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ABSTRACT 

POPULATION GENETIC STRUCTURE OF THE RED-SPOTTED NEWT 
(NOTOPHTHALMUS VIRIDESCENS VIRIDESCENS) IN VIRGINIA 

Deborah Shaffer, M.S.  

George Mason University, 2021 

Dissertation Director:  Dr. Patrick Gillevet 

 

The red-spotted newt (Notophthalmus viridescens viridescens) is ubiquitous 

throughout eastern North America. Despite its commonness, gaps exist in our 

understanding of its population structure. The hypothesis, first proposed in the 1970’s, 

that the red-spotted newt exists as an intrametapopulational panmixis dependent on high 

levels of connectivity for its long- term persistence has not been adequately tested using 

the genetic tools developed since that time.  Instead, genetic analyses to date have 

focused on the population structures of the rarer subspecies of N. viridescens or on the 

phylogenetic relationships between these subspecies. To my knowledge, this is the first 

study of population structure conducted specifically on the red-spotted newt.  

To evaluate the genetic population structure, I collected sequence data on the 

mitochondrial D-loop and the flanking tRNAPro and tRNAPhe genes from nine populations 

of newts located in the Shenandoah Mountains west of Harrisonburg, Virginia and in the 

Massanutten Mountains.   The lack of sequence differentiation between these populations 

indicates a collection of breeding populations connected through gene flow, supporting 

the premise of a metapopulation structure.  This connectivity was maintained even 
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though the ponds were located on separate mountain ridges.  Presumably the contiguous, 

forested habitat between ponds allowed unimpeded dispersal between ponds.  The 

detection of unique haplotypes in an isolated Massanutten Mountain pond may indicate a 

recent disruption in gene flow and warrants further investigation.  The level of habitat 

disturbance seen in the Shenandoah Valley isolating this pond would be prohibitive to 

dispersal. 

An evaluation of microsatellite markers previously published and those developed 

for this study revealed the likelihood of polyploidy in these populations. Triploidy in N. 

viridescens had been observed previously through cytogenetic analysis; however, the 

tetraploidy observed in this study had not previously been documented.  It is unknown 

whether this is unique to the populations in this study.   

The long-term survival of the red-spotted newt is dependent on the connectivity of 

the sub-populations of the regional metapopulation.   As such, conservation efforts should 

focus on maintaining connectivity between populations.  This study has called attention 

to the need for further genetic research to identify populations at risk of genetic isolation.   
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CHAPTER ONE 

Amphibian Conservation Status 

 The decline of amphibian populations began as early as the 1970s and was 

first made aware to members of herpetology societies from around the world during the 

First World Congress of Herpetology (1989).   Since that initial recognition, subsequent 

research has shown the severity of the declines with more than one third of extant 

amphibian species listed in the IUCN Red List Categories of Vulnerable, Endangered or 

Critically Endangered ( IUCN 2017).  The most likely threats include anthropogenic land 

use changes leading to habitat destruction and fragmentation, infection by 

Batrachochytrium dendrobatidis, climate change, overexploitation, environmental 

chemical pollutants, and introduction of alien species (Blaustein and Kiesecker 2002; 

Beebee and Griffiths 2005).       

The newts and salamanders (Caudata) are the most endangered within the 

amphibian group, with 47 % of those species classified as threatened (Stuart et al. 2004).    

Nearly as concerning are the population trends of those species not considered at risk.   In 

the United States, amphibian species listed as Least Concern under the IUCN, showed a 

mean annual trend of -2.7% from 2002 to 2011 (Adams et al. 2013).  While these species 

of Least Concern show generally stable populations over most of their range, isolated 

areas of population declines may be early indicators of trouble.  For example, the Great 
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Crested Newt (Triturus cristatus) of Europe has seen a drastic reduction in numbers in 

the second half of the 20th century, despite its relatively wide distribution area. This 

decline has been primarily attributed to a shortage of suitable bodies of water because of 

increased agriculture (Langton et al. 2001).   Similarly, the North American newt species, 

Notophthalmus viridescens is currently listed as being of Least Concern while one of its 

subspecies, N. v. louisianensis (central newt),  is listed as threatened in outermost limits 

of the species’ range in Iowa and Kansas (Whitmore et al. 2013);  the loss in numbers is 

attributed to habitat loss and fragmentation (Camper 1988). 

The decline of amphibians has left conservationists struggling to find mitigation 

measures to prevent further losses. These efforts are complicated because declines are not 

isolated to degraded landscapes with populations in protected declining at similar rates 

(Adams et al. 2013).  To effectively respond, researchers must first distinguish whether a 

population decline can be attributed to anthropogenic causes or is part of the natural life 

history of the species (Băncilă et al. 2010).   An accurate assessment of the status of an 

amphibian species in a geographic area cannot be evaluated from a single snapshot in 

time.  Geographic ranges are reflections of both the current climate and landscapes of the 

areas, but also remnants of prehistoric range shifts and expansions. Similarly, the 

distribution of populations within a geographic range is subject to smaller scale changes, 

both natural and anthropogenic.   

Amphibian Population Structure 

All North American amphibian distributions can be traced to the climactic 

fluctuations found during the Pleistocene.  Amphibians are highly attuned to changes in 
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temperature and moisture due to their permeable skin, biphasic lifecycles and unshelled 

eggs, (Carey and Alexander 2003).  As such, the distribution of amphibians at the Last 

Glacial Maximum (LGM) was very different from present day. This was especially true 

of temperate regions where climate and landscape changes were most evident.  As 

temperatures warmed from the LGM to present, those populations isolated to refugia 

were able to expand (Waltari et al. 2007).   These migrations are thought to have led to 

the modern disjunct populations of some amphibians, which can be observed from their 

current genetic differentiation (Church et al. 2003).  However, the lack of fossil data from 

eastern North America from the Late Tertiary and Early to Middle Pleistocene has left 

much uncertainty (Graham 1999) and conflicting hypotheses for the origins of disjunct 

montane and coastal plain populations (Church et al. 2003).   Understanding the 

distributional responses to past climate fluxes can help predict the changes expected from 

current climate change.  The pace at which newly available habitats were historically 

recolonized can help identify those species unable to relocate fast enough to escape the 

ongoing changing climate.  The current level of isolation and the demographic history 

can elucidate the ability of species to adapt to disruptive climate changes. Species that 

were able to maintain gene flow between populations as environmental conditions 

changed were able to slow the process of geographic differentiation which is now evident 

in the lack of a genetically divergent population structure. The effects of these historic 

expansions and contractions are evident in the current population genetic diversity and 

phylogeographic divergence.   
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Since amphibians typically have low dispersal capacities and high site fidelity, 

they often show distinct population genetic structures over even relatively short 

geographical distances (Duellman and Trueb 1986).  Numerous divergent lineages were 

found for Pseudacris crucifer, most likely the result of expansion from southern 

Appalachian refugia beginning in the late Pliocene.  The incongruent levels of 

diversification revealed in comparative phylogeographic studies have been tentatively 

linked to dispersal ability (Austin et al. 2004).  Inferences about historical dispersal rates 

can be made from the level of phylogeographic divergence (Avise JC 2000). 

Conversely, identification of population dynamics and life history strategies can 

lead to inference of an expected genetic structure (Neville et al. 2006).  Although 

individual amphibians have a lower dispersal capability than a large mammal or bird, it is 

possible for the connectivity to be maintained over a large geographic distance if suitable 

habitat is contiguous.  For amphibians this means that each breeding site is within the 

dispersal distance to another site. Connectivity can be maintained indefinitely as long as 

no barriers between breeding sites exist and the intervening habitat is favorable. This 

arrangement of connected populations forming a larger regional population has been 

identified as a metapopulation.  Although the classical metapopulation structure may be 

true for many amphibian species, for others the characterization may be inaccurate and 

far more complicated.  The specific population structure can be inferred from the genetic 

structure of the population (Smith and Green 2005).  In reality, amphibian populations 

might not be easily classified by standard population models and may instead show 

distribution patterns with features from multiple models dependent on characteristics 
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unique to the species, such a site fidelity, vagility and disturbance tolerance.   

Metapopulation studies of even the same species have led to different conclusions, 

indicating that population structure may be adaptive to landscape conditions (Smith and 

Green 2005; Kinkead et al. 2007).   Rowe et al. (2000) found that the natterjack toad 

(Bufo calamita) most likely exhibited a combination of features from population models 

with either multiple highly connected subpopulations or a mainland island model (Rowe 

et al. 2000).  

When considering metapopulations at the local scale each deme can be viewed as 

a small population, susceptible to genetic drift.  However, since gene flow is the 

countering force to genetic drift, the between patch dynamics of a metapopulation are 

central to the genetic makeup at both the local and regional scale.  Assessing the genetic 

diversity of a metapopulation is complex and requires consideration of both spatial and 

temporal scales to evaluate the genetic size.  Completely isolated populations will show 

the predicted decline in heterozygosity attributed to genetic drift but the fixation of 

different alleles in each population is entirely random.  Therefore, heterozygosity in the 

global metapopulation will not decline even as individual populations show losses.  

Conversely, in a metapopulation showing nearly panmixic gene flow rates, total 

population heterozygosity will decline at the same rate as the subpopulations.  As all 

subpopulations become fixed for the same allele, total population heterozygosity will 

become zero (Allendorf 2013).  Intermediate gene flow is expected to maintain higher 

levels of heterozygosity both for the total population and subpopulations.     
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Metapopulation-like populations that deviate from the classical metapopulation 

present a more complicated picture.  It is unlikely that all demes are equivalent in their 

extinction risk and therefore gene flow may be unilateral with larger stable populations 

consistently acting as a source for the habitat patches of small extinction prone 

populations (Gaggiotti and Smouse 1996).   The genetic implications of this type of 

metapopulation structure will vary greatly from the classical model, primarily due to the 

rate of patch extinction and the characteristics of the founders  (Hedrick and Gilpin 

1997).  Regarding the founders, the two extreme possibilities are that all founders come 

from the same founding population or that colonization can come randomly from any of 

the demes. Of these two scenarios the former will reduce the effective population size  

(Ne  ) for the total population as will high rates of patch extinction (Slatkin 1977).      

Since patterns of population differentiation are most likely dependent on the scale 

of observation, researchers should examine subpopulation connectivity across a wide 

range of distances. Using a hierarchical design with inter-population distances ranging 

from 1–670 km Monsen and Blouin (2004) found that the cascades frog (Rana cascadae) 

showed increased overall genetic differentiation by distance and notably detected a sharp 

drop in gene flow at 10 km.  In general, most studies of large-scale amphibian 

populations found high levels of spatial structure (Shaffer et al. 2000). 

Since the persistence of a metapopulation is dependent on the equilibrium of 

patch extinction and colonization, the between patch dynamics affecting gene flow are of 

key importance to understanding genetic divergence of demes  (Knaepkens et al. 2004).   

While it is assumed that variations in species vagility, site fidelity and usage of matrix 
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composition are among the many natural factors influencing connectivity of habitat 

patches (Vandewege et al. 2013), alterations in either spatial arrangement or matrix 

functionality can reduce or eliminate between population immigration.  Land use changes 

that increase inter-patch distances are presumed to be disruptive to amphibians due to 

their purported limited dispersal abilities  (Hale et al. 2013).    If the dispersal distance 

between patches is greater than the species potential maximum migration, then gene flow 

cannot be expected; however, this distance appears to have been reportedly under-

estimated.  Although a distance of 1km is frequently used as the threshold for population 

isolation, a review of the literature found that the average maximum distance moved by 

anurans and salamanders to be more than double this value (Smith and Green 2005). By 

accurately calculating the maximum long-distance dispersal for each species, the 

feasibility of movement between patches can be better assessed.  

Determination of the maximum dispersal capability of a species is only one part 

of understanding the spatial patterns of metapopulation dynamics at the regional level. By 

incorporating landscape genetics into investigations of population structure and gene 

flow, a more complete analysis of geographic patterns of genetic variation can be made.   

A growing body of evidence suggests that amphibians are particularly sensitive to habitat 

alterations adjacent to breeding populations (Reh and Seitz 1990; Hitchings and Beebee 

1997;  Rowe et al. 2000; Lampert et al. 2003; Hale et al. 2013).  Thus, it is important to 

consider functional connectivity as well as spatial separation when assessing 

metapopulation connectivity.  In particular, the effects of urbanization have been found to 

disrupt demographic dispersal rates and the associated gene flow (Reh and Seitz 1990; 
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Hitchings and Beebee 1997; Vos et al. 2001; Arens et al. 2006; Cushman 2006; Hale et 

al. 2013).  Urbanization can directly impede movement due to the construction of 

physical barriers or the degradation of habitat such as loss of wetlands and significant 

increases in light and noise pollution  (Eigenbrod et al. 2009).  Additionally, the success 

rate for those individuals that do cross into inhospitable habitat can be very low.   A study 

of six amphibian species in Denmark found that the probability of a successful road 

crossing was as low as 0.02  (Hels and Buchwald 2001).  The implications for 

anthropogenic habitat fragmentation vary dependent on the specific population dynamics 

and disturbance tolerance of individual species. Given the degree of habitat fragmentation 

found in many amphibian ranges, previously connected patches could ultimately be cut 

off from the regional gene pool.   Although the precursor to metapopulation formation is 

habitat fragmentation, the rate and degree of anthropogenic habitat alteration may not 

allow for the development of stable metapopulation dynamics, instead resulting in small 

completely isolated populations with the resulting detrimental declines in genetic 

variation (Vos et al. 2001).  Since variation has been found in both the distance and 

disturbance tolerance of amphibians to dispersal barriers conservationist are forced to 

make land conservation decisions based on sometimes arbitrary standards applied to all 

amphibians (Monsen and Blouin 2004).   

  If indeed amphibians have experienced the loss of genetic diversity predicted, has 

there been any evidence of genetic fitness correlations?   Since genetic drift and  

inbreeding expected in small populations have been linked to reductions in fitness 

characteristics, such as lower survival and decreases in reproductive success, these effects 
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should be evident in  amphibian populations of reduced genetic variation  (Samollow and 

Soulé 1983; Pierce and Mitton 1982; Rowe and Beebee 2005; Johansson et al. 2007).   

The mechanism behind this reduction in fitness is an increase in autozygosity of 

deleterious recessive alleles.   While lethal alleles are typically selected against and 

purged from the gene pool, sub-lethal alleles may provide a greater contribution to 

inbreeding depression.  Heterozygosity is linked to overdominance, the greater fitness of 

hybrid individuals, and bestows greater environmental adaptive potential.  Therefore, the 

loss of heterozygosity should be associated with less fit populations.   Hitchings and 

Beebee (1997) not only showed a correlation between genetic diversity and larval 

survival in Bufo bufo but also linked that reduction in diversity to isolation in urban 

habitat.   Pearman and Garner (2005) found that genetic diversity was strongly associated 

with larval resistance to mortality  following exposure to Ranavirus.  Similarly, Bridges 

et al. (2001) found a link between reduced genetic diversity and insecticide tolerance in 

southern leopard frogs (Lithobates sphenocephalus) attributed to a restriction in 

migration   Given the wide variety of stressors to which amphibians are exposed, e.g. 

pesticides, climate change and pathogens, genetic adaptability may be the key to survival.  

Conservation efforts should therefore strive to maintain high levels of genetic diversity in 

populations.  To counter the natural tendency of small populations to lose variation, 

preservation of gene flow must be maintained.    

Small populations that do not meet the criteria of an idealized population such as 

random mating, constant breeding population size and an equal number of offspring per 

breeding adult are at greater risk of genetic loss if they become isolated (Kliman et al.  
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2008).  In general, amphibian populations do not meet these assumptions of an idealized 

population and are known to have very low effective population sizes.  Few individuals 

from the population contribute to the gene pool in a breeding season.  They have variable 

reproductive success, with a single good year interspersed among years of low or no 

reproductive output (Richter et al. 2003), fluctuating population sizes and skewed 

breeding sex ratios (Madsen and Loman 2010).   Since effective population size is 

positively correlated with genetic diversity, amphibians with their reported low effective 

populations are susceptible to low levels of genetic diversity.  Pond breeding amphibians 

share general life-history traits such as low vagility, strong breeding site fidelity, risk of 

desiccation during dispersal that can limit gene flow.  These features can result in highly 

divided populations and metapopulation-like spatial distribution and dynamics (Semlitsch 

1985; Blaustein et al. 1994; Funk et al. 1999; Marsh and Trenham 2001; Palo et al. 2004).     

The validity of the classical metapopulation pattern has not been empirically 

substantiated in amphibians and instead it is based on life history generalizations. 

Hypothetically, the application of the metapopulation theory to amphibians makes sense 

with breeding ponds representing the patches and terrestrial habitat, the matrix.  

However, population subdivision alone does not equal a metapopulation.  A 

metapopulation is a regional assemblage of plants or animals whose permanence is 

dependent on the stochastic balance of extinction and colonization of discrete populations 

in habitat patches linked through dispersal of individuals over non-habitat matrix. (Levins 

1969; Hanski 1998).  Continuance of the population as a whole is dependent on factors 

influencing extinction and colonization rates, such as the number of habitat patches, the 
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probability of a population being able to fill vacant patches and the rates and patterns of 

migration between patches.   The classical or Levins metapopulation definition is even 

more  narrowly defined with the following assumptions:  demes are identical in size and 

behavior with no single subpopulation being large enough to sustain the other 

populations, dispersal occurs uniformly across the entire region with all patches having 

an equal opportunity to be found and extinctions of demes are independent and therefore 

patch dynamics are asynchronous so that all populations do not go extinct simultaneously  

and all patches are equally connected (Hanski and Gilpin 1997).  In a review of relevant 

empirical works, Harrison (1991)  found very few  populations meeting the classical 

metapopulation criteria; instead she identified three more commonly found 

metapopulation-like configurations (Harrison 1991):  the source-sink or  mainland-island 

metapopulation  in which recolonization stems from one or more extinction resistant 

population;  patchy populations, which effectively exist as a single extinction resistant 

population due to high connectivity between patches;  and non-equilibrium 

metapopulations in which subpopulation extinction is not part of the normal population 

dynamics but is attributed to a species regional decline.     

 
Notophthalmus viridescens viridescens 

The red-spotted newt (Notophthlamus viridescens viridescens)  is the second most widely 

distributed salamander in the United States (Petranka 2010). The red-spotted newt is one 

of four subspecies of the eastern newt (Notophthlamus viridescens) distinguished by 

dorsal color patterns and geographic range.  The three other rare subspecies consist of the 

broken-striped newt (N. v. dorsalis), the central newt (N. v. louisianensis), and the 
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peninsula newt (N. v. piaropicola) (Petranka, 2010).  Interestingly, an allozyme based 

study preliminarily indicated that the level of divergence among the four morphs is not 

great enough to warrant subspecies classification (Gabor and Nice 2004).  A re-

evaluation of these findings was conducted using the mitochondrial sequences of the 

ND2 and flanking tRNA-met genes (Lawson and Kilpatrick 2014).  Again, grouping by 

taxonomic designation was not observed; rather, the partitioning of two haplotype groups 

was determined to be by geographic location.   Lawson and Kilpatrick (2014) 

hypothesized that origination of these genetically distinct groups dates back to the last 

glacial maximum. 

 N. v. viridescens is the most widespread of the variants with a range including the 

Canadian provinces (except western Ontario) and the eastern United States west to 

central Michigan, central Indiana, Kentucky and Tennessee east of the Mississippi, south 

to central Georgia and Alabama and northern North Carolina  (Collins and Conant 1998).   

Currently the species is listed by the IUCN as being of Least Concern (IUCN SSC 

Amphibian Specialist Group 2014)  However, according to the IUCN there is a lack of 

research and monitoring of population trends.  

N. v. viridescens has one of the most variable and complex life cycles found in 

amphibians with several possible morphologically distinct stages including: embryos, 

larvae,  terrestrial efts and lunged adults; aquatic juveniles and adults with lungs;  and 

aquatic adults with gills (Petranka 2010).   A review of the literature has revealed 

equivalent variability in life history traits such as migration timing to and from the 

breeding ponds, age at first reproduction, body size and existence of paedomorphosis.  
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Presumably, this developmental plasticity has enabled the newt to be ubiquitous over a 

large geographic range, encompassing a wide variety of habitat types and climate.  

  The life cycle most commonly found consists of four stages including the 

terrestrial juvenile eft.  The eft stage does not occur in all populations, particularly in 

coastal habitat, where neoteny has been observed instead (Brandon and Bremer 1966).   

The plasticity in life cycles has led to conjecture as to the link between environmental 

conditions and adaptive life history strategies.   The eft stage or lack thereof has garnered 

the most debate.  The eft stage has been purported to be an escape from intraspecific 

competition during maturation (Healy 1974; Healy 1975) or as a means of dispersal in a 

species that would otherwise be limited in its ability for colonization or recolonization of 

vacant habitat   (Gill 1978a; Gill 1978b).   Healy (1974) assumed that in populations of 

only neotenic adults, that the eft stage was selected against in those regions and that these 

populations more representative of an r selected life history strategy.  Neoteny has also 

been suggested as a mechanism for resource partitioning between age classes in a 

population under intense competition since neoteny has been observed to be negatively 

correlated with larval density with the eft stage, ( Healy 1974; Harris 1987; Harris et al. 

1988).   

The preferred habitat of sexually mature adult newts is permanent pools in forest 

openings but they can be found in a variety of water bodies including both permanent and 

ephemeral ponds, at the shallow areas of large oligotrophic lakes and in still areas of 

streams (Collins and Conant 1998).  N. v. viridescens is not found to persist in habitats of 

less than 50% forest coverage (Gibbs 1998b).  Within the ponds, adults will seek out 
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open sunny areas and sites with submergent and emergent vegetation (Gates and 

Thompson 1982).  Breeding population sizes have been found to vary greatly with the 

age of pond being the controlling factor (Gill 1978b).   Adults commonly migrate 

seasonally from the water to land for overwintering and aestivation during the summer.  

Gill (1978a) observed that the mass movement patterns of adults to hibernacula in the 

Shenandoah mountains of Virginia in August and September was associated with heavy 

rains.  In deeper water adult newts may remain year-round, residing just under the 

thermocline in summer months (George et al. 1977) and finding ice free areas during the 

winter ( Pitkin and Tilley 1982; Jiang and Claussen 1992).   

 While adults are capable of terrestrial movement as evidenced by migrations of 

0.4 km migrations between breeding and summer residence ponds, this stage has not been 

found to be a significant dispersal unit ( Gill 1979; Roe and Grayson 2008).   Instead, 

extreme philopatry is exhibited by adults returning in the spring to breeding ponds 

making the likelihood of the discovery of new breeding ponds slight (Gill, 1979).   

Migration to breeding pools has been observed in both autumn and spring (Healy 1974; 

Gill 1979;  Massey 1990).  In those populations where autumn matings occurs, egg laying 

does not occur until spring and female sperm storage is presumed (Sever 2006).  Egg 

laying is a lengthy process in which the female can take weeks to deposit between 200 

and 375 eggs individually wrapped in vegetation (Morin 1983).   Incubation lasts 20-35 

days depending on water temperature (Bishop 1941). 

The length of the larval stage and size at metamorphosis again is variable, 

depending on geographic range, type of water bodies, larval concentrations and annual 
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environmental conditions (Harris et al. 1988).   Larvae have an extremely low survival 

rate and according to the limited research on larvae survivorship, the mortality rate is not 

associated with the size of the breeding population or the age of the pond (Gill 1978b). 

No correlating condition could be found to explain the sporadic breeding success of a 

pond nor the frequent failures.  In a three-year mark and recapture study Gill (1978b) 

found that adult losses surpassed juvenile recruitment at most ponds and concluded that 

recruitment of transforming efts from other ponds prevented local extinctions.  

Additionally, he found that the ponds all received migrants from one very successful 

pond, indicating the existence of a source-sink metapopulation structure for the duration 

of his study period.  

The persistence of a metapopulation structure is dependent on adequate gene-flow 

between patches. If Gill’s assessment of newt population structure is accurate, the 

mechanism for dispersal is most likely the eft stage. Limited and conflicting data exist for 

this terrestrial portion of the life cycle.  Studies predating 1950 estimated the length of the 

time in the eft stage to be 2 – 4 years (Gage, 1891; Pope 1924; Bishop 1941).  Subsequent 

studies have upwardly revised the time of this terrestrial stage to 3-7 years (Healy 1974, 

Gill 1978a).   Reported eft dispersal distances are varied and inconsistent.  Given the 

small number of studies, the difficulty in recapturing efts and the variation in geographic 

region and habitat type the inconsistency is not unexpected.  Several capture–recapture 

studies have shown that terrestrial efts are able to travel long distances (Twitty et al. 

1966; Johnson 2003).  However, Healy (1975), only documented distances of 13m 

between captures and concluded that efts did not lead a nomadic lifestyle. Instead he 
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maintained that they form home territories; in his study of Massachusetts efts’, home 

ranges averaged 270m2.   Using fluorescent powder tracking Roe and Grayson (2008) 

found the maximum distance traveled by a newt in one night to be nearly 80 m. They 

found that the terrestrial movement patterns of efts were less direct than those of adults, 

perhaps indicating foraging behavior.  The efts often climbed up logs and ferns in a 

behavior typical of foraging woodland salamanders (Jaeger 1978). In general, all studies 

reported that eft activity was affected by humidity and rainfall.  

All aquatic stages of N. v. viridescens are non-selective carnivores, feeding on 

prey in the same proportions as its abundance (Pitkin and Tilley 1982; Morin 1983; 

Wilbur and Fauth 1990).  Because of their opportunistic feeding strategy, adult red-

spotted newts have been found to influence the relative abundance of prey populations 

such as zooplankton, insects and amphibians and as such are considered keystone species 

(Morin 1983; Fauth and Resetarits 1991).  In communities with potentially dominant 

species, newt predation has been found to keep such species in check, even in the case of 

introduced invasive species (Morin 1981; Wilbur et al. 1983; Smith 2006). Smith (2006) 

found that the presence of N. viridescens in experimental ponds reduced the effects of the 

non-native treefrog,  Osteopilus septentrionalis.  In ponds without N. viridescens the 

presence of O. septentrionalis tadpoles was correlated with decreased survival of native 

species.  

Although mark and recapture techniques have been useful to assess demographic 

connectivity between populations of amphibians, advances in genetic analysis technology 

have allowed scientists to infer population structure more effectively.  Genetic analysis 
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benefits conservation scientists by providing information on the contemporary changes in 

genetic composition of populations and by predicting the effects of future land use 

changes (Manel et al. 2003; Wan et al. 2004) .  Landscape genetics quantifies the effects 

of land use variables and matrix quality on the connectivity of populations using both 

genetic analysis and GIS tools (Manel et al. 2003).  Four biochemical studies of N. v. 

viridescens used electrophoretic analysis of isozymes to assess population genetic 

structure.  Tabachnick (1977) found there was some correlation between genetic 

differentiation and environmental factors.  He did not find significant differentiation 

between subspecies within N. v. viridescens.   Merritt et al. (1984) found much higher 

than expected levels of heterozygosity compared to other amphibian species. He 

speculated that this higher-than-expected diversity could be the consequence of large 

effective population sizes or heterogeneous environments.  Alternatively, Reilly (1990) 

found lower levels of genetic diversity than expected for a species with such a wide 

range.  Contradictory to other studies he found N. v. meridionalis and   N. v. perstriatus to 

differ genetically from N. v. viredescens.   Gabor and Nice (2004) found that populations 

of N. viridescens clustered by geographic locale not subspecies designation.   

The development of genetic markers better tailored to population structure studies 

have further elucidated the genetic structure of N. viridescens.   A review of these studies 

is presented in Chapter Three.      

Conservation 

Delineation of the biological conservation unit should be a fundamental first step 

to any conservation effort.  Resolving the role a species’ life history has contributed to its 
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phylogeographic history can provide scale for habitat protection.  Those species whose 

long-term survival is dependent on their dispersal capacity are especially vulnerable to 

anthropogenic habitat fragmentation.  Establishing the level and type of habitat 

disturbances that can be expected to hinder dispersal can help to make landscape-scale 

protection or mitigation decisions.   

For species that presumably exist as a metapopulation, like the red-spotted newt, 

the extinction and re-colonization dynamics are central to its long-term survival. The 

shifting source-sink metapopulation structure identified  by Gill (1978) is especially 

vulnerable. Most of the ponds he surveyed had negative population growth (i.e., r < 0) 

and without immigration would have gone extinct.  Sjogren (1991) showed that the 

likelihood of extinction of a metapopulation patch increased by either obvious 

deterministic causes or by distance from an occupied patch.  Because Gill found that the 

identity of source ponds constantly shifted, loss of habitat connectivity by even one pond 

could eliminate the rescue-effect for the entire metapopulation.  Therefore, it is important 

to identify how the gene flow rates between breeding ponds are impacted by the matrix of 

terrestrial habitat.  Sampling at various disturbance levels and distances will provide the 

clearest understanding of the metapopulation dynamics of N. v. viridescens.  Effective 

management of a species necessitates this base knowledge in order to maintain or restore 

lost habitat and dispersal routes (Hanski et al. 1996).  While the conservation status of N. 

v. viridescens is currently not of concern, the status of its closely related subspecies 

relatives may serve as a warning.  Striped newts have shown declining numbers since 

they were first described in 1941, either disappearing from previously occupied sites 
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altogether or are found in lower population numbers.  Habitat fragmentation, as a result 

of the loss of the native longleaf pine-wiregrass ecosystem and fire suppression, is the 

purported cause for these losses (Johnson 2005).     
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CHAPTER TWO 

Introduction 

      Understanding the past and present patterns of gene flow is crucial to conservation 

efforts, particularly those addressing climate change. In order for a species to persist in a 

changing landscape it must be able to maintain levels of gene flow to counter the effect of 

genetic drift in populations.   Researchers assessing the genetic diversity and 

differentiation among populations most often focus on the interaction of gene flow and 

genetic drift.  Through investigation of population connectivity and genetic structure a 

stronger understanding can be made of the influence a species’ life history strategies 

(Taylor and Hellberg 2003) and dispersal patterns (Webster et al. 2002) make on its long-

term population persistence.  Assessing the level of genetic connectivity between 

populations in a minimally altered landscape can provide this base knowledge to better 

guide conservation efforts.    

 It is well established that habitat fragmentation is a significant driver of 

amphibian population declines (Kiesecker et al. 2001; Cushman 2006). The impact and 

the mitigating strategies vary depending on the population dynamics of a species. These 

population interactions occur on broad scale of connectivity ranging from a single 

panmictic population (Wright 1931), to distinct populations highly connected through 

mutual gene flow (Kimura and Weiss 1964) to metapopulations, where patches of   

regional populations experience asynchronous re-colonization and extinction (Hanski and 

Gilpin 1997).   The genetic structure associated with each type is reflective of 
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connectivity and can be used as a diagnostic tool to determine the population dynamics.  

Panmictic populations are associated with low levels of genetic differentiation in 

combination with high levels of genetic diversity among populations (Wright 1943).  

Discrete populations linked through high levels of gene flow show an increase in genetic 

differentiation as geographic distance increases between populations (Hutchison and 

Templeton 1999).  For metapopulations, the genetic structure is dependent on how the re-

colonization of patches occurs.   If only a few populations provide low numbers of 

individuals, then one would expect genetic differentiation between populations to be high 

with low within population genetic diversity. The gene pool of each population would 

consist of genes contributed by a few individuals, similar to that of the founder’s effect 

(Wade and McCauley 1988). Conversely, if there are many populations contributing 

large numbers of individuals then differentiation among populations will be low and 

genetic diversity within the populations will be high. According to Gill (1978b) the red-

spotted newt population exists as a metapopulation in which the majority of 

subpopulations are reproductive failures most of the time.  In his three-year study he 

found that only one pond consistently had reproductive output rates at or above the 

replacement rate.  He concluded that the other ponds in the study area were supported by 

immigration.  Since adult newts were found to show strong site fidelity, the eft stage was 

presumed to be the dispersal stage.  This metapopulation structure is characterized by 

many sink populations dependent on a single source pond with a very small effective 

population size.  Given the non-perpetuating nature of the ponds, the regional dynamics 

are central to the persistence of the population as a whole.  Depending on the dispersal 
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capability of the long-lived eft stage, the geographic expanse of the regional population 

might only be limited by unfavorable matrix habitat.  The result would be an 

intrametapopulational panmixis extending as far as the suitable habitat remained 

unfragmented. As such, genetic continuity would be maintained among all pond 

populations, eliminating deme integrity and any local differentiation (Wright 1931; 

Levins 1970).   

 For this study I assessed the population structure of the red-spotted newt in an 

expanded geographic area of Gill’s study (1978a).  Through the use of genetic sequences 

of mtDNA, I was able to determine the level of differentiation between these adjacent 

ponds and a pond isolated by distance and anthropogenic disturbance.  

 

Study Sites and Methods 

Study Sites 

Red-spotted newts were collected at 11 ponds in Virginia over the course of this study 

under Virginia Department of Game and Inland Fisheries (VDGIF) Scientific Collection 

permit 053953.   Field methods regarding newt collection were approved by the George 

Mason University Institutional Animal Care and Use Committee (IACUC).  

The study sites are distributed between two mountain ranges in Virginia (Figure 

1).  Seven of the ponds are located in the Shenandoah Mountains of Rockingham County, 

Virginia and two are located in the Massanutten Mountains of Shenandoah County. The 

Rockingham County and Massanutten Mountain study areas are separated by the 
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Shenandoah Valley approximately 60 miles apart.  Unlike the adjacent mountain ranges 

the valley has numerous natural ponds ranging in size from less than 0.04 ha to more than 

1.5 ha.  This collection of ponds, known as the Shenandoah Valley Sinkhole Pond 

(SVSP) system was formed during the Pleistocene.  A weak carbonate limestone stratum 

under a layer of compacted sand, silt and clay resulted in the formation of sinkholes. The 

clay deposits created impermeable layers in some of the sinkholes which filled with 

surface runoff or ground water dependent on the hydrology (Fleming and VanAlstine 

1999). 

From its initial settlement by Europeans in the 1730s, the Shenandoah Valley was 

converted to some of the highest producing agricultural areas in Virginia, unlike the 

adjacent mountains which were spared from conversion because of their rugged terrain 

and poorer soils. This long modern history of deforestation led to the impression that the 

valley was open prairie before the arrival of colonists and that it had been maintained by 

native populations for hunting (Shaler 1891). This is no longer widely accepted, but not 

entirely disproved (Kercheval 1925).  In the eastern United States a maximum of 

deforestation attributed to agriculture peaked in the late-nineteenth or early twentieth 

century (Hart 2003). While reforestation of agricultural areas was seen in much of 

Virginia in the late twentieth century, that was not the case in the Shenandoah Valley.  In 

1997, Augusta and Rockingham counties were ranked economically as the top two 

agricultural counties in Virginia (Virginia Agricultural Statistics Service 2000).   

Although the Shenandoah Valley maintains its rural character, land use began to shift 

from agriculture to suburban housing developments during the late 20th century. 
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Both the Rockingham County and Massanutten  study areas  are found within the 

George Washington National Forest.  According to the 2014 Land and Resource 

Management Plan for the George Washington National Forest the land encompassing the 

study ponds is designated with the following classifications: Special Biological or 

Geological Area, Mosaics of Wildlife Habitat, Scenic Corridor and an ATV Area.  The 

closest national forest border to the ponds in the Rockingham study area is 2.4 km on the 

east of Upper Second Mountain Pond and 11.5 kms to the west of Sweigert pond.  Large 

unfragmented tracts of forest for 100’s of kilometers can be found north and south of the 

Rockingham sites following the range of the Appalachian Mountains.  The closest 

national forest border from the Massanutten study ponds is less than 1.4 km to the west of 

the ponds.  The Massanutten mountains are 80 km in length and only 9.5 km wide.  The 

Massanutten mountain range is shaped like a canoe with Fort Valley making up the 

center. Fort Valley is not under the protection of George Washington National Forest and 

mostly consists of deforested, private farmland.   The entire Massanutten range is within 

the Shenandoah Valley.  

The Rockingham County ponds were chosen because this geographic area was 

used in a study of the metapopulation ecology of red-spotted newt by Douglas Gill in the 

1970s.  Three of the twelve ponds surveyed by Gill were used in this study.   The 

mountain range in which these ponds are found forms the western border of the 
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Shenandoah Valley and is the eastern-most position on the Appalachian Mountain range; 

as such it exists in a rain shadow. The Rockingham County study area consists of a series 

of ridges and short steep-sided valleys with the highest ridge at approximately 1,085 

meters.  All study ponds are located along adjacent ridge lines.  These ponds are all 

manmade and are the only water bodies located on the mountain range. The age of the 

ponds ranges from 120 years old (Trespass pond) to 55 years old for the ponds on Second 

Mountain.  All ponds are roughly circular in shape and measure 10 to 14 meters in 

diameter except for Sweigert pond which measures 55 meters in diameter.  The ponds are 

shallow, at less than 2 meters deep, and vegetated along the shore (Figures 2 and 3).  

They are all dependent on rainwater as a water source.  Prior to the construction of these 

ponds, few natural ponds existed on this range in the preceding two hundred years.  

Although the oldest ponds were originally created as watering holes for cattle in open 

areas, all ponds are now located within the canopy of secondary forests.   

The two ponds in the Massanutten mountain range are located below the western 

ridge adjacent to Shenandoah Valley at an elevation of approximately 450 meters, which 

is substantially lower than the Rockingham County ponds.  The Massanutten ponds are 

similar in size to the Rockingham County ponds and likewise located within the canopy 

of secondary, mature forests. While both of these ponds are also manmade, natural 

streams can be found within the Massanutten Mountain range. The Peters Mill Pond 

(figure 4) is located less than 100 meters from a permanent stream.  Spring-fed and 

limestone creeks can be found flanking both sides of the Massanutten Mountain range. 
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Figure 1 Map of Study Sites 
 
Map of collecting sites. Geographic coordinates and elevation are located on Table 1. (1) 
Sweigert, (2) Hidden Pond, (3) Trespass Pond, (4) Long Run Road Building, (5) Long 
Run Road I, (6) Upper Second Mountain, (7) Edinburgh, (8) Peter’s Mill, (9) Second 
Mountain 3  
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Figure 2 Hidden Pond on Tomahawk Mountain in the Rockingham County study area 
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Figure 3 Long Run Road I on Pond Ridge in the Rockingham Country study area 
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Figure 4 Peter's Mill Pond on Powell Mountain in the Massanutten range. 
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Table 1 Collection sites.   

 

Sites are listed in order from west to east, except for Second Mountain 3.  For this pond 
only RV-ml sequences were generated, and it is not included in the analysis of the full 
DNA segment (HDL-F1 to 12S600H). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Collection Site 
Pond 
Code latitude Longitude Elevation Gill's Pond (1978) 

Sweigert SWE 38.6529 -79.1229 1130  
Hidden Pond HP 38.6231 -79.0817 1149  
Trespass TP 38.6232 -79.0716 1071 Lower Feedstone 
Long Run Road Building LRRB 38.6241 -79.0681 1083  
Long Run Road I LRRI 38.5771 -79.0299 1035 White Oak Flat 
Upper Second Mountain U2M 38.5401 -79.0155 905  
Edinburgh EB 38.7889 -78.5495 489  
Peter's Mill PM 38.8561 -78.4577 1008  
Second Mountain 3 2M3 38.5353 -79.0196 880 Lower Second Mt II 
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Methods 

609 adult newts were captured from eleven ponds in 2015 and 2016 during the 

period from June to August.  Only one pond located on the Feedstone Camp private 

property yielded no newts and is not included in the list of surveyed ponds. According to 

a Feedstone Hunt Club member, this pond had been dredged the previous year.  Nine un-

baited collapsible mesh minnow traps were placed in equal intervals along the shallow, 

vegetated shoreline of ponds. Traps were secured by string to nearby trees or rocks to 

ensure they were not entirely submerged in water (Figure 4).   For the first three ponds 

surveyed, six Dewsbury Newt Traps were also set but were unsuccessful. These traps are 

used to capture newts found on the bottom of the ponds and are commonly used to 

capture the Crested Newt.  Presumably these traps were not effective with red-spotted 

newts because they are found in the water column and along the shore.  Traps were set 

between 1500 and 1700 hrs and checked and emptied the next morning between 0900 and 

1000 hrs.  

Skin swabs were collected from each newt by running the swab ten times on the 

dorsal side. The use of skin swabs has been found to be an efficient method of DNA 

collection, both simplifying the process and reducing stress to the animal (Prunier et al. 

2012).  Swabs were air dried at the ambient temperature and stored in a cooler with ice 

packs during transport until they could be frozen at -80°C within 24 hours.  Because 

collections were only conducted at each pond once, it was not necessary to mark the 

newts before they were returned to the pond.   
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DNA sequences from a subset of nine of the ponds were used in this study.  DNA 

extractions were initially performed using the FastDNA Spin Kit.  After the extractions, 

PCRs using universal primers for 18S and 12S were conducted to verify the presence of 

DNA.  Those samples that showed clear product on an agarose gel for the 12S and 18S 

product were then used in an attempt to amplify microsatellite sequences from published 

primers (Croshaw and Glen 2003).  After multiple unsuccessful efforts to optimize the 

PCR to obtain reproducible microsatellite results, I changed the extraction method to the 

QIAGEN DNeasy Blood and Tissue Kit.  Continued issues with the use of microsatellite 

markers led to the use of mtDNA sequences for this study.  Of the samples used for the 

mitochondrial amplification in this study all but two were extracted using the QIAGEN 

method. The protocol for the Qiagen kit was changed to accommodate for the use of 

swabs; the time period for initial digestion with protease at 56° was increased to an hour.  

   MtDNA was amplified using primers HDL-F1 (GGCACCCAAAGCCARAATT) 

(Yuichi et al. 2005) and 12S600H (TCGATTATAGAACAGGCTCCTCT) (Zhang et al. 

2008) yielding a total length of approximately 1300 bps.  This sequence included the D-

loop, tRNA-pro, tRNA-phe and part of the 12S rRNA (Figure 5).  The PCR was 

conducted in a total volume of 25 µl containing 2.5 µl of DNA template, 2.5 µl 10× 

buffer with MgCl2, 1.25 µl forward primer (10 mM), 1.25 µl reverse primer (10 mM), 2.5 

µl dNTPs (2 mM each), 2.5 µl BSA (0.01%), 0.2 µl taq polymerase (5 U/µl) and 12.3 µl 

DEPC water.  PCR conditions consisted of an initial cycle at 95°C for 11min, 40 cycles 

of 95°C for 30 sec, 50°C for 30 sec, 72°C for 1 min, and a final extension at 72°C for 10 
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min. PCR products that yielded a clear band on agarose gel by electrophoresis were 

purified and sequenced using capillary electrophoresis sequencing.  

Sequencing was done using three primers HDL-F1 (GGCACCCAAAGCCARAATT), 

12S600H (TCGATTATAGAACAGGCTCCTCT) and RV-ml 

(GAGGGTGTGGCTAAACAAG) (Whitmore et al. 2013).  Individual DNA sequences 

were edited and assembled using Sequencher 5.4.6 software.  The assembled sequences 

were aligned using Geneious 8.0.5.   

.  
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Figure 5 MtDNA fragment location on the mitochondria. 
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Data Analysis 

Analyses were performed on two sets of data.  The assembled fragments using all 

three primers yielded 47 sequences from 8 collection sites.  To assess a larger sample 

size, fragments generated using only the RV-ml primer were analyzed independently, 

yielding 89 sequences from 9 collection sites.   For both sequence data sets calculations 

of genetic diversity, as indicated by the number of segregating sites (S), number of 

haplotypes (h), nucleotide diversity (π), haplotype diversity (Hd) and the average number 

of nucleotide differences (k) were done using DnaSP v6.0.   Nucleotide diversity is 

defined as the average number of nucleotide differences per site in pairwise comparisons 

of randomly selected sequences in a population. Haplotype diversity is defined as the 

probability that two randomly sampled alleles differ.   

The Arlequin 3.5 software was used to perform an analysis of molecular variance 

(AMOVA) to analyze the level of genetic differentiation among and within populations.  

The DNA divergences among populations (FST) were measured, and the significances 

were tested using 1023 permutations. Populations were clustered into four groups 

reflective of the mountain ranges.  AMOVA was also performed looking at pairwise 

differences among and within these groups.   

To visualize the relationship among the haplotypes, a haplotype network was 

generated by means of the Integer Neighbor Joining Network (IntNJ) option in PopART 

v 1.7.  The IntNJ is particularly useful for low-divergence data sets. The tree begins with 

a neighbor-joining network that was inferred from a distance matrix.  Integer edge 
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lengths calculated by integer linear programming are added to the network (Leigh and 

Bryant 2015).  

 

Results: Full fragment (HDL-F1, RV-ml and 12S600H) 

Diversity Indices 

 
For the concatenated sequence using all three primers (HDL-F1, RV-ml and 12S600H) I 

analyzed a fragment of 1026 bp of mitochondrial DNA, for a total of 47 individuals from 

eight wild populations of N. v. viridescens.  Since the Peters Mill population contained 

only one sample, it was omitted from any geographical structure analyses.  From this data 

set I identified 13 total segregating sites resulting in 11 haplotypes.  Nucleotide diversity 

was very low at 0.00149 (Table 2).  The difference between all haplotypes, except for 

haplotypes 1 and 2 which were both represented by a single individual each, was a one 

nucleotide difference from haplotype 11.  Haplotype 11 was the most common and was 

found in all ponds except for the Edinburgh site.  It represented 37.5 % of the total data 

set.  Haplotype 7 was only found at the Edinburgh pond and accounted for 57% of the 

samples from that population. Haplotypes 1 and 10 were also unique to the Edinburgh 

Pond and were represented by one individual each. Three other haplotypes (2, 3 and 5) 

were also represented by single individuals in the Rockingham ponds (Table 3).  The 

haplotype diversity for the overall population was moderate Hd = 0.795 but the 

nucleotide diversity was very low at π = 0.00149.   This combination of measurable 
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haplotype diversity and low nucleotide diversity can be a sign of rapid demographic 

expansion from a small effective population size (Avise 2000).  

The haplotype network (Figure 6) illustrates the relationship between haplotype 

11, the most common, which was found in all but one of the ponds and haplotypes around 

it.  The starlike clustering pattern shows very low levels of sequence divergence and low 

levels of genetic differentiation.  Even though haplotype 11 was not found in the 

Edinburgh site, haplotype 7, the most common sequence at that location, only differs by a 

single nucleotide.  
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Table 2 Diversity indices for populations 
Population 

n S h Hd π k 
Sweigert 8 3 4 0.821 ± 0.10 0.00119 1.214 
Hidden Pond 3 0 1 0  0 0 
Trespass 3 6 3 1 ± 0.272 0.00391 4 
Long Run Road 
Building 6 2 3 0.600 ± 0.215 0.00065 0.667 
Long Run Road I 4 2 3 0.833 ± 0.222 0.00098 1 
Upper Second Mountain 8 3 4 0.750 ± 0.139 0.00091 0.929 
Edinburgh 14 9 4 0.626 ± 0.110 0.00193 1.197 
Peters Mill 1      
Rockingham sites 32 10 8 0.696 ± 0.080  0.00115 1.169 
All populations 47 13 11 0.795 ± 0.042 0.00149 1.508 

  
 
12S600H to HDL-F1 fragment information: Sample size (n), number of segregating sites 
(S), number of haplotypes (h), haplotype diversity (Hd) ≠ SD, nucleotide diversity (π), 
and average number of nucleotide differences (k) per population 
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Table 3  Mitochondrial haplotype frequencies by population 

Site 
Hap 
1 

Hap 
2 

Hap 
3 

Hap 
4 

Hap 
5 

Hap 
6 

Hap 
7 

Hap 
8 

Hap 
9 

Hap 
10 

Hap 
11 

SWE - - - 0.25 0.13 - - 0.25 - - 0.38 
TP - 0.33 - 0.33 - - - - - - 0.33 
HP - - - - - - - - - - 1.00 
LRR
B - - - - - 0.17 - - 0.17 - 0.67 
LRR
I - - - 0.25 - - - - 0.25 - 0.50 
U2M - - 0.13 0.13 - 0.25 - - - - 0.50 
EB 0.07 - - 0.29 - - 0.57 - - 0.07 - 
PM - - - - - - - - - - 1.00 

Populations are listed in geographic order (west to east).  Haplotype (h) numbers 
correspond to the numbers on the Integer Neighbor Joining network (Figure 7) 
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Figure 6 Integer Neighbor Joining network of full fragment haplotypes 
Fragments generated using primers 12S600H to HDL-F1 fragment.  
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Geographical Structure 

AMOVA results (Table 4) show that the overall genetic variation within populations 

(87.16%) was much larger than the variation among populations (12.84%).  Pairwise FST 

values between populations were only significant between the Edinburgh population and 

four other populations, Sweigert, Hidden Pond, Long Run Road Building and Upper 

Second Mountain (Table 5).  The Edinburgh population is geographically the furthest 

removed from the other ponds and is separated by the largely deforested Shenandoah 

Valley. The AMOVA results grouping ponds by their mountain range location shows that 

genetic variation between groups only contributed 14.95% of variation; within population 

variation accounted for 86.00%.  The FST values for ungrouped populations (0.12835) 

indicates very low differentiation.  FSC and FCT values which indicated differentiation 

among populations between groups and between groups, respectively were not 

significant. 

The geographic distribution of haplotypes shows that haplotype 11, the most 

common, was found at all of the ponds in the Rockingham County study sites.  It was not 

found at all in the Edinburgh pond located in the Massanutten range.  Edinburgh pond 

had three unique haplotypes not found in any of the Rockingham County sites (Figure 7) 

However, these haplotypes only differ by one nucleotide from haplotype 11.  
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Table 4 AMOVA Results 

 
 
FST fixation index within populations; FSC fixation index among populations 
within groups; FCT fixation index between groups.  *P < 0.015. Ponds were 
grouped by their mountain range location.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Groups of 
samples Source of variation d.f.  

Variance 
components 

Variation 
(%) Fixation index  

All 
(ungrouped) Among populations 6 0.146 12.84  
 Within populations 39 0.991 87.6  
 Total 45 1.1371  FST = 0.128* 

Grouped Between groups 3 0.1727 14.95 FCT = 0.149 
 Between populations within groups 3 -0.1092 -0.95 FSC = -0.011 
 Within populations 39 1.152 86 FST = 0.140* 
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Table 5 Distance method: Population pairwise FSTs (12S600H to HDL-F1 fragment) 

           SWE TP HP LRRB LRRI U2M EB 
SWE 0           * 
TP 0.04721 0      
HP 0.14721 0.11111 0       * 
LRRB 0.07336 0.09091 -0.05882 0   * 
LRRI -0.05923 -0.05028 0.07692 -0.13305 0     
U2M 0.03448 0.04481 0.06145 -0.08419 -0.09492 0 * 
EB 0.16678 0.09944 0.33353 0.25051 0.12689 0.19091 0 
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Figure 7 Distribution of haplotype groups by locality (12S600H to HDL-F1 fragment). 
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Results RV-ml fragments 

Diversity Indices 

 In an effort to enhance the information gained using the data set from the full 

sequence I used a shorter sequence generated using just the RV-ml primer.  The sample 

size was increased to 89 individuals collected from nine ponds.  The resulting 269 bp 

sequence did not further the understanding of the population structure beyond the 

information gained from the full fragment data set and data from the geographical 

analysis is not presented here.   Only 5 haplotypes were identified with 3 segregating 

sites. The nucleotide diversity was extremely low (π = 0.00183) (Table 6).  The FST value 

was insignificant (p = 0.409) and as such the population pairwise FSTs showed no 

differentiation between populations.  Haplotypes 1 and 2 made up 92% of the total 

population (Table 7).  No haplotype was more than a single nucleotide difference from 

haplotype 1 or 2, as seen in the Integer Neighbor Joining network (Figure 9). 
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Table 6 Diversity indices for population (RV-ml frag) 
Population N S h Hd π k 
Sweigert 18 2 3 0.621 0.00273 0.719 
Hidden Pond 5 1 2 0.400 0.00145 0.00145 
Trespass 4 2 3 1.000 0.00558 1.500 
Long Run Road Building 7 1 2 0.286 0.00104 0.286 
Long Run Road I 11 1 2 0.436 0.436 0.436 
Upper Second Mountain 8 1 2 0.250 0.00092 0.25 
Second Mountain Three 2 1 2 1.000 0.00364 1.00 
Edinburgh 26 2 3 0.428 0.00168 0.446 
Peters Mill 8 2 2 0.250 0.00183 0.500 
       
All populations 89 3 5 0.420 0.00183 0.477 

 
RV-ml fragment sequence: Sample size (n), number of segregating sites (S), number of 
haplotypes (h), haplotype diversity (Hd) ≠ SD, nucleotide diversity (π), and average 
number of nucleotide differences (k) per population 
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Table 7 RV-ml Fragment haplotype frequencies by population 
Site Hap 1 Hap 2 Hap 3 Hap 4 Hap 5 
SWE    0.56 0.28 - - 0.17 
HP 0.80 - 0.20 - - 
TP 0.50 0.25 0.25 - - 
LRRB 1.00 - - - - 
LRRI 0.73 0.27 - - - 
U2M 0.88 0.13 - - - 
2M3 1.00 - - - - 
EB 0.73 0.23 0.04 - - 
PM 0.88 - - 0.13 - 
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Figure 8 RV-ml fragment Integer Neighbor Joining network 
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Figure 9 Distribution of haplotype groups by locality (RV-ml fragment). 
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Discussion 

My study supports the hypothesis that the red-spotted newt is highly dispersive 

and capable of maintaining genetic connectivity between breeding sites over a large 

geographic area despite potential topographic barriers. As such, no pattern of genetic 

differentiation was found between populations on adjacent ridges in the same mountain 

range. Sufficient gene flow between populations can reduce or eliminate the process of 

geographic differential and has been observed in large, mobile animals (Vila et al. 2003).  

These findings are incongruent with the observed tendency for amphibians to maintain 

genetic differentiation over relatively short distances (Beebee 1996).  The limited 

dispersal capacity of most amphibians has been attributed to a pattern of disconnected 

populations.   Ridgelines have been shown to prevent gene flow in amphibians (Funk et 

al. 2005; Murphy et al. 2010) and salamander populations were found to be fragmented 

by dry grassland habitat (Rittenhouse & Semlitsch 2006).  

In a study in 1975 of newts conducted in the same geographic area as this study, 

Douglas Gill concluded that the population structure was that of a metapopulation.  He 

found that individual breeding ponds only sporadically had reproductive rates high 

enough to persist long-term without immigration.  From the persistence of newt 

populations at these reproductive sinks, he inferred that the breeding adults at these ponds 

were replaced by immigrants, not their own progeny. Furthermore, he observed rapid 

colonization of newly created ponds on the Second Mountain and Gauley Ridge ridges. 

From these data he surmised that the red-spotted newt is adapted to the shifting, 

temporary nature of beaver ponds. Based on the newt densities of the ponds he studied, 
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he concluded that newt populations would reach carrying capacity at a pond in 

approximately 50 years which is longer than the lifespan of a typical beaver pond.   

 Despite the geographic distance and the steep topography, populations found in 

the Rockingham County range show no indication of geographical differentiation.  The 

unfragmented forest coverage provided a terrestrial habitat suitable for eft migration.  

The Rockingham populations are closely related to each other as indicated by very low 

and insignificant pairwise FST values.  Within the Rockingham County populations, the 

total haplotype diversity (Hd) was calculated as 0.696 with a nucleotide diversity (π) of 

0.00115. Eight Rockingham haplotypes were identified.  However, all but two of the 

haplotypes were only one nucleotide removed from haplotype 11, the most common type. 

This is evident from the Integer Neighbor network (Figure 6). An arrangement of one 

common haplotype with others in lower frequencies or singular haplotypes is a pattern 

often attributed to populations that have recently gone through a range expansion (Slatkin 

and Hudson 1991; Rogers and Harpending 1992).   Only haplotypes 1 and 2 varied from 

haplotype 11 by more than one nucleotide change.  Each was represented by a single 

individual. It is possible that an increase in the total sample size could potentially provide 

a truer representation of haplotypes present and identify missed population structures.  

However, given the very low nucleotide diversity it is more likely that the lack of genetic 

diversity between populations can be attributed to a shared demographic history. The 

unfragmented landscape between the Rockingham sites allowed for unrestricted gene 

flow.  Across a similar geographic distance, Iowa populations of N. v. louisianensis 

showed significant genetic divergence.  This genetic separation was attributed to 
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allopatric divergence in the early Pleistocene. Although Iowa had been recolonized by N. 

v. louisianensis following the last glacial retreat, remnants of the genetic differentiation 

between distinct northern and southern populations were still evident.  The persistent 

pattern of isolation may indicate reduced dispersal capacity over unfavorable terrestrial 

habitat. Significant levels of population isolation were identified between populations 

only 6 – 7 km apart in the same drainage (Whitmore et al. 2013).  Likewise, Johnson 

(2001) found a high degree of isolation between populations of N. perstriatus.  This was 

attributed to patchy suitable habitat restricting long distance dispersal. Both of these 

studies looked at peripheral populations which are often more genetically distinct than 

central populations (Lammi et al. 1999).  In contrast, the favorable habitat matrix 

between the Rockingham ponds presumably supported high levels of connectivity and the 

dilution of any Pleistocene phylogeographic signal.  

The lack of evidence for genetic geographic differentiation between the 

Rockingham County population adds support to Gill’s (1978b) assumption of a 

metapopulation structure. The low nucleotide diversity and lack of geographically 

structured clades suggest a single panmictic population.   Additionally, the presence of 

newts at every surveyed manmade pond, except for a single recently dredged pond, in a 

landscape historically without standing water illustrates the dispersal ability of the red-

spotted newt.  Gill (1978b) found a collection of ponds created just ten years earlier to all 

contain newts.  He concluded that the newt metapopulation structure was adapted to the 

periodic shifting of beaver ponds.  The natural, ephemeral, sinkhole ponds of the 

Shenandoah Valley prior to deforestation would have provided the ideal habitat for red-
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spotted newts. The cover of forest would have allowed dispersal of efts to recolonize new 

ponds as their natal ponds receded.  According to limited fossil evidence, newts have 

been present in the Shenandoah Valley since the Pleistocene period (Guilday 1962).  The 

last glacial maximum advance about 18,000 years ago during the late Pleistocene was 

followed by a warming trend 7000 – 5000 years ago.  As temperatures warmed and 

became drier after the last glacial retreat, dispersal into the adjacent mountains would 

have occurred (Hoffman 1987). The cooler, forested Appalachian Mountain range would 

have provided a corridor for austral taxa expanding their ranges. Currently these 

mountains present an unfragmented, contiguous area of forest which allows for nearly 

unimpeded migration by the red-spotted newt.  This is in contrast to the Shenandoah 

Valley’s highly fragmented landscape.  Although surveys in the 1980s and 90s found red-

spotted newts were common in the Shenandoah Valley ponds (Mitchell and Buhlmann 

1999) it is unlikely the dynamics of a metapopulation structure remain intact given the 

high level of habitat fragmentation.   

DNA sequences from only pond outside of the Rockingham field site were 

analyzed.  While any conclusions reached due to this small sample size are speculative, 

the preliminary results prove interesting and warrant further investigation.  Three unique 

haplotypes were found exclusively in this pond, with haplotype 7 comprising 57% of this 

population.  This was the only pond for which significant, albeit low, pairwise FST values 

were found.  The very low nucleotide differentiation from the Rockingham populations 

do not separate the populations into distinct demes but the unique prevalent haplotype at 

this pond could be an indication of early separation.   Edinburg pond is located in the 
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Massanutten mountain range and separated by Shenandoah Valley approximately 48 

kilometers from the nearest Rockingham County.   Since post-European settlement the 

valley has experienced extensive deforestation and conversion to agriculture.   There is 

some evidence that deforestation may have taken place long before the arrival of 

European settlers and that Native Americans maintained the valley as a prairie through 

the use of fire (Shaler 1891).  Although this is highly speculative, if true it would indicate 

that anthropogenic habitat fragmentation predated the 200 years of European settlement 

and industrialization.   Developed landcover, i.e., deforestation has been shown to have 

the greatest negative influence on newt presence (Rinehart et al. 2009).  Some studies 

have indicated that the red-spotted newts avoid forest edge over more interior locations 

(Anderson 2012; Gibbs 1998a; Gibbs 1998b).  Presumably, this avoidance of edge habitat 

is a result of selective eft migrations. Deforestation has been found to limit dispersal 

capabilities in salamanders through the reduction in leaf litter depth, increased exposure 

and alterations in microclimatic conditions. Deforested areas, regardless of pond 

availability, may be restrictive to newt colonization.  Because the red-spotted newt exists 

as a metapopulation it is particularly vulnerable to population collapse caused by riparian 

forest fragmentation (Gill 1978b; Gibbs 1998a).    

Understanding the historical biogeography of the red-spotted newt can help in the 

formation of conservation efforts.  The findings that the endangered N. viridescens 

subspecies, N. v. louisianensis and N. v. perstriatus are experiencing genetic 

differentiation attributed to habitat fragmentation may be a warning for the more common 

N. v. viridescens.  While preliminary, the indication that a reduction in gene flow across 
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the Shenandoah Valley may be contributing to genetic differentiation highlights a need 

for expanded geographic sampling.  Deciphering the complicated phylogeographic 

history and its relationship to the newt’s life history may provide insight about future 

distribution patterns. These patterns which evolved after the most recent glacial period 

can help us to understand and predict the responses to current climate changes.     

The relative permanence of the Rockingham ponds has afforded a unique 

opportunity to observe the long-term population structure of a species’ metapopulation 

adapted to the moderate turnover of breeding sites. Several of the ponds I surveyed in this 

study appeared to be in late succession with large populations of emergent plants, thick 

layers of decomposing material and a depth of less than a meter.  Since no new ponds are 

currently being constructed in this area, this population of red-spotted newts may 

represent the full lifespan of a metapopulation.  Colonization occurred as these man-made 

bodies of water were created and high levels of gene flow have maintained a network of 

linked populations. The inevitable succession from pond to upland habitat will happen 

unless human intervention occurs.  Given the unsuccessful breeding rates of most 

populations observed by Gill, existing populations may still experience population 

crashes if source ponds are no longer available. If suitable breeding ponds cannot be 

accessed, the wanderings of the eft may be in vain.  Ultimately habitat fragmentation may 

lead to a complete regional extinction of this metapopulation (White and Smith 2018) 
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CHAPTER THREE 

Genetic Analysis of Notophthalmus viridescens 

While the results of genetic studies have helped to elucidate evolutionary 

relationships between the sub-species and population structure of N. viridescens,  the 

small number of studies as well as the inconsistency in the use of genetic markers, limits 

the ability to make broad conclusions about the species or comparisons between the 

studies. The studies conducted thus far have focused on the rarer subspecies of N. 

viridescens or on the phylogenetic relationships between the subspecies, rather than the 

red-spotted newt’s population structure alone. Additionally, since population studies were 

conducted at the periphery of the habitat range, they may not be a true representation of 

the population structure as a whole (Figure10). 

Assessment of phylogeographic relationships through the use of mitochondrial 

DNA has been a common approach for the last three decades. The geographical 

distribution of haplotypes can be used to detect past connectivity and provide insight as to 

the natural processes affecting their distribution.   Recently however, the efficacy of 

mitochondrial markers for small-scale population studies, particularly isolation by 

distance (IBD), has been questioned in favor of using microsatellites, MHC or most 

recently Restriction Associated DNA sequencing (RADseq).  It has been speculated that 

the positive correlation found with mtDNA to IBD could instead be a signature of 

spatially discrete evolutionary lineages rather than a restriction of gene flow (Teske et al. 

2018).  While limitations exist for any single gene analyses, the high mutation rate, 
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maternal inheritance and small effective size make mtDNA more likely to track 

divergence than a single nuclear gene. The absence of cross-over in mitochondrial DNA 

provides a more straightforward analysis of genetic relatedness since inter- and intra- 

variability within metapopulation is reduced. Despite the ambiguity of the efficacy of 

mitochondrial sequences to assess population connectivity at a small-scale, the large 

database and ease in amplification make it a valuable tool in the genetic toolbox.   

Significant levels of divergence using mtDNA have shown it can be used at the 

population scale depending on the marker selected.   

Mitochondrial DNA Analysis  

To date the following mitochondrial markers have been used in genetic studies of  

N. viridescens: Cytochrome B (Johnson, 2001; May, 2011; Whitmore et al., 2013),  the 

D-loop and flanking sequences (Whitmore et al. 2013), ND2 gene and flanking tRNA-

met (Lawson and Kilpatrick, 2014).  Bare (2018) used the complete mitochondrial 

sequence to investigate the rare black-spotted newt’s population structure.  For this study 

I used a sequence which included the D-loop sequence, tRNA-pro, tRNA-phe and part of 

the 12SRNA.  There was an overlap of 178 bps between the sequence in this study and 

the D-loop sequence used by Whitmore et al. (2013). (See Table 8 for a summary of 

study locations, genetic markers and subspecies)   

N. viridescens’ studies using mtDNA have demonstrated its usefulness in 

detecting differentiation between populations. Whitmore et al. (2013) identified sequence 

differentiation between two lineages of central newts dating from the early Pleistocene 

showing a ~4% divergence across Cytochrome b and D-loop sequences.  They concluded 
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that the detection of persistent genetic isolation indicated a lack of continuity between the 

regions.   Whether this prolonged, continued separation is a result of natural habitat 

discontinuity or can be attributed to more recent anthropogenic habitat alteration has yet 

to be investigated. They speculatively concluded that the genetic patterns observed most 

likely could be caused by reduced dispersal capabilities.  Lawson and Kilpatrick (2014) 

re-evaluated the findings of an allozyme study of N. viridescens subspecies conducted by 

Gabor and Nice (2004) using the mitochondrial sequences, ND2 and flanking tRNA-met 

genes.  They confirmed the findings that haplotypes are grouped by geographic region 

and not taxonomic designation. They suggested that the origination of these genetically 

distinct groups dated back to the Last Glacial Maximum (Lawson and Kilpatrick, 2014).  

Using mtDNA (Cyt-b), May (2011) found evidence that eastern and western populations 

of the striped-newt to be distinct with no recent indication of genetic exchange. Using a 

full mitochondrial sequence Bare (2018) found that sequences diverged by just 2% in 

populations of the black-spotted newt.  These findings of limited dispersal ability inferred 

from distinct genetic clusters using mtDNA analysis may instead be attributed to 

existence of lineages previously isolated in glacial refugia and should be considered 

speculative until supported with other genetic markers.    

Microsatellite Analysis 

 To obtain a more detailed view of population structure a multi-locus nuclear 

approach should be used in conjunction with mtDNA analysis. Teske et al. (2018) found 

that microsatellite datasets were more likely to detect IBD.  Microsatellites also known as 

“Short Sequence Repeats” (SSRs) are DNA sequences consisting of tandem repeats of 
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short nucleotide motifs (1 to 6 or more base pairs).  Because of their high mutation rates 

with high levels of polymorphism within the same population they are better suited to 

detect IBD (Benson 1999; Goldstein and Schlotterer 1999).  Two sets of nuclear 

microsatellite markers have been identified and used in population studies of N. 

viridescens.  Croshaw and Glenn (2003) isolated seven microsatellite DNA loci from two 

populations of newts in South Carolina.  They proposed that the high heterozygosity of 

five of the loci made them potentially useful tools for future population studies. 

Whitmore et al. (2013) used three of these markers in conjunction with mitochondrial 

sequences, including a portion of the D-loop, to investigate genetic patterns in N. v. 

louisianenesis in Iowa.  For use in a study of the striped newt May (2011) developed and 

utilized 9 microsatellite markers.  
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Table 8 Summary of Notophthalmus viridescens genetic studies 

Study 
Geographic 
Region Sub-species 

MtDNA 
Marker Nuclear DNA 

Johnson 2001 
Northern 
Florida 

Striped 
Newt Cytochrome b  

Croshaw and 
Glenn 2003 

Aiken County 
South Carolina 

Red-spotted 
newt                                                        
Striped newt                
Central newt  

Developed 
seven 
microsatellites 

May et al. 
2011 

Northern 
Florida and 
Georgia 

Striped 
Newt Cytochrome b 

Developed 
nine 
microsatellites 

Whitmore et 
al. 2013 

North-eastern 
Iowa 

Central 
Newt 

D-loop and 
tRNA; 
Cytochrome b 

Microsatellites 
(Croshaw and 
Glenn, 2003) 

Lawson and 
Kilpatrick 
2014 

Locations 
throughout 
South Carolina 

Red-spotted 
newt       
Striped newt           
Central newt 

ND2 and 
tRNA-Met  

Bare 2018 
Texas and 
Mexico 

Black-
spotted 
Newt 

full 
mitochondrial 
sequence   
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Figure 10 Geographic areas of genetic studies of N. viridescens. 
 
Areas are approximations and do not indicate the number of surveyed sites within each 

area.  For genetic markers used and sub-species evaluated refer to Table 8.  1) Johnson 

(2001) 2) Croshaw and Glenn (2003) 3) May 2011 4) Whitmore et al. (2013) 5) Lawson 

and Kilpatrick (2014) 6) Bare (2018) 7) Shaffer (2021). 
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 Croshaw and Glenn Microsatellites 

For this study I initially attempted to use the microsatellites published by Croshaw 

and Glenn (2003).  I was unable to get reproducible results for any of the microsatellites 

despite extensive attempts to optimize the PCR.   Inconsistent results were initially 

credited to the use of skin swabs versus tissue.  However, the use of two tissue samples as 

controls did not improve the reliability of the outcome.  The chromatographs of those 

samples that I was able to successfully amplify were not consistent with expected 

microsatellite results (Figure 11).  Multiple distinct peaks were observed beyond the 

typical stutter pattern seen in microsatellites leading to the conclusion that I was looking 

at a tetrapoid organism.  Whitmore et al. (2013) reported that only three of these seven 

loci showed reliable scoring patterns (Nvi2, Nvi7, and Nvi11).   Of these three they found 

Nvi2 to show the lowest level of polymorphism.  

Methods 

For a complete description of the study sites and the DNA extraction method refer 

to Chapter Two.  The DNA was amplified using fluorescently labeled microsatellite 

primers published by Croshaw and Glenn (2003).  The PCR was conducted in a total 

volume of 20 µl containing 2.0  µl of DNA template, 2 µl 10× buffer with MgCl2, 1 µl 

primer 1.0 F (10 mM), 1.0 µl primer R (10 mM), 2.0 µl dNTPs (2 mM each), 2.0 µl BSA 

(0.01%), 0.1 µl Taq Gold polymerase (5 U/µl) and 7.9 µl DEPC water.  PCR conditions 

consisted of an initial cycle at 95°C for 11min, 40 cycles of 95°C for 30 sec, 50°C for 30 

sec, 72°C for 1 min, and a final extension at 72°C for 10 min. PCR products that yielded 

clear band PCR products were discriminated using an ABI-Prism Genetic Analyzer. 
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Allele sizes were determined relative to the size standard and scored using the 

GENEMAPPERTM 4.1 software.  

 

Results  

Of the microsatellites I tested only Nvi2 yielded clear reproducible 

chromatograms consistently.  Chromatograms for microsatellite Nvi2 (Figure 11) showed 

multiple alleles indicating the possibility of a tetraploid genome; chromatograms A, B, D, 

and E appear to be polyploid; A and C are tetraploid, and B and E are triploid.  C was 

included as an example of one of the many inconclusive chromatographs presumably 

attributed to weak PCR products.  The chromatograms showing triploidy (B and E) are 

from individuals from the same pond located in the Massanutten mountain range.  

Duplicate chromatograms of repeated PCRs for DNA samples confirmed these 

genotypes, as seen in Figure 12 which shows the repeated PCR of DNA extracted from a 

skin swab.  
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Figure 11 Chromatograms of Croshaw and Glenn microsatellite nvi2 
 
The genotype plots of  Croshw and Glenn (2003) microsatellite Nvi2 generated using The 

GeneMapper® Software Version 4.1 show  multiple alleles at single locus.  
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Figure 12 Chromatogram for repeated PCR of LRRI_08 (nvi2) 
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Development of New Microsatellite Markers  

Methods 

Sequencing  

After unresolved  issues with the Croshaw and Glenn microsatellites,  I used next 

generation sequencing (NGS) and Ion Torrent technology to isolate microsatellite 

sequences from the tissue samples of  two red-spotted newts.  DNA was extracted from 

tissues using the Qiagen DNeasy Blood and Tissue Kit.  Except for an increase in 

protease digestion time to 1 hour, all standard protocols  from the manufacturer were 

followed. The genomic DNA extracted was sequenced with the Ion S5 NGS instrument 

(Applied Biosystems Inc.).  Libraries were prepared using the IonXpressPlus gDNA 

Fragment Library preparation kit which included the following steps:  Fragmentation of 

DNA and ligation of adaptors to DNA fragments, size selection with E-gel, amplification 

and purification of the final products  and quatification of the final products using  Qubit. 

Libraries were analyzed for size, quality and concentration using Bioanalyzer. The 

samples were run on Chef for amplifcation and then sequenced using the S5.  

Microsatellite identification and primer design 

Over twenty three millions reads were generated using the S5.  Because the small 

size of the reads, less than 310 bps (appendix figure 16), would have made the likelihood 

of isolating microsatellites prohibitive, contigs were assembled using SPAdes.    From the 

assembled contigs, 63 (Figure 17) were analyzed for potential microsatellite loci using 

the program msatcommander (Faircloth 2008).  I identfied 63 potential microsatellite 
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locus primer pairs. From these possibilites 10 were selected for testing based on the 

fragment length  and the number of motif repeats.  

Primer test 

A total of 10 primer pairs was selected as potential microsatellite markers (Table 9). 

PCRs for each pair were conducted in a total volume of 20 µl containing 2 µl of DNA 

template, 2 µl 10× buffer with MgCl2, 1 µl primer 1 (10 mM), 1 µl primer 2 (10 mM), 

2µl dNTPs (2 mM each), 2µl BSA (0.01%), 0.1 µl Taq polymerase (5 U/µl) and 9.9 µl 

DEPC water.  PCR conditions consisted of an initial cycle at 95°C for 11min, 35 cycles 

of 95°C for 30 sec, 50°C for 30 sec, 72°C for 1 min, and a final extension at 72°C for 10 

min. PCR products that yielded a clear band on 2% agarose gel by electrophoresis were 

purified and analyzed using an ABI DNA analyzer (Applied Biosystems, Foster City, 

USA). 

Results 

Of the ten microsatellite primer pairs tested, PCR product from tissues was verified for 

four (2110, 9329, 9917, 1726) through electrophoresis on 2% agarose gel (Figure 13). 

However when PCRs using DNA extracted from skin swabs were performed for these 

successful microsatellites only microsatellite 9917 resulted in strong product and only for 

some of the samples.  Only weak product resulted for microsatellite 2110. (Figure 14)  

Chromatographs of these successfully amplified DNA samples also showed multiple 

peaks (Figure 15) confirming the inference of polyploidy made from the Croshaw and 

Glenn microsatellite chromatographs.   The sample shown in chromatogram B 
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(LRR1_08) was also found to show four peaks in the Croshaw and Glenn microsatellite 

chromatogram, A in Figure 11 and 12.  
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Figure 13 Gel electrophoresis for all microsatellites using tissues 
            

 

Figure 14 Gel electrophoresis comparing tissue and skin swabs for microsatellites 
 
 (Top row) Gel electrophoresis results on 2% agar using DNA extracted from skin swabs 
for microsatellites 2110, 9329, 9917, and 1726.  These four microsatellites were 
successfully amplified using DNA extracted from tissue samples.  (Bottom row) Gel 
electrophoresis for DNA extracted from remaining tissue samples for seven of the primer 
sets.    
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Figure 15 Chromatogram of microsatellite 9917 
 
Chromatogram A was from DNA extracted from a tissue sample and chromatogram B 
was run from DNA extracted from a skin swab.   
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Discussion 

The low success rate of amplification of both sets of microsatellite markers 

prevented their use as part of a population study.  However, preliminary results from the 

evaluation of these markers show evidence of polypoidy in the newts.  The Croshaw and 

Glenn chromatograms show the presence of four alleles at a single locus for multiple 

samples (Figure 11).  Chromatograms from our unproven microsatellites also showed 

multiple peaks indicating polyploidy (Figure 15).  Fankhauser (1938) found that out of a 

hundred N. viridescens larvae analyzed, four were triploid and the remaining ninety-six 

were diploid.  Heat induced triploidy in N. viridescens was observed by Fankhauser and 

Watson (1942).  Among sexually reproducing animals, polyploidy is rare. In a classic 

discussion in 1925, H.J. Muller argued that “a most remarkable concatenation of events 

must obtain before a persistent tetraploid line can actually become established, and 

capable of surviving in a state of nature, in animals having the prevalent type of sex 

determination.”  Among the vertebrates the only known examples of polyploidy are the 

triploid larvae of frogs and salamanders. While tetraploidy has not been previously 

reported for N. viridescens, variable ploidy, including high levels of tetraploidy have 

been found in populations of Ambystoma jeffersonianum (Phillips 1997). Experimental 

induction of polyploids has been conducted on amphibians since the late 1930’s.  Given 

these findings and the large number of diploid eggs produced by amphibians, the 

presence of natural polyploidy is not unexpected.  The lack of detection may simply be 

due to a lack of experimental observation. The tetraploid state found in the populations 

surveyed for this study may be unique, however given the very low numbers of N.  
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viridescens individuals that have been analyzed to date overall this remains uncertain.  

Additionally, given the prevalence of tetraploid results I found, tetraploidy would not be 

a rarity in this population.  Future research into the ploidy level of N. viridescens should 

be conducted either through further microsatellite assessment or cytogenetic analysis 

throughout its range.  

  The issues encountered with the amplification of microsatellite markers was most 

likely linked to the use of skin swabs. The successful use of microsatellite markers in 

other population studies of N. viridescens were conducted using DNA extracted from 

tissue samples. Amplification using six available tissue samples resulted in strong 

product for several of my potential microsatellites (Figure 13). However when DNA from 

skin swabs were amplified the results were inconsistent, frequently showing weak or no 

product.  (Figure 14). According to Pidancier et al. (2003) microsatellite genotyping 

using buccal swabs for amphibians was unsuccessful when the DNA was kept at room 

temperature but successful if the DNA was fresh or frozen.  Prunier et al. 2013 found that 

skin swabs of Ichthyosaura alpestris could successfully be used for microsatellite 

analysis but did not assess the degradation potentially associated with frequently thawed 

DNA.  Although the DNA I used was stored frozen, the thawing and refreezing during 

usage may have degraded the DNA.  Low quality DNA has been shown to increase 

genotyping errors with microsatellite markers decreasing the reliability of genetic 

analysis (Taberlet et al. 1999).  To ensure valid results a multiple tube approach has been 

suggested (Goossens et al. 1998).  The inability to reliably duplicate the microsatellite 

reactions using our skin swabs led to the decision to switch to a mtDNA marker for our 
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population study of the red-spotted newt.  Pidancier et al. (2003) found that genotyping of 

mtDNA stored at room temperature was more likely to be successful than microsatellite 

makers; amplification and sequencing of mtDNA cytochrome b gene was successful for 

DNA stored at room temperature for Triturus cristatus, Rana temporaria, Salamandra 

atra and unsuccessful for Salamandra salmandra, Rana esculenta, and Salamandra 

salamandra (Pidancier et al. 2003).  Given the prior issues encountered with the Croshaw 

and Glenn microsatellite markers and the fact that these species may be polyploid, our 

microsatellites were not fully evaluated. The possibility that these microsatellite markers 

may prove useful in future studies warrants further effort.  

Recommendations for Future Research    

Since genetic population studies have focused on the rarer subspecies of N. 

viridescens at the edge of the range, recommendations for further research would be to 

investigate the red-spotted newt populations more centrally located.  To facilitate the 

comparison of results across studies, the use of common and multiple mtDNA markers in 

N. viridescens’ research should be considered.   Additionally, mtDNA studies of N. 

viridescens, should be re-evaluated with a multi-locus approach.  The structure inferred 

from a single locus may not provide the detailed information a multi-locus approach can. 

Goudarzi et al. (2019) used Restriction Associated DNA sequencing (RADseq) to 

analyze populations of Neurergus kaiseri previously assessed using the mitochondrial D-

loop.  The existence of two clades indicated by mtDNA was corroborated using RADseq, 

but the finer detail allowed them to better identify barriers to gene flow.  The higher 

resolution and truer history of populations made possible with multiple loci can augment 
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the knowledge gained from mtDNA analysis alone.   Geographic expansion of study 

areas and a more comprehensive genetic analysis using a multi-locus approach and 

comparable genetic markers are necessary to make future informed conservation 

decisions based on an accurate assessment of the population genetic structure and the 

contributing processes shaping it.  
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Figure 16 Sequence Lengths for Reads from Ion Torrent Sequencing 
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Figure 17 Sequence lengths of SPAdes assembled contigs 
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Table 9 Primers identified for potential microsatellite markers identified in this study for N. v. viridescens 

 

Locus Direction Primer sequence Tm Size Repeat motif 
Newts_2110 F TAACAAAGAACTCCAGGACC 49.7◦  C 285 (AT)9 
Newts_2110 R ACATTTGGTGAAGATTCGTC 47.7◦  C  (AT)9 
Newts_9329 F CAAGAACTCACTCTAGCAGG 51.8◦  C 285 (AGAT)9 

Newts_9329 R CTAATAGGGAGTTTGGGACC 51.8◦  C  (AGAT)9 

Newts_9829 F TTCACTAAGGCCTACTCTTC 49.7◦  C 258 (AT)9 
Newts_9829 R TTTGCCTCTGAAACACAAAG 47.7◦  C  (AT)9 
Newts_9917 F AGAATCCGACTGTTGTAGAG 49.7◦  C 270 (AGG)8 
Newts_9917 R CTTCAGATACCTCCAGAGAC 51.8◦  C  (AGG)8 
Newts_11307 F TGGATTGGGATACTTACATG 47.7◦  C 284 (AT)10 
Newts_11307 R TGAGGTAAGAACATGAGGTC 49.7◦  C  (AT)10 
Newts_11564 F TATCCATCCATTCACTAGCC 49.7◦  C 233 (AC)15 
Newts_11564 R ACTCTGTCACTTAGTACGTG 49.7◦  C  (AC)15 
Newts_11711 F TTCTTCTTACAATCATGCCC 47.7◦  C 275 (AGAT)14 
Newts_11711 R ACTGCAACACACTTTCATAG 47.7◦  C  (AGAT)14 
Newts_12227 F ACCTAAGAAGATACTGGTGC 49.7◦  C 223 (ACC)8 
Newts_12227 R TCTGATGGATCTGGTGTAAC 49.7◦  C  (ACC)8 
Newts_13409 F GTGTCGATATTGAGTGGTTG 49.7◦  C 296 (AT)10 

Newts_13409 R AACGTAAATCCTCCAGTGTG 49.7◦  C  (AT)10 
Newts_17266 F AGTAAGCACTTCAGACCTAC 49.7◦  C 181 (AC)18 

Newts_17266 R CATCGCAGGTAGAAGTCTC 51.1◦  C  (AC)18 
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