

following goal to compute the distribution of S, the aggregate loss distribution: 

                                             S =  ∑ Li
N
i=1        

 

where N is a discrete random variable distributed on non-negative integers and {𝐿𝑖}𝑖
𝑁

P

  is a 

sequence of i.i.d. random variables and L represents the individual losses. One of the 

requirements for this approach is that L is independent of N, and that L comes from a 

discrete distribution. Now most severity distributions are continuous (like lognormal, 

Burr, Weibull, etc.).  Therefore, the algorithm first discretizes the entire loss region, 

namely, the half interval [0, +∞), into loss buckets with equal bin width so that they can 

be alternatively discretely numbered such as 0, 1, 2, 3, …, n and so on (similar to how a 

histogram is created). Depending on the multiplier that one chooses to associate with 

each bucket, each integer number may refer to a specific monetary value (this is purely 

for labeling purposes). As an example, if the multiplier is $1,000, then bucket 1 would 

correspond to $1,000 and bucket 2 would correspond to $2,000, etc. Therefore, the 

numerical implementation of Panjer’s algorithm first requires that the severity 
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distribution be assigned as discrete probabilities for each loss bucket 0, 1, 2, ..., n. For 

practical purposes, there is a maximum bucket number n, after which all the buckets will 

have zero probability. So in order to use Panjer's algorithm one must discretize the values 

of the severity distribution (round to the nearest integer). Next the mathematical 

formulation is described. 

To begin this process it is important to define the following: 
 
 pn =  P[N = n]       for n=0,1,2,... 

 fk =  P[Li = k]       for k=0,1,2,..., 

 fk
n =  P[L1 +  L2 +  ⋯ +  Ln = k]  for n=1,2,3,... and k=0,1,2... 

 gk =  P[S = k]      for k=0,1,2.... 

 

Now, Panjer's recursion is defined as the following for (a, b, 0) class of distributions such 

as the following: 

pk =  P[N = k] = �a +  
b
k� ∗ pk−1,       k ≥ 1 

for some a + b ≥ 0 and p0 is determined by the fact that ∑ pi = 1∞
i=0 . 

Now define the Probability Generating Function (PGF) of a random variable N as 

PGFN(z). Mathematically this is known to be the following: 

PGFN(z) = PN(z) = E[zN] (for which the expectation exists) 
 Now,  

g0 = PGFN(f0) 

 g0 = p0 ∗ exp(f0b)   if a = 0, 
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gk =  
1

1 − af0
� �a +  

b ∗ j
k � ∗ fj ∗ gk−j

k

j=1

 

For a Poisson random variable for example, a = 0, b = λ, and p0 = exp{-λ}.   Using 

the above recursion formula, it is possible to obtain the distribution of the aggregate loss 

function.  But the question that naturally arises is how large is it necessary for k to be 

from the above equation? In general, it is necessary to choose a k such that the following 

will hold true [30]: 

� gk  
k

i=0

> 99.99% 

 Since this algorithm has nested loop, the complexity of calculation for Panjer's 

recursion is of 𝒪(n2), where n is the number of buckets for which aggregate probabilities 

are desired. Therefore, the higher the percentile, the more computational time is required 

for calculation. The actual time required may also depend on the granularity of loss 

buckets, mean frequency, and the overall computational speed [14]. 

 On the surface, Panjer’s algorithm does not require the fitting of severity 

distribution, since empirical data can be directly turned into loss bucket probabilities 

(equivalent to bin ranges in histogram modeling). This is very problematic, especially for 

operational loss events where loss data is not detailed enough (granular) for a fine lattice 

partition (based on data collection). Moreover, a lack of detailed tail-end descriptions (for 

example, probabilities are all zero for buckets beyond the maximum loss that has been so 

far collected) almost always leads to serious underestimation of the high percentile 

capital (i.e. upper tail) for aggregate losses [14]. Thus, in reality an operational risk 
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modeler may have to go back and use MLE to fit a theoretical distribution for severity, 

which is then discretized into loss bucket probabilities. In this case, one still needs to 

tackle the issues of how to fit a distribution to truncated loss data (same as in standard 

MLE modeling). As an alternative, Panjer’s algorithm adapted to absolutely continuous 

severity distributions is also available; but its numerical implementation still needs 

discretized integration [14]. 

 Perhaps the more serious disadvantage of Panjer’s method is that it is 

inappropriate for calculating diversified total risk exposure based on multi-unit loss 

distributions (even if correlations are assumed to be zero among business units), since it 

was not originally designed [30] to deal with multivariate distributions (i.e. correlations). 

One way to get around this problem is to lump all the data from multiple units into one 

single/large pool and apply Panjer’s method accordingly, to get a diversified aggregate 

loss/VaR estimate [14]. However, this requires re-specification of the severity and 

frequency distributions for the pooled data set and model inconsistency may well 

dominate the true benefit of diversification when compared to the VaR estimates for 

individual business lines [14].  

Fourier Transform (FT) 

 This method allows the density of a probability distribution to be turned into its 

associated Characteristic Function (CF). To explain this concept, it is important to begin 

expand equation (1) as the following for the random sum S (from equation (2)): 

S = L1 + ⋯ + LN 

⇒ FS(l) = P(S ≤ l) 
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=   � P(N = n) ∗ P(S ≤ l |N = n)
∞

n=0

 

Now, it is important to calculate the PGF of S, PS(z), as the following: 

PS(z) = E[zS] =  � E[zL1+⋯+LN|N = n]P[N = n]
∞

n=0

 

                           =  � E �� zLj

n

j=1

� P[N = n]
∞

n=0

 

     =  ∑ [PL(z)]nP[N = n]∞
n=0  

                        = E�PL
N(z)� =  PN[PL(z)] 

The above is true assuming the independence of L1, ..., LN for a fixed n. Now the CF 

always exists for any random variable (unlike the moment generating function). The CF 

of a random variable S, φS(z) is defined as the following [58]: 

φS(z) = E[exp{𝑖zS}] =  PN[φL(z)], where i = √-1 (imaginary number). 
 
Now for any continuous function f(l), the FT is the mapping: 

f̃(z) ∝ � f(l)exp(𝑖zl)dl
∞

−∞
 

While the Inverse Fourier Transform (IFT) can be used to recover the original function as 

the following: 

f(l) =
1

2π
� f̃(z)exp(𝑖zl)dz

∞

−∞
 

Now for the distribution of losses, f(l) is the PDF of the severity losses. The FT can be 

optimized by using Fast Fourier Transform (FFT) instead of a discrete FT. The algorithm 

is the following in the modern ORM context [58]: 



 

53 
 

 (1) First discretize the loss severity into the following steps: 

      fL(0), fL(1), ..., fL(n-1), where n = 2r for some integer r, and n is the number of    

      points desired in the distribution of aggregate loss, S, fS(l). 

 (2) After discretization of the losses, the FFT is computed to obtain φL(z),  i.e. the  

                  CF of the discretized distribution.  

 (3) Using the PGF transformation of loss frequency distribution, transform the  

        values obtained in Step (2) to calculate the value of  φS(z)  = PN[φL(z)]. 

 (4)  At this stage if one computes the Inverse FFT, the aggregate losses, S is  

        obtained. 

 (5)  Sort the aggregate losses, S, and compute VaR. 

 Note that the FFT requires the loss region to be discretized into 2n lattice points 

with corresponding (discrete) probabilities given for any type of loss severity. For the 

same reasons as mentioned in the previous section on Panjer's algorithm, it is highly 

undesirable to use the empirical distribution directly out of the actual loss data for 

severity. This is especially true when the purpose of this exercise is to calculate the VaR 

estimate for the aggregate distribution subject to a very high percentile level (e.g. 99th 

quantile or above). Therefore, a continuous distribution has to be fitted (using MLE) and 

then discretized for the lattice points [14].  

 One important note is that the speed of FFT procedure is typically faster 

(depending the precision magnitude necessary) than the Panjer's recursion. For example, 

the computational complexity of FFT is of 𝒪(log2n), where 2n is the number of lattice 

points (i.e., loss buckets for the modern ORM context) for the loss region [14]. Notice 
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that unlike Panjer’s algorithm; here the set of lattice points always represents the full loss 

severity spectrum (rather than the region up to a certain percentile). Since the actual 

number of lattice points required is only a function of desired level of precision, the 

percentile level of VaR to be calculated does not directly impact the computational speed 

of the final VaR estimation. However, it does have an indirect impact of the speed, to the 

extent that finer lattice partition may be necessary for a robust estimate of the upper tail 

VaR regions.  

Single-Loss Approximation Formula  

 There is a closed form formula for the VaR for certain special cases of frequency 

and severity in the classical case [31-32]. This formulation assumes that the severity 

follows a heavy-tailed distribution. Statistically speaking, this means that the severity 

comes from a class of subexponential distributions, meaning that their tails decay slower 

than any exponential tail. The precise mathematical definition of a subexponential 

distribution is that the tail of the sum of n subexponential random variables has the same 

order of magnitude as the tail of the maximum random variable among them [31]: 

lim
𝑥 → ∞ � P(X1+ X2 + ⋯+Xn> 𝑥)

P(max(X1,X2,⋯,Xn)>𝑥)
� = 1 for all n ≥ 2 

In otherwords, the sum of n i.i.d. severities is most likely to be large because of one of the 

terms being large. Another way to look at this phenomenon is that severe overall losses 

are due to a single large loss rather than the consequence of accumulated small 

independent losses [31]. Now assuming that the frequency distribution is either Poisson 

or NBD with distribution f(N), then under specific weak regularity conditions [32], it has 
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been shown that the following holds true for the VaR as the quantile (κ), κ → 1 given 

severity distribution is a subexponential with cdf of F: 

VaR(κ) =  F−1 �1 − 1−κ
E[N] (1 + 𝑜(1))�  (5) 

Specifically if, F is LN(μ, σ) and N is Pois(λ) then the single-loss approximation 

following equation (5) from [31] above is the following (where Φ-1 is the inverse of a 

standard normal cdf): 

VaR(κ) =  exp �μ − σΦ−1 �1−κ
λ

��                               (6) 

A more refined approximation to the above equation is calculated in [31]. This 

approximation does a refinement by mean correction as the following if F is LN(μ, σ) and 

N is Pois(λ): 

 VaR(κ) =  exp �μ − σΦ−1 �1−κ
λ

�� + (λ − 1)exp �μ +  σ2

2
�     (7) 

These approximations are used in the following section to give a mathematical argument 

as to why the classical methodology is biased in extreme cases of disparity between 

frequency and severity. 

3.2.2 Research Contribution in this Area 
 One of the major areas of contribution in this dissertation is using a distribution 

free methodology to better estimate the VaR quantity. The classical methodology (the 

current state-of-the-art) makes a fundamental assumption: independence of frequency and 

severity. This dissertation starts by addressing this question: Can one come up with a 

universal method which can address cases where frequency is independent of severity 
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and the reverse case, i.e. frequency is dependent of severity? The current classical 

methodology assumes the case where frequency is independent of severity. To motivate 

this question, a theoretical argument is presented which demonstrates that in certain 

circumstances the classical methodology systematically either underestimates or 

overestimates the VaR. To further buttress the mathematical argument, large scale MCS 

studies are performed to show the weaknesses in the classical methodology. After 

demonstrating the shortcomings of the classical methodology both theoretically and 

computationally, a new approach is developed using distribution free methods from 

cluster analysis. Afterwards, a parametric-based approach is shown using copulas to 

estimate VaR without using the assumption of independence between severity and 

frequency. These are narrated next. 

3.2.2.1 Mathematical Argument Showing Bias in Classical Methodology 
 One of the first questions that this dissertation asks is if there is any need to 

modify the classical approach. Recall again from the previous subsection that the 

classical approach posits that frequency is independent of severity. The limits of the 

classical approach are tested next using a mathematical argument.  

 Suppose that there are two independent compound Poisson processes (SX, SY) 

which have two components: (1) Loss Severity (X, Y) and (2) Loss Frequency (N, M) 

such that: 

SY =  � Yi 
N

i=1

 

SX =   � Xj 
M

j=1
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where X ~ LN(μ, σ), Y ~ LN(μ/k, σ), while N ~ Poisson(λ) and M ~ Poisson(λ/l), where 

k, l > 1. 

 
Then a compound Poisson process, SZ, is defined such that:    
 

Z =  �
Yi   with p =

m
m + n

Xi  with p =
n

m + n

� 

 

SZ =   � Yi 
N

i=1

+ � Xj 
M

j=1

 

 
where SY denotes the random sum (i.e. aggregate loss) for Y, and SX denotes the random 

sum for X, and SZ denotes the random sum for X+Y. Note that P{SZ ≤ z} = F(Sz) is by 

definition the Aggregate Loss distribution and VaR(SZ | κ) = F-1(Sz | κ) is defined for a 

right tail quantile, κ. Sx represents the "High Severity/Low Frequency" Regime and SY 

represents the "Low Severity/High Frequency" regime. For this analysis, the operational 

risk is divided into two distinct cases. In Case (I), the mean severity parameter (M) is 

much larger than the mean frequency parameter (Λ), while the variance parameter of the 

severity (Σ) is fixed and very small. In Case (II), the mean severity (Μ) parameter is 

much smaller than the mean frequency parameter (Λ) (and the variance (Σ) is fixed and 

small). This is formalized in the following manner.  

Case (I): Mean Severity >> Mean Frequency  
 

 In this case, the average severity is significantly larger than the mean frequency. 

From an analytic point of view, this means that Μ ~ 𝒪(exp(Λ)), and fix Σ to be small 

(low variance model) such that 0 < Σ < 1, and M to be large, i.e. M >> 1 and the mean 
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frequency is at least one event per time unit, i.e. Λ ≥ 1. For simplicity sake, Σ is set to be 

0.8. The severity is assumed to follow a lognormal distribution while the frequency 

follows a Poisson distribution. 

Case (II): Mean Frequency >> Mean Severity 
 
 In this case, the average frequency is significantly higher than the mean severity. 

Specifically, suppose that Λ ~ 𝒪(exp(exp(M))), and let fix Σ to be small (low variance 

model) such that 0 < Σ < 1 and Λ to be large, i.e. Λ >> 1. The severity is assumed to 

follow a lognormal distribution while the frequency follows a Poisson distribution. 

 Now how can one approximate the truth? It is argued that in Case I, the severity 

dominates the frequency, the tail region of SX will approximate the VaR(SZ | k), where 

κ→1 in Case I. Likewise for Case II, the tail region of SY approximates the VaR(SZ | κ), 

where κ →1 since frequency dominates severity. This argument is shown formally and 

then validated through simulation in the next section. 

 To begin the theoretical argument for Case (I), the Single Loss Approximation 

[31] as shown in equation (6) is implemented. This gives the following set of equations: 

VaR �SX | κ, μ, σ, λ
L
� ≈ exp �μ −  σΦ−1 � 1−κ

λ
L

��                                    (8) 

VaR �SY | κ, µ
k

, σ, λ� ≈ exp �µ
k

−  σΦ−1 �1−κ
λ

��                                      (9) 

 μ ~ 𝑂(exp(λ)), so exp(λ) is substituted for μ in the RHS of (8).  

VaR �SX | κ, μ, σ, λ
L
� ≈ exp �eλ −  σΦ−1 � 1−κ

λ
L

��                                    (10) 

VaR �SY | κ, µ
k

, σ, λ� ≈ exp �e
λ
k −  σΦ−1 �1−κ

λ
��                                     (11) 
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Φ−1(x) ∝ erf −1(x) 

The Maclaurin series expansion of erf-1(x) (this is the error function from approximating 

the normal integral) centered on x = 0 has the following property:  

erf-1(x) ∝ x + 𝒪(x3).  

erf-1(1/λ) ∝ 1/λ + 𝒪(1/λ3). 

Therefore, the RHS of (10) and (11) can be approximated as the following: 

VaR �SX | κ, μ, σ, λ
L
� ≈ exp �eλ −  σ L(1−κ)

λ���������
A

�                                    (12) 

VaR �SY | κ, µ
k

, σ, λ� ≈ exp �e
λ
k −  σ �1−κ

λ
����������

B

�                                     (13) 

Next, examining the rate of change of A and B (from equations (12)-(13) from above) 

with respect to λ: 

∂A
∂λ

= eλ +  σ
L(1 − κ)

λ2  

∂B
∂λ

=
e

λ
k

k
+  σ

(1 − κ)
λ2  

Now observing the region of the extreme right tail, i.e. κ→1, then limκ→1 σ L(1−κ)
λ

= 0 for 

λ > 1 and L fixed and finite. Likewise, limκ→1 σ (1−κ)
λ

= 0 for λ > 1 can be computed. So, 

the rate of change of A is larger than B with respect to λ because k > 1. Also the 

dominant term in both A and B is their first term. Since exp(λ) always dominates over 

exp(λ /k) given that k > 1 (easily seen through Taylor expansion of exp), the VaR(SX | κ) 

> VaR(SY | κ) as one approaches the upper right quantile. Case (II) is proceeded to next 
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and that usage of the updated VaR approximation [32] from equation (7) is adapted since 

frequency portion dominates in this instance.  

 
Case (II) using Single Loss Approximation with Mean Correction 

 

VaR �SX | κ, μ, σ, λ
L
� ≈ exp �μ −  σΦ−1 � 1−κ

λ
L

�� +  �λ
L

− 1� exp(μ)exp �σ2

2
�     (14)                             

VaR �SY | κ, µ
k

, σ, λ� ≈ exp �µ
k

−  σΦ−1 �1−κ
λ

��  +  {λ − 1}exp �µ
K

� exp �σ2

2
�    (15)                            

 
For Case (II), λ ~ 𝒪(exp(exp(μ))), so exp(eµ) is substituted for λ in the RHS of (14)-

(15).  In addition, the approximation of Φ-1 is also used next (as used in the above Case 

(I)).  

VaR �SX | κ, μ, σ, λ
L
� ≈ exp �μ −  σ � L(1−κ)

exp(eµ)
�� + �exp(eµ)

L
− 1� exp(μ)exp �σ2

2
�       (16)                   

VaR �SY | κ, µ
k

, σ, λ� ≈ exp �µ
k

−  σ � 1−κ
exp(eµ)

��  +  {exp(eµ) − 1}exp �µ
K

� exp �σ2

2
�  (17)                        

 
Now the 2nd terms of the RHS of (16) and (17) are important terms since they are much 

larger in magnitude.  Since exp(eµ) >> exp(μ), the RHS of (17) is larger than the RHS 

of (16) (since L > 1). So the VaR(SY | κ) > VaR(SX | κ). 

Thus, it has been shown that for Case (I) the "True" VaR, i.e. VaR(SZ | κ)  is 

approximated as the following: 

lim
κ→1

VaR(SZ | κ) ≃  VaR �SX | κ, μ, σ,
λ
l� ≈ exp �μ −  σΦ−1 �

1 − κ
λ
l

�� 

Likewise, for Case (II) the "True" VaR, i.e. VaR(SZ | κ) is approximated as the following: 
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limκ→1 VaR(SZ | κ) ≃ VaR �SY | κ, µ
k

, σ, λ� ≈ exp �µ
k

−  σΦ−1 �1−κ
λ

�� 

 
Next, the focus of the analysis is on the approximation for VaR(SZ | κ) from the classical 

method. The VaR estimation from the classical method will be compared to both Case (I) 

and Case (II). To begin, the frequency component is analyzed for the classical method. 

The classical method for the frequency component can be described as the following: 

E[N] + E[M] = λ + λ/l =(l+1)λ/l 

Next, severity component is examined.  

In this case, the following can be expressed mathematically: 

Z = p*X+(1-p)*Y, and the goal is to express (μZ , σZ
2)  in terms of (μ, σ). 

E[Z] = p*E[X]+(1-p)*E[Y] 

Var[Z] = p2*Var[X] + (1-p)2*Var[Y] 

Suppose the proportion p is the same for both X and Y, (examining the simplest case with 

equal proportions and scaling factor consisting of k, l are set to 2). By Fenton-Wilkinson 

Approximation, the central moment matching [60] is computed next for estimating a 

single lognormal distribution for Z as the following: 

E[Z]= exp{μZ + 0.5*σZ
2}       

Var[Z]= (exp{σZ
2}-1)*exp(2μZ + σZ

2) 

exp{μZ + 0.5*σZ
2}   = p ∗ exp �2µ+kσ2

2k
� +  (1 − p) ∗ exp �2µ+σ2

2
� 

exp{μZ + 0.5*σZ
2}   = exp �2µ+σ2

2
� ∗ �(1 − p) + p ∗ exp �µ

k
− μ�� 

⇒ μZ = 2µ+σ2

2
+ log �(1 − p) + p ∗ exp �µ

k
− μ�� −  0.5σZ

2  
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Looking at the simplest (algebraically speaking) case where the scaling factors are fixed 

(i.e. k,l=2), then  

μZ ∝ μ + 0.5σ2 + log �1 + exp �−µ
2

�� −  0.5σZ
2                                          (18) 

Next, variances (equal proportions) are computed: 

 (exp{σZ
2}-1)*exp(2μZ + σZ

2) ∝ 
[exp{σ2} exp{2μ + σ2} − exp{2μ + σ2}]��������������������������� +  [exp{σ2} exp �2µ

2
+ σ2� − exp �2µ

2
+ σ2�]���������������������������  

                             Var[X]      Var[Y] 
      γ 
⇒ LHS = [exp{𝜎2 + 𝜇}] ∗ [exp{𝜎2 + 𝜇} − exp{𝜇} + exp{𝜎2} − 1�������������������������] 
 
Taking logarithm on both sides yields the following: 
 
⇒ 2μZ  +  σZ

2  + log{exp[σZ
2] − 1} =  [𝜎2 + 𝜇] + log (γ)    (19) 

Now substitute RHS of (18) into LHS of (19): 

⇒ 2μ + 𝜎2 + 2 log �
1 + exp �−µ

2
����������

ρ
�  + log{exp[σZ

2] − 1} =  [𝜎2 + 𝜇] + log (γ) 

               
⇒ log{exp[σZ

2] − 1} =  −𝜇 − log (𝜌2) +log (γ) 

⇒ log{exp[σZ
2] − 1} =  log �exp{−µ}∗γ

𝜌2 � 

⇒  σZ
2 =  log �exp{−µ}∗γ

𝜌2 +  1�        

where γ = [exp{𝜎2 + 𝜇} − exp{𝜇} + exp{𝜎2} − 1] and  ρ  = �1 + exp �−µ
2

�� 

μZ = μ + 0.5σ2 + log �1 + exp �−µ
2

�� −  0.5 ∗ log �exp{−µ}∗γ
𝜌2 +  1�   

For the classical estimate of VaR, the work of [31] is used, namely equation (6) below: 

VaR �SZ
Classical | κ, μz, σZ, 3λ

2
� ≈ exp �μz −  σzΦ−1 � 1−κ

3λ
2

��     
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where 

μZ = μ + 0.5σ2 + log �1 + exp �−µ
2

�� −  0.5 ∗ log �exp{−µ}∗γ
𝜌2 +  1� 

σZ
2 =  log �exp{−µ}∗γ

𝜌2 +  1�  , where γ = [exp{𝜎2 + 𝜇} − exp{𝜇} + exp{𝜎2} − 1] and  

ρ  = �1 + exp �−µ
2

�� 

Now that the classical VaR estimation is complete, it is important to compare this with 

both Case (I) and Case (II). For Case (I) where Mean Severity >> Mean Frequency, 

            "Classical"   "Truth" 

exp �μz −  σzΦ−1 � 1−κ
3λ
2

��
�����������������

    ?  exp �μ −  σΦ−1 � 1−κ
λ
2

��
���������������

     

    

For Case (II) where Mean Frequency >> Mean Severity 

            "Classical"   "Truth" 

exp �μz −  σzΦ−1 � 1−κ
3λ
2

��
�����������������

    ?  exp �μ −  σΦ−1 �2(1−κ)
λ

�������������������
     

 
The procedure for comparison between the classical method and Case (I) is shown next.  

μZ = μ + 0.5σ2 + log �1 + exp �−µ
2

�� −  0.5 ∗ log �exp{−µ}∗γ
𝜌2 +  1�    (20) 

where γ = [exp{𝜎2 + 𝜇} − exp{𝜇} + exp{𝜎2} − 1] and  

ρ  = �1 + exp �−µ
2

�� 

log �
exp{−μ} ∗ γ

𝜌2 +  1� = log �
exp{−μ} [exp{𝜎2 + 𝜇} − exp{𝜇} + exp{𝜎2} − 1]

�1 + exp �−μ
2 ��

2 +  1�  

 



 

64 
 

⇒   LHS = log �[1+exp{−µ}][exp�𝜎2�−1]

�1+exp�−µ
2 ���1+exp�−µ

2 ��
+  1� 

 

Now as μ is large, [1+exp{−µ}]

[1+exp�−µ
2�]

 → 1 &  [exp�𝜎2�−1]

�1+exp�−µ
2 ��

 → [exp{𝜎2} − 1].   

log �
exp{−μ} ∗ γ

𝜌2 +  1� ≈  log �{exp{𝜎2} − 1}��������� +  1�
x

 

 

Next, the Taylor approximations for log(1+x) and exp{x} are used for simplification. 

log(1 + x) =  x − 𝒪(x2)   for |x| < 1 

σZ
2 = log �exp{−µ}∗γ

𝜌2 +  1� ≈  log �{exp{𝜎2} − 1}��������� +  1�
x

≈  exp{𝜎2} − 1 ≈ 𝜎2             (21) 

log �1 + exp �−µ
2

������� ≈  exp �−µ
2

�   ≈ 1 − µ
2
                                     (22) 

          x 
Substituting (21) and (22) into (20), the following is obtained 

μZ = μ + 0.5σ2 + log �1 + exp �−µ
2

�� −  0.5 ∗ log �exp{−µ}∗γ
𝜌2 +  1� 

⇒ μZ ≈ μ + σ2

2
+ 1 −  µ

2
−  1

2
(σ2) =  1 + µ

2
  

σZ
2 ≈ 𝜎2 

Therefore, 

  "Classical"    

exp �μz −  σzΦ−1 � 1−κ
3λ
2

��
�����������������

      ≈ exp �µ
2

+ 1 −  σΦ−1 �2(1−κ)
3λ

�� 

 

exp �
μ
2

+ 1 −  σΦ−1 �
(1 − κ)

3λ
2

��  ?  exp �μ −  σΦ−1 �
1 − κ

λ
2

�� 
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Now in this scenario, since μ >> λ, and κ→1, Φ−1(∙) decreases much more slowly than 

linearly, and thus µ
2

+ 1 −  σΦ−1 � (1−κ)
3λ
2

� ≲ μ −  σΦ−1 � 1−κ
λ
2

� 

⇒ exp �µ
2

+ 1 −  σΦ−1 � (1−κ)
3λ
2

��  ≲ exp �μ −  σΦ−1 � 1−κ
λ
2

�� 

 

Why is it argued that Φ−1(∙) component doesn't matter? The graphical representation of 

the classical inverse normal cdf is shown below.  

 

 
Sample plot of Inverse Normal CDF 
 
dy
dx

[Φ−1(x)] = 1
ϕ(Φ−1(x))

, where recall that ϕ is the standard normal pdf.  

Φ−1(x) ∝ erf −1(x) 

The Maclaurin series expansion of erf-1(x)  ∝ x + 𝒪(x3).  

So the rate of increase of �µ
2

+ 1 −  σΦ−1 � (1−κ)
3λ
2

�� is determined by µ
2
 versus  
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that of �μ −  σΦ−1 � 1−κ
λ
2

�� is determined by μ. 

 

Therefore, the VaR obtained from Classical Method asymptotically is smaller than the 

"True" Method in Case (I). This analysis is easily extendible for non-equal probabilities 

(p) and other higher values of scaling factor (l, k). 

The procedure for comparison between the classical method and Case (II) is shown next. 

Using the approximation in [32],the adjusted VaR analysis is implemented from equation 

(7):  

VaR�SQ
Mean | κ, μ, σ, λ� ≈ exp �μ −  σΦ−1 �

1 − κ
λ �� +  (E[Frequency] − 1)E[Severity] 

                                        "Classical"    

exp �μz −  σzΦ−1 �1−κ
3
2λ

�� + �3
2

λ − 1� exp �μz +  σz
2

2
�

�����������������������������������
     ≈  

exp �µ
2

+ 1 −  σΦ−1 �2(1−κ)
3λ

�� +  �3
2

λ − 1� exp �1 + µ+σ2

2
�                                  (24)      

 

"True" VaR, i.e. VaR(SZ | κ) is approximately the following: 

limκ→1 VaR(SZ | κ) ≃ VaR �SY | κ, µ
k

, σ, λ� 

VaR �SY | κ,
μ
k

, σ, λ� ≈ exp �
μ
k

−  σΦ−1 �
1 − κ

λ �� +  (λ − 1)exp �
μ
k

+
σ2

2
� 

Next examining the simplest case for scaling factor (l, k = 2) as in Case (I), the RHS of 

the above is simplied to the following: 

exp �µ
2

−  σΦ−1 �1−κ
λ

�� +  (λ − 1)exp �µ+σ2

2
�                   (25) 
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Now, the first term has already been calculated in Case (I). The analysis in Case (II) 

requires the second term for the classical case, namely, �3
2

λ − 1� exp �1 + µ+σ2

2
�. It is 

important to note that the inverse-normal cdf, Φ−1(∙), decreases much more slowly than 

linearly (it decreases approximately 𝒪 � 1
exp {x2}

�), and thus there is not much difference 

between the first term in the RHS of equation (24) and the first term in the RHS of 

equation (25), namely: 

exp �µ
2

+ 1 −  σΦ−1 �2(1−κ)
3λ

��  ≃  exp �µ
2

−  σΦ−1 �1−κ
λ

��  (since μ is relatively small) 

However since λ >> μ,  

�3
2

λ − 1� exp �1 + µ+σ2

2
� ≳  (λ − 1)exp �μ + σ2

2
� since the λ term will dominate.  

 

Therefore,  

exp �
μ
2

+ 1 −  σΦ−1 �
2(1 − κ)

3λ �� + �
3
2

λ − 1� exp �1 +
μ + σ2

2 �

≳  exp �
μ
2

−  σΦ−1 �
1 − κ

λ �� +  (λ − 1)exp �μ +
σ2

2
� 

So the Classical Case is asymptotically approximately greater than the "Truth" in Case 

(II).  ∎ 

 
Thus, it has been  shown that in the asymptotic case for the compound Poisson, the 

Classical method is "on average" close to the truth, but in extreme cases, it has been 

shown that it either underestimates or overestimates the true VaR estimate. Next, this 
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phenomenon is further demonstrated using a large scale Monte-Carlo simulation study 

which validates the above argument through evidence from numerical experiments.  

3.2.2.2 Simulation Study Showing Bias in Classical Methodology 
 I test both Case (I) and Case (II) (as narrated from the previous section) using 

large scale MCS study. Recall that in Case (I), the severity of losses is the dominant 

component while the variance parameter of the severity (Σ) is fixed to be small 0.8. 

Now for the simulation study for Case (I), the following simulation parameters are used: 

• Two independent compound Poisson processes (SX, SY) which have two 

components: (1) Loss Severity (X, Y) and (2) Loss Frequency (N, M). 

SY =  � Yi 
N

i=1

 

SX =   � Xj 
M

j=1

 

Z =  �
Yi   with p =

m
m + n

Xi  with p =
n

m + n

� 

SZ =   � Yi 
N

i=1

+ � Xj 
M

j=1

 

 
where X ~ LN(μ=25, σ=0.8), Y ~ LN(μ' = 2.5, σ'=0.8), while N ~ Pois(λ=5) and M ~ 

Pois(λ' =  0.2). Daily loss data is generated from X and Y above with a monthly 

frequency. So for Sx, this means that there is a monthly average frequency of 0.2 losses 

per month, while for Sy this means that there is a monthly average frequency of 5 losses 

per month. The simulation number is large, namely, 10,000,000 months in order to 
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compute the extreme upper quantiles of the Aggregate Loss distributions of SZ and SX. 

The results are shown below in table (2). 

 

Table 2 Results of Large scale MCS for Case I: Severity is Dominant Component 

 

 

Notice how in table (2) above, the classical methodology consistently underestimates the 

VaR(Sz) compared to the estimation for the VaR(SX).  The reason that one can justify 

that the true estimation for the upper tail region of VaR(Sz) only consists of VaR(SX), is 

that in this case, mean severity is much greater than mean frequency. Thus for this case, 

for large mean severity loss (μ), high individual loss values are generated from severity 

distribution albeit less frequently (on average 0.2 vs. 5 times). The tail region of SZ will 

consist of SX in this Case (I) since SX will solely generate the heavy losses and since μ 

>> λ, there will not be a large enough frequency (count) to make up through adding the 

small severity losses. Therefore the tail region of SZ will consist from SX only (this is 

mathematically shown in the previous section).  

Variable
Frequency Parameter λ 5 0.125 λ

μ 2.5 25.0 μ
σ 0.8 0.8 σ

Quantile (κ)
99.999%
99.995%
99.99%
99.95%
99.9%
99.5%
99%

Case I
Y X

Severity Parameters
Classical Estimate of SZ (combines SX & SY) Truth (SZ → SX)

$233,319,036,817
$166,490,267,229

$1,001,221
$431,986

Simulation
$1,489,089,590,514
$928,928,623,979
$627,836,613,418
$518,474,639,417
$308,110,208,494

Simulation
$606,726,980
$100,104,807
$23,773,049
$12,213,875
$2,229,758
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 Next, simulation for Case (II) is shown. Recall that in Case (II), the frequency of 

the losses is the dominant component while the variance parameter of the severity (Σ) is 

fixed to be small 0.8.  For this case, the following situation holds 

true: λ ~ 𝒪(exp(exp(μ))). The specific paradigm for the simulation experiment is 

narrated next.  

• Two independent compound Poisson processes (SX, SY) which have two 

components: (1) Loss Severity (X, Y) and (2) Loss Frequency (N, M). 

SY =  � Yi 
N

i=1

 

SX =   � Xj 
M

j=1

 

Z =  �
Yi   with p =

m
m + n

Xi  with p =
n

m + n

� 

SZ =   � Yi 
N

i=1

+ � Xj 
M

j=1

 

 
where X ~ LN(μ=1, σ=0.8), Y ~ LN(μ' = 0.5, σ'=0.8), while N ~ Pois(λ=10,000) and M ~ 

Pois(λ' =  5,000). Daily loss data is generated from X and Y above with a half-century 

(every fifty years) frequency. So for Sx this means that there is on average 5,000 losses 

every fifty years, while for Sy this means that there is 10,000 losses every fifty years. 

Similar to the previous case,  ten million half-century time periods are simulated in order 

to compute the extreme upper quantiles of the Aggregate Loss distributions of SZ and SX. 

The results are shown below in table (3). 
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Table 3 Results of Large scale MCS for Case II: Frequency is Dominant Component 

 
 

Notice how in table (3) above, the classical methodology consistently overestimates the 

VaR(Sz) compared to the true estimation for the VaR(SY).  The reason that one can 

justify that the true estimation for the upper tail region of VaR(Sz) only consists of 

VaR(SY), is that in this case, mean frequency >> mean severity. For large λ, high 

aggregate loss values are generated from combining the high frequency and low severity 

distributions. The tail region of SZ will be dominated by SY in this case since SX will 

have larger individual losses, but they will occur much more rarely and thus the 

combined sum will be much less than the lower individual losses.  Since λ >> μ, there 

won't be enough number of individual large severity  to make up for adding the large 

number of small losses. Therefore the tail region of SZ will consist from SY only (this is 

mathematically shown in the previous section).  

 Now the approximation of saying that the tail region of Sz will solely consist of 

either SX or SY (depending on whether one is looking at Case (I) or Case (II)) is 

conceptually accurate, however, the VaR quantile will not be the same. To explain this 

Variable
Frequency Parameter λ 5000 10000 λ

μ 1.0 0.5 μ
σ 0.8 0.8 σ

Quantile (κ)
99.999%
99.995%
99.99%
99.95%
99.9%
99.5%
99%

Case II
X Y

Severity Parameters
Classical Estimate of SZ (combines SX & SY) Truth (SZ → SY)

$23,435
$23,348

$44,394
$44,258

Simulation
$24,064
$23,881
$23,744
$23,681
$23,514

Simulation
$45,374
$45,094
$44,878
$44,778
$44,520
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phenomenon, a simple example in figure (7) is shown below which illustrates the 

concept. 

 

 
Figure 7 VaR Quantile change plot for two AggLoss distributions 

 

Figure (7) represents a graphical representation of the two independent compound 

Poisson processes. Here SY >> SX as κ → 1 (κ is the right tail). Now the right tail of SZ 

(which consists of a random sum of X and Y as defined in previous section), will solely 

be determined by SY, but since there is probability mass that comes from Sx, the κ will be 

shifted further as shown in the above figure for SZ. The exact calculation for the κ shift is 

done next, and large-scale MCS is performed to adjust the values from tables (3)-(4) 

above.  

 To begin,  SZ has a different corresponding quantile κ' for a given quantile κ for 

SX or SY (depending on whether Case (I) or Case (II) is analyzed). In the situation arising 
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in Case (I), the true method would compute the VaR(SZ) using VaR(SX) while for Case 

(II), the true method would compute the VaR(SZ) using VaR(SY). However, there is a 

probability mass for SZ which comes from SY in Case (I) and likewise a mass coming 

from SX in Case (II). So the adjusted quantile κ' is calculated for SZ a given quantile κ for 

SX  (in the situation arising from Case (I)) and SY (in the situation arising from Case (II)) 

next. 

The analysis for Case (I) with properly adjusted quantile, κ' is presented next. 

Given the following information:  

SX has X ~ LN(μ, σ) and M ~ Pois(λ/l),  

SY has Y ~ LN(μ/k, σ), while N ~ Pois(λ) where k, l > 1 

Then, the adjusted quantile, κ', is the following: 

κ'  = (proportion of mass of Y) + (proportion of mass of X)*κ 

proportion of mass of Y =  lλ
λ(l+1)

  , proportion of mass of X =  1 − lλ
λ(l+1)

 

κ'  = lλ
λ(l+1)

 + �1 − lλ
λ(l+1)

�κ 

The analysis for Case (II) with properly adjusted quantile, κ' is presented next. 

Given the following information:  

SX has X ~ LN(μ, σ) and M ~ Pois(λ/l), and 

SY has Y ~ LN(μ/k, σ), while N ~ Pois(λ) where k, l > 1 

Then, the adjusted quantile, κ', is the following: 

κ'  = (proportion of mass of X) + (proportion of mass of Y)*κ 

κ'  = �1 − lλ
λ(l+1)

� + � lλ
λ(l+1)

�κ 
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Table 4 VaR Results of Large scale MCS for Case (I) with scaled quantile shifting                                 

 
 

Table 5 VaR Results of Large scale MCS for Case (II) with scaled quantile shifting  

 
 

Notice in both tables (4)-(5) above, the results are consistent with before: (1) In Case (I), 

the classical method underestimates the true VaR in the tail region; (2) In Case (II), the 

classical method overestimates the true VaR in the tail region. Thus, the dissertation has 

shown so far through a mathematical argument and through large scale MCS that in 

specific extreme cases, the classical methodology forms a bias in the estimate of VaR. 

Therefore, it would be interesting and pertintent to develop distribution-free (non-

parametric) and parametric approaches which calculate VaR without making the strong 

assumption of independence between severity and frequency. The methodology for the 

Variable
Frequency Parameter λ 5 0.125 λ

μ 2.5 25.0 μ
σ 0.8 0.8 σ

Shifted Quantile  of Z (κ') Simulation Quantile X (κ)
99.9999756% $1,489,089,590,514 99.999%
99.999878% $928,928,623,979 99.995%
99.999756% $627,836,613,418 99.99%
99.998780% $518,474,639,417 99.95%
99.997561% $308,110,208,494 99.9%
99.987805% $233,319,036,817 99.5%
99.975610% $166,490,267,229 99%

Case I
Y X

Severity Parameters
Classical Estimate of SZ (combines SX & SY) Truth (SZ → SX)

$83,001,435
$45,894,227

Simulation
$9,556,149,565
$3,158,683,916
$1,962,093,430
$532,225,663
$311,845,292

Variable
Frequency Parameter λ 5000 10000 λ

μ 1.0 0.5 μ
σ 0.8 0.8 σ

Quantile (κ)
99.999%
99.995%
99.99%
99.95%
99.9%
99.5%
99%

Case II
X Y

Severity Parameters
Classical Estimate of SZ (combines SX & SY) Truth (SZ → SY)

$23,435
$23,348

$44,394
$44,258

Simulation
$24,064
$23,881
$23,744
$23,681
$23,514

Simulation
$45,374
$45,094
$44,878
$44,778
$44,520
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non-parametric case is called Data Partition of Frequency and Severity (DPFS) via K-

means algorithm (distribution free method). The next subsection narrates this approach 

next.    

3.2.2.3 Cluster Analysis 
 In the field of data mining, the overall purpose of clustering (an unsupervised 

learning technique) is to group data objects based solely on information characteristics 

found in the data that describes objects and their relationships [61]. The overall goal is 

that the objects within each group be similar to one another, and different from objects in 

other groups. Thus, the greater the homogeneity within a group and the greater the 

heterogeneity between groups, then the clustering algorithm is working the best. Now in 

the modern ORM context, this dissertation argues (and later on shows) the importance of 

clustering/correlating the frequency and severity objects of the loss data. The reason is 

that if frequency and severity are truly independent, then the clustering should show one 

single group. If they are correlated and or dependent, then the clustering should show 

more than one distinct group. The advantage is that clustering framework allows for both 

paradigms of independence and dependence between frequency and severity. The next 

question is what type of cluster analysis should this research use? This is narrated next 

through description of the K-means algorithm.   

The K-means algorithm is an algorithm for putting N data points in an I-dimensional 

space into K clusters. Each cluster is parameterized by a vector m(k) called its mean 

(average) [62]. The data points can be denoted by {x(n)} where the superscript n runs 

from 1 to the data size N. Each vector comprises of I components, xi. Next a metric is 
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used which defines the distances between points, for example, the Euclidean distance (L2 

norm): 

  d(𝐱, 𝐲) = �∑ (xi − yi)2N
i=1  

 With this metric, the K-means algorithm is defined as the following [62]: 

Initialization.  Set K means {m(k)} to random values (K must be set a priori). 

Step 1.  Each data point n is assigned to its nearest mean (known as centroid). In 

this notation, the guess for the cluster k(n) that the point x(n) belongs to by k� (𝑛). 

k� (𝑛) =  argmin
𝑘

�𝐝(𝐦(𝑘), 𝐱(𝑛)) �.   

Step 2.  Now take each xi in the kth cluster, nk is the number of points in the kth 

cluster, and 𝐝𝐢,𝐤
𝟐  is the distance metric (Euclidean for example) between xi and the 

centroid of cluster k. If there exists a group s such that  

𝑛𝑘

𝑛𝑘 − 1
𝐝𝐢,𝐤

𝟐 >  
𝑛𝑠

𝑛𝑠 − 1
𝐝𝐢,𝐤

𝟐  

then move xi to the cluster s. 

Step 3.  If there exists several clusters that satisfy the above inequality then move 

xi into the group that has the smallest value for  

𝑛𝑠

𝑛𝑠 − 1
𝐝𝐢,𝐬

𝟐  

Step 4.   Repeats Steps 1-3 until convergence criterion is met (usually a tolerance 

limit which the user can set). 



 

77 
 

  With the description of the K-means algorithm defined above [62], the next 

natural question is how does one choose the correct value of K? In simulation 

experiments and certain types of real-life datasets, one may know a priori what the 

correct value should be for K in the K-means algorithm. However, in the majority of real-

life datasets, it is not well-know how to select the appropriate K in advance. The brute-

force trial and error method involves trying different values of K and then calculating the 

overall minimum distance. However, there is a rich literature from the data mining field 

regarding procedures which speed up finding the "optimal" K. This is narrated next. 

 There are several methods such as Mojena upper tail rule [63], Silhouette Statistic 

(SS) by Kaufman and Rousseeuw [64], Tibshirani gap statistic [65], Calinski & Harabasz 

index [66] to name a few. Similar to GoF measures, each of the above metrics has their 

own strengths and weaknesses. In this dissertation, the SS is utilized because this has 

both a numerical and a visualization component. This is narrated next.  

 The SS is a measure to estimate the optimal number of groups in a given dataset.  

Given a data point xi, denote the average distance to all other points in its own cluster as 

ai. For any other cluster C, let �̅�(i, C) represent the average distance of xi to all 

observations in cluster C. Finally, let bi denote the minimum of the average distances �̅�(i, 

C), where the minimum is taken as C ranges over all clusters except the observation's 

own cluster. Then silhouette width (SW) for the ith observation of x is defined as the 

following [62]:   

-1 ≤   𝑆𝑊𝑖 =  (𝑏𝑖− 𝑎𝑖 )
max (𝑎𝑖, 𝑏𝑖)

   ≤ 1 
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 If an observation has a value close to 1, then the data point is closer to its own 

cluster than a neighboring one. If a silhouette width is close to -1, then it is not very 

well-clustered. A width of 0 indicates that the observation could just as well belong to its 

current cluster or another one that is near to it. With this notation in mind, one uses the 

average silhouette width as an indicator of best grouping defined as the following (which 

averages over all observations) [62]:  

𝑠𝑤����  =  
1
𝑛

� 𝑆𝑊𝑖

𝑛

𝑖=1

 

 where the average silhouette width greater than 0.5 indicates good partition of the 

data, while a value of less than 0.2 indicates no partition is necessary. Visually, all of the 

clusters should have roughly the same thickness. If in a particular partition, a specific 

cluster has a larger thickness than the others, this graphically indicates poor choice of K 

for the clustering. Two sample choices of K for a sample dataset is shown next in figures 

(8) - (9).  

 It is interesting to notice in figure (8) that the average SW value is close to 0.66 

(the green line) while in figure (9) for the same dataset, the average SW is closer to 0.69. 

This indicates that for this particular dataset there is clear clustering structure in the data 

and 5 groups is marginally better than choosing 3 groups.  
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Figure 8 Sample Silhouette Statistic technique for K-means Algorithm (3 clusters) 

 

 

Figure 9 Sample Silhouette Statistic technique for K-means Algorithm (5 clusters) 

 

Application to modern ORM VaR Calculation 

 Now with the basics of the K-means clustering algorithm described above, one 

can proceed to defining different ways to partition the frequency and severity component 
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in the modern ORM setting. This dissertation tests out three distinct possibilities which 

are narrated next.  

 The first possibility is using no partition at all, i.e., the classical method. This is 

known as the null method (Method 0) where frequency is assumed to be independent of 

severity. The VaR through MLE estimates of the parameters for the severity and the 

frequency distributions are the same as described in previous methodology section. 

 Next, a case of 2-D K-means methodology is tested. The 2-D notation here is used 

to denote using both the frequency and severity for each dimension. Specifically, the 

mean severity in one dimension and frequency in the second dimension are used in the K-

means. There is a pragmatic reason why for any 2-D K-means methodology a summary 

statistic usually must be applied for the severity. In almost all cases, the loss magnitudes 

are collected at a different time interval than the frequency of interest. For example, daily 

losses in the financial market happen once per day. When calculating the VaR, in most 

cases, institutions are interesting in how much they can expect to lose (EL) and the VaR 

for a different time horizon, say monthly or even annually. Thus in this example, the 

frequency is every 30 days or 365 days (monthly versus annually respectively). However, 

the severity is collected daily. Thus mathematically speaking there is not a one-to-one 

correspondence between frequency and severity. In fact, there is a one-to-many 

correspondence between frequency and severity. So in order to force a one-to-one 

relationship, a summary statistic which best describes the severity during the frequency 

time unit has to be used. Standard statistical theory argues that either the mean or median 

suffices as a sufficient statistic for estimating the central tendency of a dataset. So for 
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example suppose that the severity consists of daily loss data while the frequency consists 

of count of losses for the monthly time unit. If the original dataset consisted of N 

total daily losses for m months, then the new dataset consists of a mx2 matrix of data 

where the first column represents the mean daily loss magnitude for month i and the 2nd 

column represents the corresponding monthly loss count for month i. This method, which 

is called K-means: Method I or K-means: Mean Severity/Frequency, applies K-means 

algorithm to the average severity and frequency. This method calculates the mean 

severity for each frequency time unit (say monthly), so average loss/month and its 

corresponding count of losses in that respective month. In addition to looking at severity 

and frequency simultaneously, a second method, i.e. K-means: Method II is examined, 

where the K-means partitioning is done solely on the severity of the loss data. So this is 

called K-means: Severity only and Implied Frequency. This algorithm applies K-means 

algorithm for the loss severity only and then calculates the corresponding implied 

frequency. I illustrate using an example. Suppose again that the severity consists of daily 

loss data while the frequency consists of monthly loss count. Assume that there are N 

total daily loss data and m total months (where by definition m < N). Suppose the severity 

only data (i.e. losses L1, ..., LN) are split into k groups. Then for each month from 1 to m, 

compute the frequency in each group say ni for i=1...k. The implied frequency for group i 

is simply the average of ni taken over all m months. The reason that the term implied 

frequency is applied here is due to the fact that this frequency comes after K-means is 

computed on the severity (i.e. this does not exist in the original data). So this frequency is 

implied from the K-means severity only portion. With this new implied frequency, one 
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can use the classical methodology and compute the VaR through MLE estimates of 

severity distributions for each group i and their corresponding frequency in each group i.  

 In this work, several other ad-hoc partitioning methods for the K-means have 

been tried. In the end, the above two methods are determined to be the most successful 

methods among them. The simulation study and the results are shown in section 4. In 

summary, the algorithm for computing VaR [67] is described in the following based on 

the clustering analysis: 

 1.  Use K-means algorithm to split the severity/frequency data into K components. 

 2.  For each of the K components, compute the severity loss parameters and  

      frequency parameter. 

 3.  For a large integer N, a minimum of 10,000 iterations, do the following: 

        (a) Draw a random number, ni of loss frequency from frequency distribution  

   for month i. 

        (b) Draw ni losses from severity distribution for region K. 

        (c) Sum the losses to compute the Aggregate Loss distribution. 

        (d) Perform steps (a)-(c) for each region of the K-means split. 

 4.   Generate the Aggregate Loss distribution, and then compute VaR.             

3.3 Modeling Distribution based Partitioning (DBP) for Estimating VaR 

3.3.1 Current State-of-the-Art 
 The simplest method to include correlations is to use the linear correlation 

coefficient in the aggregation process. Currently this is done for severity and frequency 

separately. For the aggregation across j Business Lines (BLs), one may use the normal 
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assumption of the VaR for confidence level α, and time period 1 year, and the aggregated 

VaR, VaRα
Agg, can be determined as the following [14]: 

 VaRα
Agg =  �∑ VaR2(i|α) +  2 ∑ ∑ �(VaR(j|α)) ∗ (VaR(i|α)) ∗ ρij�

2J
j=1

I
i=1

n
i=1  

where the following holds true: 

• VaRi is the Value-at-Risk of the BLi for a certain percentile α  

• ρi.j is the correlation coefficient between the BLi and the BLj 

The above approach only has a point estimate for the correlation across different BL's. 

However, the current best practices include using parametric based approach to model a 

distribution. This is done through the methods of parametric copulas. The basic 

mathematical foundation for this methodology is narrated next.  

A k-dimensional copula C: [0, 1]k → [0, 1] is a function which is a CDF with uniform 

distributions as the marginals.  Thus, copulas are the functions C satisfying the following 

property [68]: 

  1. C(u1, u2, ..., uk) is an increasing function in each component ui.  

  2. C(u1, u2, ..., uk) = ui if uj = 1, for all j ≠ i and ui ∈ [0, 1].  

  3. For all (a1, ..., ak), (b1, ..., bk) ∈ [0, 1] with ai ≤ bi for all then the following: 

   ∑ ∑ (−1)[i1+⋯+ik]2
ik

2
i1 C�u1,i1 , ⋯ , u1,ik� ≥ 0, where 𝑢j,1 = aj and 𝑢j,2 = bj.  

It is rather obvious to note that the aforementioned condition 1 above holds true for any 

cumulative distribution function. The second aforementioned condition ensures that the 

marginals are uniforms. Finally the third condition above ensures that the mass of any k-

dimensional rectangle xi=1
k [ai, bi] is non-negative.  
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 The most important (from a risk management perspective) is to find a connection 

between copulas and multivariate random variables. This is formalized by Sklar's 

Theorem [69]. Overall, this theorem states that any k-dimensional random variable 

adopts a copula representation. In otherwords, this theorem provides a relationship 

between copulas and multivariate random variables with any given marginals. 

Specifically, Sklar's Theorem states the following [69]: 

1. Let F be a joint cdf with margins F1,..., Fk. Then there exists a copula C:[0,1]k → [0,1] 

such that F(x1, ..., xk) = C(F1(x1), F2(x2), ..., Fk(xk)), for all xj ∈ [−∞, ∞].  If the 

marginals are continuous, then the copula is unique. Otherwise the copula is uniquely 

determined only on Ran F1 × Ran F2 × ⋯ × Ran Fk, where Ran Fi denotes the range of 

the cdf Fi.  

2. Conversely, if C is a copula and F1,..., Fk are univariate CDFs, then F is a multivariate 

cdf with margins F1,..., Fk and copula C.  

An immediate consequence of Sklar's Theorem is the copula for a set of k random 

variables X1, ..., Xk can be expressed as the following [68]: 

C(u1,...,uk) = F(F-1
1(u1), ..., F-1

k(uk)), 

where F is the joint CDF of (X1, ..., Xk) whose quantile functions are F1
−1, ⋯ , Fk

−1. 

Now there are multiple types of copulas which are well-known. Various classes of 

parametric copulas such Gaussian copula, Student t-copula, Archimedean copulas etc. 

have all been used to model the relationship between the cells of the matrix in Table 1. In 

this dissertation the Gaussian and Student t copula is examined and is thus defined next.  
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 To define a Gaussian copula, there is a need to specify the correlation matrix, Σ. 

With that, the Gaussian copula CGaussian(u1, u2, ..., uk | Σ) = ΦΣ(Φ-1(u1), ..., Φ-1(uk)), 

where Φ is the CDF of the Standard Normal distribution for the k-dimensional 

multivariate function [68]. Next the Student t-distribution is well-known with ν degrees 

of freedom, tν. The multivariate t-distribution in k-dimensions with ν degrees of freedom, 

tν,Σ, is defined from X = X1,...,Xk ~ Normal(0, Σ) with the following [68]: 

   (η1, . . . , ηk)  = � 𝑋1

�𝜉/𝜈
, … , 𝑋𝑘

�𝜉/𝜈
 �  where ξ ~ χ2(ν) ⊥ X 

   𝐶𝑡(u1, . . . , uk |Σ, ν) =  tν,Σ(tν
−1(u1), … , tν

−1(uk)) 

     In figure (10) below, a sample plot of two random variables X1 and X2 where X1 ~ 

Gamma(2,1) and X2 ~ t5 with a Gaussian copula (correlation matrix of �1 𝜌
𝜌 1� where ρ 

= 0.7) is shown. The first variable could theoretically be considered as a frequency and 

the second a severity (as an example). The research question is what type of correlation 

can best model this dynamic relationship? Should a Gaussian copula be used with say 

Poisson frequency and lognormal severity? How about t-copula? In particular, the focus 

will be to use non-parametric copulas so that a parametric dependency does not need to 

be established. The estimation for the copulas is done through the log-likelihood process 

and using MLE to fit the best parameter estimates. Afterwards, a bootstrap based 

goodness-of-fit test is used to calculate a non-parametric p-value of the likelihood of the 

model being a good fit. The basics of the bootstrap procedure for estimating the p-value 

of the model is based on GoF [70-87] and is narrated next.  
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Figure 10 Example of Gaussian Copula used for Correlation Analysis 

 

The GoF test is used following the work of [70]. This is based on the empirical 

copula of the data (defined shortly below) using a consistent estimator of the unknown 

copula C. Let 𝐔�1, … , 𝐔�n be the pseudo-observations from C and let there be a vector of 

ranks R1, ..., Rn  of the data Xij. Now the pseudo-observations are defined as the 

following: 𝐔�𝑖 = Ri/(n+1), 𝑖 ∈ {𝟏, 𝟐, … , n}. The empirical copula [70] is then classically 

defined as the empirical cdf computed from the pseudo-observations, i.e. 

  𝐶n(𝐮) = 1
n

∑ 𝟏(U�𝒊 ≤ 𝐮)       where 𝐮 ∈ [0, 1]d n
i=1                  

Then the empirical copula process, ℂn, is defined as the following: 

  ℂ𝐧 =  √n{𝐶n(𝐮) −  𝐶𝜃n(𝑢)},  where 𝐮 ∈ [0, 1]d          (23)      

where Cn is the empirical copulas as defined in equation (23) above and Cθn is an 

estimator of C under the null hypothesis, H0: 𝐶 ∈ {𝐶𝜃} holds while HA: 𝐶 ∉ {𝐶𝜃}. Based 

on large scale Monte-Carlo numerical experiments by Berg [88], the statistic of interest is 

Sn which has an analytical formulation as shown below: 



 

87 
 

𝑆n =  ∫ ℂ𝐧(𝐮)2∞
[0,1]d d𝐶n(u) =  ∑ {𝐶n(U�𝒊

n
i=1 ) −  𝐶𝜃n(U�𝒊)}2                 (24) 

An approximate p-value for Sn can be attained computationally via a parametric 

bootstrap approach. This is used to assess the GoF and is narrated next.  

Following the work of Genest et al. [89] an approximate p-value for the test can 

be calculated using the statistic for Sn. This is based on the following procedure below 

[89]: 

1.  Compute Cn explicitly from the pseudo-observations U�𝟏, … , U�𝐧 and estimate θ 

from U�𝟏, … , U�𝐧 by means of a rank-based estimator of θn. 

2.  Compute the test-statistic, Sn as defined above (in Eq. 24).  

3.  For a large integer N, a minimum of 100 (bootstrap replicate number), repeat  

 the following steps for every 𝑘 ∈ {1, 2, … , 𝑁}: 

       (a) Generate a random sample of 𝐗1
(k), … , 𝐗n

(k) from copula 𝐂𝛉𝐧 and compute  

              the associated sample pseudo-observations U�1
(𝑘), … , U�n

(𝑘). 

       (b) Next define the quantity 𝐶n
(𝑘)(𝐮) such as the following: 

 𝐶n
(𝑘)(𝐮) =  1

n
∑ 𝟏�U�1

(𝑘)≤ 𝐮�
n
i=1                                           𝐮 ∈ [0, 1]d 

 and compute an estimate of 𝜃n
(k) of θ from U�1

(𝑘), … , U�n
(𝑘) using the rank- 

  based estimator as shown in Step 1. 

 (c) Compute an approximate independent realization of Sn under the null  

       hypothesis using the following: 

𝑆n
(k) =  �{𝐶n

(k)(𝐔�i
(k)

n

i=1

) −  𝐶𝜃𝑛
(𝑘)(𝐔�i

(k))}2 
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4. With the above, a p-value (p) can be approximated for the test as the following: 

  𝑝 =   1
N

∑ 𝟏�𝑆n
(𝑘)≥ 𝑆n�

𝑁
𝑘=1  

With the previously discussed background, I proceed forward to discussing the 

area of work where this dissertation makes contributions. In particular, the usage of 

Gaussian Mixture Copula Model (GMCM) in the setting of modern ORM is first used in 

this dissertation (to the best of my knowledge). The basic formalism is narrated next and 

then the application to modern ORM through severity and frequency is narrated next.  

3.3.2 Research Contribution in this Area 
There is recent work which combines the area of unsupervised learning and 

copulas: Gaussian Mixture Copula Models (GMCM) [90]. The unsupervised learning 

portion comes in because it is unknown how many components will be in the mixture. 

The basic idea is that one would use unsupervised learning to determine the number of 

Gaussian components of the copula. The main strength of this procedure is that since 

with multiple components, the correlation is no longer linear (as in the case of the 

classical Gaussian copula), but rather non-linear correlations can be modeled. A simple 

example figure is shown below in figure (11). Notice how in the figure (11), there is a 

clear non-linear correlation trend between the simulated x and y-axis. Also, three clear 

clusters can be seen in the simulated data in figure (11). The mathematical framework for 

the GMCM is narrated next.  
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Figure 11 Example of Simulated Mixture Copula Process  

 

The framework follows from the seminal paper in 2011 [90]. For the general 

framework, suppose one can observe a large p x d matrix of observed values, xd
p, which 

are naturally clustered into say m groups (this is known a priori). The general GMCM 

assumes a m-component Gaussian mixture model as a latent process, Z = (Z1, ..., Zd)T 

with the following distribution [90]: 

�H ~ Categorical(α1, … , αm)
𝐙|H = h ~ 𝑁𝑑(μh, Σh)

�                        

where the Categorical distribution is the generalized Bernoulli distribution, H is a dummy 

variable where H ∈ {1, 2, … , m} corresponds to the class and (α1, … , αm) are the mixture 

probabilities for h = 1,...,m with ∑ αh = 1m
h=1 . The parameters of interest (which will be 

estimated) are the following:  

𝛉 = (α1, … , αm, μ1, … , μm, Σ1, … , Σm)���������������������
3m terms

  

Since this is a copula process with Gaussian mixtures, the marginal cdf is denoted as the 

following: 
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Ωk(z|α1, … , αm, μ1, … , μm, Σ1, … , Σm) = � αhΦk(z|μh,
m

h=1

Σh) 

Next the above framework needs to be extended to the observable data (i.e. moving out 

from the latest phase). Let X = (X1, ..., Xd)T be an observation with known marginal cdfs 

(F1, ..., Fd), where the following relationship is assumed [91]: 

Xk =  Fk
−1(Ωk(Zk|α1, … , αm, μ1, … , μm, Σ1, … , Σm)),          k ∈ {1 … d}                 

 Then using the standard probability integral transformation of the above equation, 

the vector U = (U1, ..., Ud)T where Uk = Ωk(Zk) = Fk(Xk) have uniform marginals (as 

required by the theory of copulas). Overall, the GMCM operates on three distinct levels: 

(1) latent level Z; (2) copula level U which is distributed according to the Gaussian 

mixture copula density c; and (3) observed data level X based on the marginal 

transformation of U [91]. Next, a description of the estimation process is given, by briefly 

narrating the likelihood calculation in the model.  

 Given that (F1,..., Fd) are known, one can derive an expression for the log-

likelihood for the aforementioned model. Since this is based on vectors, following the 

work in [91] the introduction of the notation of vector functions is used as, Ω0: ℝd x Θ →

ℝd and F0: ℝd  → ℝd where Θ is the parameter space. Note that the vector function ΩR0 

applies the kth marginal transformation, ΩRk on the kth entry of the observation and the 

vector function F0 applies the kth marginal transformation Fk on the kth entry of the 

observation [91]. Using vector notation this can expressed as the following: 

Ω0(𝐙 | 𝛉) =  �
Ω1(Z1 | 𝛉)

⋮
Ωd(Zd | 𝛉)

�        and          F0(𝐗) =  �
F1(X1)

⋮
Fd(Xd)

� 
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Now using the probability integral transformation, Z is transformed by ΩR0 into the 

marginally uniformed distributed random vector U with cdf and pdf as the following 

respectively [91]: 

𝐶(u | 𝛉) = Ω(Ω0
−1(u | 𝛉) | 𝛉) 

𝑐(u | 𝛉) =  
ω(Ω0

−1(𝐮))
∏ ωk(Ωk

−1(uk))d
k=1

 

With the above framework, one can fit the GMCM model. The usage of this copula 

approach in the context of modern ORM is narrated next. 

 The current literature does not use copula based methodology to directly compute 

the VaR from the severity and frequency. One of the major contributions that this 

dissertation makes is that the copula based methodology can be used to obtain an estimate 

for the frequency and severity parameters per time unit. For example, suppose that the 

loss severity are daily distributed as LN(μ, σ) while the loss frequency is monthly 

following a Poisson distribution, Pois(λ). Then the goal of this method is to obtain a 

parameter estimate for severity and frequency on a monthly basis. Thus for each month i, 

there will be a 3-tuple estimate of (λ�i, μ�i, σ�i). The best way to show this is through figure 

(12).  As one can see in the aforementioned figure, the severity parameters and the 

frequency parameters are estimated for a time unit and their surface shows their 

relationship. The strength of this approach is that the VaR is computed by incorporating 

the relationship between severity and frequency for each time unit. So if indeed there is a 

correlation between frequency and severity, the copula surface approach will capture this 

dependency. The algorithm for computing VaR is summarized in the following: 
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 1.  Compute the surface of (λ�i, μ�i, σ�i) for i=1...m months using copula fit. 

 2.  Create a scatterplot (for visualization purposes) for the severity and frequency  

 parameters. 

 3.  For a large integer N, a minimum of 1,000,000 iterations, do the following: 

        (a) Generate a random draw of (λk, μk, σk) from the 3-D surface  

  as a realization for month k.  

        (b) Compute the Aggregate Loss for the realization of (λk, μk, σk) as the   

   Monte-Carlo estimate for month k. 

 4.   Generate the AggLoss distribution, and then compute VaR. 

 

 
Figure 12 Sample 3-D Scatterplot for Estimating VaR through Copula 
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3.4 Application of Modern ORM to Real-World Data: Empirical Research 

3.4.1 Current State-of-the-Art 
All of the modern ORM applications have been almost exclusively on financial 

proprietary data. The main problem is that the current empirical papers rely on data 

which are not availably publicly. In almost all cases, the research papers do not share the 

data for public usage or peer review. In the rare cases, where the data is cited, it is 

available in very expensive loss data exchanges where users have to pay a hefty fee to 

access the data. To counteract this trend, all of the empirical analysis in this dissertation 

consists of data which is freely available for the general public. One of the goals of this 

dissertation is to form a more generalized consensus on robust risk-metrics, and thus 

datasets are studied across many practical domains. Specifically, financial loss datasets, 

along with insurance, natural calamities, and chemical spills as monitored by US Coast 

Guard are studied. The details of the data are narrated next.  

3.4.2 Research Contributions in this Area 
In addition to using real-world data for testing the new methodologies developed, 

verification is conducted of the methodologies by testing on known simulated scenario 

data. The purpose of using simulated data is that five distinct and diverse scenarios can be 

created where the true VaR value is known a priori. Then a comparison of the new 

methodology with the classical methodology can be determined to see which performs 

better and in what conditions. This simulated data through five distinct scenarios is 

narrated next. Afterwards, the real-life datasets which are used for testing the new 

methodology is discussed.  
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3.4.2.1 Simulated Data Analysis through Five Distinct Scenarios 
Five distinct simulated scenarios are created to test the new methodologies. One 

of the scenarios involves generating data based on the classical methodology assumption, 

i.e. independence of severity and frequency. The remaining four scenarios will have 

correlations between the frequency and severity, albeit in different types of manner. The 

goal is to verify and validate each of the methodologies strengths' and weaknesses on 

simulated data where the true estimate of VaR is known. To begin, a description using a 

flow-chart format for each scenario and their sample severity and frequency distributions 

from large MCS is shown. The parameters for the scenario study are shown in tables (6)-

(7) below [67].  

 

Table 6 Severity Parameters for Simulation Study 

 

 

Table 7 Frequency Parameters for Simulation Study 

 

 

Scenario (I) replicates the diagram from [14] as shown in figure (2). There are 

three types of severity (low/medium/high) arising from low frequency, two types of 

Low Medium High
μ 0.5 4.5 9.3
σ 0.25 0.5 0.6

Mean $1.70 $102.00 $13,095
Median $1.65 $90.02 $10,938

Standard Dev $0.43 $54.36 $8,620

Severity
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severity (low/medium) for medium frequency and low severity in cases of high 

frequency. The algorithm for Scenario (I) with corresponding simulation parameters is 

listed next along with the simulated data histograms as shown below in figure (13). 

 

Scenario I: Hi/Med/Low Severity mapping to Hi/Med/Low Frequency (one-to-many) 
 (1)  For i=1:n months  (set n to a large number of iterations, which is 10,000) 

 (2) Generate a uniform random number, u ~ U[0,1]. 

  (2a)  If u ≤ 0.5, then Low Frequency Region 

   (2a.1) Generate a λLow ~ Poisson(Λ = 2) 

   (2a.2) Generate a uniform discrete random number k ∈ {1,2,3} 

   (2a.3) If k = 1, then sample λLow  cases from LN(0.5, 0.25) 

   (2a.3) If k = 2, then sample λLow  cases from LN(4.5, 0.5) 

             Else, sample λLow  cases from LN(9.3, 0.6). 

  (2b)  If 1/2 ≤ u < 5/6, then Medium Frequency Region 

   (2b.1) Generate a λMed ~ Poisson(Λ = 10) 

   (2b.2) Generate a uniform discrete random number k ∈ {1,2} 

   (2b.3) If k = 1, then sample λMed  cases from LN(0.5, 0.25) 

             If k = 2, then sample λMed  cases from LN(4.5, 0.5) 

  (2c)  If u ≥ 5/6, then High Frequency Region 

   (2c.1) Generate a λHi ~ Poisson(Λ = 30) 

    (2c.2) Sample λHi  cases from LN(0.5, 0.25) 

 (3) End Loop. 
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Figure 13 Severity and Frequency distribution of Scenario (I) simulated data 

 

Scenario (II) maps one frequency type to one severity type. Specifically, Scenario 

(II) simplifies Scenario (I) by having high frequency with low severity, medium 

frequency with medium severity and finally low frequency with high severity. The 

algorithm for Scenario (II) with corresponding simulation parameters is listed next along 

with the simulated data histograms as shown below in figure (14) [67]. 

Scenario II: Hi/Med/Low Severity mapping to Hi/Med/Low Frequency (one-to-one) 
        (1)  For i=1:n months (set n to a large number of iterations, which is 10,000) 

   (2) Generate a λLow ~ Poisson(Λ = 2) 

          (3) Sample  λLow  samples from LN(9.3, 0.6) 

   (4) Generate a λMed ~ Poisson(Λ = 10) 

           (5) Sample  λMed  samples from LN(4.5, 0.5) 

   (6) Generate a λHi ~ Poisson(Λ = 30) 

           (7) Sample  λHi  samples from LN(0.5, 0.25) 

    (8)  Frequency for Month i = λLow + λMed + λHi 

      (9)  Aggregate Loss for Month i = Sum of Hi, Med, Low Frequency Severities 

(10) End Loop. 
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Figure 14 Severity and Frequency distribution of Scenario (II) simulated data 

 

Scenario (III) generates data assuming the classical framework: independence of 

frequency and severity. The algorithm for Scenario (III) with corresponding simulation 

parameters is listed next along with the simulated data histograms as shown below in 

figure (15) [67]. 

Scenario III: Independence of Severity and Frequency 
(1)  For i=1:n months (set n to a large number of iterations, which is 10,000) 

 (2) Generate a λFixed ~ Poisson(Λ = 14) 

      (3) Sample  λFixed  samples from LN(5, 2) 

 (4)  Sum to get the Aggregate Loss for Month i 

 (5) End Loop. 
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Figure 15 Severity and Frequency distribution of Scenario (III) simulated data 
 

Scenario (IV) generates data which mimics a mixture process for low and high 

frequency/severity. Specifically, low frequency corresponds to high severity with a low 

probability, while typically high frequency corresponds to low severity with a high 

probability. For severity component, the variance is fixed to be the same for both regions 

and only the mean parameter is changed. The algorithm for Scenario (IV) with 

corresponding simulation parameters is listed next along with the simulated data 

histograms as shown below in figure (16). 

Scenario IV: Mixture process for Hi/Low Severity to Frequency  
         (1)  For i=1:n months (set n to a large number of iterations, which is 10,000) 

   (2)      Generate a u ~ U[0,1] 

  (2a) If u < 0.3 then 

  (2b) Generate a λLow ~ Poisson(Λ = 5) & sample from LN(10, 0.5) 

  (2c) else; Generate a λHi ~ Poisson(Λ = 50) & sample from LN(1, 0.5) 

      (3)  Aggregate Loss for Month i = Sum of Low + Hi Severities 
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(4) End Loop. 

 

 

Figure 16 Severity and Frequency distribution of Scenario (IV) simulated data 
 

Scenario (V) generates data which has a perfect correlation between frequency 

and severity. Specifically, lower frequency corresponds to higher severity while higher 

frequency corresponds to lower severity. For severity component, the variance is fixed to 

be the same for both regions and only the mean parameter is changed. The algorithm for 

Scenario (V) with corresponding simulation parameters is listed next along with the 

simulated data histograms as shown below in figure (17). 

Scenario V: Perfect correlation between Severity and Frequency  
• Assume λ ~ Discrete Uniform[10, 210] (represents annual losses) 

• Generate μ | λ from the following table (8) below: 
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Table 8 Perfectly correlated frequency & severity for Scenario (V) study 

μ λ 
10 10 
9.9 11 
9.8 12 
9.7 13 
9.6 14 
9.5 15 
9.4 16 

⋮ ⋮ 
1 210 

 

• Given μ, λ then generate losses from LN(μ, 0.1) with count of λ losses. 

(1)  For i=1:n years (set n to a large number of iterations, which is 1,000) 

     (2)      Generate a λ ~ Discrete U[10, 210] 

  (2a) Given λ, find corresponding μ from table (8) above.  

  (2b) Draw λ samples from LN(μ, 0.1) 

      (3)  Aggregate Loss for Year i = Sum λ samples from LN(μ, 0.1) 

(4) End Loop. 
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Figure 17 Severity and Frequency distribution of Scenario (IV) simulated data 
 

These five scenarios are created based on the following motivation. It is expected 

that in Scenarios (I) and (II), the K-means methodology should outperform the classical 

methodology. In Scenario (III), classical methodology should do well, and the K-means 

methodology should show that K=1 is best partition of data. Finally for Scenarios (IV) 

and (V), the copula based methodologies should outperform the classical methodologies. 

The results for verification are presented in chapter 4. Next, narration of the real-world 

datasets studied in this dissertation is given. 

3.4.2.2 Real-World Datasets across Multiple Domains for VaR Analysis  
There are four areas where empirical analysis is conducted to validate the new 

methodologies for estimating the VaR. The categories are the following: (1) Financial 

losses; (2) Government insured losses; (3) Natural Losses; (4) Insurance based losses. 

The basics characteristics of these datasets are described next. 
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The first category that this dissertation investigates is financial losses. Note that most 

losses from financial firms are proprietary and can't be publicly obtained. However, there 

is a plethora of stock market based data which is publicly available. Usually for stock 

market data, most people are interested in gains and losses. However, from a modern 

ORM context, this dissertation looks only at the losses. So the natural application of this 

methodology would be to a risk-averse investor who is highly conscious of minimizing 

his/her losses. Another practical scenario for this is a new hedge-fund manager who 

wants to prove that he/she does not have severe drawdown in order to build his/her 

reputation. Thus, the key idea is to minimize the downside risk. In figures (18)-(19), the 

severity and frequency histogram for the following two indices are shown: (1) Standard 

& Poor's 500 (S&P 500); and (2) Dow Jones Industrial Average (DJIA) [91]. For this 

data, daily log return, i.e. log(Pt+1/Pt)(where Pt represents the daily closing price at time 

t), is computed and only analyzed in instances when this return is negative. In order to 

have finite positive values, this return is scaled by $10,000 to indicate a portfolio loss. 

For S&P 500, the data is used from 1928 - 2015, while for DJIA the data is used from 

1950-2015 [67]. The severity time unit is daily losses, while the frequency time unit is 

monthly loss. There are approximately 10,000 loss data points for the S&P 500 and 

approximately 7,500 daily loss data points for the DJIA. There are approximately 1,000 

months of frequency data for S&P 500 and 780 months for DJIA. Therefore, a monthly 

Aggregate VaR is computed.  
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Figure 18 Data Characteristics of DJIA 
 

 

Figure 19 Data Characteristics of S&P 500 
 

The next dataset that is investigated falls in the government tracked losses. The 

publicly available data in this domain comes from US Coast Guard's Chemical Spills loss 
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database [92]. From 1990 till 2015, there is approximately 300 months worth of data. The 

spills occur anytime during the day. In figure (20) below, the loss data characteristics are 

shown [67]. Overall there are approximately 5,000 individual losses which span the 

approximately 300 months from 1990 - 2015. Thus, a monthly Aggregate VaR is 

computed.  

 

 

Figure 20 Data Characteristics of Chemical Spills US Coast Guard 
 

The next dataset that is investigated falls in the insurance world. The publicly 

available data in this domain comes from automobile accidents in Australia from 1989-

1999 [93]. There is approximately 120 months worth of frequency data. The accident loss 

severity occurs anytime during the day. In figure (21) below, the data characteristics are 

shown. Overall there are approximately 22,000 individual losses which span over 

approximately 120 months. Thus, a monthly Aggregate VaR is computed.  
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Figure 21 Data Characteristics of Australian Automobile accidents 
 

The final dataset that is investigated falls in the natural calamities. The publicly 

available data in this domain comes from US hurricane losses from 1900-2005 [94]. 

There is 105 years worth of frequency data. The accident loss severity occurs anytime 

during the year. In figure (22) below the data is shown for approximately 200 individual 

losses which span 105 years. Thus, an annual Aggregate VaR is computed.  
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Figure 22 Data Characteristics of US hurricanes 
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CHAPTER 4 RESULTS  

This chapter shows the results which form the basis of the contributions of this 

dissertation. This section is organized by first showing the contribution this dissertation 

provides in determining a flexible severity distribution which can fit operational risk loss 

data and its impact on estimating the Aggregate Loss distribution. Next, the results and 

the discussions of the findings for the contributions regarding robust estimation of VaR 

through DPFS via distribution-free methods and DBP via copulas both of which do not 

assume the independence assumption of severity and frequency are shown.   

4.1 Flexible Severity Distribution and Impact on VaR 
Determining flexible severity distribution is largely a Monte-Carlo simulation 

based study. Therefore, the flexibility is tested using high parameter distributions, i.e. 

three parameter distributions such as Burr and LNG with heavy tails. A large dataset 

consisting of 10,000,000 daily loss severities from a Lognormal-Gamma distribution is 

generated with the following parameters: mean (μ)=9; standard deviation (σ)=2; and 

kurtosis (k)=5 [10]. Then this empirical loss severity dataset is fit to the following 

severity type distributions: (1) Weibull, (2) lognormal, (3) Lognormal-Gamma, (4) GPD, 

and (5) Burr. Instead of performing graphical/statistical tests of goodness of fits (such as 

χ2 test or Anderson-Darling tail tests, etc), a numerical comparison using empirical 

percentiles is shown below in table (9) [10].  
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Table 9 Fitting random high severity data; using LNG as base 

 
. 

 Notice how one can get a quick estimate of the fit by just looking at the percentile 

comparisons in tabular form. For example, at the 99.9 percentile, the theoretical (true) 

value is approximately $25 million, and the GPD does an overestimate of approximately 

$160 Million, while the Burr does an underestimate of $1.8 million [10]. Notice how the 

Weibull and lognormal fail completely to fit this leptokurtic type of data. This result can 

perhaps be explained by the fact that Weibull is primarily characterized as a thin-tailed 

distribution, and similarly lognormal has an exact kurtosis of 3. As expected, the LNG 

fits itself quite well. However, as mentioned in section 3, since the LNG does not have a 

closed form density, a "good" MLE fit is not guaranteed [10]. 

Next, with the same framework it is important to test if the results translate 

forward when performing MCS for Aggregate Loss distribution. For this simulation 

study, the frequency distribution is set to a Poisson frequency distribution with parameter 
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of λ=10 losses per month and the corresponding VaR is calculated as shown in table (10) 

below [10].  

 

Table 10 Simulation results for Aggregate Loss distribution using LNG as the base 

 
 

 It is interesting to note that while the MLE fit has failed for the Burr distribution, 

the Aggregate Loss distribution estimates are very reasonable. The true EL is actually 

around $98 million while the Burr distribution estimated through MCS the VaR around 

$96 million [10]. For the 99.95% quantile, the Burr distribution estimated an $18.6 

billion value for the VaR, while the actual VaR value is near $19 billion [10]. This shows 

an error rate of about 0.2% which is quite reasonable by any standard. 

 The next simulation is using the base (i.e. theoretical) distribution as the GPD. 

The reason is that this is a classic EVT class of POT distribution. Particularly, this 

distribution can be used to model data consisting solely of heavy tails. Therefore, it is 

interesting to see how the results vary from the previous case where a heavy tail and a 

Percentile Lognormal-Gamma Weibull Lognormal LNG GPD Burr
99.95 62,358,321                                   19                         1,523                        62,358,325        408,234,509      4,560,456              
99.9 25,789,098                                   8                           521                           25,789,100        157,892,234      1,740,731              
99.5 3,451,989                                     -                        22                            3,451,990         21,456,897        226,475                 
99 1,345,897                                     -                        3                              1,345,890         8,567,987         91,234                  
95 214,589                                        -                        -                           214,591            1,082,321         8,759                    
90 92,345                                         -                        -                           92,340              450,232            2,845                    
50 7,528                                           -                        -                           7,530                51,234              43                         
25 3,214                                           -                        -                           3,233                11,357              9                          
Min 0                                                 -                        -                           0                      0                      0                          

Percentile Lognormal-Gamma Weibull Lognormal LNG GPD Burr
99.95 19,139,142,100                             1,756,897,234        6,812,234,232           18,947,760,669 49,893,497,789 18,568,806,451      
99.9 8,823,025,340                               1,000,000,982        3,098,124,521           8,734,805,108   22,044,926,382 2,876,897,121        
99.5 1,332,466,429                               271,897,787           675,098,123              1,319,151,766   2,894,958,587   1,102,232,923        
99 414,756,364                                 160,324,345           309,987,323              410,618,811      1,445,367,061   402,407,431          
95 78,282,735                                   40,897,232            61,098,123                77,509,906        130,723,020      75,960,716            
90 34,835,875                                   25,092,109            30,235,897                34,497,486        76,246,227        33,808,528            
50 7,863,879                                     7,876,909              6,109,232                  7,795,245         13,854,942        7,640,333              
25 3,110,585                                     3,123,451              4,098,123                  3,089,469         8,758,838         3,028,684              
Min 456,173                                        200,321                 259,879                    461,606            389,599            370,279                 

985                       
EL 98,621,642                                   17,109,091            43,098,123                97,645,419        229,049,322      95,693,486            

LNG
Parameters Theoretical
Mean 9
Standard Deviation 2
Kurtosis 5

True Severity Distribution Fitted Severity Distributions

Aggregate Loss Distribution Fitted Aggregate Loss
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large body (i.e. LNG distribution) is used as the base. As shown in table (11) below, the 

GPD fails to fit itself at the $0 threshold [10]. It can only fit itself from a certain finite 

threshold ($20K in this example) as shown in the figure below. This is not surprising, 

since GPD comes from the EVT class of POT distributions. It is also important to notice 

from table (11) that for the MLE portion only, the Lognormal-Gamma does a remarkable 

job in the fit. For the lower ends of the distribution, like at the 25th percentile, the 

Lognormal-Gamma is showing a severity value of $7,700 while the actual severity value 

is $7,500 [10]. For the higher ends of the tail, the 99.95% actual value is around $145 

million (for the severity) while the Lognormal-Gamma is showing $130 million [10]. 

Also the Burr distribution does very well in this regards. When one moves to the Monte 

Carlo results for the Aggregate Loss distribution in table (11), the Lognormal-Gamma 

does a reasonable job fitting this distribution. In reality, the GPD is not used that often to 

fit the operational risk loss data due to its stability issues. However, the figure below 

shows that even if GPD is the true distribution, the three parameter distribution of 

Lognormal-Gamma can do a reasonable job to fit and simulate Aggregate Loss 

distribution [10]. While the three-parameter Burr distribution performs marginally better 

amongst all distributions, it is not at all intuitive to interpret the meaning of the parameter 

estimates. On the other hand, the LNG distribution has clear and intuitive statistical 

meaning for each of its three parameters, namely, mean, variance and kurtosis. Thus 

based on the above simulation studies, the LNG distribution is chosen as a good 

"flexible" distribution for fitting both the severity and compute VaR from the aggregate 

loss distribution.   
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Table 11 Simulation results for Aggregate Loss distribution using GPD as the base 

 
 

4.2 VaR Estimation via DPFS with Distribution-Free & DBP using 
Parametric Approaches 
 This section begins by verifying the distribution-free and parametric copula based 

methodology on the simulated data from Scenarios (I) - (V). Afterwards, the validation of 

the analysis is done using the real-world data results (as described in the previous section) 

are shown. Then, a summary of the overall results found and discussion of the 

implications of the results from all of the analysis are provided at the end.  

4.2.1 Distribution-Free Approach using Clustering 
The K-means algorithm is analyzed using Method I and Method II as mentioned 

in chapter 3. Results begin with the simulated data from the five scenarios (from chapter 

3) and then follow up with the real-world data. Afterwards, a summary of the results are 

discussed. 

Percentile Generalized Pareto (GPD) GPD Pareto Burr Weibull Log-Normal LogNormal Gamma
99.95 144,796,533                                 364,879,590           2,527,142,976           145,378,707      605,699            14,437,250            130,100,754             
99.9 63,013,402                                   157,100,095           865,766,761              63,295,855        242,680            7,554,730              56,838,765               
99.5 9,121,221                                     22,192,718            71,973,536                9,170,229         19,193              1,431,737              9,189,903                 
99 3,976,520                                     9,546,900              24,657,210                3,984,361         5,020                639,038                 4,194,104                 
95 561,239                                        1,336,205              2,049,821                  564,694            82                    70,556                  629,080                    
90 245,608                                        566,559                 702,242                    237,006            7                      21,795                  262,738                    
50 23,543                                         66,842                   58,379                      20,813              0                      346                       24,158                     
25 7,528                                           34,830                   31,197                      6,641                0                      39                         7,713                       
Min 0                                                 20,000                   20,000                      0                      0                      0                          0                             

Percentile Generalized Pareto (GPD) GPD Pareto Burr Weibull Log-Normal LogNormal Gamma
99.95 35,139,142,100                             55,437,218,661      1,000,008,212,620     36,378,190,759 1,254,760,110   1,649,039,896        26,390,136,271         
99.9 15,823,025,340                             24,494,361,551      379,078,656,551        16,019,872,405 857,129,394      1,053,398,400        7,892,311,833           
99.5 2,346,966,429                               3,618,696,992        31,536,012,354          2,342,102,756   330,293,322      357,854,139          1,423,073,123           
99 1,014,756,364                               1,605,962,288        10,833,119,786          1,033,727,750   216,012,691      223,948,081          684,915,818             
95 168,282,735                                 261,444,081           934,832,496              168,027,860      80,203,322        77,335,901            135,310,321             
90 81,835,875                                   127,075,362           333,501,838              81,443,369        52,338,203        49,736,322            70,840,306               
50 17,865,369                                   27,707,922            32,169,281                17,525,310        17,621,573        16,820,061            17,297,126               
25 11,311,585                                   17,515,681            15,881,642                10,970,930        11,611,139        11,217,838            11,008,223               
Min 1,456,173                                     2,590,765              1,356,906                  1,134,607         1,159,222         1,416,721              1,170,332                 

EL 426,621,642                                 699,049,732           1,506,450,045           179,554,385      30,172,394        30,478,464            140,943,017             

Generalized Pareto
Parameters Theoretical
Scale parameter 19,000                   
Shape parameter -1.2

Fit Threshold 20,000                   
Sample size 10,000,000            

Fitted Severity Distributions

Fitted Aggregate Loss

True Severity Distribution

Aggregate Loss Distribution



 

112 
 

4.2.1.1 Simulation Scenarios (I) - (V) Results 
Next, the K-means algorithm is analyzed using Method I and Method II for 

Scenario (I). The 2-D K-means clustering for Scenario (I) is shown figure (23). Figure 

(26) shows the partitioning using K-means Severity only Implied Frequency (Method II) 

clustering.  Notice how the K-means fails to separate the data perfectly for the 2-D case, 

while it does a good job for the case in Method II.  

 

 

Figure 23 K-Means: 2-D (Method I) for Scenario (I) 
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Figure 24 K-Means: Severity Only Implied Frequency (Method II) for Scenario (I) 

 

Next, the analysis of the K-means algorithm using Method I and Method II for 

Scenario (II) is described. The 2-D K-means clustering for Scenario (II) is shown in 

figure (25) below. The partitioning using K-means: Method II is given in figure (26) [67]. 

Notice how the K-means fails to separate the data perfectly for the 2-D case, while it does 

a good job for Method II.  
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Figure 25 K-Means: 2-D for Scenario (II) 

 
Figure 26 K-Means: Method II for Scenario (II) 

 

Then the K-means algorithm using Method I and Method II for Scenario (III) are 

analyzed. For this particular scenario, the strength of using the silhouette technique to 

compute the optimal value of K is shown. This is presented in figure (27) below [67]. The 

average silhouette value is around 1, and thus a single cluster is appropriate. So the 2-D 
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K-means from Method I and K-means: Severity only to Implied Frequency (Method II) is 

meaningless since K=1, implies that the classical method is sufficient. 

 

 
Figure 27 Silhouette plot for determining optimal K for Scenario (III) 

 

Next, an analysis of the K-means algorithm using Method I and Method II for 

Scenario (IV) is described. The 2-D K-means clustering for Scenario (IV) is shown in 

figure (28). In addition, the partitioning of the data using K-means: Method II clustering 

is shown in figure (29) below. Notice how both the K-means methodology properly 

identify the clusters.   
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Figure 28 K-Means: 2-D for Scenario (IV) 

 

 
Figure 29 K-Means: Method II for Scenario (IV) 

 

Finally, an analysis of the K-means algorithm using Method I and Method II for 

Scenario (V) is described. The 2-D K-means clustering for Scenario (V) is given in figure 

(30) below. Figure (31) shows the partitioning using K-means: Severity only Implied 
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Frequency clustering. Notice how the 2-D K-means fails to separate the data along with 

the K-means: Method I.   

 

 

Figure 30 K-Means: 2-D for Scenario (V) 

 

 

Figure 31 K-Means: Method II for Scenario (V) 
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Overall, the results from the dissertation show that the K-means methodology 

works well on most types of the scenarios. For Scenarios (I) - (III), the Method II works 

well. For the correlated cases, Method I (i.e. mean severity with frequency, also known as 

2-D K-means) works well. For Scenario (V), the K-means algorithm does not work well, 

because there is perfect correlation and the partition requires a large value of K which is 

not selected. The VaR results for Scenarios (I) - (V) are shown next in tables (12) - (16) 

below.  

Table 12 VaR results for Scenario I using DPFS K-means: Methods I and II 

 

Method I Method II
VaR VaR

0% $0 $0 $0
25% $13 $5 $14
50% $55 $23 $57
90% $16,659 $21,844 $20,964
95% $33,966 $39,285 $37,375
98% $52,560 $56,327 $54,427
99% $65,165 $70,248 $66,828

99.5% $77,042 $85,470 $78,008

Scenario I

DPFS K-Means
Historical

VaR
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Table 13 VaR results for Scenario II using DPFS K-means: Methods I and II 

 

Table 14 VaR results for Scenario III using DPFS K-means: Methods I and II 

 

Method I Method II
VaR VaR

0% $161 $2,413 $152
25% $10,514 $10,820 $10,722
50% $22,815 $16,629 $23,159
90% $57,130 $53,861 $56,196
95% $69,590 $86,086 $69,155
98% $85,204 $161,826 $82,845
99% $96,556 $240,311 $94,040

99.5% $107,539 $376,988 $105,457

Historical
VaR

Scenario II

DPFS K-Means

Method I Method II
VaR VaR

0% $125 $4 $108
25% $5,143 $5,190 $5,137
50% $9,268 $9,315 $9,372
90% $30,377 $30,408 $31,450
95% $44,748 $44,704 $45,185
98% $72,481 $72,299 $74,414
99% $103,036 $103,087 $107,022

99.5% $145,555 $145,573 $146,053

Historical
VaR

Scenario III

DPFS K-Means
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Table 15 VaR results for Scenario IV using DPFS K-means: Methods I and II 

 

Table 16 VaR results for Scenario V using DPFS K-means: Methods I and II 

 

 

4.2.1.2 Real-World Data Results 
 To begin, the results for the financial loss datasets are shown next. Figure (32) 

below shows the analysis where K-means: 2-D clustering is calculated for the S&P 500 

data [67]. For the K-means: Severity only with Implied Frequency, the best fit is found to 

be K=2, so a corresponding plot is shown in figure (33). 

Method I Method II
VaR VaR

0% $0 $40 $43
25% $144 $640 $8,656
50% $167 $1,157 $28,646
90% $146,025 $4,299 $82,321
95% $185,097 $6,638 $101,008
98% $227,096 $11,856 $122,585
99% $255,899 $17,324 $141,709

99.5% $282,384 $24,684 $158,573

Historical
VaR

Scenario IV

DPFS K-Means

Method I Method II
VaR VaR

0% $230 $73,831 $8,433
25% $2,090 $248,248 $42,501
50% $17,247 $304,640 $61,651
90% $238,502 $462,573 $155,336
95% $260,502 $527,759 $219,225
98% $268,995 $617,283 $355,505
99% $272,649 $687,479 $525,180

99.5% $275,452 $803,500 $805,360

Historical
VaR

Scenario V

DPFS K-Means
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Figure 32 K-Means: Method I (2-D) for S&P 500 

 

 

Figure 33 K-Means: Method II (Severity Only Implied Frequency) for S&P 500 
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 The VaR results are computed next using the K-means methodology and compare 

with historical data and classical methodology. The results are shown in table (17) [67]. 

Notice how Method I does a very good job in estimating the VaR.  

 

Table 17 VaR results for S&P 500 using K-means Methods I and II 

 

 Next the results for DJIA in figure (32) are shown below where the 2-D K-means 

clustering for the DJIA data is given. For the K-means clustering using Method II, the 

best fit is found at K=1, so the K-means plot is the same as the standard severity 

histogram as shown in previous section (figure 18).  

 

Classical Method I Method II
VaR VaR VaR

Mean $766 $764 $937 $1,606
0% $40 $0 $0 $0
25% $369 $508 $499 $1,160
50% $586 $723 $783 $1,554
90% $1,431 $1,234 $1,710 $2,432
95% $2,027 $1,404 $2,132 $2,712
98% $3,143 $1,611 $2,772 $3,043
99% $3,808 $1,756 $3,337 $3,272

99.5% $4,149 $1,895 $3,990 $3,488
99.9% $4,825 $2,190 $5,981 $3,943

Historical
VaR

k-Means Split



 

123 
 

 
Figure 34 K-Means: Method I (2-D) for DJIA 

 

 The VaR results are computed using the K-means methodology and compare with 

historical data and classical methodology. The results are shown below in table (18). 

Notice how both Method I and Method II perform well in estimating the VaR.  

 

Table 18 VaR results for DJIA using K-means Methods I and II 

 

 

Classical Method I Method II
VaR VaR VaR

Mean $287 $341 $850 $339
0% $29 $6 $412 $7
25% $364 $448 $1,098 $441
50% $566 $683 $1,316 $678
90% $1,122 $1,375 $1,773 $1,390
95% $1,465 $1,666 $1,910 $1,702
98% $2,070 $2,075 $2,088 $2,150
99% $2,325 $2,454 $2,192 $2,516

Historical
VaR

DJIA

k-Means Split
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 Next the results for chemical spills in figures (35)-(36) are shown where the 2-D 

K-means clustering for the data is given [67]. For the K-means: Severity only Implied 

Frequency, the best fit is found at K=3, so the K-means plot is shown below in figure 

(36) [67].  

 After the K-means Method I and Method II are determined, the corresponding 

VaR results from these methodologies are computed and compared with historical data 

and classical methodology. The results are shown below in table (19) [67]. Notice how 

Method II does a reasonable job in estimating the VaR. 

 
Figure 35 K-Means: Method I (2-D) for Chemical Spills 
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Figure 36 K-Means: Method II for Chemical Spills  

Table 19 VaR results for Chemical Spills using K-means Methods I and II 

 

 

 Afterwards, the results for Automobile accidents are shown in figure (37) below.  

Here the 2-D K-means clustering is given. For the K-means clustering using Method II, 

the best fit is found at K=1, so the K-means plot is the same as the standard severity 

histogram as shown in figure (25).  

 

Classical Method I Method II
VaR VaR VaR

Mean $3,704,235 $20,509,595 $78,656,988 $6,724,650
0% $250,000 $0 $10,058 $0

25% $1,579,058 $0 $6,439,424 $0
50% $2,528,113 $0 $15,803,952 $0
90% $6,070,004 $23,174,443 $114,902,912 $5,414,227
95% $8,223,224 $55,905,371 $226,507,895 $9,211,239
98% $14,428,712 $146,956,339 $519,706,874 $23,887,867
99% $21,006,921 $284,977,729 $939,953,129 $51,923,390

k-Means Split
Historical

VaR

Chemical Spills
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Figure 37 K-Means: Method I (2-D) for Automobile Accidents 

 

 The VaR results are computed next using the K-means methodology are 

compared with historical data and classical methodology. The results are shown below in 

table (20). Notice how Method II does a reasonable job in estimating the VaR.  

 

Table 20 VaR results for Automobile Accidents using K-means Methods I and II  

 
  

 Finally, the results for US hurricanes are shown.  For both the 2-D K-means 

(Method I) and the K-means: Method II, it is observed that the best fit occurs at K=1, so 

Classical Method I Method II
VaR VaR VaR

Mean $7,351,826 $7,903,965 $9,909,820 $7,902,410
0% $327 $3,652,871 $6,193,134 $3,506,035

25% $5,279,309 $6,764,007 $9,097,156 $6,780,871
50% $8,179,051 $7,693,910 $9,859,308 $7,678,260
90% $11,382,899 $9,935,066 $11,442,192 $9,950,250
95% $12,841,319 $10,802,019 $11,906,385 $10,820,026
98% $14,045,680 $12,037,425 $12,461,354 $11,991,467
99% $14,717,942 $12,988,392 $12,871,537 $12,900,951

Historical
VaR

Automobile

k-Means Split
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the K-means plot is the same as the standard severity histogram as shown in figure (22). 

The VaR results are shown in table (21) below.  The results show that K-means: Method 

II is the only one that performs reasonably well in VaR estimation. 

 

Table 21 VaR results for US Hurricanes using K-means Methods I and II  

 
 

4.2.2 Parametric Approach using Copula 
To begin this subsection, an analysis of the copula based VaR computation as 

mentioned in the previous chapter is described. As mentioned in the previous section, the 

first step is to assume a distribution based structure. In this section, the severity is 

lognormal and the frequency is Poisson distribution for the parametric structure. 

Therefore, the estimation involves the triplet (λ, μ, σ) for each frequency time period. 

Note that there are closed form expressions for these quantities from MLE as shown 

below: 

• μ� =  ∑ Log(xi)n
i=1

n
  for a sample of x1, x2, ..., xn ~ LN(μ, σ) distribution 

Classical Method I Method II
VaR VaR VaR

Mean $10,304,351,516 $25,005,170,479 $11,966,093,532,725,000 $15,856,419,244
0% $0 $0 $0 $0

25% $145,567,136 $143,064,352 $984,718 $185,902,032
50% $1,546,550,238 $1,636,020,964 $891,143,303 $1,889,066,337
90% $26,622,376,781 $32,421,416,186 $8,797,128,358,329 $27,635,698,982
95% $51,396,924,874 $73,341,304,140 $106,917,479,563,651 $53,991,567,167
98% $76,583,740,780 $186,681,225,463 $1,509,316,668,391,140 $123,786,358,452
99% $113,860,560,854 $378,170,152,946 $8,990,749,087,773,140 $230,825,029,288

VaR

k-Means Split
Historical

US Hurricanes



 

128 
 

• 𝜎�2 =  
∑ �Log(xi)− 

∑ Log�xi�n
i=1

n �
2

n
i=1

n
  for a sample of x1, x2, ..., xn ~ LN(μ, σ)  

• λ� = count in each time period 

Afterwards, the results for the simulated data are shown and then followed up 

with the results for the real-world data. To conclude, a summary of the results are 

discussed. 

4.2.2.1 Simulation Scenarios (I) - (V) Results 
To begin, an analysis of the copula methodology by using Gaussian/t-copula 

along with GMCM is described. Scenario (I) is used as a starting example. Figure (38) 

shows the frequency and severity parameters for the data on a per month basis.  

 

 
Figure 38 Severity/Frequency Parameter Estimates for Scenario (I) 
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 The corresponding Pearson correlation matrix among the frequency and severity 

parameters is shown in figure (39) below.  

 

 
Figure 39 Severity/Frequency Pearson Correlation Estimates for Scenario (I) 

 

 The results from copula fitting the empirical surface for Gaussian/t/GMCM 

copulas are given in figures (40)-(42) below.  
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Figure 40 Surface Plot for Scenario (I) using Gaussian Copula (red is data; black is copula) 
 

 
Figure 41 Surface Plot for Scenario (I) using t-Copula (red is data; black is copula) 
 

 

 
Figure 42 Surface Plot for Scenario (I) using GMCM Copula (red is data; black is copula) 
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Scenario (II) results are analyzed next. Figure (43) shows the frequency and 

severity parameters per month time unit.  

 
Figure 43 Severity/Frequency Parameter Estimates for Scenario (II) 

 

 The resulting Pearson correlation matrix among the frequency and severity 

parameters is as shown in figure (44) below. 
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Figure 44 Severity/Frequency Pearson Correlation Estimates for Scenario (II) 

 

The final results from copula fitting the empirical surface for Gaussian/t/GMCM copulas 

is shown in figures (45)-(47) below.  

 

 

 

Figure 45 Surface Plot for Scenario (II) using Gaussian Copula (red is data; black is copula) 
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Figure 46 Surface Plot for Scenario (II) using t-Copula (red is data; black is copula) 
 

 

 
Figure 47 Surface Plot for Scenario (II) using GMCM Copula (red is data; black is copula) 

 

Next, the results from Scenario (III) are analyzed. Figure (48) shows the 

frequency and severity parameters per month time period.  
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Figure 48 Severity/Frequency Parameter Estimates for Scenario (III) 

 

 The Pearson correlation matrix among the frequency and severity parameters is 

shown in the figure (49) below.  
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Figure 49 Severity/Frequency Pearson Correlation Estimates for Scenario (III) 

 

 Next the computation of the mixture surface for Gaussian/t copulas as shown in 

figures (50)-(52) below. Since the GMCM found K=1, the GMCM becomes the same as 

the Gaussian copula, and thus its surface plot is not shown in this case.  
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Figure 50 Surface Plot for Scenario (III) using Gaussian Copula (red is data; black is copula) 
 

 
Figure 51 Surface Plot for Scenario (III) using t-Copula (red is data; black is copula) 

 

Next the analysis moves to Scenario (IV). Figure (52) shows the frequency and 

severity parameters per month time unit.  
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Figure 52 Severity/Frequency Parameter Estimates for Scenario (IV) 

 

 The Pearson correlation matrix among the frequency and severity parameters is 

shown in figure (53) below. 
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Figure 53 Severity/Frequency Pearson Correlation Estimates for Scenario (IV) 

 

The mixture surface for Gaussian/GMCM copulas are computed and shown in figures 

(54)-(55) below. The t is identical to Normal in shape and not shown. 

 

 
Figure 54 Surface Plot for Scenario (IV) using Gaussian Copula (red is data; black is copula) 
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Figure 55 Surface Plot for Scenario (IV) using GMCM Copula (red is data; black is copula) 

 

The final Scenario (V) is analyzed here. Figure (56) shows the frequency and 

severity parameters per month time unit.  
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Figure 56 Severity/Frequency Parameter Estimates for Scenario (V) 

 

 The Pearson correlation matrix among the frequency and severity parameters is 

shown in figure (57) below. 
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Figure 57 Severity/Frequency Pearson Correlation Estimates for Scenario (V) 

  

 Next, the mixture surface for Gaussian/t copulas are computed and shown in 

figures (58)-(59). Since the GMCM found K=1, the GMCM becomes the same as the 

Gaussian copula, and thus its surface plot is not shown in this case.  
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Figure 58 Surface Plot for Scenario (V) using Gaussian Copula (red is data; black is copula) 
 
 

 
Figure 59 Surface Plot for Scenario (V) using t-Copula (red is data; black is copula) 
 

 

 Now that all of the copula calculations and fits are shown, the VaR estimates from 

this methodology are shown. This is given in tables (22)-(26). Afterwards, the analysis of 

real-world datasets is presented in the next section. 
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Table 22 VaR results for Scenario I using Parametric Copula methodology 

 

Table 23 VaR results for Scenario II using Parametric Copula methodology 

 

Table 24 VaR results for Scenario III using Parametric Copula methodology 

 

Classical Method Normal Student T Gaussian Mixture Copula
VaR VaR VaR VaR

0% $0 $0 $0 $0 $0
25% $13 $118 $9 $10 $13
50% $55 $262 $49 $51 $57
90% $16,659 $1,253 $18,468 $16,112 $19,901
95% $33,966 $2,067 $58,118 $55,966 $49,573
98% $52,560 $3,805 $133,194 $150,503 $96,300
99% $65,165 $5,920 $209,223 $271,317 $136,675

99.5% $77,042 $9,028 $325,273 $387,643 $167,253

Scenario I Results

Copula

Historical  VaR

Classical Method Normal Student T Gaussian Mixture Copula
VaR VaR VaR VaR

0% $161 $183 $69 $55 $60
25% $10,514 $1,872 $1,168 $1,165 $1,156
50% $22,815 $3,080 $2,544 $2,464 $2,487
90% $57,130 $9,522 $15,307 $14,527 $15,070
95% $69,590 $14,302 $28,186 $26,001 $28,202
98% $85,204 $25,504 $65,391 $57,718 $63,784
99% $96,556 $38,792 $112,870 $100,300 $104,598

99.5% $107,539 $61,201 $202,611 $171,972 $198,425

Scenario II Results

Copula

Historical  VaR

Classical Method Normal Student T Gaussian Mixture Copula
VaR VaR VaR VaR

0% $125 $0 $0 $0 $0
25% $5,143 $5,127 $3,553 $3,490 $3,553
50% $9,268 $9,234 $7,584 $7,488 $7,584
90% $30,377 $30,280 $38,859 $37,090 $38,859
95% $44,748 $44,682 $64,416 $63,991 $64,416
98% $72,481 $72,090 $128,535 $128,767 $128,535
99% $103,036 $102,021 $232,959 $220,152 $232,959

99.5% $145,555 $143,970 $369,283 $407,959 $369,283

Scenario III Results

Copula

Historical  VaR
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Table 25 VaR results for Scenario IV using Parametric Copula methodology 

 

Table 26 VaR results for Scenario V using Parametric Copula methodology 

 

4.2.2.2 Real-World Data: Financial, Government, Insurance and Hurricanes  
The results for the financial loss datasets are shown next. Figure (60) shows the 

frequency and severity parameters per month time unit for S&P 500.  

 

Classical Method Normal Student T Gaussian Mixture Copula
VaR VaR VaR VaR

0% $0 $78 $0 $103 $87
25% $144 $421 $128 $2,063 $147
50% $167 $591 $163 $6,088 $165
90% $146,025 $1,223 $796,317 $53,156 $74,433
95% $185,097 $1,571 $118,263 $107,196 $156,484
98% $227,096 $2,196 $1,377,574 $374,233 $228,040
99% $255,899 $2,749 $1,550,531 $562,645 $257,474

99.5% $282,384 $3,378 $1,675,394 $1,177,644 $282,252

Scenario IV Results

Copula

Historical  VaR

Classical Method Normal Student T Gaussian Mixture Copula
VaR VaR VaR VaR

0% $230 $9,034 $245 $231 $245
25% $2,090 $36,517 $879 $1,713 $879
50% $17,247 $52,223 $6,315 $14,936 $6,315
90% $238,502 $125,085 $222,966 $234,803 $222,966
95% $260,502 $174,906 $261,706 $257,916 $261,706
98% $268,995 $265,873 $276,293 $266,826 $276,293
99% $272,649 $379,968 $281,689 $271,631 $281,689

99.5% $275,452 $541,806 $282,797 $274,750 $282,797

Scenario V Results

Copula

Historical  VaR
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Figure 60 Severity/Frequency Parameter Estimates for S&P 500 
  

 The Pearson correlation matrix among the frequency and severity parameters is 

shown in figure (61) below.  
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Figure 61 Severity/Frequency Pearson Correlation Estimates for S&P 500 

 

 Next, the mixture surface for Gaussian/t copulas are computed and shown in 

figures (62)-(63) below. The t-Copula is identical in surface plot and is thus not shown. 
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Figure 62 Surface Plot for S&P 500 using Gaussian Copula (red is data; black is copula) 

 
 

 
Figure 63 Surface Plot for S&P 500 using GMCM (red is data; black is copula) 

 

The analysis of the DJIA dataset is shown next. Figure (64) shows the frequency 

and severity parameters per month time unit for this financial dataset.  
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Figure 64 Severity/Frequency Parameter Estimates for DJIA 
  

 The resulting Pearson correlation matrix among the frequency and severity 

parameters is shown in figure (65) below. 
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Figure 65 Severity/Frequency Pearson Correlation Estimates for DJIA 

 

The surfaces for Gaussian/t/GMCM copulas are computed and shown in figures (66)-(68) 

below.  

 

 
Figure 66 Surface Plot for DJIA using Gaussian Copula (red is data; black is copula) 
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Figure 67 Surface Plot for DJIA using t-Copula (red is data; black is copula) 

 

 
Figure 68 Surface Plot for DJIA using GMCM Copula (red is data; black is copula) 
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The chemical spills dataset analysis is shown next. Figure (69) shows the 

frequency and severity parameters per month time unit for this government monitored 

loss dataset.  

 

 

Figure 69 Severity/Frequency Parameter Estimates for Chemical Spills 
 

 The corresponding Pearson correlation matrix among the frequency and severity 

parameters is shown in figure (70) below.  

 



 

152 
 

 
Figure 70 Severity/Frequency Pearson Correlation Estimates for Chemical Spills 

 

The surfaces for Gaussian/t/GMCM copulas are computed and shown in figures (71)-(73) 

below.  

 

 
Figure 71 Surface Plot for Chemical Spills using Gaussian Copula (red is data; black is copula) 
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Figure 72 Surface Plot for Chemical Spills using t-Copula (red is data; black is copula) 
 

 

 
Figure 73 Surface Plot for Chemical Spills using GMCM Copula (red is data; black is copula) 

 

Next, the automobile accident dataset is shown. Figure (74) shows the frequency 

and severity parameters per month time unit for this insurance dataset.  
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Figure 74 Severity/Frequency Parameter Estimates for Automobile Accident 
  

 The Pearson correlation matrix among the frequency and severity parameters is 

shown in figure (75) below.  



 

155 
 

 
Figure 75 Severity/Frequency Pearson Correlation Estimates for Automobile crashes 

 

 The surfaces for Gaussian/t/GMCM copulas are computed and shown in figures 

(76)-(78) below.  

 

 
Figure 76 Surface Plot for Automobile using Gaussian Copula (red is data; black is copula) 
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Figure 77 Surface Plot for Automobile Accidents using t-Copula (red is data; black is copula) 
 

 

 
Figure 78 Surface Plot for Automobile Accidents using GMCM Copula (red is data; black is copula) 

 

Finally the results from the US hurricane dataset are shown. In figure (79) below, 

the frequency and severity parameters are shown per month time unit for this natural 

disaster dataset.  
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Figure 79 Severity/Frequency Parameter Estimates for US Hurricanes 
  

 The Pearson correlation matrix among the frequency and severity parameters is 

shown in figure (80) below.  
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Figure 80 Severity/Frequency Pearson Correlation Estimates for US Hurricanes 

 

 The surfaces for Gaussian/t/GMCM copulas are computed and shown in figures 

(81)-(83) below.  
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Figure 81 Surface Plot for US Hurricanes using Gaussian Copula (red is data; black is copula) 
 
 

 
Figure 82 Surface Plot for US Hurricanes using t-Copula (red is data; black is copula) 
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Figure 83 Surface Plot for US Hurricanes using GMCM Copula (red is data; black is copula) 

 

 Next, the copula based VaR results are shown for the real-world data. In this case, 

the comparison is shown relative to historical VaR estimates. This is shown next in tables 

(27) - (31). For the automobile crashes and hurricane data, the GMCM performs the best 

with respect to matching the historical data based VaR. The normal/t copula works best 

for the financial loss data and the chemical spills dataset.  
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Table 27 VaR Results for S&P 500 using Parametric Copula methodology 

 

Table 28 VaR Results for DJIA using Parametric Copula methodology 

 

Table 29 VaR Results for Chemical Spills using Parametric Copula methodology 

 

Normal Student T Gaussian Mixture Copula
VaR VaR VaR

0% $40 $0 $0 $5
25% $369 $311 $309 $322
50% $586 $594 $588 $607
90% $1,431 $2,049 $1,961 $1,943
95% $2,027 $2,876 $2,956 $2,978
98% $3,143 $4,382 $4,801 $4,644
99% $3,808 $5,947 $7,160 $6,714

99.5% $4,149 $8,043 $10,834 $9,721

Copula
Historical

VaR

SP 500

Normal Student T Gaussian Mixture Copula
VaR VaR VaR

0% $29 $21 $3 $15
25% $364 $246 $320 $307
50% $566 $503 $590 $602
90% $1,122 $1,538 $1,448 $1,651
95% $1,465 $1,884 $2,238 $2,521
98% $2,070 $2,447 $2,547 $3,534
99% $2,325 $3,071 $3,320 $3,860

Historical
VaR

DJIA

Copula

Normal Student T Gaussian Mixture Copula
VaR VaR VaR

0% $250,000 $3,767 $1,786 $48,229
25% $1,579,058 $4,959,969 $4,983,645 $4,973,240
50% $2,528,113 $10,832,908 $10,495,439 $9,833,337
90% $6,070,004 $23,568,699 $23,275,790 $25,691,621
95% $8,223,224 $27,670,975 $27,283,755 $29,239,610
98% $14,428,712 $31,950,010 $31,506,144 $33,737,442
99% $21,006,921 $34,874,776 $34,383,831 $37,529,789

Copula
Historical

VaR

Chemical Spills
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Table 30 VaR Results for Automobile Crashes using Parametric Copula methodology 

 

Table 31 VaR Results for US Hurricanes using Parametric Copula methodology 

 

 

4.2.3 Summary of Results 
 Now, a comparison of the results from all of the methodologies to the classical 

methodology and historical VaR are discussed.  The results are summarized in tables (32) 

- (41). In order to have statistical robustness, a bootstrap 99% confidence interval is 

computed for the historical data. Then, one can check whether the new and classical 

methodologies VaR estimates fall within the interval or not. To begin, the simulated data 

Normal Student T Gaussian Mixture Copula
VaR VaR VaR

0% $327 $1,440 $0 $0
25% $5,279,309 $2,921,533 $3,281,798 $5,101,715
50% $8,179,051 $6,662,785 $6,066,204 $8,177,328
90% $11,382,899 $23,932,125 $20,024,615 $14,390,955
95% $12,841,319 $33,947,505 $25,378,522 $17,128,886
98% $14,045,680 $43,604,744 $42,101,120 $21,260,755
99% $14,717,942 $50,816,258 $50,234,097 $25,302,068

Historical
VaR

Automobile

Copula

Normal t Gaussian Mixture 
VaR VaR VaR

0% $0 $0 $0 $0
25% $145,567,136 $0 $0 $0
50% $1,546,550,238 $43,626,519 $83,492,715 $64,194,926
90% $26,622,376,781 $24,771,773,034 $23,468,203,215 $14,479,751,412
95% $51,396,924,874 $71,113,326,546 $96,668,651,534 $56,725,726,195
98% $76,583,740,780 $277,118,598,958 $671,464,063,908 $99,273,860,617
99% $113,860,560,854 $523,265,834,638 $1,885,740,861,357 $160,029,640,458

US Hurricanes

Historical
VaR

Copula
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through the five scenarios are discussed. Afterwards, the dissertation proceeds to discuss 

the real-world data. In order to provide a clearer understanding (rather than just looking 

at numbers), graphical representations of the VaR estimates are provided in figures (84) - 

(93) below after the tabular representations (in tables (32)-(41)). 

 

Table 32 Comparison of New & Classical Methodology VaR for Scenario (I) 

 
 
Table 33 Comparison of New & Classical Methodology VaR for Scenario (II) 

 
 
Table 34 Comparison of New & Classical Methodology VaR for Scenario (III) 

 

Classical Method I Method II Normal  t Gaussian Mixture 
VaR VaR VaR VaR VaR VaR

$0 0% $0 $0 $0 $0 $0 $0 $0 $0
$12 25% $13 $14 $118 $5 $14 $9 $10 $13
$54 50% $55 $57 $262 $23 $57 $49 $51 $57

$14,596 90% $16,659 $18,727 $1,253 $21,844 $20,964 $18,468 $16,112 $19,901
$31,696 95% $33,966 $36,241 $2,067 $39,285 $37,375 $58,118 $55,966 $49,573
$49,535 98% $52,560 $55,700 $3,805 $56,327 $54,427 $133,194 $150,503 $96,300
$61,116 99% $65,165 $69,317 $5,920 $70,248 $66,828 $209,223 $271,317 $136,675
$71,623 99.5% $77,042 $82,852 $9,028 $85,470 $78,008 $325,273 $387,643 $167,253

DPFS K-Means DBP Copula

Scenario I

Lower 99%
Historical (Ground Truth)

Upper 99%
VaR

Classical Method I Method II Normal  t Gaussian Mixture 
VaR VaR VaR VaR VaR VaR

$43 0% $161 $272 $183 $2,413 $152 $69 $55 $60
$10,049 25% $10,514 $10,982 $1,872 $10,820 $10,722 $1,168 $1,165 $1,156
$22,202 50% $22,815 $23,448 $3,080 $16,629 $23,159 $2,544 $2,464 $2,487
$55,867 90% $57,130 $58,439 $9,522 $53,861 $56,196 $15,307 $14,527 $15,070
$67,844 95% $69,590 $71,384 $14,302 $86,086 $69,155 $28,186 $26,001 $28,202
$82,609 98% $85,204 $87,893 $25,504 $161,826 $82,845 $65,391 $57,718 $63,784
$92,905 99% $96,556 $100,448 $38,792 $240,311 $94,040 $112,870 $100,300 $104,598
$102,635 99.5% $107,539 $113,191 $61,201 $376,988 $105,457 $202,611 $171,972 $198,425

DPFS K-Means DBP Copula

Lower 99%
Historical (Ground Truth)

Upper 99%
VaR

Scenario II

Classical Method I Method II Normal  t Gaussian Mixture 
VaR VaR VaR VaR VaR VaR

$1 0% $125 $295 $0 $4 $108 $0 $0 $0
$5,001 25% $5,143 $5,288 $5,127 $5,190 $5,137 $3,553 $3,490 $3,553
$9,036 50% $9,268 $9,509 $9,234 $9,315 $9,372 $7,584 $7,488 $7,584
$29,172 90% $30,377 $31,627 $30,280 $30,408 $31,450 $38,859 $37,090 $38,859
$42,364 95% $44,748 $47,276 $44,682 $44,704 $45,185 $64,416 $63,991 $64,416
$66,761 98% $72,481 $78,875 $72,090 $72,299 $74,414 $128,535 $128,767 $128,535
$91,757 99% $103,036 $116,180 $102,021 $103,087 $107,022 $232,959 $220,152 $232,959
$124,353 99.5% $145,555 $171,729 $143,970 $145,573 $146,053 $369,283 $407,959 $369,283

VaR
Historical (Ground Truth)

Upper 99%

DBP Copula

Scenario III 

Lower 99%

DPFS K-Means
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Table 35 Comparison of New & Classical Methodology VaR for Scenario (IV) 

 
 
Table 36 Comparison of New & Classical Methodology VaR for Scenario (V) 

 
 
 

Table 37 Comparison of New & Classical Methodology VaR: Chemical Spills 

 

 
Table 38 Comparison of New & Classical Methodology VaR: S&P 500 

 
 

 
 

Classical Method I Method II Normal  t Gaussian Mixture 
VaR VaR VaR VaR VaR VaR 

$0 0% $0 $0 $78 $40 $43 $0 $103 $87
$143 25% $144 $145 $421 $640 $8,656 $128 $2,063 $147
$166 50% $167 $168 $591 $1,157 $28,646 $163 $6,088 $165

$141,624 90% $146,025 $150,458 $1,223 $4,299 $82,321 $796,317 $53,156 $74,433
$179,958 95% $185,097 $190,261 $1,571 $6,638 $101,008 $118,263 $107,196 $156,484
$220,317 98% $227,096 $234,175 $2,196 $11,856 $122,585 $1,377,574 $374,233 $228,040
$246,722 99% $255,899 $265,264 $2,749 $17,324 $141,709 $1,550,531 $562,645 $257,474
$270,610 99.5% $282,384 $295,100 $3,378 $24,684 $158,573 $1,675,394 $1,177,644 $282,252

DPFS K-Means DBP Copula

Lower 99%
Historical (Ground Truth)

Upper 99%
VaR

Scenario IV

Classical Method I Method II Normal  t Gaussian Mixture 
VaR VaR VaR VaR VaR VaR 

$228 0% $230 $231 $9,034 $73,831 $8,433 $245 $231 $245
$1,925 25% $2,090 $2,292 $36,517 $248,248 $42,501 $879 $1,713 $879

$15,738 50% $17,247 $18,862 $52,223 $304,640 $61,651 $6,315 $14,936 $6,315
$234,360 90% $238,502 $242,341 $125,085 $462,573 $155,336 $222,966 $234,803 $222,966
$258,871 95% $260,502 $261,966 $174,906 $527,759 $219,225 $261,706 $257,916 $261,706
$267,960 98% $268,995 $269,994 $265,873 $617,283 $355,505 $276,293 $266,826 $276,293
$271,586 99% $272,649 $273,688 $379,968 $687,479 $525,180 $281,689 $271,631 $281,689
$274,238 99.5% $275,452 $276,676 $541,806 $803,500 $805,360 $282,797 $274,750 $282,797

VaR

DPFS K-Means DBP Copula

Lower 99%
Historical (Ground Truth)

Upper 99%

Scenario V

Old
Classical Method I Method II Normal  t Gaussian Mixture

VaR VaR VaR VaR VaR VaR
$250,000 0% $250,000 $558,655 $0 $10,058 $0 $3,767 $1,786 $48,229

$1,252,850 25% $1,579,058 $1,892,100 $0 $6,439,424 $0 $4,959,969 $4,983,645 $4,973,240
$2,235,025 50% $2,528,113 $3,054,550 $0 $15,803,952 $0 $10,832,908 $10,495,439 $9,833,337
$4,932,000 90% $6,070,004 $7,921,420 $23,174,443 $114,902,912 $5,414,227 $23,568,699 $23,275,790 $25,691,621
$6,556,489 95% $8,223,224 $14,371,808 $55,905,371 $226,507,895 $9,211,239 $27,670,975 $27,283,755 $29,239,610
$8,397,040 98% $14,428,712 $24,979,120 $146,956,339 $519,706,874 $23,887,867 $31,950,010 $31,506,144 $33,737,442

$11,594,676 99% $21,006,921 $102,667,700 $284,977,729 $939,953,129 $51,923,390 $34,874,776 $34,383,831 $37,529,789

Lower 99% Upper 99%
Historical (Ground Truth)

VaR

DBP CopulaDPFS K-Means

Chemical Spills

Old
Classical Method I Method II Normal  t Gaussian Mixture

VaR VaR VaR VaR VaR VaR
$40 0% $40 $66 $0 $0 $0 $0 $0 $5
$344 25% $369 $397 $508 $499 $1,160 $311 $309 $322
$545 50% $586 $617 $723 $783 $1,554 $594 $588 $607

$1,314 90% $1,431 $1,608 $1,234 $1,710 $2,432 $2,049 $1,961 $1,943
$1,799 95% $2,027 $2,326 $1,404 $2,132 $2,712 $2,876 $2,956 $2,978
$2,484 98% $3,143 $3,734 $1,611 $2,772 $3,043 $4,382 $4,801 $4,644
$3,222 99% $3,808 $4,210 $1,756 $3,337 $3,272 $5,947 $7,160 $6,714
$3,667 99.5% $4,149 $4,826 $1,895 $3,990 $3,488 $8,043 $10,834 $9,721

VaR

SP 500

Lower 99% Upper 99%

DBP Copula
Historical (Ground Truth)

DPFS K-Means
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Table 39 Comparison of New & Classical Methodology VaR: DJIA 

 
 

 
Table 40 Comparison of New & Classical Methodology VaR: Automobile Crashes 

 
 
Table 41 Comparison of New & Classical Methodology VaR: US Hurricanes  

 

Old
Classical Method I Method II Normal  t Gaussian Mixture

VaR VaR VaR VaR VaR VaR
$29 0% $29 $107 $6 $412 $7 $21 $3 $15
$332 25% $364 $406 $448 $1,098 $441 $246 $320 $307
$526 50% $566 $615 $683 $1,316 $678 $503 $590 $602

$1,040 90% $1,122 $1,306 $1,375 $1,773 $1,390 $1,538 $1,448 $1,651
$1,251 95% $1,465 $1,803 $1,666 $1,910 $1,702 $1,884 $2,238 $2,521
$1,571 98% $2,070 $2,352 $2,075 $2,088 $2,150 $2,447 $2,547 $3,534
$1,938 99% $2,325 $3,539 $2,454 $2,192 $2,516 $3,071 $3,320 $3,860

Historical (Ground Truth)

DJIA

DPFS K-Means

Lower 99% Upper 99%
VaR

DBP Copula

Old
Classical Method I Method II Normal  t Gaussian Mixture

VaR VaR VaR VaR VaR VaR
$327 0% $327 $265,962 $3,652,871 $6,193,134 $3,506,035 $1,440 $0 $0

$2,618,809 25% $5,279,309 $6,632,639 $6,764,007 $9,097,156 $6,780,871 $2,921,533 $3,281,798 $5,101,715
$7,076,471 50% $8,179,051 $9,004,338 $7,693,910 $9,859,308 $7,678,260 $6,662,785 $6,066,204 $8,177,328
$10,147,760 90% $11,382,899 $13,182,960 $9,935,066 $11,442,192 $9,950,250 $23,932,125 $20,024,615 $14,390,955
$11,001,852 95% $12,841,319 $14,481,365 $10,802,019 $11,906,385 $10,820,026 $33,947,505 $25,378,522 $17,128,886
$12,587,402 98% $14,045,680 $16,722,353 $12,037,425 $12,461,354 $11,991,467 $43,604,744 $42,101,120 $21,260,755
$12,983,397 99% $14,717,942 $16,722,353 $12,988,392 $12,871,537 $12,900,951 $50,816,258 $50,234,097 $25,302,068

Lower 99% Upper 99%
Historical (Ground Truth)

VaR

Automobile

DPFS K-Means DBP Copula

Old
Classical Method I Method II Normal  t Gaussian Mixture

VaR VaR VaR VaR VaR VaR
$0 0% $0 $0 $0 $0 $0 $0 $0 $0

$32,147,184 25% $145,567,136 $358,069,353 $143,064,352 $984,718 $185,902,032 $0 $0 $0
$577,494,764 50% $1,546,550,238 $3,841,822,355 $1,636,020,964 $891,143,303 $1,889,066,337 $43,626,519 $83,492,715 $64,194,926

$14,468,733,186 90% $26,622,376,781 $57,663,865,630 $32,421,416,186 $8,797,128,358,329 $27,635,698,982 $24,771,773,034 $23,468,203,215 $14,479,751,412
$22,102,340,936 95% $51,396,924,874 $115,750,000,000 $73,341,304,140 $106,917,479,563,651 $53,991,567,167 $71,113,326,546 $96,668,651,534 $56,725,726,195
$42,263,864,537 98% $76,583,740,780 $161,331,092,065 $186,681,225,463 $1,509,316,668,391,140 $123,786,358,452 $277,118,598,958 $671,464,063,908 $99,273,860,617
$54,632,606,422 99% $113,860,560,854 $161,331,092,065 $378,170,152,946 $8,990,749,087,773,140 $230,825,029,288 $523,265,834,638 $1,885,740,861,357 $160,029,640,458

Lower 99%
Historical (Ground Truth)

Upper 99%
VaR

US Hurricanes

DPFS K-Means DBP Copula
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Figure 84 VaR Results for DPFS, DBP & Classical: Scenario (I) 
 

 
Figure 85 VaR Results for DPFS, DBP & Classical: Scenario (II) 
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Figure 86 VaR Results for DPFS, DBP & Classical: Scenario (III) 
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Figure 87 VaR Results for DPFS, DBP & Classical: Scenario (IV) 
 
 

 
Figure 88 VaR Results for DPFS, DBP & Classical: Scenario (V) 
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Figure 89 VaR Results for DPFS, DBP & Classical: Chemical Spills 
 
 

 
Figure 90 VaR Results for DPFS, DBP & Classical: S&P 500 
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Figure 91 VaR Results for DPFS, DBP & Classical: DJIA 
 
 

 
Figure 92 VaR Results for DPFS, DBP & Classical: Auto Accidents 
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Figure 93 VaR Results for DPFS, DBP & Classical: US Hurricanes 

4.2.4 Discussions and Implications 
In this dissertation, comparison is done among the new methodologies with the 

classical methodology using five distinct scenarios of simulated data. The first two 

scenarios (i.e. Scenario (I) & (II)) correspond to partitioning the data based on severity 

and frequency. The DPFS K-means VaR computation performs well for this type of data 

as expected. The reason is that K-means approach is well adapted to separate the data 

when clear and a finite number of partitions exist. For these two scenarios, the copula 

based methodology over-estimates the VaR, while the classical methodology grossly 

underestimates the VaR.  In the risk-management context, it is usually considered more 

unfavorably to underestimate the VaR for in that situation the company/institution could 

be severely in jeopardy of insolvency. On the other hand, if VaR is overestimated, the 
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company/institution loses opportunity cost of holding the extra EC for VaR which they 

could have invested for further gains. Thus, through the verification & validation 

procedure via large scale MCS, this dissertation has demonstrated that in cases like 

Scenarios (I) and (II), the DPFS K-means VaR estimation is more robust than the 

classical methodology. 

Next, the results obtained from Scenario (III) are described. This case signifies the 

case of complete independence of severity and frequency. It is therefore expected that the 

classical methodology should work well for this type of data. The results indicate that 

while the classical methodology does perform well, the DPFS K-means VaR approach 

matches its performance. The K-means is robust enough to detect the case of 

independence in the data. The copula based methodology overestimates the VaR in this 

case. This is due to the fact that the copula is not a good fit and the empirical GoF test 

showed a non-statistically significant p-value.  

Next, the results from Scenarios (IV) and (V) are presented. These two scenarios 

represent ideal cases for the DBP copula based parametric methodology, since there is a 

high degree of correlation between frequency and severity. Specifically, for Scenario 

(IV), the data is partitioned as a mixture, and thus should naturally follow a mixture 

model. In Scenario (V), the data is generated with a perfect linear correlation between 

frequency and severity, and thus the Gaussian/t copula should perform well. The results 

show that for Scenario (IV), the GMCM model calculates the most accurate VaR while 

the K-means methodology also works reasonably well. The classical methodology 

completely fails in this dataset. For Scenario (V), the t-Copula works the best while the 
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Gaussian copula is a close second. The GMCM is identical to the Normal copula since 

the mixture model found K=1 as the ideal mixture. It is interesting to note that the K-

means algorithm and the classical methodology did not work well in this case. The reason 

is that a high number of splits are necessary for this type of data, since there is a perfect 

correlation between severity and frequency. The data mining literature argues that if 

splitting with a very high number, say K = 200, one may overfit the data. Thus, in this 

work there is a restriction of the number of possible splits to a small bound. Also, it is 

important to note that the classical methodology fails in this scenario (order of 

magnitude). 

From the verification procedure, test instances are shown where each of the new 

methodologies work well. It is important to now validate the new methodologies from 

results using the real-world data. Since the truth is never known for these situations, the 

benchmark that the dissertation uses is the 99% bootstrap confidence bound for VaR 

obtained from historical data. To begin, the results from table (37) are analyzed which 

shows the chemical spills scenario. The DPFS K-means VaR (based on Method II) 

performs the best, while the t-Copula does reasonably well too. It is important to note that 

the classical methodology overestimates the VaR. This can be explained due to the fact 

that this is one of the cases similar to Case (II) from the theoretical calculations in the 

methodology section. The data is multi-modal and the classical overestimates primarily 

due to the fact that the true VaR involves a compound Poisson process where the 

frequency dominates. 
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Next, the results for the S&P 500 are examined. Note this data includes the Great 

Depression of 1929, along with the expansions of the 1950s, and the crashes in the last 

several decades. In this case, it is observed that the classical methodology underestimates 

the VaR. The reason for this is that there is a positive correlation between frequency and 

severity. The classical method underestimates the VaR because the severity portion 

dominates the frequency for this data. The DBP Gaussian copula VaR performs the next 

best after the K-means methodology, but overestimates the VaR.  

Afterwards, the results for the DJIA are examined. This data starts from 1950 and 

goes till 2015. So it differs from the S&P 500 in that it does not include the Great 

Depression of the 1920's and it slow recovery from the 1930s. In this case, it is observed 

that the classical methodology performs well to estimate the VaR. The K-means robustly 

adjust for this type of data, and performs as well as the classical methodology. The 

normal copula also does well for this data for the tail regions of the VaR. 

Next, the results for the automobile crashes data are examined. This data again 

starts from 1989 and goes till 1999. Thus as a small dataset, there are approximately only 

120 months of data for the monthly VaR estimate. For this specific size dataset, the 

classical methodology performs well to estimate the VaR along with the K-means 

methods. Both of these methods do underestimate the VaR slightly, while the GMCM 

overestimates the VaR. 

Finally, the results from the US Hurricanes are examined. This data is available 

annually from 1900 - 2005, and thus an annual VaR is estimated. This is one of the 

smallest datasets analyzed with approximately 200 total data points. The GMCM does the 
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best for this small dataset along with the K-means methodology. The classical 

methodology performs very poorly for this data as there is a large discrepancy between 

frequency and severity. A summary of the results are shown below in table (42). 

 

Table 42 VaR Results Summary for all Data; X = Optimal Method Δ = Method Tied  

 

 

Overall, in the real-world data it is observed that for two cases, the classical 

methodology does reasonably well; (1) DJIA; and (2) Automobile accidents. However, in 

both of these, they still underestimate the VaR slightly. The DPFS K-means VaR 

methodology performs well in all of the real-data sets, while the DBP GMCM and 

Gaussian copula VaR perform well in all but the S&P 500 and Chemical spills data. It is 
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interesting to note that the copula based methods never underestimate the VaR. As 

previously mentioned, underestimating the VaR is usually considered worse than 

overestimation from a risk management perspective. Now the next question that arises 

next is the following: Which method should one use in what situation (parametric versus 

non-parametric)? Overall, I elaborate this process through a flow-chart shown in figure 

(94).  

 

 

Figure 94 Flow-Chart for Choosing Amongst VaR Estimation Methodologies 
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CHAPTER 5: CONCLUSIONS 

This dissertation addresses several methodological and empirical foundations 

within quantitative risk management, specifically within the context of modern ORM. 

Two fundamental questions are addressed in the methodological portion:   

(1) Can a flexible severity distribution be found to model loss severity? 

(2) For calculating VaR, can more robust methodologies be developed which can  

       handle both situations of dependence and independence between frequency  

      and severity?  

This dissertation investigates these questions and provides an important 

contribution to the field by identifying flexible severity distributions which can robustly 

model Aggregate Loss distributions without requiring the current trial-and-error GoF 

tests approach. Secondly, this dissertation also establishes a more robust VaR estimation 

procedure which does not have any inherent assumptions and can work in both situations 

where the current best practices are suitable and where the current methodology fails. 

Two distinct methodologies are developed: (1) Non-parametric approach: DPFS K-means 

VaR; and (2) parametric approach: DBP copula VaR. The strengths and weakness of the 

aforementioned two methodologies are validated using real-world data (across multiple 

diverse domains), and verified using scenario simulated data, and through a rigorous 

mathematical argument. Similar to data mining techniques, there is no universal method 
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which has been found to robustly estimate VaR in all situations. It is concluded that 

future practitioners can use both methodologies depending on where each methodology 

works better. I have shown in the previous section, a flow-chart diagram which provides 

a "recipe" for determining which methodology to use based on the situation at hand 

(figure (94)).  

One of the key strengths in the empirical analysis portion of this dissertation is 

that unlike in most modern risk management papers, the data that is analyzed here is 

available for validation to anyone with internet access. In addition, data coming from the 

following different domains are studied:  

(1) Financial loss data;  

(2) Government loss data from Chemical Spills;  

(3) Insurance losses; and  

(4) Natural calamities.  

The LNG is a found to be robust and a flexible distribution which can accurately 

fit different types of loss severity data. The Burr distribution is also good for this purpose; 

however, there is no natural statistical interpretability of the parameters for the Burr as 

there is for the LNG. The problem with both of these distributions is that for low 

variability in the parameter estimates, one needs large datasets.  

In addition, this dissertation develops five simulated data scenarios to verify the 

two new methodologies for robust VaR estimation. In both simulated scenarios and in 

real-world data, the new methodologies perform at least as well and in most cases 

significantly better than the current best practices.  
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5.1 Key Findings and the Implications of the Study 
The key conclusions derived from this dissertation are the following: 

(1) Lognormal-Gamma distribution is ideal to fit severity data. However, the 

caveat here is that LNG is a three parameter distribution, and the MLE works best with 

larger data for lower variance in the parameter estimates.  

(2) Burr distribution does overall the best for severity fitting. However, unlike 

LNG, there are no closed form MLE expressions for the parameter estimates, and there 

are no natural interpretations for the parameter values.  

(3) The classical methodology works well on "average" assuming that there is 

clear independence among the frequency and severity. The limits of this assumption are 

tested through large scale MCS for simulated data. In 4 out of 5 distinct scenarios it is 

found that the classical methodology grossly under/over estimates the VaR. In addition, a 

mathematical justification is provided that shows instances where the current method 

underestimates the true VaR and a case where it overestimates the true VaR.  

(4) It has been found that the DPFS K-means VaR is adaptable at handling most 

types of real-life and scenario based data for loss VaR estimation. In the real-world data, 

in all cases the K-means is either the best methodology or a close second. 

(5) It is observed that the DBP copula VaR never underestimates the VaR. It 

works the best in very specific scenarios where a very strong correlation (e.g. ρ > 0.40) is 

found between frequency and severity.  

(6) From this work, it is recommended that practitioners' should use both DPFS 

K-means VaR and DBP copula VaR and choose the appropriate one based on correlation 

characteristics in their dataset. Both of these methodologies are not computationally 
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expensive (run within minutes in modern PCs), and practitioners should use both. Also 

unlike GoF tests, there is very little specific background mathematical knowledge 

necessary for practitioners to apply these two methodologies.  

(7)   Insurance companies, government agencies, and financial institutions 

interested in more accurately estimating the appropriate holding amount of Economic 

Capital would directly benefit from this work. More robust VaR estimation helps risk 

managers' better handle the overall budget/cash flow in their organization. In addition, it 

provides them insight into what KRIs they should be focusing on in the new fiscal year to 

potentially lower the VaR in the future.  

5.2 Limitations due to Sample Size, Computational Requirements and 
Parametric Approach Assumptions 

The current MLE approach requires a large data set size to fit the severity 

parameters with low variance estimates for LNG and Burr distributions. Based on my 

practical industry experience, a minimum of 50 data points is needed for LNG and 

approximately 500 data points are required for Burr for robust parameter estimation. This 

MLE requirement can cause problems in analyzing small sample data such as limited 

publicly available datasets like US hurricanes and automobile accidents. This limitation 

may not be pertinent if sufficiently large datasets are publicly available from the 

insurance and natural calamities domain.  

For the DPFS K-means VaR the inherent limitation is that there is a high cost in 

trying to obtain the ideal split number, i.e. K. The silhouette technique is computationally 

intensive, and requires trial-and-error to find the K value. Therefore, in this study the 

value of K is bounded to be a maximum of three. This is based on the methodology from 
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figure (2) [14], which argues that risk can be broken down into the high/medium/low 

categorical descriptions. In cases where there are much finer gradations, the K-means will 

require intense computational time to obtain the ideal split value.  

For DBP copula VaR methodology, the inherence limitation is the correct choice 

of the severity and frequency statistical distributions. For this study, Poisson is chosen as 

the frequency and lognormal is chosen as the severity. The reason is that Poisson is 

known to be robust for frequency distributions. Lognormal distribution is a heavy-tailed 

distribution and tends to model financial systems (based on Black-Scholes theory for 

example). Ideally speaking, LNG or Burr should model generic severity data better. 

However some of the datasets, namely hurricanes and automobile accidents, are quite 

small in size. Thus the parameter estimates from MLE would have a high variance which 

would add another layer of error to the VaR estimate.   

5.3 Future Work 
This dissertation contributes by providing a good starting ground for researchers 

to expand on more computationally efficient and robust methods for estimating VaR 

without assuming independence of frequency and severity. For the flexible severity 

distribution portion, an opportunity for future improvement is to move away from MLE 

to estimate the parameters and instead use the Minimum Hellinger Distance Estimator 

(MHDE) [95-103]. This methodology has a non-parametric foundation of fitting kernel 

density to the data and then minimizing a distance to the parametric density of interest. 

Some preliminary work in this area does show promise in fitting datasets of small size.  
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Regarding the robust estimation of DBP copula VaR, one area of immediate 

future work is developing a t-Mixture Copula Model. The Gaussian copula does not have 

heavy tail capability while the Student t distribution in general does model heavy tails 

well. Extending the work of [90], it should be possible to develop a t-Mixture Copula 

Model (tMCM) which can fit heavy-tail data much better than the standard Gaussian 

copula. This phenomenon can perhaps explain why for the real-world data the t-Copula 

tends to fit the data marginally better than the Gaussian copula. Bayesian approaches 

[104] to this area can also be looked into. 

In addition, future research work can be done in using more sophisticated 

unsupervised learning techniques instead of the K-means algorithm. For example, there 

are cases where K-medoids tends to be more robust to noise and outliers as compared to 

K-means. This is because it minimizes the absolute distance between the points (L1 

norm) instead of a sum of squared Euclidean distances (L2 norm). However, time-wise 

there is a computational burden for this methodology. There are new research areas such 

as fuzzy clustering which perhaps can better partition the loss severity and loss frequency 

data. It would be interesting to look at this possibility. 

Empirically speaking, it would be interesting to find more actuarial based loss 

datasets. For example, earthquake and fire losses would be interesting to further 

investigate in the natural calamities domain. It would be good if further insurance based 

large datasets could be obtained. Finally, I have a direct longer term goal to analyze US 

individual tax return identity theft losses for the US Treasury from a modern ORM 

framework. The permission to use and anonymize this type of dataset requires longer 
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time, but it is possible to obtain from the US Treasury. It is a definite goal in the near 

future to analyze this data using the new methodologies developed in this dissertation. 

This will directly aid Congress in better allocating the US Treasury's budget in terms of 

how much they can expect to lose due to identity theft of US tax returns.  

Finally, one of the theoretical areas of future work comes from modeling 

Aggregate Loss distribution. The current best practices use FFT based models. There are 

some recent thoughts on using the Discrete Wavelet Transform [105-115] to compute an 

analytical estimate for the aggregate loss, but this only works for gamma severity and 

Poisson frequency. An interesting area to pursue would be to test if theoretically one can 

expand this to include the Burr and LNG distributions for the severity component of 

modern ORM. 
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APPENDIX A: SAMPLE SET OF R CODES FOR ANALYSIS 

Main Scripts 
 
#############Copula Analysis  
 
mydata.ScenarioII <- read.xlsx(xlsxFile="C:/Users/sabyguharay/Documents/GMU/Fourth 
Year/CopulaWork/ScenarioII_Data.xlsx", sheet="Input_Data_R", colNames=TRUE); 
good.data.ScenarioII <- data.frame(mydata.ScenarioII) 
attach(good.data.ScenarioII); 
head(good.data.ScenarioII);  #check that stuff makes sense 
dim(good.data.ScenarioII); 
#good.data.ScenarioII <- good.data.ScenarioII[,-4];  #Removes Column 4 if needed 
names(good.data.ScenarioII) 
#good.data.ScenarioII$NA. <- NULL;   in case I have to remove a column 
 
save.image("~/.RData"); 
 
######################################################Comparison of ####################### 
 
library(openxlsx); 
help(read.xlsx) 
 
classical.severity.ScenarioII <- read.xlsx(xlsxFile="C:/Users/sabyguharay/Documents/GMU/Fourth 
Year/CopulaWork/ScenarioII_Data.xlsx", sheet="Severity", colNames=TRUE); 
head(classical.severity.ScenarioII); 
 
 
classical.severity.ScenarioII <- read.csv("C:/Users/sabyguharay/Documents/GMU/Fourth 
Year/CopulaWork/Scenario_II_Severity.csv", head=TRUE); 
 
 
classical.severity.ScenarioII <- data.frame(classical.severity.ScenarioII) 
attach(classical.severity.ScenarioII); 
head(classical.severity.ScenarioII);  #check that stuff makes sense 
names(classical.severity.ScenarioII) 
 
hist(log(classical.severity.ScenarioII$Raw.Severity), nclass=500)    #Classical Severity 
summary(good.data.ScenarioII$Lambda_hat)             #Classical Frequency 
summary(good.data.ScenarioII$Mu_hat)  
summary(good.data.ScenarioII$Sig_hat)  
####################################################End of ######################### 
 
 
 
dev.off(); 
par(mfrow=c(2,2)); 
hist(good.data.ScenarioII$Mu_hat, nclass=200, xaxt='n', col="yellow", main=expression(paste("Histogram of 
Estimated ", mu)), xlab=expression(hat(mu)), ylab="Density", cex.lab=1.5, cex.axis=1.5, cex.main=1.5, cex.sub=1.5); 
#abline(v=1, col="gray60", lwd=2) 
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#abline(v=10, col="lightgray", lwd=2) 
axis(side=1, at=seq(0,4,0.5), labels=seq(0,4,0.5)) 
 
hist(good.data.ScenarioII$Sig_hat, nclass=50, prob=TRUE, xaxt='n', col="green", main=expression(paste("Histogram 
of Estimated ", sigma)), xlab=expression(hat(sigma)), ylab="Density",  cex.lab=1.5, cex.axis=1.5, cex.main=1.5, 
cex.sub=1.5); 
#abline(v=0.5, col="black", lwd=2) 
axis(side=1, at=seq(0.75,4.0,0.25), labels=seq(0.75,4.0,0.25)) 
 
hist(good.data.ScenarioII$Lambda_hat, nclass=50, prob=TRUE, col="red", xaxt='n', 
main=expression(paste("Histogram of Estimated ", lambda)), xlab=expression(hat(lambda)), ylab="Mass Function",  
cex.lab=1.5, cex.axis=1.5, cex.main=1.5, cex.sub=1.5); 
#abline(v=5, col="blue", lwd=2) 
#abline(v=50, col="magenta", lwd=2) 
axis(side=1, at=seq(20,70,5), labels=seq(20,70,5)) 
 
hist(log(classical.severity.ScenarioII$Raw.Severity), nclass=50, prob=TRUE, col="black", xaxt='n', main="Histogram 
of Severity Losses: Scenario II", xlab="Log(Losses)", ylab="Density",  cex.lab=1.5, cex.axis=1.5, cex.main=1.5, 
cex.sub=1.5); 
#abline(v=5, col="blue", lwd=2) 
#abline(v=50, col="magenta", lwd=2) 
axis(side=1, at=seq(-5,15,1), labels=seq(-5,15,1)) 
 
#Create Data Object 
data.ScenarioII<- data.frame(lambdaHat = good.data.ScenarioII$Lambda_hat, muHat=good.data.ScenarioII$Mu_hat, 
sigmaHat=good.data.ScenarioII$Sig_hat) 
#Order is Lambda, Mu, Sigma 
 
 
#First check the Spearman's Correlation 
cor(data.ScenarioII,method='kendall') 
cor(data.ScenarioII,method='spearman') 
pairs.panels(data.ScenarioII, method="spearman")   #Default is Pearson's Correlation 
pairs.panels(data.ScenarioII)   #Default is Pearson's Correlation 
 
#Then do F(data); i.e. transform to U[0,1] scale 
#Pseudo observations are the observations in the [0,1] interval. 
uDat.ScenarioII<- pobs(as.matrix(data.ScenarioII)) 
pairs.panels(uDat.ScenarioII) 
 
 
#Compute the Gaussian/t/Gumbel Copula 
normal.cop <-normalCopula(c(0.9,-0.9, 0.9),dim=3,dispstr="un")  #Starting point is c(0.9,-0.9,0.9) 
fg.ScenarioII <- fitCopula(copula=normal.cop, data=uDat.ScenarioII, optim.method="Nelder-Mead", method='ml') 
rhos.ScenarioII<- coef(fg.ScenarioII) 
rhos.ScenarioII 
 
#My Stuff  (Need to Understand t-Copulas a little better) 
myCop.t <- tCopula(rep(0, 3), dim = 3, dispstr = "un", df=4, df.fixed=TRUE) 
#myCop.t <- tCopula(rep(0, 3), dim = 3, dispstr = "un") 
myCop.t <- ellipCopula(family = "t", dim = 3, dispstr = "un", 
                       param = c(-0.9, 0.5, 0.05), df = 4) 
fg.t.ScenarioII <- fitCopula(copula=myCop.t, data=uDat.ScenarioII, optim.method="Nelder-Mead", method='mpl') 
rhos.t.ScenarioII<- coef(fg.t.ScenarioII) 
rhos.t.ScenarioII           
fg.t.ScenarioII@estimate[4] <- round(fg.t.ScenarioII@estimate[4]); 
fg.t.ScenarioII@estimate = fg.t.ScenarioII@estimate[-4] 
 
#Trying other copulas 
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#gum.cop.4 = archmCopula(family="gumbel", dim=3, param=3) 
#myCop.clayton <- archmCopula(family = "clayton", dim = 3, param = 3) 
#fg.gumbel <- fitCopula(copula=gum.cop.4, data=uDat.ScenarioII, method="mpl"); 
#rhos.gumbel <- coef(fg.gumbel) 
#rhos.gumbel 
 
#fg.clayton <- fitCopula(copula=myCop.clayton, data=uDat.ScenarioII, method="mpl"); 
#rhos.clayton <- coef(fg.clayton) 
#rhos.clayton 
 
 
 
 
 
#Create the Multivariate Distribution from Copula Object 
mvdc.normal.ScenarioII <- mvdc(copula=normalCopula(fg.ScenarioII@estimate,dim=3,dispstr="un"), 
                              margins=c("emp","emp", "emp"),paramMargins= 
                                list(list(obs=data.ScenarioII$lambdaHat), 
                                     list(obs=data.ScenarioII$muHat), 
                                     list(obs=data.ScenarioII$sigmaHat))); 
 
mvdc.t.ScenarioII <- mvdc(copula=tCopula(fg.t.ScenarioII@estimate,dim=3,dispstr="un"), 
                         margins=c("emp","emp", "emp"),paramMargins= 
                           list(list(obs=data.ScenarioII$lambdaHat), 
                                list(obs=data.ScenarioII$muHat), 
                                list(obs=data.ScenarioII$sigmaHat))); 
 
 
#mvdc.gumbel <- mvdc(copula=gumbelCopula(fg.gumbel@estimate,dim=3), 
#                    margins=c("emp","emp", "emp"),paramMargins= 
#                      list(list(obs=data.ScenarioII$lambdaHat), 
#                           list(obs=data.ScenarioII$muHat), 
#                           list(obs=data.ScenarioII$sigmaHat))); 
 
 
 
 
#Randomly Sample from MVDC 
size.data.ScenarioII = dim(good.data.ScenarioII)[1]; 
 
random.mvdc.normal.ScenarioII <- rMvdc(n=size.data.ScenarioII, mvdc.normal.ScenarioII) 
head(random.mvdc.normal.ScenarioII) 
colnames(random.mvdc.normal.ScenarioII) <- c("lambda","mu", "sigma") 
 
random.mvdc.t.ScenarioII <- rMvdc(n=size.data.ScenarioII, mvdc.t.ScenarioII) 
head(random.mvdc.t.ScenarioII) 
colnames(random.mvdc.t.ScenarioII) <- c("lambda","mu", "sigma") 
 
 
random.mvdc.normal.ScenarioII.xlsx <- rMvdc(n=10000, mvdc.normal.ScenarioII) 
random.mvdc.t.ScenarioII.xlsx  <- rMvdc(n=10000, mvdc.t.ScenarioII) 
 
#random.mvdc.gumbel <- rMvdc(n=1000, mvdc.gumbel) 
#head(random.mvdc.gumbel) 
 
L_Component.ScenarioII = random.mvdc.normal.ScenarioII[,1]; 
Mu_Component.ScenarioII = random.mvdc.normal.ScenarioII[,2]; 
Sig_Component.ScenarioII= random.mvdc.normal.ScenarioII[,3]; 
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x.comp.ScenarioII = c(L_Component.ScenarioII,good.data.ScenarioII$Lambda_hat); 
y.comp.ScenarioII = c(Mu_Component.ScenarioII,good.data.ScenarioII$Mu_hat); 
z.comp.ScenarioII = c(Sig_Component.ScenarioII,good.data.ScenarioII$Sig_hat); 
df.ScenarioII = data.frame(cbind(x.comp.ScenarioII, y.comp.ScenarioII, z.comp.ScenarioII)); 
df.ScenarioII$fac <- factor(rep(LETTERS[1:2], each = length(good.data.ScenarioII$Mu_hat))) 
 
#plot3d(x.comp,y.comp,z.comp,pch=20,col='blue', xlab="Lambda Hat", ylab="Mu Hat", zlab="Sigma Hat"); 
plot3d(df.ScenarioII$x.comp.ScenarioII, df.ScenarioII$y.comp.ScenarioII, df.ScenarioII$z.comp.ScenarioII, 
col=as.numeric(df.ScenarioII$fac), xlab="Lambda Hat", ylab="Mu Hat", zlab="Sigma Hat"); 
legend3d("topleft", legend = paste('Type:', c('Copula Surface', 'Empirical Surface')), pch = 16, col = c("red", "black"), 
cex=1.0, inset=c(0.01)) 
#scatterplot3d(df$x.comp, df$y.comp, df$z.comp, color=as.numeric(df$fac), xlab=expression(hat(lambda)), 
ylab=expression(hat(mu)), zlab=expression(hat(sigma))); 
 
 
 
L_Component.t.ScenarioII = random.mvdc.t.ScenarioII[,1]; 
Mu_Component.t.ScenarioII = random.mvdc.t.ScenarioII[,2]; 
Sig_Component.t.ScenarioII= random.mvdc.t.ScenarioII[,3]; 
 
x.comp.t.ScenarioII = c(L_Component.t.ScenarioII,good.data.ScenarioII$Lambda_hat); 
y.comp.t.ScenarioII = c(Mu_Component.t.ScenarioII,good.data.ScenarioII$Mu_hat); 
z.comp.t.ScenarioII = c(Sig_Component.t.ScenarioII,good.data.ScenarioII$Sig_hat); 
df.t.ScenarioII = data.frame(cbind(x.comp.t.ScenarioII, y.comp.t.ScenarioII, z.comp.t.ScenarioII)); 
df.t.ScenarioII$fac <- factor(rep(LETTERS[1:2], each = length(good.data.ScenarioII$Mu_hat))) 
 
#plot3d(x.comp,y.comp,z.comp,pch=20,col='blue', xlab="Lambda Hat", ylab="Mu Hat", zlab="Sigma Hat"); 
plot3d(df.t.ScenarioII$x.comp.t.ScenarioII, df.t.ScenarioII$y.comp.t.ScenarioII, df.t.ScenarioII$z.comp.t.ScenarioII, 
col=as.numeric(df.t.ScenarioII$fac), xlab="Lambda Hat", ylab="Mu Hat", zlab="Sigma Hat"); 
legend3d("topleft", legend = paste('Type:', c('Empirical Surface', 'Copula Surface')), pch = 16, col = c("red", "black"), 
cex=1, inset=c(0.02)) 
#scatterplot3d(df$x.comp, df$y.comp.3, df$z.comp, color=as.numeric(df$fac), xlab=expression(hat(lambda)), 
ylab=expression(hat(mu)), zlab=expression(hat(sigma))); 
 
#Export table to XLSX so Monte Carlo can be done in MATLAB 
#Must Close the XLSX File for the writing to be done 
 
options(java.parameters = "-Xmx8000m"); 
 
write.table(x=random.mvdc.normal.ScenarioII.xlsx, file="C:/Users/sabyguharay/Documents/GMU/Fourth 
Year/CopulaWork/copula_normal_ScenarioII.csv", quote=FALSE, sep=",", 
            col.names=TRUE); 
 
write.table(x=random.mvdc.t.ScenarioII.xlsx, file="C:/Users/sabyguharay/Documents/GMU/Fourth 
Year/CopulaWork/copula_t_ScenarioII.csv", quote=FALSE, sep=",", 
            col.names=TRUE); 
 
 
#write.xlsx(x=random.mvdc.normal, file="C:/Users/sabyguharay/Documents/GMU/Fourth 
Year/CopulaWork/Copula_SimData_III.xlsx", sheetName="Copula_Surface_Normal_big",  
#           col.names=TRUE, append=TRUE); 
 
#write.xlsx(x=random.mvdc.t, file="C:/Users/sabyguharay/Documents/GMU/Fourth 
Year/CopulaWork/Copula_SimData_III.xlsx", sheetName="Copula_Surface_t_big",  
#           col.names=TRUE, append=TRUE); 
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x.comp.ScenarioIv = c(L_Component.ScenarioIV,good.data.ScenarioIv$Lambda_hat); 
y.comp.ScenarioIv = c(Mu_Component.ScenarioIV,good.data.ScenarioIv$Mu_hat); 
z.comp.ScenarioIv= c(Sig_Component.ScenarioIV,good.data.ScenarioIv$Sig_hat); 
df.ScenarioIV = data.frame(cbind(x.comp.ScenarioIV, y.comp.ScenarioIv, z.comp.ScenarioIV)); 
df.ScenarioIV$fac <- factor(rep(LETTERS[1:2], each = length(good.data.ScenarioIV$Mu_hat))) 
 
#plot3d(x.comp,y.comp,z.comp,pch=20,col='blue', xlab="Lambda Hat", ylab="Mu Hat", zlab="Sigma Hat"); 
plot3d(df.ScenarioIV$x.comp.ScenarioIV, df.ScenarioIV$y.comp.ScenarioIV, df.ScenarioIV$z.comp.ScenarioIV, 
col=as.numeric(df.ScenarioIV$fac), xlab="Lambda Hat", ylab="Mu Hat", zlab="Sigma Hat"); 
legend3d("topleft", legend = paste('Type:', c('Copula Surface', 'Empirical Surface')), pch = 16, col = c("red", "black"), 
cex=1.0, inset=c(0.01)) 
#scatterplot3d(df$x.comp, df$y.comp, df$z.comp, color=as.numeric(df$fac), xlab=expression(hat(lambda)), 
ylab=expression(hat(mu)), zlab=expression(hat(sigma))); 
 
 
 
L_Component.t.ScenarioIv = random.mvdc.t.ScenarioIv [,1]; 
Mu_Component.t.ScenarioIV = random.mvdc.t.ScenarioIv [,2]; 
Sig_Component.t.ScenarioIV= random.mvdc.t.ScenarioIv [,3]; 
 
x.comp.t.ScenarioIV = c(L_Component.t.ScenarioIV,good.data.ScenarioIV$Lambda_hat); 
y.comp.t.ScenarioIV = c(Mu_Component.t.ScenarioIV,good.data.ScenarioIV$Mu_hat); 
z.comp.t.ScenarioIV = c(Sig_Component.t.ScenarioIV,good.data.ScenarioIV$Sig_hat); 
df.t.ScenarioIV = data.frame(cbind(x.comp.t.ScenarioIV, y.comp.t.ScenarioIV, z.comp.t.ScenarioIV)); 
df.t.ScenarioIV$fac <- factor(rep(LETTERS[1:2], each = length(good.data.ScenarioII$Mu_hat))) 
 
#plot3d(x.comp,y.comp,z.comp,pch=20,col='blue', xlab="Lambda Hat", ylab="Mu Hat", zlab="Sigma Hat"); 
plot3d(df.t.ScenarioII$x.comp.t.ScenarioII, df.t.ScenarioII$y.comp.t.ScenarioII, df.t.ScenarioII$z.comp.t.ScenarioII, 
col=as.numeric(df.t.ScenarioII$fac), xlab="Lambda Hat", ylab="Mu Hat", zlab="Sigma Hat"); 
legend3d("topleft", legend = paste('Type:', c('Empirical Surface', 'Copula Surface')), pch = 16, col = c("red", "black"), 
cex=1, inset=c(0.02)) 
#scatterplot3d(df$x.comp, df$y.comp.3, df$z.comp, color=as.numeric(df$fac), xlab=expression(hat(lambda)), 
ylab=expression(hat(mu)), zlab=expression(hat(sigma))); 
 
#Export table to XLSX so Monte Carlo can be done in MATLAB 
#Must Close the XLSX File for the writing to be done 
 
options(java.parameters = "-Xmx8000m"); 
 
write.table(x=random.mvdc.normal.ScenarioII.xlsx, file="C:/Users/sabyguharay/Documents/GMU/Fourth 
Year/CopulaWork/copula_normal_ScenarioII.csv", quote=FALSE, sep=",", 
            col.names=TRUE); 
 
write.table(x=random.mvdc.t.ScenarioII.xlsx, file="C:/Users/sabyguharay/Documents/GMU/Fourth 
Year/CopulaWork/copula_t_ScenarioII.csv", quote=FALSE, sep=",", 
            col.names=TRUE); 
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APPENDIX B: SAMPLE MATLAB PROGRAMS 

Main scripts 
 
clc; 
clear all; 
  
  
%  
%%%%%%%%%%%%%%%Generate Simulated Data 
Numb_Sim_Months = 10000; 
Numb_loss_Month = zeros(Numb_Sim_Months*1, 1); 
%Month_region = zeros(Numb_Sim_Months, 1); 
Mean_Severity_Month = zeros(Numb_Sim_Months*1, 1); 
Median_Severity_Month = zeros(Numb_Sim_Months*1, 1); 
Sum_Severity_Month = zeros(Numb_Sim_Months*1, 1); 
Min_Severity_Month = zeros(Numb_Sim_Months*1, 1); 
Max_Severity_Month = zeros(Numb_Sim_Months*1, 1); 
Month_counter = 1:Numb_Sim_Months; 
Month_counter = Month_counter'; 
  
% 
  
lambda_unique = 14; 
  
%%%%%%End of Frequency Parameters 
  
  
% 
  
mu_true = 5; 
sig_true = 2; 
  
  
%%%%%%%%% 
  
Freq_Sev_Matrix = []; 
  
  
All_severity = zeros(Numb_Sim_Months*100,1); 
  
Threshold = 0.01; 
 counter=0; 
% Simulation for  
tic; 
for i = 1:Numb_Sim_Months 
    %Low Frequency  
        Numb_loss_Month(i) = poissrnd(lambda_unique); 
        %Generate  
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        Y_ln = logsamp(mu_true,sig_true,Threshold,Numb_loss_Month(i)); 
        counter = counter+Numb_loss_Month(i); 
        Mean_Severity_Month(i) = mean(Y_ln); 
        Median_Severity_Month(i) = median(Y_ln); 
        Sum_Severity_Month(i) = sum(Y_ln); 
    if (i == 1) 
        All_severity(1:counter) = Y_ln; 
    else 
        All_severity(counter-numel(Y_ln)+1:counter) = Y_ln; 
    end 
    if mod(i, 100000) == 0 
        disp(i); 
    end 
end 
Clean_All_severity=All_severity(1:find(~All_severity,1)-1); 
t=toc; 
t; 
disp(t);       %%%%%%%%%%%%%%%%%%%%%%%280 Seconds 
  
  
%hist(Sum_Severity_Month); 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%Store Matrix 
for Losses  
 
tic; 
Month_counter_severity = []; 
Frequency_counter_severity = []; 
Median_Sev_Freq_matrix = []; 
Mean_Sev_Freq_matrix = []; 
  
Clean_Median_Severity_Month = Median_Severity_Month; 
Clean_Mean_Severity_Month = Mean_Severity_Month; 
Clean_Median_Severity_Month(isnan(Clean_Median_Severity_Month)) = 0; 
Clean_Mean_Severity_Month(isnan(Clean_Mean_Severity_Month)) = 0; 
  
  
for i=1:Numb_Sim_Months 
    Month_counter_severity = [Month_counter_severity; repmat(Month_counter(i), Numb_loss_Month(i),1)]; 
    Frequency_counter_severity = [Frequency_counter_severity; 
repmat(Numb_loss_Month(i),Numb_loss_Month(i),1)]; 
end 
  
  
Severity_Month_Freq_matrix = cat(2, Frequency_counter_severity, Clean_All_severity); 
  
Median_Sev_Freq_matrix = cat(2, Numb_loss_Month, Clean_Median_Severity_Month); 
Mean_Sev_Freq_matrix = cat(2, Numb_loss_Month, Clean_Mean_Severity_Month); 
  
Month_Counter_Frequency = []; 
  
  
for i = 1:Numb_Sim_Months 
    test = repmat(Month_counter(i), Numb_loss_Month(i), 1); 
    Month_Counter_Frequency = cat(1,Month_Counter_Frequency,test); 
end 
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Month_Severity_Matrix = cat(2,Month_Counter_Frequency, Clean_All_severity); 
Freq_Severity_Matrix = cat(2,Month_counter, Numb_loss_Month, Mean_Severity_Month, Median_Severity_Month, 
Sum_Severity_Month);      
  
    %%%%%%%%%%%%%%Export Data to XLSX 
     full_path = 'C:\Users\sabyguharay\Documents\GMU\Fourth Year\Theoretical_RawData_Scenario.xlsx'; 
     Utility_header = {'Month Number','No. of Losses', 'Mean Loss', 'Median Loss', 'Aggregate Loss Sum'}; 
     xlRange = 'A1'; 
     xlswrite(full_path, Utility_header, 'Freq_Severity_Matrix',xlRange); 
     xlRange_2 = 'A2'; 
     xlswrite(full_path, Freq_Severity_Matrix, 'Freq_Severity_Matrix', xlRange_2); 
      
     Utility_header_2 = {'Month Number','Raw Severity'}; 
     xlswrite(full_path, Utility_header_2, 'Month_Severity_Matrix',xlRange); 
     xlswrite(full_path, Month_Severity_Matrix, 'Month_Severity_Matrix', xlRange_2); 
t=toc; 
disp(t);  % takes 60 seconds 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%END OF 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%% 
  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%Empirical Analysis  
  
T_Log_0p4 = prctile(HighFreq_severity, 0); 
T_Log_25p4 = prctile(HighFreq_severity, 25); 
T_Log_33p4 = prctile(HighFreq_severity, 33); 
T_Log_50p4 = prctile(HighFreq_severity, 50); 
T_Log_67p4 = prctile(HighFreq_severity, 67); 
T_Log_75p4 = prctile(HighFreq_severity, 75); 
T_Log_90p4 = prctile(HighFreq_severity, 90); 
T_Log_95p4 = prctile(HighFreq_severity, 95); 
T_Log_98p4 = prctile(HighFreq_severity, 98); 
T_Log_99p4 = prctile(HighFreq_severity, 99); 
T_Log_995p4 = prctile(HighFreq_severity, 99.5); 
T_Log_999p4 = prctile(HighFreq_severity, 99.9); 
T_Log_9995p4 = prctile(HighFreq_severity, 99.95); 
T_Log_9999p4 = prctile(HighFreq_severity, 99.99); 
T_Log_mean = mean(HighFreq_severity); 
  
new_arr = [T_Log_mean T_Log_0p4 T_Log_25p4 T_Log_33p4 T_Log_50p4 T_Log_67p4 T_Log_75p4 T_Log_90p4 
T_Log_95p4 T_Log_98p4 T_Log_99p4 T_Log_995p4 T_Log_999p4 T_Log_9995p4 T_Log_9999p4]'; 
%LNG_VaR_2 = flipud(new_arr); 
Empirical_HF_Quantiles= new_arr; 
Empirical_HF_Quantiles 
  
  
  
T_Log_0p4 = prctile(LowFreq_severity, 0); 
T_Log_25p4 = prctile(LowFreq_severity, 25); 
T_Log_33p4 = prctile(LowFreq_severity, 33); 
T_Log_50p4 = prctile(LowFreq_severity, 50); 
T_Log_67p4 = prctile(LowFreq_severity, 67); 
T_Log_75p4 = prctile(LowFreq_severity, 75); 
T_Log_90p4 = prctile(LowFreq_severity, 90); 
T_Log_95p4 = prctile(LowFreq_severity, 95); 
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T_Log_98p4 = prctile(LowFreq_severity, 98); 
T_Log_99p4 = prctile(LowFreq_severity, 99); 
T_Log_995p4 = prctile(LowFreq_severity, 99.5); 
T_Log_999p4 = prctile(LowFreq_severity, 99.9); 
T_Log_9995p4 = prctile(LowFreq_severity, 99.95); 
T_Log_9999p4 = prctile(LowFreq_severity, 99.99); 
T_Log_mean = mean(LowFreq_severity); 
  
new_arr = [T_Log_mean T_Log_0p4 T_Log_25p4 T_Log_33p4 T_Log_50p4 T_Log_67p4 T_Log_75p4 T_Log_90p4 
T_Log_95p4 T_Log_98p4 T_Log_99p4 T_Log_995p4 T_Log_999p4 T_Log_9995p4 T_Log_9999p4]'; 
%LNG_VaR_2 = flipud(new_arr); 
Empirical_LF_Quantiles = new_arr; 
Empirical_LF_Quantiles 
  
  
T_Log_0p4 = prctile(MedFreq_severity, 0); 
T_Log_25p4 = prctile(MedFreq_severity, 25); 
T_Log_33p4 = prctile(MedFreq_severity, 33); 
T_Log_50p4 = prctile(MedFreq_severity, 50); 
T_Log_67p4 = prctile(MedFreq_severity, 67); 
T_Log_75p4 = prctile(MedFreq_severity, 75); 
T_Log_90p4 = prctile(MedFreq_severity, 90); 
T_Log_95p4 = prctile(MedFreq_severity, 95); 
T_Log_98p4 = prctile(MedFreq_severity, 98); 
T_Log_99p4 = prctile(MedFreq_severity, 99); 
T_Log_995p4 = prctile(MedFreq_severity, 99.5); 
T_Log_999p4 = prctile(MedFreq_severity, 99.9); 
T_Log_9995p4 = prctile(MedFreq_severity, 99.95); 
T_Log_9999p4 = prctile(MedFreq_severity, 99.99); 
T_Log_mean = mean(MedFreq_severity); 
  
new_arr = [T_Log_mean T_Log_0p4 T_Log_25p4 T_Log_33p4 T_Log_50p4 T_Log_67p4 T_Log_75p4 T_Log_90p4 
T_Log_95p4 T_Log_98p4 T_Log_99p4 T_Log_995p4 T_Log_999p4 T_Log_9995p4 T_Log_9999p4]'; 
Empirical_MF_Quantiles = new_arr; 
Empirical_MF_Quantiles 
  
  
Log_0p4 = prctile(Sum_Severity_Month, 0); 
Log_25p4 = prctile(Sum_Severity_Month, 25); 
Log_50p4 = prctile(Sum_Severity_Month, 50); 
Log_90p4 = prctile(Sum_Severity_Month, 90); 
Log_95p4 = prctile(Sum_Severity_Month, 95); 
Log_98p4 = prctile(Sum_Severity_Month, 98); 
Log_99p4 = prctile(Sum_Severity_Month, 99); 
Log_995p4 = prctile(Sum_Severity_Month, 99.5); 
Log_999p4 = prctile(Sum_Severity_Month, 99.9); 
Log_9995p4 = prctile(Sum_Severity_Month, 99.95); 
Log_9999p4 = prctile(Sum_Severity_Month, 99.99); 
Log_99999p4 = prctile(Sum_Severity_Month, 99.999); 
Log_999995p4 = prctile(Sum_Severity_Month, 99.9995); 
Log_999999p4 = prctile(Sum_Severity_Month, 99.9999); 
  
  
Log_mean = mean(Sum_Severity_Month); 
  
new_arr = [Log_mean Log_0p4 Log_25p4 Log_50p4 Log_90p4 Log_95p4 Log_98p4 Log_99p4 Log_995p4 
Log_999p4 Log_9995p4 Log_9999p4 Log_99999p4 Log_999995p4 Log_999999p4]'; 
%LNG_VaR_2 = flipud(new_arr); 
VaR_Data_Historical = new_arr; 
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VaR_Data_Historical 
  
%%%%%%%%%%%%%%%Plot of the Severity Region 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%% 
subplot(2,1,1)       % add first plot in 2 x 2 grid 
hist(log(Clean_All_severity)); 
xlabel({'Loss Severity (Log)'},'FontSize',16, 'FontName','Times New Roman'); 
ylabel({'Count'},'FontSize',16, 'FontName','Times New Roman'); 
title({'Simulated Data of the Daily Loss Severity for Scenario III'},... 
    'FontSize',16, 'FontName','Times New Roman'); 
  
subplot(2,1,2)       % add first plot in 2 x 2 grid 
hist(Numb_loss_Month); 
xlabel({'# Losses per Month'},'FontSize',16, 'FontName','Times New Roman'); 
ylabel({'Count'},'FontSize',16, 'FontName','Times New Roman'); 
title({'Frequency Distribution for Scenario III'},... 
    'FontSize',16, 'FontName','Times New Roman'); 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
[~, ~, raw] = xlsread('C:\Users\sabyguharay\Documents\GMU\Fourth Year\Real Data\Files Ready for 
Analysis\MATLAB_FEEDER.xlsx','Data_For_Pivot_Table','U8:U307'); 
raw(cellfun(@(x) ~isempty(x) && isnumeric(x) && isnan(x),raw)) = {''}; 
  
%% Replace non-numeric cells with NaN 
R = cellfun(@(x) ~isnumeric(x) && ~islogical(x),raw); % Find non-numeric cells 
raw(R) = {NaN}; % Replace non-numeric cells 
  
%% Create output variable 
data = reshape([raw{:}],size(raw)); 
  
%% Allocate imported array to column variable names 
Empirical_Agg_Loss = data(:,1); 
%Clean_Mean_Severity_Month = data(:,2); 
Numb_Sim_boot = 10000; 
  
%% Clear temporary variables 
clearvars data raw cellVectors R; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%END OF IMPORTING THE  
  
  
Sample_length=200; 
Quantile_length = 7; 
Bootstrap_n = Numb_Sim_boot;      %10000 months of Bootstrap sample   
Bootstrap_matrix = zeros(Bootstrap_n*100, Quantile_length); 
%Distribution 
tic; 
for j=1:(Bootstrap_n*100) 
        New_Loss = datasample(Empirical_Agg_Loss,Sample_length,'Replace',true); 
        Bootstrap_matrix(j,1) = prctile(New_Loss, 0); 
        Bootstrap_matrix(j,2) = prctile(New_Loss, 25); 
        Bootstrap_matrix(j,3) = prctile(New_Loss, 50); 
        Bootstrap_matrix(j,4) = prctile(New_Loss, 90); 
        Bootstrap_matrix(j,5) = prctile(New_Loss, 95); 
        Bootstrap_matrix(j,6) =  prctile(New_Loss, 98); 
        Bootstrap_matrix(j,7) =  prctile(New_Loss, 99); 



 

194 
 

        if mod(j, Bootstrap_n*10) == 0 
            disp(j); 
        end 
end 
%t=toc; 
%t 
  
  
Final_Quantiles_Matrix_Spills = zeros(2,7); 
quantile_interest = 99; 
  
for i=1:7 
    Final_Quantiles_Matrix_Spills(1,i) = prctile(Bootstrap_matrix(:,i), 100-quantile_interest); 
    Final_Quantiles_Matrix_Spills(2,i) = prctile(Bootstrap_matrix(:,i), quantile_interest); 
end 
  
Export_xls = Final_Quantiles_Matrix_Spills'; 
% t=toc; 
% disp(t);  %1040 seconds 
  
%%%%%%%%%%%%%%%%%%%%%%%% 
    %%%%%%%%%%%%%%Export Data to XLSX 
     full_path = 'C:\Users\sabyguharay\Documents\GMU\Dissertation Final Defense\Print Results Thesis Level 
Good.xlsx'; 
     Utility_header = {'Lower','Upper'}; 
     xlRange = 'M3'; 
     xlswrite(full_path, Utility_header, 'Real-World Data New',xlRange); 
     xlRange_2 = 'M4'; 
     xlswrite(full_path, Export_xls, 'Real-World Data New', xlRange_2); 
    
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%End of Writing to XLSX 
%t=toc; 
%disp(t);   %28 seconds 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%End of Chemical 
Spills 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%Begin  
% [~, ~, raw] = xlsread('C:\Users\sabyguharay\Documents\GMU\Fourth Year\Excel Frequency Analysis\SP500 
WRDS 1925 - Current.xlsx','FinalResults','M7:M1074'); 
% raw(cellfun(@(x) ~isempty(x) && isnumeric(x) && isnan(x),raw)) = {''}; 
%  
% %% Replace non-numeric cells with NaN 
% R = cellfun(@(x) ~isnumeric(x) && ~islogical(x),raw); % Find non-numeric cells 
% raw(R) = {NaN}; % Replace non-numeric cells 
%  
% %% Create output variable 
% data = reshape([raw{:}],size(raw)); 
%  
% %% Allocate imported array to column variable names 
% Empirical_Agg_Loss_SP500 = data(:,1); 
% %Clean_Mean_Severity_Month = data(:,2); 
%  
% %% Clear temporary variables 
% clearvars data raw cellVectors R; 



 

195 
 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%END OF IMPORTING SP500 Historical VaR 
  
Sample_length_SP500=1000; 
%tic; 
Bootstrap_matrix_SP500 = zeros(Bootstrap_n*100, Quantile_length+1); 
%Distribution 
for j=1:(Bootstrap_n*100) 
        New_Loss = datasample(Empirical_Agg_Loss_SP500,Sample_length_SP500,'Replace',true); 
        Bootstrap_matrix_SP500(j,1) = prctile(New_Loss, 0); 
        Bootstrap_matrix_SP500(j,2) = prctile(New_Loss, 25); 
        Bootstrap_matrix_SP500(j,3) = prctile(New_Loss, 50); 
        Bootstrap_matrix_SP500(j,4) = prctile(New_Loss, 90); 
        Bootstrap_matrix_SP500(j,5) = prctile(New_Loss, 95); 
        Bootstrap_matrix_SP500(j,6) =  prctile(New_Loss, 98); 
        Bootstrap_matrix_SP500(j,7) =  prctile(New_Loss, 99); 
        Bootstrap_matrix_SP500(j,8) =  prctile(New_Loss, 99.5); 
        if mod(j, Bootstrap_n*10) == 0 
            disp(j); 
        end 
end 
  
  
Final_Quantiles_Matrix_SP500 = zeros(2,Quantile_length+1); 
%quantile_interest = 95; 
  
for i=1:(Quantile_length+1) 
    Final_Quantiles_Matrix_SP500(1,i) = prctile(Bootstrap_matrix_SP500(:,i), 100-quantile_interest); 
    Final_Quantiles_Matrix_SP500(2,i) = prctile(Bootstrap_matrix_SP500(:,i), quantile_interest); 
end 
% t=toc; 
% disp(t);      %16 Seconds 
  
  
  
Export_xls = Final_Quantiles_Matrix_SP500'; 
disp('I am on the SP500'); 
%%%%%%%%%%%%%%%%%%%%%%%%Export Results to Excel 
    %%%%%%%%%%%%%%Export Data to XLSX 
     full_path = 'C:\Users\sabyguharay\Documents\GMU\Dissertation Final Defense\Print Results Thesis Level 
Good.xlsx';  
     Utility_header = {'Lower','Upper'}; 
     xlRange = 'M22'; 
     xlswrite(full_path, Utility_header, 'Real-World Data New',xlRange); 
     xlRange_2 = 'M23'; 
     xlswrite(full_path, Export_xls, 'Real-World Data New', xlRange_2); 
    
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%End of Writing to XLSX 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%END OF  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%% 
  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%Begin  



 

196 
 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%% 
  
%%%%%%%%%%%%%%%%%%%%%%%%%Begin DJIA Analysis 
% [~, ~, raw] = xlsread('C:\Users\sabyguharay\Documents\GMU\Fourth Year\Real Data\Latest Data from 
Yahoo.xlsx','Input_DJIA_MATLAB','E2:E798'); 
% raw(cellfun(@(x) ~isempty(x) && isnumeric(x) && isnan(x),raw)) = {''}; 
%  
% %% Replace non-numeric cells with NaN 
% R = cellfun(@(x) ~isnumeric(x) && ~islogical(x),raw); % Find non-numeric cells 
% raw(R) = {NaN}; % Replace non-numeric cells 
%  
% %% Create output variable 
% data = reshape([raw{:}],size(raw)); 
%  
% %% Allocate imported array to column variable names 
% Empirical_Agg_Loss_DJIA = data(:,1); 
% %Clean_Mean_Severity_Month = data(:,2); 
%  
% %% Clear temporary variables 
% clearvars data raw cellVectors R; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%END OF IMPORTING  
  
  
% tic; 
Sample_length_DJIA=500; 
Bootstrap_matrix_DJIA = zeros(Bootstrap_n*100, Quantile_length); 
%Distribution 
for j=1:(Bootstrap_n*100) 
        New_Loss = datasample(Empirical_Agg_Loss_DJIA,Sample_length_DJIA,'Replace',true); 
        Bootstrap_matrix_DJIA(j,1) = prctile(New_Loss, 0); 
        Bootstrap_matrix_DJIA(j,2) = prctile(New_Loss, 25); 
        Bootstrap_matrix_DJIA(j,3) = prctile(New_Loss, 50); 
        Bootstrap_matrix_DJIA(j,4) = prctile(New_Loss, 90); 
        Bootstrap_matrix_DJIA(j,5) = prctile(New_Loss, 95); 
        Bootstrap_matrix_DJIA(j,6) =  prctile(New_Loss, 98); 
        Bootstrap_matrix_DJIA(j,7) =  prctile(New_Loss, 99); 
        if mod(j, Bootstrap_n*10) == 0 
            disp(j); 
        end 
end 
  
  
Final_Quantiles_Matrix_DJIA = zeros(2,7); 
%quantile_interest = 95; 
  
for i=1:7 
    Final_Quantiles_Matrix_DJIA(1,i) = prctile(Bootstrap_matrix_DJIA(:,i), 100-quantile_interest); 
    Final_Quantiles_Matrix_DJIA(2,i) = prctile(Bootstrap_matrix_DJIA(:,i), quantile_interest); 
end 
% t=toc; 
% disp(t);      %11 Seconds 
  
Export_xls = Final_Quantiles_Matrix_DJIA'; 
disp('I am on the DJIA'); 
%%%%%%%%%%%%%%%%%%%%%%%%Export Results to Excel 
    %%%%%%%%%%%%%%Export Data to XLSX 
     full_path = 'C:\Users\sabyguharay\Documents\GMU\Dissertation Final Defense\Print Results Thesis Level 
Good.xlsx';  
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     Utility_header = {'Lower','Upper'}; 
     xlRange = 'M59'; 
     xlswrite(full_path, Utility_header, 'Real-World Data New',xlRange); 
     xlRange_2 = 'M60'; 
     xlswrite(full_path, Export_xls, 'Real-World Data New', xlRange_2); 
  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%END  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%% 
  
  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%Begin  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%% 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%Begin Auto Analysis 
% [~, ~, raw] = xlsread('C:\Users\sabyguharay\Documents\GMU\Fourth Year\Real 
Data\automobile.xlsx','PivotTable','N5:N119'); 
% raw(cellfun(@(x) ~isempty(x) && isnumeric(x) && isnan(x),raw)) = {''}; 
%  
% %% Replace non-numeric cells with NaN 
% R = cellfun(@(x) ~isnumeric(x) && ~islogical(x),raw); % Find non-numeric cells 
% raw(R) = {NaN}; % Replace non-numeric cells 
%  
% %% Create output variable 
% data = reshape([raw{:}],size(raw)); 
%  
% %% Allocate imported array to column variable names 
% Empirical_Agg_Loss_Auto = data(:,1); 
% %Clean_Mean_Severity_Month = data(:,2); 
%  
% %% Clear temporary variables 
% clearvars data raw cellVectors R; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%END OF IMPORTING Auto Historical VaR 
  
Sample_length_Auto = 100; 
%tic; 
Bootstrap_matrix_Auto = zeros(Bootstrap_n*100, Quantile_length); 
%Distribution 
for j=1:(Bootstrap_n*100) 
        New_Loss = datasample(Empirical_Agg_Loss_Auto,Sample_length_Auto,'Replace',true); 
        Bootstrap_matrix_Auto(j,1) = prctile(New_Loss, 0); 
        Bootstrap_matrix_Auto(j,2) = prctile(New_Loss, 25); 
        Bootstrap_matrix_Auto(j,3) = prctile(New_Loss, 50); 
        Bootstrap_matrix_Auto(j,4) = prctile(New_Loss, 90); 
        Bootstrap_matrix_Auto(j,5) = prctile(New_Loss, 95); 
        Bootstrap_matrix_Auto(j,6) =  prctile(New_Loss, 98); 
        Bootstrap_matrix_Auto(j,7) =  prctile(New_Loss, 99); 
        if mod(j, Bootstrap_n*10) == 0 
            disp(j); 
        end 
end 
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Final_Quantiles_Matrix_Auto = zeros(2,7); 
%quantile_interest = 95; 
  
for i=1:7 
    Final_Quantiles_Matrix_Auto(1,i) = prctile(Bootstrap_matrix_Auto(:,i), 100-quantile_interest); 
    Final_Quantiles_Matrix_Auto(2,i) = prctile(Bootstrap_matrix_Auto(:,i), quantile_interest); 
end 
  
  
Export_xls = Final_Quantiles_Matrix_Auto'; 
disp('I am on the Autos'); 
%%%%%%%%%%%%%%%%%%%%%%%%Export Results to Excel 
    %%%%%%%%%%%%%%Export Data to XLSX 
     full_path = 'C:\Users\sabyguharay\Documents\GMU\Dissertation Final Defense\Print Results Thesis Level 
Good.xlsx';  
     Utility_header = {'Lower','Upper'}; 
     xlRange = 'M40'; 
     xlswrite(full_path, Utility_header, 'Real-World Data New',xlRange); 
     xlRange_2 = 'M41'; 
     xlswrite(full_path, Export_xls, 'Real-World Data New', xlRange_2); 
  %%%%%%%%%%%%%%End of Export Data to XLSX 
% t=toc; 
% disp(t);      %30 Seconds 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%END Auto Analysis 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%% 
  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%Begin Hurricane Analysis 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%% 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%Begin Hurricane Analysis 
% [~, ~, raw] = xlsread('C:\Users\sabyguharay\Documents\GMU\Fourth Year\Real Data\US 
Hurricanes.xlsx','Input_Data_MATLAB','E2:E107'); 
% raw(cellfun(@(x) ~isempty(x) && isnumeric(x) && isnan(x),raw)) = {''}; 
%  
% %% Replace non-numeric cells with NaN 
% R = cellfun(@(x) ~isnumeric(x) && ~islogical(x),raw); % Find non-numeric cells 
% raw(R) = {NaN}; % Replace non-numeric cells 
%  
% %% Create output variable 
% data = reshape([raw{:}],size(raw)); 
%  
% %% Allocate imported array to column variable names 
% Empirical_Agg_Loss_Hurricane = data(:,1); 
% %Clean_Mean_Severity_Month = data(:,2); 
%  
% %% Clear temporary variables 
% clearvars data raw cellVectors R; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%END OF IMPORTING Hurricane Historical VaR 
  
tic; 
Sample_length_Hurricane = 105; 
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Bootstrap_matrix_Hurricane = zeros(Bootstrap_n*100, Quantile_length); 
%Distribution 
for j=1:(Bootstrap_n*100) 
        New_Loss = datasample(Empirical_Agg_Loss_Hurricane,Sample_length_Hurricane,'Replace',true); 
        Bootstrap_matrix_Hurricane(j,1) = prctile(New_Loss, 0); 
        Bootstrap_matrix_Hurricane(j,2) = prctile(New_Loss, 25); 
        Bootstrap_matrix_Hurricane(j,3) = prctile(New_Loss, 50); 
        Bootstrap_matrix_Hurricane(j,4) = prctile(New_Loss, 90); 
        Bootstrap_matrix_Hurricane(j,5) = prctile(New_Loss, 95); 
        Bootstrap_matrix_Hurricane(j,6) =  prctile(New_Loss, 98); 
        Bootstrap_matrix_Hurricane(j,7) =  prctile(New_Loss, 99); 
        if mod(j, Bootstrap_n*10) == 0 
            disp(j); 
        end 
end 
  
 
 
 
 
 
  
Final_Quantiles_Matrix_Hurricane = zeros(2,7); 
%quantile_interest = 95; 
 
 
  
for i=1:7 
    Final_Quantiles_Matrix_Hurricane(1,i) = prctile(Bootstrap_matrix_Hurricane(:,i), 100-quantile_interest); 
    Final_Quantiles_Matrix_Hurricane(2,i) = prctile(Bootstrap_matrix_Hurricane(:,i), quantile_interest); 
end 
  
  
Export_xls = Final_Quantiles_Matrix_Hurricane'; 
disp('I am on the Last One: Hurricanes'); 
  
  
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%Begin Analysis 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%% 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%Begin Analysis 
% [~, ~, raw] = xlsread('C:\Users\sabyguharay\Documents\GMU\Fourth Year\Real 
Data\US.xlsx','Input_Data_MATLAB','E2:E107'); 
% raw(cellfun(@(x) ~isempty(x) && isnumeric(x) && isnan(x),raw)) = {''}; 
%  
% %% Replace non-numeric cells with NaN 
% R = cellfun(@(x) ~isnumeric(x) && ~islogical(x),raw); % Find non-numeric cells 
% raw(R) = {NaN}; % Replace non-numeric cells 
%  
% %% Create output variable 
% data = reshape([raw{:}],size(raw)); 
%  
% %% Allocate imported array to column variable names 
% Empirical_Agg_Loss_Hurricane = data(:,1); 
% %Clean_Mean_Severity_Month = data(:,2); 
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