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ABSTRACT 

USING ZERO-INFLATED REGRESSION AND THE HOMOPHILY PRINCIPLE TO 
MODEL MIGRATION FOR POPULATION PROJECTIONS 

Philip Morefield, Ph.D. 

George Mason University, 2022 

Dissertation Director: Dr. Timothy F. Leslie 

 

Sub-national population projections have become an essential component of policy 

relevant environmental assessment research. This dissertation develops 96 unique 

migration models by combining spatial variables, regression model types, and data 

sources. Overall performance is assessed with out-of-sample validation for each model 

using five error metrics. I find that a zero-inflated negative binomial model using 

modified versions of Stouffer’s Intervening Opportunities and Competing Migrants 

calculations yielded the best overall results. Model performance was improved by 

conceptualizing migration according to the homophily principle and partitioning model 

inputs by race. After incorporating projections of births, deaths, and immigration, this 

new model was used to simulate migration and project county population. I find that this 

new model performs well compared to existing projections and I define new quantitative 

benchmarks for evaluating population projections going forward. 
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1. INTRODUCTION 

Population projections inform public policy at multiple levels of governance. The 

U.S. Energy Information Administration prepares comprehensive energy outlooks that 

rely on regularly updated population projections that extend several decades into the 

future (U.S. Energy Information Administration, 2017). The U.S. Forest Service uses 

county-level population projections to asses future demands for natural resources decades 

in advance (Zarnoch et al., 2010). Recent research has shown that population growth over 

the next 20 to 30 years could significantly increase local electricity demand in the 

southern United States, particularly when interactions with climate change are considered 

(Allen et al., 2016). Other research has demonstrated that detailed population projections 

enhance assessments of future human vulnerability to sea-level rise (Hardy & Hauer, 

2018; Hauer et al., 2015, 2016).  

The U.S. Census Bureau population projections have been limited to national 

totals since 2005 and lack spatial detail needed to inform decision making. Furthermore, 

the most recent Census projections extend only to the year 2060 (U.S. Census Bureau, 

2014b), limiting their utility for applications like climate change impacts assessments, 

which frequently seek to estimate exposure and damages into the latter part of the 

century. The underlying reasons for the reduced scope of the U.S. Census projections – 

the set produced in 2000 extend to 2100 – are not given, but the change may be 

attributable to technical challenges, available resources, or the potential for politicization 

of results. 
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Other population projections have been produced at the national (Azose et al., 

2016), state (Jiang et al., 2020; University of Virginia, 2016), Commuting Zone (Hildner 

et al., 2015), county (Bierwagen et al., 2010; Hauer, 2019; U.S. Environmental Protection 

Agency, 2016; Wear & Prestemon, 2019) and sub-county levels (Jones & O’Neill, 2013; 

McKee et al., 2015), however many of these efforts lack either spatial or demographic 

detail needed to inform more disaggregated research and policy making efforts. The 

health impacts of climate change, for example, are highly place-specific, and vary greatly 

by age and race (U.S. Global Change Research Program, 2015), however the only 

existing population projection effort that includes detailed demographic information at 

the county level is Hauer (2019). Moreover, both the number and proportion of 

Americans age 65 and over is expected to increase considerably by 2050 (Ortman et al., 

2014). This shift poses significant consequences for Federally funded social programs 

and health care provisioning, especially as it relates to the mobility of the elderly.  

Projecting where these populations of interest are located is likely to be a critical 

component of any forward-looking assessment. For example: Hauer (2017; 2016) 

described the potential exposure of coastal populations to future sea level rise; an issue 

that may likely be exacerbated by an increasingly aged population seeking an amenity-

rich life near water. Creating accurate, detailed, small-area population projections 

remains an extremely difficult challenge, though the development and application of 

population scenarios can be useful for planning purposes (Smith et al., 2013, p. 7). The 

State of California, for instance, developed alternative projections of future population 
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for all 58 constituent counties in order “to provide a subjective assessment of the 

uncertainty of the states’ future population” (Sanstad et al., 2009).  

The decisions and research questions supported by a population projection will 

reflect the type and level of detail of the projection methodology. For example, the 

projections by Jones and O’Neill (2013) simply downscale existing national-level 

projections of total population; neither their inputs nor their methodology provides 

demographic detail. This is in contrast to the state-level University of Virginia (2016) 

projections that provide a great deal of demographic detail, but sacrifice spatial 

resolution. Consistent among current sub-national population projections is the relative 

lack of attention paid to the process of domestic migration. This is striking for two 

reasons. First, there exists a rich literature of migration theory, modeling and 

quantification techniques for the U.S. which dates back more than 50 years. And second, 

because migration is one of the four components needed to produce a sub-national 

population projection (in addition to births, deaths, and immigration).  

The mechanisms behind migration decisions are important when incorporating 

migration theory into population projections. Wilbur Zelinsky (1971) articulated a 

detailed theory of mobility transitions analogous in many respects to the theory of 

demographic transitions popular among demographers. Application of Zelinksy’s ideas 

could have important consequences for the spatial distribution of population in the U.S. 

and yet, without a dynamic, spatially explicit modeling approach, the existing sub-

national population projections lack any cohesive theoretical framework of mobility. For 

decades most internal migration studies attribute the movements of individuals or 
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households to economic drivers, particularly the search for higher wages, job 

opportunities, or housing costs. This framing of migration predominantly as a response to 

economic incentives is problematic in the context of long-range projections because 

detailed projections of regional – much less county level - economies do not exist at a 

temporal extent useful for this or similar research. Furthermore, it’s not even clear that 

migration should be modeled as a predominantly economic decision. Spring, Tolnay, & 

Crowder (2016) argue that the prominence of economic factors in migration research is 

largely due to the ease with which they can be quantitatively measured, and a general 

agreement on how those factors will affect migration at the individual and household 

levels. Moreover, Spring, Tolnay, & Crowder point out that a conceptual framework of 

migration based solely on economic factors is inconsistent with classic migration 

scholarship (e.g., E. Lee, 1966; Ravenstein, 1889) which emphasize the important roles 

of non-economic influences on migration decisions. And perhaps most importantly, a 

novel approach to modeling migration that does not rely on common economic variables 

such as wages and housing costs would be useful in the case of projections given that 

demographic processes tend to be more stable and predictable over time relative to 

economic conditions. Regardless of how migration decisions are conceptualized, there is 

a paucity of studies that evaluate alternative migration data sources. 
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2. BACKGROUND AND LITERATURE REVIEW 

Migration studies and population projections represent vast literatures with 

surprisingly little overlap.  

2.1. Population Projections 

Population projections can – and frequently are – constructed by directly 

extrapolating the total population measured at two or more points in time. Highly 

sophisticated curve-fitting approaches have been used to advance this general approach, 

but an ultimate reliance on broad assumptions such as consistent or predictable growth 

rates limits the utility of projections developed in this way (Newbold, 2014, p. 37). This 

approach also ignores the processes that interact to yield total population, providing little 

opportunity to reasonably project population for sub-regions, or over time horizons that 

extend further into the future.  

Several modern national and subnational population projections for the United 

States implement some form of the cohort-component method, which is the application of 

a projection methodology to subpopulations grouped by age, sex, and race (Smith et al., 

2013, p. 46). The cohort-component method provides an opportunity to capture crucial 

differences between segments of the population. With these demographic groupings 

articulated in a projection framework, components of change – fertility, mortality, and 

migration – can be applied to portray human population dynamics more accurately. 

Sanderson (1998) demonstrated that incorporating spatially explicit demographic detail 

into population models can produce more accurate forecasts. 
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Numerous sub-national population projections for the United States have been 

produced over the last few decades. The U.S. Census Bureau published state-level 

population projections in 1997 and 2005, while more recent state-level projections were 

produced by the University of Virginia (2016) and Jiang et al (2020). The Urban Institute 

also produced some 27 population state- and commuting zone-level population 

projections (Martin et al., 2017). Each of these efforts used substantially different 

methodologies, as well as varying approaches to addressing the question of uncertainty. 

Recent county level projections (Hauer, 2019; U.S. Environmental Protection Agency, 

2009, 2016; Wear & Prestemon, 2019) vary significantly in their methodologies, but all 

use scenarios of global change to guide assumptions about demographic change. Still 

other population projections are resolved at grids of varying resolutions (Gao, 2017; 

Jones & O’Neill, 2013; McKee et al., 2015; Murakami & Yamagata, 2019). There is a 

conspicuous absence of literature assessing and comparing the accuracy of these 

projections, not only across methodologies but also across spatial scales, e.g., state- 

versus county level accuracy.  

2.2. Fertility and Mortality 

Fertility, or birth rate, can be defined as the number of births per person (crude 

birth rate), per woman aged 15-44 (general fertility rate), or by parsing the total fertility 

rate by age or age groups (age-specific fertility rate). In the United States, the general 

fertility rate fluctuated greatly during the first half of the 20th century, influenced by 

World Wars I & II and the Great Depression. Societal changes also had a strong influence 
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on fertility, at times. The Sexual Revolution that began in the 1960s broadened the roles 

and opportunities available to women, culminating with the legalization of birth control 

in 1972. The effect of these changes is evidenced by the marked decline in fertility post 

Baby Boom, which has remained stable and consistently below replacement level. Low 

fertility in advanced societies is driven almost entirely by intentional delay in parenthood, 

and generally reflects a positive economic outcome at the household level by allowing 

parents an opportunity to achieve financial stability before having a family (Beaujouan & 

Sobotka, 2017). At a more aggregate level, however, lower fertility may have a negative 

economic effect on a given country by limiting available human capital, narrowing the 

tax base, and reducing resources available to support basic public services, such as health 

care (R. Lee & Mason, 2014). There is some evidence that fertility rates may eventually 

rise in countries where economic and social development continues (Myrskylä et al., 

2009). 

As with fertility, mortality, or death rate, can be defined in terms of a crude death 

rate or age-specific mortality rates. The mortality rate in the United States has declined 

steadily since 1909. The overall trend is the result of numerous economic and 

technological drivers that have emerged over time. Improved medical care, water and 

sewerage systems, and improved nutrition make up a few of the myriad contributing 

factors (Weeks, 2012, Chapter 5). It is this decline in mortality – not any increase in 

fertility – that has driven population growth globally over the last two centuries. Weeks 

(2012) explains population growth simply: “It isn’t that people now breed like rabbits; 

it’s that we no longer die like flies[.]”  
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2.3. Migration 

Migration is generally defined as the permanent or semi-permanent relocation of a 

person’s residence across an administrative boundary. This movement maybe subject to 

any number of motives or obstacles and represents the most volatile component of 

population change. Two approaches for modeling migration appear relatively early in the 

literature. 

The best-known and most widely used approach for simulating migration as a 

spatial process is the gravity model, which takes its name from Newton’s Law of 

Gravitational Attraction. Published applications of gravity model precursors go back at 

least 75 years (Stewart, 1941). Work by Zipf (1946) examined the movement of 

passenger traffic on roads, rails and airways and produced a simple formula for 

estimating the intercity movement of people. Zipf’s contribution was an important 

advancement because his formula was wholly consistent with the portions of 

Ravenstein’s theory (1889) that related migration to population and distance. Zipf’s 

approach would evolve to become what is now commonly accepted as the general form 

of the gravity model equation. In the case of predicting migration, the equation is 

typically given as: 

 

𝑀𝑀𝑖𝑖𝑖𝑖 = 𝑘𝑘
𝑃𝑃𝑖𝑖
𝛽𝛽1𝑃𝑃𝑖𝑖

𝛽𝛽2

𝐷𝐷𝛼𝛼   
Equation 1. The basic gravity equation of spatial interaction. 
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where 𝑀𝑀𝑖𝑖𝑖𝑖 is the number of migrants relocating from location 𝑖𝑖 to location 𝑗𝑗; 𝑃𝑃𝑖𝑖 and 𝑃𝑃𝑖𝑖 are 

the size of the populations at the origin and destination locations, respectively; and 𝛽𝛽1, 

𝛽𝛽2, 𝛼𝛼 are 𝑘𝑘 are variables to be estimated. Equation 1 represents the seminal step in the 

evolution of the gravity model because all terms could be estimated via linear regression. 

The gravity model remains one of the more popular analytic tools for estimating 

migration or other spatial interactions, although examples of population projections 

incorporating gravity model approaches are scarce.  

Work by Stouffer (1960) introduced the Intervening Opportunities and 

Competing Migrants1 model which proposed that the number of people moving between 

locations was attenuated not simply by distance, but rather some combination of: (i) the 

number opportunities that could be encountered at a shorter distance from the origin 

location than the destination location and (ii) the number of potential migrants located 

closer to the destination than the origin. Stouffer’s model was shown to be supported by 

empirical data (Haynes et al., 1973; Miller, 1972), and found to outperform the gravity 

model in direct comparisons (Freymeyer & Ritchey, 1985; Galle & Taeuber, 1966; 

Wadycki, 1975). Variants of Stouffer’s Intervening Opportunities (IO) and Competing 

Migrants (CM) concepts subsequently appear in numerous studies of migration and 

spatial interaction (Fik et al., 1992; Fik & Mulligan, 1990, 1998; Guldmann, 1999; 

 
1 Stouffer initially introduced the concept of Intervening Opportunities in 1940, however that approach 
required a notoriously complex parameter estimation (Akwawua & Pooler, 2000; Rogerson, 1986) and 
impractical for predictive applications (Gibson, 1975). His “redefinition” of the Intervening Opportunities 
calculation in this later work is far more tractable and appears more frequently in applications relevant to 
my dissertation.  
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Raphael, 1998). While there are minor variations how the Intervening Opportunities term 

is calculated, the general approach is easily explained in Figure 1: 

 

 
Figure 1. Schematic of the Intervening Opportunities calculation. 

 

where 𝑖𝑖 and 𝑗𝑗 are the origin and destination, respectively; Mij is the observed migration 

between i and j; Dij is the distance between i and j; and intervening opportunities are 

denoted using k. The IO calculation is simply the sum of the opportunities at the 

intervening locations. Note that the orientation of the circle here is centered on the origin 

i, which follows Stouffer’s original conceptualization of Intervening Opportunities 

(Stouffer, 1940). As pointed out by Wadycki (1975) this approach is more logical than 

Stouffer’s later definition which instead uses a circle of diameter Dij centered between the 

origin and destination. In short, Stouffer was suggesting in this later work that 

opportunities should only be considered intervening when they physically lie between a 

potential migrant and a potential destination.  
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Two other important concepts are illustrated in Figure 1. First, it is easily 

demonstrated that in virtually all instances the number of intervening opportunities will 

increase as 𝐷𝐷𝑖𝑖𝑖𝑖 increases. This is consistent with Ravenstein’s original premise 

concerning migration flows and distance but implies that distance is merely a proxy for a 

cumulative number of opportunities. Second, we should expect movement between the 

origin and destination (𝑀𝑀𝑖𝑖𝑖𝑖) to attenuate as the number of intervening opportunities 

increases. This holds to a fundamental axiom of migration and mobility research: that an 

individual will preferentially select opportunities – be they employment, housing, or 

other – that require traversing the shortest possible distance, all other considerations 

being equal. 

Stouffer suggests that opportunities should be defined with respect to the group of 

interest, and this idea was later reflected in work by Wadycki (1975) who partitioned 

migrations streams by occupational categories. There are two areas of literature that 

support partitioning migration streams by demographic characteristics. The first is earlier 

migration studies that describes the importance of the location of friends and family when 

migrants choose a destination (Gholdin, 1973; Lansing & Mueller, 1967; Price, 1971). 

The second comes from the field of sociology where it is generally accepted that the 

homophily principle – or the idea that people’s social networks are largely homogenous 

across sociodemographic characteristics – strongly influences the makeup of social 

networks. As explained in a widely cited review by McPherson et al. (2001), it is race 

and ethnicity that play the largest role in differentiating personal social networks, 

followed by next by age  
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 Like Intervening Opportunities (IO), Stouffer’s Competing Migrants (CM) posits 

that spatial configuration of population attenuates migration flows between pairs of 

locations. More specifically that the possibility exists for any potential migrant – seeking 

employment or housing, for example – to be out-competed by individuals that live closer 

to the destination under consideration. The intuitive notion that the flow of information 

about a destination decreases with distance appears in other migration studies (Miller, 

1972; Pellegrini & Fotheringham, 1999), and lends support to the idea that proximity to a 

destination provides a competitive advantage among prospective migrants. Although IO 

terms are included in quantitative migration studies more frequently than CM, support for 

the CM concept has been found in studies of both inter-urban migration (Galle & 

Taeuber, 1966) and intra-urban commuting flows (Raphael, 1998). Following Stouffer 

(1960) and Raphael (1998), CM is simply the sum of competing migrants that lie within a 

circle centered on the destination 𝑗𝑗 with radius 𝐷𝐷𝑖𝑖𝑖𝑖, as show in Figure 2: 
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Figure 2. Schematic of the Competing Migrants calculation. 

 

Locations more proximate to 𝑗𝑗 than 𝑖𝑖 are identified as k. The value of CM must be 

calculated for each unique origin-destination pair, at which point the term can be included 

in a regression analysis as predictive variable. 

 Another approach to incorporating spatial context into spatial interaction models, 

Fotheringham’s Competing Destinations (CD) model explains destination choice as a 

function of human cognition and the resulting decisions to move (or not) based on a 

given location’s position relative to other potential destinations (Fotheringham, 1983). 

Fotheringham argues that migrants will systematically underestimate the potential of 

centrally located destinations and, instead, will more likely evaluate locations that are not 

clustered together on the landscape. He demonstrates that a simple measure of 

accessibility can capture the relative position of a destination to all other destinations. As 

an explanatory variable in regression analyses, support for the CD model has been 

confirmed by others (e.g., Fik et al., 1992; Guldmann, 1999; Hu & Pooler, 2002; Lo, 
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1992). Each of these contributions are potentially useful for incorporating migration into 

population projections because they provide a sound theoretical foundation for the 

migration process without the need for more volatile variables such as wages, income, 

housing price, transportation costs, etc. that dominate the contemporary migration 

literature. 

 The measures of migration deterrence discussed in this section are well supported 

in the literature, however additional research that explores variants of those calculations 

seems worthwhile. I found no implementation of the Intervening Opportunities or 

Competing Migrants calculations that considered the role of distance in the influence of 

individual opportunities and migrants, respectively. It could be posited, for example, that 

further opportunities are less enticing to a potential migrant than nearby opportunities. It 

might similarly be the case that Competing Migrants located close to the destination are 

more influential than those located a further distance away. 

Spatial interaction models of migration were traditionally specified using ordinary 

least squares (OLS) and by transforming variables to meet the assumption of normally 

distributed residuals. Numerous studies, however, have highlighted the deficiencies of 

constructing migration models using those techniques (Flowerdew & Aitkin, 1982; 

O’Hara & Kotze, 2010; Silva & Tenreyro, 2006). Nevertheless, estimates derived using 

OLS approaches are still used as benchmarks for the purposes of evaluating alternative 

methods (Silva & Tenreyro, 2006; Simini et al., 2012).  

 Over time, geographers and regional scientists began to forgo OLS in favor of 

maximum likelihood estimation (MLE), in particular specifying migration as a Poisson-
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like process (Flowerdew & Aitkin, 1982; Flowerdew & Lovett, 1988; Fotheringham & 

Williams, 1983). More recently, the Poisson form of spatial interaction models has 

gained new popularity in the analysis of international trade (Silva & Tenreyro, 2006), 

with some arguing that Poisson regression should be considered the “work horse” of 

spatial interaction modeling (Silva & Tenreyro, 2006, 2010, 2011).  

 In response to the work of Silva & Tenreyro, there was some debate with respect 

to the robustness of Poisson models when the dependent variable contains a large 

proportion of zeros, to which the authors responded (Silva & Tenreyro, 2011). Burger et 

al (2009) argue for the use of zero-inflated models (Lambert, 1992) in the presence of 

data with excess zeros, however theirs was a single analysis of bilateral trade patterns. 

Bohara & Krieg (1996) used zero-inflated models to analyze individual migration 

frequency, which is a related by substantively different issue than estimating aggregate 

migration. The potential for zero-inflated models to improve migration studies appears 

promising but remains unproven in the context of more traditional spatial interaction 

work.  

Other recent scholarship has proposed an approach to modeling mobility and 

migration that conceptualizes human mobility as a process of emission and absorption, 

termed the radiation model (Simini et al., 2012). The radiation model appears to possess 

procedural advantages over the traditional gravity-based approach of migration modeling, 

as it has no parameters to estimate, making it operationally simpler than methods that 

require calibration. The model has been utilized to capture mobility at different temporal 

(i.e., diurnal and annual) and spatial (i.e., intra-urban and national) scales. This suggests a 
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potential for development of a nested multi-scale human mobility simulation framework 

that uses a consistent theoretical and computational approach throughout. Ideally, a range 

of systematic, quantitative comparisons of the gravity and radiation models would be 

available to evaluate performance and applicability. While such comparisons have 

ostensibly been done (Masucci et al., 2013), the phenomenon under study in those 

examples was not migration, but rather sub-daily movement and commuting patterns. In 

fact, nearly all applications of the radiation model have evaluated performance only at the 

scale of a city and for short-term mobility as opposed to migration (e.g., Kang et al., 

2015; Tizzoni et al., 2014; Wesolowski et al., 2013; Yan et al., 2014). Having said that, 

there are significant theoretical and methodological overlaps between migration and 

mobility research (e.g., Islam et al., 2021; Kavak et al., 2019; Piovani et al., 2018) which 

may lead to a fruitful convergence of ideas in the future.  

Measuring migration is a significant challenge, and there is no single, 

comprehensive, authoritative data source (Smith et al., 2013, p. 117).  There are three 

datasets that appear most often in the peer-reviewed literature. Each of these data sources 

provide county-to-county migration for the full extent of the U.S. but differ significantly 

in other aspects.  

Since 1983 the Internal Revenue Service (IRS; 2016) has provided annual 

migration data by comparing year-to-year changes in household addresses using tax 

returns. No demographic detail is provided, however since 2012 the aggregate adjusted 

gross income for each county-to-county flow is included. In order to avoid the disclosure 
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of personally identifiable information, all county-to-county flows of less than 20 

individuals are censored. 

The U.S. Census Bureau included migration questions on the “long form” 

questionnaire in 1990 and 2000. The 1990 Census migration data (U.S. Census Bureau, 

1990) include full cross-tabulations of race, ethnicity, gender and age, making this data 

source entirely unique in that regard. The 2000 Census data (U.S. Census Bureau, 2000) 

include demographic information, although without cross-tabulation. Migration data are 

no longer collected as part of the decennial Census but are instead collected on a 

continuous basis as part of the American Community Survey (ACS; U.S. Census Bureau, 

2014a).  

Since 2005 the ACS data are collected annually and released on a rolling basis as 

an overlapping set of five-year averages, e.g., 2005-2009, 2006-2010, 2007-2011, etc. 

Demographic information is provided for some five-year data sets, however cross-

tabulated results are not provided. The ACS also provides a 90% confidence interval for 

each of the county-to-county migration flows, which is a characteristic unique to this 

source of data. 

2.4. Research Opportunities 

 Important gaps exist in the current literature. Many population projections do not 

integrate domestic migration in any capacity, limiting their utility in the face of large-

scale environmental change, such as sea-level rise, which will likely affect the geography 

of population in the United States. Of the population projections that do consider 
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migration explicitly, the results either lack demographic detail (U.S. Environmental 

Protection Agency, 2009, 2016), rely on fixed historical migration rates (Martin et al., 

2017; McKee et al., 2015), or project population only at the state level (Jiang et al., 

2020). A population projection approach that resolves these limitations would be a 

valuable contribution to the existing scholarship. 

 This focus on the role of migration reveals additional research opportunities. 

Older and perhaps outdated approaches to modeling migration such as the use of ordinary 

least squares and the classic gravity model persist in recent literature, despite evidence 

that other approaches are sounder theoretically and conceptually. Furthermore, a 

systematic comparison of the how migration model performance is affected by the choice 

of input data is conspicuously absent from the literature.  

Problem Definition 

This dissertation first evaluates a variety of migration models and then assesses 

the accuracy of a population projection that features the final migration model choice. 

Therefore, this dissertation requires two formal problem definitions. 

First, I estimated the migration models using each of three data sources containing 

two to eight years of data. Each data source provides unique identifiers for the origin 

county i, destination county j, the number of annual migrants M, and the year of 

migration t. Since my goal is to predict future migration, I estimate county-to-county 

migration models using county population P for year t and the number of annual migrants 

M at time t+1 between the origin county i and destination county j for all unique county 

pairs. Using t for population and t+1 for migration avoids confounding or mis-
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specification errors since the population of a county at year t is partially a function of 

migration for year t. I then validate each model by comparing the estimated number of 

migrants for each unique county-to-county pair 𝑀𝑀�𝑖𝑖𝑖𝑖 for year t+1 to the observed 

migration Mij,t+1.  

The second major research objective is to use the newly developed and validated 

migration model to generate population projections. Projected gross (i.e., county to 

county) migration flows 𝑀𝑀�  are aggregated to projected net migration Mnet for each county 

for the years 2016 through 2020. So, for example, Mnet for the year 2020 is calculated 

applying model coefficients to 2019 county population values, which is consistent with 

the estimation and validation approach described previously. The number of births, 

deaths and net international immigration is also projected annually by county for the 

years 2016 through 2020, and these values are summed (or differenced) along with Mnet 

to produce an annual estimate of total population. 
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3. DATA 

 In order to contextualize and understand the research opportunities discussed in 

the previous section, an understanding of the data available to address the issues is 

needed. The idiosyncrasies of the migration data inform the research methods discussed 

in Chapter 4. 

3.1. Migration 

Despite the substantial differences in survey design and data collection 

methodologies, comparisons of model performance with respect to the choice of data 

source are completely absent from the literature. Even basic descriptive statistics of 

county-to-county migration datasets from the IRS, ACS and Census data sources 

highlights potentially important quantitative differences. 
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Figure 3. Distribution of migration distances for three data sources when Mij > 0. 

 

 Figure 3 shows the distribution of migration flows by distance when migration 

(M) is less than zero. Nearly 400,000 Census data migration records covered 1,000 

kilometers (km) or less, while the ACS data show less than 150,000 migration records in 

that distance bin. The IRS data contain nearly 40,000 migration flows that covered less 

than 1,000 km: a difference of roughly an order of magnitude relative to the Census. 

Large relative and absolute disparities are apparent in the other distance bins as well, 

although those differences are less apparent for moves covering more than 5,000 km 

Visualizing the distribution of migration flow size reveals more significant differences 

between the three data sources. 
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Figure 4. Distribution of migration flow size for three data sources when Mij > 0. 

 

Figure 4 shows that while the IRS censors migration flows of fewer than 20 

individuals in the interest of privacy, the Census data from 1990 describe more than 

600,000 moves in the same size bin. Both the Census and ACS data show fewer flows of 

in the 20-to-50 km range as migration distances increase, which is consistent with 

theoretical expectations. However, the IRS data the cumulative histogram of the ACS 

data fall between the Census and IRS, demonstrating substantial differences between the 

three data sources.  

IRS County-to-County Migration Files 

The Internal Revenue Service (IRS) disseminates annual migration counts by 

matching the county of residence for income tax filers in consecutive years. The IRS data 

are not individual migration counts per se, but rather county-to-county movement of tax 
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exemptions that can be used as a proxy. Key limitations of these data have been noted in 

previous studies, for example the exclusion of residents that do not file tax returns. 

Nonetheless the annual frequency of these data makes them a unique and valuable 

resource for migration studies. Data are available for the years 1983 to 2017, however no 

demographic information on the migrants is included. The IRS suppresses all flows of 

less than 10 exemptions for privacy reasons through 2012 and in subsequent flows 

suppresses all flows of less than 20 exemptions, as shown in Figure 5. 

 

 
Figure 5. IRS migration flows sorted by year and binned by number of migrants. 

 

There are also clear step changes within the <20, <50, and <100 size classes shown in 

Figure 5. These are likely attributable to methodological changes to the IRS tabulation 

procedures which are not obviously documented.  
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American Community Survey 

 The American Community Survey (ACS) measures approximately 1% of the U.S. 

population annually. County to county migration data are available from 2005 to 2015 

and subsequent annual surveys are aggregated over rolling five-year windows. The 

earliest available county-to-county migration data set covers the years 2005 to 2009 and 

represents the average annual migration flow between counties during that period. The 

most recent migration data set included in this study covers the years 2011 to 2015, 

meaning there are a total of seven ACS migration files available covering overlapping 

time periods. Figure 6 shows the distribution of migration flow size for all years of the 

ACS data, and a discontinuity after the 2006-2010 data when the size of the flows was 

<10 migrants.  
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Figure 6. ACS migration flows sorted by year and binned by number of migrants. 

 

The ACS data for 2006-2010 and 2011-2015 provide county-to-county migration 

flows for four race groups that were also available in the intercensal population files 

(White, Black, Asian, and Other), as well as Hispanic and Not-Hispanic designations. 

Hispanic origin is considered an ethnic trait, meaning those categories overlap the four 

race groups. ACS migration flows are not cross tabulated by race and Hispanic origin. 

Race and ethnicity are self-reported by survey respondents. 

 
U.S. Census Bureau Enhanced Migration Files 

Prior to the ACS, the sole source of demographically detailed migration data were the 

enhanced migration files from the U.S. Census. The data were collected as part of the 
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decennial census in 1990 and 2000 and captured the respondent’s place of residence five 

years prior to the actual census. 

 

 
Figure 7. Census migration flows sorted by year and binned by number of migrants. 

 

 The Census migration data represent the net migration of individuals over a five-year 

period and not annual moves as with the IRS data, or average annual flows between 

counties as with the ACS. The 1990 Census enhanced migration files report county-

to-county migration flows for three race groups: White, Black, and Other. The 2000 

Census files replaced the Other group with two new groups: American Indian and 

Alaska Native and Asian and Pacific Islander. Race and ethnicity are self-reported by 

survey respondents.  
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 The migration modeling approaches in sections 4.1 and 4.2 are evaluated using 

three sources of migration data to better understand differences in the results that may 

arise purely from the choice of input data. Each migration data file available from the 

sources described here was randomly divided into training and testing subsets comprising 

80% and 20% of the complete data set, respectively. Given the apparent temporal 

discontinuities in Figure 5 and Figure 6, some years of IRS and ACS data were excluded. 

Table 1 briefly summarizes the migration data considered throughout this dissertation. 

 

Table 1. County-to-county migration datasets used in this dissertation 

 Time periods Migration interval Suppressions 

IRS 2013 to 2017 Annual Flows < 20 

ACS 2007 to 2015 Annual (five-year average) Small flows* 

Census 1990 and 2000  Five years Unknown† 
*Flows containing only one or two people from different households, only one or two 
people in group quarters, or one person in group quarters and the rest from a single household are suppressed. 
†Technical documentation of the long form Census questionnaire is available but makes no specific mention of 
migration data suppression procedures. 
 

3.2. Population 

The U.S. Census intercensal population estimates (U.S. Census Bureau, 2021) 

provide annual county-level population by race for all years included in this dissertation.  

3.3. Labor Markets 

Many studies use U.S. Census Core-based Statistical Areas (CBSA) to define labor 

markets. However, these geographies are limited to the most populated counties in the 

United States, excluding sizable portions of the country. Recent scholarship suggests that 

economic areas delineated using Bureau of Economic Analysis (BEA) methods provide 
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meaningful aggregations of U.S. counties (Fowler & Jensen, 2020), and these geographic 

units have been featured in other migration work (Plane & Heins, 2003; Xu, 2017). Both 

the BEA delineations and the Economic Research Service (ERS) Commuting Zones 

include all U.S. counties. However, the BEA economic areas out-perform all others with 

respect to “containment,” i.e., the population that both work and reside in the same labor 

market and divide only a small number of metropolitan areas (Table 2). This attribute is 

critical to avoiding a spatial mismatch between migration data and geographic variables. 

Note that use of labor markets, by any definition, does not constitute the inclusion of 

economic variables per se. These geographic definitions capture the spatial pattern of 

human settlement in the United States and – in addition to county boundaries – provide a 

defensible definition of “location” needed to both analyze and model human migration. 

 

Table 2. Comparison of CBSA, ERS, and BEA delineations.  
  Living and working in same 

labor market 
 

Delineation 

Split 
Metropolitan 

Areas Minimum Mean 

U.S. population 
whose commute 
is contained in 
labor market 

BEA (2010) 4 85% 93% 97% 
CBSA (2010) 0 36% 80% 94% 
ERS (2010) 36 64% 88% 93% 

Source: Fowler and Jensen (2020). 
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4. METHODS AND RESULTS 

This dissertation research evaluates several new and existing migration models for 

accuracy and potential use in a full demographic model by addressing three research 

questions: 

1. Does the radiation model of mobility compare favorably to the 

traditional regression approach to spatial interactions?  

2. Does the partitioning of migration flows by race and age improve 

migration model estimates? 

3. When the best-performing migration model is combined with 

projections of other components of demographic change (i.e., natality, 

mortality, net immigration), do the resulting population projections 

compare favorably with existing projections? 

I address these research questions using spatial interaction modeling with a general 

structure similar to that of the basic gravity model (Equation 1). Instead of using distance 

as the denominator, however, I substitute various combinations of deterrence variables 

such as Intervening Opportunities (“origin-based”) and Competing Migrants 

(“destination-based”). All deterrence variables are discussed in detail in section 4.1.1. 

Each model is of the same general structure: 
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𝑀𝑀𝑖𝑖𝑖𝑖,𝑑𝑑,𝑡𝑡+1 =
𝑃𝑃𝑖𝑖,𝑡𝑡
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Equation 2. General form of the spatial interaction model using origin- and destination-based deterrence 
variables. 
 
where 𝑀𝑀𝑖𝑖𝑖𝑖,𝑑𝑑,𝑡𝑡+1 is the estimated number of migrants between the origin i and destination j 

reported in data source d between year t and t+1; 𝑃𝑃𝑖𝑖 and 𝑃𝑃𝑖𝑖 are the population at the 

origin and destination, respectively, in year t as reported by the U.S. Census Bureau; and 

origin- and destination-based deterrence variables (e.g., Intervening Opportunities and 

Competing Migrants, respectively) are one of the calculations described in section 4.1.1, 

also using U.S. Census Bureau data. As in Equation 1, the values of the exponents βn are 

to be estimated via alternative regression approaches. 

4.1. A migration model for sub-national population projections 

Here I evaluate a variety of migration models using multiple accuracy metrics. 

Several regression model forms are estimated using combinations of variables and 

compared with the radiation model of mobility. The results of this section serve as a 

foundation for additional model development and implementation in subsequent chapters.  

4.1.1. Methods 

Four regression approaches were identified in the literature. The Poisson 

(POISSON) and ordinary least squares (OLS) models have a long record of applications 

in peer-reviewed migration research. Previous studies report improved migration 

estimates when using 119 kilometers as a breakpoint to create two separate models 

(Simini et al., 2012; Viboud et al., 2006). Following on those studies, I employ a 
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segmented OLS model that separately models short- and long-distance migration using 

the cutoff value of 119 kilometers.  

The zero-inflated Poisson (ZIP) and zero-inflated Negative Binomial (ZINB) 

models are relatively new but bring potential advantages to migration modeling. When 

considering all possible migration flows between U.S. counties, for example, it’s the case 

that more than 90% of the observed values are zero for a given year, regardless of data 

source. This is a compelling justification for including a zero-inflated MLE specification, 

following on previous studies (Bohara & Krieg, 1996; Burger et al., 2009). The ‘zero’ 

portion of these models is specified with a complementary log-log link – as opposed to 

the more common logit or probit type. The complimentary log-log is typically used when 

a binary outcome is heavily skewed, i.e., when either absence or presence of a state or 

condition is extremely rare. This is indeed true of the migration data used in this study 

and the complimentary log-log option was found to produce better results during initial 

testing. 

These models are used to evaluate alternative measures of deterrence – in place of 

Euclidean distance – using spatial measures population found throughout the literature 

and again repeating model estimation and validation for all three data sources. I compare 

the POISSON, OLS, ZIP and ZINB models to the parameter-free radiation model. All 

statistical models were developed and run using R.  

From the literature, three measures of migration deterrence were selected for the 

regression analysis: Stouffer’s Intervening Opportunities (𝑆𝑆) and Competing Migrants (𝐶𝐶) 

calculations, as well as Fotheringham’s Competing Destinations (𝐴𝐴) term. I also 
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introduce two new terms which are simply distance-weighted versions of Stouffer’s S and 

C (I assign these the letters T and L, respectively). The calculations for variables S and T 

are centered on the population-weighted centroid of each origin county i while C, A, and 

L are centered on the destination j. Each of these terms represents a more functional 

measure of deterrence to migration than simple distance and each only requires a known 

spatial distribution of population to be defined. Following Raphael (1998), I define the 

quantity of S and C as: 

  

𝑆𝑆𝑖𝑖𝑖𝑖 = �𝑃𝑃𝑘𝑘
𝑘𝑘

∀ 𝑘𝑘|𝑏𝑏𝑖𝑖𝑘𝑘 <  𝑏𝑏𝑖𝑖𝑖𝑖 

Equation 3. The Intervening Opportunities calculation. 
 

𝐶𝐶𝑖𝑖𝑖𝑖 = �𝑃𝑃𝑘𝑘 ∀ 𝑘𝑘|𝑏𝑏𝑖𝑖𝑘𝑘
𝑘𝑘

<  𝑏𝑏𝑖𝑖𝑖𝑖 

Equation 4. The Competing Migrants calculation. 
 

where 𝑃𝑃 is the population at a location; 𝑖𝑖 is the origin location; 𝑗𝑗 is the destination 

location; 𝑘𝑘 is all locations excluding 𝑖𝑖 and 𝑗𝑗; and 𝐷𝐷𝑖𝑖𝑖𝑖 is the Euclidean distance separating 

the population-weighted centroids of 𝑖𝑖 and 𝑗𝑗. 

 Following Fotheringham, Brunsdon and Charlton (2000, p. 231) I define the 

measure of Competing Destinations, 𝐴𝐴, as: 
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𝐴𝐴𝑖𝑖𝑖𝑖 = �
𝑃𝑃𝑘𝑘
𝑏𝑏𝑖𝑖𝑘𝑘𝑘𝑘

 

Equation 5. The Competing Destinations calculation. 
 

I also define a distance-constrained variant of Fotheringham’s Competing 

Destinations idea as in Guldmann (1999): 

 

𝐿𝐿𝑖𝑖𝑖𝑖 =  �
𝑃𝑃𝑘𝑘
𝑏𝑏𝑖𝑖𝑘𝑘𝑘𝑘

 ∀ 𝑘𝑘|𝑏𝑏𝑖𝑖𝑘𝑘 < 𝑏𝑏𝑖𝑖𝑖𝑖 

Equation 6. The localized Competing Destinations calculation. 
 

Finally, I define a new migration deterrence term 𝑇𝑇𝑖𝑖𝑖𝑖 which is identical to 𝐿𝐿𝑖𝑖𝑖𝑖 

except centered on the origin 𝑖𝑖: 

 

𝑇𝑇𝑖𝑖𝑖𝑖 =  �
𝑃𝑃𝑘𝑘
𝑏𝑏𝑖𝑖𝑘𝑘𝑘𝑘

 ∀ 𝑘𝑘|𝑏𝑏𝑖𝑖𝑘𝑘 < 𝑏𝑏𝑖𝑖𝑖𝑖 

Equation 7. The calculation for a new migration deterrence variable. 
 

The basic form of the radiation model is given as: 

 

𝑀𝑀�𝑖𝑖𝑖𝑖 =  𝑀𝑀𝑖𝑖
𝑃𝑃𝑖𝑖𝑃𝑃𝑖𝑖

�𝑃𝑃𝑖𝑖 + 𝑆𝑆𝑖𝑖𝑖𝑖��𝑃𝑃𝑖𝑖 +  𝑃𝑃𝑖𝑖 +  𝑆𝑆𝑖𝑖𝑖𝑖�
 

 

Equation 8. The radiation model as described in Simini et al. (2012). 
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where 𝑀𝑀�𝑖𝑖𝑖𝑖 is the number of migrants between the origin 𝑖𝑖 and the destination 𝑗𝑗; 𝑀𝑀𝑖𝑖 is the 

number of migrants originating from location 𝑖𝑖; 𝑃𝑃 is the population at a location; and 𝑆𝑆𝑖𝑖𝑖𝑖 

is the number of intervening opportunities between 𝑖𝑖 and 𝑗𝑗 as defined in Equation 3. 

Out-of-sample accuracy assessments of each statistical model was conducted 

using 20 percent of the data for each year and data source combination that was withheld 

prior to model estimation. I assess the validation results using a metric described in 

Tofallis (2015), which I designate as 𝑄𝑄:  

𝑀𝑀𝐴𝐴𝑃𝑃𝑀𝑀 =
∑
�𝑀𝑀�𝑖𝑖𝑖𝑖 − 𝑀𝑀𝑖𝑖𝑖𝑖�

𝑀𝑀𝑖𝑖𝑖𝑖

𝑂𝑂
× 100 

Equation 9. Formula for mean absolute percentage error (MAPE) 
 

𝑄𝑄 = 𝑣𝑣𝑂𝑂 �
𝑀𝑀𝚤𝚤𝚤𝚤�
𝑀𝑀𝑖𝑖𝑖𝑖

�
2

 

Equation 10. Formula for the Q statistic used to assess model performance. 
 

𝑅𝑅𝑀𝑀𝑆𝑆𝑃𝑃𝑀𝑀 =
�∑�

𝑀𝑀�𝑖𝑖𝑖𝑖 − 𝑀𝑀𝑖𝑖𝑖𝑖
𝑀𝑀𝑖𝑖𝑖𝑖

�
2

× 100

𝑂𝑂
 

Equation 11. Formula for root mean square percentage error (RMSPE) 
 

𝑀𝑀𝑃𝑃𝑀𝑀 =
∑
𝑀𝑀�𝑖𝑖𝑖𝑖 − 𝑀𝑀𝑖𝑖𝑖𝑖

𝑀𝑀𝑖𝑖𝑖𝑖

𝑂𝑂
 

Equation 12. Formula for mean percentage error (MPE) 
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𝑀𝑀𝑀𝑀 =
∑𝑀𝑀�𝑖𝑖𝑖𝑖 − 𝑀𝑀𝑖𝑖𝑖𝑖

𝑂𝑂
 

Equation 13. Formula for mean error (ME), calculated only when Mij = 0. 
 

where 𝑀𝑀𝚤𝚤𝚤𝚤�  and 𝑀𝑀𝑖𝑖𝑖𝑖 are the predicted and actual migration, respectively, between an origin 

county 𝑖𝑖 and destination county 𝑗𝑗. As described in Tofallis (2015), this measure of 

relative error is superior to more commonly used metrics, especially Mean Absolute 

Percentage Error (MAPE). While the MAPE statistic is easily interpretable, it is 

asymmetric and biased towards models that underpredict. That is, underpredictions are 

limited to an absolute percentage error measurement of 100% while there is obviously no 

theoretical limit in the case of overpredictions. Törnqvist et al. (1985) describe other 

mathematical limitations of MAPE and recommend an accuracy metric very similar to 𝑄𝑄. 

Like all measures of relative accuracy, 𝑄𝑄 is undefined when 𝑀𝑀 = 0, so those zero flows 

are validated later in this section by calculating the mean error (ME). In addition, because 

the IRS data do no report flows smaller than twenty individuals, the first step in the 

validation procedure here is to evaluate the accuracy of predictions when 𝑀𝑀 ≥ 20, 

followed by a second validation of ACS and Census data when 0 < 𝑀𝑀 < 20.  

 Finally, I report model accuracy when flows are equal to zero due the fact that 

more than 90% of county-to-county flows are equal to zero for all three migration data 

sources. To identify IRS migration flows that were likely zero, I identified origin-

destination pairs with migration values of zero (or with no reported value) for all years in 

all data sources. This yielded more than 1.7 million unique county pairs which are 
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assumed to have no migration interaction for the purposes of assessing accuracy. The 

importance of this tiered model validation approach is discussed below.  

4.1.2. Results 

Table 3 provides a summary of the migration deterrence variables used in 

combination with four types of regression model. To avoid correlated predictor variables, 

only combinations of one origin-centered variable and one destination-centered variable 

were tested. Even still, some combinations were highly correlated (rs > 0.6) and were not 

used.  

 

Table 3. Summary of migration deterrence variables.  

Variable Description Centered on: Source(s) Reference 

Sij 
Intervening 
Opportunities Origin Raphael, 1998; 

Stouffer, 1940 
Figure 1 
Equation 3 

Sij + Pi 

Intervening 
Opportunities plus 
origin population 

Origin * Figure 1 

Cij Competing Migrants Destination Raphael, 1998; 
Stouffer, 1960 

Figure 2 
Equation 4 

Cij + Pj 

Competing Migrants 
plus destination 
population 

Destination * Figure 2 

Aij 
Competing 
Destinations Destination Fotheringham et al., 

2000 Equation 5 

Lij Distance-weighted 
Competing Migrants Destination Guldmann, 1999 Figure 2 

Equation 6 

Tij 

Distance-weighted 
Intervening 
Opportunities 

Origin * Figure 1 
Equation 7 

Note: Novel variable calculations are indicated by an asterisk (*) in the Source column. 
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The remaining eight origin-destination variable combinations were tested using four 

types of regression model estimated using three data sources. The accuracy of the 

resulting 96 models is shown in Table 4, Table 5 and Table 6.  

 

Table 4. Accuracy of migration model predictions when M > 0 using ACS data.  
# Type Var 1 Var 2 Var 3 Var 4 MAPE RMSPE Q MPE ME 
1 OLS Pi Pj Sij Aij 151.1 366.4 1.32 99.2 6.23 
2 OLS Pi Pj Sij + Pi Aij 149.4 355.7 1.30 97.6 6.21 
3 OLS Pi Pj Tij Aij 151.5 364.9 1.33 99.5 6.85 
4 OLS Pi Pj Tij Cij 150.2 359.2 1.31 98.3 6.19 
5 OLS Pi Pj Tij Cij + Pj 148.2 348.5 1.29 96.5 6.18 
6 OLS Pi Pj Sij Lij 150.2 358.6 1.31 98.3 6.16 

7 OLS Pi Pj Sij + Pi Lij 148.5 350.5 1.29 96.7 6.16 
8 OLS Pi Pj Tij Lij 150.2 357.9 1.31 98.3 6.34 
           
9 POISSON Pi Pj Sij Aij 100.6 233.4 3.41 -18.5 0.51 
10 POISSON Pi Pj Sij + Pi Aij 127.3 469.6 2.88 17.7 0.18 
11 POISSON Pi Pj Tij Aij 105.0 255.3 3.70 -17.0 0.54 
12 POISSON Pi Pj Tij Cij 99.6 224.0 3.38 -19.8 0.52 
13 POISSON Pi Pj Tij Cij + Pj 120.9 376.1 2.88 9.9 0.19 
14 POISSON Pi Pj Sij Lij 99.9 225.0 3.38 -19.5 0.52 
15 POISSON Pi Pj Sij + Pi Lij 123.1 409.0 2.87 13.0 0.19 
16 POISSON Pi Pj Tij Lij 102.0 235.4 3.56 -19.1 0.54 
           
17 ZINB Pi Pj Sij Aij 131.2 774.5 2.55 23.6 0.23 
18 ZINB Pi Pj Sij + Pi Aij 113.2 276.5 2.47 7.3 0.23 
19 ZINB Pi Pj Tij Aij 132.5 777.1 2.87 20.0 0.30 
20 ZINB Pi Pj Tij Cij 123.8 580.7 2.53 16.3 0.23 
21 ZINB Pi Pj Tij Cij + Pj 111.6 285.3 2.46 5.0 0.23 
22 ZINB Pi Pj Sij Lij 125.1 613.0 2.51 17.9 0.23 

23 ZINB Pi Pj Sij + Pi Lij 112.2 286.9 2.46 5.8 0.23 
24 ZINB Pi Pj Tij Lij 130.1 693.5 2.62 21.6 0.25 
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# Type Var 1 Var 2 Var 3 Var 4 MAPE RMSPE Q MPE ME 
           
25 ZIP Pi Pj Sij Aij 118.1 358.1 2.50 11.6 0.23 

26 ZIP Pi Pj Sij + Pi Aij 127.2 410.2 2.83 12.0 0.10 
27 ZIP Pi Pj Tij Aij 119.6 362.9 2.84 7.6 0.30 
28 ZIP Pi Pj Tij Cij 115.2 318.3 2.47 8.8 0.22 

29 ZIP Pi Pj Tij Cij + Pj 122.1 360.2 2.78 7.3 0.10 

30 ZIP Pi Pj Sij Lij 115.7 322.9 2.46 9.7 0.22 

31 ZIP Pi Pj Sij + Pi Lij 122.7 362.0 2.74 9.0 0.10 

32 ZIP Pi Pj Tij Lij 117.0 325.1 2.56 9.7 0.25 
Var 3 and Var 4 are deterrence variables based on spatial population distribution. The best performing combination of 
variables for each of the four regression model types are highlighted 
 

Table 4 displays the results of the regression models estimated using ACS 

migration data. Accuracy was assessed for five years of ACS data (2007-2011 through 

2011-2015) and the mean value of each accuracy metrics is reported. The OLS models 

were the worst performers in four out of the five accuracy metrics, particularly in the 

measure of bias (MPE) and when predicting zero migration (ME). A Poisson model was 

the most accurate in two widely used metrics (MAPE and RMSPE), but there was not a 

clear pattern of which variable combinations should be preferred for the Poisson 

specification. The two zero-inflated models were competitive in across all accuracy 

metrics and produced the least biased (#21) and best predictor of zero migration (#26) 

across all ACS-based models. While there was little consensus as to the overall best 

variable combination, Tij was a clear winner with respect to the variables centered on the 

origin. The best score for four of the five accuracy metrics used Tij in the Var 3 column. 

The only exception was the ME value which was nearly identical across three different 

variable combinations (#26, #29, #31).  
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Table 5. Accuracy of migration model predictions when M > 0 using Census data.  
# Type Var 1 Var 2 Var 3 Var 4 MAPE RMSPE Q MPE ME 
33 OLS Pi Pj Sij Aij 92.5 153.7 0.87 48.4 1.23 
34 OLS Pi Pj Sij + Pi Aij 91.5 152.1 0.86 47.6 1.22 
35 OLS Pi Pj Tij Aij 94.3 156.2 0.91 50.0 1.37 
36 OLS Pi Pj Tij Cij 92.4 153.2 0.87 48.3 1.23 
37 OLS Pi Pj Tij Cij + Pj 91.1 150.0 0.85 47.3 1.22 
38 OLS Pi Pj Sij Lij 92.4 153.3 0.87 48.3 1.22 
39 OLS Pi Pj Sij + Pi Lij 91.2 150.5 0.85 47.3 1.22 
40 OLS Pi Pj Tij Lij 92.8 153.9 0.88 48.6 1.26 
           
41 POISSON Pi Pj Sij Aij 103.0 198.4 1.45 10.1 0.23 
42 POISSON Pi Pj Sij + Pi Aij 102.8 212.8 1.21 2.1 0.09 
43 POISSON Pi Pj Tij Aij 111.0 224.7 1.58 15.7 0.25 
44 POISSON Pi Pj Tij Cij 101.6 194.5 1.44 8.4 0.23 
45 POISSON Pi Pj Tij Cij + Pj 99.0 201.5 1.20 -3.6 0.09 
46 POISSON Pi Pj Sij Lij 102.5 196.3 1.45 9.5 0.24 
47 POISSON Pi Pj Sij + Pi Lij 101.6 209.8 1.21 1.2 0.10 
48 POISSON Pi Pj Tij Lij 106.2 206.8 1.52 12.0 0.24 
           
49 ZINB Pi Pj Sij Aij 149.6 1693.4 1.23 50.7 0.10 
50 ZINB Pi Pj Sij + Pi Aij 89.8 151.6 1.11 -8.4 0.10 
51 ZINB Pi Pj Tij Aij 168.7 1890.7 1.44 69.9 0.14 
52 ZINB Pi Pj Tij Cij 137.1 1254.9 1.21 37.9 0.10 
53 ZINB Pi Pj Tij Cij + Pj 88.1 148.4 1.10 -10.7 0.10 
54 ZINB Pi Pj Sij Lij 145.1 1508.5 1.21 45.7 0.10 
55 ZINB Pi Pj Sij + Pi Lij 89.0 158.7 1.10 -9.9 0.10 
56 ZINB Pi Pj Tij Lij 204.7 2946.8 1.31 106.3 0.11 
           
57 ZIP Pi Pj Sij Aij 106.7 203.4 1.19 16.5 0.15 
58 ZIP Pi Pj Sij + Pi Aij 102.2 200.8 1.23 -6.3 0.06 
59 ZIP Pi Pj Tij Aij 116.9 237.3 1.39 23.3 0.17 
60 ZIP Pi Pj Tij Cij 104.8 198.1 1.17 13.9 0.15 
61 ZIP Pi Pj Tij Cij + Pj 98.6 189.1 1.20 -10.4 0.07 
62 ZIP Pi Pj Sij Lij 105.0 197.7 1.17 14.6 0.15 
63 ZIP Pi Pj Sij + Pi Lij 100.1 193.1 1.19 -6.5 0.07 
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# Type Var 1 Var 2 Var 3 Var 4 MAPE RMSPE Q MPE ME 
64 ZIP Pi Pj Tij Lij 109.8 211.6 1.24 19.4 0.16 

Var3 and Va4 are deterrence variables based on spatial population distribution. The best performing combination of 
variables for each of the four regression model types are highlighted. 
 

The results in Table 5 suggest a clear winner with respect to explanatory variables 

when estimating models with Census data. Across all four model types, the combination 

of the distance-weighted Intervening Opportunities Tij and the sum of Competing 

Migrants plus destination population (Cij + Pj) consistently produced top accuracy scores 

(#37, #45, #53, #61), or any many cases scores that were close to the best. The zero-

inflated Negative Binomial version of the model (#53) produced the lowest MAPE and 

RMSPE in Table 5 while the zero-inflated Poisson model (#58) produced the lowest ME. 

The OLS models again produced the worst MPE and ME scores. 

 

Table 6. Accuracy of migration model predictions when M ≥ 20 using IRS data.  
# Type Var 1 Var 2 Var 3 Var 4 MAPE RMSPE Q MPE ME 
65 OLS Pi Pj Sij Aij 60.6 90.8 0.50 24.6 8.43 
66 OLS Pi Pj Sij + Pi Aij 56.1 81.4 0.45 21.5 8.27 
67 OLS Pi Pj Tij Aij 62.4 92.2 0.53 25.7 13.69 
68 OLS Pi Pj Tij Cij 60.0 95.1 0.49 24.2 8.28 
69 OLS Pi Pj Tij Cij + Pj 55.7 81.0 0.43 21.1 8.13 
70 OLS Pi Pj Sij Lij 59.6 99.6 0.48 24.0 7.73 
71 OLS Pi Pj Sij + Pi Lij 55.2 80.2 0.43 20.8 7.58 
72 OLS Pi Pj Tij Lij 60.3 99.3 0.49 24.4 9.49 
           
73 POISSON Pi Pj Sij Aij 71.7 79.6 5.00 -63.3 0.19 
74 POISSON Pi Pj Sij + Pi Aij 71.0 101.2 2.46 -34.1 0.03 
75 POISSON Pi Pj Tij Aij 75.4 84.6 5.71 -61.1 0.21 
76 POISSON Pi Pj Tij Cij 71.9 79.5 4.91 -64.8 0.20 
77 POISSON Pi Pj Tij Cij + Pj 69.0 106.1 2.30 -36.5 0.03 
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# Type Var 1 Var 2 Var 3 Var 4 MAPE RMSPE Q MPE ME 
78 POISSON Pi Pj Sij Lij 71.8 79.2 4.90 -64.8 0.20 
79 POISSON Pi Pj Sij + Pi Lij 68.8 92.3 2.37 -37.2 0.03 
80 POISSON Pi Pj Tij Lij 73.8 81.4 5.42 -63.9 0.21 
           
81 ZINB Pi Pj Sij Aij 103.8 285.3 1.84 20.3 0.01 
82 ZINB Pi Pj Sij + Pi Aij 63.8 84.3 1.60 -15.8 0.01 
83 ZINB Pi Pj Tij Aij 89.3 167.0 2.68 -8.9 0.04 
84 ZINB Pi Pj Tij Cij 98.9 274.0 1.74 16.1 0.01 
85 ZINB Pi Pj Tij Cij + Pj 63.2 85.7 1.51 -16.2 0.01 
86 ZINB Pi Pj Sij Lij 97.5 266.5 1.69 15.8 0.01 
87 ZINB Pi Pj Sij + Pi Lij 63.6 87.5 1.48 -14.9 0.00 
88 ZINB Pi Pj Tij Lij 90.6 206.4 2.03 3.2 0.01 
           
89 ZIP Pi Pj Sij Aij 73.3 104.8 1.75 -5.4 0.01 
90 ZIP Pi Pj Sij + Pi Aij 76.7 113.6 2.29 -15.3 0.00 
91 ZIP Pi Pj Tij Aij 81.1 116.4 2.77 -16.4 0.03 
92 ZIP Pi Pj Tij Cij 72.8 106.1 1.65 -5.2 0.01 
93 ZIP Pi Pj Tij Cij + Pj 72.5 107.2 2.05 -16.1 0.00 
94 ZIP Pi Pj Sij Lij 72.0 103.7 1.59 -4.4 0.01 
95 ZIP Pi Pj Sij + Pi Lij 72.2 102.9 1.99 -15.1 0.00 
96 ZIP Pi Pj Tij Lij 77.4 112.9 2.04 -8.3 0.01 

Var3 and Var4 are deterrence variables based on spatial population distribution. Five validation metrics are shown with 
the best performing combination of variables for each of the four regression model types are highlighted. 
 

In Table 6 values for MAPE, RMSPE, and ME were low relative to Table 4 and 

Table 5 indicating that IRS migration flows are more readily reproducible using 

regression models. Interestingly, while the combination of deterrence variables Tij and (Sij 

+ Pj) performed well in Table 6, the combination of Sij + Pi and Lij was the top 

performer, consistently yielding the lowest error rates across metrics and models (see 

rows #71, #79, #87, #94). As with the ACS and Census data sources, OLS models 

estimated using IRS data produced notably poor ME values.  
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Looking across three data sources and four regression model types, the 

combination of migration deterrence variables Tij and (Sij + Pj) seem to perform 

consistently well. Figure 8 and Figure 9 highlight the performance of Tij and (Sij + Pj) 

relative to other variable combinations for two of the more meaningful and interpretable 

accuracy metrics: MAPE and ME. 
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Figure 8. Mean absolute percent error (MAPE) of all models by data source when M > 0 (ACS and Census) and M ≥ 20 (IRS).  
 

 

Figure 9. Mean error (ME) of all models by data source when and M = 0. 
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Selecting the Tij and (Sij + Pj) model from above as the “best of breed” regression 

model allows for a straightforward comparison to the radiation model. As shown in 

Figure 10, the radiation model performs quite poorly regardless of data source when 

validation is constrained to M ≥ 20. The MLE regression models performed similarly 

while the OLS approach yielded the best MAPE when using ACS and IRS data. 

Interestingly, all the regression approaches performed similarly when using the Census 

migration data. 

 
Figure 10. Accuracy of model predictions when M ≥ 20 using ACS, Census, and IRS migration data.  

 

 Figure 11 shows model accuracy when migration flows are greater than zero but 

less than 20, which excludes the IRS data. First, there is a notable increase in error for all 

models relative to Figure 10, and a consistent pattern of Census-based models 

outperforming their ACS counterparts. Another unexpected pattern is the comparable 
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performance of the radiation model, which is markedly different from Figure 10. Finally, 

the OLS model performs poorly when estimated with ACS data, although all other 

models perform almost identically when the data source is the same. The zero-inflated 

Negative binomial model was the most accurate in Figure 11 albeit by a relatively small 

margin in most cases.  

 

 
Figure 11. Accuracy of model predictions when 0 ˂ M ˂ 20 using ACS, Census, and IRS migration data.  

 

Calculating mean error (ME) when M = 0 yields a final set of validation results. 

Here the radiation model performs quite well, consistently producing the lowest errors 

regardless of data source. Conversely, the OLS model performs poorly, producing errors 

an order of magnitude larger than the other models on average. Interestingly, the OLS 



47 
 

errors were at least three times lower than when using the Census migration data relative 

to the ACS and IRS counterparts. The three MLE regression models perform similarly, 

showing comparable magnitudes of errors which are lowest using IRS data and highest 

using ACS.  

 

 
Figure 12. Accuracy of model predictions when M = 0 using ACS, Census, and IRS migration data. Regression 

results shown here use the deterrence variables Tij and Cij + Pj. 
 

4.1.3. Discussion 

Following on previous work, I find that multiple aspects of forecast accuracy are 

needed to evaluate alternative model specifications and migration data sources. Assessing 

prediction errors for M ≥ 20 alone suggests that the classic OLS spatial interaction model 

is vastly superior to three MLE approaches. In other circumstances (i.e., cross-sectional 
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analysis) model evaluation might reasonably end with that conclusion. However, 

evaluating the skill of all four models when observed flows are equal to zero suggests the 

opposite conclusion. I view this secondary evaluation as essential given that – regardless 

of data source – more than 90% of all possible county-to-county migration flows are 

equal to zero each year and the performance of the OLS model must be interpreted in that 

context.  

These results have implications in cases where migration models are needed for 

long-range projections, and not cross-sectional analyses. When projecting migration 

forward in time over numerous time steps, small errors accumulate with each iteration of 

the model, resulting in projections that become more unreasonable over time. The 

mediocre performance of OLS as shown in Figure 12 may be traced back to an inability 

to use zero flows in calibration. The natural logarithm of zero is undefined and typically 

the input data set is truncated to exclude those observations. I followed this convention to 

preserve consistency with the authors of the radiation model (Simini et al., 2012) who 

also used a truncated OLS model as a comparator.  

My results contradict the conclusions of Simini et al. (2012). I find that the 

radiation model does poorly at estimating migration flows when M ≥ 20. The radiation 

model does seem to be an excellent predictor of zero migration and performs about the 

same as the regression models when observed migration flows are between zero and 20. 

Nonetheless, these results show little evidence to support using the radiation model to 

project migration flows in the U.S.  
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Additionally, there is evidence that the usual calculations for Stouffer’s 

Intervening Opportunities (Sij) and Competing Migrants (Cij) calculations should be 

revisited. These results show that two variations of those variables outperform the 

traditional calculations. For example, holding all other characteristics the same, models 

that used the variables (Sij + Pi) and (Cij + Pj) often outperformed models that included Sij 

and Cij, respectively. In the case of Intervening Opportunities, this could reflect 

population at the origin providing some amenity that discourages potential migrants from 

leaving. Conversely, population at the destination should themselves out-compete 

potential migrants for employment or housing given the disparity in proximity and access 

to information. Moreover, the distance-weighted versions of Sij and Cij – Tij and Lij 

respectively – were the best performing variants of Intervening Opportunities and 

Competing Migrants. Although the patterns were not entirely consistent across model 

types and data sources, there seem to be both empirical and theoretical justifications for 

inclusion of variants of Stouffer’s original ideas.  

4.2. Homophily in migration 

4.2.1. Race 

4.2.1.1. Methods  

I first parse migration data by race and report correlation coefficients that 

demonstrate homophily in migration destination choices. Next, I apply the Intervening 

Opportunities-Competing Migrant model (IO-CM) identified in section 4.1 to estimate 

migration flows by race: I perform model estimation in this section using the 1990 

Census migration data based primarily on the results shown previously in Figure 11, 
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which show that models estimated using Census data better replicate observations than 

models estimated using ACS data. In addition, the 1990 Census data are fully cross 

tabulated by race and age, which permits further sub-setting of migration flows by age in 

Section 4.2.2. Equation 14 describes the modeling approached used to estimate race-

specific migration flows in this section: 

 

𝑀𝑀𝑖𝑖𝑖𝑖,𝑟𝑟,𝑑𝑑,𝑡𝑡+1 =
𝑃𝑃𝑖𝑖,𝑟𝑟,𝑡𝑡
𝛽𝛽1 ∙ 𝑃𝑃𝑖𝑖,𝑟𝑟,𝑡𝑡

𝛽𝛽2

𝑇𝑇𝑖𝑖𝑖𝑖,𝑟𝑟,𝑡𝑡
𝛽𝛽3 ∙ �𝐶𝐶𝑖𝑖𝑖𝑖,𝑟𝑟,𝑡𝑡 + 𝑃𝑃𝑖𝑖𝑖𝑖,𝑟𝑟,𝑡𝑡�

𝛽𝛽4
 

 
Equation 14. The Intervening Opportunities-Competing Migrants (IO-CM) spatial interaction model. 

 

where 𝑀𝑀𝑖𝑖𝑖𝑖,𝑟𝑟,𝑡𝑡+1 is the estimated number of migrants between the origin i and destination j 

of race r between year t and t+1; 𝑃𝑃𝑖𝑖,𝑟𝑟,𝑡𝑡 and 𝑃𝑃𝑖𝑖,𝑟𝑟,𝑡𝑡 are the population of race r at the origin 

and destination, respectively, in year t; 𝑇𝑇𝑖𝑖𝑖𝑖,𝑟𝑟,𝑡𝑡 is the distance-weighted Intervening 

Opportunities calculation from Equation 7 considering only race r for year t; and 

�𝐶𝐶𝑖𝑖𝑖𝑖,𝑟𝑟,𝑡𝑡 + 𝑃𝑃𝑖𝑖𝑖𝑖,𝑟𝑟,𝑡𝑡� is a modified Competing Migrants calculation (see Table 3) considering 

only race r for year t.  

4.2.1.2. Results 

The Spearman correlation coefficients relating migration into a location and the 

population at that location by race and ethnicity are presented in Table 7: Across all 

migration data sets the within-race correlation between incoming migration and 

population was greater than the correlation between the same migration flows and total 

population. The correlations shown in Table 7 suggest that predictive capability may be 
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improved by articulating migration flows by race and then summing the resulting 

predictions. An additional benefit of partitioning migration in this manner is that the 

racial characteristics of gross migration flows are retained, which is relevant for policy 

making that considers environmental justice (Bowen et al., 1995; Bowen & Haynes, 

2000).  

 

Table 7. Correlation by race (r) between incoming migration and population.  

  Spearman correlation with 𝑴𝑴𝒓𝒓 

Migration data 
source 𝒓𝒓 𝑷𝑷𝒋𝒋,𝒓𝒓 𝑷𝑷𝒋𝒋 

    
1990 Census     
 White 0.948 (0.945, 0.952) 0.936 (0.932, 0.940) 
 Black 0.948 (0.945, 0.952) 0.733 (0.716, 0.749) 
 Other 0.888 (0.881, 0.896) 0.722 (0.705, 0.739) 
 𝑀𝑀𝑖𝑖  0.948 (0.944, 0.951) 
2000 Census    
 White 0.961 (0.958, 0.964) 0.946 (0.942, 0.950) 
 Black 0.956 (0.953, 0.959) 0.758 (0.743, 0.773) 
 AIAN 0.899 (0.892, 0.905) 0.689 (0.670, 0.708) 
 API 0.891 (0.883, 0.898) 0.859 (0.850, 0.868) 
 𝑀𝑀𝑖𝑖  0.960 (0.957, 0.963) 
2011-2015 ACS    
 White Alone 0.939 (0.935, 0.943) 0.929 (0.924, 0.934) 
 Black Alone 0.884 (0.876, 0.892) 0.769 (0.754, 0.783) 
 Asian Alone 0.769 (0.754, 0.783) 0.729 (0.713, 0.746) 
 Other 0.839 (0.828, 0.849) 0.785 (0.771, 0.798) 
 𝑀𝑀𝑖𝑖  0.936 (0.931, 0.940) 
    
 Hispanic 0.836 (0.825, 0.846) 0.756 (0.741, 0.771) 
 Not Hispanic 0.939 (0.934, 0.943) 0.933 (0.928, 0.937) 
 𝑀𝑀𝑖𝑖  0.936 (0.932, 0.941) 

The 95 percent confidence intervals are shown in parentheses. 𝑃𝑃𝑖𝑖is the total population at the destination while 𝑃𝑃𝑖𝑖,𝑟𝑟 is 
the total population of race r only. 𝑀𝑀𝑖𝑖is the total incoming migration (all races) at the destination. 
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Figure 13. Comparison of IO-CM accuracy with and without race-specific migration  

using Census data when M > 0. 
 

 Figure 13 shows that total non-zero migration flows predicted by Census-

calibrated models were generally more accurate when migration for each race was 

calculated independently. Interestingly, Figure 14 shows that predictions of zero flows 

were largely unchanged, with the exception the OLS model error which roughly doubled 

when migration was articulated by race. 
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Figure 14. Comparison of IO-CM accuracy with and without race-specific migration  

using Census data when M = 0. 
 

4.2.1.3. Discussion 

Total migration is better predicted by modeling race-specific migration flows, and then 

summing the results. I propose that this result reflects the influence of homophily on 

migration decisions. As the population of a race increases at a location, the more socially 

connected that location becomes for other members of that race. Information about jobs 

and housing opportunities may be acquired through social networks (DaVanzo, 1981), 

which in turn are shaped largely by race (McPherson et al., 2001; Mele, 2021). A desire 

to leverage social capital at the individual level may also influence migration decisions. 

This idea does not preclude other motives as the primary migration driver, but rather 

considers that a job hunt, for example, may be limited to places where the job seeker has 

preexisting social network connections.  



54 
 

The role of race in migration decisions among African-Americans has been reported 

in much earlier work (Cebula et al., 1973; McHugh, 1988; Pack, 1973). Frey and Liaw 

(2005) found race-ethnicity populations at destinations to be a significant factor in 

migration flows for Hispanic, Black and Asian population groups. Race is infrequently 

incorporated into migration studies or population projections. 

4.2.2. Age homophily, urban preference and labor markets 

4.2.2.1. Methods 

The results of section 4.2.1 demonstrate a meaningful link between racial 

homophily and migration. In this section I further explore this connection by introducing 

an additional variable 𝑃𝑃𝑖𝑖∗ which represents the same-race population of the destination 

labor market. I include this variable to reflect the that the likelihood, number, or strength 

of social network connections not only for the destination county but also for surrounding 

area would function as a “pull” force for potential migrants.  

I also include two additional dummy variables that capture important aspects of 

migration found in the literature. The first indicates whether an origin-destination pair 

would result in an intra-labor market move or not. Scholars have long noted a general 

dichotomy between shorter, more frequent “adjustment” moves with the goal of acquiring 

new housing or access to amenities and longer, less frequent moves which result from 

changing jobs, attending college, or other significant life course events (e.g., Clark & 

Onaka, 1983; Plane et al., 2005). I expect the coefficient for intra-labor market moves to 

be positive and statistically significant. 
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The second dummy variable indicates whether the destination county is urban or 

not. I use the U.S. Census Metropolitan Statistical Areas to define urban counties since 

that definition is rigorously derived and widely used. This dummy variable is needed to 

capture the secular trend of urbanization in the United States (Cromartie, 2020; D. 

McGranahan et al., 2010), particularly for early career, young adults (Plane et al., 2005; 

Plane & Heins, 2003; Plane & Jurjevich, 2009). 

The use of both the 1990 Census and 2011-2015 ACS migration data to estimate 

homophily based migration models requires additional methodological considerations. 

The 1990 Census data include migration flows crossed by race (n = 3) and age group (n = 

17), so unique models can be estimated for each race/age combination. The 

implementation of racial homophily is straightforward: a simple binning of migrant and 

populations by race. To affect migration with age homophily, destination populations (Pj 

and Pj*) were weighted using age group-to-age group correlations for each age group 

migration model. The values used to weight destination populations are visualized in 

Figure 15, i.e., a given row represents the set of weights used to calculate destination 

populations for the corresponding age-group on the vertical axis. 
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Figure 15. Correlation (rs) between in-migration and destination population by age group in 1990 Census 

migration data. 
 

The final homophily model of migration using the 1990 Census data is given as: 

 

𝑀𝑀𝑖𝑖𝑖𝑖,𝑟𝑟,a,𝑡𝑡+1 =
𝑃𝑃𝑖𝑖,𝑟𝑟,a,𝑡𝑡
𝛽𝛽1 ∙ 𝑃𝑃𝑖𝑖,𝑟𝑟,w,𝑡𝑡

𝛽𝛽2

𝑇𝑇𝑖𝑖𝑖𝑖,𝑟𝑟,w,𝑡𝑡
𝛽𝛽3 ∙ �𝐶𝐶𝑖𝑖𝑖𝑖,𝑟𝑟,w,𝑡𝑡 + 𝑃𝑃𝑖𝑖,𝑟𝑟,w,𝑡𝑡�

𝛽𝛽4
∙ 𝑈𝑈𝑅𝑅𝑈𝑈𝑖𝑖

𝛽𝛽5 ∙ 𝐿𝐿𝑀𝑀𝑖𝑖𝑖𝑖
𝛽𝛽6 ∙ 𝑃𝑃𝑖𝑖,𝑟𝑟,𝑤𝑤

∗𝛽𝛽7  

Equation 15. The homophily model of migration using 1990 Census migration data. 
 

where 𝑀𝑀�𝑖𝑖𝑖𝑖,𝑟𝑟,𝑎𝑎,𝑡𝑡+1 is the estimated number of migrants between the origin i and destination 

j belonging to a given race r and age group a between years t and t+1; 𝑃𝑃𝑖𝑖,𝑟𝑟,𝑎𝑎,𝑡𝑡 is the 

population at i belonging to race r and age group a for year t; 𝑃𝑃𝑖𝑖,𝑟𝑟,𝑤𝑤,𝑡𝑡 is the age-weighted 

population w at j belonging to race r for year t; 𝑇𝑇𝑖𝑖𝑖𝑖,𝑟𝑟,𝑤𝑤,𝑡𝑡 is the distance-weighted 
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Intervening Opportunities calculation from Equation 7 considering only the age-weighted 

population w of race r for year t; �𝐶𝐶𝑖𝑖𝑖𝑖,𝑟𝑟,𝑤𝑤,𝑡𝑡 + 𝑃𝑃𝑖𝑖,𝑟𝑟,𝑤𝑤,𝑡𝑡� is a modified Competing Migrants 

calculation (see Table 3) considering only the age-weighted population w of race r for 

year t; 𝑈𝑈𝑅𝑅𝑈𝑈𝑖𝑖 is binary variable indicating whether the destination county is urban; 𝐿𝐿𝑀𝑀𝑖𝑖𝑖𝑖 is 

a binary variable indicating whether the destination county j is contained within the same 

labor market as the origin county i; and 𝑃𝑃𝑖𝑖,𝑟𝑟,𝑤𝑤
∗  is the age-weighted population belonging to 

race r that resides outside of the destination county j but within the same labor market as 

j. 

4.2.2.2. Results 

 I evaluated the impact of age-homophily as well as the additional variables LMij, 

URBj, and P*
j,r,w by incrementally comparing the mean absolute percentage error (MAPE) 

of those model predictions against the predictions of the ZINB race homophily model 

show in Figure 13. As shown in Table 8, the additional parsing of migration by age group 

increases the MAPE by nearly 15%. The additional variables nominally reduce the 

overall MAPE, however the ZINB race-only homophily model from Figure 13 remains 

the best performer. The results suggest that role of age homophily is not well described 

by the variables in included here, or that age homophily is not a significant factor in 

migration decisions.  
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Table 8. Incremental contribution of additional model variables. 

Equation 

Mean absolute 
percentage error 
(MAPE) 

𝑷𝑷𝒊𝒊,𝒓𝒓 ∙ 𝑷𝑷𝒋𝒋,𝒓𝒓 ∙ 𝑻𝑻𝒊𝒊𝒋𝒋,𝒓𝒓 ∙ �𝑪𝑪𝒊𝒊𝒋𝒋,𝒓𝒓 + 𝑷𝑷𝒋𝒋,𝒓𝒓� 83.8† 

𝑷𝑷𝒊𝒊,𝒓𝒓,𝒂𝒂 ∙ 𝑷𝑷𝒋𝒋,𝒓𝒓,𝒘𝒘 ∙ 𝑻𝑻𝒊𝒊𝒋𝒋,𝒓𝒓,𝒘𝒘 ∙ �𝑪𝑪𝒊𝒊𝒋𝒋,𝒓𝒓,𝒘𝒘 + 𝑷𝑷𝒋𝒋,𝒓𝒓,𝒘𝒘� 98.5 
𝑷𝑷𝒊𝒊,𝒓𝒓,𝒂𝒂 ∙ 𝑷𝑷𝒋𝒋,𝒓𝒓,𝒘𝒘 ∙ 𝑻𝑻𝒊𝒊𝒋𝒋,𝒓𝒓,𝒘𝒘 ∙ �𝑪𝑪𝒊𝒊𝒋𝒋,𝒓𝒓,𝒘𝒘 + 𝑷𝑷𝒋𝒋,𝒓𝒓,𝒘𝒘� ∙ 𝑳𝑳𝑴𝑴𝒋𝒋 97.65 
𝑷𝑷𝒊𝒊,𝒓𝒓,𝒂𝒂 ∙ 𝑷𝑷𝒋𝒋,𝒓𝒓,𝒘𝒘 ∙ 𝑻𝑻𝒊𝒊𝒋𝒋,𝒓𝒓,𝒘𝒘 ∙ �𝑪𝑪𝒊𝒊𝒋𝒋,𝒓𝒓,𝒘𝒘 + 𝑷𝑷𝒋𝒋,𝒓𝒓,𝒘𝒘� ∙ 𝑳𝑳𝑴𝑴𝒊𝒊𝒋𝒋 ∙ 𝑼𝑼𝑼𝑼𝑼𝑼𝒋𝒋 97.08 
𝑷𝑷𝒊𝒊,𝒓𝒓,𝒂𝒂 ∙ 𝑷𝑷𝒋𝒋,𝒓𝒓,𝒘𝒘 ∙ 𝑻𝑻𝒊𝒊𝒋𝒋,𝒓𝒓,𝒘𝒘 ∙ �𝑪𝑪𝒊𝒊𝒋𝒋,𝒓𝒓,𝒘𝒘 + 𝑷𝑷𝒋𝒋,𝒓𝒓,𝒘𝒘� ∙ 𝑳𝑳𝑴𝑴𝒊𝒊𝒋𝒋 ∙ 𝑼𝑼𝑼𝑼𝑼𝑼𝒋𝒋 ∙ 𝑷𝑷𝒋𝒋,𝒓𝒓,𝒘𝒘

∗  96.9 
†This value is from the ZINB results in Figure 13.  

 

Model estimation in this chapter results in unique coefficients for both the zero-

inflation and count parts of the ZINB migration model. The zero-inflation component is 

estimating the probability that a migration flow between an origin and destination will be 

equal to zero, i.e., Pr(𝑀𝑀�𝑖𝑖𝑖𝑖 = 0). The count component is estimating the expected number 

of migrants between two locations given the probability that the flow is zero, i.e., 

𝑀𝑀�𝑖𝑖𝑖𝑖 | 𝑃𝑃𝑂𝑂�𝑀𝑀𝑖𝑖𝑖𝑖 = 0�. Coefficients for 𝑇𝑇𝑖𝑖𝑖𝑖 and 𝑆𝑆𝑖𝑖𝑖𝑖 +  𝑃𝑃𝑖𝑖 are shown below. The remaining 

coefficients are included in the Appendix. 
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Figure 16. Coefficients of Tij by race and age group for the zero-inflation and  

count components of the ZINB model. 
 

 For the zero-inflation component of the model, the sign of the coefficients for 𝑇𝑇𝑖𝑖𝑖𝑖 

are positive for all age and race groups, which is expected given the conceptual basis for 

this variable. All coefficients were statistically significant (𝛼𝛼 = 0.5), except for the two 

oldest age groups (80-84 and 85+) in the OTHER race group. For the variable 𝑇𝑇𝑖𝑖𝑖𝑖 in the 

count portion of the model, the sign of all statistically significant coefficients (𝛼𝛼 = 0.5) is 

negative, which is again consistent with the conceptual basis of the variable. In the 

OTHER race group, the variable 𝑇𝑇𝑖𝑖𝑖𝑖 was not statistically significant for all age groups 

greater than 40-44. For the two oldest age groups in the OTHER race category, the sign 

of the coefficient was positive. 
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Figure 17. Coefficients of (Cij + Pj) by race and age group for the zero-inflation and  

count components of the ZINB model. 
 

Coefficients of variable 𝐶𝐶𝑖𝑖𝑖𝑖 + 𝑃𝑃𝑖𝑖 in the zero-inflation component of the model were 

positive for all combinations of race and age group, indicating that, as expected, the 

probably of 𝑀𝑀�𝑖𝑖𝑖𝑖 = 0 increases as the number of intervening opportunities increases.  

For the count component of the ZINB model, nearly all coefficients for the 

variable 𝐶𝐶𝑖𝑖𝑖𝑖 + 𝑃𝑃𝑖𝑖 statistically significant (𝛼𝛼 = 0.5) and negative. The coefficient for the 

75-79 age group in the OTHER race category was the only coefficient that was positive. 

That same combination was not statistically significant, either, joining the 70-74 and 80-

84 age groups in the OTHER race category, as well as the 75-79 age group in the 

BLACK race group. 
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4.2.2.3. Discussion 

The degraded performance of the final age-race homophily migration model 

(Equation 15) relative to the race only homophily model was surprising. Numerous 

correlations between migrating and destination age groups were found (Figure 15) and 

suggested an empirical relationship that was consistent with the homophily principle. It’s 

possible that unlike race, the age group correlations reflect migration outcomes driven by 

other factors. From an analytic perspective, the reliance on age homophily and the 

additional variables shown in Table 8 have little support. However, articulating migration 

flows by age and race is critical in the context of population projections and moving 

forward with Equation 15 is therefore justified, particularly since the literature provides 

no examples of what constitutes a “good” migration model in that context.  

The additional results in section 4.2.2.2 largely conformed to expectations. The 

novel deterrence variables were largely statistically significant and of the correct sign 

(Figure 16 and Figure 17). There was a somewhat consistent pattern of the coefficients 

for those variables being statistically insignificant and of the unexpected sign. For 

example, in Figure 16 the sign of the COUNT coefficient for Tij is positive for the two 

oldest age groups in the OTHER row. This is counterintuitive since we would expect Tij 

to attenuate migration as its value increases, i.e., I expect the sign to be negative. Of 

course, in that case the coefficient was not statistically significant and not particularly 

concerning. However, the results do suggest a lack of explanatory power for the older age 

groups overall. Previous work has found that older American and retirees frequently 

move to more rural areas rich with natural amenities (D. McGranahan, 1999; D. A. 
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McGranahan, 2008) and the results presented here may be improved by including 

corresponding variables.  

Insignificant terms in the OTHER race group likely reflect that this label is really 

an aggregate of multiple race groups, e.g., Asian and Native American. The ACS 

migration data include an Asian breakout; however, it does not provide the race and age 

cross tabulation needed to reproduce the analyses in this section. This is an area of 

research that may benefit greatly from synthetic migration data (e.g., Granberry et al., 

2018) which would resolve the major limitations of the ACS (no cross tabulations), 

Census (older vintage) and IRS (no demographic information) data sources.  

4.3. Comparing sub-national population projection 

4.3.1. Methods 

Using the homophily based migration model from section 4.2.2 I produced 

population projections for all U.S. counties through the year 2020. At each annual time 

step births were calculated by multiplying projected percent changes in fertility 

(Wittgenstein Centre for Demography and Global Human Capital, 2018a) by historical 

birth rates (Centers for Disease Control and Prevention, 2020b). Annual deaths were 

similarly calculated by multiplying projected percent changes in mortality (Wittgenstein 

Centre for Demography and Global Human Capital, 2018b) by historical death rates 

(Centers for Disease Control and Prevention, 2020a). I calculate and compare the mean 

absolute percentage errors (MAPE) for that and several other population projections 

using the estimated 2020 county population from U.S. Census Bureau. Population 

projections were selected using the simple criteria that they were resolved at the state or 
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county level for the entire conterminous United States. I assessed model performance 

objectively at the state and county level using typical MAPE values described by Smith et 

al (2013). A summary of the models assessed in this dissertation is provided in Table 9 

(Appendix). 

4.3.2. Results 

State-level MAPE values for 11 population projections are shown in Figure 18. 

As expected, the accuracy of a given population projection (or a given scenario) is largely 

a function of the launch year. Smith et al. (2013) characterize a typical MAPE value for 

state-level population projections as 6% per decade of the projection horizon. 

Surprisingly, virtually all projections were better than the 6% threshold and 4% per 

decade appeared to be a better central estimate of MAPE values. None of the projections 

were better than 2% MAPE per decade. 
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Figure 18. Assessing state-level projection errors using MAPE. 

 

 County level MAPES are shown in Figure 19 and displayed similar characteristics 

to the state-level results. Smith et al. suggested 12% per decade as a typical MAPE value 

for county population projections, however my results show that 8% per decade are more 

representative of typical MAPE values at the county level. At this geographic scale, none 

of the projections were better than 4% MAPE per decade. Like Smith et al, tightening the 

scale to county level leads to MAPE values approximately double those at the state level.  
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Figure 19. Assessing county level projection errors using MAPE. 

 

 The spatial pattern of errors in my final demographic model reveals stark patterns 

in the distribution of errors, with considerable variance in sign and magnitude over short 

distances. While projection error was ±2% for many counties – which corresponds to the 

4% per decade threshold highlighted previously – large groups of counties were beyond 

the 12% threshold, which is relatively poor. Total population was substantially over-

projected (shown in blue) for several counties spanning western North Dakota and 

eastern Montana. This contrasts with much of the western United States, where 

populations were frequently under predicted (shown in red). Much of the eastern 1/3rd of 

the United States lacked any consistent pattern beyond most counties falling into the ±8% 

error per decade groupings.  

 The results show in Figure 20 also highlight persistent challenge in producing 

accurate population projections. For example, the systematic overprediction of population 
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in western North Dakota and eastern Montana appears to be the result of excess migration 

predicted by my model. The recent boom in fracking activity in that region has resulted in 

a surge of predominantly male laborers. My model does not take this unique economic 

context into account and projects the migration of males and females to this region with 

equal likelihood. 

 
Figure 20. County level projection errors of the model described in this dissertation. 

 

4.3.3. Discussion 

The results of this section show that migration can be modeled as a predominantly 

social process and – in the context of a complete demographic model, at least – produce 

reasonably accurate results. Using a homophily model of migration, I was able to produce 
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population projections with five-year MAPE values of 1.49% and 3.33% at the state and 

county level, respectively. Those errors are competitive with the population scenarios 

produced by Hauer (2019) and, somewhat surprisingly, are characterized by a very 

similar spatial distribution (see Figure 25 in Appendix). The model produced in this 

dissertation is also competitive across all other projections of similar spatial and temporal 

scopes.  

I also find that the ‘typical’ MAPE values suggested by Smith et al. (2013) are 

misleading in the context of the more contemporary projections assessed in this 

dissertation. In fact, their per-decade error rates of 6% (state) and 12% (county) better 

characterize the least accurate projections currently available validated against 2020 

population. Respective error rates of 4% and 8% for state and county projections seem to 

better capture typical expectations. My results also bring into focus a potential definition 

of ‘best available’ projections. Based on Figure 18 and Figure 19, MAPE rates of 4% and 

2% per-decade represent aspirational targets for state and county level projections, 

respectively. 

 



68 
 

5. CONCLUSION 

This dissertation advances migration research by demonstrating the viability of a 

new modeling approach focused on mobility as a social process, instead of an economic 

one. Additional research contributions are made in the field of population geography, first 

by demonstrating that credible population projections can be produced using this new 

theoretical framework for migration. The second such contribution is an assessment of 

the accuracy of population projections, establishing clear benchmarks for evaluating past 

and future projection efforts.  

Population projections have become an essential component of policy relevant 

environmental and global change research. Understanding the potential impacts of large-

scale environmental hazards such as climate change requires insights into the geography 

of population: the location and characteristics of the U.S. population over time. My 

research sought to improve understanding of migration in the context of population 

projections by addressing three research questions.  

The first research question evaluated new spatial variables that more effectively 

capture migration deterrence as a social process rather than simple Euclidean distance. 

Included in this evaluation was an original approach to modeling human mobility, the 

radiation model, and the comparisons were made against three different migration data 

sources. My assessment of these various methods in the context of different data sources 

proved useful, showing a diverse range of model performance depending on model form, 

variable choice, and the data source used to estimate the model. I was also able to show 
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that the radiation model performs poorly relative to more traditional regression 

approaches, but that even those frequently cited methods can still benefit from new twists 

such as zero-inflation. I was able to demonstrate that a new model – based on classic 

ideas of Stouffer and leveraging relatively untested zero-inflation statistical modeling – 

shows tremendous promise as a starting point for future migration research efforts.  

My second research question explored the idea of modeling migration as a social 

process rather than an economic choice. Using the homophily principle as a theoretical 

framework did indeed improve model performance, lending credence to the notion that 

people make migration choices using information outside of strict financial calculations 

(as has been suggested by others). Translating this idea into model mechanics is trivial: 

simply partitioning migration calculations by race. Doing so provided a measurable boost 

to model performance with the added benefit of a self-accounting of population by race; a 

desirable characteristic unto itself. This line of my research was carried a step further, 

integrating age homophily into the final model as well as well-documented preferences 

for urban areas for certain age groups. The final migration model includes predictors that 

are known influences of migration behavior but can accommodate additional variables of 

interest over longer time scales (unlike fixed-rate models). For example, the impact of 

climate change on population is a concern at multiple levels of governance and may be 

manifested though multiple pathways. Increasing frequency of wildfires may generate 

pulses of out-migration from affected areas. Hurricanes similarly have resulted in mass 

migration events from coastal cities such as New Orleans. And the gradual pressure of 

sea-level rise seems likely to drive population inward, away from the most low-lying 
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coastal areas of the United States in the coming decades. The timing and scope of the 

effect of each of these drivers is an important area of research, and each may be 

represented by the migration model described in this dissertation by including exogenous 

data or model outputs as additional predictor variables..  

The last portion of my research integrates this final model into a full demographic 

model and produces projections that let me perform a final assessment. My results show 

clearly that this new modeling approach shows enormous potential and can be used to 

produce demographically detailed population projections that perform well compared to 

similar efforts. Moreover, my assessment of model accuracy reveals useful MAPE 

benchmarks for evaluating population projection accuracy and utility going forward.  

The modeling approach demonstrated in this dissertation forgoes economic 

variables shown to influence migration patterns for two reasons. First, this is simply an 

acknowledgment that there are no county level projections of those variables frequently 

found in the literature such as wages and housing prices. Second, this dissertation sought 

to demonstrate the utility of a relatively simple migration model based on singular 

sociological principle. The methodological choices in this work should not be construed 

as disregard for the vast economic migration literature, but rather a renewed focus on the 

phenomenon of migration through a lens of human geography.  

An important limitation of the work presented here is the inherent uncertainty of 

population projections. The out-of-sample accuracy assessments themselves are 

constrained by data availability with some components of change going back only to 

1995. The assessments presented here provide a measure of accuracy that may be 
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presently useful for model selection, but subsequent evaluations may support different 

conclusions regarding the suitability of a given model or scenario. Sub-national 

population trajectories are subject to sudden social, economic, and political forces and are 

thusly difficult to predict with any certainty. A rapidly changing climate may affect the 

habitability of arid regions of the country, for example, by constraining water availability. 

Similarly, sea-level rise may dramatically impact housing choices along large swaths of 

the U.S. coastline. While these outcomes are virtually impossible to predict, a modeling 

framework such as the one presented here can facilitate assessments of those 

environment-migration interactions through scenario analysis. 

The potential impacts of those large-scale environmental disruptions on domestic 

migration stand out as an area of need for future research. Insights into the timing and 

magnitude of sea-level rise impacts on migration choices, for example, are relatively thin 

considering the potential scope of that phenomenon. However, I would argue that a more 

immediate need with respect to future scholarship is the development of a unified 

migration data source. This next step should be easily achievable with existing methods 

and tools already used to develop synthetic population. A thematically and spatially 

detailed migration data source that combines information and attributes from multiple 

resources would improve comparability, transparency, and reproducibility in the field. 
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APPENDIX 

 

 
Figure 21. Coefficients of Pi by race and age group for the zero-inflation component of the ZINB model. 
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Figure 22. Coefficients of Pi by race and age group for the count component of the ZINB model. 
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Figure 23. Coefficients of Pj by race and age group for the zero-inflation component of the ZINB model. 
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Figure 24. Coefficients of Pj by race and age group for the count component of the ZINB model. 
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Table 9. Summary of population projections assessed in this dissertation. 
 

Name 
Year 

published 
# of 

projections 
Spatial 

resolution Temporal attributes 
Thematic 
attributes 

Launch 
year 

U.S. EPA 2009 6 Counties Decadal through 2100 Total population 2000 

U.S. EPA 2017 6 CBSAs and 
counties Decadal through 2100 Total population 2010 

Gao 2017 5 1 km Decadal through 2100 Urban and rural 2000 

Mckee et al. 2015 1 30 arc-second 2030 and 2050 only Total population 2010 

University of 
Virginia 2017 1 States Decadal through 2040 Age and race 2017 

Urban Institute 2017  27 Commuting zones Semi-decadal through 
2040 Age and race 2010 

USFS 2019 5 Counties Semi-decadal through 
2070 Per Capita Income 2010 

Jiang et al. 2020 5 States Decadal through 2100 Urban and rural 2010 

Hauer 2019 5 Counties Semi-decadal through 
2100 Age, sex, and race 2010 

U.S. Census Bureau 1997 2 States Semi-decadal through 
2025 Total population 1995 

U.S. Census Bureau 2005 1 States Annual through 2030 Age & gender 2004 
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Figure 25. County level projection errors of Hauer (2019) 
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