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Abstract

ON EXTREMAL COIN GRAPHS, FLOWERS, AND THEIR RATIONAL REPRESEN-
TATIONS

Jill Bigley Dunham, PhD

George Mason University, 2009

Dissertation Director: Dr. Geir Agnarsson

We study extremal coin graphs in the Euclidean plane on n vertices with the maximum

number of edges. This is related to the unit coin graph problem first posed by Erdős in 1946,

and considers coin graphs that satisfy certain conditions relating to the ratios of the possible

radii of the coins in the graph. A motivating problem is a special case of a coin graph with

multiple radii.

We explore the algebraic equations describing a flower, the coin graph presentation of

a wheel graph, and present a class of irreducible symmetric polynomials that describe the

relation of the radii of each flower. These polynomials are then used to fully characterize

flowers on four coins, also known as Soddy circles, with rational radii. This yields a free

parametrization of all flowers on four coins with rational radii. A similar method is used

to characterize all flowers on five coins with rational radii and to describe a large class of

solutions for flowers on n coins.



Chapter 1: Introduction

1.1 Background and History

In this chapter, we begin our investigation of coin graphs. We will revisit a known result

of Harborth’s and use an explicit construction to prove the lower bound on the maximum

number of edges of a special coin graph on two radii. We will also discuss background

and history of the problem and introduce terminology that will be used throughout this

dissertation.

We start by defining our fundamental object:

Definition 1.1.1. A coin graph G is a graph whose vertices can be represented as closed,

non-overlapping disks in the Euclidean plane such that two vertices are adjacent if and only

if their corresponding disks intersect at their boundaries, i.e. they touch.

Further, a unit coin graph is a coin graph represented by disks of the same radius.

The problem of determining the maximum number of edges of a unit coin graph on n

vertices in the Euclidean plane was posed by Erdős [10] in 1946 and again in its current

form by Reutter [11] in 1972. This problem was completely solved by Harborth [6] in 1974,

who showed that the maximum number of edges is given by T (n) :=
⌊
3n−

√
12n− 3

⌋
. The

configuration which achieves this maximum is a "hexagonal spiral" or honeycomb. Figure

1.1 shows an example of such a maximal configuration for n = 7.

Harborth’s proof shows that the expression T (n) is both an upper and a lower bound.

The lower bound is proved constructively using the hexagonal spiral configuration shown in

Figure 1.1. The main idea of the proof of the upper bound is to take such a maximal coin

graph, remove the vertices bounding the infinite face, and use induction on n.
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Figure 1.1: A unit coin graph with the maximum number of edges for n = 7.

This problem can be generalized in many ways, as suggested in [3] starting on page

222: (i) it can be generalized to graphs embedded in other surfaces such as the sphere

or g-torus or to graphs embedded in n-dimensional Euclidean space for n ≥ 3, where the

definition of a coin graph is modified appropriately to an n-dimensional sphere graph [3].

(ii) The additional constraint that no three vertices of the graph can be collinear forces

the maximum degree of any vertex to be 5, leading to a different upper bound [3]. (iii) A

similar class of graphs can be defined by connecting two vertices if and only if their distance

d satisfies 1 ≤ d ≤ 1+ ε for some given small ε > 0. This structure can be pictured as a unit

coin graph using elastic disks that can stretch some small amount. It is conjectured that

for small ε (less than 0.15 times the defined unit distance) the maximum number of edges

is still T (n) as in the case of the unit coin graph [3]. (iv) A related problem, also posed by

Paul Erdős, asks for the minimum independence number for smallest-distance graphs [3].

For a finite set of points in the plane, there is a smallest distance among all pairs of

points. The smallest-distance graph is obtained by connecting two points as vertices of the

graph if and only if their distance is equal to this smallest distance. This is the original

formulation of the coin graph problem as posed by Erdős [10]. For a unit coin graph G with

radius r = 1, the smallest distance is d = 2, and the number of occurrences of this smallest

distance is precisely the number of edges of G. In this case of unit coin graphs, the minimum
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independence number problem asks: what is the largest number of vertices one can select

such that none of their corresponding disks touch? (v) Swanepoel recently conjectured that

the largest number of edges in a coin graph with no triangular faces is given by b2n− 2
√

nc

[15].

Another natural generalization of the unit coin graph problem is to allow coins of more

than one possible radius. Brightwell and Scheinerman [4] explored integral representations

of coin graphs, where the radii of the coins can take arbitrary positive integer values. Specif-

ically, they hoped to use coin graphs to answer a conjecture of Harborth’s, namely whether

all planar graphs admit a straight-line embedding where each edge has integer length.

Brightwell and Scheinerman instead proved that there exist planar graphs which cannot

be constructed as coin graphs with edge lengths among the constructible algebraic numbers

[7]. This leaves Harborth’s conjecture unanswered.

This research will explore and attempt to characterize certain types of coin graphs that

can be represented by disks of integral radius. To the best of our knowledge, this has not

been considered in the discrete geometry literature.

Theorem 1.1.2 (W. Thurston [16]). A graph G is a coin graph if and only if it is planar.

That a coin graph is planar is fairly clear. In fact, by connecting the centers of touching

disks, we see that each coin graph is a plane graph where each edge is a straight line segment.

The converse involves some nontrivial results from the theory of orbifolds (a generalization

of manifolds) and will not be presented here. Given this result, we see that any planar graph

can be embedded in the plane as a coin graph.

This theorem can also be attributed to Koebe [8] and Andreev [1]. Koebe’s original proof

covered only the case of fully-triangulated planar graphs. Thurston reduced the proof to

the previous theorem of Andreev. Thurston’s proof is of the more general case of all planar

graphs.

The present research has three parts. In the first part we will explore upper and lower

bounds on the maximum number of edges of coin graphs using mostly combinatorial argu-

ments. In the second part we will explore the algebraic equations describing wheel graphs,
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a fundamental substructure of certain coin graphs. Finally, we will characterize all rational

solutions to the coin graph problem for flowers (coin graph representations of wheel graphs)

with n = 3 and n = 4 petals. The parametrization for n = 4 petals generalizes, giving large

classes of solutions for coin graphs with higher numbers of petals, for all n > 4.

1.2 The Unit Coin Graph Problem

The original proof of the unit coin graph problem is due to Harborth [6], where it is shown

that the maximum number of edges in a unit coin graph on n vertices is E(n) = T (n).

As his published proof of the lower bound is somewhat brief, we will give here a detailed

verification that this is the case for all n.

What is remarkable here is that the upper bound, relatively easily obtained by induction,

matches the lower bound and is expressible in such simple terms.

Proposition 1.2.1. The lower bound on the maximum number of edges E(n) of a unit coin

graph G on n coins is given by T (n) =
⌊
3n−

√
12n− 3

⌋
.

Definition 1.2.2. For any k ∈ N, the centered hexagonal number ch(k) := 3k2 − 3k + 1

is the number of vertices in the hexagonal-configuration coin graph with k layers. The

corresponding number of edges in this graph is then given by ech(k) := 3(k−1)(3(k−1)+1) =

3(k − 1)(3k − 2).

Proof. Lower bound for centered hexagonal numbers:

Arranging hexagonally, we obtain a coin graph on n = ch(k+1) vertices and m = ech(k+1) =

3k(3k + 1) edges (see Figure 1.2.) Solving for k, we get:

k =

√
4n−1

3 − 1

2
.

Substituting this expression of k into the expression for m yields the number m of edges of
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Figure 1.2: When k = 2, n = 7.

this graph, as a function of n:

m = 3


√

4n−1
3 − 1

2

3


√

4n−1
3 − 1

2

+ 1


= 3n−

√
12n− 3.

Thus for centered hexagonal numbers, we have that the maximum number of edges E(n)

satisfies E(n) ≥ T (n).

Lower bound for ch(k) < n < ch(k + 1):

First note that ch(k +1)− ch(k) = 6k and hence n = ch(k)+ l where l ∈ {1, . . . , 6k−1}.

Here the task is to show that for some configuration of coins, the lower bound holds for

n in the stated interval. The configuration we use starts with the hexagonal configuration

that is optimal for n = ch(k), then adds each additional vertex around the outside in a spiral

fashion. See figure 1.3 for an example where k = 3 and ch(3) < n < ch(4). We see that the

pattern of edges for each vertex added around the hexagon in the k + 1st layer is as follows:

1 vertex with 2 edges, k − 2 vertices with 3 additional edges, 1 vertex with 2 edges, k − 1

vertices with 3 edges, 1 vertex with 2 edges, k − 1 vertices with 3 edges, 1 vertex with 2

edges, k−1 vertices with 3 edges, 1 vertex with 2 edges, k−1 vertices with 3 edges, 1 vertex
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Figure 1.3: Adding additional vertices around the edges of the hexagonal configuration.

with 2 edges, then k vertices with 3 edges each, for a total of 6k vertices and an additional

18k − 6 edges, as calculated above. This pattern is illustrated in Figure 1.4.

Hence, for n = ch(k) + l where l ∈ {1, . . . , 6k − 1} the number of edges obtained in this

spiral configuration is as follows:

For 1 ≤ l ≤ k − 1 we have a total of ech(k) + 2 + 3(l − 1) edges.

For ik ≤ l ≤ (i + 1)k − 1 where i ∈ {1, 2, 3, 4, 5} we have a total of

ech(k) + 2 + 3(k − 2) + 3(i− 1)(k − 1) + 3(l − ik) = ech(k) + 3l − i− 1

edges.

We now compare the numbers above with T (n) =
⌊
3n−

√
12n− 3

⌋
= 3n−

⌈√
12n− 3

⌉
in each of the two cases:

6



k−1

k−1

k−1

k

k−2
k−1

Figure 1.4: The pattern of 3-edge vertices around the hexagon.

For 1 ≤ l ≤ k − 1 we have for n = ch(k) + l that

(6k − 3)2 + 1 < 36k2 − 36k + 21

= 12(ch(k) + 1)− 3

≤ 12n− 3

≤ 12(ch(k) + k − 1)− 3

= 36k2 − 24k − 3

< (6k − 2)2.

Applying the increasing function x → d
√

xe throughout the above inequality we obtain

⌈√
12n− 3

⌉
= 6k − 2

in this case, and hence

3n−
⌈√

12n− 3
⌉

= 3(ch(k) + l)− (6k − 2)

= 9k2 − 15k + 5 + 3l

= ech(k) + 2 + 3(l − 1),

7



which agrees with the number of edges in the hexagonal spiral coin configuration.

For ik ≤ l ≤ (i+1)k−1 where i ∈ {1, 2, 3, 4, 5}, we similarly compare the above number

of constructed edges with T (n). Here n = ch(k) + l and hence

(6k + i− 3)2 + 1 = 36k2 + 12(i− 3)k + (i− 3)2 + 1

< 36k2 + 12(i− 3)k + 9

since i ∈ {1, 2, 3, 4, 5} and hence |i− 3| ≤ 2. Also, this last expression

36k2 + 12(i− 3)k + 9 = 12(ch(k) + ik)− 3

≤ 12n− 3

≤ 12(ch(k) + (i + 1)k − 1)− 3

< (6k + i− 2)2.

Again, applying x → d
√

xe we obtain

⌈√
12n− 3

⌉
= 6k + i− 2

and hence

3n−
⌈√

12n− 3
⌉

= 3(ch(k) + l)− (6k + i− 2)

= 9k2 − 15k + 5 + 3l − i

= ech(k) + 3l − i− 1,

which agrees with the constructed number of edges in this case. This completes the proof

of Proposition 1.2.1.

We now present a proof of the upper bound, a variant of Harborth’s proof [6]. This proof

uses fewer variables and includes more exposition on the procedure.

8



Proposition 1.2.3. The upper bound on the maximum possible number of edges E(n) is

given by E(n) ≤ 3n−
√

12n− 3.

Proof. First, we can assume that the coin graph is a single connected component. If the coin

graph were made up of disconnected components, a coin graph could always be created with

more edges by moving the components in the plane until they are touching. In addition,

by suitable rotation we may also assume that the coin graph has no cut-points. This will

ensure that the infinite face is bounded by a simple cycle.

For a general unit coin graph, consider the edges bounding the infinite face. We will

be removing the m coins incident on these edges, where m ∈ N, so the edges will form an

m-gon. We must determine how many edges are removed by this operation. Each of the

m outer coins has a corresponding interior angle, which we can call αi for i = 1 . . .m. For

an m-gon, these angles sum to (m − 2)π. It is clear that the angle between two edges in a

unit coin graph must be at least 60◦, or π
3 radians. The maximum number of connections

to other coins is therefore given by
⌊

3αi
π

⌋
+ 1. The upper bound on the number e′ of edges

removed with the m exterior coins is given by:

e′ ≤
m∑

i=1

(⌊
3αi

π

⌋
+ 1
)
−m

≤ 3
π

m∑
i=1

αi

=
3
π

(m− 2)π

= 3m− 6.

The remaining graph has its number of edges given by E(n − m), which by the inductive

hypothesis satisfies E(n−m) ≤ 3(n−m)−
√

12(n−m)− 3. So by definition, the original

9



graph has the upper bound of its number of edges given by

E(n) ≤ 3m− 6 + E(n−m) ≤ 3m− 6 + 3(n−m)−
√

12(n−m)− 3

= 3n− 6−
√

12(n−m)− 3.

We see that if m ≤
√

12n− 3− 3 then the right hand side of this expression is less than or

equal to 3n−
√

12n− 3 and thus the proposition holds when m ≤
√

12n− 3− 3.

Now assume m >
√

12n− 3 − 3. This is the case when the number of boundary coins

m is "large". For this case, we will show that the claim holds by first adding an additional

vertex in the infinite face and connecting it to all m outer coins, and then we add more

edges to fully triangulate this plane graph on n + 1 vertices. (This resulting graph is no

longer a unit coin graph.) If the original graph had e edges, this new graph has e+m′ edges

for some m′ ≥ m, so by Euler’s Formula, we have:

e + m′ = 3(n + 1)− 6 = 3n− 3.

Solving for e and using the assumption that m′ > m >
√

12n− 3− 3, we obtain:

e = 3n− 3−m′

< 3n− 3− (
√

12n− 3− 3)

= 3n−
√

12n− 3.

By induction the claim holds for all values of m. Since E(n) is an integer we have the

upper bound for the maximum number of edges in a unit coin graph on n vertices satisfies

E(n) ≤ T (n) =
⌊
3n−

√
12n− 3

⌋
.

Before discussing further, we need to introduce some new terminology.
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1.3 Terminology

In what follows, let N = {1, 2, 3, . . .} denote the natural numbers.

Definition 1.3.1. A multiset M = (1 ·M,α) is a generalization of a set where 1 ·M is the

underlying set and α : 1 · M → N is a map indicating multiplicity of each element of the

multiset.

A multiset S = (1 ·S, β) is a submultiset of M if and only if 1 ·S ⊆ 1 ·M and β(s) ≤ α(s)

for all s ∈ 1 · S.

By ∞·M we mean the multiset obtained by taking infinitely many copies of each element

in M (or 1 ·M , if M is a multiset):

∞ ·M =
⋃

x∈1·M
{∞ · x}.

The cardinality of a multiset M = (1 ·M,a) is given by

|M | =
∑

x∈1·M
a(x).

|1 ·M | indicates the cardinality of the underlying set.

Definition 1.3.2. For n ∈ N and a multiset of positive real numbers R, let G(R;n) be the

collection of coin graphs on n vertices whose radii are a submultiset of the multiset R. The

maximum number of edges of a graph in G(R;n) is denoted T (R;n).

As a matter of convenience, when |1 · R| is small it will be written out. For example,

if the coin graph has only two radii 1 and r = 3 + 2
√

3, it is in the set G(1, r;n), actually

meaning G(∞·R;n) where the underlying set is 1 ·R = {1, 3+2
√

3}. The maximum number

of edges of a graph in this collection is denoted by T (1, r;n).

We introduce some new terminology here, consistent with what can be found in [14].
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Figure 1.5: Examples of a flower and a non-flower.

Definition 1.3.3. A vertex of a planar graph G is called a hub if all the faces it bounds are

triangular. If G is a coin graph, the coin representing the hub is called an eye.

A neighbor of a hub is always called a petal. The closed neighborhood of a hub is called a

wheel. A wheel with k petals is denoted by Wk. If G is a coin graph, the closed neighborhood

of an eye is called a flower. So a flower is a coin graph representation of a wheel. An edge

from a hub to a petal is called a spoke.

A vertex v is flowered if v is bounded by only triangular faces.

Definition 1.3.4. A coin graph with no eyes is called non-flowered. A coin graph in which

every flower is formed from 7 coins of equal radius is called unit-flowered.

Examples of a flower and a non-flower are shown in figure 1.5.

1.4 A Special Coin Graph on Two Radii

K4, the complete graph on 4 vertices, is planar but cannot be represented as a unit coin

graph. In fact, it is the smallest complete graph Kn that cannot be represented as a unit

coin graph, but the largest complete graph that is planar and thus representable as a coin

graph.

If we wish to use two radii to represent K4, it is easy to show that the radii of the outer

three coins must all be equal. In fact, it can be shown that the radii have a ratio of 3+2
√

3

12



Figure 1.6: The complete graph K4 represented as a coin graph with two possible radii.

to 1. Figure 1.6 shows K4 represented as a coin graph as just described.

Observation 1.4.1. Up to scaling, there is only one way to represent K4 as a coin graph

with at most two radii.

For this case with two radii, the general method for finding a lower bound on the maxi-

mum number of edges of a coin graph on n vertices begins constructively, as with the unit

coin graph problem. The construction used for G(1, r;n) using radii 1 and r = 3 + 2
√

3

starts with the same hexagonal spiral configuration used for the unit coin graph. The

space between any 3 larger coins is then filled with a smaller coin (see Figure 1.7). Re-

calling the definition of centered hexagonal numbers (Definition 1.2.2,) the construction

with k layers in this case will have nk := ch(k) + 6k2 = 9k2 − 3k + 1 vertices and

mk := ech(k) + 3(6k2) = 3(k − 1)(3k − 2) + 3(6k2) = 27k2 − 15k + 6 edges. This yields the

following:

Proposition 1.4.2. The maximum number of edges T (1, r;n) of a coin graph G on n

vertices of radii r1 = 3 + 2
√

3 and r2 = 1 satisfies T (1, r;n) ≥
⌊
3n + 2−

√
4n− 3

⌋
.

Proof. First case: n = nk for some k ≥ 1:

Arranging hexagonally as explained above, we obtain a coin graph on nk vertices and

mk edges. Solving nk for k, we have:

k =
√

4nk − 3 + 1
6

.

13



Figure 1.7: The modified hexagonal configuration for the case with 2 radii.

Substituting this expression for k into the expression for mk yields the number of edges of

this graph as a function of n = nk:

mk = 3
(√

4n− 3 + 1
6

− 1
)(

3
(√

4n− 3 + 1
6

)
− 2
)

+ 18
(√

4n− 3 + 1
6

)2

= 3n + 2−
√

4n− 3.

Thus for n = nk = 9k2 − 3k + 1, we have that the maximum number of edges E(n) satisfies

T (1, r;n) ≥ 3n + 2−
√

4n− 3 = f(n).

Second case: nk−1 < n < nk:

Now the task is to show that for some configuration of coins, the lower bound holds

for all those mentioned n. The configuration we use starts with the modified hexagonal

configuration that is optimal for nk−1 = 9k2 − 21k + 13, then adds each additional vertex

in a layer around the outside, filling in small coins whenever possible. Since nk − nk−1 =
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9k2 − 3k + 1 − (9k2 − 21k + 13) = 18k − 12, a total of 18k − 12 coins are added in each

layer: 6k coins of radius 3 + 2
√

3 as in the unit coin graph case, and 12(k− 1) smaller coins

of radius 1.

Let f(n) =
⌊
3n + 2−

√
4n− 3

⌋
and C(n) be the number of edges in the construction.

Note that C(n) = C(nk−1 + l) where l is the number of coins added around the outside of

the previous configuration. As in the proof of Proposition 1.2.1, we consider two cases:

For n = nk−1 + l where l ∈ {1, . . . , 18k− 13} the number of edges obtained in this spiral

configuration is as follows:

For 1 ≤ l ≤ 3(k − 1), the number of edges in the construction is

C(nk−1 + l) = mk−1 + 3l − 1 = 27k2 − 69k + 47 + 3l.

Similarly, for the remaining cases where i(3k − 2) ≤ l ≤ (i + 1)(3k − 2) − 1 for i ∈

{1, 2, 3, 4, 5}, the number of edges in the construction is

C(nk−1 + l) = mk−1 + 3l − (i + 1) = 27k2 − 69k + 47 + 3l − i.

We now compare the numbers above with f(n) =
⌊
3n + 2−

√
4n− 3

⌋
= 3n + 2 −⌈√

4n− 3
⌉

in each of the two cases:

For 1 ≤ l ≤ 3(k − 1) we have that

4(nk−1 + l)− 3 ≥ (6k − 7)2 + 1⌈√
4(nk−1 + l)− 3

⌉
≥ 6k − 6

⌈√
36k2 − 84k + 49 + 4l

⌉
≥ 6k − 6,
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so for n = nk−1 + l,

f(nk−1 + l) = 3(nk−1 + l) + 2−
⌈√

4(nk−1 + l)− 3
⌉

= 27k2 − 63k + 41 + 3l −
⌈√

36k2 − 84k + 49 + 4l
⌉

≤ 27k2 − 69k + 47 + 3l

= C(nk−1 + l).

For i(3k − 2) ≤ l ≤ (i + 1)(3k − 2)− 1 where i ∈ {1, 2, 3, 4, 5} we similarly compare the

above number of constructed edges with f(n). Here we have

4(nk−1 + l)− 3 ≥ (6k − 7 + i)2 + 1⌈√
4(nk−1 + l)− 3

⌉
≥ 6k − 6 + i

⌈√
36k2 − 84k + 49 + 4l

⌉
≥ 6k − 6 + i,

so for n = nk−1 + l,

f(nk + l) = 3(nk−1 + l) + 2−
⌈√

4(nk−1 + l)− 3
⌉

= 27k2 − 63k + 41 + 3l −
⌈√

36k2 − 84k + 49 + 4l
⌉

≤ 27k2 − 69k + 47 + 3l − i

= C(nk−1 + l).

Thus the number of edges in the construction is greater than or equal to the number of

edges given by the function f(n) for all cases, we have that for any n the maximum number

of edges T (1, r;n) satisfies T (1, r;n) ≥ f(n) =
⌊
3n + 2−

√
4n− 3

⌋
.
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An asymptotic consequence of Proposition 1.4.2 can be stated in terms of the limsup:

Corollary 1.4.3. The maximum number of edges T (1, r;n) of a coin graph G ∈ G(1, r;n)

on n vertices of radii 1 and r = 3 + 2
√

3 satisfies

lim sup
n→∞

{
3n− T (1, r;n)√

n

}
≤ 2.

We do believe that asymptotically the limsup is tight:

Conjecture 1.4.4. The maximum number of edges T (1, r;n) of a coin graph G ∈ G(1, r;n)

on n vertices of radii 1 and r = 3 + 2
√

3 satisfies

lim
n→∞

{
3n− T (1, r;n)√

n

}
= 2.

However, obtaining an upper bound for T (1, r;n) is not as straightforward as in the unit

coin graph problem. The direct inductive approach of Harborth’s proof [6] for determining

the maximum number of edges of a unit coin graph on n vertices cannot be used in this case

with two or more radii to determine T (1, r;n). The inductive step assumes that removing

the vertices bounding the infinite face will leave a configuration that is still maximal, which

is not guaranteed in the general case. More is needed.
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Chapter 2: On the Maximum Number of Edges of Certain

Plane Graphs

2.1 Motivation

In this chapter, we will prove a general result which gives the maximum number of edges in

a plane graph on n vertices, where each vertex bounds some l-gon for l ≥ k. The special case

where k = 4 gives rise to a conjecture about the maximum number of edges of a non-flowered

coin graph.

Recall Definitions 1.3.2 and 1.3.4.

Definition 2.1.1. A collection G(R;n) is non-flowerable if every coin graph in G(R;n) is

non-flowered. Denote by G0(n) the collection of all non-flowered coin graphs on n vertices:

G0(n) =
⋃

R:G(R;n) is

non−flowerable

G(R;n).

For n ≥ 3, let T0(n) = max{|E(G)| : G ∈ G0(n)}.

G0(n) is a collection of coins from which no flower can be formed. In particular, the multiset

R does not contain seven coins of the same size.

Definition 2.1.2. A collection G(R;n) is unit-flowerable if every coin graph in G(R;n) is

unit-flowered. Denote by G1(n) the collection of all unit-flowered coin graphs on n vertices:

G1(n) =
⋃

R:G(R;n) is

unit−flowerable

G(R;n).

For n ≥ 3, let T1(n) = max{|E(G)| : G ∈ G1(n)}.

18



Similarly if G(R;n) is unit-flowerable, this corresponds to having a given collection of coins

on the table such that the only way to form a flower is to pick seven coins of the same radius.

Conjecture 2.1.3. The maximum number of edges T1(n) of a unit-flowered coin graph

G ∈ G on n vertices is given by T1(n) =
⌊
3n−

√
12n− 3

⌋
.

Observation 2.1.4. If a coin graph G is non-flowered, then every vertex must be bounded

by an l-gon for l ≥ 4.

Hence, a natural question is whether we can use this information about the structure of this

type of coin graph to answer the question of the maximum number of edges.

2.2 Plane graphs where each vertex bounds an l-gon

For a moment, let us step back from coin graphs and consider plane graphs in general.

The following theorem applies to all plane graphs, and therefore by Thurston’s Theorem

(Theorem 1.1.2) applies to all coin graphs. It generalizes the conditions in Observation

2.1.4.

Theorem 2.2.1. Let k ≥ 4 be fixed. The maximum number of edges Ek(n) of a plane graph

on n vertices, where each vertex bounds some l-gon for l ≥ k, is given by

Ek(n) = Tk(n) :=
⌊

(2k + 3)n
k

− 6
⌋
− α

where

α =


0 if n ≡ k − 1 (mod k)⌊
2− 6

k

⌋
if n ≡ k − 2 (mod k)⌊

3β
k

⌋
if n ≡ β (mod k) for 0 ≤ β ≤ k − 3.

We will show that Tk(n) is both a lower bound and an upper bound for Ek(n). We first
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prove Tk(n) is a lower bound by explicit construction. We consider each of the three cases,

n ≡ k − 1, k − 2, β (mod k) where 0 ≤ β ≤ k − 3, separately, since each case has a unique

construction.

Proof. The lower bound

First case: n ≡ k − 1 (mod k):

Let n = k(j + 1) − 1 and form j − 1 disjoint copies of Ck and one copy of C2k−1 in the

plane, no cycle containing another cycle, consisting of n edges altogether. We need 3(j − 1)

edges to connect the cycles into one connected component such that (i) the infinite face is

bounded by a simple n-cycle and (ii) the internal faces of this n-cycle other than the Cks

and the C2k−1 are triangular. Then we add n− 3 edges to fully triangulate the infinite face.

Now, note that two additional edges can be added to the interior of the cycle C2k−1 to create

3 regions, 2 bounded by k-gons and one by a triangle such that every vertex is bounded by

a k-gon. Add these additional edges between appropriate vertices of the cycle C2k−1. The

total number of edges is then given by

n + 3(j − 1) + (n− 3) + 2 = 2n + 3j + 2− 6

= 2n + 3(j + 1)− 6− 1

= 2n + 3
(

n + 1
k

)
− 6− 1

=
(2k + 3)n

k
− 6−

(
1− 3

k

)

=
⌊

(2k + 3)n
k

− 6
⌋

.

Second case: n ≡ k − 2 (mod k):

Let n = k(j +1)−2 and form j−1 disjoint copies of Ck and one copy of C2k−2 in the plane,

no cycle containing another cycle, consisting of n edges altogether. Again, 3(j − 1) edges

are needed to connect the cycles into one connected component such that (i) the infinite
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face is bounded by a simple n-cycle and (ii) the internal faces of this n-cycle other than the

Cks and the C2k−2 are triangular. Then add n − 3 edges that fully triangulate the infinite

face. Now, note that one additional edge can be added to the interior of the cycle C2k−2 to

create 2 regions bounded by k-gons. Add this additional edge between appropriate vertices

of the cycle C2k−2. The number of edges is given by

n + 3(j − 1) + (n− 3) + 1 = 2n + 3j + 1− 6

= 2n + 3(j + 1)− 6− 2

= 2n + 3
(

n + 2
k

)
− 6− 2

=
(2k + 3)n

k
− 6−

(
2− 6

k

)
.

Since for any real numbers x, y with x−y a positive integer we have x−y = bxc−byc, then

this last expression equals
⌊

(2k+3)n
k − 6

⌋
−
⌊
2− 6

k

⌋
.

Third case: n ≡ β (mod k) for 0 ≤ β ≤ k − 3:

Let n = kj + β, where β ≤ k − 3, and form j − 1 disjoint copies of Ck and one copy of

Ck+β in the plane, no cycle containing another cycle, consisting of n edges altogether. Once

again, 3(j − 1) edges are needed to connect the cycles into one connected component such

that (i) the infinite face is bounded by a simple n-cycle and (ii) the internal faces of this

n-cycle other than the Cks and the Ck+β are triangular. Then add n − 3 edges that fully
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triangulate the infinite face. The number of edges is given by

n + 3(j − 1) + (n− 3) = 2n + 3j − 6

= 2n + 3
(

n− β

k

)
− 6

= 2n + 3
(

n

k
− β

k

)
− 6

=
(2k + 3)n

k
− 6− 3β

k

=
⌊

(2k + 3)n
k

− 6
⌋
−
⌊

3β

k

⌋
,

the last step just as in the previous case.

These three cases show that the mentioned bound Tk(n) can always be reached.

The upper bound

We will derive the upper bound using integer programming.

Assume we have a plane graph G on n vertices with the property mentioned in the

theorem. The number of edges is m and the number of faces is f . Form a new graph G′ by

adding a vertex inside each l-gon, where l ≥ k and connect that vertex with all the vertices

bounding the l-gon. Let n′, m′, and f ′ be the number of vertices, edges, and faces of G′.

Note that G′ is planar and fully triangulated. For i ∈ {3, . . . , k − 1}, let fi denote the

number of i-sided faces of G and fk be the number of all l-sided faces where l ≥ k. Then

f = f3 + f4 + · · · + fk−1 + fk. By assumption we have n′ = n + f4 + · · · + fk−1 + fk and

m′ = 3n′ − 6.

Let d be the sum of the degrees of all the vertices that were added above, so d also equals

the number of edges added to G to obtain G′. Hence m′ = m + d = 3(n + f4 + · · ·+ fk)− 6,

so m = 3n− 6− (d− 3(f4 + · · ·+ fk−1 + fk)). Note that d = d4 + d5 + · · ·+ dk−1 + dk where

for each i ∈ {4, . . . , k − 1}, di is the sum of the degrees of the vertices of degree i added to
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G and dk is the sum of degrees of vertices of degree greater than or equal to k added to G.

Therefore we have di = ifi for each i ∈ {4, . . . , k−1} and so d = 4f4 + · · ·+(k−1)fk−1 +dk

and hence

m = 3n− 6− (f4 + 2f5 + · · ·+ (k − 3)fk−1 + dk − 3fk).

Note that m is maximized if f4 + 2f5 + · · ·+ (k− 3)fk−1 + dk − 3fk is minimized. Since the

conditions are (1) n ≤ dk, (2) fi ≥ 0 for i ∈ {4, . . . , k}, and (3) kfk ≤ dk, we can simplify

this optimization problem by setting fi = 0 for i = 4, . . . , k − 1 and the problem reduces

to minimizing the value of dk − 3fk over nonnegative integers, given the constraints dk ≥ n

and kfk ≤ dk.

Lemma 2.2.2. Let k ≥ 4 and n ≥ k. If

µ(n; k) := min{x− 3y : x, y ∈ N ∪ {0}, x ≥ n, ky ≤ x}

then

µ(n; k) = n + γ − 3
⌊

n + γ

k

⌋

where

γ =


1 if n ≡ k − 1 (mod k)

2 if n ≡ k − 2 (mod k)

0 otherwise.

Proof. Using integer programming, we see that the integer point minimizing the function

x − 3y = (1,−3) · (x, y) will either be x = n, y =
⌊

n
k

⌋
when n ≡ i (mod k) where i =

0, 1, . . . , k − 3, or x = k
⌈

n
k

⌉
, y =

⌈
n
k

⌉
=
⌊

x
k

⌋
otherwise. See Figures 2.1 and 2.2 for

examples, the pattern of which remains the same for all other values of n and k. Using the
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Figure 2.1: When k = 6 and n = 8, the function is minimized at x = 8, y = 1.

definition of γ from the statement of the lemma, we can write x = n + γ as the x-value that

will always minimize the function. Then we have y =
⌊x+γ

k

⌋
as the y-value that will always

minimize the function.

We obtain by this lemma that dk − 3fk is minimized when dk = n + γ and fk =
⌊n+γ

k

⌋
,

hence:

m = 3n− 6− (dk − 3fk)

≥ 3n− 6− n− γ + 3
⌊

n + γ

k

⌋

= 2n− 6 + 3
⌊

n + γ

k

⌋
− γ.
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If n ≡ k − 1 (mod k), then γ = 1 and

m ≥ 2n− 6 + 3
⌊

n + 1
k

⌋
− 1

= 2n− 6 + 3
(

n + 1
k

)
− 1

=
(2k + 3)n

k
− 6−

(
1− 3

k

)

=
⌊

(2k + 3)n
k

− 6
⌋

.

If n ≡ k − 2 (mod k) then γ = 2 and

m ≥ 2n− 6 + 3
⌊

n + 2
k

⌋
− 2

= 2n− 6 + 3
(

n + 2
k

)
− 2

=
(2k + 3)n

k
− 6 +

(
2− 6

k

)

=
⌊

(2k + 3)n
k

− 6
⌋

+
⌊
2− 6

k

⌋
.
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Figure 2.2: When k = 4 and n = 7, the function is minimized at x = 8, y = 2.

If n ≡ β where β ∈ {0, 1, . . . , k − 3} then γ = 0 and

m ≥ 2n− 6 + 3
⌊n

k

⌋
= 2n− 6 +

(
n− β

k

)

=
(2k + 3)n

k
− 6−

(
3β

k

)

=
⌊

(2k + 3)n
k

− 6
⌋
−
⌊

3β

k

⌋
,

all as stated in the theorem.

In the especially interesting case where k = 4, the discrepancy term α ∈ {0,
⌊
2− 6

k

⌋
,
⌊

3β
k

⌋
}

for 0 ≤ β ≤ k − 3 will be 0 in all cases, and hence we obtain the following:
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Corollary 2.2.3. The maximum number of edges E4(n) of a plane graph on n vertices,

where each vertex bounds some l-gon for l ≥ 4, is given by

E4(n) =
⌊

11
4

n− 6
⌋

.

By Observation 2.1.4 we have in particular the following

Corollary 2.2.4. The maximum number of edges T0(n) of a non-flowered coin graph G ∈

G0(n) on n vertices satisfies

E4(n) = T0(n) ≤
⌊

11
4

n− 6
⌋

.

Whether or not the bound E4(n) can be reached for a graph G ∈ G0(n) is currently unknown.

Conjecture 2.2.5. The maximum number of edges T0(n) of a non-flowered coin graph

G ∈ G0(n) on n vertices is given by

T0(n) =
⌊

11
4

n− 6
⌋

.

We know E4(n) is a tight bound for general plane graphs, because the construction used

in the proof is a plane graph that achieves the bound, so by Thurston’s Theorem, there is

some embedding of this planar graph as a coin graph. However, we do not know if that coin

graph is in G0(n), i.e. whether the coins in that coin graph are non-flowerable, or whether

there exists a graph in G0(n) achieving this bound. We conjecture that there does exist

such a coin graph: a construction that achieves this bound, the radii of which belong to the

collection of non-flowerable coin graphs. We suspect that a proof of Conjecture 2.2.5 might

use some complex analysis together with appropriate inversion about the unit circle.
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Chapter 3: Algebraic Equations Describing the Wheel Graph

3.1 Deriving Algebraic Equations to Describe the Wheel Graph

In this chapter, we first investigate equations describing the cosines of the internal angles of

a flower in terms of what rational radii could satisfy them. We show that for each n-petaled

flower, there is one rational equation that must be satisfied. These equations correspond

to polynomial equations. We find the smallest such polynomial equations describing this

relationship. Using Galois theory, we then show that these polynomials are symmetric and

irreducible. We also establish a recursion that these minimal polynomials satisfy.

Every flower imposes a relation on the radii of its coins. Hence, a multiset R of radii is

non-flowerable if the radii do not satisfy any of the relations imposed by any flower. Ques-

tions like “Is a collection of coins with distinct integer radii non-flowerable?” are legitimate.

Hence it is worthwhile to study these relations on their own.

Assume we have n disks of radii r1, . . . , rn. We can view the radii ri as variables and

consider the equations that determine flowering conditions in terms of the ri. Each flower

with k petals, k ∈ {3, . . . , n − 1}, is determined by one equation. In order for the coin

graphs with any k of these n radii to be non-flowerable, we would like the r1, . . . , rn to avoid

satisfying all these equations. We can show there are finitely many equations by counting

them in the following way:

Proposition 3.1.1. The number of equations in r1, . . . , rn that determine some flowering

condition is

fl(n) =
n−1∑
k=3

(
n

(
n− 1

k

)
(k − 1)!

2

)
.
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Proof. For each k ∈ {3, . . . , n − 1}, the radius of the eye can be chosen in n ways. The

k petals are then chosen from the remaining n − 1 radii:
(
n−1

k

)
. The petals are arranged

around the eye in (k−1)!
2 possible ways (arrangements which differ only by clockwise versus

counterclockwise orientation are considered identical and are not counted twice.)

We will show that each of these fl(n) equations corresponds to an element F of the

polynomial ring Q[x1, . . . , xn]. For each pair of radii ri and ri+1 of consecutive petals around

an eye of radius r we obtain a triangle with sides of length r + ri, r + ri+1, and ri + ri+1

and the angle θi at the eye is given by

θi = arccos
(

(r + ri)2 + (r + ri+1)2 − (ri + ri+1)2

2(r + ri)(r + ri+1)

)
.

The equation that determines a flower with petals of radii r1, . . . , rk is

k∑
i=1

θi = 2π. (3.1)

For G ⊆ Sk, a polynomial f is G-symmetric if f(x1, . . . , xk) = f(xσ(1), . . . , xσ(k)) for all

σ ∈ G. We see that (3.1) is a Dk-symmetric function in terms of r1/r, . . . , rk/r, where Dk

is the dihedral group of symmetries on the regular polygon with k sides. In [13] it is shown

that for reflection groups like the dihedral group Dk there is a basis of polynomials just like

the elementary symmetric functions for the symmetric group Sk.

Claim 3.1.2. Let k ∈ {1, . . . , n} denote the number of petals.

1. If xi = cos θi for each i ∈ {1, . . . , k}, then (3.1) corresponds to a symmetric polynomial

f ∈ Q[x1, . . . , xk].

2. If the eye has radius r = 1 so θi = θi(1, ri, ri+1), then (3.1) corresponds to a Dk-

symmetric polynomial g ∈ Q[r1, . . . , rk]. In particular, for general radius r of the
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eye (replacing ri with ri/r), if d = deg(g), which we define as the sum degree, then

rdg
(

r1
r , . . . , rk

r

)
∈ Q[r, r1, . . . , rk] is a homogeneous element and

rdg
(r1

r
, . . . ,

rk

r

)
=

d∑
i=0

gir
i ∈ Q[r1, . . . , rk][r],

where each gi ∈ Q[r1, . . . , rk] is a Dk-symmetric polynomial.

Although intuitively clear, we will in what follows demonstrate this claim. To obtain a

symmetric function f = f(x1, . . . , xk) we will take the cosine of both sides of (3.1). For this,

we will need generalized addition formulae for cosines. In order to prove this, we will show

the generalized addition formulae for both sine and cosine in the following technical lemma:

Lemma 3.1.3. For n ≥ 1 we have the following generalized addition formulae for cos and

sin:

cos

(
n∑

i=1

θi

)
=

∑
2n−1 terms

±cs(θ1)cs(θ2) · · · cs(θn),

where the sum is taken over the 2n−1 possible terms where (i) each cs-function represents

either sin or cos and (ii) each term has an even number 2e of sin-functions and the sign of

the term is given by (−1)e.

Similarly for sin we have

sin

(
n∑

i=1

θi

)
=

∑
2n−1 terms

±cs(θ1)cs(θ2) · · · cs(θn),

where the sum is taken over the 2n−1 possible terms where (i) each cs-function represents

either sin or cos and (ii) each term has an odd number 2e + 1 of sin-functions and the sign

of the term is given by (−1)e.
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Proof. For n = 1 the claim is trivial, and for n = 2 the addition rules for sine and cosine

are well-known and satisfy the claim.

Let n > 2 and assume the inductive hypothesis. Then we have

cos

(
n∑

i=1

θi

)
= cos

((
n−1∑
i=1

θi

)
+ θn

)

= cos

(
n−1∑
i=1

θi

)
cos θn − sin

(
n−1∑
i=1

θi

)
sin θn

=

( ∑
2n−2 terms

±cs(θ1)cs(θ2) · · · cs(θn−1)

)
cos θn

−

( ∑
2n−2 terms

±cs(θ1)cs(θ2) · · · cs(θn−1)

)
sin θn,

where in the first summation, there are an even number 2e of sin-functions and the sign of

the term is given by (−1)e, and in the second summation, there are an odd number 2e + 1

of sin-functions and the sign of the term is given by (−1)e, by assumption. Then we have

cos

(
n∑

i=1

θi

)
=

∑
2n−1 terms

±cs(θ1)cs(θ2) · · · cs(θn),

where the summation has the properties mentioned above, which gives the statement of the
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proposition for cosine. Similarly for sine we have

sin

(
n∑

i=1

θi

)
= sin

((
n−1∑
i=1

θi

)
+ θn

)

= cos

(
n−1∑
i=1

θi

)
sin θn + sin

(
n−1∑
i=1

θi

)
cos θn

=

( ∑
2n−2 terms

±cs(θ1)cs(θ2) · · · cs(θn−1)

)
sin θn

+

( ∑
2n−2 terms

±cs(θ1)cs(θ2) · · · cs(θn−1)

)
cos θn,

where in the first summation, there are an even number 2e of sin-functions and the sign of

the term is given by (−1)e, and in the second summation, there are an odd number 2e + 1

of sin-functions and the sign of the term is given by (−1)e, by assumption. Then we have

sin

(
n∑

i=1

θi

)
=

∑
2n−1 terms

±cs(θ1)cs(θ2) · · · cs(θn),

where the summation has the properties mentioned above, which gives the statement of the

proposition for sine.

Alternately, we can use the relation eiθ = cos θ + i sin θ to obtain these addition formulae by

taking the real and imaginary parts of ei(θ1+...+θn) = eiθ1 · · · eiθn .

For example, the familiar sum rules for sin and cos follow this pattern:

cos(θ1 + θ2) = cos θ1 cos θ2 − sin θ1 sin θ2

sin(θ1 + θ2) = sin θ1 cos θ2 + cos θ1 sin θ2.
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The sum rules for 3 and 4 terms can then be obtained similarly from the formula:

cos(θ1 + θ2 + θ3) = cos θ1 cos θ2 cos θ3 − cos θ1 sin θ2 sin θ3

− sin θ1 cos θ2 sin θ3 − sin θ1 sin θ2 cos θ3

sin(θ1 + θ2 + θ3) = sin θ1 cos θ2 cos θ3 + cos θ1 sin θ2 cos θ3

+ cos θ1 cos θ2 sin θ3 − sin θ1 sin θ2 sin θ3

cos(θ1 + θ2 + θ3 + θ4) = cos θ1 cos θ2 cos θ3 cos θ4 − cos θ1 cos θ2 sin θ3 sin θ4

− cos θ1 sin θ2 sin θ3 cos θ4 − sin θ1 sin θ2 cos θ3 cos θ4

− cos θ1 sin θ2 cos θ3 sin θ4 − sin θ1 cos θ2 sin θ3 cos θ4

− sin θ1 cos θ2 cos θ3 sin θ4 + sin θ1 sin θ2 sin θ3 sin θ4

sin(θ1 + θ2 + θ3 + θ4) = sin θ1 cos θ2 cos θ3 cos θ4 + cos θ1 sin θ2 cos θ3 cos θ4

+ cos θ1 cos θ2 sin θ3 cos θ4 + cos θ1 cos θ2 cos θ3 sin θ4

− sin θ1 sin θ2 sin θ3 cos θ4 − sin θ1 sin θ2 cos θ3 sin θ4

− sin θ1 cos θ2 sin θ3 sin θ4 − cos θ1 sin θ2 sin θ3 sin θ4.

Letting xi = cos θi for each i, then yi = sin θi satisfies the equation x2
i + y2

i = 1 and

hence yi = ±
√

1− x2
i . The geometric properties of the coin graph determine that for the

interior angles, θi < π and so sin θi > 0 and we can disregard the negative root, letting

yi =
√

1− x2
i .

Definition 3.1.4. We define the algebraic equations obtained by taking the sine or cosine
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of (3.1) by

ECn(x1, . . . , xn) = cos

(
n∑

i=1

θi

)
,

ESn(x1, . . . , xn) = sin

(
n∑

i=1

θi

)
.

Each expression is in terms of the variables x1, . . . , xn.

Example 3.1.5.

EC1(x1) = x1

ES1(x1) = y1 =
√

1− x2
1

EC2(x1, x2) = x1x2 − y1y2 = x1x2 −
√

1− x2
1

√
1− x2

2

ES2(x1, x2) = y1x2 + x1y2 = x2

√
1− x2

1 + x1

√
1− x2

2

EC3(x1, x2, x3) = x1x2x3 − x1y2y3 − y1x2y3 − y1y2x3

= x1x2x3 − x1

√
1− x2

2

√
1− x2

3

− x2

√
1− x2

1

√
1− x2

3 − x3

√
1− x2

1

√
1− x2

2

ES3(x1 + x2 + x3) = y1x2x3 + x1y2x3 + x1x2y3 − y1y2y3

= x2x3

√
1− x2

1 + x1x3

√
1− x2

2

+ x1x2

√
1− x2

3 −
√

1− x2
1

√
1− x2

2

√
1− x2

3.
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Lemma 3.1.6. For each i ∈ {1, . . . , n} we have

ECn(x1, . . . , xn) = xiECn−1(x̂i)− yiESn−1(x̂i)

ESn(x1, . . . , xn) = yiECn−1(x̂i) + xiESn−1(x̂i)

where yi =
√

1− x2
i and (x̂i) = (x1, . . . , xi−1, xi+1, . . . , xn). In particular for i = 1 we have

ECn(x1, . . . , xn) = x1ECn−1(x̂1)− y1ESn−1(x̂1)

ESn(x1, . . . , xn) = y1ECn−1(x̂1) + x1ESn−1(x̂1).

Proof. Since cos(α + β) = cos α cos β − sinα sinβ, we get

ECn = ECn(x1, . . . , xn)

= cos

 n∑
j=1

θj



= cos

θi +
∑

j∈{1,...,i−1,i+1,...,n}

θj



= cos θi cos

 ∑
j∈{1,...,i−1,i+1,...,n}

θj

− sin θi sin

 ∑
j∈{1,...,i−1,i+1,...,n}

θj


= xiECn−1(x̂i)− yiESn−1(x̂i).
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Similarly for ES:

ESn = ESn(x1, . . . , xn)

= sin

 n∑
j=1

θj



= sin

θi +
∑

j∈{1,...,i−1,i+1,...,n}

θj



= cos θi sin

 ∑
j∈{1,...,i−1,i+1,...,n}

θj

+ sin θi cos

 ∑
j∈{1,...,i−1,i+1,...,n}

θj


= yiECn−1(x̂i) + xiESn−1(x̂i).

Note that the sum, and thus its cosine and sine, are symmetric in x1, . . . , xk. See [7] page

252 for more information on symmetric polynomials.

Each of these algebraic equations ECn yields a polynomial equation Ck = 0, which we

obtain by repeatedly squaring and rearranging terms in order to eliminate any yi terms. For

example,

C1(x1) = x1 − 1

C2(x1, x2) = (x1 − x2)2

C3(x1, x2, x3) = (x2
1 + x2

2 + x2
3 − 2x1x2x3 − 1)2

C4(x1, x2, x3, x4) = (x4
1 + x4

2 + x4
3 + x4

4

−2(x2
1x

2
2 + x2

2x
2
3 + x2

3x
2
4 + x2

1x
2
4 + x2

1x
2
3 + x2

2x
2
4)

+4(x2
1x

2
2x

2
3 + x2

2x
2
3x

2
4 + x2

1x
2
3x

2
4 + x2

1x
2
2x

2
4)

+4x1x2x3x4(2− x2
1 − x2

2 − x2
3 − x2

4))
2.
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As mentioned above, we have the familiar Law of Cosines relationship

xi =
(r + ri)2 + (r + ri+1)2 − (ri + ri+1)2

2(r + ri)(r + ri+1)
.

Allowing the eye to have radius r = 1, which we can do by scaling appropriately, we have

for each xi

xi =
(1 + ri)2 + (1 + ri+1)2 − (ri + ri+1)2

2(1 + ri)(1 + ri+1)
.

Substituting these expressions for the xi into the Cn polynomial yields a rational expression

in r1, . . . , rk. This rational expression can then be transformed into a polynomial g ∈

Q[r1, . . . , rk]. That the polynomial will be Dk-symmetric is clear from geometry: it does

not matter which angle we label θ1 (rotation) or whether we do our numbering clockwise or

counter-clockwise (reflection.)

Example 3.1.7. For n = 3 we have f = C3 = (x2
1 + x2

2 + x2
3 − 2x1x2x3 − 1)2 and we can

calculate

C3 =

((
(r + r1)2 + (r + r2)2 − (r1 + r2)2

2(r + r1)(r + r2)

)2

+
(

(r + r2)2 + (r + r3)2 − (r2 + r3)2

2(r + r2)(r + r3)

)2

+
(

(r + r3)2 + (r + r1)2 − (r3 + r1)2

2(r + r3)(r + r1)

)2

− 2
(

(r + r1)2 + (r + r2)2 − (r1 + r2)2

2(r + r1)(r + r2)

)
(

(r + r2)2 + (r + r3)2 − (r2 + r3)2

2(r + r2)(r + r3)

)(
(r + r3)2 + (r + r1)2 − (r3 + r1)2

2(r + r3)(r + r1)

)
− 1
)2

=
16

(r + r1)4(r + r2)4(r + r3)4
(
−2r2

1r2r3r
2 + r2

1r
2
3r

2 + r2
2r

2
3r

2 + r2
1r

2
2r

2 − 2r1r2r
2
3r

2

− 2r1r
2
2r3r

2 − 2r2
1r

2
2r3r − 2r1r

2
2r

2
3r − 2r2

1r2r
2
3r + r2

1r
2
2r

2
3

)2
= 0.
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Then we have as our polynomial

g = 16
(
−2r2

1r2r3r
2 + r2

1r
2
3r

2 + r2
2r

2
3r

2 + r2
1r

2
2r

2 − 2r1r2r
2
3r

2

− 2r1r
2
2r3r

2 − 2r2
1r

2
2r3r − 2r1r

2
2r

2
3r − 2r2

1r2r
2
3r + r2

1r
2
2r

2
3

)2

and we can write

r12g
(r1

r
,
r2

r
,
r3

r

)
= r8g8 + r6g6 + r4g4 − r2g2 + g0

∈ Q[r1, r2, r3][r],

where

g8 = 16(r4
2r

4
3 + r4

1r
4
2 + r4

1r
4
3 + 4r3

1r
3
2r

2
3 − 4r4

1r2r
3
3 + 4r2

1r
3
2r

3
3 − 4r4

1r
3
2r3 − 4r3

1r
4
2r3

+ 6r2
1r

2
2r

4
3 − 4r3

1r2r
4
3 − 4r1r

3
2r

4
3 − 4r1r

4
2r

3
3 + 6r4

1r
2
2r

2
3 + 6r2

1r
4
2r

2
3 + 4r3

1r
2
2r

3
3),

g6 = 64(r3
1r

2
2r

4
3 − r4

1r2r
4
3 + 6r3

1r
3
2r

3
3 + r4

1r
2
2r

3
3 + r4

1r
3
2r

2
3 + r3

1r
4
2r

2
3 + r2

1r
3
2r

4
3 + r2

1r
4
2r

3
3 − r1r

4
2r

4
3 − r4

1r
4
2r3),

g4 = 32(3r4
1r

2
2r

4
3 + 2r4

1r
3
2r

3
3 + 2r3

1r
3
2r

4
3 + 3r4

1r
4
2r

2
3 + 3r2

1r
4
2r

4
3 + 2r3

1r
4
2r

3
3),

g2 = 64(r3
1r

4
2r

4
3 − r4

1r
3
2r

4
3 − r4

1r
4
2r

3
3),

g0 = 16r4
1r

4
2r

4
3

and each of these gi ∈ Q[r1, r2, r3] is a D3-symmetric polynomial.

For the terms with the maximum degree d, rd will cancel out all the denominators and

we will be left with g0, a polynomial element of Q[r1, ..., rk]. That g0 will be Dk-symmetric

follows from the Dk-symmetry of the polynomials and (3.1).

For the terms with degree 0 ≤ δ < d, rd will cancel out all the denominators and we will

be left with rd−δgd−δ, a polynomial element of Q[r1, ..., rk]. That gd−δ will be Dk-symmetric
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again follows from the Dk-symmetry of the polynomials and (3.1).

The sum of all these terms will give us the statement of the claim. In particular, we have

that for general radius r of the eye, we do not have a symmetric polynomial in Q[r1, . . . , rk, r],

but we do have a way to write it as a polynomial in Q[r1, . . . , rk][r] with coefficients that

are Dk-symmetric in Q[r1, . . . , rk].

3.2 Using Galois Theory to Describe the Polynomials

From now on we will use n in the role of k in Equation (3.1) to denote the number of petals

of the flower, since we are considering the polynomials themselves.

We will show that for each n ≥ 2, Cn = P 2
n , where Pn is an irreducible polynomial for

n ≥ 2 and is in fact symmetric for n ≥ 3. First, we will need some tools from Galois theory

to describe the polynomials Cn and Pn.

Definition 3.2.1. For n ≥ 1, let G∗
n be the Galois group (group of automorphisms) on

Q(x1, . . . , xn, y1, . . . , yn) that fixes the field Q(x1, . . . , xn), and Gn be the Galois group on

Q(x1, . . . , xn, yiyj : i < j) that also fixes the field Q(x1, . . . , xn). They are denoted:

G∗
n = Gal(Q(x1, x2, . . . , xn, y1, . . . , yn)/Q(x1, . . . , xn)),

Gn = Gal(Q(x1, x2, . . . , xn, yiyj : i < j)/Q(x1, . . . , xn)),

where the xi are algebraically independent indeterminates and yi =
√

1− x2
i , as discussed

above, i.e. yi satisfies X2 + x2
i − 1 = 0 ∈ Q(x1, . . . , xn)[X].

Lemma 3.2.2. For n ≥ 1 we have G∗
n
∼= Zn

2 and Gn
∼= Zn−1

2 .

Proof. For G∗
n, each yi is the root of an irreducible quadratic polynomial X2 − (1 − x2

i ) ∈

Q(x1, . . . , xn, y1, . . . , yi−1)[X], which is the minimum polynomial of yi over Q(x1, . . . , xn, y1, . . . , yi−1)

for each i. Hence we have G∗
n
∼= Zn

2 .
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For Gn, each yiyj with i < j is also the root of an irreducible quadratic polynomial

X2− (1−x2
i )(1−x2

j ) ∈ Q(x1, . . . , xn)[X]. However, every element of Q(x1, x2, . . . , xn, yiyj :

i < j) can be written as a rational function in terms of only elements of the form yiyi+1 as

follows:

yiyj =
(yiyi+1)(yi+1yi+2) · · · (yj−1yj)

y2
i+1 · · · y2

j−1

=
(yiyi+1)(yi+1yi+2) · · · (yj−1yj)(

1− x2
i+1

)
· · ·
(
1− x2

j−1

) .

So we have that

Q(x1, x2, . . . , xn, yiyj : i < j) = Q(x1, x2, . . . , xn, yiyi+1 : 1 ≤ i < n). (3.2)

Each of the n − 1 terms yiyi+1 is the root of an irreducible quadratic polynomial X2 −

(1 − x2
i )(1 − x2

i+1) ∈ Q(x1, . . . , xn, y1y2, . . . , yi−1yi)[X], which is the minimum polynomial

of yiyi+1 over Q(x1, . . . , xn, y1y2, . . . , yi−1yi) for each i ∈ {1, . . . , n− 1}. Therefore we have

that Gn
∼= Zn−1

2 .

Lemma 3.2.3. For n ∈ N, the group Gn
∼= Zn−1

2 can be presented as

Gn =
〈
σ1, . . . , σn−1 : σ2

i = e, σiσj = σjσi

〉
,

where each σi is an automorphism fixing Q(x1, . . . xn) and

σi(yjyj+1) =

 −yjyj+1 if i = j

yjyj+1 if i 6= j.

Proof. Since (yiyi+1)2 = (1 − x2
i )(1 − x2

i+1) and the Galois group Gn is fixing the xi, the
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only possible automorphisms are σ(yiyi+1) = −yiyi+1 and σ(yiyi+1) = yiyi+1. We can then

generate the group as in the statement of the theorem with n− 1 generators σi.

Corollary 3.2.4. For every σ ∈ Gn, let sσ;j ∈ {−1, 1} be such that σ(yjyj+1) = sσ;jyjyj+1.

Then for every i < j we have

σ(yiyj) = sσ;isσ;i+1 · · · sσ;jyiyj .

In particular, we have

1. If i < n then σn−1(yiyn) = −yiyn.

2. If i > 1 then σ1(y1yi) = −y1yi.

As a simple example, G2
∼= Z2 is generated by the single element σ such that σ(y1y2) =

−y1y2 and σ2 = e. So we have

∏
σ∈G2

(σ(EC2)− 1) = (x1x2 − y1y2 − 1)(x1x2 − σ(y1y2)− 1)

= (x1 − x2)2 = C2(x1, x2).

For n = 3, we have G3 = 〈σ1, σ2〉 where σ1(y1y2) = −y1y2 and σ2(y2y3) = −y2y3. Then
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we have

∏
σ∈G3

(σ(EC3)− 1) = (x1x2x3 − x1y2y3 − y1x2y3 − y1y2x3 − 1)

(x1x2x3 − x1y2y3 − σ1(y1x2y3)− σ1(y1y2x3)− 1)

(x1x2x3 − σ2(x1y2y3)− σ2(y1x2y3)− y1y2x3 − 1)

(x1x2x3 − σ1σ2(x1y2y3)− σ1σ2(y1x2y3)− σ1σ2(y1y2x3)− 1)

= (x1x2x3 − x1y2y3 − y1x2y3 − y1y2x3 − 1)

(x1x2x3 − x1y2y3 + y1x2y3 + y1y2x3 − 1)

(x1x2x3 + x1y2y3 + y1x2y3 − y1y2x3 − 1)

(x1x2x3 − x1y2y3 + y1x2y3 − y1y2x3 − 1)

= (x2
1 + x2

2 + x2
3 − 2x1x2x3 − 1)2 = C3(x1, x2, x3).

We can use this as a precise definition of Cn for each n ∈ N:

Definition 3.2.5. The polynomial Cn, corresponding to a flower with n petals, can be

defined as:

Cn(x1, . . . , xn) =
∏

σ∈Gn

(σ(ECn)− 1) ∈ Q[x1, . . . , xn].

From Definition 3.2.5 we see that Cn is symmetric in x1, . . . , xn. By Lemma 3.1.3,

each of the 2n−2 terms of ESn−1 in terms of x1, . . . , xn−1, y1, . . . , yn−1 contains positive odd

factors of yi for i ≤ n − 1. Hence σn−1 ∈ Gn fixes Q(x1, . . . , xn, y1y2, . . . , yn−2yn−1) and

σn−1(yn−1yn) = −yn−1yn. Then we have by Corollary 3.2.4:

Claim 3.2.6. For n ≥ 2 we have

Gn = Gn−1 ∪Gn−1σn−1 = Gn−1 ∪ σn−1Gn−1
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and

σn−1(ynESn−1) = −ynESn−1.

Lemma 3.2.7. If σn−1 ∈ Gn fixes Q(x1, . . . , xn, y1y2, . . . , yn−2yn−1) and σn−1(yn−1yn) =

−yn−1yn then

(ECn − 1) (σn−1 (ECn)− 1) = (xn − ECn−1)
2 .

In particular, ECn = 1 implies xn = ECn−1.

Proof. By Claim 3.2.6, σn−1(ynESn−1)−−ynESn−1 and hence

(ECn − 1)(σn−1(ECn)− 1) = (xnECn−1 − ynESn−1 − 1)(σn−1(xnECn−1 − ynESn−1)− 1)

= (xnECn−1 − ynESn−1 − 1)(xnECn−1 + ynESn−1 − 1)

= (xnECn−1 − 1)2 − y2
nES2

n−1

= (xnECn−1 − 1)2 − (1− x2
n)(1− EC2

n−1)

= (xn − ECn−1)2.

Remark 3.2.8. In fact, (3.1) implies directly that

cos(θ1 + · · ·+ θh) = cos(θh+1 + · · ·+ θn)

where h + k = n and hence ECh(x1, . . . , xh) = ECk(xh+1, . . . , xn), which itself implies

xn = ECn−1 by letting h = n− 1 and k = 1.

Figure 3.1 gives a visual representation which makes this intuitively clear, since this

result is based on angles adding up to 2π.
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Figure 3.1: cos(θn) = cos
∑n−1

i=1 θi

Corollary 3.2.9. For n ≥ 2 we have Cn = P 2
n where

Pn :=
∏

σ∈Gn−1

(xn − σ(ECn−1)).
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Proof. By Lemma 3.2.7 we obtain:

Cn =
∏

σ∈Gn

(σ(ECn)− 1)

=
∏

σ∈σnGn−1∪Gn−1

(σ(ECn)− 1)

=
∏

σ∈Gn−1

(σ(ECn)− 1)(σnσ(ECn)− 1)

=
∏

σ∈Gn−1

σ((ECn − 1)(σn(ECn)− 1))

=
∏

σ∈Gn−1

σ((xn − ECn−1)2)

=
∏

σ∈Gn−1

(xn − σ(ECn−1))2

= P 2
n

where Pn =
∏

σ∈Gn−1
(xn − σ(ECn−1)).

By exactly the same token as Claim 3.2.6, Lemma 3.2.7, and Corollary 3.2.9, we obtain

analogous results by reordering the variables y1, . . . , yn in the reverse order: yn, yn−1, . . . , y1.

Namely, if σi ∈ Gn is the field automorphism of Q(x1, . . . , xn, y1y2, y2y3, . . . , yn−1yn) with

σi(yiyi+1) = −yiyi+1 fixing Q(x1, . . . , xn) and each yjyj+1 for j 6= i (as in Lemma 3.2.3)

then:

Claim 3.2.10.

Gn = G′
n−1 ∪ σ1G

′
n−1 = G′

n−1 ∪G′
n−1σ1
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where G′
n−1 = 〈σ2, . . . , σn−1〉 ⊆ Gn = 〈σ1, . . . , σn−1〉 and

σ1(y1ESn−1(x2, . . . , xn)) = −y1ESn−1(x2, . . . , xn).

Proof. By Lemma 3.1.3, each of the 2n−2 terms of ESn−1(x2, . . . , xn) = ESn−1(x2, . . . , xn, y2, . . . , yn)

(by substituting yi =
√

1− x2
i for each i = 2, . . . , n) has positive odd factors of yi for i ≥ 2.

hence the claim follows by Corollary 3.2.4.

Lemma 3.2.11. If σ1 ∈ Gn is as above then

(ECn − 1)(σ1(ECn − 1)) = (x1 − ECn−1(x2, . . . , xn))2.

Proof. By Claim 3.2.10 we obtain

(ECn − 1)(σ1(ECn − 1)) = (x1ECn−1(x2, . . . , xn)− y1ESn−1(x2, . . . , xn)− 1)

(σ1(x1ECn−1(x2, . . . , xn)− y1ESn−1(x2, . . . , xn))− 1)

= (x1ECn−1(x̂1)− y1ESn−1(x̂1)− 1)(x1ECn−1(x̂1) + y1ESn−1(x̂1)− 1)

= (x1ECn−1(x̂1)− 1)2 − y2
1ESn−1(x̂1)2

= (x1ECn−1(x̂1)− 1)2 − (1− x2
1)(1− ECn−1(x̂1)2

= (x1 − ECn−1(x̂1))2,

where (x̂1) = (x2, . . . , xn) as above.

By symmetry of Cn we have the following:

Corollary 3.2.12. For n ≥ 3 we have

Cn =
∏

σ∈G′
n−1

(x1 − σ(ECn−1(x̂1)))2.
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Remark 3.2.13. For n = 1 we have P1 = C1 = x1 − 1. For n = 2 we have (as defined in

Corollary 3.2.9) P2 = x2 − x1. However, this is a matter of taste, since we could have set

P2 = x1−x2. The case n = 2 is the only one where C2(x1, x2) is symmetric while P2 is not.

(See below.)

Proof of Corollary 3.2.12. By Lemma 3.2.11 we obtain as in the proof of Corollary 3.2.9

Cn =
∏

σ∈Gn

(σ(ECn)− 1)

=
∏

σ∈G′
n−1∪σ1G′

n−1

(σ(ECn)− 1)

=
∏

σ∈Gn−1

(σ(ECn)− 1)(σσ1(ECn)− 1)

=
∏

σ∈Gn−1

σ (((ECn)− 1)(σ1(ECn)− 1))

=
∏

σ∈Gn−1

σ((x1 − ECn−1(x̂1))2)

=
∏

σ∈G′
n−1

(x1 − σ(ECn−1(x̂1)))2.

Hence, by Corollary 3.2.12 we obtain Cn = Q2
n where

Qn =
∏

σ∈Gn−1

(x1 − σ(ECn−1(x̂1))).

Since P 2
n = Cn = Q2

n, then as elements in a polynomial ring over a field which is an integer

domain we get

0 = P 2
n −Q2

n = (Pn −Qn)(Pn + Qn)
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and therefore for each n ≥ 2, Qn = Pn or Qn = −Pn.

For n = 2 we obtain P2 = x2 − x1 and Q2 = x1 − x2 so Q2 = −P2.

For n ≥ 3 we first note that by evaluating ECn−1(x̂n) and ECn−1(x̂1) at x2 = · · · =

xn−1 = 1 yields

ECn−1(x̂n)|x2=···=xn−1=1 = x1

ECn−1(x̂1)|x2=···=xn−1=1 = xn

and hence we obtain

Pn(x1, 1, . . . , 1, xn) =
∏

σ∈Gn−1

(xn − x1) = (xn − x1)2
n−2

Qn(x1, 1, . . . , 1, xn) =
∏

σ∈Gn−1

(x1 − xn) = (x1 − xn)2
n−2

.

Since n ≥ 3 we have 2n−2 is even and so (xn − x1)2
n−2

= (x1 − xn)2
n−2 and therefore

Pn(x1, 1, . . . , 1, xn) = Qn(x1, 1, . . . , 1, xn).

From this we have:

Corollary 3.2.14. For n ≥ 3, Qn = Pn and hence

Pn =
∏

σ∈Gn−1

(x1 − σ(ECn−1(x̂1))).

Let n ≥ 3. If π ∈ Sn is a permutation on {1, . . . , n} then π acts naturally on (x1, . . . , xn)

by π(x1, . . . , xn) = (xπ(1), . . . , xπ(n)). By definition of Pn in Corollary 3.2.9 we have

(Pn ◦ π)(x1, . . . , xn) = Pn(xπ(1), . . . , xπ(n)) = Pn(x1, . . . , xn)
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or Pn ◦ π = Pnπ = Pn for all π ∈ Sn with π(n) = n. Likewise by Corollary 3.2.14 we have

Pnπ = Pn for all π ∈ Sn with π(1) = 1.

Let τ ∈ Sn be an arbitrary transposition τ = (i, j). If {i, j} ⊆ {1, . . . , n − 1} or

{i, j} ⊆ {2, . . . , n} then by the above, Pnτ = Pn. Otherwise if τ = (1, n) then since n ≥ 3

there is an l ∈ {2, . . . , n − 1} such that we can write τ = (1, n) = (1, l)(l, n)(1, l) where

{1, l} ⊆ {2, . . . , n}. From the above, we therefore have

Pnτ = Pn(1, n) = Pn(1, l)(l, n)(1, l)

= Pn(l, n)(1, l)

= Pn(1, l)

= Pn.

Since each permutation π ∈ Sn is a composition of transpositions then we have Pnπ = Pn

for each π ∈ Sn.

Theorem 3.2.15. For n ≥ 3 the polynomial Pn = Pn(x1, . . . , xn) is symmetric.

Corollary 3.2.16. For n ≥ 3 and any i ∈ {1, . . . , n} we have

Pn =
∏

σ∈Gn−1

σ(xi − ECn−1(x̂i)).

In particular as a polynomial in xi, then Pn is monic of degree 2n−2 in each xi.

Observation 3.2.17. For n ≥ 3

Pn(x1, . . . , xi−1, 1, xi+1, . . . , xn) = Pn−1(x̂i)2 = Cn−1(x̂i).

and hence also Cn(x1, . . . , xi−1, 1, xi+1, . . . , xn) = Cn−1(x̂i)2.
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Proof. Since

Pn =
∏

σ∈Gn−1

(xi − σ(ECn−1(x̂i))),

then we obtain

Pn(x1, . . . , xi−1, 1, xi+1, . . . , xn) =
∏

σ∈Gn−1

(1− σ(ECn−1(x̂i))) = Cn−1(x̂i)

by definition.

In particular, we then obtain

Cn(x1, . . . , xi−1, 1, xi+1, . . . , xn) = Pn(x1, . . . , xi−1, 1, xi+1, . . . , xn)2

= Cn−1(x̂i)2.

Proposition 3.2.18. Let n ≥ 1 and n1 + · · · + nk = n. If
∑n

i=1 θi = 2π and xi = cos θi

for i ∈ {1, . . . , n} then Pk(ECn1 , . . . ,ECnk
) = 0 where for each l ∈ {1, . . . , k} ECnl

=

ECnl
(xn1+···+nl−1+1, . . . xn1+···+nl

). In particular for k = n − 1 and n1 = · · · = nn−2 = 1

and nn−1 = 2, we have Pn−1(x1, . . . , xn−2,EC2(xn−1, xn)) = 0.

Proof. Letting φl = θn1+···+nl−1+1 + · · ·+ θn1+···+nl
for each l ∈ {1, . . . , k}, then

k∑
l=1

φl = 2π

and hence if tl = cos(φl) then by Corollary 3.2.16,

0 = Pk(t1, . . . , tl) = Pk(ECn1 , . . . ,ECnk
),
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where for each l ∈ {1, . . . , k}, ECnl
= ECnl

(xn1+···+nl−1+1, . . . , xn1+···+nl
).

We now obtain a recursive method for determining Pn. Let EC2(xj , xj+1) = xjxj+1 +

yjyj+1 be the conjugate of EC2(xj , xj+1). Recall that by Claim 3.2.6 we have for n− 1 that

Gn−1 = Gn−2 ∪ σn−1Gn−2 = Gn−2 ∪Gn−2σn−1

and

σn−2(yn−1ESn−2) = −yn−1ESn−2.

Lemma 3.2.19. For n ≥ 3 we have

(xn − ECn−1)(xn − σn−2(ECn−1)) = x2
n−1 + x2

n − 1− 2xn−1xnEC2
n−2 + EC2

n−2.

Proof. Since ECn−1 = xn−1ECn−2 − yn−1ESn−2, we obtain by above

(xn − ECn−1)(xn − σn−2(ECn−1)) = (xn − xn−1ECn−2 + yn−1ESn−2)

· (xn − xn−1ECn−2 − yn−1ESn−2)

= (xn − xn−1ECn−2)2 − y2
n−1ES2

n−2

= (xn − xn−1ECn−2)2 − (1− x2
n−1)(1− EC2

n−2)

= x2
n−1 + x2

n − 1− 2xn−1xnEC2
n−2 + EC2

n−2.

By direct computation and the definition of Pn−1, since EC2(xi, xi+1) = xixi+1 − yiyi+1
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we get

Pn−1(x1, . . . , xn−2,EC2(xn−1xn))Pn−1(x1, . . . , xn−2,EC2(xn−1xn))

=
∏

σ∈Gn−2

(EC2(xn−1, xn)− σ(ECn−2)) ·
∏

σ∈Gn−2

(EC2(xn−1, xn)− σ(ECn−2))

=
∏

σ∈Gn−2

(xn−1xn − yn−1yn − σ(ECn−2)) ·
∏

σ∈Gn−2

(xn−1xn + yn−1yn − σ(ECn−2))

=
∏

σ∈Gn−2

(
(xn−1xn − σ(ECn−2))2 − y2

n−1y
2
n

)

=
∏

σ∈Gn−2

(
(xn−1xn − σ(ECn−2))2 − (1− x2

n−1)(1− x2
n)
)

=
∏

σ∈Gn−2

(
x2

n−1 + x2
n − 1− 2xn−1xnσ(EC2

n−2) + σ(EC2
n−2)

)

=
∏

σ∈Gn−2

σ
(
x2

n−1 + x2
n − 1− 2xn−1xnEC2

n−2 + EC2
n−2

)
.

From this we can prove the following:

Theorem 3.2.20. The polynomials Pn are completely determined by the following recursion

P1 = x1 − 1,

P2 = x2 − x1,

and for n ≥ 3

Pn = Pn−1(x1, . . . , xn−2,EC2(xn−1, xn)) · Pn−1(x1, . . . , xn−2,EC2(xn−1, xn)).
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Proof. By Lemma 3.2.19 and the preceding paragraph we get

Pn =
∏

σ∈Gn−1

(xn − σ(ECn−1))

=
∏

σ∈Gn−2∪σn−1Gn−2

(xn − σ(ECn−1))

=
∏

σ∈Gn−2

(xn − σ(ECn−1))(xn − σσn−1(ECn−1))

=
∏

σ∈Gn−2

σ ((xn − (ECn−1))(xn − σn−1(ECn−1)))

=
∏

σ∈Gn−2

σ
(
x2

n−1 + x2
n − 1− 2xn−1xnEC2

n−2 + EC2
n−2

)
= Pn−1(x1, . . . , xn−2,EC2(xn−1, xn)) · Pn−1(x1, . . . , xn−2,EC2(xn−1, xn)).

Example 3.2.21. The first 5 polynomials Pn can now be computed easily by the recursion
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in Theorem 3.2.20.

P1 = x1 − 1

P2 = x2 − x1

P3 = P2(x1,EC2(x2, x3)) · P2(x1,EC2(x2, x3))

= (x2x3 − y2y3 − x1) · (x2x3 + y2y3 − x1)

= (x2x3 − x1)2 − y2
2y

2
3

= x2
2x

2
3 − 2x1x2x3 + x2

1 − (1− x2
2)(1− x2

3)

= x2
2x

2
3 − 2x1x2x3 + x2

1 − 1 + x2
2 + x2

3 − x2
2x

2
3

= x2
1 + x2

2 + x2
3 − 2x1x2x3 − 1.

P4 = P3(x1, x2,EC2(x3, x4)) · P3(x1, x2, EC2(x3, x4))

= (x2
1 + x2

2 + (x3x4 − y3y4)2 − 2x1x2(x3x4 − y3y4)− 1)

· (x2
1 + x2

2 + (x3x4 + y3y4)2 − 2x1x2(x3x4 + y3y4)− 1)

= x4
1 + x4

2 + x4
3 + x4

4 − 2(x2
1x

2
2 + x2

2x
2
3 + x2

3x
2
4 + x2

1x
2
4 + x2

1x
2
3 + x2

2x
2
4)

+ 4(x2
1x

2
2x

2
3 + x2

2x
2
3x

2
4 + x2

1x
2
3x

2
4 + x2

1x
2
2x

2
4)

+ 4x1x2x3x4(2− x2
1 − x2

2 − x2
3 − x2

4).
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P5 = P4(x1, x2, x3,EC2(x4, x5)) · P4(x1, x2, x3,EC2(x4, x5))

= x8
5 − 8x1x2x3x4x

7
5 − 8x2

3x
2
4x

6
5 + 4x2

2x
6
5 − 4x6

5 + 4x2
3x

6
5 + 16x2

1x
2
2x

2
3x

6
5

− 8x2
2x

2
3x

6
5 − 8x2

1x
2
4x

6
5 − 8x2

1x
2
3x

6
5 − 8x2

1x
2
2x

6
5 + 4x2

4x
6
5 − 8x2

2x
2
4x

6
5

+ 16x2
1x

2
3x

2
4x

6
5 + 16x2

2x
2
3x

2
4x

6
5 + 4x2

1x
6
5 + 16x2

1x
2
2x

2
4x

6
5 + 40x1x

3
2x3x4x

5
5

+ 40x1x2x3x
3
4x

5
5 − 32x3

1x2x3x
3
4x

5
5 + 40x3

1x2x3x4x
5
5 − 32x3

1x2x
3
3x4x

5
5

− 32x1x
3
2x

3
3x4x

5
5 − 32x1x

3
2x3x

3
4x

5
5 − 24x1x2x3x4x

5
5 − 32x3

1x
3
2x3x4x

5
5

− 32x1x2x
3
3x

3
4x

5
5 + 40x1x2x

3
3x4x

5
5 + 64x2

1x
4
2x

2
3x

2
4x

4
5 − 16x4

1x
2
4x

4
5

+ 28x2
2x

2
4x

4
5 − 16x2

3x
4
4x

4
5 − 24x2

1x
2
2x

2
3x

4
5 + 28x2

1x
2
4x

4
5 − 12x2

3x
4
5

+ 28x2
2x

2
3x

4
5 − 16x2

2x
4
3x

4
5 − 16x2

2x
4
4x

4
5 + 64x2

1x
2
2x

4
3x

2
4x

4
5 − 24x2

2x
2
3x

2
4x

4
5

+ 16x4
1x

4
4x

4
5 − 12x2

4x
4
5 − 24x2

1x
2
3x

2
4x

4
5 + 6x4

5 + 6x4
2x

4
5 − 16x2

1x
4
3x

4
5

− 16x2
1x

4
4x

4
5 + 6x4

4x
4
5 + 64x4

1x
2
2x

2
3x

2
4x

4
5 + 16x4

1x
4
3x

4
5 + 16x4

2x
4
3x

4
5

− 16x4
1x

2
2x

4
5 − 24x2

1x
2
2x

2
4x

4
5 + 16x4

1x
4
2x

4
5 + 16x4

3x
4
4x

4
5 + 6x4

3x
4
5 − 12x2

2x
4
5

− 144x2
1x

2
2x

2
3x

2
4x

4
5 + 64x2

1x
2
2x

2
3x

4
4x

4
5 + 28x2

1x
2
3x

4
5 − 16x4

2x
2
4x

4
5

− 16x4
2x

2
3x

4
5 − 16x4

3x
2
4x

4
5 + 28x2

3x
2
4x

4
5 + 28x2

1x
2
2x

4
5 − 12x2

1x
4
5 − 16x4

1x
2
3x

4
5

+ 6x4
1x

4
5 − 16x2

1x
4
2x

4
5 + 16x4

2x
4
4x

4
5 + 112x3

1x2x
3
3x4x

3
5 + 112x3

1x2x3x
3
4x

3
5

+ 40x1x2x
5
3x4x

3
5 − 32x5

1x2x3x
3
4x

3
5 − 32x1x

5
2x3x

3
4x

3
5 + 112x3

1x
3
2x3x4x

3
5

+ x1x
5
2x3x4x

3
5 + 40x5

1x2x3x4x
3
5 + 40x1x2x3x

5
4x

3
5 − 32x3

1x2x3x
5
4x

3
5

− 112x1x
3
2x3x4x

3
5 − 32x1x2x

5
3x

3
4x

3
5 − 32x5

1x2x
3
3x4x

3
5 − 112x3

1x2x3x4x
3
5

+ 112x1x
3
2x

3
3x4x

3
5 − 32x1x

3
2x

5
3x4x

3
5 − 32x1x

5
2x

3
3x4x

3
5 − 32x1x

3
2x3x

5
4x

3
5

− 32x3
1x

5
2x3x4x

3
5 + 112x1x2x

3
3x

3
4x

3
5 + 112x1x

3
2x3x

3
4x

3
5 − 112x1x2x

3
3x4x

3
5

− 112x1x2x3x
3
4x

3
5 + 72x1x2x3x4x

3
5 − 128x3

1x
3
2x

3
3x

3
4x

3
5 − 32x5

1x
3
2x3x4x

3
5

− 32x3
1x2x

5
3x4x

3
5 − 32x1x2x

3
3x

5
4x

3
5 + 16x2

1x
6
2x

2
4x

2
5 + 28x2

3x
4
4x

2
5 + 28x4

1x
2
3x

2
5

− 8x2
2x

6
4x

2
5 − 12x4

4x
2
5 − 16x4

1x
4
4x

2
5 + 16x2

1x
2
3x

6
4x

2
5 − 24x2

1x
2
2x

4
3x

2
5 − 8x6

1x
2
3x

2
5
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− 32x2
2x

2
3x

2
5 − 24x2

2x
2
3x

4
4x

2
5 − 16x4

1x
4
2x

2
5 − 8x6

1x
2
4x

2
5 + 40x2

2x
2
3x

2
4x

2
5

− 16x4
1x

4
3x

2
5 − 24x4

1x
2
2x

2
4x

2
5 + 28x4

3x
2
4x

2
5 − 8x2

1x
6
2x

2
5 + 64x2

1x
4
2x

4
3x

2
4x

2
5

− 32x2
1x

2
4x

2
5 − 16x4

3x
4
4x

2
5 − 12x4

3x
2
5 + 28x2

2x
4
3x

2
5 − 144x2

1x
2
2x

4
3x

2
4x

2
5

+ 16x2
2x

6
3x

2
4x

2
5 + 28x2

1x
4
4x

2
5 + 4x6

4x
2
5 + 64x2

1x
2
2x

4
3x

4
4x

2
5 − 24x4

2x
2
3x

2
4x

2
5

+ 28x4
2x

2
3x

2
5 − 8x6

1x
2
2x

2
5 + 16x6

1x
2
2x

2
3x

2
5 + 16x2

1x
2
2x

6
4x

2
5 + 16x2

2x
2
3x

6
4x

2
5

+ 12x2
4x

2
5 − 24x4

1x
2
2x

2
3x

2
5 + 16x2

1x
6
3x

2
4x

2
5 − 24x2

1x
4
2x

2
3x

2
5 − 8x2

2x
6
3x

2
5

+ 64x4
1x

2
2x

2
3x

4
4x

2
5 + 192x2

1x
2
2x

2
3x

2
4x

2
5 − 12x4

2x
2
5 − 24x2

1x
4
2x

2
4x

2
5 + 12x2

2x
2
5

− 8x2
1x

6
3x

2
5 + 40x2

1x
2
3x

2
4x

2
5 − 24x2

1x
2
2x

4
4x

2
5 − 32x2

1x
2
2x

2
5 + 64x4

1x
2
2x

4
3x

2
4x

2
5

+ 28x2
2x

4
4x

2
5 − 8x2

1x
6
4x

2
5 − 4x2

5 + 4x6
1x

2
5 + 12x2

1x
2
5 + 28x4

1x
2
4x

2
5 − 16x4

2x
4
3x

2
5

+ 16x6
1x

2
3x

2
4x

2
5 − 8x6

2x
2
4x

2
5 + 16x6

1x
2
2x

2
4x

2
5 + 64x4

1x
4
2x

2
3x

2
4x

2
5

− 24x2
1x

2
3x

4
4x

2
5 + 12x2

3x
2
5 + 16x2

1x
2
2x

6
3x

2
5 + 16x6

2x
2
3x

2
4x

2
5 + 16x2

1x
6
2x

2
3x

2
5

+ 40x2
1x

2
2x

2
4x

2
5 − 8x2

3x
6
4x

2
5 − 24x2

1x
4
3x

2
4x

2
5 − 16x4

2x
4
4x

2
5 + 28x2

1x
4
3x

2
5

− 144x2
1x

2
2x

2
3x

4
4x

2
5 + 28x4

2x
2
4x

2
5 − 8x6

3x
2
4x

2
5 − 32x2

2x
2
4x

2
5 + 64x2

1x
4
2x

2
3x

4
4x

2
5

+ 40x2
1x

2
2x

2
3x

2
5 − 24x2

2x
4
3x

2
4x

2
5 − 144x2

1x
4
2x

2
3x

2
4x

2
5 − 12x4

1x
2
5 + 4x6

3x
2
5

+ 28x2
1x

4
2x

2
5 − 144x4

1x
2
2x

2
3x

2
4x

2
5 − 8x6

2x
2
3x

2
5 + 28x4

1x
2
2x

2
5 − 32x2

3x
2
4x

2
5

− 32x2
1x

2
3x

2
5 + 4x6

2x
2
5 − 24x4

1x
2
3x

2
4x

2
5 − 24x1x

5
2x3x4x5 − 112x3

1x2x3x
3
4x5

− 112x3
1x

3
2x3x4x5 + 40x3

1x2x
5
3x4x5 − 112x1x2x

3
3x

3
4x5 − 32x1x

3
2x

5
3x

3
4x5

− 32x3
1x2x

5
3x

3
4x5 − 8x1x2x

7
3x4x5 + 40x3

1x2x3x
5
4x5 − 24x1x2x3x

5
4x5

− 112x1x
3
2x3x

3
4x5 + 40x1x

5
2x

3
3x4x5 + 40x1x

3
2x3x

5
4x5 − 32x5

1x2x
3
3x

3
4x5

− 32x3
1x

3
2x

5
3x4x5 + 40x3

1x
5
2x3x4x5 − 8x1x

7
2x3x4x5 − 8x1x2x3x

7
4x5 + 112x1x

3
2x

3
3x

3
4x5

+ 40x1x
5
2x3x

3
4x5 − 112x3

1x2x
3
3x4x5 + 40x5

1x2x
3
3x4x5 + 72x1x2x

3
3x4x5

− 32x1x
3
2x

3
3x

5
4x5 + 72x1x

3
2x3x4x5 + 40x5

1x
3
2x3x4x5 + 40x5

1x2x3x
3
4x5

− 32x3
1x

3
2x3x

5
4x5 − 24x1x2x

5
3x4x5 − 32x5

1x
3
2x3x

3
4x5 − 32x3

1x
5
2x3x

3
4x5
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− 32x1x
5
2x

3
3x

3
4x5 + 112x3

1x
3
2x3x

3
4x5 + 40x1x2x

5
3x

3
4x5 − 40x1x2x3x4x5

+ 40x1x2x
3
3x

5
4x5 − 32x5

1x
3
2x

3
3x4x5 − 112x1x

3
2x

3
3x4x5 − 24x5

1x2x3x4x5

− 32x3
1x

5
2x

3
3x4x5 + 72x1x2x3x

3
4x5 − 8x7

1x2x3x4x5 + 112x3
1x

3
2x

3
3x4x5

+ 112x3
1x2x

3
3x

3
4x5 − 32x3

1x2x
3
3x

5
4x5 + 40x1x

3
2x

5
3x4x5 + 72x3

1x2x3x4x5

+ 28x4
1x

2
3x

2
4 + 16x2

1x
6
2x

2
3x

2
4 − 24x2

1x
2
2x

2
3x

4
4 + 28x2

1x
2
2x

4
4 − 8x2

1x
2
3x

6
4

− 16x2
1x

4
2x

4
4 + 28x2

2x
4
3x

2
4 + 28x4

1x
2
2x

2
4 − 32x2

1x
2
2x

2
4 − 8x2

1x
2
2x

6
4 + 4x2

3x
6
4

− 24x2
1x

2
2x

4
3x

2
4 − 12x2

3x
4
4 + 16x4

2x
4
3x

4
4 + 16x2

1x
2
2x

6
3x

2
4 + 4x2

2x
6
4 − 32x2

1x
2
3x

2
4

+ 4x2
2x

6
3 − 24x2

1x
4
2x

2
3x

2
4 − 12x4

2x
2
4 + 28x2

1x
4
3x

2
4 + 6x4

1x
4
4 − 16x4

1x
2
3x

4
4 + 28x2

1x
4
2x

2
4

+ 12x2
1x

2
3 + 6x4

3x
4
4 + 16x4

1x
4
2x

4
4 − 8x2

2x
2
3x

6
4 − 12x2

2x
4
4 − 32x2

2x
2
3x

2
4 − 8x2

2x
6
3x

2
4

+ 12x2
2x

2
4 + 4x6

2x
2
3 − 16x4

1x
2
2x

4
3 − 16x4

2x
4
3x

2
4 + 40x2

1x
2
2x

2
3x

2
4 + 6x4

3 − 8x6
2x

2
3x

2
4

− 4x2
2 − 16x2

1x
4
3x

4
4 + x8

3 − 12x2
1x

4
4 − 16x4

2x
2
3x

4
4 + 6x4

1x
4
3 − 16x4

1x
4
2x

2
4 − 12x4

1x
2
2

+ 16x4
1x

4
3x

4
4 − 4x2

4 − 8x2
1x

6
3x

2
4 + x8

4 − 8x2
1x

6
2x

2
3 − 16x4

1x
4
3x

2
4 + 28x2

1x
2
2x

4
3

+ 4x6
3x

2
4 + 16x4

1x
4
2x

4
3 + 16x6

1x
2
2x

2
3x

2
4 + 12x2

2x
2
3 + 4x2

1x
6
3 + 4x2

1x
6
4 + 4x6

2x
2
4

− 8x2
1x

2
2x

6
3 + 16x2

1x
2
2x

2
3x

6
4 − 4x6

4 − 8x6
1x

2
2x

2
3 − 12x2

1x
4
2 − 16x4

1x
4
2x

2
3 − 12x2

1x
4
3

− 12x4
2x

2
3 − 16x2

2x
4
3x

4
4 + 12x2

1x
2
4 + x8

1 + 4x6
1x

2
4 − 24x4

1x
2
2x

2
3x

2
4 − 8x2

1x
6
2x

2
4

+ 6x4
4 + 12x2

3x
2
4 + 28x2

2x
2
3x

4
4 + 6x4

1x
4
2 + 6x4

1 + 28x4
1x

2
2x

2
3 + 28x4

2x
2
3x

2
4 + 6x4

2x
4
3

− 32x2
1x

2
2x

2
3 + 4x2

1x
6
2 − 4x2

3 − 4x6
1 − 4x2

1 − 8x6
1x

2
3x

2
4 + x8

2 − 16x4
1x

2
2x

4
4 − 16x2

1x
4
2x

4
3

+ 4x6
1x

2
2 + 6x4

2x
4
4 − 4x6

3 − 8x6
1x

2
2x

2
4 − 12x4

3x
2
4 + 12x2

1x
2
2 − 12x2

2x
4
3 + 28x2

1x
2
3x

4
4

− 12x4
1x

2
4 + 28x2

1x
4
2x

2
3 + 1− 4x6

2 − 12x4
1x

2
3 + 6x4

2 + 4x6
1x

2
3.

The recursion given in Theorem 3.2.20, although fundamental, is a special case of a more

general recursion that Pn satisfies:

Claim 3.2.22. Let P1 = x1−1 and n ≥ 2. For n1 + · · ·+nk = n we have (with some abuse
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of notation) that

Pn(x1, . . . , xn) =
∏

σi∈Gni−1

i=1,...,k

Pk(σ1(ECn1(x1, . . . , xn1), σ2(ECn2(xn1+1, . . . , xn1+n2),

. . . , σk(ECnk
(xn−nk+1, . . . , xn)).

Example 3.2.23. P5 is the smallest example that can be generated using a recurrence that

is not an example of the special recurrence from Theorem 3.2.20:

P5(x1, . . . , x5) =
∏

σ′1∈G1=〈σ1〉
σ′2∈G2={e}
σ′3∈G3=〈σ4〉

P3(σ′1(EC2(x1, x2)), σ′2(EC1(x3)), σ′3(EC2(x4, x5)))

=
∏

σ′1∈G1=〈σ1〉
σ′2∈G2={e}
σ′3∈G3=〈σ4〉

P3(σ′1(x1x2 − y1y2), σ′2(x3), σ′3(x4x5 − y4y5))

= P3(x1x2 − y1y2, x3, x4x5 − y4y5) · P3(x1x2 + y1y2, x3, x4x5 − y4y5)

· P3(x1x2 − y1y2, x3, x4x5 + y4y5) · P3(x1x2 + y1y2, x3, x4x5 + y4y5)

= ((x1x2 − y1y2)2 + x2
3 + (x4x5 − y4y5)2 − 2(x1x2 − y1y2)x3(x4x5 − y4y5)− 1)

· ((x1x2 + y1y2)2 + x2
3 + (x4x5 − y4y5)2 − 2(x1x2 + y1y2)x3(x4x5 − y4y5)− 1)

· ((x1x2 − y1y2)2 + x2
3 + (x4x5 + y4y5)2 − 2(x1x2 − y1y2)x3(x4x5 + y4y5)− 1)

· ((x1x2 + y1y2)2 + x2
3 + (x4x5 + y4y5)2 − 2(x1x2 + y1y2)x3(x4x5 + y4y5)− 1),

Expanded, this yields the same expression for P5 as given in Example 3.2.21.

Our final goal in this chapter is to prove the irreducibility of Pn. To illuminate our ap-

proach we state and prove the following simplest case, that P3 = P3(x1, x2, x3) is irreducible.

Suppose P3 = fg with f, g ∈ Q[x1, x2, x3]. Since P3 is monic in x3, both f and g contain

the variable x3, and hence both f and g are of degree 1 in x3 (unless f or g = P3.) Since
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P3 factors in Q(x1, x2, y1y2)[x3] as

P3 = (x3 − x1x2 − y1y2)(x3 − x1x2 + y1y2)

by definition of P3, then since Q(x1, x2, y1y2)[x3] is a UFD we must have

{f, g} = {x3 − x1x2 − y1y2, x3 − x1x2 + y1y2}

which contradicts the assumption that f, g ∈ Q[x1, x2, x3]. Hence we have the following

observation:

Observation 3.2.24. The polynomial P3(x1, x2, x3) is irreducible over Q.

We now want to use this same approach to prove the following.

Theorem 3.2.25. For n ≥ 3 the polynomials Pn(x1, . . . , xn) are irreducible over Q.

Before proving Theorem 3.2.25, we need to prove the following:

Claim 3.2.26. For n ≥ 3 we have

Pn−1(EC2(x1, x2), x3, . . . , xn) = Pn−1(x1x2 − y1y2, x3, . . . , xn)

and

Pn−1(EC2(x1, x2), x3, . . . , xn) = Pn−1(x1x2 + y1y2, x3, . . . , xn)

are irreducible in Q(x1, x2, y1y2)[x3, . . . , xn].

Proof. Assume P ∗
n−1 := Pn−1(x1x2−y1y2, x3, . . . , xn) factors P ∗

n−1 = h∗·k∗ ∈ Q(x1, x2, y1y2)[x3, . . . , xn],

where both h∗ and k∗ involve xn. Since

Pn−1 =
∏

σ∈Gn−2

(xn − σ(ECn−2)),
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we see that

P ∗
n−1 =

∏
σ∈Gn−2

(xn − σ(ECn−2(x1x2 − y1y2, x3, . . . , xn))),

and hence both h∗ and k∗ must be products of these linear factors.

In particular, we can evaluate P ∗
n−1 = h∗ · k∗ at x1 = 1 and obtain

Pn−1(x2, . . . , xn) =
(
P ∗

n−1

)
|x1=1 = (h∗|x1−1) (k∗|x1−1) = h · k

in Q(x2)[x3, . . . , xn], which is a UFD.

Since by the inductive hypothesis, Pn−1(x2, . . . , xn) is irreducible in Q(x2)[x3, . . . , xn],

either h or k equals Pn−1(x2, . . . , xn), which contradicts the fact that both h∗ and k∗ involve

xn. Hence P ∗
n−1 is irreducible. In the same way we obtain that Pn−1(x1x2+y1y2, x3, . . . , xn)

is irreducible.

Proof of Theorem 3.2.25. Assume Pn = fg with f, g ∈ Q[x1, . . . , xn]. We may assume f is

irreducible. Let

φi : Q[x1, . . . , xn] −→ Q[x̂i]

φi(F ) = F (x1, . . . , xi−1, 1, xi+1, . . . , xn).

φi is a Q-algebra homomorphism for each i ∈ {1, . . . , n} and hence a ring homomorphism.

Therefore

φ1(Pn) = φ1(fg) = φ1(f)φ1(g) ∈ Q[x2, . . . , xn].

But φ1(Pn) = Pn−1(x2, . . . , xn)2 ∈ Q[x2, . . . , xn], which is a UFD. By the inductive hy-

pothesis, Pn−1 is irreducible in Q[x2, . . . , xn]. Therefore, φ1(f) = Pn−1 = φ1(g) (unless

f = Pn.)
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Viewing f, g ∈ Q[x1, . . . , xn−1][xn], then since Pn and Pn−1 are monic in every variable

xi (and hence also in xn,) we have

degxn
(f) = degxn

(g) =
degxn

(Pn)
2

= 2n−3.

By symmetry of Pn for n ≥ 3, from Theorem 3.2.15 and Theorem 3.2.20 we have

Pn = Pn−1(EC2(x1, x2), x3, . . . , xn) · Pn−1(EC2(x1, x2), x3, . . . , xn)

in Q(x1, x2, y1y2)[x3, . . . , xn], which is a UFD.

Since by assumption Pn = f · g where f ∈ Q[x1, . . . , xn] is irreducible and f |x1=1 =

Pn−1(x2, . . . , xn), we obtain in the same way as in the proof of Claim 3.2.26 that f is

irreducible in Q(x1, x2, y1y2)[x3, . . . , xn].

So

Pn = f · g = Pn−1(EC2, x3, . . . , xn) · Pn−1(EC2, x3, . . . , xn)

in Q(x1, x2, y1y2)[x3, . . . , xn], which is a UFD. Hence

f ∈ {Pn−1(EC2, x3, . . . , xn), Pn−1(EC2, x3, . . . , xn)}, which is a contradiction, since f ∈

Q[x1, . . . , xn].

As a corollary we obtain the following, which in fact equivalent to Theorem 3.2.25:

Corollary 3.2.27. For n ≥ 1 we have

[Q(x1, . . . , xn,ECn) : Q(x1, . . . , xn)] = 2n−1.

Since for m ≤ n, ECm = ECm(x1, . . . , xm) is only in terms of the first m of n variables,

then for any m ≤ n we have

[Q(x1, . . . , xn,ECm) : Q(x1, . . . , xn)] = 2m−1.
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So we obtain a summarizing result:

Corollary 3.2.28. For 1 ≤ m ≤ n we have

• Q(x1, . . . , xn,ECm) = Q(x1, . . . , xn, y1y2, . . . , ym−1ym)

• Gal(Q(x1, . . . , xn,ECm)/Q(x1, . . . , xn))

= Gal(Q(x1, . . . , xn, y1y2, . . . , ym−1ym)/Q(x1, . . . , xn))

∼= Zm−1
2 .

• Pm+1(x1, . . . , xm, X) ∈ Q(x1, . . . , xm)[X] is the minimal polynomial of

ECm = ECm(x1, . . . , xm) over Q(x1, . . . , xm).
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Chapter 4: Results from Elementary Number Theory

4.1 Generalizations of the Pythagorean Triples

These generalizations of the well-known Pythagorean Triples problem will be needed in the

next chapter. In the following, a primitive solution is a solution where x, y, and z are

pairwise relatively prime.

Theorem 4.1.1. Let β be a square-free integer. The integers x, y, z form a primitive solution

to the Diophantine equation x2 + βy2 = z2 if and only if there are positive integers m and

n and a factorization β = bc where bm2 and cn2 are relatively prime such that

x =
bm2 − cn2

2
, y = mn, z =

bm2 + cn2

2
,

where both m and n are odd or both are even, or

x = bm2 − cn2, y = 2mn, z = bm2 + cn2

otherwise.

To prove Theorem 4.1.1, we need the following:

Claim 4.1.2. If r,s,t are positive integers such that r and s are relatively prime and rs = t2

then there are relatively prime integers m and n such that r = m2 and s = n2.

Proof of Theorem 4.1.1. Note that gcd(b, c) = 1. This proof follows and extends the expo-

sition in [12].

Assume x, y, z form a primitive solution. In this case, x and y cannot both be even.
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Case 1: x, y are both odd. Then x2 ≡ 1 (mod 4) and y2 ≡ 1 (mod 4), giving z2 ≡ 1+β

(mod 4). Since z2 ≡ 0, 1 (mod 4), then β ≡ 0 or β ≡ 3 (mod 4) must hold. However, β ≡ 0

(mod 4) implies that 4 divides β, contradicting the assumption that β is square-free. So the

only case to consider here is the case where z is even and β ≡ 3 (mod 4).

βy2 = z2 − x2 = (z + x)(z − x). (4.1)

Letting gcd(z+x, z−x) = d we get d divides both z+x+z−x = 2z and z+x−(z−x) = 2x.

Since x and z are relatively prime, d = 1 or 2. Since both z+x and z−x are odd, then d = 1

must hold. Since now gcd(z + x, z − x) = 1 we have from (4.1) that for some factorization

β = bc then r = z + x is divisible by b and s = z − x is divisible by c. Since gcd
(

r
b ,

s
c

)
= 1,

we have by Claim 4.1.2 that m2 = r
b and n2 = s

c , and hence y = mn, x = r−s
2 = bm2−cn2

2 ,

and z = r+s
2 = bm2+cn2

2 .

Case 2: x is even and y is odd. Then x2 ≡ 0 (mod 4) and y2 ≡ 1 (mod 4), giving

z2 ≡ β (mod 4). Therefore β ≡ 0 or β ≡ 1 (mod 4). However, β ≡ 0 (mod 4) implies that

4 divides β, again contradicting the assumption that β is square-free. So the only case to

consider here is the case where z is odd and β ≡ 1 (mod 4), which proceeds exactly as in

case 1.

Case 3: x is odd and y is even. Then x2 ≡ 1 (mod 4) and y2 ≡ 0 (mod 4), giving z2 ≡ 1

(mod 4), and so z is odd.

Unlike cases 2 and 3, z + x and z − x are both even. Letting gcd
(

z+x
2 , z−x

2

)
= d we get

that d divides z+x+z−x
2 = z and z+x−(z−x)

2 = x. Since x and z are relatively prime, d = 1.

Now we have βy2

4 = rs where r = z+x
2 and s = z−x

2 . Hence b divides r and c divides s for

some appropriate factorization β = bc. Since gcd
(

r
b ,

s
c

)
= 1, so we have by Claim 4.1.2 that

m2 = r
b and n2 = s

c and hence y = 2mn, x = r− s = bm2− cn2, and z = r + s = bm2 + cn2.

For the other direction, first we show that x, y, z as given in cases 1 and 2 do form a
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solution:

x2 + βy2 =
(

bm2 − cn2

2

)2

+ β(mn)2

=
(bm2)2 − 2bm2cn2 + (cn2)2

4
+ β(mn)2

=
(bm2)2 + 2βm2n2 + (cn2)2

4

=
(

bm2 + cn2

2

)2

.

Also for case 3 we get:

x2 + βy2 =
(
bm2 − cn2

)2 + β(2mn)2

= (bm2)2 − 2bm2cn2 + (cn2)2 + β(2mn)2

= (bm2)2 + 2βm2n2 + (cn2)2

=
(
bm2 + cn2

)2
.

To show that the triple is primitive for cases 1 and 2, assume on the contrary that

gcd(x, y, z) = d > 1. Then there is a prime p that divides d. This p divides x and z and also

their sum and difference: x+z = bm2−cn2

2 + bm2+cn2

2 = bm2 and x−z = bm2−cn2

2 − bm2+cn2

2 =

cn2. This contradicts the assumption that bm2 and cn2 are relatively prime.

For case 3, again assume on the contrary that (x, y, z) = d > 1. Then there is an odd

prime p that divides d. p 6= 2 because x and z are both odd. This p divides x and z and

also their sum and difference: x + z = 2bm2 and x− z = 2cn2. Again, this contradicts the

assumption that bm2 and cn2 are relatively prime.
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Lemma 4.1.3. The solution to the Diophantine equation x2 + y2 = γz2, where γ is square-

free, is given by

x =
c

γ
(am2 − an2 + 2mnb)

y =
c

γ
(−bm2 + bn2 + 2mna)

z =
c(m2 + n2)

γ
,

where γ = a2 + b2 and m,n, c ∈ Z.

Proof. The existence of an integer solution to x2 + y2 = γz2 implies that each prime factor

of γ is congruent to 1 modulo 4. Therefore, for some appropriate choice of non-negative

integers a, b, we can write γ = a2 + b2. Then we have:

(ax− by)2 + (bx + ay)2 = (a2 + b2)(x2 + y2) = γ(γz2) = (γz)2.

Then using the well-known formula for Pythagorean triples, let ax − by = c(m2 − n2),

bx + ay = 2cmn, and γz = c(m2 + n2). Solving for x, y, and z, we get the statement of the

lemma.
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Chapter 5: Rational Solutions when n = 3

5.1 A Necessary Condition for Rational Radii

In this chapter, we will characterize all rational solutions for flowers with three petals. We

then compare our parametrization to an existing parametrization of the curvatures of four

mutually tangent circles and show how our equation-free parameterization is an improvement

on the existing one.

Recall coin graphs formed by n petals in the Euclidean plane. By Definition 1.3.2 we

have by scaling the following observation:

Observation 5.1.1. For positive integers n we have T (N;n) = T (Q;n) when both N and

Q are viewed as multisets.

Our goal is to characterize all flowers with three petals and integral radii. By the observation,

we can look at rational radii and then scale as necessary. When the lengths of the sides

of a triangle are rational, the cosine will be rational. The converse is not necessarily true,

however. We would like to find rational radii that create a flower configuration with 3 petals.

For a necessary first step, we will determine what the cosines must be.

First, we have the irreducible polynomial P3 = x2
1 +x2

2 +x2
3− 2x1x2x3− 1. We can solve

for any one of the variables, say x3, by definition of P3 and Lemma 3.2.7:

x3 = EC2(x1, x2) = x1x2 −
√

(1− x2
1)(1− x2

2).

Now it is clear that x3 will be rational if and only if x1, x2 are rational, and the term under

the radical is the square of a rational number. Since we want the xi to be rational, let
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r1

r1
r1

r2

r2

r2

r3
r3

r3

1

1

1

Figure 5.1: A 3-petaled flower.

xi = pi

qi
for i = 1, 2 with pi, qi ∈ Z. Then we can transform the term under the radical:

x3 = x1x2 −
1

q1q2

√
(q2

1 − p2
1)(q

2
2 − p2

2).

When (q2
1 − p2

1)(q
2
2 − p2

2) is a square, we can write q2
i − p2

i = s2
i β for i = 1, 2, where β is

square-free.

5.2 Parametrization of the Radii

Suppose we have a flower with 3 petals (see figure 5.1.) By scaling, we can assume the

radius of the eye (center coin) is 1. Then we can denote the other 3 radii by r1, r2, r3 and

the angles between the edges incident on the center of the eye by θ1, θ2, θ3. Then applying
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the law of cosines, we obtain

x1 = cos θ1 =
(r1 + 1)2 + (r2 + 1)2 − (r1 + r2)2

2(r1 + 1)(r2 + 1)
,

x2 = cos θ2 =
(r2 + 1)2 + (r3 + 1)2 − (r2 + r3)2

2(r2 + 1)(r3 + 1)
,

x3 = cos θ3 =
(r3 + 1)2 + (r1 + 1)2 − (r3 + r1)2

2(r3 + 1)(r1 + 1)
,

where for convenience of notation, we will denote cos θi as xi. By expanding both the

numerator and denominator of x1, we obtain

x1 =
r1 + r2 − r1r2 + 1
r1 + r2 + r1r2 + 1

.

Rewriting this as a polynomial equation in terms of r1 and r2 we obtain

r1r2 +
(

x1 − 1
x1 + 1

)
(r1 + r2) =

(
1− x1

x1 + 1

)
.

Factoring in terms of r1 and r2, we get

(
r1 +

x1 − 1
x1 + 1

)(
r2 +

x1 − 1
x1 + 1

)
=

2(1− x1)
(x1 + 1)2

.

And similarly for x2 and x3 we get

(
r2 +

x2 − 1
x2 + 1

)(
r3 +

x2 − 1
x2 + 1

)
=

2(1− x2)
(x2 + 1)2

,

(
r3 +

x3 − 1
x3 + 1

)(
r1 +

x3 − 1
x3 + 1

)
=

2(1− x3)
(x3 + 1)2

.
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Now we can solve the first and third equations for r2 and r3 respectively in terms of r1, x1, x3.

Substituting these into the second equation, we can then solve it for r1 in terms of x1, x2, x3,

obtaining

r1 =
−1− x1x3 + x3 + x1 ±

√
2(1− x1)(1− x2)(1− x3)

2x2 − x1 + x1x3 − 1− x3
. (5.1)

Since xi = pi

qi
for i = 1, 2 we have by Theorem 4.1.1 that

x1 =
b1m

2
1 − c1n

2
1

b1m2
1 + c1n2

1

, x2 =
b2m

2
2 − c2n

2
2

b2m2
2 + c2n2

2

,

70



where β = b1c1 = b2c2 are two factorizations of the square-free integer β, and where mi, ni

can be chosen from the non-negative integers. Hence

x3 = x1x2 −
√

(1− x2
1)(1− x2

2)

=
(b1m

2
1 − c1n

2
1)(b2m

2
2 − c2n

2
2)

(b1m2
1 + c1n2

1)(b2m2
2 + c2n2

2)
−

√√√√(1−
(

b1m2
1 − c1n2

1

b1m2
1 + c1n2

1

)2
)(

1−
(

b2m2
2 − c2n2

2

b2m2
2 + c2n2

2

)2
)

=
(b1m

2
1 − c1n

2
1)(b2m

2
2 − c2n

2
2)

(b1m2
1 + c1n2

1)(b2m2
2 + c2n2

2)

−

√(
(b1m2

1 + c1n2
1)2 − (b1m2

1 − c1n2
1)2
) (

(b2m2
2 + c2n2

2)2 − (b2m2
2 − c2n2

2)2
)

(b1m2
1 + c1n2

1)(b2m2
2 + c2n2

2)

=
(b1m

2
1 − c1n

2
1)(b2m

2
2 − c2n

2
2)

(b1m2
1 + c1n2

1)(b2m2
2 + c2n2

2)
−

√(
4b1c1m2

1n
2
1

) (
4b2c2m2

2n
2
2

)
(b1m2

1 + c1n2
1)(b2m2

2 + c2n2
2)

=
(b1m

2
1 − c1n

2
1)(b2m

2
2 − c2n

2
2)

(b1m2
1 + c1n2

1)(b2m2
2 + c2n2

2)
− 4m1m2n1n2

√
b1c1b2c2

(b1m2
1 + c1n2

1)(b2m2
2 + c2n2

2)

=

(
b1m

2
1 − c1n

2
1

) (
b2m

2
2 − c2n

2
2

)
− 4m1m2n1n2β

(b1m2
1 + c1n2

1)(b2m2
2 + c2n2

2)
.

Substituting these expressions for x1, x2, x3 into Equation 5.1, we get an expression for r1

in terms of b1, b2, c1, c2,m1,m2, n1, n2:

r1 =
n1(b2c

2
1m

2
2n

3
1 + 2βc1m1m2n

2
1n2 + b1c1c2m

2
1n1n

2
2)

b1c1c2m2
1n

2
1n

2
2 − b2c2

1m
2
2n

4
1 + c2

1c2n4
1n

2
2 − 2βc1m1m2n3

1n2 + b2
1c2m4

1n
2
2

± n1n2(b1m
2
1 + c1n

2
1)
√

c1c2(b1c2m2
1n

2
2 + 2βm1m2n1n2 + b2c1m2

2n
2
1)

b1c1c2m2
1n

2
1n

2
2 − b2c2

1m
2
2n

4
1 + c2

1c2n4
1n

2
2 − 2βc1m1m2n3

1n2 + b2
1c2m4

1n
2
2

.
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This expression has one term to the one-half power, so in order for r1 to be rational, this term

must be a perfect square. The term under the radical is c1c2(b1m
2
1c2n

2
2 + 2m1n1m2n2β +

c1n
2
1b2m

2
2). Thus we must find conditions for when this term is a square. Using the fact

that β = b1c1 = b2c2, we can reduce this expression:

c1c2(b1c2m
2
1n

2
2 + 2βm1m2n1n2 + b2c1m

2
2n

2
1) = βc2

2m
2
1n

2
2 + 2βc1c2m1m2n1n2 + βc2

1m
2
2n

2
1

= β(c2m1n2 + c1m2n1)2.

Thus this expression will only yield a perfect square when β = 1. Going back up to the first

section of this chapter, r1 is therefore rational only when q2
i − p2

i = s2
i , or in other words

when 1− x2
i is a perfect square for i = 1, 2.

Proposition 5.2.1. The 3-petaled flower where the radii r1, r2, r3 are parametrized by the

method given here has rational radii only when β = 1, that is when 1− x2
i is the square of a

rational number.

Now we can write a parametrization for the cosines xi and the radii ri in the case where

n = 3. Let m1, n1,m2, n2 ∈ N. Then

x1 =
m2

1 − n2
1

m2
1 + n2

1

,

x2 =
m2

2 − n2
2

m2
2 + n2

2

,

x3 =

(
m2

1 − n2
1

) (
m2

2 − n2
2

)
− 4m1m2n1n2

(m2
1 + n2

1)(m
2
2 + n2

2)
. (5.2)
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Figure 5.2: A 3-petaled flower where the radius of one petal is increased to infinity.

r1 =
n1(m1n2 + m2n1)

−m2
1n2 − n2

1n2 ± (m1n1n2 + m2n2
1)

r2 =
n1n2

−n1n2 ± (m2n1 + m1n2)

r3 =
n2(m1n2 + m2n1)

−m1n2
2 −m2n1n2 ± (n1n2

2 + m2
2n1)

.

We will determine the signs of the terms in the denominator in what follows.

5.3 Obtaining Meaningful Solutions

Proposition 5.3.1. If θ1, θ2, θ3 are the angles incident on the center of the eye of a 3-petaled

flower, then 90◦ < θi < 180◦ for each i. These three inequalities are all sharp.

Proof. Consider a 3-petaled flower. Keep the radii r1 and r2 fixed and let r3 → ∞. Then

the radius r of the central coin will increase and θ1, the angle between the first and second

coins, will decrease. Figure 5.2 illustrates this situation.

By symmetry it suffices to show that θ1 > 90◦. If we start with Figure 5.2 and draw a
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line parallel to the infinite circle that goes through the center of the central coin, we have 2

right triangles with side lengths ri − r, ri + r, and using the Pythagorean theorem, 2
√

rir.

Therefore, the length of the segment forming the bottom of the rhombus we are investigating

is 2
(√

r1r +
√

r2r
)
.

We can now draw a segment parallel to this segment and passing through the center of

the coin with the smaller radius. Without loss of generality, say r1 ≤ r2. Now we have a

right triangle with side lengths 2
(√

r1r +
√

r2r
)
, r2− r1 and r1 + r2. Then the Pythagorean

theorem gives us:

4 (
√

r1r +
√

r2r)
2 + (r2 − r1)2 = (r1 + r2)2

which can be solved for r, obtaining

r =
r1r2(√

r1 +
√

r2

)2 .

With this expression for r, we can show that (r1 + r2)2 > (r + r1)2 +(r + r2)2 which implies

θ1 > 90◦:
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(r1 + r2)2 =
(r1 + r2)2

(√
r1 +

√
r2

)4(√
r1 +

√
r2

)4
=

r4
1 + r4

2 + 14r2
1r

2
2 + 8

(
r1r

3
2 + r3

1r2

)
+ 12r

5/2
1 r

3/2
2 + 12r

3/2
1 r

5/2
2 + 4

(
r
7/2
1

√
r2 +

√
r1r

7/2
2

)
(√

r1 +
√

r2

)4
>

r4
1 + r4

2 + 8
(
r2
1r

2
2 + r3

1r2 + r
5/2
1 r

3/2
2 + r

3/2
1 r

5/2
2 + r1r

3
2

)
+ 4

(
r
7/2
1

√
r2 +

√
r1r

7/2
2

)
(√

r1 +
√

r2

)4
=

2r2
1r

2
2 + (2r2

1r2 + 2r1r
2
2)
(√

r1 +
√

r2

)2 + (r2
1 + r2

2)
(√

r1 +
√

r2

)4(√
r1 +

√
r2

)4
=

(
r1r2 + r1

(√
r1 +

√
r2

)2(√
r1 +

√
r2

)2
)2

+

(
r1r2 + r2

(√
r1 +

√
r2

)2(√
r1 +

√
r2

)2
)2

=

(
r1r2(√

r1 +
√

r2

)2 + r1

)2

+

(
r1r2(√

r1 +
√

r2

)2 + r2

)2

= (r + r1)2 + (r + r2)2.

We now know that for all the angles θi, we have 90◦ < θi < 180◦, and hence −1 <

cos θi < 0. So in the parameterization of x1 and x2

x1 =
m2

1 − n2
1

m2
1 + n2

1

, x2 =
m2

2 − n2
2

m2
2 + n2

2

,

we must choose ni > mi.

Then, by 5.2, for x3 we must have
(
m2

1 − n2
1

) (
m2

2 − n2
2

)
− 4m1m2n1n2 < 0, but we see

that this is equivalent to (m1n2 + m2n1)2 > (m1m2 − n1n2)2.

75



Since mi < ni this is equivalent to m1n2 + m2n1 > n1n2 −m1m2, or equivalently

m1n2 + m2n1 + m1m2 > n1n2. (5.3)

There is also a choice between taking the positive or negative term in the equations for

the radii. For example, in the equation for r1:

r1 =
n1(m1n2 + m2n1)

−m2
1n2 − n2

1n2 ± (m1n1n2 + m2n2
1)

,

the terms in the numerator will always be positive, and we can see that in order for the

radius to be positive, we must necessarily take the positive term and we get the additional

constraint that n1(m1n2 + m2n1) > n2(m2
1 + n2

1). Then re-solving for the radii r2 and r3

using the positive term in the equation for r1, we have:

r2 =
n1n2

m2n1 + m1n2 − n1n2

r3 =
n2(m1n2 + m2n1)

n1n2
2 + m2

2n1 −m1n2
2 −m2n1n2

,

which give us two additional constraints in order to assure positive radii: m2n1 + m1n2 >

n1n2 and n1(m2
2+n2

2) > n2(m1n2+m2n1). Note that the first of these constraints is stronger

than (5.3), and so will replace it in the following summarizing theorem:

Theorem 5.3.2. Let m1, n1,m2, n2 ∈ N with n1 > m1 and n2 > m2, m1n2 +m2n1 > n1n2,

n1(m1n2 + m2n1) > n2(m2
1 + n2

1), and n1(m2
2 + n2

2) > n2(m1n2 + m2n1). Then the cosines
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xi and the radii ri are parametrized by:

x1 =
m2

1 − n2
1

m2
1 + n2

1

,

x2 =
m2

2 − n2
2

m2
2 + n2

2

,

x3 =

(
m2

1 − n2
1

) (
m2

2 − n2
2

)
− 4m1m2n1n2

(m2
1 + n2

1)(m
2
2 + n2

2)

and

r1 =
n1(m1n2 + m2n1)

m1n1n2 + m2n2
1 −m2

1n2 − n2
1n2

r2 =
n1n2

m2n1 + m1n2 − n1n2

r3 =
n2(m1n2 + m2n1)

n1n2
2 + m2

2n1 −m1n2
2 −m2n1n2

.

Example 5.3.3. Let m1 = 1, n1 = 2, m2 = 4, and n2 = 5. We can see that the constraints

will be satisfied:

m1n2 + m2n1 = 1 · 5 + 4 · 2 = 13 > 10 = 2 · 5 = n1n2

n1(m1n2 + m2n1) = 2(1 · 5 + 4 · 2) = 26 > 25 = 5(1 + 4) = n2(m2
1 + n2

1)

n1(m2
2 + n2

2) = 2(16 + 25) = 82 > 65 = 5(1 · 5 + 4 · 2) = n2(m1n2 + m2n1).

Then we have:

x1 = −3
5
, x2 = − 9

41
, x3 = −133

205
.
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And the radii:

r1 = 26, r2 =
54
11

, r3 =
351
59

.

Or, if we chose to scale to make an integral flower:

r = 649, r1 = 16874, r2 = 3186, r3 = 3861.

5.4 Descartes’ Circle Theorem

Theorem 5.4.1 (Descartes’ Circle Theorem [2]). A collection of four mutually tangent

circles in the plane, where bi = 1
ri

denotes the curvatures of the circles, satisfies the relation:

b2
1 + b2

2 + b2
3 + b2

4 =
1
2
(b1 + b2 + b3 + b4)2.

Four mutually tangent circles in the plane are sometimes referred to as Soddy circles for

Frederick Soddy, an English chemist who rediscovered Descartes’ Circle Theorem in 1936

[2].

Theorem 5.4.2 (Graham et al. [5]). The following parametrization characterizes the inte-

gral curvatures of a set of Soddy circles:

b1 = x

b2 = d1 − x

b3 = d2 − x

b4 = −2m + d1 + d2 − x

where x2 + m2 = d1d2 and 0 ≤ 2m ≤ d1 ≤ d2.

Theorem 5.4.3. The parameterization given in Theorem 5.3.2 characterizes all sets of four
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mutually tangent circles of rational radius in the plane.

Proof. It is straightforward to check that the parameterization from Theorem 5.3.2 satisfies

Descartes’ Circle Theorem.

To compare with the parametrization in Theorem 5.4.2, suppose we have some set of

integral curvatures (b1, b2, b3, b4) where b1 is the curvature of the fourth, either interior or

exterior, circle. We can constrain b1 > 0 to ensure that it is the configuration with the

fourth coin interior. If we scale so that the radius of the inner circle is 1, the radii are then

given by

r1 =
b1

b2
, r2 =

b1

b3
, r3 =

b1

b4
.

If we replace b1, b2, b3, b4 in these equations with the parametrization in Theorem 5.4.2,

we can then solve

b1

b2
= r1 =

n1(m1n2 + m2n1)
−m2

1n2 − n2
1n2 + m1n1n2 + m2n2

1

b1

b3
= r3 =

n2(m1n2 + m2n1)
−m1n2

2 −m2n1n2 + n1n2
2 + m2

2n1

b1

b4
= r2 =

n1n2

−n1n2 + m2n1 + m1n2
.

for d1, d2,m in terms of m1,m2, n1, n2, and x, which will be a free variable to be chosen

from the positive integers:
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m =
x(n1n2 −m1m2)

m1n2 + m2n1

d1 =
xn2(m2

1 + n2
1)

n1(m1n2 + m2n1)

d2 =
xn1(m2

2 + n2
2)

n2(m1n2 + m2n1)
.

We can see that all the conditions in Theorem 5.4.2, except one, will be satisfied:

x2 + m2 − d1d2 = x2 + x2 (n1n2 −m1m2)2

(m1n2 + m2n1)2
− x2 n2(m2

1 + n2
1)

n1(m1n2 + m2n1)
xn1(m2

2 + n2
2)

n2(m1n2 + m2n1)

= 0.

The first inequality, 0 ≤ 2m, will clearly hold when we choose x,m1 < n1,m2 < n2 to

be positive integers, as we have previously stated.

Remark 5.4.4. The second inequality, 2m ≤ d1, is not always satisfied due to a difference in

the range of the parameterizations. If we were to insist upon this inequality being satisfied,

we still might obtain all solutions. However, this is not necessary, because no additional

solutions are obtained by forcing this inequality to be satisfied.

The third inequality is d1 ≤ d2. This can also be shown using the inequality constraints
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from Theorem 5.3.2:

d1 =
xn2(m2

1 + n2
1)

n1(m1n2 + m2n1)

≤ xn1n2(m1n2 + m2n1)
n1n2(m1n2 + m2n1)

≤ xn1(m2
2 + n2

2)
n2(m1n2 + m2n1)

= d2.

Therefore we see that Graham et al.’s characterization of Soddy circles is implied by

our parametrization of wheel graphs with n = 3 petals and rational radii given in Theorem

5.3.2.

Remark 5.4.5. The parametrization given by Graham et al in Theorem 5.4.2 relies on

solving the Diophantine equation x2 +m2 = d1d2, while the parametrization developed here

and given in Theorem 5.3.2 does not rely on satisfying any such equation, only inequalities.

81



Chapter 6: Rational Solutions when n ≥ 4

6.1 Motivation

In this chapter, we will characterize all rational solutions when n = 4, for flowers with four

petals. We then show how this parametrization generalizes to give a large class of solutions

for flowers with n > 4 petals. We also demonstrate how this parametrization of the radii of

flowers also gives us a parametrization of the radii in a related, inverted problem.

The case of the wheel graph with n = 3 petals is a special one. With the four coins all

mutually tangent, the structure is rigid: once two of the three interior angles are specified,

the third interior angle and all the outer radii are then fixed. We can describe this system

as having two degrees of freedom: two of the angles.

When we move up to the case of the wheel graph with n = 4 petals, we find that this is

not the case. Specifying three of the four interior angles does fix the fourth interior angle,

but the radii can still vary. For example, Figure 6.1 shows two different valid configurations

with the same interior angles. The first three interior angles are chosen to be right angles

in this case, giving us a fourth right angle. But in the first configuration, we choose r1 = 3,

and the rest of the radii are then determined by the Pythagorean Theorem: r2 = r4 = 2

and r3 = r1 = 3. In the second configuration, we choose r1 = 13, which then determines

a different but equally valid configuration: r2 = r4 = 15
13 and r3 = r1 = 13. This system

can be described as having four degrees of freedom: three of the angles plus the radius of

one circle. In our parametrization, we will choose three of the four interior angles and one

radius, as described.
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Figure 6.1: Two different valid configurations with the same interior angles.

6.2 Parametrization when n = 4

When the lengths of the sides of a triangle are rational, the cosine will be rational. The

converse is not necessarily true, however. We would like to find rational radii that create

a flower configuration with 4 petals. For a necessary first step, we will determine what the

cosines must be.

For n = 4, Equation (3.1) yields

EC2(x1, x2) = EC2(x3, x4) (6.1)

and hence

x3x4 −
√

(1− x2
3)(1− x2

4) = x1x2 −
√

(1− x2
1)(1− x2

2).

Observation 6.2.1. For rationals a1, a2, b1, b2 with

a1 +
√

b1 = a2 +
√

b2
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then either

1. a1 = a2 and b1 = b2, or

2.
√

b1,
√

b2 ∈ Q.

We can apply the observation to obtain two cases:

Case 1: x3x4 = x1x2 and (1− x2
3)(1− x2

4) = (1− x2
1)(1− x2

2).

Expanding the second equation and then applying the first, we have:

1− x2
3 − x2

4 + (x3x4)2 = 1− x2
1 − x2

2 + (x1x2)2

x2
3 + x2

4 = x2
1 + x2

2.

Hence (x3, x4) and (x1, x2) represent points on the same circle. Since x1x2 = x3x4 and

x2
1 + x2

2 = x2
3 + x2

4 then (x1 + x2)2 = (x3 + x4)2 and hence x3 + x4 = ±(x1 + x2).

Solving for x4, we have x4 = x1x2
x3

and x4 = ±(x1 + x2) − x3. Therefore, x1x2
x3

=

±(x1 + x2) − x3. Now we have (x3 − x1)(x3 − x2) = 0 or (x3 + x1)(x3 + x2) = 0. By

symmetry we may also state x3 = ±x1, and therefore x4 = ±x2.

Example: Let x1 = −3
5 and x2 = −4

5 . Then x3 = ±3
5 , x4 = ±4

5 . Selecting a reasonable

combination of signs (for example, x3 = 3
5 , x4 = 4

5) and putting these values into the original

Law of Cosines equations along with a seed value for one of the radii (in this case r1 = 5,)

we obtain

r1 = 5, r2 = 24, r3 = 15, r4 =
16
59

.

Case 2:
√

(1− x2
3)(1− x2

4),
√

(1− x2
1)(1− x2

2) ∈ Q. So as we saw in the case where

n = 3, we can write this with xi = pi

qi
and then re-write them as 1

q3q4

√
(q2

3 − p2
3)(q

2
4 − p2

4) and

1
q1q2

√
(q2

1 − p2
1)(q

2
2 − p2

2). When (q2
i −p2

i )(q
2
i+1−p2

i+1) is a square, we can write q2
i −p2

i = s2
i β

for i = 1, 2 and q2
i − p2

i = s2
i α for i = 3, 4, where α, β are square-free. Then we have
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q2
1 − p2

1 = s2
1β, q2

2 − p2
2 = s2

2β, q2
3 − p2

3 = s2
3α, and q2

4 − p2
4 = s2

4α.

Recalling the solution of the Diophantine equation p2 + βs2 = q2 where β is square-free

from Theorem 4.1.1, and since xi = pi

qi
for i = 1, 2 we have in either case that

x1 =
b1m

2
1 − c1n

2
1

b1m2
1 + c1n2

1

,

x2 =
b2m

2
2 − c2n

2
2

b2m2
2 + c2n2

2

,

x3 =
b3m

2
3 − c3n

2
3

b3m2
3 + c3n2

3

,

x4 =
1

(b3m2
3 + c3n2

3)(b2m2
2 + c2n2

2)(b1m2
1 + c1n2

1)
(b3c1c2m

2
3n

2
1n

2
2 + b1c2c3m

2
1n

2
2n

2
3 (6.2)

+ 4βc3m1m2n1n2n
2
3 + b1b2b3m

2
1m

2
2m

2
3 + b2c1c3m

2
2n

2
1n

2
3

− (b1b3c2m
2
1m

2
3n

2
2 + c1c2c3n

2
1n

2
2n

2
3 + 4βb3m1m2m

2
3n1n2 + b2b3c1m

2
2m

2
3n

2
1 + b1b2c3m

2
1m

2
2n

2
3)

± (4
√

αβ(b2m1m
2
2m3n1n3 + b1m

2
1m2m3n2n3 − c1m2m3n

2
1n2n3 − c2m1m3n1n

2
2n3))

where x4 is derived by solving Equation (6.1) for x4 and as in the parametrization from

Chapter 5, β = b1c1 = b2c2 and α = b3c3 are factorizations of the square-free integers α and

β and mi, ni can be chosen from the non-negative integers.

In order to guarantee that the fourth cosine x4 is rational, the product αβ must equal a

square. Since both are square-free integers, this implies α = β.

Observation 6.2.2. Since x4 ∈ Q, we have that α = β must hold.

85



As we saw in the previous chapter, we can manipulate the equations for the xi to obtain:

(
r1 +

x1 − 1
x1 + 1

)(
r2 +

x1 − 1
x1 + 1

)
=

2(1− x1)
(x1 + 1)2

, (6.3)

(
r2 +

x2 − 1
x2 + 1

)(
r3 +

x2 − 1
x2 + 1

)
=

2(1− x2)
(x2 + 1)2

,

(
r3 +

x3 − 1
x3 + 1

)(
r4 +

x3 − 1
x3 + 1

)
=

2(1− x3)
(x3 + 1)2

,

(
r4 +

x4 − 1
x4 + 1

)(
r1 +

x4 − 1
x4 + 1

)
=

2(1− x4)
(x4 + 1)2

.

Instead of solving this whole system, we can simply let r1 = p
q for some p, q ∈ Q− {0}.

Then we can substitute the expressions for r1 and x1 into the first of the manipulated Law of

Cosines equations (6.3) and solve for r2. Continuing down the list, we then get expressions

for all the radii:

r2 =
c1n

2
1(p + q)

b1pm2
1 − c1qn2

1

r3 =
c2pn2

2(b1m
2
1 + c1n

2
1)

c1n2
1(b2pm2

2 + b2qm2
2 + c2qn2

2)− b1c2pm2
1n

2
2

r4 =
c1c3n

2
1n

2
3(p + q)(b2m

2
2 + c2n

2
2)

X

X = c2pn2
2(b1b3m

2
1m

2
3 + b1c3m

2
1n

2
3 + b3c1m

2
3n

2
1)

− c1c3n
2
1n

2
3(b2pm2

2 + b2qm
2
2 + c2qn

2
2).

6.3 Obtaining Meaningful Solutions

In the n = 3 case, we have from Proposition 5.3.1 that for all the angles θi, 90◦ < θi < 180◦,

so −1 < cos θi < 0. When n = 4, we don’t have such a neat description. However, we do

know that for all the angles θi, 0◦ < θi < 180◦, and so 0 < sin θi < 1.
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At the very least we know that the sum of the first 3 angles must be less than 2π. Of

the 3 angle measures chosen, at least one must have the property θi > π
3 (thus xi < 0.5)

and at least one must have the property θj < 2π
3 (thus xj > −0.5.)

Additionally, we must choose the sign in the denominator of x4. Not only does x4 need

to satisfy Equation 6.1, but also

x4 = x1x2x3 − x1

√
1− x2

2

√
1− x2

3 − x2

√
1− x2

1

√
1− x2

3 − x3

√
1− x2

1

√
1− x2

2

=
1

(b1m2
1 + c1n2

1)(b2m2
2 + c2n2

2)(b3m2
3 + c3n2

3)
(b1b2b3m

2
1m

2
2m

2
3 + b1c2c3m

2
1n

2
2n

2
3

+ b2c1c3m
2
2n

2
1n

2
3 + b3c1c2m

2
3n

2
1n

2
2 + 4βc2m1m3n1n

2
2n3 + 4βc3m1m2n1n2n

2
3

+ 4βc1m2m3n
2
1n2n3 − (b1b2c3m

2
1m

2
2n

2
3 + b1b3c2m

2
1m

2
3n

2
2 + b2b3c1m

2
2m

2
3n

2
1

+ c1c2c3n
2
1n

2
2n

2
3 + 4βb1m

2
1m2m3n2n3 + 4βb2m1m

2
2m3n1n3 + 4βb3m1m2m

2
3n1n2)),

which corresponds to taking the negative sign in the denominator of (6.2).

In order for the radii to be positive, we must have b1pm2
1 > c1qn

2
1, c1n

2
1(b2pm2

2 +b2qm
2
2 +

c2qn
2
2) > b1c2pm2

1n
2
2, and c2pn2

2(b1b3m
2
1m

2
3 + b1c3m

2
1n

2
3 + b3c1m

2
3n

2
1) > c1c3n

2
1n

2
3(b2pm2

2 +

b2qm
2
2 + c2qn

2
2).

Theorem 6.3.1. Let m1, n1,m2, n2,m3, n3 ∈ N, b1, c1, b2, c2, b3, c3 ∈ N with the properties

that β = b1c2 = b2c2 = b3c3, and β is square-free. Constrain further that b1pm2
1 > c1qn

2
1,

c1n
2
1(b2pm2

2 +b2qm
2
2 +c2qn

2
2) > b1c2pm2

1n
2
2, and c2pn2

2(b1b3m
2
1m

2
3 +b1c3m

2
1n

2
3 +c1b3m

2
3n

2
1) >

c1c3n
2
1n

2
3(b2pm2

2 +b2qm
2
2 +c2qn

2
2) and that at least one of x1, x2, x3 has the property xi < 0.5

and at least one has the property xj > −0.5. Then the cosines xi and the radii ri are
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parametrized by:

x1 =
b1m

2
1 − c1n

2
1

b1m2
1 + c1n2

1

,

x2 =
b2m

2
2 − c2n

2
2

b2m2
2 + c2n2

2

,

x3 =
b3m

2
3 − c3n

2
3

b3m2
3 + c3n2

3

x4 =
1

(b3m2
3 + c3n2

3)(b2m2
2 + c2n2

2)(b1m2
1 + c1n2

1)
(b3c1c2m

2
3n

2
1n

2
2 + b1c2c3m

2
1n

2
2n

2
3

+ 4βc3m1m2n1n2n
2
3 + b1b2b3m

2
1m

2
2m

2
3 + b2c1c3m

2
2n

2
1n

2
3

− (b1b3c2m
2
1m

2
3n

2
2 + c1c2c3n

2
1n

2
2n

2
3 + 4βb3m1m2m

2
3n1n2 + b2b3c1m

2
2m

2
3n

2
1 + b1b2c3m

2
1m

2
2n

2
3)

− (4βb2m1m
2
2m3n1n3 + 4βb1m

2
1m2m3n2n3 − 4βc1m2m3n

2
1n2n3 − 4βc2m1m3n1n

2
2n3))

and

r2 =
c1n

2
1(p + q)

b1pm2
1 − c1qn2

1

r3 =
c2pn2

2(b1m
2
1 + c1n

2
1)

b2c1pm2
2n

2
1 + b2c1qm2

2n
2
1 + c1c2qn2

1n
2
2 − b1c2pm2

1n
2
2

r4 =
c1c3n

2
1n

2
3(p + q)(b2m

2
2 + c2n

2
2)

X

X = c2pn2
2(b1b3m

2
1m

2
3 + b1c3m

2
1n

2
3 + b3c1m

2
3n

2
1)

− c1c3n
2
1n

2
3(b2pm2

2 + b2qm
2
2 + c2qn

2
2).

This parametrization characterizes all 4-petaled flowers with rational radii.

Example 6.3.2. Let β = 1. Then bi = ci = 1 for i = 1, 2, 3. Choose m1 = 1, n1 = 2,m2 =
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1, n2 = 3,m3 = 2, n3 = 1, p = 5, q = 1. We see that the constraints are satisfied:

b1pm2
1 = 5 > 4 = c1qn

2
1.

c1n
2
1(b2pm2

2 + b2qm
2
2 + c2qn

2
2) = 60 > 45 = b1c2pm2

1n
2
2.

c2pn2
2(b1b3m

2
1m

2
3 + b1c3m

2
1n

2
3 + b3c1m

2
3n

2
1) = 945 > 60 = c1c3n

2
1n

2
3(b2pm2

2 + b2qm
2
2 + c2qn

2
2).

Then using the parametrization, we have:

x1 = −3
5
, x2 = −4

5
, x3 =

3
5
, x4 =

4
5
,

r1 = 5, r2 = 24, r3 = 15, r4 =
16
59

,

or, if we wish to have an integral solution

r = 59, r1 = 295, r2 = 1416, r3 = 885, r4 = 16.

Finally, we have in this case that x1 and x2 are less than 0.5, while x3 and x4 are greater

than -0.5.

6.4 Generalization for n > 4

This method of parameterizing the radii of wheel graphs with n = 4 petals can be generalized

for wheel graphs with n > 4 petals. The parametrization will simply have n degrees of

freedom, which we will constrain by choosing n−1 of the interior angles and one of the radii

in the same manner as for the n = 4 case.

The first n − 1 cosines then can be given by xi = bim
2
i−cin

2
i

bim2
i +cin2

i
, the nth cosine using an
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equation in the style of Remark 3.2.8, and the radii will be determined by solving the

manipulated Law of Cosines equations, so we will have

ri+1 =
−rixi − xi + ri + 1
rixi + ri + xi − 1

for 1 < i ≤ n− 1.

Remark 6.4.1. For n ≥ 5 this will give a family of rational solutions, but not necessarily

all solutions (as in the cases when n = 3 and n = 4.)

As we increase the number of petals, it becomes increasingly hard to characterize when

we will obtain meaningful solutions. We know that the sum of the first n − 1 angles must

be less than 2π, so we can say that of the n − 1 angle measures chosen, at least one must

have the property θi > π
n and at least one must have the property θj < 2π

n .

6.5 Inversion about a Circle

Definition 6.5.1. The inversion about a circle C centered at point O sends a point P

to a point P ′ such that the points O,P, P ′ are collinear and the product of the distances

|OP | · |OP ′| equals the square of the radius of the circle.

Inversion about a circle C maps lines and circles to lines and circles. More specifically,

(i) a circle that does not pass through the center of C is inverted to another circle that also

does not pass through the center of C, and (ii) a circle is mapped to itself if and only if it

intersects the circle C at two right angles.

Now that we have a characterization of all rational solutions for flowers with n = 3, 4

petals and presented a class of rational solutions for each n ≥ 4, we can use inversion about

a circle to obtain all corresponding solutions to a related problem:

If we invert about the center coin of the flower, which has radius 1, each petal of radius

ri will be sent to a circle of radius 1
ri

tangent to the central circle from the interior. Figure
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Figure 6.2: A 5-petaled flower inverted about the center coin.

6.2 shows a 5-petaled flower inverted about its center coin. Inversion about a circle preserves

tangencies, so the result will be an arrangement of n circles around the inside of a circle

of radius 1 such that the n circles fit perfectly. By taking the reciprocal of any set of

solutions obtained from the parametrization described above, we get a solution to this

inverted problem. Thus we have also characterized the solutions to this related problem

for n = 3, 4.
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Chapter 7: Summary and Future Work

7.1 Summary of Major Results

In chapter one, we revisit Harborth’s result on the maximum number of edges of a unit

coin graph (Propositions 1.2.1 and 1.2.3.) The proof given here expands the exposition for

the lower bound and simplifies the argument for the upper bound. We also use a similar

explicit construction method to establish a lower bound on the maximum number of edges

in a special case of a coin graph on two radii in Proposition 1.4.2.

In chapter two, we proved Theorem 2.2.1, which gives the exact maximum number of

edges in a plane graph on n vertices, where each vertex bounds some l-gon for l ≥ k. From

here we get the specific case when k = 4, given in Corollary 2.2.3.

In chapter three, we first investigated equations describing the cosines of the internal

angles of a flower in terms of what rational radii could satisfy them. We showed that for

each n-petaled flower, there is one radical equation that must be satisfied. These equations

correspond to polynomial equations. We found the smallest such polynomial equations

describing this relationship. Using Galois theory, we then showed that these polynomials

are symmetric (Theorem 3.2.15) and irreducible (Theorem 3.2.25.) They are also presented

recursively in Theorem 3.2.20 and Claim 3.2.22.

Chapter four detailed the proof of two generalizations of the Pythagorean Triples, The-

orem 4.1.1 and Lemma 4.1.3.

In chapter five, Theorem 5.3.2 characterizes all rational solutions for flowers with three

petals. We then compared this parametrization to an existing parametrization of the cur-

vatures of four mutually tangent circles and showed how our equation-free parametrization

implies the existing one.
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In chapter six, Theorem 6.3.1 characterizes all rational solutions for flowers with four

petals. We then showed how this parametrization generalizes to give a large class of solutions

for flowers with n > 4 petals. We also demonstrated how the parametrization of the radii

of flowers also gives us a parametrization of the radii in a related, inverted problem.

7.2 Future Work

Several open questions remain, and some additional questions have been suggested by this

research. The following are a few of these questions for future research:

• Establish an upper bound on T (1, r;n) (the 2-radii case) and prove Conjecture 1.4.4.

• Prove Conjecture 2.1.3 for the collection of unit-flowered coin graphs.

• Find a complete characterization of rational n-wheels for n > 4, not just a large class

of solutions.

• Investigate the existence of a non-flowerable configuration which yields the upper

bound T (n) =
⌊

11
4 n− 6

⌋
given in Corollary 2.2.3.

• Investigate the existence of a suitable set of n radii which yield no flowers.

• Use the characterization of flowers to bound the number of edges in various coin graphs.

• Investigate T (N;n) where the radii are drawn from the set N of natural numbers with

one copy of each element.

• Investigate Swanepoel’s Conjecture that the largest number of edges in a coin graph

with no triangular faces is given by b2n− 2
√

nc.

• Investigate a problem of Scheinerman’s: characterize which bipartite coin graphs func-

tion as systems of gears.
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Appendix A: Further Results

A.1 Further Results from Elementary Number Theory

In the early stage of this investigation, we were led to the question of of when

(bm2
1 + cn2

1)(b
2m2

1 + c2n2
1)(bm

2
2 + cn2

2)(b
2m2

2 + c2n2
2)

will be a perfect square. This is equivalent to (bm2
i + cn2

i )(b
2m2

i + c2n2
i ) = βz2

i for i = 1, 2

and β some square-free integer. As the first step to solve this latter version, we establish

the following:

Lemma A.1.1. For square-free relatively prime integers b and c and relatively prime integers

x and y we have

gcd(bx2 + cy2, b2x2 + c2y2) = lcm(gcd(b, y2) · gcd(c, x2), gcd(b− c, bx2 + cy2)).

Proof. By applying the Euclidean algorithm one time, we can obtain gcd(bx2 + cy2, b2x2 +

c2y2) = gcd((b− c)cy2, bx2 + cy2). Suppose pα divides c. Then pα divides bx2, but we know

that c and b are relatively prime, so pα divides c and x2. Now suppose qβ divides y2. Then

qβ divides bx2, but we know that x2 and y2 are relatively prime, so qβ divides y2 and b.

Therefore, any factor of gcd(bx2 + cy2, b2x2 + c2y2) is a factor of gcd(b, y2), gcd(c, x2), or

gcd(b − c, bx2 + cy2). Since gcd(b, c) = 1 and gcd(x, y) = 1, gcd(gcd(c, x2), gcd(b, y2)) = 1.

Therefore,

gcd(bx2 + cy2, b2x2 + c2y2) | lcm(gcd(b, y2), gcd(c, x2), gcd(b− c, bx2 + cy2))

= lcm(gcd(b, y2) · gcd(c, x2), gcd(b− c, bx2 + cy2)).

For the other inclusion, suppose pα divides lcm(gcd(b, y2) · gcd(c, x2), gcd(b − c, bx2 +
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cy2)). Then pα divides either gcd(b, y2) · gcd(c, x2) or gcd(b − c, bx2 + cy2) (or both.) As

mentioned above, gcd(b, y2) and gcd(c, x2) have no factors in common. Thus, pα divides

gcd((b− c)cy2, bx2 + cy2).

In particular, we have that gcd(bx2 + cy2, b2x2 + c2y2) divides lcm(bc, b− c).

Theorem A.1.2 (Legendre’s Equation [9]). The Diophantine equation

ax2 + by2 + cz2 = 0

has a nontrivial solution in the integers if and only if

−bc (mod a), −ca (mod b), −ab (mod c)

are quadratic residues, where a, b, and c are nonzero, square-free, pairwise relatively prime

integers, not all positive or all negative.

Example A.1.3. Consider the equation (bx2 + cy2)(b2x2 + c2y2) = dz2 for b = 3, c = 5,

and d = 11 · 13. So (3x2 + 5y2)(9x2 + 25y2) = 11 · 13z2. We may assume that gcd(x, y) = 1.

Then by Lemma A.1.1, the gcd of the two terms divides 2 · 3 · 5.

We can partition the equation by the two factors on the left-hand side and write (3x2 +

5y2) = d1 · f · z2
1 , (9x2 + 25y2) = d2 · f · z2

2 , where d = d1d2 is the square-free term on the

right-hand side of the original equation, z = fz1z2, and f is the square-free portion of the

gcd. A first observation is that in the second equation, the sum of two squares must equal

something that can be written as the sum of two squares, so the square-free term d2 must

be congruent to 1 modulo 4. Thus in this example, d2 = 1 or d2 = 13, so d1 = 11 · 13 or

d1 = 11. Now we have several cases, depending on which divisor of 2 · 3· f is. There are 8

cases altogether.

Case 1: The gcd of the two terms is 1. Then f = 1 and

case 1.1: 3x2 + 5y2 = 11 · 13 · z2
1 . Applying Legendre’s equation and using Maple, we see
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that 3 · 5 mod 143 is not a quadratic residue. Thus there are no nontrivial integer solutions

to this equation.

case 1.2: 3x2+5y2 = 11 ·z2
1 . Applying Legendre’s equation, we see that 3 ·11 mod 5 = 3

is not a quadratic residue. Thus there are no nontrivial integer solutions to this equation.

Case 2: The gcd of the two terms is 2. Then f = 2 and

case 2.1: 3x2 +5y2 = 11 ·13 ·2 ·z2
1 . Applying Legendre’s equation, we see that 3 ·2 ·11 ·13

mod 5 = 3 is not a quadratic residue. Thus there are no nontrivial integer solutions to this

equation.

case 2.2: 3x2 + 5y2 = 11 · 2 · z2
1 . Applying Legendre’s equation, we see that 2 · 5 · 11

mod 3 = 2 is not a quadratic residue. Thus there are no nontrivial integer solutions to this

equation.

Case 3: The gcd of the two terms is 3. Then f = 3 and

case 3.1: 3x2 + 5y2 = 11 · 13 · 3 · z2
1 . We cannot apply Legendre’s equation in this case,

because the coefficients are not relatively prime. However, if the gcd is 3, then 3 must divide

y2, and so 9 must divide y2, so we can let y = 3y′ and rewrite this equation as

3x2 + 5 · 9 · y′2 = 11 · 13 · 3 · z2
1

x2 + 15 · y′2 = 11 · 13 · z2
1 .

Now we can apply Legendre’s equation, and we see that 11·13 mod 15 = 8 is not a quadratic

residue. Thus there are no nontrivial integer solutions to this equation.

case 3.2: 3x2 +5y2 = 11 ·3 ·z2
1 . Rewriting the equation as above to be x2 +15y′2 = 11 ·z2

1

and applying Legendre’s equation, we see that 11 is not a quadratic residue modulo 15.

Thus there are no nontrivial integer solutions to this equation.

Case 4: The gcd of the two terms is 5. Then f = 5 and

case 4.1: 3x2 + 5y2 = 11 · 13 · 5 · z2
1 . We cannot apply Legendre’s equation in this case,

because the coefficients are not relatively prime. However, if the gcd is 5, then 5 must divide
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x2, and so 25 must divide x2, so we can let x = 5x′ and rewrite this equation as

3 · 25x′2 + 5y2 = 11 · 13 · 5 · z2
1

15x′2 + y2 = 11 · 13 · z2
1 .

Now we can apply Legendre’s equation, and we see that 11·13 mod 15 = 8 is not a quadratic

residue. Thus there are no nontrivial integer solutions to this equation.

case 4.2: 3x2 +5y2 = 11 ·5 ·z2
1 . Rewriting the equation as above to be 15x′2 +y2 = 11 ·z2

1

and applying Legendre’s equation, we see that 11 is not a quadratic residue modulo 15.

Thus there are no nontrivial integer solutions to this equation.

Case 5: The gcd of the two terms is 6. Then f = 6 and

case 5.1: 3x2 + 5y2 = 11 · 13 · 6 · z2
1 . We cannot apply Legendre’s equation in this case,

because the coefficients are not relatively prime. However, if the gcd is 6, then 3 must divide

y2, and so 9 must divide y2, so we can let y = 3y′ and rewrite this equation as

3x2 + 5 · 9y′2 = 11 · 13 · 6 · z2
1

x2 + 15y′2 = 11 · 13 · 2 · z2
1 .

Now we can apply Legendre’s equation, and we see that 15 is not a quadratic residue modulo

11 · 13 · 2. Thus there are no nontrivial integer solutions to this equation.

case 5.2: 3x2+5y2 = 11·6·z2
1 . Rewriting the equation as above to be x2+15y′2 = 11·2z2

1

and applying Legendre’s equation, we see that 22 mod 15 = 7 is not a quadratic residue.

Thus there are no nontrivial integer solutions to this equation.

Case 6: The gcd of the two terms is 10. Then f = 10 and

case 6.1: 3x2 + 5y2 = 11 · 13 · 10 · z2
1 . We cannot apply Legendre’s equation in this case,

because the coefficients are not relatively prime. However, if the gcd is 10, then 5 must
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divide x2, and so 25 must divide x2, so we can let x = 5x′ and rewrite this equation as

3 · 25x′2 + 5y2 = 11 · 13 · 10 · z2
1

15x′2 + y2 = 11 · 13 · 2 · z2
1 .

Now we can apply Legendre’s equation, and we see that 15 is not a quadratic residue modulo

11 · 13 · 2. Thus there are no nontrivial integer solutions to this equation.

case 6.2: 3x2+5y2 = 11·10·z2
1 . Rewriting the equation as above to be 15x′2+y2 = 11·2·z2

1

and applying Legendre’s equation, we see that 22 mod 15 = 7 is not a quadratic residue.

Thus there are no nontrivial integer solutions to this equation.

Case 7: The gcd of the two terms is 15. Then f = 15 and

case 7.1: 3x2 + 5y2 = 11 · 13 · 15 · z2
1 . We cannot apply Legendre’s equation in this case,

because the coefficients are not relatively prime. However, if the gcd is 15, then 5 must

divide x2, 3 must divide y2 and so 25 must divide x2 and 9 must divide y2, so we can let

x = 5x′ and y = 3y′ and rewrite this equation as

3 · 25x′2 + 5y2 = 11 · 13 · 15 · z2
1

15x′2 + y2 = 11 · 13 · 3 · z2
1

15x′2 + 9y′2 = 11 · 13 · 3 · z2
1

5x′2 + 3y′2 = 11 · 13 · z2
1 .

Now we can apply Legendre’s equation, and we see that 15 is not a quadratic residue modulo

11 · 13. Thus there are no nontrivial integer solutions to this equation.

case 7.2: 3x2+5y2 = 11·15·z2
1 . Rewriting the equation as above to be 5x′2+3y′2 = 11·z2

1

and applying Legendre’s equation, we see that 3 · 11 mod 5 = 3 is not a quadratic residue.

Thus there are no nontrivial integer solutions to this equation.

Case 8: The gcd of the two terms is 30. Then f = 30 and
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case 8.1: 3x2 + 5y2 = 11 · 13 · 30 · z2
1 . We cannot apply Legendre’s equation in this case,

because the coefficients are not relatively prime. However, if the gcd is 30, then 5 must

divide x2, 3 must divide y2 and so 25 must divide x2 and 9 must divide y2, so we can let

x = 5x′ and y = 3y′ and rewrite this equation as

3 · 25x′2 + 5y2 = 11 · 13 · 30 · z2
1

15x′2 + y2 = 11 · 13 · 6 · z2
1

15x′2 + 9y′2 = 11 · 13 · 6 · z2
1

5x′2 + 3y′2 = 11 · 13 · 2 · z2
1 .

Now we can apply Legendre’s equation, and we see that 3 · 2 · 11 · 13 mod 5 = 3 is not a

quadratic residue. Thus there are no nontrivial integer solutions to this equation.

case 8.2: 3x2+5y2 = 11·30·z2
1 . Rewriting the equation as above to be 5x′2+3y′2 = 11·2·z2

1

and applying Legendre’s equation, we see that 2 ·5 ·11 mod 3 = 2 is not a quadratic residue.

Thus there are no nontrivial integer solutions to this equation.

Therefore there are no nontrivial integer solutions to (3x2 +5y2)(9x2 +25y2) = 11 ·13z2.

In this way one is able to tackle each case of the equation (bx2 +cy2)(b2x2 +c2y2) = dz2,

although the method is tedious.
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